新北师大版八年级下数学期中试题(2)
2021年(北师大版)八年级数学下册期中考试试卷(含答案)
八年级数学下册期中考试试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第三章《图形的平移和旋转》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。
在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.如图,在一块长为12m,宽为6m的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m),则空白部分表示的草地面积是()A. 70m2B. 60m2C. 48m2D. 18m22.不等式x+2≥3的解集在数轴上表示正确的是()A. B.C. D.3.以下列线段a,b,c的长为三边的三角形中,不能构成直角三角形的是()A. a=9,b=40,c=41B. a=b=5,c=5√2C. a:b:c=3:4:5D. a=11,b=12,c=154.如图,在△ABC中,AB=AC,AD是△ABC的角平分线.若AB=13,AD=12,则BC的长为()A. 5B. 10C. 20D. 245.如图,DA⊥AC,DE⊥BC.若AD=5cm,DE=5cm,∠ACD=30°,则∠DCE=()A. 30°B. 40°C. 50°D. 60°6.不等式组{x−1>0,5−x≥1的整数解共有()A. 1个B. 2个C. 3个D. 4个7.下列说法不一定成立的是()A. 若a>b,则a+c>b+cB. 若a+c>b+c,则a>bC. 若a>b,则ac2>bc2D. 若ac2>bc2,则a>b8.下列图形既是轴对称图形又是中心对称图形的是()A. 等腰三角形B. 等边三角形C. 平行四边形D. 圆9.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()A. 55°B. 60°C. 65°D. 70°10.在如图所示的4组图形中,左边图形与右边图形成中心对称的有()A. 1组B. 2组C. 3组D. 4组11.已知关于x的不等式组{2x−a<1,x−2b>3的解集为−1<x<1,则(a+1)(b−1)的值为()A. 6B. −6C. 3D. −312.如图所示的仪器中,OD=OE,CD=CE.小州把这个仪器往直线l上一放,使点D,E落在直线l上,作直线OC,则OC⊥l,他这样判断的理由是()A. 到一个角两边距离相等的点在这个角的平分线上B. 角平分线上的点到这个角两边的距离相等C. 到线段两端点距离相等的点在这条线段的垂直平分线上D. 线段垂直平分线上的点到线段两端点的距离相等13.如图,在平面直角坐标系中,△OAB为等边三角形,AB⊥x轴,AB=4√3,点C的坐标为(2,0).P为OB边上的一个动点,则PA+PC的最小值为()A. √13B. 2√13C. 4√13D. 1214.在市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,根据图象得到下列结论,你认为正确的结论是()①这次比赛的全程是500米②乙队先到达终点③比赛中两队从出发到1.1分钟时间段,乙队的速度比甲队的速度快④乙与甲相遇时乙的速度是375米/分钟⑤在1.8分钟时,乙队追上了甲队A. ①③④B. ①②⑤C. ①②④D. ①②③④⑤15. 如图,在正方形ABCD 中,AB =3,点M 在CD 的边上,且DM =1,△AEM 与△ADM 关于AM 所在的直线对称,将△ADM 按顺时针方向绕点A 旋转90°得到△ABF ,连接EF ,则线段EF 的长为( )A. 3B. 2√3C. √13D. √15 卷Ⅱ 二、填空题(本大题共5小题,共25.0分)16. 根据平移的知识可得图中的封闭图形的周长(图中所有的角都是直角)为______.17. 已知x −y =3,若y <1,则x 的取值范围是 .18. 如图,这是某超市自动扶梯的示意图,大厅两层之间的距离ℎ=6.5米,自动扶梯的倾角为30°.若自动扶梯运行速度v =0.5米/秒,则顾客乘自动扶梯上一层楼的时间为 秒.19. 当k 时,代数式23(k −1)的值不小于代数式1−5k−16的值.20. 如图,线段AB 和CD 关于点O 中心对称.若∠B =40°,则∠D 的度数为 .三、解答题(本大题共7小题,共80.0分)21. (8分)(1)解不等式0.2x 0.3−6−7x 3≤1(2) 解不等式组{12x >13x x+43>3x−72−122. (8分)如图,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一条直线上,连接BE .(1)求证:AD=BE;(2)若∠CAE=15°,AD=5,求AB的长.23.(10分)如图,在△ABC中,AF⊥BC于点F.将△ABC绕点A按顺时针旋转一定角度得到△ADE,点B的对应点D恰好落在BC边上.(1)若∠B=50°,求∠DAF的度数;(2)若∠E=∠CAD,求证:AD=CD.24.(12分)如图,在正方形网格中,△ABC的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图①中,作△ABC关于点O对称的△A′B′C′;(2)在图②中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.25.(12分)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?26.(14分)如图,在△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.27.(16分)已知∠AOB=30°,H为射线OA上一定点,OH=√3+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)求证:∠OMP=∠OPN;(2)当OP=2时,点M关于点H的对称点为Q,连接QP.①用量角器和直尺以图1中OP的长为2,画出一个尽可能准确的图形。
