2015-2016年度河南省全国I卷高二调研考试数学(文)试卷 扫描版

合集下载

河南省南阳市2015-2016学年高二上学期期终质量评估数学(文)试题(扫描版)

河南省南阳市2015-2016学年高二上学期期终质量评估数学(文)试题(扫描版)

2015年秋期高中二年级期终质量评估数学试题(文)参考答案一、选择题1.A 2.B 3.D 4.C 5.A 6.C 7.A 8. D 9. B 10.D 11.A 12.C二、填空题13.7 14.1 15.16. 1(,1)4三、解答题17.解析:(1)设等差数列{}n a 的公差为d,则1(1)n a a n d =+-因为719942a a a =⎧⎨=⎩,所以11164182(8)a d a d a d +=⎧⎨+=+⎩. 解得,111,2a d ==. ……………4分所以{}n a 的通项公式为12n n a +=.…………5分 (2)1222(1)1n n b na n n n n ===-++, ……7分 所以2222222()()()122311n n S nn n =-+-++-=++ . …………10分 18.解析:(1)由已知条件得cos 2A +3cos A =1,∴2cos 2A +3cos A -2=0,………4分解之得cos A =12 (cos A =-2舍去),由000180A <<得A =60°,∴角A 的大小为60°……6分(2)由面积公式S =12bcsin A =53,及b =5得c =4.………………………………8分根据余弦定理a 2=b 2+c 2-2bccos A 得a 2=21.又因为正弦定理中a sin A =2R ,所以(2R)2=a 2sin 2A =28.………………………………10分由正弦定理可得sin B =b 2R ,sin C =c 2R ,∴sin Bsin C =bc 4R 2=57.∴sin Bsin C 的值为57.………………………12分19.解析:(1)若a =1,则f(x)=3x -2x 2+ln x ,该函数的定义域为(0,+∞),f ′(x)=1x -4x +3=-4x 2+3x +1x =-(4x +1)(x -1)x (x>0).………………2分当x ∈(0,1),f ′(x)>0时,函数f(x)=3x -2x 2+ln x 单调递增. 当x ∈(1,+∞),f ′(x)<0时,函数f(x)=3x -2x 2+ln x 单调递减.故函数f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).……………6分 (2)f ′(x)=3a -4x +1x,若函数f(x)在区间[2,4]上为单调递增函数,即在区间[2,4]上,f ′(x)=3a -4x +1x ≥0,即3a -4x +1x ≥0在[2,4]上恒成立.………8分即3a ≥4x -1x . 令h(x)=4x -1x ,因为函数h(x)在[2,4]上单调递增, 所以()()max 6344h x h ==, 即3a ≥634,…………10分 解之得4021a <≤,∴实数a 的取值范围为4|021a a ⎧⎫<≤⎨⎬⎩⎭.…………………………………………12分20.解析:(1)∵F(1,0),∴直线l 的方程为y =2(x -1),…………………………1分设A(x 1,y 1),B(x 2,y 2),由22(1)4y x y x =-⎧⎨=⎩得x 2-3x +1=0,………3分 ∴x 1+x 2=3,x 1x 2=1. …………4分 ∴|AB|=(x 2-x 1)2+(y 2-y 1)2·(x 1+x 2)2-4x 1x 25. ∴|AB|的大小为5………………6分 (2)证明:设直线l 的方程为x =my +1,由214x my y x=+⎧⎨=⎩得y 2-4my -4=0. ∴y 1+y 2=4m ,y 1y 2=-4…………10分 OA →=(x 1,y 1),OB →=(x 2,y 2).∵OA →·OB →=x 1x 2+y 1y 2=(my 1+1)(my 2+1)+y 1y 2 =m 2y 1y 2+m(y 1+y 2)+1+y 1y 2=-4m 2+4m 2+1-4=-3.∴OA →·OB →是一个定值.……………12分 21. 解析:(1)f ′(x)=3x 2-6x +a ,f ′(0)=a.曲线y =f(x)在点(0,2)处的切线方程为y =ax +2. 由题设得-2a=-1,所以a =2 …………………4分(2)证明:由(1)知,f(x)=x 3-3x 2+2x +2. 设g(x)=f(x)-kx +2=x 3-3x 2+(2-k)x +4.由题设知2-k>0. 当x ≤0时,g ′(x)=3x 2-6x +2-k>0,g(x)单调递增, g(-1)=k -2<0,g(0)=4,所以g(x)=0在(-∞,0]有唯一实根. …………………8分 当x>0时,令h(x)=x 3-3x 2+4, 则g(x)=h(x)+(2-k)x>h(x).h ′(x)=3x 2-6x =3x(x -2).h(x)在(0,2)单调递减,在(2,+∞)单调递增, 所以g(x)>h(x)≥h(2)=0.所以g(x)=0在(0,+∞)没有实根. ………………………………………11分 综上,g(x)=0在R 有唯一实根,即曲线y =f(x)与直线y =kx -2只有一个 交点. ……………………………………………………………………12分 22.解析:(1)设椭圆的标准方程为x 2a 2+y2b2=1(a >b >0),F(c,0),则c =1,因为AF →·FB →=(a +c)(a -c)=a 2-c 2=1,所以a 2=2,b 2=1,则椭圆的标准方程为x 22+y 2=1.……………………………4分(2)假设存在直线l 符合题意,由题意知k MF =1-00-1=-1,故可设直线l 的方程为:y =x +n , 代入x 22+y 2=1得3x 2+4nx +2n 2-2=0,则Δ=16n 2-24(n 2-1)>0,解得n 2<3. 设P(x 1,y 1),Q(x 2,y 2),则x 1+x 2=-43n ,x 1x 2=2n 2-23, …………………………………………8分FP →·MQ →=(x 1-1,y 1)·(x 2,y 2-1)=(x 1-1)x 2+(y 2-1)y 1=2x 1x 2+(n -1)(x 1+x 2)+n 2-n =0,即3n 2+n -4=0,……………………………………………………………………10分解得n =1或n =-43,当n =1时,P 或Q 与M 重合,所以n≠1,所以n =-43.所以满足题意的直线l 存在,其方程为:y =x -43.………………………………12分。

