上海市2016届高考数学一轮复习 专题突破训练 数列 理

合集下载

上海市2019届高三数学理一轮复习专题突破训练:数列

上海市2019届高三数学理一轮复习专题突破训练:数列

上海市2017届高三数学理一轮复习专题突破训练数列一、填空、选择题1、(2016年上海高考)无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________.2、(2015年上海高考)记方程①:x 2+a 1x+1=0,方程②:x 2+a 2x+2=0,方程③:x 2+a 3x+4=0,其中a 1,a 2,a 3是正实数.当a 1,a 2,a 3成等比数列时,下列选项中,能推出方程③无实根的是( ) A .方程①有实根,且②有实根 B . 方程①有实根,且②无实根 C .方程①无实根,且②有实根 D . 方程①无实根,且②无实根3、(2014年上海高考)设无穷等比数列{}n a 的公比为q ,若()134lim n n a a a a →∞=+++,则q = .4、(虹口区2016届高三三模)若等比数列{}n a 的公比1q q <满足,且24344,3,a a a a =+=则12lim()n n a a a →∞+++=___________.5、(浦东新区2016届高三三模)已知公差为d 的等差数列{}n a 的前n 项和为n S ,若533S S =,则53aa = 6、(杨浦区2016届高三三模)若两整数a 、b 除以同一个整数m ,所得余数相同,即a bk m-=()k Z ∈,则称a 、b 对模m 同余,用符号(mod )a b m ≡表示,若10(mod 6)a ≡(10)a >,满足条件的a 由小到大依次记为12,,,,n a a a ⋅⋅⋅⋅⋅⋅,则数列{}n a 的前16项和为7、(黄浦区2016届高三二模)已知数列{}n a 中,若10a =,2i a k =*1(,22,1,2,3,)k k i N i k +∈≤<=,则满足2100i i a a +≥的i 的最小值为8、(静安区2016届高三二模)已知数列{}n a 满足181a =,1311log ,2,(*)3,21n n n a a n k a k N n k ---+=⎧=∈⎨=+⎩,则数列{}n a 的前n 项和n S 的最大值为 .9、(闵行区2016届高三二模)设数列{}n a 的前n 项和为n S ,22|2016|n S n a n(0a >),则使得1n n a a +≤(n ∈*N )恒成立的a 的最大值为 .10、(浦东新区2016届高三二模)已知数列{}n a 的通项公式为(1)2n n n a n =-⋅+,*n N ∈,则这个数列的前n 项和n S =___________.11、(徐汇、金山、松江区2016届高三二模)在等差数列{}n a 中,首项13,a =公差2,d =若某学生对其中连续10项进行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为__________________. 12、(宝山区2016届高三上学期期末)数列1212312341213214321⋅⋅⋅,,,,,,,,,,,则98是该数列的第 项. 13、(崇明县2016届高三上学期期末)已知数列的各项均为正整数,对于,有其中k 为使1n a +为奇数的正整数. 若存在, 当n >m 且n a 为奇数时,n a 恒为常数p ,则p 的值为14、(奉贤区2016届高三上学期期末)数列}{n a 是等差数列,2a 和2014a 是方程01652=+-x x 的两根,则数列}{n a 的前2015项的和为__________.15、(虹口区2016届高三上学期期末)在等差数列{}n a 中,1352469,15,a a a a a a ++=++= 则数列{}n a 的前10项的和等于_____.二、解答题1、(2016年上海高考)若无穷数列{}n a 满足:只要*(,)p q a a p q N =∈,必有11p q a a ++=,则称{}n a 具有性质P .(1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin ()n n n a b a n N +=+∈.求证:“对任意1,{}n a a 都具有性质P ”的充要条件为“{}n b 是常数列”.2、(2015年上海高考)已知数列{a n }与{b n }满足a n+1﹣a n =2(b n+1﹣b n ),n ∈N *. (1)若b n =3n+5,且a 1=1,求数列{a n }的通项公式;(2)设{a n }的第n 0项是最大项,即0n a ≥a n (n ∈N *),求证:数列{b n }的第n 0项是最大项;(3)设a 1=λ<0,b n =λn (n ∈N *),求λ的取值范围,使得{a n }有最大值M 与最小值m ,且∈(﹣2,2).3、(2014年上海高考)已知数列{}n a 满足1133n n n a a a +≤≤,*n ∈N ,11a =.(1) 若2342,,9a a x a ===,求x 的取值范围; (2) 设{}n a 是公比为q 的等比数列,12n n S a a a =+++. 若1133n n n S S S +≤≤,*n ∈N ,求q 的取值范围;(3) 若12,,,k a a a 成等差数列,且121000k a a a +++=,求正整数k 的最大值,以及k 取最大值时相应数列12,,,k a a a 的公差.4、(虹口区2016届高三三模)若数列12:,,,(,2)n n A a a a n N n *∈≥满足110,1(1,2,,1),k k a a a k n +=-==-则称n A 为L 数列.记12().n n S A a a a =+++(1)若5A 为L 数列,且50,a =试写出5()S A 的所有可能值; (2)若n A 为L 数列,且0,n a =求()n S A 的最大值;(3)对任意给定的正整数(2),n n ≥是否存在L 数列,n A 使得()0?n S A =若存在,写出满足条件的一个L 数列n A ;若不存在,请说明理由.5、(静安区2016届高三二模)已知数列{}n a 满足nn n a a 331+=-(*∈≥N n n ,2),首项31=a .(1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S ; (3)数列{}n b 满足na b nn 3log =,记数列⎭⎬⎫⎩⎨⎧⋅+11n n b b 的前n 项和为n T ,A 是△ABC 的内角,若n T A A 43cos sin >对于任意n N *∈恒成立,求角A 的取值范围.6、(闵行区2016届高三二模)已知n ∈*N ,数列{}n a 、{}n b 满足:11n n a a +=+,112n n n b b a +=+,记24n n n c a b =-.(1)若11a =,10b =,求数列{}n a 、{}n b 的通项公式;(2)证明:数列{}n c 是等差数列;(3)定义2()n n n f x x a x b =++,证明:若存在k ∈*N ,使得k a 、k b 为整数,且()k f x 有两个整数零点,则必有无穷多个()n f x 有两个整数零点.7、(闸北区2016届高三二模)已知数列{}n a ,n S 为其前n 项的和,满足(1)2n n n S +=. (1)求数列{}n a 的通项公式;(2)设数列1{}na 的前n 项和为n T ,数列{}n T 的前n 项和为n R ,求证:当2,*n n N ≥∈时1(1)n n R n T -=-; (3)(理)已知当*n N ∈,且6n ≥时有1(1)()32n m m n -<+,其中1,2,,m n =,求满足34(2)(3)n a n n n n n a ++++=+的所有n 的值.8、(长宁、青浦、宝山、嘉定四区2016届高三二模)已知正项数列}{n a ,}{n b 满足:对任意*N ∈n ,都有n a ,n b ,1+n a 成等差数列,n b ,1+n a ,1+n b 成等比数列,且101=a ,152=a .(1)求证:数列{}nb 是等差数列;(2)求数列}{n a ,}{n b 的通项公式; (3)设12111n nS a a a =+++,如果对任意*N ∈n ,不等式n n n a b aS -<22恒成立,求实数a 的取值范围.9、(宝山区2016届高三上学期期末)已知函数()log k f x x =(k 为常数,0k >且1k ≠),且数列{}()n f a 是首项为4,公差为2的等差数列.(1)求证:数列{}n a 是等比数列; (2) 若()n n n ba f a =+,当k ={}n b 的前n 项和n S 的最小值; (3)若lg n n n c a a =,问是否存在实数k ,使得{}n c 是递增数列?若存在,求出k 的范围;若不存在,说明理由.10、(奉贤区2016届高三上学期期末)数列{}n a 的前n 项和记为n S 若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)、若数列{}n a 的通项公式2nn a =,判断{}n a 是否为“H 数列”;(2)、等差数列{}n a ,公差0d ≠,12a d =,求证:{}n a 是“H 数列”; (3)、设点()1,n n S a +在直线()1q x y r -+=上,其中120a t =>,0≠q .若{}n a 是“H 数列”,求,q r 满足的条件.11、(虹口区2016届高三上学期期末)已知数列{}n a 的前n 项和为n S ,且20,2().n n S S n na n N *=+=∈(1) 计算1234,,,,a a a a 并求数列{}n a 的通项公式;(2) 若数列{}n b 满足12335(21)23,n n n b b b n b a ++++-=⋅+求证:数列{}n b 是等比数列;(3)由数列{}n a 的项组成一个新数列{}n c :1122334567,,,,c a c a a c a a a a ==+=+++1112212221,n n n n n c a a a a ---++-=++++. 设n T 为数列{}n c 的前n 项和,试求lim4nnn T →∞的值.12、(黄浦区2016届高三上学期期末)已知1a ,2a ,…,n a 是由n (*n ∈N )个整数1,2,…,n 按任意次序排列而成的数列,数列{}n b 满足1k k b n a =+-(1,2,,k n =),1c ,2c ,…,n c 是1,2,…,n 按从大到小的顺序排列而成的数列,记122n n S c c nc =+++.(1)证明:当n 为正偶数时,不存在满足k k a b =(1,2,,k n =)的数列{}n a .(2)写出k c (1,2,,k n =),并用含n 的式子表示n S .(3)利用22212(1)(2)()0n b b n b -+-++-≥, 证明:1212(1)(21)6n b b nb n n n +++++≤及122n n a a na S +++≥.(参考:222112(1)(21)6n n n n +++=++.)13、(静安区2016届高三上学期期末)李克强总理在很多重大场合都提出“大众创业,万众创新”. 某创客,白手起家,2015年一月初向银行贷款十万元做创业资金,每月获得的利润是该月初投入资金的20%.每月月底需要交纳房租和所得税共为该月全部金额(包括本金和利润)的10%,每月的生活费等开支为3000元,余款全部投入创业再经营.如此每月循环继续.(1)问到2015年年底(按照12个月计算),该创客有余款多少元?(结果保留至整数元) (2)如果银行贷款的年利率为5%,问该创客一年(12个月)能否还清银行贷款?参考答案一、填空、选择题 1、【答案】4 【解析】试题分析:要满足数列中的条件,涉及最多的项的数列可以为2,1,1,0,0,0,-⋅⋅⋅,所以最多由4个不同的数组成.2、解:当方程①有实根,且②无实根时,△1=a12﹣4≥0,△2=a22﹣8<0,即a12≥4,a22<8,∵a1,a2,a3成等比数列,∴a22=a1a3,即方程③的判别式△3=a32﹣16<0,此时方程③无实根,故选:B3、【解析】:223111510112a a qa q q qq q-±==⇒+-=⇒=--,∵01q<<,∴51q-=4、165、【答案】179【解析】()()53151315333422S S a a a a d a=⇒+=⋅+⇒=,所以5117a a=,319a a=,所以53179aa=6、9767、1288、1279、1201610、1122,252,22nnnnnSnn++⎧+-⎪⎪=⎨⎪--⎪⎩为偶数为奇数11、20012、12813、1或54、120915、80二、解答题【答案】(1)316a=.(2){}n a不具有性质P.(3)见解析.【解析】试题分析:(1)根据已知条件,得到678332a a a a++=++,结合67821a a a++=求解.(2)根据{}n b的公差为20,{}n c的公比为13,写出通项公式,从而可得520193nn n na b c n-=+=-+.通过计算1582a a==,248a=,63043a=,26a a≠,即知{}n a不具有性质P.(3)从充分性、必要性两方面加以证明,其中必要性用反证法证明.试题解析:(1)因为52a a=,所以63a a=,743a a==,852a a==.于是678332a a a a++=++,又因为67821a a a++=,解得316a=.(2){}n b的公差为20,{}n c的公比为13,所以()12012019n b n n =+-=-,1518133n n n c --⎛⎫=⋅= ⎪⎝⎭.520193n n n n a b c n -=+=-+.1582a a ==,但248a =,63043a =,26a a ≠, 所以{}n a 不具有性质P . (3)[证]充分性:当{}n b 为常数列时,11sin n n a b a +=+.对任意给定的1a ,只要p q a a =,则由11sin sin p q b a b a +=+,必有11p q a a ++=. 充分性得证. 必要性:用反证法证明.假设{}n b 不是常数列,则存在k *∈N ,使得12k b b b b ==⋅⋅⋅==,而1k b b +≠.下面证明存在满足1sin n n n a b a +=+的{}n a ,使得121k a a a +==⋅⋅⋅=,但21k k a a ++≠. 设()sin f x x x b =--,取m *∈N ,使得m b π>,则()0f m m b ππ=->,()0f m m b ππ-=--<,故存在c 使得()0f c =.取1a c =,因为1sin n n a b a +=+(1n k ≤≤),所以21sin a b c c a =+==, 依此类推,得121k a a a c +==⋅⋅⋅==.但2111sin sin sin k k k k a b a b c b c ++++=+=+≠+,即21k k a a ++≠. 所以{}n a 不具有性质P ,矛盾. 必要性得证.综上,“对任意1a ,{}n a 都具有性质P ”的充要条件为“{}n b 是常数列”. 2、(1)解:∵a n+1﹣a n =2(b n+1﹣b n ),b n =3n+5, ∴a n+1﹣a n =2(b n+1﹣b n )=2(3n+8﹣3n ﹣5)=6, ∴{a n }是等差数列,首项为a 1=1,公差为6, 则a n =1+(n ﹣1)×6=6n ﹣5;(2)∵a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 2﹣a 1)+a 1 =2(b n ﹣b n ﹣1)+2(b n ﹣1﹣b n ﹣2)+…+2(b 2﹣b 1)+a 1 =2b n +a 1﹣2b 1,②当λ=﹣1时,a 2n =3,a 2n ﹣1=﹣1, ∴M=3,m=﹣1,(﹣2,2),不满足条件.③当λ<﹣1时,当n→+∞时,a 2n →+∞,无最大值;当n→+∞时,a 2n ﹣1→﹣∞,无最小值. 综上所述,λ∈(﹣,0)时满足条件.3、【解析】:(1)依题意,232133a a a ≤≤,∴263x ≤≤,又343133a a a ≤≤,∴327x ≤≤, 综上可得36x ≤≤;(2)由已知得1n n a q -=,又121133a a a ≤≤,∴133q ≤≤ 当1q =时,n S n =,1133n n n S S S +≤≤,即133nn n ≤+≤,成立 当13q <≤时,11n n q S q -=-,1133n n n S S S +≤≤,即1111133111n n n q q q q q q +---≤≤---,∴111331n n q q +-≤≤-,此不等式即11320320n n n nq q q q ++⎧--≥⎨-+≤⎩,∵1q >, ∴132(31)2220n n n n qq q q q +--=-->->,对于不等式1320n n qq +-+≤,令1n =,得2320q q -+≤,解得12q ≤≤,又当12q <≤时,30q -<,∴132(3)2(3)2(1)(2)0n n n qq q q q q q q +-+=-+≤-+=--≤成立,∴12q <≤当113q ≤<时,11n n q S q -=-,1133n n n S S S +≤≤,即1111133111n n n q q q q q q +---≤≤---,即11320320n n n nq q q q ++⎧--≤⎨-+≥⎩,310,30q q ->-< ∵132(31)2220n n n n qq q q q +--=--<-<132(3)2(3)2(1)(2)0n n n q q q q q q q q +-+=-+≥-+=-->∴113q ≤<时,不等式恒成立 综上,q 的取值范围为123q ≤≤(3)设公差为d ,显然,当1000,0k d ==时,是一组符合题意的解, ∴max 1000k ≥,则由已知得1(2)1(1)3[1(2)]3k dk d k d +-≤+-≤+-,∴(21)2(25)2k d k d -≥-⎧⎨-≥-⎩,当1000k ≥时,不等式即22,2125d d k k ≥-≥---, ∴221d k ≥--,12(1) (10002)k k k da a a k -+++=+=, ∴1000k ≥时,200022(1)21k d k k k -=≥---,解得10001000k ≤≤,∴1999k ≤, ∴k 的最大值为1999,此时公差2000219981(1)199919981999k d k k -==-=--⨯4、解:(1)满足条件的L 数列5A ,及对应的5()S A 分别为:(i ) 0, 1, 2,1, 0. 5()4;S A =(ii) 0, 1, 0,1, 0. 5()2;S A =(iii ) 0, 1, 0,-1, 0. 5()0;S A = (iv) 0, -1, -2,-1, 0. 5()4;S A =- (v ) 0, -1, 0,-1, 0 . 5()2;S A =-(vi) 0, -1, 0, 1, 0. 5()0.S A =因此,5()S A 的所有可能值为:4,2,0,2,4.-- ……5分(2) 由于n A 为L 数列,且10,n a a ==11(1,2,,1),k k a a k n +-==-故n 必须是不小于3的奇数. ……7分于是使()n S A 最大的n A 为:0,1,2,3,,2,1,,1,2,,3,2,1,0.k k k k k ---- ……9分这里213(),n k k n N *=+≥∈、 并且[]21()212(1),.2n n S A k k k k -=+++-+==因此,2max1()(3).2n n S A n -⎛⎫= ⎪⎝⎭为不小于的奇数 ……11分 (3)令1(1,2,,1),1,k k k k c a a k n c +=-=-=±则于是由10,a =得213221243312311121,,,,.n n n n a c a a c c c a a c c c c a a c c c c ---==+=+=+=++=+=+++[]12312321123211232()(1)(2)(3)2(1)(2)(3)21(1)(1)(2)(1)(3)(1)2(1)(1)(1)(1)(1)(2)(1)(3)(1)2(1)(12n n n n n n n S A a a a a n c n c n c c c n n n n c n c n c c c n n n c n c n c c -----=+++++=-+-+-+++=-+-+-+++++--+--+--++-+--=---+--+--++-+-故[]1).n c -1,1(1,2,,1)k k c c k n =±-=-因故为偶数,所以12321(1)(1)(2)(1)(3)(1)2(1)(1)n n n c n c n c c c ----+--+--++-+-为偶数.于是要使(1)()0,2n n n S A -=必须为偶数,即(1)n n -为4的倍数,亦即 4,41().n m n m m N *==+∈或 ……14分(i )当4()n m m N *=∈时,L 数列n A 的项在满足: 4143420,=k k k a a a ---==1,41(1,2,,)k a k m =-=时,()0.n S A = ……16分(ii)当41()n m m N *=+∈时,L 数列n A 的项在满足:4143420,=k k k a a a ---==1,441=1(1,2,,),0k m a k m a +-==时()0.n S A = ……18分5、(1)数列{}n a 满足nn n a a 331+=-(*∈≥N n n ,2)∴nn n a a 331=--,∵03≠n ,∴13311=---n n n n a a 为常数,…………2分∴数列⎭⎬⎫⎩⎨⎧n n a 3是等差数列,首项为131=a ,公差为1…………4分 n a n n=3∴n n n a 3⋅= )(*∈N n …………6分 (2)23413233343(1)33n n n S n n -=+⋅+⋅+⋅++-⋅+⋅2345133233343(1)33n n n S n n +=+⋅+⋅+⋅++-⋅+⋅234112333333n n n S n -+-=+++++-⋅1133322n n n S n ++=⋅-+…………10分 (3)数列{}n b 满足na b n n 3log =,则n b nn ==3log 3,…………11分11n n b b +=111(1)1n n n n =-++因此有: 1111111(1)()()()223341n T n n =-+-+-++-+ =111+-n…………13分 ∴由题知△ABC 中,1sin cos sin 22n A A A =>恒成立,而对于任意n N *∈,1n T <成立,所以1sin 224A ≥即232sin ≥A , …………16分 又),0(π∈A ,即)2,0(2π∈A∴3223ππ≤≤A ,即⎥⎦⎤⎢⎣⎡∈3,6ππA . …………18分 6、(1)n a n =, ………………………………………………………………2分1122n n n n nb b a b +=+=+,∴由累加法得121321()()()n n n b b b b b b b b -=+-+-+⋅⋅⋅+- …………………4分1(1)0[12(2)(1)]24n n n n -=+++⋅⋅⋅+-+-=.……………………………………6分(2)221114(4)n n n n n n c c a b a b +++-=---……………………………………………8分221(1)4()(4)12n n n n n a a b a b =+-+--=∴{}n c 是公差为1的等差数列.……………………………………………………11分(3)由解方程得:x =,由条件,()0k f x =两根x =为整数,则k c ∆=必为完全平方数,不妨设2()k c m m =∈N , …………12分此时2k a mx -±==为整数,∴k a 和m 具有相同的奇偶性,………13分 由(2)知{}n c 是公差为1的等差数列,取21n k m =++∴()222121211k m k c c m m m m ++=++=++=+ ………………………………15分此时(21)(1)2k a m m x -++±+==k a 和m 具有相同的奇偶性,∴21k a m ++和1m +具有相同的奇偶性, …17分所以函数21()k m f x ++有两个整数零点.由递推性可知存在无穷多个()n f x 有两个整数零点.………………………18分 7、解:(1)当2n ≥时,1(1)(1)22n n n n n n na S S n -+-=-=-= 又111a S == ,所以n a n = ……………………………5分(2)、<法一> 11n a n =,1112n T n∴=+++, 1111111(1)(1)(1)22321n R n -∴=++++++++++-111(1)1(2)(3)1231n n n n =-⋅+-⋅+-⋅++⋅-11111111(11)(11)(1)(2)231231n n n n T n n n n n=++++-+=+++++-=-≥--…6分<法二>:数学归纳法①2n =时,11111R T a ===,212112(1)2(1)1T a a -=+-= ………………………1分 ②假设(2,*)n k k k N =≥∈时有1(1)k k R k T -=- ………………………1分当1n k =+时,1111(1)(1)(1)()k k k k k k k k R R T k T T k T k k T k a -++=+=-+=+-=+-- 111(1)(11)(1)(1)1k k k T k k T k ++=+-+--=+-+1n k ∴=+是原式成立由①②可知当2,*n n N ≥∈时1(1)n n R n T -=-; ………………………4分 (3)、(理)1(1)()32n m m n -<+,1,2,,m n =231211)32112)()3213)()32411)()3231)()32n n n n n n n n m n n m n n m n m n n m n n -+⎫=<⎪+⎪+⎪=<⎪+⎪⎪=<⎪+⎬⎪⎪⎪=-<⎪+⎪⎪=<⎪+⎭时,(时,(时,(时,(时,(⇒相加得,231214311111()()()()()()()()333322222n nn n n n n n n n n n -++++++<+++++++++231111111()()()()1()1222222n n n -+++++=-<, 34(2)(3)n n n n n n ∴++++<+ ………………………4分6n ∴≥时,34(2)(3)n n n n n n ∴++++=+无解又当1n =时;34<,2n =时,222345+=;3n =时,33333456++=4n =时,44443456+++为偶数,而47为奇数,不符合 5n =时,5555534567++++为奇数,而58为偶数,不符合综上所述2n =或者3n = ……………………………4分(3)、易知0q ≠,否则若0q =,则1()f x p =,与lim ()0(*)n n f a n N →∞=∈矛盾因为函数()f x 的定义域为R ,所以(1)31qx p -⋅+恒不为零,而3qx的值域为(0,)+∞,所以10p -≥,又1p =时,()1f x =,与lim ()0(*)n n f a n N →∞=∈矛盾,故1p >11()(1)31(1)(3)1n qn q nf a p p ==-⋅+-+且lim ()0n n f a →∞=31q∴>,0q ∴> 即有1p q +>。