2019年北师大版八年级数学下册期中测试卷(含答案)
2018-2019学年八年级(下)期中数学试卷一、选择题:每题3分,共45分。
在每小题的四个选项中,只有一项是符合题目要求的,把正确答案的代号涂在答题卡上。
1.如果a>b,那么下列各式中正确的是()A.a﹣2<b﹣2B.<C.﹣2a<﹣2b D.﹣a>﹣b2.下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个3.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0B.a<0C.a>﹣1D.a<﹣14.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10B.8C.10D.6或125.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC 于点E,则PD+PE的长是()A.4.8B.4.8或3.8C.3.8D.56.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB 于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm7.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm8.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④9.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处10.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°11.已知不等式组的解集为﹣1<x<1,则(a+1)(b﹣1)值为()A.6B.﹣6C.3D.﹣312.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B.4C.D.513.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到的△O′A′B′,点A的对应点A′在直线y=x上,则点B与其对应点B′间的距离为()A.B.3C.4D.514.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC 于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC :S△ABC=1:3.A.1B.2C.3D.415.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为()A.(60,0)B.(72,0)C.(67,)D.(79,)二、填空题:每题3分,共18分,将答案填在题的横线上16.在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是.17.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A落在CB的延长线上的点E处,则∠BDC的度数为度.18.已知等腰△OPQ的顶点P的坐标为(4,3),O为坐标原点,腰长OP=5,点Q位于y轴正半轴上,则点Q的坐标为.19.初三的几位同学拍了一张合影作为留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为.20.如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为10cm,那么△ABC 的周长为cm.21.如图,边长为1的等边△ABO在平面直角坐标系的位置如图所示,点O为坐标原点,点A在x 轴上,以点O为旋转中心,将△ABO按逆时针方向旋转60°,得到△OA′B′,则点A′的坐标为.三、解答题:共7小题,满分57分,解答应写出文字说明过程或演算步骤。
北师大八年级数学下册期中测试试卷(附含答案)
北师大八年级数学下册期中测试试卷(附含答案)(本试卷满分120分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本大题共10小题,每小题3分,共30分) 1.下列运动形式属于旋转的是( )A .飞驰的动车B .匀速转动的摩天轮C .运动员投掷标枪D .乘坐升降电梯2.下列绿色能源图标中既是轴对称图形又是中心对称图形的是( )A B C D3.用反证法证明命题“若|a|<3,则a 2<9”时,应先假设( )A .a >3B .a≥3C .a 2≥9D .a 2>94.如图1,在等边三角形ABC 中,AB=4,D 是边BC 上一点,且∠BAD=30°,则CD 的长为( )A .1B .23C .2D .3① ②图1 图25.已知△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB ,F 为线段AC 上一点,且∠DFA =80°,则( )A.DE <DFB.DE >DFC.DE =DFD.不能确定DE ,DF 大小关系6.