2015—2016学年第二学期高二数学(文科)试卷

2015—2016学年第二学期高二数学(文科)试卷

2015—2016学年第二学期期中试卷高二数学(文科)注意事项:⑴答题前考生务必将自己的姓名和学号写在答题卡和答题页规定的位置上。

⑵答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑。

第Ⅰ卷一、 选择题(本小题共12小题,每小题5分,在每小题给出的四个 选项中,只有一个选项是符合题目要求的)1. 计算(5-5i )+(-2-i )-(3+4i )=( )A -2iB -2C 10D -10i2. 在复平面内,复数2(1)对应的点位于( )A 第一象限B 第二象限C 第三象限D 第四象限 3. 在一次实验中,测得(),x y的四组值分别是()1,2A ,()2,3B ,()3,4C ,()4,5D ,则y 与x 之间的回归直线方程为( )A y=2x+1B y=x+2C y=x+1D y=x-14.下面对相关系数r 描述正确的是( )A r >0表明两个变量负相关B r >1表明两个变量正相关C ︱r ︱越接近于0,两个变量相关关系越弱D r 只能大于零5. 有一段演绎推理:“直线平行于平面,则这条直线平行于平面内所有直线;已知直线b ⊄平面α,直线⊂a 平面α,直线b ∥平面α,则直线b ∥直线a ”的结论是错误的,这是因为( )A 推理形式错误B 大前提错误C 小前提错误D 非以上错误 6.用反证法证明命题:“三角形的内角中至少有一个不大于60°时,反设正确的是( )A 假设三内角都大于60°B 假设三内角至多有两个大于60°C 假设三内角至多有一个大于 60°D 假设三内角都不大于 60° 7. 设点P 对应的复数为-3+3i ,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P 的极坐标为( )A (3,π45)B (23-,π45)C (23,π43)D (-3,π43)8. 曲线的极坐标方程为θρsin 4=化成直角坐标方程为( )A 4)2(22=-+y xB 4)2(22=++y xC 4)2(22=+-y xD 4)2(22=++y x 9.如图所示,程序框图(算法流程图)的输出结果是( )A. 16B.2524C. 34D.111210. 根据下列算法语句, 当输入x 为60时, 输出y 的值为 ( ) A 31 B 30 C 25 D 6111. 已知点P 的极坐标是(1,π),则过点P 且垂直极轴的直线方程是( ) A 1=ρB θρcos =C θρcos 1= D θρcos 1-=12. 对于任意的两个实数对(a , b )和(c, d),规定(a , b )=(c, d)当且仅当a =c,b =d; 运算“⊗”为:),(),(),(ad bc bd ac d c b a +-=⊗,运算“⊕”为:),(),(),(d b c a d c b a ++=⊕,设R q p ∈,,若)0,5(),()2,1(=⊗q p则=⊕),()2,1(q p ( )A )2,0(B )0,4(C )0,2(D )4,0(-输入xIf x ≤50 Theny = 0.5 * x Else y = 25 + 0.6*(x -50) End If 输出y第二部分(非选择题、共90分)二、填空题(共4小题、每题5分)13.复数1,1z i=+ 则z =___________. 14. 在同一平面直角坐标系中,直线21x y -=变成直线42='-'y x 的伸缩变换是____________________;15. 已知直线l 的极坐标方程为sin()4πρθ-=,点A 的极坐标为74A π⎛⎫⎪⎝⎭,则点A 到直线l 的距离为 16.观察下列等式:1-1122= 1-1111123434+-=+1-1111111123456456+-+-=++…………据此规律,第n 个等式可为_____________________ _____ _.三、解答题(共6小题,总分70分,解答写出文字说明、演算步骤或证明过程)17.(本小题10分):0,a >>已知 18.(本小题12分)实数m 取什么值时,复数z=(m 2+m-12)+(m 2-3m)i 是(1)虚数?(2)实数?(3)纯虚数? 19.(本小题12分)已知数列{n a }的前n 项和为S n ,31=a ,满足)N (261*+∈-=n a S n n , (1)求432,,a a a 的值;(2)猜想n a 的表达式。

河南省南阳市2015-2016学年高二下学期期末考试数学(文)试题扫描版含答案

河南省南阳市2015-2016学年高二下学期期末考试数学(文)试题扫描版含答案

2016年春期高中二年级期终质量评估数学试题(文)参考答案一、选择题1.A 2.C 3.B 4.D 5.A 6.C 7.B 8. D 9. A 10.D 11.C 12.B 解析:2.由z =-1+2i ,得z =-1-2i ,故z 的虚部是-2. 故选C.3.根据概念进行判断,故选B.5.由题意知:201711i z i+=+=1,所以点P 的坐标为(1,0),故选A. 6.第n 个“金鱼”图需要火柴棒的根数为8+6(n -1)=6n +2.故选C.7.参数方程化为普通方程为:y -y 0=-3(x -x 0),斜率k =-3,倾斜角为120°.故选B.8.由kxce y =得kx c y +=ln ln ,所以c kx z ln += , ∴4ln =c ,∴4e c =故选D. 9.由题意可知直线l 过定点(0,-2),曲线C 的普通方程为x 2+y 2=2x ,即(x -1)2+y 2=1.由图可知,直线l 与圆相切时,有一个交点,此时|k +2|k 2+1=1,解得k =-34.若满足题意,只需k ≤-34即可.故选A.10.由x =1t 得:t =1x ,代入y =1tt 2-1,得: 当x >0时,x 2+y 2=1,此时y ≥0;当x <0时,x 2+y 2=1,此时y ≤0,故选D.11.由程序框图可知:当a =-1.2时,∵a <0,∴a =-1.2+1=-0.2,a <0, a =-0.2+1=0.8,a >0.∵0.8<1,输出a =0.8.当a =1.2时,∵a ≥1,∴a =1.2-1=0.2.∵0.2<1,输出a =0.2. 故选C.12.对于函数y=lnx ,曲线y=lnx 在与坐标轴交点处的切线方程为y=x-1, 由于曲线y=lnx 在切线y=x-1的下方,故有不等式1ln -≤x x .故选B.二、填空题13.甲 14. 231 15. 3 16. 10解析:15.∵C 1:(x -3)2+(y -4)2=1, C 2:x 2+y 2=1,∴两圆心之间的距离为d =32+42=5.∵A ∈曲线C 1,B ∈曲线C 2, ∴|AB |min =5-2=3. 16.x =9+9.5+m +10.5+115=8+m 5,y =11+n +8+6+55=6+n 5,线性回归直线一定经过样本中心(x ,y ),即6+n 5=-3.2⎝ ⎛⎭⎪⎫8+m 5+40,即3.2m +n =42, 又∵m +n =20,即⎩⎪⎨⎪⎧ 3.2m +n =42,m +n =20,解得⎩⎪⎨⎪⎧ m =10,n =10.故n =10.三、解答题17.解:是实数时,或-。

河南省信阳市2015届高中毕业班第二次调研检测数学文试题 Word版含答案

河南省信阳市2015届高中毕业班第二次调研检测数学文试题 Word版含答案

信阳市2014--2015学年度高中毕业班调研检测文科数学注意事项:1.答题前,考生务必将本人的姓名、准考证号等考生信息填写在答题卡上,并用2B铅笔2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.53.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4.保持卡面清洁,不折叠,不破损。

第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。

1.设集合{}|12M x x =-≤<,{}|0N x x k =-≤,若M N ⊆,则k 的取值范围是 (A)2k ≤ (B)1k ≥- (C)1k >- (D)2k ≥ 2.在复平面内,复数201532i iZ +-=对应的点位于 (A)第四象限 (B)第三象限 (C)第二象限 (D)第一象限 3.设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9的值等于 (A)36 (B)45 (C)54 (D)27 4.已知a =, b =, c =,则a 、b 、c 的大小关系是5.在“信阳市中学生歌手大赛”比赛现场上七位评委为某选手打 出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后, 所剩数据的平均数和方差分别为(A)5和1.6 (B)85和1.6 (C) 85和0.4 (D) 5和0.4 6.执行如图所示的程序框图输出的结果是(A)55 (B)65 (C)78 (D)89 7.已知函数()sin()f x A x x R ωϕ=+∈,(其中0022A ππωϕ>>-<<,,),其部分图像如下图所示,将()f x 的图像纵坐标不变,横坐标变成原来的2倍,再向右平移1个单位得到()g x 的图像,则函数()g x 的解析式为 (A)()sin(1)2g x x π=+ (B)()sin(1)8g x x π=+ (C)()sin(1)2g x x π=+ (D)()sin(1)8g x x π=+8.已知函数y =f (x )(x ∈R )满足f (x +1)=f (x -1),且当x ∈[-1,1]时,f (x )=x 2,则y =f (x )y =z★2015年2月8日与5||y log x =的图象的交点个数为 (A) 3 (B) 4(C) 5(D) 69.下列命题中,真命题是(A)对于任意x ∈R ,22x x >;(B)若“p 且q ”为假命题,则p ,q 均为假命题;(C)“平面向量b α,的夹角是钝角”的充分不必要条件是“0<⋅b α”; (D)存在m ∈R ,使243()(1)m m f x m x -+=-是幂函数,且在()0,+∞上是递减的.10.函数sin 222x xxy -=+的图像大致为(A) (B) (C) (D)11. 已知双曲线2221(0)9x y b b-=>,过其右焦点F 作圆229x y +=的两条切线,切点记作C ,D ,双曲线的右顶点为E ,0150CED ∠=,则其双曲线的离心率为3212.已知函数f (x )的定义域为[-1,5],部分对应值如下表,f (x )的导函数y =)('x f 的图(A) [)2,1 (B)[]2,1 (C) ()3,2 (D )[)3,1 13.已知向量α与b 的夹角为120°,且4==b α,那么)(2b αb +⋅的值为________.14.已知实数x,y 满足约束条件104312020x y x y y -+≥⎧⎪+-≤⎨⎪-≥⎩,则211x y z x -+=+的最大值为 。