T上海市届高三数学一轮复习专题突破训练:专题:圆锥曲线

T上海市届高三数学一轮复习专题突破训练:专题:圆锥曲线

T上海市届高三数学一轮复习专题突破训练:专题:圆锥曲线————————————————————————————————作者:————————————————————————————————日期:高中数学上海历年高考经典真题专题汇编专题:圆锥曲线姓名:学号:年级:专题7:圆锥曲线一、填空、选择题1、(2016年上海高考)已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离_______________1、【答案】255【解析】试题分析:利用两平行线间距离公式得122222|c c ||11|25d 5a b 21---===++ 2、(2015年上海高考)抛物线y 2=2px (p >0)上的动点Q 到焦点的距离的最小值为1,则p= .2、解:因为抛物线y 2=2px (p >0)上的动点Q 到焦点的距离的最小值为1, 所以=1,所以p=2.故答案为:2.3、(2014年上海高考)若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合, 则该抛物线的准线方程为 .3、【解析】:椭圆右焦点为(2,0),即抛物线焦点,所以准线方程2x =-4、(虹口区2016届高三三模)若双曲线2221y x b-=的一个焦点到其渐近线的距离为22,则该双曲线的焦距等于________.4、[答案]65、(浦东新区2016届高三三模)抛物线214y x =-的准线方程是 5、【答案】1y =【解析】22144y x x y =-⇒=-,则其准线方程为1y =6、(杨浦区2016届高三三模)已知双曲线22214x y a -=*()a N ∈的两个焦点为1F 、2F ,P 为该双曲线上一点,满足21212||||||F F PF PF =⋅,P 到坐标原点O 的距离为d ,且59d <<,则2a =6、[答案]4或97、(虹口区2016届高三三模)过抛物线28x y =的焦点F 的直线与其相交于A ,B 两点,O 为坐标原点. 若6,AF =则OAB ∆的面积为7、[答案]28、(浦东新区2016届高三三模)直线1y kx =+与抛物线22y x =至多有一个公共点,则k 的取值范围是8、【答案】{}10,2⎡⎫+∞⎪⎢⎣⎭【解析】由题意知:直线与抛物线的交点个数为0或1个。

上海历年高考经典真题专题汇编数列专题

上海历年高考经典真题专题汇编数列专题

a5 a3
【答案】 17
9
【解析】 S5
3S3
5 2
a1
a5
3
3 2
a1
a3
d
4a1 ,所以 a5
17a1 , a3
9a1 ,所以
a5 a3
17 9
6、(杨浦区 2016 届高三三模)若两整数 a 、 b 除以同一个整数 m ,所得余数相同,即 a b k (k Z ) , m
(2)根据bn 的公差为 20
,cn 的公比为
1 3
,写出通项公式,从而可得
an
bn
cn
20n
19
35n

通过计算 a1
a5
82 ,
a2
48 , a6
304 3
, a2
a6 ,即知an 不具有性质 .
(3)从充分性、必要性两方面加以证明,其中必要性用反证法证明.
第 7 页 /共 25 页
有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴!


其中k为使 an1 为奇数的正整数. 若存在

当n>m且 an 为奇数时, an 恒为常数p,则p的值为
14、(奉贤区 2016 届高三上学期期末)数列{an} 是等差数列, a2 和 a2014 是方程 5x 2 6x 1 0 的两根,则数 列{an}的前 2015 项的和为__________.
充分性得证.
必要性:
用反证法证明.假设bn 不是常数列,则存在 k ,
使得 b1 b2 bk b ,而 bk1 b .
下面证明存在满足 an1 bn sin an 的 an ,使得 a1 a2 ak1 ,但 ak2 ak1 .

2016年高考数学理试题分类汇编:数列(含解析)

2016年高考数学理试题分类汇编:数列(含解析)

2016年高考数学理试题分类汇编数列一、选择题1、(2016年上海高考)已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞→lim .下列条件中,使得()*∈<N n S S n 2恒成立的是( )(A )7.06.0,01<<>q a (B )6.07.0,01-<<-<q a (C )8.07.0,01<<>q a (D )7.08.0,01-<<-<q a 【答案】B【解析】试题分析:由题意得:11112,(0|q |1)11n q a a q q -<<<--对一切正整数恒成立,当10a >时12n q >不恒成立,舍去;当10a <时21122n q q <⇒<,因此选B. 考点:1.数列的极限;2.等比数列的求和.2、(2016年全国I 高考)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a(A )100 (B )99 (C )98 (D )97【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C.考点:等差数列及其运算3、(2016年全国III 高考)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个 (B )16个(C )14个(D )12个【答案】C 【解析】试题分析:由题意,得必有10a =,81a =,则具体的排法列表如下:0[1 1 1 1[1 0 1 1 10 11 01 00 1 1111 01 00 11 01 00 1 110 11 01 00 11 0考点:计数原理的应用.4、(2016年浙江高考)如图,点列{A n},{B n}分别在某锐角的两边上,且1122,,n n n n n nA A A A A A n++++=≠∈*N,1122,,n n n n n nB B B B B B n++++=≠∈*N,(P Q P Q≠表示点与不重合).若1n n n n n n nd A B S A B B+=,为△的面积,则A.{}nS是等差数列 B.2{}nS是等差数列C.{}nd是等差数列 D.2{}nd是等差数列【答案】A【解析】nS表示点nA到对面直线的距离(设为nh)乘以1n nB B+长度一半,即112n n n nS h B B+=,由题目中条件可知1n nB B+的长度为定值,那么我们需要知道nh的关系式,过1A作垂直得到初始距离1h,那么1,nA A和两个垂足构成了等腰梯形,那么11tann n nh h A Aθ+=+⋅,其中θ为两条线的夹角,即为定值,那么1111(tan)2n n n nS h A A B Bθ+=+⋅,111111(tan)2n n n nS h A A B Bθ+++=+⋅,作差后:1111(tan)2n n n n n nS S A A B Bθ+++-=⋅,都为定值,所以1n nS S+-为定值.故选A.二、填空题1、(2016年北京高考)已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______.. 【答案】6 【解析】试题分析:∵{}n a 是等差数列,∴35420a a a +==,40a =,4136a a d -==-,2d =-, ∴616156615(2)6S a d =+=⨯+⨯-=,故填:6. 考点:等差数列基本性质.2、(2016年上海高考)无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4【解析】试题分析:要满足数列中的条件,涉及最多的项的数列可以为2,1,1,0,0,0,-⋅⋅⋅,所以最多由4个不同的数组成. 考点:数列的项与和.3、(2016年全国I 高考)设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则12...n a a a ⋅⋅⋅的最大值为 . 【答案】64【解析】由于{}n a 是等比数列,设11n n a a q -=,其中1a 是首项,q 是公比.∴2131132411101055a a a a q a a a q a q ⎧+=+=⎧⎪⇔⎨⎨+=+=⎪⎩⎩,解得:1812a q =⎧⎪⎨=⎪⎩. 故412n n a -⎛⎫= ⎪⎝⎭,∴()()()()21174932 (472)22412111...222n n n n n a a a ⎡⎤⎛⎫-+-++----⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎛⎫⎛⎫⎛⎫⋅⋅⋅=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭当3n =或4时,21749224n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦取到最小值6-,此时2174922412n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎛⎫ ⎪⎝⎭取到最大值62.所以12...n a a a ⋅⋅⋅的最大值为64. 考点:等比数列及其应用4、(2016年浙江高考)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1= ,S 5= .【答案】1 121三、解答题1、(2016年北京高考) 设数列A :1a ,2a ,…N a (N ≥).如果对小于n (2n N ≤≤)的每个正整数k 都有k a <n a ,则称n 是数列A 的一个“G 时刻”.记“)(A G 是数列A 的所有“G 时刻”组成的集合. (1)对数列A :-2,2,-1,1,3,写出)(A G 的所有元素; (2)证明:若数列A 中存在n a 使得n a >1a ,则∅≠)(A G ;(3)证明:若数列A 满足n a -1n a - ≤1(n=2,3, …,N),则)(A G 的元素个数不小于N a -1a . 【答案】(1)()G A 的元素为2和5;(2)详见解析;(3)详见解析.如果∅≠i G ,取i i G m min =,则对任何i i m n k i a a a m k <≤<≤,1. 从而)(A G m i ∈且1+=i i n m .又因为p n 是)(A G 中的最大元素,所以∅=p G.考点:数列、对新定义的理解.2、(2016年山东高考)已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1).(2)n n n nn a c b ++=+ 求数列{}n c 的前n 项和T n.【解析】(Ⅰ)因为数列{}n a 的前n 项和n n S n 832+=,所以111=a ,当2≥n 时,56)1(8)1(383221+=----+=-=-n n n n n S S a n n n ,又56+=n a n 对1=n 也成立,所以56+=n a n .又因为{}n b 是等差数列,设公差为d ,则d b b b a n n n n +=+=+21. 当1=n 时,d b -=1121;当2=n 时,d b -=1722, 解得3=d ,所以数列{}n b 的通项公式为132+=-=n da b n n . (Ⅱ)由1112)33()33()66()2()1(+++⋅+=++=++=n nn n n n n n n n n b a c , 于是14322)33(2122926+⋅+++⋅+⋅+⋅=n n n T , 两边同乘以2,得21432)33(2)3(29262++⋅++⋅++⋅+⋅=n n n n n T ,两式相减,得214322)33(23232326++⋅+-⋅++⋅+⋅+⋅=-n n n n T2222)33(21)21(2323+⋅+---⋅+⋅=n n n222232)33()21(2312++⋅=⋅++-⋅+-=n n n n n n T .考点:数列前n 项和与第n 项的关系;等差数列定义与通项公式;错位相减法3、(2016年上海高考)若无穷数列{}n a 满足:只要*(,)p q a a p q N =∈,必有11p q a a ++=,则称{}n a 具有性质P .(1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin ()n n n a b a n N +=+∈.求证:“对任意1,{}n a a 都具有性质P ”的充要条件为“{}n b 是常数列”.【答案】(1)316a =.(2){}n a 不具有性质P .(3)见解析. 【解析】试题分析:(1)根据已知条件,得到678332a a a a ++=++,结合67821a a a ++=求解. (2)根据{}n b 的公差为20,{}n c 的公比为13,写出通项公式,从而可得520193n n n n a b c n -=+=-+. 通过计算1582a a ==,248a =,63043a =,26a a ≠,即知{}n a 不具有性质P . (3)从充分性、必要性两方面加以证明,其中必要性用反证法证明. 试题解析:(1)因为52a a =,所以63a a =,743a a ==,852a a ==. 于是678332a a a a ++=++,又因为67821a a a ++=,解得316a =. (2){}n b 的公差为20,{}n c 的公比为13, 所以()12012019n b n n =+-=-,1518133n n n c --⎛⎫=⋅= ⎪⎝⎭.520193n n n n a b c n -=+=-+. 1582a a ==,但248a =,63043a =,26a a ≠, 所以{}n a 不具有性质P . (3)[证]充分性:当{}n b 为常数列时,11sin n n a b a +=+.对任意给定的1a ,只要p q a a =,则由11sin sin p q b a b a +=+,必有11p q a a ++=. 充分性得证. 必要性:用反证法证明.假设{}n b 不是常数列,则存在k *∈N ,使得12k b b b b ==⋅⋅⋅==,而1k b b +≠.下面证明存在满足1sin n n n a b a +=+的{}n a ,使得121k a a a +==⋅⋅⋅=,但21k k a a ++≠. 设()sin f x x x b =--,取m *∈N ,使得m b π>,则()0f m m b ππ=->,()0f m m b ππ-=--<,故存在c 使得()0f c =.取1a c =,因为1sin n n a b a +=+(1n k ≤≤),所以21sin a b c c a =+==, 依此类推,得121k a a a c +==⋅⋅⋅==.但2111sin sin sin k k k k a b a b c b c ++++=+=+≠+,即21k k a a ++≠. 所以{}n a 不具有性质P ,矛盾. 必要性得证.综上,“对任意1a ,{}n a 都具有性质P ”的充要条件为“{}n b 是常数列”. 考点:1.等差数列、等比数列的通项公式;2.充要条件的证明;3.反证法.4、(2016年四川高考)已知数列{n a }的首项为1,n S 为数列{n a }的前n 项和,11n n S qS +=+ ,其中q>0,*n N ∈ .(I )若2322,,2a a a + 成等差数列,求a n 的通项公式;(ii)设双曲线2221n y x a -= 的离心率为n e ,且253e = ,证明:121433n n n n e e e --++⋅⋅⋅+>.【答案】(Ⅰ)1=n n a q -;(Ⅱ)详见解析.试题解析:(Ⅰ)由已知,1211,1,n n n n S qS S qS +++=+=+ 两式相减得到21,1n n a qa n ++=?. 又由211S qS =+得到21a qa =,故1n n a qa +=对所有1n ³都成立. 所以,数列{}n a 是首项为1,公比为q 的等比数列. 从而1=n n a q -.由2322+2a a a ,,成等比数列,可得322=32a a +,即22=32,q q +,则(21)(2)0q +q -=,由已知,0q >,故 =2q . 所以1*2()n n a n -=?N .(Ⅱ)由(Ⅰ)可知,1n n a q -=.所以双曲线2221ny x a -=的离心率 22(1)11n n n e a q -=+=+ . 由2513q q =+=解得43q =. 因为2(1)2(1)1+k k q q -->,所以2(1)1*1+k k q q k -->?N (). 于是11211+1n n n q e e e q q q --++鬃?>+鬃?=-, 故1231433n nn e e e --++鬃?>. 考点:数列的通项公式、双曲线的离心率、等比数列的求和公式.5、(2016年天津高考)已知{}n a 是各项均为正数的等差数列,公差为d ,对任意的,b n n N ∈*是n a 和1n a +的等比中项.(Ⅰ)设22*1,n n n c b b n N +=-∈,求证:{}n c 是等差数列;(Ⅱ)设()22*11,1,nnn n k a d T b n N ===-∈∑,求证:2111.2nk kT d =<∑【解析】⑴22112112n n n n n n n n C b b a a a a d a +++++=-=-=⋅21212()2n n n n C C d a a d +++-=-=为定值. ∴{}n C 为等差数列⑵2213211(1)nk n k n k T b C C C -==-=++⋅⋅⋅+∑21(1)42n n nC d -=+⋅212(1)nC d n n =+-(*) 由已知22212123122122()4C b b a a a a d a d a d d =-=-=⋅=+= 将214C d =代入(*)式得22(1)n T d n n =+ ∴2111112(1)nnk k kT d k k ===+∑∑212d <,得证 考点:等差数列、等比中项、分组求和、裂项相消求和6、(2016年全国II 高考)n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,.(Ⅰ)求111101b b b ,,;(Ⅱ)求数列{}n b 的前1 000项和.【答案】(Ⅰ)10b =,111b =, 1012b =;(Ⅱ)1893. 【解析】⑴设{}n a 的公差为d ,74728S a ==,∴44a =,∴4113a a d -==,∴1(1)n a a n d n =+-=. ∴[][]11lg lg10b a ===,[][]1111lg lg111b a ===,[][]101101101lg lg 2b a ===. ⑵ 记{}n b 的前n 项和为n T ,则1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+.当0lg 1n a <≤时,129n =⋅⋅⋅,,,; 当1lg 2n a <≤时,101199n =⋅⋅⋅,,,;当2lg 3n a <≤时,100101999n =⋅⋅⋅,,,;当lg 3n a =时,1000n =.∴1000091902900311893T =⨯+⨯+⨯+⨯=.考点:等差数列的的性质,前n 项和公式,对数的运算.7、(2016年全国III 高考)已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.(I )证明{}n a 是等比数列,并求其通项公式; (II )若53132S =,求λ. 【答案】(Ⅰ)1)1(11---=n n a λλλ;(Ⅱ)1λ=-. 【解析】考点:1、数列通项n a 与前n 项和为n S 关系;2、等比数列的定义与通项及前n 项和为n S .8、(2016年浙江高考)设数列{}n a 满足112n n a a +-≤,n *∈N . (I )证明:()1122n n a a -≥-,n *∈N ; (II )若32n n a ⎛⎫≤ ⎪⎝⎭,n *∈N ,证明:2n a ≤,n *∈N . 【试题分析】(I )先利用三角形不等式得1112n n a a +-≤,变形为111222n n n n na a ++-≤,再用累加法可得1122n n a a -<,进而可证()1122n n a a -≥-;(II )由(I )可得11222n m n m n a a --<,进而可得3224m n n a ⎛⎫<+⋅ ⎪⎝⎭,再利用m 的任意性可证2n a ≤.(II )任取n *∈N ,由(I )知,对于任意m n >, 1121112122222222n m n n n n m m n m n n n n m m a a a a a a a a +++-+++-⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11111222n n m +-≤++⋅⋅⋅+ 112n -<, 故11222m n n n m a a -⎛⎫<+⋅ ⎪⎝⎭ 11132222m n n m -⎡⎤⎛⎫≤+⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 3224m n ⎛⎫=+⋅ ⎪⎝⎭. 从而对于任意m n >,均有。