不等式组⎩⎨⎧+≤+-4332,1<2x x x 的解集在数轴上表示正确的是()A BC D7. 已知图2-②是由图2-①经过平移得到的,图2-②还可以看作是由图2-①经过怎样的变换得到的?现给出两种变换方式:①2次旋转;②2次轴对称.下面说法正确的是( )A .①②都不可行B .①②都可行C .只有①可行D .只有②可行8.某种商品的进价为1000元,商场将商品进价涨价35%后标价出售,后来由于该商品积压较多,商场准备进行打折销售,但要保证所获利润不低于8%,则至多可打( )A .9折B .8折C .7折D .6折 9.一次函数y =kx 和y =-x +3的图象如图3所示,则关于x 的不等式组kx <-x +3<3的解集是( ) A .1<x <3 B .0<x <2C .0<x <3D .0<x <1图3 图4 10.如图4,在△ABC 中,AB =AC ,∠A =72°,CD 是∠ACB 的平分线,点E 在AC 上,且DE ∥BC ,连接BE ,则∠DEB 的度数为( )A .20°B .25°C .27°D .30°二、填空题(本大题共6小题,每小题4分,共24分)11.若等腰三角形的一个内角为40°,则该等腰三角形的顶角是 .12.如图5,点A (2,1),将线段OA 先向上平移2个单位长度,再向左平移3个单位长度,得到线段O′A′,则点A 的对应点A′的坐标是 .图5 图6 13.如图6,在△ABC 中,∠ACB =90°,AC =5 cm ,DE 垂直平分AB ,交BC 于点E .若BE =13 cm ,则EC 的长是 cm .14.若关于x 的不等式组⎩⎨⎧---3<,1<25a x x x 的无解,则a 的取值范围是 . 15.如图7,已知∠MAN =60°,点B ,E 在边AM 上,点C 在边AN 上,AB =4,AC =8,连接EC ,以点E 为圆心,CE 的长为半径画弧,交AC 于点D .若BE =6,则AD 的长为 .图7 图816.如图8,将△ABC 绕点A 逆时针旋转得到△ADE ,其中点B ,C 分别与点D ,E 对应,如果B ,D ,C 三点恰好在同一直线上,下列结论:①△ACE 是等腰三角形;②∠DAC =∠DEC ;③AD =CE ;④∠ABC =∠ACE ;⑤∠EDC =∠BAD .其中正确的是 .(填序号)三、解答题(本大题共8小题,共66分) 17.(每小题4分,共8分)解下列不等式:(1)2x+1>3(2-x ); (2)21143x x +--≤. 18.(6分)解不等式组⎪⎩⎪⎨⎧-+≥--,1>321,1)1(3x x x x 并把解集在数轴上表示出来.19.(7分)如图9,在△ABC 中,AB=AC ,∠BAC=120°,点D ,E 在BC 上,AD ⊥AC ,AE ⊥AB . 求证:△AED 为等边三角形.图920.(7分)如图10,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC 的三个顶点A (5,2),B (5,5),C (1,1)均在格点上.(1)请画出与△ABC 关于x 轴对称的△A 1B 1C 1,并写出点B 1的坐标;(2)将△ABC 绕点O 逆时针旋转90°后得到的△A 2B 2C 2,请画出△A 2B 2C 2,并写出点A 2的坐标. E BD C NMA图1021.(8分)小明和同学想利用暑假去植物园参加青少年社会实践项目,到植物园了解那里的土壤、水系、植被,以及与之依存的昆虫世界.小明在网上了解到该植物园的票价是每人10元,20人及以上按团体票,可8折优惠.(1)如果有18人去植物园,请通过计算说明,小明怎样购票更省钱?(2)小明现有500元的活动经费,且每人往返车费共3元,则至多可以去多少人?22.(8分)如图11,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE,连接AE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC的周长为14 cm,AC=6 cm,求DC的长.图1123.(10分)如图12,在△ABC中,∠ACB=90°,D是AB上一点,且BD=AD=CD,过点B作BE⊥CD,分别交AC,CD于点E,F.(1)求证:∠A=∠EBC;(2)如果AC=2BC,请猜想BE和BD的数量关系,并证明你的猜想.图1224.(12分)【问题原型】如图13-①,在等腰直角三角形ABC 中,∠ACB =90°,BC =8.将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,过点D 作△BCD 的BC 边上的高DE ,易证△ABC ≌△BDE ,从而得到△BCD 的面积为 ;【初步探究】如图13-②,在Rt △ABC 中,∠ACB =90°,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD .用含a 的代数式表示△BCD 的面积,并说明理由;【简单应用】如图13-③,在等腰三角形ABC 中,AB =AC ,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,求△BCD 的面积(用含a 的代数式表示).① ② ③图13参考答案三、17.(1)x >1.(2)x ≥-2. 18.解:⎪⎩⎪⎨⎧-+≥--,1>321,1)1(3x x x x 解不等式①,得x ≤1.解不等式②,得x <4.所以不等式组的解集为 x ≤1.解集在数轴上表示略.① ② 答案速览 一、1.B 2.B 3.C 4.C 5.A 6.B 7.B 8.B 9.D 10.C 二、11.40°或100° 12.(-1,3) 13.12 14.a ≤-1 15.2 16.