河南省高二数学下学期期末检测试题 文(扫描版)(1)

河南省高二数学下学期期末检测试题 文(扫描版)(1)

河南省2016-2017学年高二数学下期期末检测试题文(扫描版)中原名校2016—2017学年下期期末检测高二数学(文)答案一、选择题1.C2.A3.A4.D5.B6.B7.B8.C9.A 10.D 11.D 12.A1.C 【解析】因为{}240M x x =-≤{}22x x =-≤≤,全集U R =,所以U C M ={}22x x x <->或,故选C.2.A 【解析】利用方程思想求解复数并化简.由(z -2i)(2-i)=5,得z =2i +52-i =2i +5(2+i)(2-i)(2+i)=2i +2+i =2+3i.3.A 【解析】依题意,K 2=6,且P (K 2≥3.841)=0.05,因此有95%的把握认为“X 和Y 有关系”,选A .4.D 【解析】∵a =(1,x ),b =(2,-6)且a ∥b ,∴-6-2x =0,x =-3,∴a =(1,-3),a ·b =20,故选D . 5.B 【解析】①若p q ∧是真命题,则p 和q 同时为真命题,p ⌝必定是假命题;②命题“2000,10x R x x ∃∈--<”的否定是“2,10x R x x ∀∈--≥”;③“5a >且5b >-”是“0a b +>”的充分不必要条件; ④a y x =1'a y a x -⇒=⋅,当0a <时,'0y <,所以在区间()0+∞,上单调递减. 选B .6.B 【解析】()()113333xxx xf x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数是奇函数,并且3x 是增函数,13x⎛⎫ ⎪⎝⎭ 是减函数,根据增函数-减函数=增函数,所以函数是增函数,故选A.7.B 【解析】由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递减,∴a 4=12,a 2=32.∴公差d =a 4-a 22=-12.∴a 1=a 2-d =2.8.C 【解析】作出函数y =2 018x和y =-log 2 018x 的图象如图所示,可知函数f (x )=2 018x+log 2 018x 在x ∈(0,+∞)上存在一个零点,又f (x )是定义在R 上的奇函数,所以f (x )在x ∈(-∞,0)上只有一个零点,又f (0)=0,所以函数f (x )的零点个数是3,故选C.9.A 【解析】因为函数22sin ()11xy f x x==+可化简为222sin ()1x x f x x =+可知函数为奇函数关于原点对称,可排除答案C ;同时有42224sin 2cos 2cos ''()(1)x x x x x xy f x x ++==+3222(2sin cos cos )(1)x x x x x x x ++=+,则当(0,)2x π∈ '()0f x >,可知函数在2x π=处附近单调递增,排除答案B 和D ,故答案选A .10.D 【解析】因为y =sin x +3cos x =2sin ⎝ ⎛⎭⎪⎫x +π3,y =sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,所以把y =2sin ⎝⎛⎭⎪⎫x +π3的图象至少向右平移2π3个单位长度可得y =2sin ⎝ ⎛⎭⎪⎫x -π3的图象.所 以选D 。