高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 D单元 数列(理科2016年) Word版含答

高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 D单元 数列(理科2016年) Word版含答

数学D 单元 数列D1 数列的概念与简单表示法 11.D1[2016·上海卷] 无穷数列{a n }由k 个不同的数组成,S n 为{a n }的前n 项和.若对任意n ∈N *,S n ∈{2,3},则k 的最大值为________.11.4[解析]由S n ∈{2,3},得a 1=S 1∈{2,3}.将数列写出至最多项,其中有相同项的情况舍去,共有如下几种情况:①a 1=2,a 2=0,a 3=1,a 4=-1; ②a 1=2,a 2=1,a 3=0,a 4=-1; ③a 1=2,a 2=1,a 3=-1,a 4=0; ④a 1=3,a 2=0,a 3=-1,a 4=1; ⑤a 1=3,a 2=-1,a 3=0,a 4=1; ⑥a 1=3,a 2=-1,a 3=1,a 4=0. 最多项均只能写到第4项,即k max =4. D2 等差数列及等差数列前n 项和 12.D2[2016·北京卷] 已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.12.6[解析]设等差数列{a n }的公差为d ,因为a 3+a 5=0,所以6+2d +6+4d =0,解得d =-2,所以S 6=6×6+6×52×(-2)=36-30=6.8.D2[2016·江苏卷] 已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.8.20[解析]因为S 5=5a 3=10,所以a 3=2,设其公差为d ,则a 1+a 22=2-2d +(2-d )2=d 2-6d +6=-3,解得d =3,所以a 9=a 3+6d =2+18=20. 3.D2[2016·全国卷Ⅰ] 已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100B .99 C .98D .973.C[解析]a 1+a 92×9=27,可得a 5=3,所以a 10-a 5=5d =5,所以d =1,所以a 100=a 10+90d =98.19.D2,D4,H6[2016·四川卷] 已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n +1=qS n +1,其中q >0,n ∈N *.(1)若2a 2,a 3,a 2+2成等差数列,求数列{a n }的通项公式;(2)设双曲线x 2-y 2a 2n =1的离心率为e n ,且e 2=53,证明:e 1+e 2+…+e n >4n -3n 3n -1.19.解:(1)由已知,S n +1=qS n +1,S n +2=qS n +1+1,两式相减得到a n +2=qa n +1,n ≥1.又由S 2=qS 1+1得到a 2=qa 1,所以a n +1=qa n 对所有n ≥1都成立,所以,数列{a n }是首项为1,公比为q 的等比数列,从而a n =q n -1.由2a 2,a 3,a 2+2成等差数列,可得2a 3=3a 2+2,即2q 2=3q +2,则(2q +1)(q -2)=0, 由已知,q >0,故q =2,所以,a n =2n -1(n ∈N *).(2)证明:由(1)可知,a n =q n -1,所以双曲线x 2-y 2a 2n=1的离心率e n =1+a 2n =1+q 2(n -1). 由e 2=1+q 2=53,解得q =43(负值舍去).因为1+q 2(k-1)>q 2(k-1),所以1+q 2(k -1)>q k -1(k ∈N *).于是e 1+e 2+…+e n >1+q +…+q n -1=q n -1q -1,故e 1+e 2+…+e n >4n -3n3n -1.17.D2[2016·全国卷Ⅱ] S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1000项和.17.解:(1)设{a n }的公差为d ,据已知有7+21d =28,解得d =1, 所以{a n }的通项公式为a n =n .故b 1=[lg1]=0,b 11=[lg11]=1,b 101=[lg101]=2.(2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1000,3,n =1000,所以数列{b n }的前1000项和为1×90+2×900+3×1=1893.18.D2,D4[2016·山东卷] 已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n,求数列{c n }的前n 项和T n .18.解:(1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11, 所以a n =6n +5.设数列{b n }的公差为d .由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3, 即⎩⎪⎨⎪⎧11=2b 1+d 17=2b 1+3d , 解得⎩⎪⎨⎪⎧b 1=4,d =3,所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1. 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1],2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×[4+4×(1-2n )1-2-(n +1)×2n +2]=-3n ·2n +2,所以T n =3n ·2n +2. 18.D2[2016·天津卷] 已知{a n }是各项均为正数的等差数列,公差为d .对任意的n ∈N *,b n 是a n 和a n +1的等比中项.(1)设c n =b 2n +1-b 2n ,n ∈N *,求证:数列{c n }是等差数列;(2)设a 1=d ,T n =,求证:<12d2. 18.证明:(1)由题意得b 2n =a n a n +1,有c n =b 2n +1-b 2n =a n +1a n +2-a n a n +1=2da n +1, 因此c n +1-c n =2d(a n +2-a n +1)=2d 2,所以{c n }是等差数列.(2)T n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=2d(a 2+a 4+…+a 2n )=2d·n (a 2+a 2n )2=2d 2n(n +1),所以=12d 2·(1-1n +1)<12d 2. 6.D2[2016·浙江卷] 如图1-1,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n+1A n +2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *.(P ≠Q 表示点P 与Q 不重合)若d n =|A n B n |,S n 为△A n B n B n +的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n }是等差数列6.A[解析]由题意得,A n 是线段A n -1A n +1(n ≥2)的中点,B n 是线段B n -1B n +1(n ≥2)的中点,且线段A n A n +1的长度都相等,线段B n B n +1的长度都相等.过点A n 作高线h n .由A 1作高线h 2的垂线A 1C 1,由A 2作高线h 3的垂线A 2C 2,则h 2-h 1=|A 1A 2|sin ∠A 2A 1C 1,h 3-h 2=|A 2A 3|sin ∠A 3A 2C 2.而|A 1A 2|=|A 2A 3|,∠A 2A 1C 1=∠A 3A 2C 2,故h 1,h 2,h 3成等差数列,故{S n }是等差数列.D3 等比数列及等比数列前n 项和 20.A1、D3、D5[2016·江苏卷] 记U ={1,2,…,100}.对数列{a n }(n ∈N *)和U 的子集T ,若T =∅,定义S T =0;若T ={t 1,t 2,…,t k },定义S T =at 1+at 2+…+at k .例如:T ={1,3,66}时,S T =a 1+a 3+a 66.现设{a n }(n ∈N *)是公比为3的等比数列,且当T ={2,4}时,S T =30.(1)求数列{a n }的通项公式;(2)对任意正整数k (1≤k ≤100),若T ⊆{1,2,…,k },求证:S T <a k +1; (3)设C ⊆U ,D ⊆U ,S C ≥S D ,求证:S C +S C ∩D ≥2S D .20.解:(1)由已知得a n =a 1·3n -1,n ∈N *.于是当T ={2,4}时,S T =a 2+a 4=3a 1+27a 1=30a 1. 又S T =30,所以30a 1=30,即a 1=1,故数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)证明:因为T ⊆{1,2,…,k },a n =3n -1>0,n ∈N *,所以S T ≤a 1+a 2+…+a k =1+3+…+3k -1=12(3k -1)<3k .因此,S T <a k +1.(3)证明:下面分三种情况证明.①若D 是C 的子集,则S C +S C ∩D =S C +S D ≥S D +S D =2S D . ②若C 是D 的子集,则S C +S C ∩D =S C +S C =2S C ≥2S D . ③若D 不是C 的子集,且C 不是D 的子集.令E =C ∩(∁U D ),F =D ∩(∁U C ),则E ≠∅,F ≠∅,E ∩F =∅. 于是S C =S E +S C ∩D ,S D =S F +S C ∩D ,进而由S C ≥S D ,得S E ≥S F . 设k 是E 中最大的数,l 为F 中最大的数,则k ≥1,l ≥1,k ≠l .由(2)知,S E <a k +1,于是3l -1=a l ≤S F ≤S E <a k +1=3k ,所以l -1<k ,即l ≤k . 又k ≠l ,故l ≤k -1,从而S F ≤a 1+a 2+…+a l =1+3+…+3l -1=3l -12≤3k -1-12=a k -12≤S E -12,故S E ≥2S F +1,所以S C -S C ∩D ≥2(S D -S C ∩D )+1, 即S C +S C ∩D ≥2S D +1.综合①②③得,S C +S C ∩D ≥2S D . 15.D3[2016·全国卷Ⅰ] 设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.15.64[解析]设该等比数列的公比为q ,则q =a 2+a 4a 1+a 3=12,可得a 1+14a 1=10,得a 1=8,所以a n =8·(12)n -1=(12)n -4.所以a 1a 2…a n =(12)-3-2-1+0+…+(n -4)=,易知当n =3或n =4时,12(n 2-7n )取得最小值-6,故a 1a 2…a n 的最大值为(12)-6=64. 17.D3、D4[2016·全国卷Ⅲ] 已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0.(1)证明{a n }是等比数列,并求其通项公式;(2)若S 5=3132,求λ.17.解:(1)由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ(λλ-1)n -1.(2)由(1)得S n =1-(λλ-1)n ,由S 5=3132得1-(λλ-1)5=3132,即(λλ-1)5=132,解得λ=-1. 5.D3[2016·四川卷] 某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30) A .2018年B .2019年 C .2020年D .2021年5.B[解析]设x 年后该公司全年投入的研发资金开始超过200万元, 由题可知,130(1+12%)x ≥200,解得x ≥log 1.12200130=lg2-lg1.3lg1.12≈3.80,因为x 为整数,所以x 取4,故开始超过200万元的年份是2019年.5.D3、A2[2016·天津卷] 设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件5.C[解析]设数列的首项为a 1,则a 2n -1+a 2n =a 1q 2n -2(1+q )<0,即q <-1,故选C. 13.D3[2016·浙江卷] 设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.13.1121[解析]由a n +1=2S n +1,得a n =2S n -1+1(n ≥2),两式相减得,a n +1-a n =2(S n-S n -1)=2a n ,即a n +1=3a n (n ≥2),而a 2=2a 1+1,S 2=a 1+a 2=4,解得a 1=1,a 2=3,故{a n }是首项为1,公比为3的等比数列,所以S 5=1×(1-35)1-3=121.17.D3[2016·上海卷] 已知无穷等比数列{a n }的公比为q ,前n 项和为S n ,且S n =S .下列条件中,使得2S n <S (n ∈N *)恒成立的是( )A .a 1>0,0.6<q <0.7B .a 1<0,-0.7<q <-0.6C .a 1>0,0.7<q <0.8D .a 1<0,-0.8<q <-0.717.B[解析]由题意得2a 1·1-q n 1-q <a 1·11-q (0<|q |<1)对一切正整数n 恒成立.当a 1>0时,q n >12,结合选项知该不等式不恒成立,舍去;当a 1<0时,q n <12⇒q 2<12,选项B 满足要求. D4 数列求和17.D3、D4[2016·全国卷Ⅲ] 已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式;(2)若S 5=3132,求λ.17.解:(1)由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ(λλ-1)n -1.(2)由(1)得S n =1-(λλ-1)n ,由S 5=3132得1-(λλ-1)5=3132,即(λλ-1)5=132,解得λ=-1.19.D2,D4,H6[2016·四川卷] 已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n +1=qS n +1,其中q >0,n ∈N *.(1)若2a 2,a 3,a 2+2成等差数列,求数列{a n }的通项公式;(2)设双曲线x 2-y 2a 2n =1的离心率为e n ,且e 2=53,证明:e 1+e 2+…+e n >4n -3n 3n -1.19.解:(1)由已知,S n +1=qS n +1,S n +2=qS n +1+1,两式相减得到a n +2=qa n +1,n ≥1.又由S 2=qS 1+1得到a 2=qa 1,所以a n +1=qa n 对所有n ≥1都成立,所以,数列{a n }是首项为1,公比为q 的等比数列,从而a n =q n -1.由2a 2,a 3,a 2+2成等差数列,可得2a 3=3a 2+2,即2q 2=3q +2,则(2q +1)(q -2)=0, 由已知,q >0,故q =2,所以,a n =2n -1(n ∈N *).(2)证明:由(1)可知,a n =q n -1,所以双曲线x 2-y 2a 2n=1的离心率e n =1+a 2n =1+q 2(n -1). 由e 2=1+q 2=53,解得q =43(负值舍去).因为1+q 2(k-1)>q 2(k-1),所以1+q 2(k -1)>q k -1(k ∈N *).于是e 1+e 2+…+e n >1+q +…+q n -1=q n -1q -1,故e 1+e 2+…+e n >4n -3n3n -1.18.D2,D4[2016·山东卷] 已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n,求数列{c n }的前n 项和T n .18.解:(1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11, 所以a n =6n +5.设数列{b n }的公差为d .由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3, 即⎩⎪⎨⎪⎧11=2b 1+d 17=2b 1+3d , 解得⎩⎪⎨⎪⎧b 1=4,d =3,所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1. 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1],2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×[4+4×(1-2n )1-2-(n +1)×2n +2]=-3n ·2n +2,所以T n =3n ·2n +2. D5 单元综合20.D5,A1[2016·北京卷] 设数列A :a 1,a 2,…,a N (N ≥2).如果对小于n (2≤n ≤N )的每个正整数k 都有a k <a n ,则称n 是数列A 的一个“G 时刻”.记G (A )是数列A 的所有“G 时刻”组成的集合.(1)对数列A :-2,2,-1,1,3,写出G (A )的所有元素; (2)证明:若数列A 中存在a n 使得a n >a 1,则G (A )≠∅;(3)证明:若数列A 满足a n -a n -1≤1(n =2,3,…,N ),则G (A )的元素个数不小于a N-a 1.20.解:(1)G (A )的元素为2和5.(2)证明:因为存在a n 使得a n >a 1,所以{i ∈N *|2≤i ≤N ,a i >a 1}≠∅. 记m =min{i ∈N *|2≤i ≤N ,a i >a 1},则m ≥2,且对任意正整数k <m ,a k ≤a 1<a m . 因此m ∈G (A ),从而G (A )≠∅.(3)证明:当a N ≤a 1时,结论成立. 以下设a N >a 1. 由(2)知G (A )≠∅.设G (A )={n 1,n 2,…,n p },n 1<n 2<…<n p . 记n 0=1,则an 0<an 1<an 2<…<an p .对i =0,1,…,p ,记G i ={k ∈N *|n i <k ≤N ,a k >an i }.如果G i ≠∅,取m i =min G i ,则对任何1≤k <m i ,a k ≤an i <am i . 从而m i ∈G (A )且m i =n i +1.又因为n p 是G (A )中的最大元素,所以G p =∅.从而对任意n p ≤k ≤N ,a k ≤an p ,特别地,a N ≤an p . 对i =0,1,…,p -1,an i +1-1≤an i .因此an i +1=an i +1-1+(an i +1-an i +1-1)≤an i +1. 所以a N -a 1≤an p -a 1=i =1p (an i -an i -1)≤p.因此G(A)的元素个数p 不小于a N -a 1. 20.A1、D3、D5[2016·江苏卷] 记U ={1,2,…,100}.对数列{a n }(n ∈N *)和U 的子集T ,若T =∅,定义S T =0;若T ={t 1,t 2,…,t k },定义S T =at 1+at 2+…+at k .例如:T ={1,3,66}时,S T =a 1+a 3+a 66.现设{a n }(n ∈N *)是公比为3的等比数列,且当T ={2,4}时,S T =30.(1)求数列{a n }的通项公式;(2)对任意正整数k (1≤k ≤100),若T ⊆{1,2,…,k },求证:S T <a k +1; (3)设C ⊆U ,D ⊆U ,S C ≥S D ,求证:S C +S C ∩D ≥2S D .20.解:(1)由已知得a n =a 1·3n -1,n ∈N *.于是当T ={2,4}时,S T =a 2+a 4=3a 1+27a 1=30a 1. 又S T =30,所以30a 1=30,即a 1=1,故数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)证明:因为T ⊆{1,2,…,k },a n =3n -1>0,n ∈N *,所以S T ≤a 1+a 2+…+a k =1+3+…+3k -1=12(3k -1)<3k .因此,S T <a k +1.(3)证明:下面分三种情况证明.①若D 是C 的子集,则S C +S C ∩D =S C +S D ≥S D +S D =2S D . ②若C 是D 的子集,则S C +S C ∩D =S C +S C =2S C ≥2S D . ③若D 不是C 的子集,且C 不是D 的子集.令E =C ∩(∁U D ),F =D ∩(∁U C ),则E ≠∅,F ≠∅,E ∩F =∅. 于是S C =S E +S C ∩D ,S D =S F +S C ∩D ,进而由S C ≥S D ,得S E ≥S F . 设k 是E 中最大的数,l 为F 中最大的数,则k ≥1,l ≥1,k ≠l .由(2)知,S E <a k +1,于是3l -1=a l ≤S F ≤S E <a k +1=3k ,所以l -1<k ,即l ≤k . 又k ≠l ,故l ≤k -1,从而S F ≤a 1+a 2+…+a l =1+3+…+3l -1=3l -12≤3k -1-12=a k -12≤S E -12,故S E ≥2S F +1,所以S C -S C ∩D ≥2(S D -S C ∩D )+1, 即S C +S C ∩D ≥2S D +1.综合①②③得,S C +S C ∩D ≥2S D . 12.D5[2016·全国卷Ⅲ] 定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )A .18个B .16个C .14个D .12个12.C[解析]∵a 1,a 2,…,a 8中0的个数不少于1的个数,∴a 1=0,a 8=1.先排定中间三个1,当三个0在一起时排法种数为C 12,当三个0不相邻时排法种数为C 34,当三个0分成两组时排法种数为A 23+C 12,∴不同的“规范01数列”共有C 12+C 34+A 23+C 12=14(个).20.D5[2016·浙江卷] 设数列{a n }满足a n -a n +12≤1,n ∈N *.(1)证明:|a n |≥2n -1(|a 1|-2),n ∈N *;(2)若|a n |≤32n ,n ∈N *,证明:|a n |≤2,n ∈N *.20.证明:(1)由⎪⎪⎪⎪a n -a n +12≤1,得|a n |-12|a n +1|≤1,故|a n |2n -|a n +1|2n +1≤12n ,n ∈N *,所以|a 1|21-|a n |2n =|a 1|21-|a 2|22+|a 2|22-|a 3|23+…+|a n -1|2n -1-|a n |2n ≤121+122+…+12n -1<1,因此|a n |≥2n -1(|a 1|-2).(2)任取n ∈N *,由(1)知,对于任意m >n ,|a n |2n -|a m |2m =(|a n |2n -|a n +1|2n +1)+(|a n +1|2n +1-|a n +2|2n +2)+…+(|a m -1|2m -1-|a m |2m )≤12n +12n +1+…+12m -1<12n -1, 故|a n |<⎝⎛⎭⎫12n -1+|a m |2m ·2n ≤[12n -1+12m ·32m ]·2n =2+⎝⎛⎭⎫34m ·2n .从而对于任意m >n ,均有|a n |<2+⎝⎛⎭⎫34m ·2n .由m 的任意性得|a n |≤2.①否则,存在n 0∈N *,有|an 0|>2,取正整数m 0>log 34|an 0|-22n 0且m 0>n 0,则2n 0·⎝⎛⎭⎫34m 0<2n 0·⎝⎛⎭⎫34log 34|an 0|-22n 0=|an 0|-2, 与①式矛盾.综上,对于任意n ∈N *,均有|a n |≤2. 23.D5,M2[2016·上海卷] 若无穷数列{a n }满足:只要a p =a q (p ,q ∈N *),必有a p +1=a q +1,则称{a n }具有性质P .(1)若{a n }具有性质P ,且a 1=1,a 2=2,a 4=3,a 5=2,a 6+a 7+a 8=21,求a 3;(2)若无穷数列{b n }是等差数列,无穷数列{c n }是公比为正数的等比数列,b 1=c 5=1,b 5=c 1=81,a n =b n +c n ,判断{a n }是否具有性质P ,并说明理由;(3)设{b n }是无穷数列,已知a n +1=b n +sin a n (n ∈N *),求证:“对任意a 1,{a n }都具有性质P ”的充要条件为“{b n }是常数列”.23.解:(1)因为a 5=a 2,所以a 6=a 3,a 7=a 4=3,a 8=a 5=2, 于是a 6+a 7+a 8=a 3+3+2.又因为a 6+a 7+a 8=21,所以a 3=16.(2){b n }的公差为20,{c n }的公比为13,所以b n =1+20(n -1)=20n -19,c n =81·(13)n -1=35-n ,a n =b n +c n =20n -19+35-n .a 1=a 5=82,但a 2=48,a 6=3043,a 2≠a 6, 所以{a n }不具有性质P . (3)证明:充分性:当{b n }为常数列时,a n +1=b 1+sin a n .对任意给定的a 1,若a p =a q ,则b 1+sin a p =b 1+sin a q ,即a p +1=a q +1, 充分性得证. 必要性:用反证法证明.假设{b n }不是常数列,则存在k ∈N *,使得b 1=b 2=…=b k =b ,而b k +1≠b .下面证明存在满足a n +1=b n +sin a n 的{a n },使得a 1=a 2=…=a k +1,但a k +2≠a k +1.设f (x )=x -sin x -b ,取m ∈N *,使得m π>|b |,则f (m π)=m π-b >0,f (-m π)=-m π-b <0,故存在c 使得f (c )=0.取a 1=c ,因为a n +1=b +sin a n (1≤n ≤k ),所以a 2=b +sin c =c =a 1, 依此类推,得a 1=a 2=…=a k +1=c .但a k +2=b k +1+sin a k +1=b k +1+sin c ≠b +sin c ,即a k +2≠a k +1.所以{a n }不具有性质P ,矛盾. 必要性得证.综上,“对任意a 1,{a n }都具有性质P ”的充要条件为“{b n }是常数列”. 3.[2016·淮南一模]已知数列{a n }中,a n =n 2+λn ,且{a n }是递增数列,则实数λ的取值范围是( )A.(-2,+∞)B.[-2,+∞)C.(-3,+∞)D.[-3,+∞)3.C[解析]由题意可知a n +1>a n 对任意正整数n 恒成立,即(n +1)2+λ(n +1)>n 2+λn 对任意正整数n 恒成立,即λ>-2n -1对任意正整数n 恒成立,故λ>-3.6.[2016·怀化模拟]设S n 为等差数列{}a n 的前n 项和,若a 1=1,公差d =2,S n +2-S n=36,则n =( )A .5B .6C .7D .86.D[解析]S n +2-S n =36,即a n +2+a n +1=36,即a 1+(n +1)·d +a 1+nd =36,将a 1=1,d =2代入上式,解得n =8.15.[2016·淮南模拟]在公差为d 的等差数列{}a n 中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d, a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |. 15.解:(1)由题意得5a 3·a 1=(2a 2+2)2, 所以d 2-3d -4=0,解得d =-1或d =4, 所以a n =-n +11或a n =4n +6. (2)设数列{a n }的前n 项和为S n .因为d <0,所以d =-1,a n =-n +11.当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2+212n;当n ≥12时,|a 1|+|a 2|+…+|a 11|+|a 12|+…+|a n |= a 1+a 2+…+a 11-a 12-…-a n =S 11-(S n -S 11)=-S n +2S 11=12n 2-212n +110.综上所述,|a 1|+|a 2|+…+|a n |=⎩⎨⎧-12n 2+212n ,n ≤11,12n 2-212n +110,n ≥12.9.[2016·湖北七市调研]已知等差数列{a n },等比数列{b n }满足a 1=b 1=1,a 2=b 2,2a 3-b 3=1.(1)求数列{a n },{b n }的通项公式;(2)记c n =a n b n ,求数列{c n }的前n 项和S n .9.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . ∵a 1=b 1=1,a 2=b 2,2a 3-b 3=1, ∴⎩⎪⎨⎪⎧1+d =q ,2(1+2d )-q 2=1,解得⎩⎪⎨⎪⎧d =0,q =1或⎩⎪⎨⎪⎧d =2,q =3, ∴a n =1,b n =1或a n =1+2(n -1)=2n -1,b n =3n -1.(2)当⎩⎪⎨⎪⎧d =0,q =1时,c n =a n b n =1,S n =n .当⎩⎪⎨⎪⎧d =2,q =3时,c n =a n b n =(2n -1)·3n -1, 则S n =1+3×3+5×32+…+(2n -1)·3n -1,∴3S n =3+3×32+…+(2n -3)·3n -1+(2n -1)·3n , ∴-2S n =1+2×(3+32+…+3n -1)-(2n -1)·3n =(2-2n )·3n -2, ∴S n =(n -1)·3n +1.。