①②④⑤19.证明:因为AB=AC ,∠BAC=120°,所以∠B=∠C=21(180°-∠BAC )=30°. 因为AD ⊥AC ,AE ⊥AB ,所以∠EAB=∠DAC=90°.所以∠AEB=90°-∠B=60°,∠ADC=90°-∠C=60°.所以∠DAE=180°-∠AEB-∠ADC=60°.所以∠ADE=∠AED=∠DAE=60°.所以△AED 为等边三角形. 20.解:(1)如图1,△A 1B 1C 1为所求作,点B 1的坐标为(5,-5).(2)如图1,△A 2B 2C 2为所求作,点A 2的坐标为(-2,5).图121.解:(1)因为10×18=180(元),10×0.8×20=160(元),所以小明购团体票更省钱;(2)设可以去m 人,依题意,得(10×0.8+3)m ≤500,解得m ≤45. 因为m 为正整数,所以m 的最大值为45.答:至多可以去45人.22.解:(1)因为AD ⊥BC ,BD =DE ,所以AD 是BE 的垂直平分线,所以AB =AE . 因为∠BAE =40°,所以∠B =∠AEB =(180°-∠BAE )=70°.所以∠C +∠EAC =∠AEB =70°.因为EF 垂直平分AC ,所以EA =EC .所以∠C =∠EAC =35°.所以∠C 的度数为35°.(2)因为△ABC 的周长为14 cm ,AC =6 cm所以AB +BC =14-6=8(cm ).所以AB +BD +DC =8.所以AE +DE +DC =8.所以EC +DE +DC =8.所以2DC =8.所以DC =4.所以DC 的长为4.23.(1)证明:因为BE ⊥CD ,所以∠BFC =90°.所以∠EBC +∠BCF =90°.因为∠ACB =∠BCF +∠ACD =90°,所以∠EBC =∠ACD .因为AD =CD ,所以∠A =∠ACD .所以∠A =∠EBC .(2)解:BE =BD .证明:如图2,过点D 作DG ⊥AC 于点G .因为DA =DC ,DG ⊥AC ,所以AC =2CG .因为AC =2BC ,所以CG =BC .因为∠DGC =90°,∠ECB =90°,所以∠DGC =∠ECB .在△DGC 和△ECB 中,∠DGC =∠ECB ,CG =BC ,∠DCG =∠EBC ,所以△DCG ≌△EBC . 所以CD =BE .因为BD =CD ,所以BE =BD .24.解:【问题原型】由作图可知所以∠BED =∠ACB =90°.因为AB 绕点B 顺时针旋转90°得到BD ,所以AB =BD ,∠ABD =90°.所以∠ABC +∠DBE =90°.因为∠A +∠ABC =90°,所以∠A =∠DBE .在△ABC 和△BDE 中,∠ACB =∠BED ,∠A =∠DBE ,AB=BD ,所以△ABC ≌△BDE . 所以BC =DE =8.所以S △BCD =21BC •DE =32. 【初步探究】△BCD 的面积为21a 2.理由: 如图3,过点D 作BC 的垂线,与CB 的延长线交于点E .所以∠BED =∠ACB =90°.因为线段AB 绕点B 顺时针旋转90°得到线段BD ,所以AB =BD ,∠ABD =90°.所以∠ABC +∠DBE =90°.因为∠A +∠ABC =90°,所以∠A =∠DBE .在△ABC 和△BDE 中,∠ACB =∠BED ,∠A =∠DBE ,AB=BD ,所以△ABC ≌△BDE . 所以BC =DE =a .所以S △BCD =21BC •DE =21a 2.图3 图4【简单应用】如图4,过点A 作AF ⊥BC 于点F ,过点D 作DE ⊥BC ,交CB 的延长线于点E . 所以∠AFB =∠E =90°,BF =21BC =21a . 所以∠F AB +∠ABF =90°.因为∠ABD =90°,所以∠ABF +∠DBE =90°.所以∠F AB =∠EBD .图2因为线段BD 是由线段AB 旋转得到的,所以AB =BD .在△AFB 和△BED 中,∠AFB =∠E ,∠F AB =∠EBD ,AB=BD ,所以△AFB ≌△BED . 所以BF =DE =21a . 所以S △BCD =21BC •DE =21•a •21a =41a 2.。
北师大版八年级下册数学期中考试试题(含答案)
北师大版八年级下册数学期中考试试卷一、单选题1.下列图形既是轴对称图形又是中心对称图形的是A .B .C .D .2.若a <b ,则下列结论不一定成立的是A .11a b -<-B .22a b <C .33a b ->-D .22a b <3.在三角形内部,且到三角形三边距离相等的点是A .三角形三条中线的交点B .三角形三条高线的交点C .三角形三条角平分线的交点D .三角形三边垂直平分线的交点4.不等式组2131x x +≥-⎧⎨<⎩的解集在数轴上表示正确的是A .B .C .D .5.用反证法证明命题:“已知△ABC ,AB =AC ,求证:∠B <90°.”第一步应先假设A .∠B≥90°B .∠B >90°C .∠B <90°D .AB≠AC6.在△ABC 中,若∠A ∶∠B ∶∠C =3∶1∶2,则其各角所对边长之比等于A 1∶2B .1∶2C .12D .2∶17.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE8.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是().A.B.C.D.9.不等式组32210x ax+>⎧⎨-≤⎩,有解,则a的取值范围是A.a≤3B.a<3.5C.a<4D.a≤510.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为A.4B.6C.D.8二、填空题11.