2015-2016学年高二第二学期期末测试数学文试题带答案

2015-2016学年高二第二学期期末测试数学文试题带答案

2015-2016学年度第二学期高二期末调研测试数学 (文科)试 题(全卷满分160分,考试时间120分钟)2016.06注意事项:1. 答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方. 2.试题答案均写在答题卷相应位置,答在其它地方无效.一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.已知集合{}0A x x =≥,{}1B x x =<,则A ⋂B = ▲. 2.复数(2)i i +的虚部为▲.3.命题:“若0a ≠,则20a >”的否命题是 ▲.4.若函数()2cos ,f x x =则()f x '= ▲.5.051lg 2lg 222⎛⎫++= ⎪⎝⎭▲.6.幂函数()()f x xR αα=∈过点()2,2,则()16f =▲.7.直线l 过点()1,1,且与直线220160++=x y 平行,则直线l 的方程为▲.(答案写成一般式方程形式)8.将函数sin y x =的图象向右至少平移 ▲ 个单位可得到函数cos y x =的图象.9.0<a 是方程0122=++x ax 至少有一个负数根的_______▲_____条件(填必要不充分、充分不必要、必要充分、既不充分也不必要)10.已知()3,f x x x =且(1)(2)0f a f a -+<,则实数a 的取值范围是 ▲. 11.已知2sin 23α=,则2cos ()4πα+= ▲. 12.过直线2=y x 上的一点P 作22:(2)(1)1-+-= M x y 的两条切线12l l ,,,A B两点为切点.若直线12l l ,关于直线2=y x 对称,则四边形PAMB 的面积为13.考察下列等式: 11cos isin i a b θθ+=+,()222cos isin i a b θθ+=+, ()333cos isin i a b θθ+=+,……()cos isin i nn n a b θθ+=+,其中i 为虚数单位,a n ,b n (n *∈N )均为实数.由归纳可得,当2πθ=时,a 2016+b 2016的值为 ▲.14.已知函数2()(11)(211)f x x x x =++---, 若关于x 的方程()f x m =有实数解,则实数m 的取值范围为 ▲ .二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分) 已知复数1-z i =(1)设(1)13w z i i =+--,求||w ;(2)如果21z az bi i++=+,求实数,a b 的值.16.(本小题满分14分)定义在实数集上的函数()f x 是奇函数,()g x 是偶函数,且()()2+=++f x g x x ax a .(1)求()f x 、()g x 的解析式;(2)命题[]():1,2,1p x f x ∀∈≥,命题[]():-1,2,g 1q x x ∃∈≤-,若p q ∨为真,求a 的范围.已知函数2()sin 2cos 2x f x x =-,(1)求()4f π的值;(2)当[]0,x π∈时,求函数()f x 的值域;(3)若直线0x x =是函数(4)y f x =图象的对称轴,且00,4x π⎡⎤∈⎢⎥⎣⎦,求0x 的值.18.(本小题满分15分)在平面直角坐标系xOy 中, C 经过二次函数()()23=233+-f x x x 与两坐标轴的三个交点.(1)求 C 的标准方程;(2)设点()2,0-A ,点()2,0B ,试探究 C 上是否存在点P 满足2=PA PB ,若存在,求出点P 的坐标,若不存在,说明理由.定义在[,]a b 上的函数()f x ,若存在()0,x a b ∈使得()f x 在0[,]a x 上单调递增,在0[,]x b 上单调递减,则称()f x 为[,]a b 上的单峰函数,0x 为峰点.(1)若()3=-3f x x x +,则()f x 是否为[0,2]上的单峰函数,若是,求出峰点;若不是,说明理由;(2)若()=m 42⋅+xxg x 在[-1,1]上不是单峰函数,求实数m 的取值范围;(3)若()211=-+-h x x n x 在[2,2]-上为单峰函数,求负数n 的取值范围.20.(本小题满分16分)已知函数2()2ln ()=-∈f x x a x a R ,()2g x ax =. (1)求函数()f x 的极值;(2)若a >0,函数()()()h x f x g x =-有且只有一个零点,求实数a 的值;(3) 若01a <<,对于区间[]1,2上的任意两个不相等的实数12,x x ,都有1212()()()()->-f x f x g x g x 成立,求a 的取值范围.2016年6月高二期末调研测试文 科 数学 试 题 参 考 答 案一、填空题: 1.[)0,12.2 3.若0a =,则20a ≤ 4. 2sin x - 5.2 6.4 7.230+=x y -8.3π2 9.充分不必要 10. (),1-∞- 11.16 12.25513.114.2,2⎡⎤-⎣⎦ 二、解答题:15.解(1)因为1-z i =,所以(1)(1)131 3.w i i i i =-+--=- …… 3分||10w ∴=…… 7分(2)由题意得:22(1)(1)(2)z az b i a i b a b a i ++=-+-+=+-+;(1)1i i i +=-+所以1(2)1a b a +=-⎧⎨-+=⎩, …… 12分解得32a b =-⎧⎨=⎩. …… 14分16解(Ⅰ)由()()2+=++f x g x x ax a ①,得()()2-+--=+f x g x x ax a .因为()f x 是奇函数,()g x 是偶函数,所以()()-=-f x f x ,()()-=g x g x ,……2分 所以()()2-+-=+f x g x x ax a ②,①②联立得()()2,==+f x ax g x x a .……6分(Ⅱ)若p 真,则()min 1≥f x ,得1≥a ,………………………………9分 若q 真,则()min 1≤-g x ,得-1≤a ,………………………………12分 因为p q ∨为真,所以11或≥≤-a a .………………………………14分 17.解:(1)()sin cos 1f x x x =-- ()14f π=- ……………5分(2)()2sin()14f x x π=--……………………………………………………7分由[]0,x π∈,得3(),444x πππ⎡⎤-∈-⎢⎥⎣⎦,则2sin(),142x π⎡⎤-∈-⎢⎥⎣⎦……………9分则2sin()12,214x π⎡⎤--∈--⎣⎦ 所以值域为2,21⎡⎤--⎣⎦ ………10分(3)∵(4)2sin(4)14y f x x π==--,………11分∴令sin(4)14x π-=±,得4()42x k k Z πππ-=+∈………12分∴3416k x ππ=+ (k ∈Z), 由304164k πππ≤+≤ (k ∈Z),得k =0………14分因此0316x π=………15分18.(Ⅰ)设所求圆的一般方程为22=0++++x y Dx Ey F ,令y =0 得2=0++x Dx F ,这与223=0+-x x 是同一个方程,故D =2,F =3-,………………………………3分令x =0 得2=0++y Ey F ,此方程有一个根为3-,代入得E =0,…………6分所以圆C 的标准方程为()22+1=4+x y .………………………………7分(Ⅱ)假设存在点(),P x y 满足题意,则222=PA PB,于是()()22222222++=-+x y x y ,化简得()22-632+=x y ①.………………………10分又因为点P 在 C 上,故满足()22+1=4+x y ②.①②联立解得点P 的坐标为1717-2222,,,⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.………………………14分 所以存在点P 满足题意,其坐标为1717-2222,,,⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭………………………15分 19.解(Ⅰ)令()2=-3x 3=0'+f x 得1=±x ,当()01,0,'≤<>x f x ()12,0,'<≤<x f x 故()f x 在[0,1]上单调递增,在[1,2]上单调递减, ………………………3分 所以()f x 是为[0,2]上单峰函数,峰点为1. ………………………4分 (Ⅱ)先考虑()=m 42⋅+xxg x 在[-1,1]上是单峰函数,………………………5分令2=xt ()x [-1,1]∈,则1[,2]2∈t ,问题转化为()2=m ⋅+p t t t 在1[,2]2是单峰函数,所以011222m m<<-<⎧⎨⎩,解得1-1,-4m ⎛⎫∈ ⎪⎝⎭.………………………8分 所以实数m 的范围是(]1,1-,4⎡⎫-∞-⋃+∞⎪⎢⎣⎭.………………………9分(Ⅲ)2221,[2,1]()1,(1,1)1,[1,2]⎧-+-∈--⎪=--++∈-⎨⎪+--∈⎩x nx n x h x x nx n x x nx n x①若22≤-n ,即4≤-n ,则22-≥n ,所以,()h x 在[2,1]--上递增,(1,1)-上递增,[1,2]上递减,()h x 在[2,1]-上递增,在[1,2]上递减,所以()h x 是单峰函数,峰点为1; ………………………11分 ②若212-<<-n ,即42-<<-n ,则122<-<n ,所以,()h x 在2,2⎡⎤-⎢⎥⎣⎦n 递减,,12⎛⎫- ⎪⎝⎭n 递增,(1,1)-递增,1,2⎛⎫-⎪⎝⎭n 递减,,22⎡⎤-⎢⎥⎣⎦n 递增,不为单峰函数. ………13分 ③若102-≤<n ,即20-≤<n ,则012<-≤n ,所以,()h x 在[2,1]--上递减,1,2⎛⎫-- ⎪⎝⎭n 上递增,,12⎛⎫-⎪⎝⎭n 上递减,[1,2]上递增,不为单峰函数. ………………………15分综上,4≤-n . ………………………16分22221()220解:.()-'=-=/a x a f x x x x ()0()0,()0a f x f x '≤>+∞当时,在,上递增;()f x 无极值 --- 2分0)()0,()()0,(a a f x f x a f x f x '>∈<'∈+∞>当时,x (0,时,函数)递减; x (,时,函数)递增; ()f x ∴有极小值()ln f a a a a =---- 4分综上: 0()a f x ≤当时,函数无极值;0(ln ,a f x a a a >=-极小值当时,)无极大值;---5分 (2)令222222()2ln 2,()22.a x ax a h x x a x ax x x a x x--'=--=--=则h()200040,()0.,2()),a a a a x x h x x ++'>∴==∴+∞ 令h 得在(0,x 上单调递减,在上单调递增。

2015—2016学年第二学期高二数学(文科)试卷

2015—2016学年第二学期高二数学(文科)试卷

2015—2016学年第二学期期中试卷高二数学(文科)注意事项:⑴答题前考生务必将自己的姓名和学号写在答题卡和答题页规定的位置上。

⑵答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑。

第Ⅰ卷一、 选择题(本小题共12小题,每小题5分,在每小题给出的四个 选项中,只有一个选项是符合题目要求的)1. 计算(5-5i )+(-2-i )-(3+4i )=( )A -2iB -2C 10D -10i2. 在复平面内,复数2(1)对应的点位于( )A 第一象限B 第二象限C 第三象限D 第四象限 3. 在一次实验中,测得(),x y的四组值分别是()1,2A ,()2,3B ,()3,4C ,()4,5D ,则y 与x 之间的回归直线方程为( )A y=2x+1B y=x+2C y=x+1D y=x-14.下面对相关系数r 描述正确的是( )A r >0表明两个变量负相关B r >1表明两个变量正相关C ︱r ︱越接近于0,两个变量相关关系越弱D r 只能大于零5. 有一段演绎推理:“直线平行于平面,则这条直线平行于平面内所有直线;已知直线b ⊄平面α,直线⊂a 平面α,直线b ∥平面α,则直线b ∥直线a ”的结论是错误的,这是因为( )A 推理形式错误B 大前提错误C 小前提错误D 非以上错误 6.用反证法证明命题:“三角形的内角中至少有一个不大于60°时,反设正确的是( )A 假设三内角都大于60°B 假设三内角至多有两个大于60°C 假设三内角至多有一个大于 60°D 假设三内角都不大于 60° 7. 设点P 对应的复数为-3+3i ,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P 的极坐标为( )A (3,π45)B (23-,π45)C (23,π43)D (-3,π43)8. 曲线的极坐标方程为θρsin 4=化成直角坐标方程为( )A 4)2(22=-+y xB 4)2(22=++y xC 4)2(22=+-y xD 4)2(22=++y x 9.如图所示,程序框图(算法流程图)的输出结果是( )A. 16B.2524C. 34D.111210. 根据下列算法语句, 当输入x 为60时, 输出y 的值为 ( ) A 31 B 30 C 25 D 6111. 已知点P 的极坐标是(1,π),则过点P 且垂直极轴的直线方程是( ) A 1=ρB θρcos =C θρcos 1= D θρcos 1-=12. 对于任意的两个实数对(a , b )和(c, d),规定(a , b )=(c, d)当且仅当a =c,b =d; 运算“⊗”为:),(),(),(ad bc bd ac d c b a +-=⊗,运算“⊕”为:),(),(),(d b c a d c b a ++=⊕,设R q p ∈,,若)0,5(),()2,1(=⊗q p则=⊕),()2,1(q p ( )A )2,0(B )0,4(C )0,2(D )4,0(-输入xIf x ≤50 Theny = 0.5 * x Else y = 25 + 0.6*(x -50) End If 输出y第二部分(非选择题、共90分)二、填空题(共4小题、每题5分)13.复数1,1z i=+ 则z =___________. 14. 在同一平面直角坐标系中,直线21x y -=变成直线42='-'y x 的伸缩变换是____________________;15. 已知直线l 的极坐标方程为sin()4πρθ-=,点A 的极坐标为74A π⎛⎫⎪⎝⎭,则点A 到直线l 的距离为 16.观察下列等式:1-1122= 1-1111123434+-=+1-1111111123456456+-+-=++…………据此规律,第n 个等式可为_____________________ _____ _.三、解答题(共6小题,总分70分,解答写出文字说明、演算步骤或证明过程)17.(本小题10分):0,a >>已知 18.(本小题12分)实数m 取什么值时,复数z=(m 2+m-12)+(m 2-3m)i 是(1)虚数?(2)实数?(3)纯虚数? 19.(本小题12分)已知数列{n a }的前n 项和为S n ,31=a ,满足)N (261*+∈-=n a S n n , (1)求432,,a a a 的值;(2)猜想n a 的表达式。