上海市2016届高考数学一轮复习 专题突破训练 排列组合二项式定理 理

上海市2016届高考数学一轮复习 专题突破训练 排列组合二项式定理 理

上海市2016届高三数学理一轮复习专题突破训练排列组合二项式定理一、排列组合1、(2015年上海高考)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 120 (结果用数值表示).2、(闵行区2015届高三二模)从4个不同的独唱节目和2个不同的合唱节目中选出4个节目编排一个节目单, 要求最后一个节目必须是合唱,则这个节目单的编排方法共有( )(A) 14种. (B) 48种. (C)72种. (D) 120种.3、(长宁、嘉定区2015届高三二模).现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.则不同取法的种数为__________.4、(奉贤区2015届高三上期末)在二项式()612+x 的展开式中,系数最大项的系数是( )A .20B .160C .240D .1925、(金山区2015届高三上期末)用1,2,3,4,5组成没有重复数字的五位数,其中偶数有( ▲ ).(A) 60个 (B) 48个 (C) 36个 (D) 24个6、(金山区2015届高三上期末)若集合A 1、A 2满足A 1∪A 2=A ,则称(A 1,A 2)为集合A 的一个分拆,并规定:当且仅当A 1=A 2时,(A 1,A 2)与(A 2,A 1)为集合A 的同一种分拆,则集合A ={a 1,a 2,a 3}的不同分拆种数是( ▲ ).(A)8 (B)9 (C)26 (D)277、(青浦区2015届高三上期末)若甲乙两人从6门课程中各选修3门,则甲乙所选的课程中恰有2门相同的选法..有 种. 8、(闸北区2015届高三上期末)用数字“1,2”组成一个四位数,则数字“1,2”都出现的四位偶数有 个9、将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有 ( )A .12种B .10种C .9种D .8种10、若从1,2,2,,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有 ( )A .60种B .63种C .65种D .66种11、两人进行乒乓球比赛,先赢三局着获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有 ( )A .10种B .15种C .20种D .30种12、现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为 ( )A .232B .252C .472D .484二、二项式定理1、(2015年上海高考)在(1+x+)10的展开式中,x 2项的系数为 45 (结果用数值表示).2、(静安、青浦、宝山区2015届高三二模)在921x x ⎛⎫- ⎪⎝⎭的展开式中,31x 的系数是 . 3、(闵行区2015届高三二模)设二项式(31)nx +的展开式的二项式系数的和为p ,各项系数的和为q ,且1264p q +=,则n 的值为 4、(浦东新区2015届高三二模)已知21nx x ⎛⎫- ⎪⎝⎭展开式中二项式系数之和为1024,则含2x 项的系数为 210 .5、(普陀区2015届高三二模)在*22)()n n N x ∈的展开式中,若第五项的系数与第三项的系数之比为56:3,则展开式中的常数项是( B )A.第2项B.第3项C.第4项D.第5项6、(徐汇、松江、金山区2015届高三二模)执行如图所示的程序框图,输出的结果为a ,二项式42+的展开式中3x 项的系数为2a ,则常数m =7、(长宁、嘉定区2015届高三二模)若8822108...)(x a x a x a a x a ++++=-(R ∈a ),且565=a ,则=++++8210...a a a a _______________.8、(静安区2015届高三上期末)设8877108)1(x a x a x a a x ++++=- ,则=++++8710a a a a9、(浦东区2015届高三上期末)二项式4)2(x x +的展开式中,含3x 项系数为10、(普陀区2015届高三上期末)在二项式81⎪⎪⎭⎫ ⎝⎛-x x 的展开式中,含2x 项的系数为 (结果用数值表示).11、(青浦区2015届高三上期末)9(1+展开式中有理项的个数..是 12、(上海市十三校2015届高三第二次(3月)联考)若多项式13、(奉贤区2015届高三4月调研测试(二模))在56(1)(1)x x +-+的展开式中,含3x 的项的系数是____________.参考答案一、排列组合1、 解:根据题意,报名的有3名男老师和6名女教师,共9名老师,在9名老师中选取5人,参加义务献血,有C 95=126种;其中只有女教师的有C 65=6种情况;则男、女教师都有的选取方式的种数为126﹣6=120种;故答案为:120.2、D3、4724、C5、B6、D7、180 8、79、选A 甲地由1名教师和2名学生:122412C C =种10、【答案】D【解析】1,2,2,,9这9个整数中有5个奇数,4个偶数.要想同时取4个不同的数其和为偶数,则取法有:4个都是偶数:1种;2个偶数,2个奇数:225460C C =种;4个都是奇数:455C =种.∴不同的取法共有66种.11、 解析:先分类:3:0,3:1,3:2共计3类,当比分为3:0时,共有2种情形;当比分为3:1时,共有12428C A =种情形;当比分为3:2时,共有225220C A =种情形;总共有282030++=种,选D.12、 【解析】若没有红色卡,则需从黄、蓝、绿三色卡片中选3张,若都不同色则有64141414=⨯⨯C C C 种,若2色相同,则有14414241223=C C C C ;若红色卡片有1张,则剩余2张若不同色,有19214142314=⨯⨯⨯C C C C 种,如同色则有72242314=C C C ,所以共有4727219214464=+++,故选C.二、二项式定理1、解:∵(1+x+)10 =,∴仅在第一部分中出现x2项的系数.再由,令r=2,可得,x2项的系数为.故答案为:45.2、1263、44、2105、B6、147、256 8、25628 9、2410、70 11、5 12、0 13、-10。