不等式3x+2<8的解集是_____.12.“全等三角形的对应边相等”的逆命题是:__.13.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,则x<________.14.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B 关于原点O对称,则ab=_____.15.如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于点D、E,若∠DAE=50°,则∠BAC=____.16.若关于x ,y 的二元一次方程组3+1+33x y a x y =⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.17.安排学生住宿,若每间住4人,则还有15人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为___________18.如图,直线y =-x +m 与y =nx +b (n≠0)的交点的横坐标为-2,有下列结论:①当x =-2时,两个函数的值相等;②b =4n ;③关于x 的不等式nx +b >0的解集为x >-4;④x >-2是关于x 的不等式-x +m >nx +b 的解集,其中正确结论的序号是____.(把所有正确结论的序号都填在横线上)三、解答题19.(1)解不等式4x 32x 1-<+,并把解集表示在数轴上.(2)解不等式组()322442x x x x +>⎧⎨--≥⎩,并写出它的整数解.20.如图,在平面直角坐标系中, ABC 的三个顶点坐标分别为A(1,1),B(4,0),C(4,4)(1)图中线段AB 的长度为________;(2)按下列要求作图:①将 ABC 向左平移4个单位,得到 111A B C ;②将 111A B C 绕点1B 逆时针旋转90º,得到 222A B C21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.23.已知关于x,y的不等式组523414x k xx x+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩,(1)若该不等式组的解为233x≤≤,求k的值;(2)若该不等式组的解中整数只有1和2,求k的取值范围.24.甲、乙两家超市以相同的价格出售同样的商品,五一期间,为了吸引顾客,各自推出了不同的优惠方案,在甲超市累计购买商品超出了400元后,超过部分按原价七折优惠;在乙超市购买商品只按原价的八折优惠;设顾客累计购物x元(x>400)在甲,乙两个超市所支付的费用分别为y1元,y2元.(1)写出y1,y2与x之间的关系式.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.25.如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°△COD固定不动,△AOB绕着O点逆时针旋转α°(0°<α<180°)(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,则∠AOC=________;(2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;(3)若90°<α<180°,问题(2)中的结论还成立吗?并说明理由;参考答案1.D2.D3.C4.D5.A6.D7.C8.A9.C10.B11.x<2【解析】利用不等式的基本性质,将两边不等式同时减去2再除以3即可.【详解】解:不等式3x+2<8,移项得,3x<6,系数化为1得,x<2,故答案为:x<2.12.三边对应相等的三角形是全等三角形【详解】命题“全等三角形的对应边相等”的题设是:如果两个三角形是全等三角形,结论是:这两个三角形的对应边相等则此命题的逆命题是:三边对应相等的三角形是全等三角形故答案为:三边对应相等的三角形是全等三角形.13.1【详解】解: 由一次函数y=kx+b的图象可知,当x<1时,函数的图象在x轴上方,当y>0时,x<1.故答案为:1.14.12【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=12,故答案为12.15.115°.【详解】解:∵DM,EN分别垂直平分AB和AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∠DAB+∠B+∠EAC+∠C+∠DAE=180°,∵∠DAE=50°,∴2(∠B+∠C)=130°,解得,∠B+∠C=65°,∴∠BAC=115°.故答案为115°.16.a<4【详解】解:31(1){33(2)x y ax y+=++=将(1)+(2)得444x y a+=+,则4144a ax y++==+<2∴a<4.17.8、9、10【解析】若每间住4人,则余15人无住处,设有x间宿舍,则有学生4x+15人;若每间住6人,则恰有一间不空也不满,说明人数应在1和5之间.即学生人数与(x-1)间宿舍住的人数的差,应该大于或等于1,并且小于或等于5.根据这个不等关系就可以列出不等式组.【详解】设有x间宿舍,则有学生4x+15人,∴第n间宿舍有4x+15-6(x-1)=21-2x,∵第n间宿舍不空也不满,∴1≤21-2x≤5,解得:8≤x≤10,∴宿舍的房间数量可能为8、9、10,故答案为8、9、10.18.