人教A版高中数学选修一高二下学期第一阶段考试(期中)(文)试题.docx

人教A版高中数学选修一高二下学期第一阶段考试(期中)(文)试题.docx

2015-2016学年度下学期高二第一次阶段测试数学(文科)试卷答题时间:120分钟 满分:150分 命题人:杨冠男,刘芷欣第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若是虚数单位,则乘积的值是A.15-B.3C.3-D.52.有一段“三段论”推理是这样的:对于可导函数()f x ,如果0()0f x '=,那么0x x =是 函数()f x 的极值点,因为函数3()f x x =在0x =处的导数值(0)0f '=,所以,0x =是函17(,),2ia bi ab R i i+=+∈-ab数3()f x x =的极值点.以上推理中A .大前提错误B .小前提错误C .推理形式错误D .结论正确 3.给出下列命题(1)实数的共轭复数一定是实数; (2)满足2z i z i -++=的复数z 的轨迹是椭圆;(3)若2,1m Z i ∈=-,则1230;m m m m i ii i ++++++= 其中正确命题的序号是( )A.(1)B.(2)(3)C.(1)(3)D.(1)(4)4.不等式3529x ≤-<的解集为( )A .[2,1)[4,7)-B .(2,1](4,7]-C .(2,1][4,7)--D .(2,1][4,7)-5.已知函数x ax f ππsin )(-=,且2)1()1(lim=-+→hf h f h ,则a 的值为A.2-B.2C.π2D.π2- 6.设,,(,0),a b c ∈-∞则111,,a b c b c a+++( ) A .都不大于2- B .都不小于2- C .至少有一个不大于2- D .至少有一个不小于2- 7.在一次实验中,测得的四组值分别为,,,,则与的线性 回归方程可能是( )A .B .C .D .(,)x y ()1,2()2,3()3,4()4,5y x 1y x =+2y x =+21y x =+1y x =-8. 设0a >b >,则()211a ab a a b ++-的最小值是( ) A .1 B .2 C .3D .49.若1322i ω=-+,则等于421ωω++=( ) A .1 B .13i -+ C .33i + D . 0 10. 若1x >,则函数21161xy x x x =+++的最小值为( ) A .16 B .8 C .4 D .非上述情况11.设,且,若,则必有( )A .B .C .D . 12.已知定义在R 上的可导函数()=y f x 的导函数为()f x ',满足()()f x f x '<,且(1)y f x =+为偶函数,(2)1=f ,则不等式()<xf x e 的解集为A.(,0)-∞B.(0,)+∞C.4(,)-∞eD.4(,)+∞e第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.若复数i m m m m )3()65(22-++-是纯虚数,则实数m 的值是 .AC =14.如图,已知AB 是⊙O 的直径,AB =2,AC 和AD 是⊙O 的两条弦,,,a b c R +∈1a b c ++=111(1)(1)(1)M a b c=---8M ≥118M ≤<18M ≤<108M ≤<,AD =,则∠CAD 的弧度数为 .15.参数方程()2()t tt tx e et y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为_____. 16.在Rt ABC ∆中,若090,,C AC b BC a ∠===,则ABC ∆外接圆半径222a b r +=.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为c b a ,,,则其外接球的半径R = .三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤)17. (本小题满分l0分)如图,,,,A B C D 四点在同一圆上,BC 与AD 的延长线交于点E ,点F 在BA 的延长线上.(Ⅰ)若11,32EC ED EB EA ==,求DCAB的值; (Ⅱ)若2EF FA FB =⋅,证明://EF CD .18.(本小题满分l2分)某校高二年级共有1600名学生,其中男生960名,女生640名,该校组织了一次满分为100分的数学学业水平模拟考试,根据研究,在正式的学业水平考试中,本次成绩在[80,100]的学生可取得A 等(优秀),在[60,80)的学生可取得B 等(良好),在[40,60)的学生可取得C 等(合格),在不到40分的学生只能取得D 等(不合格),为研究这次考试成绩优秀是否与性别有关,现23按性别采用分层抽样的方法抽取100名学生,将他们的成绩按从低到高分成[30,40)、[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100]七组加以统计,绘制成频率分布直方图,如图是该频率分布直方图.(Ⅰ)估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数;(Ⅱ) 请你根据已知条件将下列2×2列联表补充完整,并判断是否有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”?数学成绩优秀 数学成绩不优秀 合计男生 a=12 b= 女生 c= d=34 合计n=100附:.P (k 2≥k 0) 0.15 0.10 0.05 0.01k 0 2.0722.7063.841 6.63519.(本小题满分l2分)设函数()|21||4|f x x x =+--.(1)解不等式()0f x >;(2)若()3|4|f x x m +->对一切实数x 均成立,求m 的取值范围.20.(本小题满分l2分)设函数2()f x ax bx c =++且(1)2af =-,322.a c b >> (1)试用反证法证明:0a > (2)证明:33.4b a -<<-21.(本小题满分l2分)在以直角坐标原点O 为极点,x 轴的非负半轴为极轴的极坐标系下,曲线1C 的方程是1ρ=,将1C 向上平移1个单位得到曲线2C .(Ⅰ)求曲线2C 的极坐标方程;(Ⅱ)若曲线1C 的切线交曲线2C 于不同两点,M N ,切点为T ,求||||TM TN ⋅的取值范围.22.(本小题满分l2分)已知函数1()ln (0,)f x a x a a R x=+≠∈ (Ⅰ)若1a =,求函数()f x 的极值和单调区间;(Ⅱ)若在区间[1,]e 上至少存在一点0x ,使得0()0f x <成立,求实数a 的取值范围.2015-2016学年度下学期高二第一次阶段测试数学(文科)试卷答题时间:120分钟 满分:150分 命题人:杨冠男,刘芷欣第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若是虚数单位,则乘积的值是 CA.15-B.3C.3-D.52.有一段“三段论”推理是这样的:对于可导函数()f x ,如果0()0f x '=,那么0x x =是 函数()f x 的极值点,因为函数3()f x x =在0x =处的导数值(0)0f '=,所以,0x =是函 数3()f x x =的极值点.以上推理中 A A .大前提错误 B .小前提错误 C .推理形式错误 D .结论正确 3.给出下列命题(1)实数的共轭复数一定是实数; (2)满足2z i z i -++=的复数z 的轨迹是椭圆;(3)若2,1m Z i ∈=-,则1230;m m m m i ii i ++++++= 其中正确命题的序号是( )CA.(1)B.(2)(3)C.(1)(3)D.(1)(4)4.不等式3529x ≤-<的解集为( )D17(,),2ia bi ab R i i+=+∈-abA .[2,1)[4,7)-B .(2,1](4,7]-C .(2,1][4,7)--D .(2,1][4,7)-5.已知函数x ax f ππsin )(-=,且2)1()1(lim=-+→hf h f h ,则a 的值为 BA.2-B.2C.π2D.π2- 6.设,,(,0),a b c ∈-∞则111,,a b c b c a+++( )c A .都不大于2- B .都不小于2-C .至少有一个不大于2-D .至少有一个不小于2-7.在一次实验中,测得的四组值分别为,,,,则与的线性回归方程可能是( )A .B .C .D .解析:A 线性回归直线一定过样本中心点,故选A .8. 设0a >b >,则()211a ab a a b ++-的最小值是 (A )1 (B )2 (C )3 (D )49.