上海市2016届高考数学一轮复习 专题突破训练 不等式 理

上海市2016届高考数学一轮复习 专题突破训练 不等式 理

上海市2016届高三数学理一轮复习专题突破训练不等式一、填空、选择题1、(2014年上海高考)若实数,x y 满足1xy =,则222x y +的最小值为 . 2、(静安、青浦、宝山区2015届高三二模)已知:当0x >时,不等式11kx b x≥++恒成立,当且仅当13x =时取等号,则k = 3、(闵行区2015届高三二模)如果0a b <<,那么下列不等式成立的是 ( )(A) 2a ab <. (B) 2ab b -<-. (C)11a b <. (D) b a a b>. 4、(浦东新区2015届高三二模)不等式32x>的解为 3log 2x > 5、(普陀区2015届高三二模)不等式01xx>-的解集为 ()0,1 6、(徐汇、松江、金山区2015届高三二模)下列不等式中,与不等式302x x-≥-同解的是( ) (A )()()320x x --≥ (B )()()320x x --> (C )203x x -≥- (D )302xx -≥- 7、(长宁、嘉定区2015届高三二模)已知定义在R 上的单调函数)(x f 的图像经过点)2,3(-A 、)2,2(-B ,若函数()f x 的反函数为)(1x f -,则不等式51)2(21<+--x f 的解集为8、(金山区2015届高三上期末)不等式:11>x的解是 ▲ 9、(虹口区2015届高三上期末)若正实数a b ,满足ab =32,则2a b +的最小值为 10、(静安区2015届高三上期末)已知实数x 、y 满足1+≥y x ,则xy 2-的取值范围是 11、(徐汇区2015届高三上期末)若实数,x y 满足4xy =,则224x y +的最小值为 12、(青浦区2015届高三上期末)已知正实数,x y 满足24xy x y ++=,则x y +的最小值为 13、(上海市十三校2015届高三第二次(3月)联考)实数x 、 y 满足,则x - y 的最大值为__________.14、(奉贤区2015届高三4月调研测试(二模))若2log 2x y x y =-+,则的值域为_____________15、(崇明县2015届高三上期末)若0a <,0b <,则22b a p a b=+与q a b =+的大小关系为……………………………( )A. p q <B. p q ≤C. p q >D. p q ≥二、解答题1、(2013年上海高考)甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求110x ≤≤),每小时可获得利润是3100(51)x x+-元.(1)要使生产该产品2小时获得的利润不低于3000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.2、(闵行区2015届高三二模)某油库的设计容量为30万吨,年初储量为10万吨,从年初起计划每月购进石油m 万吨,以满足区域内和区域外的需求,若区域内每月用石油1万吨,区域外前x 个月的需求量y (万吨)与x 的函数关系为*2(0,116,)y px p x x =>≤≤∈N ,并且前4个月,区域外的需求量为20万吨.(1)试写出第x 个月石油调出后,油库内储油量M (万吨)与x 的函数关系式;(2)要使16个月内每月按计划购进石油之后,油库总能满足区域内和区域外的需求,且每月石油调出后,油库的石油剩余量不超过油库的容量,试确定m 的取值范围.3、(长宁、嘉定区2015届高三二模)某市环保部门对市中心每天的环境污染情况进行调查研究后,发现一天中环境综合污染指数)(x f 与时刻x (时)的关系为4321)(2++-+=a a x x x f ,)24,0[∈x ,其中a 是与气象有关的参数,且⎥⎦⎤⎢⎣⎡∈21,0a .若用每天)(x f 的最大值为当天的综合污染指数,并记作)(a M .(1)令12+=x xt ,)24,0[∈x ,求t 的取值范围;(2)求)(a M 的表达式,并规定当2)(≤a M 时为综合污染指数不超标,求当a 在什么范围内时,该市市中心的综合污染指数不超标.4、(崇明县2015届高三第二次高考模拟)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm )满足关系:()35kC x x =+(010)x ≤≤, 若不建隔热层,每年能源消耗费用为8万元,设()f x 为隔热层建造费用与20年的能源消耗费用 之和.(1)求k 的值及()f x 的表达式;(2)隔热层修建多厚时,总费用()f x 达到最小,并求最小值.5、(宝山区2015届高三上期末)解不等式组|1|3213-<⎧⎪⎨>⎪-⎩x x6、(宝山区2015届高三上期末)有根木料长为6米,要做一个如图的窗框,已知上框架与下框 架的高的比为1∶2,问怎样利用木料,才能使光线通过的窗框面积 最大(中间木档的面积可忽略不计).7、某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到.x 元.公司拟投入21(600)6x -万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入...与总投入...之和?并求出此时商品的每件定价.8、某小商品2012年的价格为8元/件,年销量为a 件,现经销商计划在2013年将该商品的价格降至5.5元/件到7.5元/件之间,经调查,顾客的期望价格为4元/件,经测算,该商品的价格下降后新增的年销量与实际价格和顾客期望价格的差成反比,比例系数为k ,该商品的成本价格为3元/件。

2015-2016高三一轮复习《数列》单元测试参考答案

2015-2016高三一轮复习《数列》单元测试参考答案

2015-2016高三一轮复习《数列》单元测试参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C BDADBCADDCB二.填空题13.43n a n =- 14.6766 15,n a n 313-= 16.nS n =n 2a 1+n 2n -12d =n 33-10n 23.由于函数f (x )=x 33-10x 23在x =203处取得极小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49. ∴nS n 的最小值为-49. 17解:(裂项相消法)(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32349a a =所以219q =。

有条件可知a>0,故13q =。

由12231a a +=得12231a a q +=,所以113a =。

故数列{a n }的通项式为a n =13n 。

(Ⅱ )111111log log ...log n b a a a =+++(12...)(1)2n n n =-++++=-12112()(1)1n b n n n n =-=--++12111111112...2((1)()...())22311n n b b b n n n +++=--+-++-=-++ 所以数列1{}n b 的前n 项和为21n n -+18解:(累加法,错位相减法)(Ⅰ)由已知,当n ≥1时,111211[()()()]n n n n n a a a a a a a a ++-=-+-++-+。

而 所以数列{}的通项公式为。

(Ⅱ)由知 ①从而②①-②得。

即19.(累乘法)解:(1)由2243S a =得1223()4a a a +=,解得2133a a ==由3353S a =得12333()5a a a a ++=,解得3123()62a a a =+=(2)由题设知11a =当2n ≥时,有112133n n n n n n n a S S a a --++=-=-,整理得111n n n a a n -+=-于是:1213213411,,,...,.121n n n a a a a a a a n -+====-以上各式相乘,整理得(1)2n n n a +=显然,当1n =时也满足上式,所以(1)2n n n a +=20.解析 (1)b 1=a 2-a 1=1,当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n =-12(a n -a n -1)=-12b n -1,∴{b n }是以1为首项,-12为公比的等比数列.(2)由(1)知b n =a n +1-a n =(-12)n -1,21233(222)2n n --=++++2(1)12n +-=12,a =n a 212n n a -=212n n n b na n -==⋅35211222322n n S n -=⋅+⋅+⋅++⋅23572121222322n n S n +⋅=⋅+⋅+⋅++⋅2352121(12)22222n n n S n -+-⋅=++++-⋅211[(31)22]9n n S n +=-+当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+1+(-12)+…+(-12)n -2=1+1--12n -11--12=1+23[1-(-12)n -1]=53-23(-12)n -1,当n =1时,53-23(-12)1-1=1=a 1.∴a n =53-23(-12)n -1(n ∈N *).21解;方法一:由已知得1112+=+=λλa a ,121)11(1)(2213++=+++=++=λλλλλa a a因为3,2,321+a a a 为等差数列{b n }的前三项, 所以34312++=a a a 即:3121)1(42++++=+λλλ解得1=λ11+=∴+n n S a2≥n ,11+=-n n S a 以上两式相减得:nn n a a a 21=-+,即21=+n n a a检验:2,21,11221==+==a a a a λ 所以,{a n }是以1为首项,2为公比的等比数列,12-=n n a 又因为32,11211=-===a a d a b所以{b n }是以1为首项,3为公差的等差数列,23-=n b n方法二:11+=+n n S a λ ,)2(11≥+=-n S a n n λ 两式相减得n n n a a a λ=-+1,即)1(11-≠+=+λλnn a a 又因为λ+==1,121a a ,λ+=∴112a a所以,{a n }是以1为首项,λ+1为公比的等比数列23)1(λ+=∴a因为3,2,321+a a a 为等差数列{b n }的前三项,3)1(1)1(42+++=+λλ解得1=λ所以,12-=n n a ,23-=n b n(2)(略)52)53(+-=n n n S22.(Ⅰ)由题设,,两式相减,由于,所以 …………6分(Ⅱ)由题设=1,,可得,由(Ⅰ)知 假设{}为等差数列,则成等差数列,∴,解得; 证明时,{}为等差数列:由知数列奇数项构成的数列是首项为1,公差为4的等差数列 令则,∴ 数列偶数项构成的数列是首项为3,公差为4的等差数列 令则,∴ ∴(), 因此,存在存在,使得{}为等差数列.11n n n a a S λ+=-1211n n n a a S λ+++=-()121n n n n a a a a λ+++-=0n a ≠2n n a a λ+-=1a 1211a a S λ=-211a λ=-31a λ=+n a 123,,a a a 1322a a a +=4λ=4λ=n a 24n n a a +-={}21m a -2143m a m -=-21,n m =-12n m +=21n a n =-(21)n m =-{}2m a 241m a m =-2,n m =2nm =21n a n =-(2)n m =21n a n =-*n N ∈12n n a a +-=4λ=n a。

上海市届高三数学理一轮复习专题突破训练

上海市届高三数学理一轮复习专题突破训练

上海市2017届高三数学理一轮复习专题突破训练集合与常用逻辑用语一、集合1、(2016年上海高考)(2016年浙江高考)已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ðA .[2,3]B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-⋃+∞2、(2015年上海高考)全集U=R .若集合Α={1,2,3,4},Β={x|2≤x ≤3},则Α∩∁U Β= {1,4} .3、(2014年上海高考)已知互异的复数,a b 满足0ab ≠,集合{}{}22,,a b a b =,则a b += .4、(虹口区2016届高三三模)设集合103x M xx ⎧+⎫=≥⎨⎬-⎩⎭,{}21x N x =≥,则M N ⋂=__________ 5、(崇明县2016届高三二模)已知全集U R =,{}2|20A x x x =-<,{}|1B x x =≥, 则U A C B =6、(虹口区2016届高三二模)设集合{}2M x x x ==,{}20N x log x =≤,则=N M __________ 7、(黄浦区2016届高三二模)已知集合{1,3,21}A m =--,集合2{3,}B m =,若B A ⊆,则实数m =8、(闵行区2016届高三二模)集合{}2|30A x x x =-<,{}2B x x =<,则A B 等于9、(浦东新区2016届高三二模)已知全集U R =,若集合|01x A x x ⎧⎫=>⎨⎬-⎩⎭,则U C A = 10、(闸北区2016届高三二模)已知集合{||2|}A x x a =-<,2{|230}B x x x =--<,若B A ⊆,则实数a 的取值范围是11、(长宁、青浦、宝山、嘉定四区2016届高三二模)设集合},2||{R ∈<=x x x A ,},034{2R ∈≥+-=x x x x B ,则A B =I ________12、(青浦区2016届高三上学期期末)已知{(,)}A x y y x b ==+,2{(,)34}B x y y x x ==--, 满足AB ≠∅,则实数b 的取值范围是13、(松江区2016届高三上学期期末)已知全集{}1,2,3,4U =,A 是U 的子集,满足{}}{1,2,32A=,{}1,2,3A U =,则集合A = ▲ .14、(杨浦区2016届高三上学期期末)已知全集U=R ,集合102x A xx ⎧⎫+=≤⎨⎬-⎭⎩,则集合U A =ð_____________.15、(崇明县2016届高三上学期期末)若集合 A ={x | |x −1 |<2},B =2|04x x x -⎧⎫<⎨⎬+⎩⎭,则 AB =二、常用逻辑用语1、(2016年上海高考)设R a ∈,则“1>a ”是“12>a ”的( )(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件2、(2015年上海高考)设z 1,z 2∈C ,则“z 1、z 2中至少有一个数是虚数”是“z 1﹣z 2是虚数”的( ) A .充分非必要条件 B . 必要非充分条件 C .充要条件 D . 既非充分又非必要条件3、(2014年上海高考)设,a b ∈R ,则“4a b +>”是“2a >且2b >”的 ( )(A) 充分条件.(B) 必要条件.(C) 充分必要条件.(D) 既非充分又非必要条件.4、(浦东新区2016届高三三模)若a b 、为实数,则0a b <<是22a b >的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件5、(杨浦区2016届高三三模)已知数列{}n a 的前n 项和nn S p q =+(0,1)p p ≠≠,则“1q =-”是“数列{}n a 为等比数列”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6、(崇明县2016届高三二模)“12x -<成立”是“(3)0x x -<成立”的………………( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不不充分也不必要条件7、(虹口区2016届高三二模) 3a =“”是“直线2(2)0a a x y -+=和直线310x y ++=平行”的( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件8、(黄浦区2016届高三二模)已知直角坐标平面上两条直线方程分别为1111,0l a x b y c ++=,2222,0l a x b y c ++=,那么“11220a b a b =”是“两直线1l 、2l 平行”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件9、(闵行区2016届高三二模)若l m 、是两条直线,m ⊥平面α,则“l m ⊥”是“//l α”的( ). (A) 充要条件 (B) 充分不必要条件 (C) 必要不充分条件 (D) 既非充分又非必要条件 10、(浦东新区2016届高三二模) “112x <<”是“不等式11x -<成立”的( ) (A )充分非必要条件. (B )必要非充分条件. (C )充要条件. (D )既非充分亦非必要条件. 11、(青浦区2016届高三上学期期末)14a =是“直线(1)310a x ay +++=与直线(1)(1)30a x a y -++-=相互垂直”的 ………………………………………………………( ).(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件12、(松江区2016届高三上学期期末).设,a b R ∈,则“a b >”是“a b >”的.A 充分而不必要条件 .B 必要而不充分条件 .C 充要条件 .D 既不充分也不必要条件13、(徐汇区2016届高三上学期期末)设,a b 为实数,则“01ab <<”是“1b a<”的-----------------------------( )A . 充分不必要条件B .必要不充分条件C . 充分必要条件D .既不充分也不必要条件 14、(杨浦区2016届高三上学期期末)设,a b 是两个单位向量,其夹角为θ,则“36πθπ<<”是“1||<-b a ”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件15、(闸北区2016届高三上学期期末)“抛物线2y ax =的准线方程为2y =”是“抛物线2y ax=的焦点与双曲线2213y x -= 的焦点重合”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件参考答案 一、集合 1、B2、解:∵全集U=R ,集合Α={1,2,3,4},Β={x|2≤x ≤3}, ∴(∁U B )={x|x >3或x <2},∴A ∩(∁U B )={1,4}, 故答案为:{1,4}.3、【解析】:第一种情况:22,a a b b ==,∵0ab ≠,∴1a b ==,与已知条件矛盾,不符;第二种情况:22,a b b a ==,∴431a a a =⇒=,∴210a a ++=,即1a b +=-;4、[)0,35、(0,1)6、[]0,17、18、()2,3-9、[]0,1 10、3a ≥ 11、]1,2(- 12、1223b -≤≤ 13、{}2,4 14、()[),12,-∞-+∞15、(-1,2)二、常用逻辑用语 1、A2、解:设z 1=1+i ,z 2=i ,满足z 1、z 2中至少有一个数是虚数,则z 1﹣z 2=1是实数,则z 1﹣z 2是虚数不成立,若z 1、z 2都是实数,则z 1﹣z 2一定不是虚数,因此当z 1﹣z 2是虚数时, 则z 1、z 2中至少有一个数是虚数,即必要性成立,故“z 1、z 2中至少有一个数是虚数”是“z 1﹣z 2是虚数”的必要不充分条件, 故选:B . 3、B4、【答案】A【解析】①220a b a b <<⇒>;②若22a b a b >⇒> 5、C6、B7、A8、B9、C 10、A 11、A 12、B 13、D 14、A 15、A。

【备战2016】(上海版)高考数学分项汇编 专题06 数列(含答案解析)理

【备战2016】(上海版)高考数学分项汇编 专题06 数列(含答案解析)理

专题06 数列一.基础题组1. 【2014上海,理8】 设无穷等比数列{n a }的公比为q ,若)(lim 431 ++=∞→a a a n ,则q= .【答案】152-+【考点】无穷递缩等比数列的和.2. 【2013上海,理10】设非零常数d 是等差数列x 1,x 2,…,x 19的公差,随机变量ξ等可能地取值x 1,x 2,…,x 19,则方程D ξ=______.【答案】30|d |3. 【2013上海,理17】在数列{a n }中,a n =2n-1.若一个7行12列的矩阵的第i 行第j 列的元素c ij =a i ·a j +a i +a j (i =1,2,…,7;j =1,2,…,12),则该矩阵元素能取到的不同数值的个数为( )A .18B .28C .48D .63【答案】A4. 【2012上海,理6】有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则12lim ()n n V V V →∞+++=…__________.【答案】875. 【2011上海,理18】设{a n }是各项为正数的无穷数列,A i 是边长为a i ,a i +1的矩形的面积(i =1,2,…),则{A n }为等比数列的充要条件是( )A .{a n }是等比数列B .a 1,a 3,…,a 2n -1,…或a 2,a 4,…,a 2n ,…是等比数列C .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列D .a 1,a 3,…,a 2n -1,…和a 2,a 4,…a 2n ,…均是等比数列,且公比相同 【答案】D6. 【2010上海,理11】将直线1l :0nx y n +-=、2l :0x ny n +-=(*n N ∈,2n ≥)x 轴、y 轴围成的封闭图形的面积记为n S ,则lim n n S →∞= ;【答案】1【点评】本题将直线与直线的位置关系与数列极限结合,考查两直线的交点的求法、两直线垂直的充要条件、四边形的面积计算以及数列极限的运算法则,是本次考题的一个闪光点. 7. (2009上海,理12)已知函数f(x)=sinx+tanx,项数为27的等差数列{a n }满足a n ∈(2π-,2π),且公差d≠0.若f(a 1)+f(a 2)+…+f(a 27)=0,则当k=__________时,f(a k )=0. 【答案】148. (2009上海,理23)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分. 已知{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列. (1)若a n =3n+1,是否存在m 、k∈N *,有a m +a m+1=a k ?说明理由; (2)找出所有数列{a n }和{b n },使对一切n∈N *,n nn b a a =+1,并说明理由;(3)若a1=5,d=4,b1=q=3,试确定所有的p,使数列{a n}中存在某个连续p项的和是数列{b n}中的一项,请证明. 【答案】(1) 不存在;(2) {a n}为非零常数列,{b n}为恒等于1的常数列;(3)参考解析9. 【2008上海,理14】 若数列{a n }是首项为1,公比为a -32的无穷等比数列,且{a n }各项的和为a ,则a的值是( ) A .1 B .2 C .12 D .54【答案】B10. 【2005上海,理12】用n 个不同的实数n a a a ,,,21 可得到!n 个不同的排列,每个排列为一行写成一个!n 行的数阵。