①②③【解析】①由两直线交点的横坐标为-2,即可得出当x=-2时,两个函数的值相等,结论①正确;②由点(-4,0)在直线y=nx+b 上,可得出b=4n ,结论②正确;③当x >-4时,直线y=nx+b 在x 轴上方,由此可得出关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④观察函数图象,根据函数图象的上下位置关系可得出x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.综上所述即可得出结论.【详解】解:①∵直线y=-x+m 与y=nx+b (n≠0)的交点的横坐标为-2,∴当x=-2时,两个函数的值相等,结论①正确;②∵点(-4,0)在直线y=nx+b 上,∴-4n+b=0,∴b=4n ,结论②正确;③∵当x >-4时,直线y=nx+b 在x 轴上方,∴关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④∵当x >-2时,直线y=nx+b 在直线y=-x+m 的上方,∴x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.故答案为:①②③.19.(1)2x <,数轴见解析;(2)13x -< ,整数解为0,1,2,3【解析】(1)先求出不等式的解集,再在数轴上表示出来即可.(2)先求出每个不等式的解集,再求出不等式组的解集,即可求得整数解.【详解】解:(1)移项得,4213x x -<+,合并同类项得,24x <,系数化为1得,2x <.在数轴上表示为:(2)()322442x x x x +>⎧⎪⎨--⎪⎩①② ,解①得:1x >-,解②得:3x ,故不等式的解集为:13x -< ,整数解为0,1,2,3.20.(1;(2)①见解析,②见解析【解析】(1)根据两点间距离公式求解即可得到AB 的值;(2)①根据平移的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;②分别作出A 1,C 1的对应点A 2,C 2即可.【详解】解:(1)∵A(1,1),B(4,0)∴AB ==;(2)作图如下:21.见解析.【详解】解:如图所示,∠AOB 的平分线与线段CD 的垂直平分线的交点P 就是所求的点:22.证明见解析.【详解】试题分析:直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE,即可得出答案.试题解析:∵DE∥AC,∴∠1=∠3,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠3,∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.考点:等腰三角形的判定;平行线的性质.23.(1)k=﹣4;(2)﹣4<k≤﹣1.【详解】分析:(1)求出不等式组的解集,把问题转化为方程即可解决问题;(2)根据题意把问题转化为不等式组解决;详解:(1)523414x k xx x①②+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩由①得:53k x-≤,由②得:23 x≥∵不等式组的解集为23 3x≤≤,∴533k -=,解得k=−4(2)由题意5233k -≤<,解得4 1.k -<≤-点睛:考查一元一次不等式组的整数解,解一元一次不等式组,掌握不等式组解集的求法是解题的关键.24.(1)y 1=0.7x+120;y 2=0.8x ;(2)当x=1200时,甲乙两家超市购买一样优惠;当400<x<1200时,乙超市购买更优惠;当x>1200时,甲超市购买更优惠.理由见解析.【分析】(1)根据题意写出y 1,y 2与x 之间的关系式;(2)分y 1=y 2,y 1>y 2,y 1<y 2三种情况列出方程或不等式,解方程或不等式即可.【详解】解:(1)y 1=400+(x-400)×0.7=0.7x+120,y 2=0.8x ;(2)由y 1=y 2,即0.7x+120=0.8x ,解得x=1200,由y 1>y 2,即0.7x+120>0.8x ,解得x <1200,由y 1<y 2得,0.7x+120<0.8x ,解得x >1200,因为x >400,所以,当x=1200时,甲,乙哪个超市购买所支付的费用相同,当400<x <1200时,乙超市购买更合算,当x >1200时,甲超市购买购买更合算.25.(1)120°;(2)∠BOD+∠AOC=180°,理由略.【详解】解:(1)如图2中,∵∠BOD=60°,∠DOC=∠AOB=90°,∴∠AOD=∠BOC=30°,∴∠AOC=∠AOD+∠DOC=30°+90°=120°,故答案为120°.(2)结论:即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.理由:如图2中,若0°<α<90°,∵∠AOD=α,∴∠AOC=∠AOD+∠DOC=90°+α,∠BOD=∠DOC-∠AOD=90°-α,∴∠BOD+∠AOC=90°+α+90°-α=180°,即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.(3)结论仍然成立.理由:如图3中,∵∠AOB=∠COD=90°,又∵∠BOD+∠AOC+∠AOB+∠COD=360°,∴∠BOD+∠AOC=360°-∠AOB-∠COD=360°-90°-90°=180°.。
北师大版八年级下册数学期中测试题含答案及全册单元测试题(含答案)