若1322i ω=-+,则等于421ωω++=( )D A .1 B .13i -+ C .33i + D . 0 10. 若1x >,则函数21161xy x x x =+++的最小值为( )B (,)x y ()1,2()2,3()3,4()4,5y x 1y x =+2y x =+21y x =+1y x =-()2.5,3.5A .16B .8C .4D .非上述情况11.设,且,若,则必有( )AA .B .C .D .12.已知定义在R 上的可导函数()=y f x 的导函数为()f x ',满足()()f x f x '<,且(1)y f x =+为偶函数,(2)1=f ,则不等式()<xf x e 的解集为 BA.(,0)-∞B.(0,)+∞C.4(,)-∞e D.4(,)+∞e第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.若复数i m m m m )3()65(22-++-是纯虚数,则实数m 的值是 .2 AC =14.如图,已知AB 是⊙O 的直径,AB =2,AC 和AD 是⊙O 的两条弦,,AD =,则∠CAD 的弧度数为 . 15.15.参数方程()2()t tt tx e et y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为_____.)2(116422≥=-x y x 16.在Rt ABC ∆中,若090,,C AC b BC a ∠===,则ABC ∆外接圆半径222a b r +=.运用,,a b c R +∈1a b c ++=111(1)(1)(1)M a b c=---8M ≥118M ≤<18M ≤<108M ≤<23512π类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为c b a ,,,则其外接球的半径R= . 2222a b c ++三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤) 17. (本小题满分l0分)如图,A ,B ,C ,D 四点在同一圆上,BC 与AD 的延长线交于点E ,点F 在BA 的延长线上. (Ⅰ)若,求的值;(Ⅱ)若EF 2=FA•FB,证明:EF∥CD.【解答】解:(Ⅰ)∵A,B ,C ,D 四点共圆, ∴∠ECD=∠EAB,∠EDC=∠B∴△EDC∽△EBA,可得,∴,即∴(Ⅱ)∵EF2=FA•FB,∴,又∵∠EFA=∠BFE,∴△FAE∽△FEB,可得∠FEA=∠EBF,又∵A,B,C,D四点共圆,∴∠EDC=∠EBF,∴∠FEA=∠EDC,∴EF∥CD.18(本小题满分l2分)某校高二年级共有1600名学生,其中男生960名,女生640名,该校组织了一次满分为100分的数学学业水平模拟考试,根据研究,在正式的学业水平考试中,本次成绩在[80,100]的学生可取得A等(优秀),在[60,80)的学生可取得B等(良好),在[40,60)的学生可取得C等(合格),在不到40分的学生只能取得D等(不合格),为研究这次考试成绩优秀是否与性别有关,现按性别采用分层抽样的方法抽取100名学生,将他们的成绩按从低到高分成[30,40)、[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100]七组加以统计,绘制成频率分布直方图,如图是该频率分布直方图.(Ⅰ)估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数;(Ⅱ)请你根据已知条件将下列2×2列联表补充完整,并判断是否有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”?数学成绩优秀数学成绩不优秀合计男生a=12 b=女生c= d=34合计n=100附:.P(k2≥k0)0.15 0.10 0.05 0.01k0 2.072 2.706 3.841 6.635解:(Ⅰ)抽取的100名学生中,本次考试成绩不合格的有x人,根据题意得x=100×[1﹣10×(0.006+0.012×2+0.018+0.024+0.026)]=2.…(2分)据此估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数为(人).…(4分)(Ⅱ)根据已知条件得2×2列联表如下:数学成绩优秀数学成绩不优秀合计男生a=12 b=48 60女生c=6 d=34 40合计18 82 n=100 …(10分)∵,所以,没有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”.…(12分)19.设函数f(x)=|2x+1|﹣|x﹣4|.(1)解不等式f(x)>0;(2)若f(x)+3|x﹣4|>m对一切实数x均成立,求m的取值范围.【解答】解:(1)当x≥4时f(x)=2x+1﹣(x﹣4)=x+5>0得x>﹣5,所以,x≥4时,不等式成立.当时,f(x)=2x+1+x﹣4=3x﹣3>0,得x>1,所以,1<x<4时,不等式成立.当时,f(x)=﹣x﹣5>0,得x<﹣5,所以,x<﹣5成立综上,原不等式的解集为:{x|x>1或x<﹣5}.(2)f(x)+3|x﹣4|=|2x+1|+2|x﹣4|≥|2x+1﹣(2x﹣8)|=9,当且仅当﹣≤x≤4时,取等号,所以,f(x)+3|x﹣4|的最小值为9,故m<9.20.(本小题满分l2分)设函数f(x)=ax2+bx+c且f(1)=﹣,3a>2c>2b.(1)试用反证法证明:a>0(2)证明:﹣3<.【解答】证明:(1)假设a≤0,∵3a>2c>2b,∴3a≤0,2c<0<,2b<0,将上述不等式相加得3a+2c+2b<0,∵f(1)=﹣,∴3a+2c+2b=0,这与3a+2c+2b<0矛盾,∴假设不成立,∴a>0;(2)∵f(1)=a+b+c=﹣,∴c=﹣a﹣b∴3a>2c=﹣3a﹣2b,∴3a>﹣b,∵2c>2b,∴﹣3a>4b;∵a>0,∴﹣3<<﹣.21.(本小题满分l2分)在以直角坐标原点O为极点,x轴的非负半轴为极轴的极坐标系下,曲线C1的方程是ρ=1,将C1向上平移1个单位得到曲线C2.(Ⅰ)求曲线C2的极坐标方程;(Ⅱ)若曲线C1的切线交曲线C2于不同两点M,N,切点为T,求|TM|•|TN|的取值范围.【解答】解:(I)曲线C1的方程是ρ=1,即ρ2=1,化为x2+y2=1,将C1向上平移1个单位得到曲线C2:x2+(y﹣1)2=1,展开为x2+y2﹣2y=0.则曲线C2的极坐标方程为ρ2﹣2ρsinθ=0,即ρ=2sinθ.(II)设T(cosθ,sinθ),θ∈[0,π].切线的参数方程为:(t为参数),代入C2的方程化为:t2+2t[cos(θ﹣α)﹣sinα]+1﹣2sinθ=0,∴t1t2=1﹣2sinθ,∴|TM|•|TN|=|t1t2|=|1﹣2sinθ|∈[0,1],∴|TM|•|TN|的取值范围是[0,1].22.(本小题满分l2分)已知函数f(x)=+alnx(a≠0,a∈R)(Ⅰ)若a=1,求函数f(x)的极值和单调区间;(Ⅱ)若在区间[1,e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.【解答】解:(I)因为,(2分)当a=1,,令f'(x)=0,得x=1,(3分)又f(x)的定义域为(0,+∞),f'(x),f(x)随x的变化情况如下表:x (0,1) 1 (1,+∞)f'(x)﹣0 +f(x)↘极小值↗所以x=1时,f(x)的极小值为1.(5分)f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1);(6分)(II)因为,且a≠0,令f'(x)=0,得到,若在区间[1,e]上存在一点x0,使得f(x0)<0成立,其充要条件是f(x)在区间[1,e]上的最小值小于0即可.(7分)(1)当a<0时,f'(x)<0对x∈(0,+∞)成立,所以,f(x)在区间[1,e]上单调递减,故f(x)在区间[1,e]上的最小值为,由,得,即(9分)(2)当a>0时,①若,则f'(x)≤0对x∈[1,e]成立,所以f(x)在区间[1,e]上单调递减,所以,f(x)在区间[1,e]上的最小值为,显然,f(x)在区间[1,e]上的最小值小于0不成立(11分)②若,即1>时,则有xf'(x)﹣0 +f(x)↘极小值↗所以f(x)在区间[1,e]上的最小值为,由,得1﹣lna<0,解得a>e,即a∈(e,+∞)舍去;当0<<1,即a>1,即有f(x)在[1,e]递增,可得f(1)取得最小值,且为1,f(1)>0,不成立.综上,由(1)(2)可知a<﹣符合题意.(14分)…。