2016版数学理一轮复习三年高考真题专题五 数 列

2016版数学理一轮复习三年高考真题专题五 数 列

专题五 数 列1.(2012·高考北京卷)已知{a n }为等比数列,下面结论中正确的是( ) A .a 1+a 3≥2a 2B .a 21+a 23≥2a 22C .若a 1=a 3,则a 1=a 2D .若a 3>a 1,则a 4>a 22.(2012·高考福建卷)数列{a n }的通项公式a n =n cos n π2,其前n 项和为S n ,则S 2012等于( )A .1006B .2012C .503D .0 3.(2012·高考湖北卷)定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2;②f (x )=2x ;③f (x )=|x |;④f (x )=ln|x |.则其中是“保等比数列函数”的f (x )的序号为( ) A .①② B .③④ C .①③ D .②④ 4.(2012·高考大纲全国卷)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A. 2n -1B. ⎝⎛⎭⎫32n -1C. ⎝⎛⎭⎫23n -1D. 12n -15.(2012·高考湖南卷)对于n ∈N *,将n 表示为n =a k ×2k +a k -1×2k -1+…+a 1×21+a 0×20,当i =k 时,a i =1,当0≤i ≤k -1时,a i 为0或1,定义b n 如下:在n 的上述表示中,当a 0,a 1,a 2,…,a k 中等于1的个数为奇数时,b n =1;否则b n =0.(1)b 2+b 4+b 6+b 8=________;(2)记c m 为数列{b n }中第m 个为0的项与第m +1个为0的项之间的项数,则c m 的最大值是________.6.(2012·高考辽宁卷)已知等比数列{a n }为递增数列,若a 1>0,且2(a n +a n +2)=5a n +1,则数列{a n }的公比q =________.7.(2012·高考江西卷)等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,且对任意的n ∈N +都有a n +2+a n +1-2a n =0,则S 5=__________.8.(2012·高考上海卷)已知f (x )=11+x,各项均为正数的数列{a n }满足a 1=1,a n +2=f (a n ).若a 2010=a 2012,则a 20+a 11的值是________.9.(2012·高考江苏卷)已知各项均为正数的两个数列{a n }和{b n }满足:a n +1=a n +b na 2n +b 2n,n∈N *.(1)设b n +1=1+b n a n ,n ∈N *,求证:数列⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫b n a n 2是等差数列;(2)设b n +1=2·b na n,n ∈N *,且{a n }是等比数列,求a 1和b 1的值.10.(2012·高考浙江卷)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(Ⅰ)求a n ,b n ;(Ⅱ)求数列{a n ·b n }的前n 项和T n .11.(2012·高考安徽卷)设函数f (x )=x2+sin x 的所有正的极小值点从小到大排成的数列为{x n }.(Ⅰ)求数列{x n }的通项公式;(Ⅱ)设{x n }的前n 项和为S n ,求sin S n .12.(2012·高考陕西卷)已知等比数列{a n }的公比为q =-12.(Ⅰ)若a 3=14,求数列{a n }的前n 项和;(Ⅱ)证明:对任意k ∈N +,a k ,a k +2,a k +1成等差数列.13.(2012·高考上海卷)对于项数为m 的有穷数列{a n },记b k =max{a 1,a 2,…,a k }(k =1,2,…,m ),即b k 为a 1,a 2,…,a k 中的最大值,并称数列{b n }是{a n }的控制数列.如1,3,2,5,5的控制数列是1,3,3,5,5.(1)若各项均为正整数的数列{a n }的控制数列为2,3,4,5,5,写出所有的{a n };(2)设{b n }是{a n }的控制数列,满足a k +b m -k +1=C (C 为常数,k =1,2,…,m ).求证:b k =a k (k =1,2,…,m );(3)设m =100,常数a ∈⎝⎛⎭⎫12,1.若a n =an 2-(-1)n (n +1)2n ,{b n }是{a n }的控制数列,求(b 1-a 1)+(b 2-a 2)+…+(b 100-a 100).专题五 数 列1.B 法一(比差法):设{a n }公比为q ≠0.则a 21+a 23-2a 22=a 21+(a 1q 2)2-2(a 1q )2=a 21(q 2-1)2≥0,∴a 21+a 23≥2a 22.法二(基本不等式法):∵a 21+a 23≥2a 1a 3=2a 22,当且仅当a 1=a 3时取“=”号.2.A S 2012=cos π2+2cos π+3cos 3π2+4cos2π+…+2012cos1006π=(0-2+0+4)+(0-6+0+8)+…+(0-2010+0+2012)=503×2 =1006.3.C ∵{a n }为等比数列,公比为q ,若f (x )=x 2,则f (a n )=a 2n ,f (a n +1)=a 2n +1, ∴f (a n +1)f (a n )=a 2n +1a 2n =q 2.若f (x )=(x ),则f (a n )=|a n |;f (a n +1)f (a n )=|a n +1||a n |=|q |.故①、③适合.4.B 由S n =2a n +1=2(S n +1-S n ).∴S n +1S n =32∴{S n }组成以S 1=a 1=1为首项,以32为公比的等比数列,∴S n =(32)n -1.5.(1)3 (2)2 (1)n =2时,2=1×21+0·20,a 1=1,a 0=0,∴b 2=1; n =4时,4=1×22+0×21+0×20,∴b 4=1; n =6时,6=1×22+1×21+0×20,∴b 6=0;n =8时,8=1×23+0×22+0×21+0×20,∴b 8=1. 故填3.(2)n =1时,1=1×20,∴b 1=1;n =9时,9=1×23+0×22+0×21+1·20,∴b 9=0; n =10时,10=1×23+0×22+1×21+0·20,∴b 10=0; n =11时,11=1×23+0×22+1×21+1·20,∴b 11=1; n =12时,12=1×23+1×22+0×21+0·20,∴b 12=0; n =13时,13=1×23+1×22+0×21+1·20,∴b 13=1; n =14时,14=1×23+1×22+1×21+0·20,∴b 14=1; …归纳得:c m 的最大值为2.6.2 由已知2(a 1q n -1+a 1q n +1)=5a 1q n , ∴2(1+q 2)=5q ,∴2q 2-5q +2=0,∴q =2或q =12,又∵{a n }递增,∴q =2.7.11 ∀n ∈N +,都有a n +1+a n +2=2a n .∴a 1·q n +a 1q n +1=2a 1q n -1,∴q +q 2=2. ∴q 2+q -2=0,∴q =1(舍去)或q =-2.∴S 5=1-(-2)51+2=11.8.135+326 ∵a 1=1,a n +2=f (a n )=11+a n .∴a 3=12,a 5=23,a 7=35,a 9=58,a 11=813.又a n >0,a 2010=a 2012=11+a 2010,∴a 22010+a 2010-1=0,∴a 2010=-1+52,同理:a 2010=a 2008=…=a 20=-1+52, ∴a 20+a 11=-1+52+813=3+13526.9.解:(1)由题设知a n +1=a n +b na 2n +b 2n=1+b n a n 1+⎝⎛⎭⎫b n a n2=b n +11+⎝⎛⎭⎫b n a n2,所以b n +1a n +1=1+⎝⎛⎭⎫b n a n 2,从而⎝ ⎛⎭⎪⎫b n +1a n +12-⎝⎛⎭⎫b n a n 2=1(n ∈N *), 所以数列⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫b n a n 2是以1为公差的等差数列.(2)因为a n >0,b n >0,所以(a n +b n )22≤a 2n +b 2n <(a n +b n )2,从而1<a n +1=a n +b na 2n +b 2n≤ 2.(*)设等比数列{a n }的公比为q ,由a n >0知q >0.下证q =1.若q >1,则a 1=a 2q <a 2≤2,故当n >log q 2a 1时,a n +1=a 1q n >2,与(*)矛盾;若0<q <1,则a 1=a 2q>a 2>1,故当n >log q 1a 1时,a n +1=a 1q n <1,与(*)矛盾.综上,q =1,故a n =a 1(n ∈N *),所以1<a 1≤ 2.又b n +1=2·b n a n =2a 1·b n (n ∈N *),所以{b n }是公比为2a 1的等比数列.若a 1≠2,则2a 1>1,于是b 1<b 2<b 3.又由a 1=a 1+b n a 21+b 2n得b n =a 1±a 212-a 21a 21-1,所以b 1,b 2,b 3中至少有两项相同,矛盾.所以a 1=2,从而b n =a 1±a 212-a 21a 21-1= 2.所以a 1=b 1= 2.10.解:(Ⅰ)由S n =2n 2+n ,得 当n =1时, a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=4n -1. 所以a n =4n -1,n ∈N *.由4n -1=a n =4log 2b n +3,得b n =2n -1,n ∈N *. (Ⅱ)由(Ⅰ)知a nb n =(4n -1)·2n -1,n ∈N *.所以T n =3+7×2+11×22+…+(4n -1)·2n -1.2T n =3×2+7×22+…+(4n -5)·2n -1+(4n -1)·2n . 所以2T n -T n =(4n -1)2n -[3+4(2+22+…+2n -1)] =(4n -5)2n +5.故T n =(4n -5)2n +5,n ∈N *.11.解:(Ⅰ)因为f ′(x )=12+cos x =0,cos x =-12,解得x =2k π±23π(k ∈Z ).由x n 是f (x )的第n 个正极小值点知,x n =2n π-23π(n ∈N *).(Ⅱ)由(Ⅰ)可知,S n =2π(1+2+…+n )-23n π=n (n +1)π-2n π3,所以sin S n =sin(n (n +1)π-2n π3).因为n (n +1)表示两个连续正整数的乘积,n (n +1)一定为偶数.所以sin S n =-sin(2n π3).当n =3m -2(m ∈N *)时,sin S n =-sin(2m π-43π)=-32;当n =3m -1(m ∈N *)时,sin S n =-sin(2m π-23π)=32;当n =3m (m ∈N *)时,sin S n =-sin2m π=0.综上所述,sin S n=⎩⎨⎧-32,n =3m -2(m ∈N *)32,n =3m -1(m ∈N *)0,n =3m (m ∈N *).12.解:(Ⅰ)由a 3=a 1q 2=14及q =-12,得a 1=1,所以数列{a n }的前n 项和S n =1×[1-(-12)n ]1-(-12)=2+(-12)n -13.(Ⅱ)证明:对任意k ∈N +,2a k +2-(a k +a k +1)=2a 1q k +1-(a 1q k -1+a 1q k )=a 1q k -1(2q 2-q -1),由q =-12得2q 2-q -1=0,故2a k +2-(a k +a k +1)=0,即2a k +2=a k +a k +1,所以,对任意k ∈N +,a k ,a k +2,a k +1成等差数列.13.解:(1)数列{a n }为:2,3,4,5,1;2,3,4,5,2;2,3,4,5,3;2,3,4,5,4;2,3,4,5,5.(2)因为b k =max{a 1,a 2,…,a k },b k +1=max{a 1,a 2,…,a k ,a k +1},所以b k +1≥b k . 因为a k +b m -k +1=C ,a k +1+b m -k =C ,所以a k +1-a k =b m -k +1-b m -k ≥0,即a k +1≥a k . 因此,b k =a k .(3)对k =1,2, (25)a 4k -3=a (4k -3)2+(4k -3); a 4k -2=a (4k -2)2+(4k -2); a 4k -1=a (4k -1)2-(4k -1); a 4k =a (4k )2-(4k ).比较大小,可得a 4k -2>a 4k -3.因为12<a <1,所以a 4k -1-a 4k -2=(a -1)(8k -3)<0,即a 4k -2>a 4k -1;a 4k -a 4k -2=2(2a -1)(4k -1)>0,即a 4k >a 4k -2. ∴a 4k >a 4k -1,从而b 4k -3=a 4k -3,b 4k -2=a 4k -2,b 4k -1=a 4k -2,b 4k =a 4k . 因此(b 1-a 1)+(b 2-a 2)+…+(b 100-a 100) =(a 2-a 3)+(a 6-a 7)+…+(a 98-a 99) =∑k =125(a 4k -2-a 4k -1)=(1-a ) ∑k =125(8k -3)=2525(1-a ).。