北师大版八年级数学下册期中测试题班级姓名学号得分一、选择题1.无论取何值时,下列分式一定有意义的是()A.B.C.D.2.下列因式分解正确的是()A.B.C.D.3.实数a、b、c在数轴上对应的点位置如图所示,下列式子正确的是()①b+c>0 ②a+b>a+c ③bc<ac ④ab>acA.1个B.2个C.3个D.4个4.下列运算正确的是()A. B.C. D.5、如果把分式中的 x,y都扩大7倍,那么分式的值()。
A、扩大7倍B、扩大14倍C、扩大21倍D、不变6.关的分式方程,下列说法正确的是()A.<一5时,方程的解为负数B.方程的解是x=+5C.>一5时,方科的解是正数D.无法确定7.将不等式的解集在数轴上表示出米,正确的是()a221aa+21aa+112+-aa112+-aa()222baba-=-()22224yxyx+=+()()aaa21212822-+=-()()yxyxyx44422-+=-abab11+-=+-babababa321053.02.05.0-+=-+12316+=+aaxyxyyxyx+-=+-yxx25-x15=-xmm mm⎪⎩⎪⎨⎧-≤-<+xxxx238211488.“5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修x 米,所列方程正确的是( ) A .B .C .D .9.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤.价格为每斤y 元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因是( ) A .<B .>C .≤D .≥10.在盒子里放有三张分别写有整式+1、+2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( ). A .B .C .D .11.关的不等式组有四个整数解,则的取值范同是( )A .B .C .D . 二、填空题12、 一项工程,A 单独做m 小时完成。
北师大版初中数学八年级下册期中试卷(2018-2019学年山东省青岛市市南区东片联考
2018-2019学年山东省青岛市市南区东片联考八年级(下)期中数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)若m>n,则下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.﹣>﹣D.m2>n22.(3分)下列银行标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)如图所示,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得到△A′B′O,则点B′的坐标为()A.(2,1)B.(1,2)C.(2,﹣1)D.(2,0)4.(3分)不等式组的解集在数轴上可表示为()A.B.C.D.5.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个6.(3分)如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处7.(3分)如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D.如果EC=4cm,则AE等于()A.10cm B.8cm C.6cm D.5cm8.(3分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x>0的解集为()A.x<﹣1B.x>﹣1C.x>0D.﹣1<x<0二、填空题(每题3分,满分24分,将答案填在答题纸上)9.(3分)如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转次,每次旋转度形成的.10.(3分)如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(﹣4,2)、(﹣2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是.11.(3分)如图,已知一次函数y=kx+b的图象与x轴交于点(3,0),与y轴交于点(0,2),不等式kx+b≥2解集是.12.(3分)已知关于x的不等式组无解,则a的取值范围是.13.(3分)如图,在△ABC中,AB=6,BC=9,∠B=60°,将△ABC沿射线BC的方向平移3个单位后,得到△A'B'C',连接A'C.则△A'B'C的周长为.14.(3分)不等式组有5个整数解,则a的取范围是15.(3分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积为50和39,则△EDF的面积为.16.(3分)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是.三、作图题(本题满分0分)用圆规、直尺作图,不写作法,但要保留作图痕迹.17.已知线段a,求作△ABC,使AB=BC=AC=a.四、解答题(共7小题)18.解不等式(组)(1)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.(2),并写出不等式组的整数解.19.如图所示∠A=∠D=90°,AB=DC,点E,F在BC上且BE=CF.(1)求证:AF=DE.(2)若PO⊥EF,求证:OP平分∠EOF.20.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E.DF⊥AC 于点F.求证:AD是BC的垂直平分线.21.如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形,即△A1B1C1和△A2B2C2.