河南省洛阳市2015-2016学年高二上学期期末考试数学文试题 Word版含答案

河南省洛阳市2015-2016学年高二上学期期末考试数学文试题 Word版含答案

洛阳市2016年第一学期期末考试高二数学文科试题卷一、选择题1. 若函数24()43x f x mx mx -=++的定义域为R ,则实数m 的取值范围是()A. (0,34)B. (0,34]C. [0,34]D. [0,34) 答案:D详细分析:分母不为零,不等式转化为二次方程求解,由于定义域为R ,因此要求无解,解题目标转化为二次函数无零点问题 二次函数首先讨论二次项系数为零的情况,发现m=0也符合题意22430,16120mx mx m m ++=∆=-<,故选D 2. 下列结论正确的是() A.当x>0且x ≠1时,1lg 2lg x x+≥ B.46x x--的最大值是2 2的最小值是2D.当(0,)x π∈时4sin 4sin x x+≥ 答案:D详细分析:考查基本不等式的一正二定三相等 A 中lgx 不满足正项条件 B 中x 不满足正项条件C 22=≥,但等号不能成立排除法,故选D3. 设命题p:函数sin 2y x =的最小正周期为π/2;命题q:函数cos y x =的图像关于点(π,0)中心对称,则下列判断正确的是()A.p 为真B.q 为真C.p q ∧为假D. p q ∨为真 答案:C详细分析:命题p 为假,命题q 亦为假4. “26m <<”是“222(6)(2)812m x m y m m -+-=-+-表示椭圆”的() A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案:B详细分析:考查椭圆定义等式右端因式分解为(m 6)(m 2)---,转化为椭圆标准方程为22126x y m m+=-- 要求两个分母均为正且不相等(m ≠4),故选D 5. 已知定义在R 上的函数2()sin x f x e x x x =+-+,则曲线()y f x =在点(0,f(0))处的切线方程是()A. y=x+1B. y=x+2C. y=-x+1D. y=-x+2 答案:A详细分析:考查导数首先,f(0)=1,其次求导得斜率'()21cos x f x e x x =+-+仍为1 切线方程为y=x+1,故选A6. 各项都是正数的等比数列{}n a 中,1321,,2a a a 成等差数列,则4534a aa a ++的值为()A.12B.12C.2D.1122OR答案:B详细分析:查考等比数列和等差数列 由等差中项得312a a a =+,即21q q =+解得12q ±=(正项数列取正号) 34452334a a q q q a a q q++==++,故选B 7. 已知F 是双曲线22154x y -=的右焦点,点P 的坐标为(3,1),点A 在双曲线上,则AP+AF 的最小值为()A.37+4B.37-4C.37-2 5D.37+2 5答案:C详细分析:考查双曲线定义,设左焦点为F ’(-3,0)已知F(3,0),P(3,1),首先判断定点P 在双曲线右支内部AP+AF=AP+AF ’-2a ,因此可知F ’AP 三点共线时距离最短,即F ’P -2a由标准方程得2a = C8. 双曲线22221(0,0)x y a b a b-=>>的渐近线与抛物线21y x =+相切,则该双曲线的离心率为()A. 3B. 2C. 5D. 6答案:C详细分析:转化为二次方程判别式问题首先写出渐近线直线方程b y x a =,联立抛物线方程得210bx x a-+=判别式2240b a∆=-= 因此22241b e a ==-,故选C9. 已知x,y 满足不等式2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最大值是最小值的3倍,则a的值为()A.0B.1/3C.2/3D.1 答案:B详细分析:考查简单线性规划10. 已知直线1y kx =+,当k 变化时,此直线被椭圆2214x y +=截得的最大弦长是()A.4B.433C. 3D. 233答案:B详细分析:直线过定点,即椭圆上顶点B(1,0),设弦为AB 把椭圆标准方程转换为参数方程2cos ,sin x y θθ== 因此22224cos (1sin )3sin 2sin 5AB θθθθ=+-=--+换元化简得2325(35)(1t)t t t --+=+-,因此对称轴1/3t =-处取最大值AB =故选B11. 设12,F F 分别是双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点,以两焦点为直径的圆与双曲线C 在第二象限的交点为P ,若双曲线C 的离心率为5,则21sin PF F ∠=() A.35 B.34 C.45 D.56 答案:A详细分析:考查双曲线的性质由双曲线定义可知两焦半径m,n 之差为2,()m n a m n -=> 直径所对圆周角为直角,由勾股定理得2224m n c += 联立解得:222(2)4a n n c ++=整理为关于t=n/c 的二次方程22510480t t +-= 即(56)(58)0t t -+=因此63,sin 525n n c c α===,故选A 12. 若函数21()f x x ax x =++在1[,)3+∞上是增函数,则实数a 的取值范围是()A.[-1,0]B.[0,253]C.[253,+∞) D. [9,+∞) 答案:C详细分析:考查导数21'()2f x x a x =+-,当13x ≥时导数恒大于零,此时导函数是增函数,只要最小值2903a +-≥即可,故选C二、填空题13. 若函数3()63f x x bx b =-+在(0,1)内有极小值,则实数b 的取值范围是___详细分析:2'()36f x x b =-,求导为零得x =01<<解得102b <<14. 在ABC ∆中,若a=2,b+c=7,cosB =-1/4,则b 的值为___详细分析:由余弦定理得2222cos b a c ac B =+-且c=7-b 代入得224(7)(7)b b b =+-+-,解得b=415. 已知数列{}n a 满足1133,2n n a a a n +=-=,则/n a n 的最小值为___详细分析:由累加法得1(1)n a a n n =+-,33()1n a f n n n n==+-由对勾函数性质可知n =f(5)或f(6),比较可知min (6)10.5f == 16. 设F 为抛物线2:4C y x =的焦点,过点P(-1,0)的直线l 交抛物线C 于A,B 两点,点Q 为线段AB 的中点,若FQ=2,则直线l 的斜率等于___详细分析:考查抛物线性质,焦点(1,0),准线x=-1设弦AB 中点00(,)Q x y ,弦直线方程为(1)y k x =+,因此00y kx k =+ 根据抛物线定义得012FQ x =+=,因此02y k =, 由中点斜率公式02ky p ==得21k = 三、解答题17. (10分)已知2:21p a x a ≤≤+,2:3(1)620q x a x a -+++≤,若p 是q 的充分条件,求实数a 的取值范围.详细分析:若P 是Q 的子集,则x P ∈是x Q ∈的充分条件:(2)((31))0q x x a --+≤当3a+1≥2时,222131a a a ≥⎧⎨+≤+⎩解得[1,3]当3a+1≤2时,223112a a a ≥+⎧⎨+≤⎩解得a=-1综上,131a a ≤≤=-或 18. 已知a,b,c分别为ABC ∆的三个内角A,B,C的对边,cos sin 0a C C b c --=. (1)求角A;(2)若a=2,ABC ∆面积为 3 求b,c. 详细分析:考查正弦和余弦定理(1)由正弦定理得sin cos sin sin sin 0A C A C B C --=其中sin sin()B A C =+sin cos sin sin 0A C A C C --=由于sin 0C ≠,化简为cos 1A A -=即2sin(/6)1A π-= 因此/6/6A ππ-=,/3A π=(2) ABC ∆面积为 3转换为1sin 424S bc A bc ==⇒=由余弦定理得2222cos a b c bc A =+-,因此228b c += 综上,b=c=219. 已知等差数列{}n a 的首项11a =,公差d>0,且第2项、第5项、第14项分别是等比数列{}n b 的第2项、第3项、第4项. (1)求数列{}n a 与{}n b 的通项公式; (2)设数列{}n c 对于任意*n N ∈均有3121123...n n nc c c c a b b b b +++++=成立,求12320...c c c c++++的值.详细分析:(1)依题意得221b a a d ==+,3514b a a d ==+,414113b a a d ==+ 由等比中项得2(14)(1)(113)d d d +=++,解得d=2或0(舍) 因此12(1)21n a n n =+-=-2343,9,27b b b ===故首项为1,公比为3 因此13n n b -= (2)考查通项作差法31121231...n n n c c c c a b b b b --++++= 作差得1123n nn n n nc a ad c b -+=-=⇒=⨯, 注意到12113c a c b =⇒=因此数列131231n n n c n -=⎧=⎨⨯>⎩ 因此2014201520156(13)3313S -=+=-20. 已知抛物线2:2(0)E x py p => 直线2y kx =+ 与E 交于A,B 两点,且2OA OB ⋅=其中O 为原点.(1)求抛物线E 的方程;(2)已知点C(0,-2),记直线CA ,CB 的斜率分别为k1,k2,求222122k k k +-的值.详细分析:(1)平面向量坐标运算,故设1122(,),(,)A x y B x y 联立直线与抛物线方程得2240x pkx p --=因此12122,4x x pk x x p +==-,212121212(2)(2)2()44y y kx kx k x x k x x =++=+++= 由数量积得12122x x y y +=,即p=1/2,故抛物线方程为2x y = (2)由(1)知1212,2x x k x x +==-依题意得2211221211222222,y x y x k k x x x x ++++====22222222121212122222212221112121222121212222()()2()22()()2()2()2()816x x k k k x x x x x x x x x x x x x x x x x x x x x x +++-=+-+++=+-+=--+=-=21. 已知函数21()lnf x x x=-. (1)求函数f(x)在21[,]e e上的最值;(2)证明:当(1,)x ∈+∞时,函数3221()32g x x x =+的图像在()y f x =的图像上方. 详细分析:先化简2()ln f x x x =+,因此1'()2f x x x=+导函数为对勾函数,当x>0时1'()2f x x x=+≥因此函数f(x)在21[,]e e 上单调递增,最小值211()1f e e=-,最大值24()2f e e =+构造3221()()()ln 32F x g x f x x x x =-=--求导得322121'()2x x F x x x x x--=--=令32()21h x x x =--,2'()622(31)0,(1)h x x x x x x =-=->> 故'()0F x >,且()21110326F =-=>,即()()g x f x >22. 设12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左右焦点,过左焦点且斜率为1的直线l 与E 相交于A,B 两点,且22,,AF AB BF 成等差数列. (1)求E 的离心率;(2)设A,B 两点都在以P(-2,0)为圆心的同一圆上,求E 的方程. 详细分析:(1)由等差中项得222AB AF BF =+ 焦点弦三角形周长224AB AF BF a ++= 综上可得AB=4a/3求离心率可以根据求弦长分为两种方法方法一:过左焦点(-c,0)的直线方程为y x c =+,设A,B 两点坐标1242()3a AB a e x x =++=,故1223ax x e+=-,且12122y y x x c +=++根据概率公式可得212121y y e x x +=-+即22131e e -=-解得2e = 方法二:根据焦点弦长公式可得2222222244cos 23ab ab aAB a c a c θ===--解得222,2a c e =(2)设弦AB 的中点00(,)M x y ,P(-2,0) 等腰PAB ∆中三线合一,MP 斜率为-1012y k x ==-+ 由(1)知12023x x a x e +==-,120223x x c a y c e ++==- 因此233a a c e e -=-解得6b c == 故2217236x y +=。