上海市2016届高考数学一轮复习-专题突破训练-三角函数-理

上海市2016届高考数学一轮复习-专题突破训练-三角函数-理

上海市2016届高三数学理一轮复习专题突破训练三角函数一、填空、选择题 1、(2015年上海高考)已知函数f (x )=sinx .若存在x 1,x 2,…,x m 满足0≤x 1<x 2<…<x m ≤6π,且|f (x 1)﹣f (x 2)|+|f (x 2)﹣f (x 3)|+…+|f(x m ﹣1)﹣f (x m )|=12(m ≦12,m ∈N *),则m 的最小值为 8 .1、 解:∵y=sinx 对任意x i ,x j (i ,j=1,2,3,…,m ),都有|f (x i )﹣f (x j )|≤f(x )max ﹣f (x )min =2,要使m 取得最小值,尽可能多让x i (i=1,2,3,…,m )取得最高点,考虑0≤x 1<x 2<…<x m ≤6π,|f (x 1)﹣f (x 2)|+|f (x 2)﹣f (x 3)|+…+|f(x m ﹣1)﹣f (x m )|=12, 按下图取值即可满足条件,∴m 的最小值为8. 故答案为:8.2、(2014年上海高考)设常数a 使方程sin 3x x a =在闭区间[0,2]π上恰有三个解123,,x x x ,则123x x x ++= . 2、【解析】:化简得2sin()3x a π+=,根据下图,当且仅当3a =即12370233x x x πππ++=++=3、(2013年上海高考)若12cos cos sin sin ,sin 2sin 223x y x y x y +=+=,则sin()________x y += 3、【解答】1cos()2x y -=,2sin 2sin 22sin()cos()3x y x y x y +=+-=,故2sin()3x y +=.4、(静安、青浦、宝山区2015届高三二模)方程)cos (lg )sin 3(lg x x -=的解集为 4、5{|2,}6x x k k Z ππ=+∈ 5、(闵行区2015届高三二模)若4cos 5α=,且()0,απ∈,则tg 2α= 13. 6、(浦东新区2015届高三二模)若对任意R x ∈,不等式0sin 22sin 2<-+m x x 恒成立,则m 的取值范围是 ),21(+∞+.7、(普陀区2015高三二模)若函数()()sinsin022xxf x ωπωω+=>的最小正周期为π,则ω= 28、(徐汇、松江、金山区2015届高三二模)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若2,3a c A π===,则ABC ∆的面积为9、(长宁、嘉定区2015届高三二模)已知方程1cos 3sin +=+m x x 在],0[π∈x 上有两个不相等的实数解,则实数m 的取值范围是___)1,13[-________10、(黄浦区2015届高三上期末)已知角α的顶点在坐标原点,始边与x 轴的正半轴重合,角α的终边与圆心在原点的单位圆(半径为1的圆)交于第二象限内的点4(,)5A A x ,则sin 2α= 2425.(用数值表示)11、(嘉定区2015届高三上期末)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知A c C a cos 2cos 3=,31tan =A ,则=B __43π_______ 12、(金山区2015届高三上期末)方程:sin x +cos x =1在[0,π]上的解是2π或0 13、(上海市八校2015届高三3月联考)函数2()2cos 1f x x =-的最小正周期是 π 14、(松江区2015届高三上期末)已知函数()sin()3f x x πω=+(R x ∈,0>ω)的最小正周期为π,将)(x f y =图像向左平移ϕ个单位长度)20(πϕ<<所得图像关于y 轴对称,则=ϕ12π15、(长宁区2015届高三上期末)已知△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且2226tan 5bc a acB -+=, 则sin B 的值是 53二、解答题AβCBαD1、(2015年上海高考)如图,A ,B ,C 三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为f (t )(单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是ACB ,速度为8千米/小时.乙到达B 地后原地等待.设t=t 1时乙到达C 地.(1)求t 1与f (t 1)的值;(2)已知警员的对讲机的有效通话距离是3千米.当t 1≤t≤1时,求f (t )的表达式,并判断f (t )在[t 1,1]上的最大值是否超过3?说明理由. 1、 解:(1)由题意可得t 1==h ,设此时甲运动到点P ,则AP=v 甲t 1=5×=千米, ∴f(t 1)=PC===千米;(2)当t 1≤t≤时,乙在CB 上的Q 点,设甲在P 点, ∴QB=AC+CB﹣8t=7﹣8t ,PB=AB ﹣AP=5﹣5t , ∴f(t )=PQ===,当<t≤1时,乙在B 点不动,设此时甲在点P , ∴f(t )=PB=AB ﹣AP=5﹣5t∴f(t )=∴当<t≤1时,f (t )∈[0,],故f (t )的最大值超过了3千米. 2、(2014年上海高考)如图,某公司要在A B 、两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米. 设点A B 、在同一水平面上,从A 和B 看D 的仰角分别为α和β.(1) 设计中CD 是铅垂方向. 若要求2αβ≥,问CD 的长至多为多少(结果精确到0.01米)?(2) 施工完成后,CD 与铅垂方向有偏差.现在实测得38.12α=︒,18.45β=︒,求CD 的长(结果精确到0.01米).2、【解析】:(1)设CD 的长为x 米,则tan ,tan 3580x x αβ==,∵202παβ>≥>, ∴tan tan 2αβ≥,∴22tan tan 1tan βαβ≥-,∴2221608035640016400x x x x x ≥=--,解得028.28x <≤≈,∴CD 的长至多为28.28米(2)设,,DB a DA b DC m ===,180123.43ADB αβ∠=︒--=︒, 则sin sin a AB ADB α=∠,解得115sin 38.1285.06sin123.43a ︒=≈︒,∴26.93m =≈,∴CD 的长为26.93米3、(2013年上海高考)已知函数()2sin()f x x ω=,其中常数0ω>; (1)若()y f x =在2[,]43ππ-上单调递增,求ω的取值范围;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,区间[,]a b (,a b R ∈且a b <)满足:()y g x =在[,]a b 上至少含有30个零点,在所有满足上述条件的[,]a b 中,求b a -的最小值. 3、【解答】(1)因为0ω>,根据题意有34202432ππωωππω⎧-≥-⎪⎪⇒<≤⎨⎪≤⎪⎩ (2) ()2sin(2)f x x =,()2sin(2())12sin(2)163g x x x ππ=++=++1()0sin(2)323g x x x k πππ=⇒+=-⇒=-或7,12x k k Z ππ=-∈,即()g x 的零点相离间隔依次为3π和23π,故若()y g x =在[,]a b 上至少含有30个零点,则b a -的最小值为2431415333πππ⨯+⨯=.4、(静安、青浦、宝山区2015届高三二模)某公园有个池塘,其形状为直角ABC ∆,090C ∠=,AB 的长为2百米,BC 的长为1百米.(1)若准备养一批供游客观赏的鱼,分别在AB 、BC 、CA 上取点D E F 、、,如图(1),使得EF//AB ,EF ED ⊥,在DEF ∆内喂食,求当DEF ∆的面积取最大值时EF 的长;(2)若准备建造一个荷塘,分别在AB 、BC 、CA 上取点D E F 、、,如图(2),建造DEF ∆连廊(不考虑宽度)供游客休憩,且使DEF ∆为正三角形,记FEC α∠=,求DEF ∆边长的最小值及此时α的值.(精确到1米和0.1度)4、解:(1)设EF x =,则2x CE =,故12xBE =-,所以12x DE ⎫=-⎪⎝⎭1,(0,2)2DEFx S x ∆⎛⎫=-∈ ⎪⎝⎭,因为211122422DEFx x x x S ∆⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭当且仅当1x =时等号成立, 即()max DEF S ∆=.………………………………………………………6分 (2)在Rt ABC ∆中,030A ∠=,设FEC α∠=,0,2πα⎛⎫∈ ⎪⎝⎭,则090EFC α∠=-,000018060(90)30AFD αα∠=---=+,…………………………8分所以000018030(30)120ADF αα∠=--+=-设CF x =,则AF x ,在ADF ∆中,0sin 30DF =,………………10分又由于sin sin x EF DF αα==,所以0sin 30DF =………………………11分化简得0.65DF =≥≈百米=65米………………………………13分此时tan ϕ=,040.9ϕ≈,049.1α≈…………………………………………………14分 解法2:设等边三角形边长为EF ED DF y ===,在△EBD 中,60B ∠=,EDB α∠=,…………………………………………8分 由题意可知cos CE y α=,…………………………………………………………9分 则1cos EB y α=-,所以1cos sin 60sin y y αα-=,……………………………………11分即0.65y =≥≈,………………………………………………13分此时tan ϕ=,040.9ϕ≈,049.1α≈…………………………………………………14分2 图(2)图(1)A CA FF5、(闵行区2015届高三二模)设三角形ABC 的内角A B C 、、所对的边长分别是a b c 、、,且3B π=.若ABC △不是钝角三角形,求:(1) 角C 的范围;(2)2ac的取值范围. 6、解:(1)设人造卫星在12:03时位于C 点处,AOC θ∠=,33609120θ=︒⨯=︒,…2分 在ACO ∆中,222=6370+8000-263708000cos93911704.327AC ⨯⨯⨯︒=, 1977.803AC ≈(千米),……………………………………………5分 即在下午12:03时,人造卫星与卫星跟踪站相距约为1978千米.…………………6分 (2)设此时天线的瞄准方向与水平线的夹角为ϕ,则90CAO ϕ∠=+︒,sin 9sin(90)19788000ϕ︒+︒=,8000sin(90)sin 90.63271978ϕ+︒=︒≈,…………………9分即cos 0.6327ϕ≈,5045'ϕ≈︒,……………………………………………………11分 即此时天线瞄准的方向与水平线的夹角约为5045'︒.………………………………12分 6、(浦东新区2015届高三二模)A 点的正上空A ',12:03时卫星通过C 点.(卫星接收天线发出的无线电信号所需时间忽略不计)(1)求人造卫星在12:03时与卫星跟踪站A 之间的距离(精确到1千米); (2)求此时天线方向AC5、[解](1)因为A +23A C π=- …………………………………2分 由0,022C A ππ<≤<≤得62C ππ≤≤…………………………………4(224sin sin 2sin sin a R A Ac R C C ==2sin()sin 1sin sin sin B C C C C C C C ++===+当2C π=时,211a c ==当62C ππ≤<时,(]211,4a c =+ …………………………………12分 所以2ac[]11,4tan C =+∈. …………………………………14分7、(普陀区2015届高三二模)已知函数()2cos f x x =,()1cos 2g x x x =. (1)若直线x a =是函数()y f x =的图像的一条对称轴,求()2g a 的值; (2)若02x π≤≤,求()()()h x f x g x =+的值域.7、解:(1)()21cos2cos 2xf x x +==, 其对称轴为2,,2k x k x k Zππ==∈, 因为直线线x a =是函数()y f x =的图像的一条对称轴,所以,2k a k Z π=∈,又因为()122g x x =,所以()()()1122=22g a g k k ππ==+ 即()122g a =.(2)由(1)得()()()1cos2212sin 216h x f x g x x x x π=+=++⎛⎫=++ ⎪⎝⎭1710,,2,,sin 2,2266662x x x ππππ⎡⎤⎡⎤⎛⎫⎡⎤∈∴+∈+∈- ⎪⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭⎣⎦所以()h x 的值域为122⎡⎤⎢⎥⎣⎦,.8、(长宁、嘉定区2015届高三二模)在△ABC 中,已知12cos 2sin 22=++C BA ,外接圆半径2=R .(1)求角C 的大小;(2)若角6π=A ,求△ABC 面积的大小.8、(1)由题意,12cos )cos(1=++-C B A ,因为π=++C B A ,所以C B A cos )cos(-=+,故01cos cos 22=-+C C ,……(2分)解得1cos -=C (舍),或21cos =C . ………………(5分)所以,3π=C . ………………(6分)(2)由正弦定理,R C c 2sin =,得43sin =πc,所以323sin 4==πc . ………(2分)因为6π=A ,由R A a2sin =,得2=a , …………(4分)又2π=B ,所以△ABC 的面积3221==ac S . …………(6分)9、(长宁区2015届高三上期末)已知8,tan cot 23παπαα<<-=- (1)求tan α的值;(2)求sin 22πα⎛⎫- ⎪⎝⎭的值。

上海市高考数学一轮复习专题突破训练函数理

上海市高考数学一轮复习专题突破训练函数理

上海市2016届高三数学理一轮复习专题突破训练函数一、填空题1、(2015年上海高考)方程log 2(9x ﹣1﹣5)=log 2(3x ﹣1﹣2)+2的解为 2 . 2、(2015年上海高考)设f ﹣1(x )为f (x )=2x ﹣2+,x ∈[0,2]的反函数,则y=f (x )+f ﹣1(x )的最大值为 4 .3、(2014年上海高考)设2,(,),(),[,).x x a f x x x a ∈-∞⎧=⎨∈+∞⎩ 若(2)4f =,则a 的取值范围为 .4、(2014年上海高考)若2132()f x x x -=-,则满足()0f x <的x 的取值范围是 .5、(2013年上海高考)设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++,若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为________6、(2013年上海高考)对区间I 上有定义的函数()g x ,记(){|(),}g I y y g x x I ==∈,已知定义域为[0,3]的函数()y f x =有反函数1()y f x -=,且11([0,1))[1,2),((2,4])[0,1)f f --==,若方程()0f x x -=有解0x ,则0_____x =7、(静安、青浦、宝山区2015届高三二模)函数221y x x =+-的值域为8、(闵行区2015届高三二模)函数2()log (1)8a f x x a x =++-在区间()0,1内无零点,则实数a 的范围是9、(浦东新区2015届高三二模)若函数()2234f x x x =+-的零点(),1m a a ∈+,a 为整数,则所以满足条件a 的值为10、(普陀区2015届高三二模)函数()()11f x x x =-≤,若函数()2g x x ax =+是偶函数, 则()f a =11、(徐汇、松江、金山区2015届高三二模)设)(x f 是定义域为R 的奇函数,)(x g 是定义域为R 的偶函数,若函数)()(x g x f +的值域为)3,1[,则函数)()(x g x f -的值域为12、(长宁、嘉定区2015届高三二模)设定义域为R 的函数⎩⎨⎧≤-->=,0,2,0,|lg |)(2x x x x x x f 若关于x 的函数1)(2)(22++=x bf x f y 有8个不同的零点,则实数b 的取值范围是____________13、(奉贤区2015届高三上期末)定义函数348122()1()222x x f x x f x ⎧--≤≤⎪⎪=⎨⎪>⎪⎩,则函数()()6g x xf x =-在区间[]8,1内的所有零点的和为14、(黄浦区2015届高三上期末)若函数213()2x ax af x ++-=是定义域为R 的偶函数,则函数()f x 的单调递减区间是15、(嘉定区2015届高三上期末)已知24=a,a x =lg ,则=x ___________16、(浦东区2015届高三上期末)已知1()y f x -=是函数3()f x x a =+的反函数,且1(2)1f -=,则实数a =17、(普陀区2015届高三上期末)方程1)7lg(lg =-+x x 的解集为18、(上海市八校2015届高三3月联考)若函数213()22f x x x =-+的定义域与值域都是[1,](1)b b >,那么实数b 的值为19、(青浦区2015届高三上期末)已知函数()f x 对任意的x ∈R 满足()()f x f x -=,且当0x ≥时,2()1f x x ax =-+.若()f x 有4个零点,则实数a 的取值范围是 .20、(松江区2015届高三上期末)设)(x f 是定义在R 上的偶函数,对任意R x ∈,都有)2()2(+=-x f x f ,且当[]0,2-∈x 时,121)(-⎪⎭⎫ ⎝⎛=xx f .若函数)1)(2(log )()(>+-=a x x f x g a 在区间(]6,2-恰有3个不同的零点,则a 的取值范围是 ▲二、解答题1、(2014年上海高考)设常数0a ≥,函数2()2x x af x a+=-.(1) 若4a =,求函数()y f x =的反函数1()y f x -=;(2) 根据a 的不同取值,讨论函数()y f x =的奇偶性,并说明理由.2、(静安、青浦、宝山区2015届高三二模) 已知函数)(),(x g x f 满足关系)()()(α+⋅=x f x f x g ,其中α是常数.(1)若x x x f sin cos )(+=,且2πα=,求)(x g 的解析式,并写出)(x g 的递增区间;(2)设1()22x xf x =+,若)(x g 的最小值为6,求常数α的值.3、(浦东新区2015届高三二模)已知函数(),(0),af x x x a x=+>为实数. (1)当1a =-时,判断函数()y f x =在()1,+∞上的单调性,并加以证明; (2)根据实数a 的不同取值,讨论函数()y f x =的最小值.4、(普陀区2015届高三二模)已知函数()2x f x =的反函数为1()f x - (1)若11()(1)1f x f x ----=,求实数x 的值;(2)若关于x 的方程()(1)0f x f x m +--=在区间[]0,2内有解,求实数m 的取值范围;5、(徐汇、松江、金山区2015届高三二模)已知函数11()2f x x x ⎛⎫=+ ⎪⎝⎭,11()2g x x x ⎛⎫=- ⎪⎝⎭.(1)求函数()()()2h x f x g x =+的零点;(2)若直线():0,,l ax by c a b c ++=为常数与()f x 的图像交于不同的两点A B 、,与()g x 的图像交于不同的两点C D 、,求证:AC BD =; (3)求函数()()()22*()nnF x f x g x n N =-∈⎡⎤⎡⎤⎣⎦⎣⎦的最小值.6、(奉贤区2015届高三上期末)判断函数1()lg 1xf x x-=+的奇偶性.7、(虹口区2015届高三上期末)已知函数()f x 和()g x 的图像关于原点对称,且2()f x x x =+ (1)求函数()y g x =的解析式;(2)若()()()3h x g x m f x =-⋅+在[]1,1-上是增函数,求实数m 的取值范围.8、(黄浦区2015届高三上期末)已知函数101(),R 101xx g x x -=∈+,函数()y f x =是函数()y g x =的反函数.(1)求函数()y f x =的解析式,并写出定义域D ; (2)(理科)设1()()h x f x x=-,若函数()y h x =在区间(0,1)内的图像是不间断的光滑曲线,求证:函数()y h x =在区间(1,0)-内必有唯一的零点(假设为t ),且112t -<<-.9、(徐汇区2015届高三上期末)已知函数()22()xxf x k k R -=+⋅∈. (1)若函数()f x 为奇函数,求k 的值;(2)若函数()f x 在(],2-∞上为减函数,求k 的取值范围.10、(闸北区2015届高三模)设函数()y f x =的定义域为D ,值域为A ,如果存在函数()x g t =,使得函数()y f g t =⎡⎤⎣⎦的值域仍是A ,那么称()x g t =是函数()y f x =的一个等值域变换.(1)判断下列函数()x g t =是不是函数()y f x =的一个等值域变换?说明你的理由;① ()2log ,0f x x x =>,()1,0x g t t t t==+>; ② ()21,f x x x x R =-+∈,()2,t x g t t R ==∈.(2)设函数()y f x =的定义域为D ,值域为A ,函数()g t 的定义域为1D ,值域为1A ,那么“1D A =”是否为“()x g t =是()y f x =的一个等值域变换”的一个必要条件?请说明理由;(3)设()2l o g f x x =的定义域为[]2,8x ∈,已知()2231mt t nx g t t -+==+是()y f x =的一个等值域变换,且函数()y f g t =⎡⎤⎣⎦的定义域为R ,求实数m n 、的值.参考答案 一、填空题1、解:∵log 2(9x ﹣1﹣5)=log 2(3x ﹣1﹣2)+2,∴log 2(9x ﹣1﹣5)=log 2[4×(3x ﹣1﹣2)], ∴9x ﹣1﹣5=4(3x ﹣1﹣2),化为(3x )2﹣12•3x +27=0,因式分解为:(3x ﹣3)(3x ﹣9)=0,∴3x =3,3x=9,解得x=1或2.经过验证:x=1不满足条件,舍去.∴x=2. 故答案为:2. 2、 解:由f (x )=2x ﹣2+在x ∈[0,2]上为增函数,得其值域为[],可得y=f ﹣1(x )在[]上为增函数,因此y=f (x )+f ﹣1(x )在[]上为增函数,∴y=f (x )+f ﹣1(x )的最大值为f (2)+f ﹣1(2)=1+1+2=4. 故答案为:4.3、【解析】:根据题意,2[,)a ∈+∞,∴2a ≤4、【解析】:2132()0f x x x-<⇒<,结合幂函数图像,如下图,可得x 的取值范围是(0,1)5、【解答】(0)0f =,故011a a ≥+⇒≤-;当0x >时,2()971a f x x a x=+-≥+即6||8a a ≥+,又1a ≤-,故87a ≤-. 6、【解答】根据反函数定义,当[0,1)x ∈时,()(2,4]f x ∈;[1,2)x ∈时,()[0,1)f x ∈,而()y f x =的定义域为[0,3],故当[2,3]x ∈时,()f x 的取值应在集合(,0)[1,2](4,)-∞⋃⋃+∞,故若00()f x x =,只有02x =.7、[)1,+∞8、(]1,2 9、1或2- 10、1 11、(]3,1-- 12、⎪⎭⎫⎝⎛--2,23 13、22114、(,0]-? 15、10 16、1 17、}5,2{ 18、3 19.()2,+∞; 20、()2,43二、解答题1、【解析】:(1)∵4a =,∴24()24x x f x y +==-,∴4421x y y +=-,∴244log 1y x y +=-, ∴1244()log 1x y fx x -+==-,(,1)(1,)x ∈-∞-⋃+∞ (2)若()f x 为偶函数,则()()f x f x =-,∴2222x x x x a aa a--++=--,整理得(22)0x x a --=,∴0a =,此时为偶函数若()f x 为奇函数,则()()f x f x =--,∴2222x x x x a aa a--++=---, 整理得210a -=,∵0a ≥,∴1a =,此时为奇函数当(0,1)(1,)a ∈⋃+∞时,此时()f x 既非奇函数也非偶函数 2.解:(1) x x x f sin cos )(+=,2πα=∴x x x f sin cos )(-=+α;∴x x g 2cos )(=………………………………………………………………4分递增区间为1,2k k ππππ⎡⎤++⎢⎥⎣⎦,(k Z ∈)(注:开区间或半开区间均正确) ……………………………………………………………………………6分(2)(文)()()1g x x x α=⋅+≥,当1,2x ⎡⎫∈+∞⎪⎢⎣⎭时,1x x α≥-………8分 令1()h x x x =-,则函数()y h x =在1,2x ⎡⎫∈+∞⎪⎢⎣⎭上递减………………10分 所以max 13()()22h x h ==………………………12分因而,当32α≥时,()1g x ≥在1,2x ⎡⎫∈+∞⎪⎢⎣⎭上恒成立………………………14分(理) 1111()2222222222x x x xx x x x g x αααα++⎛⎫⎛⎫⎛⎫⎛⎫=+⋅+=+⋅⋅+ ⎪ ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭⎝⎭,………8分 ()()22111()2222262222x x g x αααααα=⋅+++≥++=⋅…………………10分 解得223α=± … ……………………………………………………………12分 所以()2log 23α=±………………………………………………………………14分 3、解:(1)由条件:1()f x x x=-在()1,+∞上单调递增.…………………………2分 任取()12,1,x x ∈+∞且12x x <1212121212111()()()(1)f x f x x x x x x x x x -=--+=-+ ……………………4分211x x >>,∴121210,10x x x x -<+> ∴ 12()()f x f x < ∴ 结论成立 …………………………………………6分 (2)当0a =时,()y f x =的最小值不存在; …………………………………7分当0a <时,()y f x =的最小值为0;………………………………………9分当0a >时,()2ay f x x a x==+≥,当且仅当x a =时,()y f x =的最小值为2a ;………………………………………………12分4、解:(1)23x = (2)922,2⎡⎤⎢⎥⎣⎦.5、解:(1)由题313()0223x h x x x =-=⇒=±,函数()h x 的零点为33x =±…………4’ (2)设()()()()11223344,,,,,,,A x y B x y C x y D x y()2220112ax by c a b x cx b y x x ++=⎧⎪⇒+++=⎨⎛⎫=+ ⎪⎪⎝⎭⎩,则1222c x x a b +=-+………………..8’ 同理由()2220112ax by c a b x cx b y x x ++=⎧⎪⇒++-=⎨⎛⎫=- ⎪⎪⎝⎭⎩,则3422c x x a b +=-+ 则AB 中点与CD 中点重合,即AC BD =………………..10’(3)由题222111()2n nnF x x x x x ⎡⎤⎛⎫⎛⎫=+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()1223262362212222222122222n n n n n nn n n n nC x C x C x C x ------=++++………………..12’ ()()()()12222326622362262122222222212n n n n n n n n n n n n n n n C x x C x x C x x C x x ----------⎡⎤=++++++++⎣⎦()13232122222122222n n n n n n n C C C C --≥++++ ……………….14’ 1≥,当且仅当1x =±时,等号成立所以函数()F x 的最小值为1………………..16’ 6、011>+-xx, 1分 所以函数()f x 的定义域是(1,1)-, 2分 定义域关于原点对称, 3分1()()lg1()x f x x ---=+- 4分1111lg lg lg ()111x x x f x x x x -+--⎛⎫===-=- ⎪-++⎝⎭, 5分 而11()lg 23f =,1()lg 32f -=,11()()22f f ∴≠-, 6分 所以()f x 是奇函数不是偶函数。