【独家】河南省八市重点高中2015-2016学年高二上学期12月质量检测数学(文)试卷(PDF版含答案)

【独家】河南省八市重点高中2015-2016学年高二上学期12月质量检测数学(文)试卷(PDF版含答案)

17 p 1 =4+ ,∴ p ,x2=y,∴m2=4,m=±2 …………5 分 4 2 2 1 1 1 (2)依题可设 PQ 的方程为 l :y=kx+ ,与 x2=y 联立,消去 x,得 y2-( +k2)y+ =0, 4 2 16 1 ∴y1+y2= +k2,而|PQ|= y1+y2+p=1+k2,k2=5-1=4,k=±2 …………10 分 2 1 1 ∴直线 l 的方程为 y=2x+ 或 y= -2x+ , 4 4
5 2
B.
3 2
C.
3 5 2
D.
2 3
9.数列 an 的前 n 项和为 Sn ,若 a1 1 , an 1 3S n ( n 1 ) ,则 a6 A. 3 4
4
B. 3 4 1
4
C. 4
4
D. 4 1
4
10.在△ABC中,角A,B,C的对边分别为 a , b , c ,若 a ,b ,c 成等差数列, B 60 °, △ABC的面积为 则 b 等于 A. 2 B. 1 3 C. 2 D. 2 3
第Ⅰ卷(选择题,共 60 分)
2
一、选择题:(本大题共 12 个小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。 )
1.已 知 命 题 p : x R,2 x 1 0, 则p 是 A. x R,2 x 1 0
2
B. x R,2 x 1 0
1
m
x2 的 准 线 方 程 为
河南省八市高中质量检测题高二(文)数学 第 1 页 共 4 页
A. x
1 4m

河南省信阳市2015-2016学年高二上期期中考试数学文试题 Word版含答案[ 高考]

河南省信阳市2015-2016学年高二上期期中考试数学文试题 Word版含答案[ 高考]

信阳市2015-2016学年度上期期中模块检测 高二文科数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 共4页。

满分150分,时间120分钟.参考公式:回归直线的方程是:a bx y+=ˆ, 其中i i ni ini i ix yx b y a x xy y x xb 是与其中ˆ;,)())((121-=---=∑∑==对应的回归估计值. 第Ⅰ卷(选择题,共60分)一、选择题(本题共12小题,每小题5分,共60分)1. 在下列各图中,每个图的两个变量具有相关关系的图是( )(1) (2)(3) (4)A .(1)(2)B .(1)(3)C .(2)(4)D .(2)(3) 2.下列各数中,最小的数是 ( ) A .75 B .)6(210 C .)2(111111 D .)9(853. 下面为一个求20个数的平均数的程序,在横线上应填充的语句为( )A. i>20B. i<20C. i>=20D. i<=204.袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球C.恰有一个白球;一个白球一个黑球D.至少有一个白球;红、黑球各一个5.如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为A 、34B 、38C 、14D 、186. 在右面的程序框图表示的算法中,输入三个实数 c b a ,,,要求输出的x是这三个数中最大的数,那么在空白的判断框中,应该填入( )A .x c >?B .c x >?C .c b > ?D .c a > ? 7.对某班学生一次英语测试的成绩分析,各分数段的分布如下图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( )A.92%B.24%C.56%D.76%8.下列有关命题的说法正确的是( )A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”.B .“1x =-”是“2560x x --=”的必要不充分条件. C .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈, 均有210x x ++<”.D .命题“若x y =,则sin sin x y =”的逆否命题为真命题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档