上海市2016届高考数学一轮复习 专题突破训练 立体几何 理

上海市2016届高考数学一轮复习 专题突破训练 立体几何 理

上海市2016届高三数学理一轮复习专题突破训练立体几何一、填空、选择题 1、(2015年上海高考)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为.2、(2014年上海高考)若圆锥的侧面积是底面积的3倍,则其母线与底面夹角的大小为 (结果用反三角函数值表示).3、(2013年上海高考)在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y =和1y =-围成的封闭图形记为D ,如图中阴影部分.记D绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为48π,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________4、(静安、青浦、宝山区2015届高三二模)已知扇形的圆心角是1弧度,半径为5cm ,则此扇形的弧长为 cm .5、(闵行区2015届高三二模) 如图,已知直线l ⊥平面α,垂足为O ,在ABC △中,2,2,BC AC AB ===点P 是边AC 上的动点.该三角形在空间按以下条件作自由移动:(1)A l ∈,(2)C α∈.则OP PB +的最大值为 () (A) 2. (B) 1+6、(浦东新区2015届高三二模)已知球的表面积为64π2cm ,用一个平面截球,使截面圆的半径为2cm ,则截面与球心的距离是 cm .7、(普陀区2015届高三二模)一个圆锥与一个球的体积相等且圆锥的底面半径是球半径的2倍,若圆锥的高为1,则球的表面积为ABlCαPO8、(徐汇、松江、金山区2015届高三二模)如图所示:在直三棱柱111ABC A B C -中,AB BC ⊥,1AB BC BB ==,则平面11A B C 与平面ABC 所成的二面角的大小为9、(长宁、嘉定区2015届高三二模)在四棱锥ABCD V -中,1B ,1D 分别为侧棱VB ,VD 的中点,则四面体11CD AB 的体积与四棱锥ABCD V -的体积之比为………………( ) A .6:1 B .5:1 C .4:1 D .3:1 10、(奉贤区2015届高三上期末)如图,在矩形ABCD 中,E 为边AD 的中点,1AB =,2BC =,分别以A 、D 为圆心,1为半径作圆弧EB 、EC (E 在线段AD 上).由两圆弧EB 、EC 及边BC 所围成的平面图形绕直线AD 旋转一周,则所形成的几何体的体积为11、(黄浦区2015届高三上期末)已知某圆锥体的底面半径3r =,沿圆锥体的母线把侧面展开后得到一个圆心角为23π的扇形,则该圆锥体的表面积是12、(金山区2015届高三上期末)如图所示,在长方体ABCD –EFGH 中,AD =2,AB=AE=1,M 为矩形AEHD 内的一点,如果∠MGF =∠MGH ,MG 和平面EFG 所成角的正切值为12,那么点M 到平面EFGH 的距离是 ▲13、(浦东区2015届高三上期末)如图,已知⊥PA 平面ABC ,AB AC ⊥,BC AP =,︒=∠30CBA ,D 、E 分别是BC 、AP 的中点. 则异面直线AC 与DE 所成角的大小为 .14、(松江区2015届高三上期末)在正四棱柱1111ABCD A B C D -中,1BC 与平面ABCD 所成的角为60︒,则1BC 与AC 所成的角为 ▲ (结果用反三角函数表示).15、(宝山区2015届高三上期末)正四棱锥ABCD P -的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与PA 所成的角的余弦值等于ECDPAB二、解答题 1、(2015年上海高考)如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=1,AB=AD=2,E 、F 分别是AB 、BC 的中点,证明A 1、C 1、F 、E 四点共面,并求直线CD 1与平面A 1C 1FE 所成的角的大小.PABCD E2、(2014年上海高考)底面边长为2的正三棱锥-P ABC ,其表面展开图是三角形123PP P ,如图. 求123P P P △的各边长及此三棱锥的体积V .P 23、(2013年上海高考)如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,证明直线BC 1平行于平面DA 1C ,并求直线BC 1到平面D 1AC 的距离.4、(静安、青浦、宝山区2015届高三二模)如图,在直三棱柱111C B A ABC -中,已知21===AB BC AA ,AB ⊥BC .(1)求四棱锥111A BCC B -的体积;(2)求二面角111C C A B --的大小.C 11AA1A 15、(闵行区2015届高三二模)如图,已知圆锥的底面半径为10r =,点Q 为半圆弧AB 的中点,点P 为母线SA 的中点.若直线PQ 与SO 所成的角为4π,求此圆锥的表面积.6、(浦东新区2015届高三二模) 如图,在四棱锥ABCD P -中,底面正方形ABCD 的边长为2,⊥PA 底面ABCD , E 为BC 的中点,PC 与平面PAD 所成的角为22arctan. (1)求异面直线AE 与PD 所成角的大小(结果用反三角函数表示);(2)求点B 到平面PCD 的距离.7、(徐汇、松江、金山区2015届高三二模)如图,在Rt AOB ∆中,6OAB π∠=,斜边4AB =,D是AB 的中点.现将Rt AOB ∆以直角边AO 为轴旋转一周得到一个圆锥,点C 为圆锥底面圆周上的一点,且2BOC π∠=.(1)求该圆锥的全面积;(2)求异面直线AO 与CD 所成角的大小. (结果用反三角函数值表示)BD 1A B 18、(长宁、嘉定区2015届高三二模)如图,四棱锥ABCD P -的底面ABCD 为菱形,⊥PD 平面ABCD ,2==AD PD ,︒=∠60BAD ,E 为BC 的中点.(1)求证:⊥ED 平面PAD ;(2)求平面PAD 与平面PBC 所成的锐二面角大小的余弦值.9、(青浦区2015届高三上期末) 如图所示,在长方体1111ABCD A B C D -中,2AB =,2BC =,14CC =,M 为棱1CC 上一点.(1)若11C M =,求异面直线1A M 和11C D 所成角的正切值; (2)若12C M =,求证BM ⊥平面11A B M .10、(松江区2015届高三上期末)沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市2016届高三数学理一轮复习专题突破训练数列一、填空、选择题1、(2015年上海高考)记方程①:x 2+a 1x+1=0,方程②:x 2+a 2x+2=0,方程③:x 2+a 3x+4=0,其中a 1,a 2,a 3是正实数.当a 1,a 2,a 3成等比数列时,下列选项中,能推出方程③无实根的是( ) A .方程①有实根,且②有实根 B . 方程①有实根,且②无实根 C .方程①无实根,且②有实根 D . 方程①无实根,且②无实根 2、(2014年上海高考)设无穷等比数列{}n a 的公比为q ,若()134lim n n a a a a →∞=+++ ,则q = .3、(2013年上海高考)设非零常数d 是等差数列12319,,,,x x x x 的公差,随机变量ξ等可能地取值12319,,,,x x x x ,则方差_______D ξ=4、(静安、青浦、宝山区2015届高三二模)设等差数列{}n a 的前n 项和为n A ,等比数列{}n b 的前n 项和为n B ,若33a b =,44a b =,且53427A A B B -=-,则5353a ab b +=+5、(闵行区2015届高三二模)已知数列{}n a 满足21221()n n n a a a n *+=-++∈N ,则使不等式20152015a >成立的所有正整数1a 的集合为6、(浦东新区2015届高三二模)已知数列{}n a 的前n 项和n n S n +=2,则该数列的通项公式=n an 2 .7、(徐汇、松江、金山区2015届高三二模)已知函数2()sin f x x x =⋅,各项均不相等的数列{}n x 满足2i x π≤(1,2,3,,)i n = .令[]*1212()()()()()()n n F n x x x f x f x f x n N =+++⋅++∈ .给出下列三个命题:(1)存在不少于3项的数列{}n x ,使得()0F n =;(2)若数列{}n x 的通项公式为()*12nn x n N ⎛⎫=-∈ ⎪⎝⎭,则(2)0F k >对*k N ∈恒成立;(3)若数列{}n x 是等差数列,则()0F n ≥对*n N ∈恒成立.其中真命题的序号是( )(A )(1)(2) (B )(1)(3) (C ) (2)(3) (D )(1)(2)(3)8、(长宁、嘉定区2015届高三二模)设等差数列{}n a 满足115=a ,312-=a ,{}n a 的前n 项和n S 的最大值为M ,则lg M =__________9、(虹口区2015届高三上期末)设等比数列{}n a 的公比为q ,前n 项和为n S ,若12,,n n n S S S ++成等差数列,则q =10、(金山区2015届高三上期末)等差数列{a n }中,a 2=8,S 10=185,则数列{a n }的通项公式a n = ▲ (n ∈N*).11、(静安区2015届高三上期末)已知数列{}n a 的通项公式1222+-+=n n n a (其中*N n ∈),则该数列的前n 项和=n S12、(青浦区2015届高三上期末)设n S 是等差数列{}n a 的前n 项和,若742S =,则4a = 13、(徐汇区2015届高三上期末)设数列{}n a 的前n 项和为n S ,若11a =,*110()2n n S a n N +-=∈,则{}n a 的通项公式为14、(黄浦区2015届高三4月模拟考试(二模))在等差数列{}n a 中,若8103,1a a =-=,9m a =,则正整数m =15、()把正整数排列成如图()a 的三角形数阵,然后擦去第偶数行中的所有奇数、第奇数行中的所有偶数,可得到如图()b 的三角形数阵,现将图()b 中的正整数按从小到大的顺序构成一个数列{}n a ,若2015k a =,则__________.k =1 12 3 4 2 4 5 6 7 8 9 5 7 9 10 11 12 13 14 15 16 10 12 14 16 17 18 19 20 21 22 23 24 25 17 19 21 23 25 26 27 28 29 30 31 32 33 34 35 36 26 28 30 32 34 36 ()a ()b二、解答题1、(2015年上海高考)已知数列{a n }与{b n }满足a n+1﹣a n =2(b n+1﹣b n ),n ∈N *.(1)若b n =3n+5,且a 1=1,求数列{a n }的通项公式; (2)设{a n }的第n 0项是最大项,即a≥a n (n ∈N *),求证:数列{b n }的第n 0项是最大项;(3)设a 1=λ<0,b n =λn(n ∈N *),求λ的取值范围,使得{a n }有最大值M 与最小值m ,且∈(﹣2,2).2、(2014年上海高考)已知数列{}n a 满足1133n n n a a a +≤≤,*n ∈N ,11a =.(1) 若2342,,9a a x a ===,求x 的取值范围;(2) 设{}n a 是公比为q 的等比数列,12n n S a a a =+++ . 若1133n n n S S S +≤≤,*n ∈N ,求q 的取值范围;(3) 若12,,,k a a a 成等差数列,且121000k a a a +++= ,求正整数k 的最大值,以及k 取最大值时相应数列12,,,k a a a 的公差.3、(2013年上海高考)给定常数0c >,定义函数()2|4|||f x x c x c =++-+,数列123,,,a a a 满足*1(),n n a f a n N +=∈.(1)若12a c =--,求2a 及3a ;(2)求证:对任意*1,n n n N a a c +∈-≥,;(3)是否存在1a ,使得12,,,n a a a 成等差数列?若存在,求出所有这样的1a ,若不存在,说明理由.4、(静安、青浦、宝山区2015届高三二模)设{}n a 是公比为(1)q q ≠的等比数列,若{}n a 中任意两项之积仍是该数列中的项,那么称{}n a 是封闭数列. (1)若123a q ==,,判断{}n a 是否为封闭数列,并说明理由;(2)证明{}n a 为封闭数列的充要条件是:存在整数1m ≥-,使1m a q =;(3)记n ∏是数列{}n a 的前n 项之积,2log nn b =∏,若首项为正整数,公比2q =,试问:是否存在这样的封闭数列{}n a ,使1211111lim 9n n b b b →∞⎛⎫++⋅⋅⋅+= ⎪⎝⎭,若存在,求{}n a 的通项公式;若不存在,说明理由.5、(闵行区2015届高三二模)各项均为正数的数列{}n b 的前n 项和为n S ,且对任意正整数n ,都有2(1)n n n S b b =+.(1)求数列{}n b 的通项公式;(2)如果等比数列{}n a 共有(2,)m m m *≥∈N 项,其首项与公比均为2,在数列{}n a 的每相邻两项i a 与1i a +之间插入i 个*(1)()i i b i -∈N 后,得到一个新的数列{}n c .求数列{}n c 中所有项的和; (3)如果存在n *∈N ,使不等式 1111(1)n n n n b n b b b λ+++≤+≤+成立,求实数λ的范围.6、(浦东新区2015届高三二模)记无穷数列{}n a 的前n 项12,,,n a a a 的最大项为n A ,第n 项之后的各项12,,n n a a ++ 的最小项为n B ,令n n n b A B =-.(1)若数列{}n a 的通项公式为2276n a n n =-+,写出12b b 、,并求数列{}n b 的通项公式; (2)若数列{}n b 的通项公式为12n b n =-,判断{}1n n a a +-是否等差数列,若是,求出公差;若不是,请说明理由;(3)若{}n b 为公差大于零的等差数列,求证:{}1n n a a +-是等差数列.7、(普陀区2015届高三二模)已知数列{}n a 的前n 项和为n S ,且0n a >,()*1N 4nn n a S n ⎛⎫⋅=∈ ⎪⎝⎭(1)若()21log n n n b S a =+⋅,求数列{}n b 的前n 项和n T ; (2)若02n πθ<<,2tan n n n a θ⋅=,求证:数列{}n θ为等比数列,并求出其通项公式;(3)记12311112222n n c a a a a =-+-+-++- ,若对任意的*N n ∈,n c m ≥恒成立,求实数m 的取值范围.8、(长宁、嘉定区2015届高三二模)已知数列}{n a 中,31=a ,52=a ,}{n a 的前n 项和为n S ,且满足11222---+=+n n n n S S S (3≥n ).(1)试求数列{}n a 的通项公式;(2)令112+-⋅=n n n n a a b ,n T 是数列}{n b 的前n 项和,证明:61<n T ;(3)证明:对任意给定的⎪⎭⎫⎝⎛∈61,0m ,均存在*∈N 0n ,使得当0n n ≥时,(2)中的mT n >恒成立.9、(宝山区2015高三上期末)设数列{}n a 的首项1a 为常数,且132(*)n n n a a n N +=-∈.(1)证明:35n n a ⎧⎫-⎨⎬⎩⎭是等比数列;(2)若132a =,{}n a 中是否存在连续三项成等差数列?若存在,写出这三项,若不存在说明理由. (3)若{}n a 是递增数列,求1a 的取值范围.10、(崇明县2015高三上期末)已知等差数列{}n a 满足3577,26a a a =+=. (1)求{}n a 的通项公式;(2)若222na n m +=,数列{}nb 满足关系式11,1,,2,n n n b b m n -=⎧=⎨+≥⎩,求数列{}n b 的通项公式;(3)设(2)中的数列{}n b 的前n 项和n S ,对任意的正整数n ,()()()11222n n n S n n p +-⋅++++<恒成立,求实数p 的取值范围.11、(奉贤区2015高三上期末)为了加强环保建设,提高社会效益和经济效益,某市计划用若干年时间更换一万辆燃油型公交车。

每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车。

今年初投入了电力型公交车128辆,混合动力型公交车400辆,计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a 辆.设n a 、n b 分别为第n 年投入的电力型公交车、混合动力型公交车的数量,设n S 、n T 分别为n 年里投入的电力型公交车、混合动力型公交车的总数量。

相关文档
最新文档