(1)请你指出在方格纸内如何运用平移、旋转变换,将△A1B1C1重合到△A2B2C2上;(2)在方格纸中将△A1B1C1经过怎样的变换后可以与△A2B2C2成中心对称图形,画出变换后的三角形并标出对称中心.22.某餐厅计划购买12张餐桌和一批椅子(不少于12把),现从甲、乙两商场了解到同一型号的餐桌报价都为每张200元,餐椅报价都为每把50元.甲商场规定:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八五折销售,那么,什么情况下到甲商场购买更优惠.23.某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)75每台日产量(个)10060(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?24.问题的提出:如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和P A+PB+PC的值为最小?问题的转化:把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,这样就把确定P A+PB+PC 的最小值的问题转化成确定BP+PP′+P′C′的最小值的问题了,请你利用图1证明:P A+PB+PC=BP+PP′+P′C′.问题的解决:当点P到锐角△ABC的三顶点的距离之和P A+PB+PC的值为最小时,请你用一定的数量关系刻画此时的点P的位置.问题的延伸:如图2是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.2018-2019学年山东省青岛市市南区东片联考八年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)若m>n,则下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.﹣>﹣D.m2>n2【分析】根据不等式的性质,可得答案.【解答】解:A、两边都加2,不等号的方向不变,故A成立,B、两边都乘2,不等号的方向不变,故B成立;C、两边都除以﹣2,不等号的方向改变,故C不成立;D、当m>n>1时,m2>n2成立,当0<m<1,n<﹣1时,m2<n2,故D不一定成立,故选:D.【点评】本题考查了不等式的性质,利用不等式的性质是解题关键.2.(3分)下列银行标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,不是中心对称图形,故此选项错误;故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)如图所示,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得到△A′B′O,则点B′的坐标为()A.(2,1)B.(1,2)C.(2,﹣1)D.(2,0)【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B′的坐标即可.【解答】解:△A′B′O如图所示,点B′(2,1).故选A.【点评】本题考查了坐标与图形变化,是基础题,熟练掌握网格结构,作出图形是解题的关键.4.(3分)不等式组的解集在数轴上可表示为()A.B.C.D.【分析】本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围,它们相交的地方就是不等式组的解集.【解答】解:不等式可化为:在数轴上可表示为:故选:C.【点评】本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个【分析】设买篮球m个,则买足球(50﹣m)个,根据购买足球和篮球的总费用不超过3000元建立不等式求出其解即可.【解答】解:设买篮球m个,则买足球(50﹣m)个,根据题意得:80m+50(50﹣m)≤3000,解得:m≤16,∵m为整数,∴m最大取16,∴最多可以买16个篮球.故选:A.【点评】本题考查了列一元一次不等式解实际问题的运用,解答本题时找到建立不等式的不等关系是解答本题的关键.6.(3分)如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处【分析】根据角平分线上的点到角的两边的距离相等解答即可.【解答】解:根据角平分线的性质,集贸市场应建在∠A、∠B两内角平分线的交点处.故选:C.【点评】本题主要考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.7.(3分)如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D.如果EC=4cm,则AE等于()A.10cm B.8cm C.6cm D.5cm【分析】根据线段垂直平分线的性质得到AE=BE,推出∠A=∠1=∠2=30°,求出DE=CE=4cm,根据含30度角的直角三角形性质求出即可.【解答】解:∵DE垂直平分AB,∴AE=BE,∴∠2=∠A,∵∠1=∠2,∴∠A=∠1=∠2,∵∠C=90°,∴∠A=∠1=∠2=30°,∵∠1=∠2,ED⊥AB,∠C=90°,∴CE=DE=4cm,在Rt△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=8cm,故选:B.【点评】本题考查了垂直平分线性质,角平分线性质,等腰三角形性质,含30度角的直角三角形性质的应用,关键是求出∠A=30°和得出DE的长.8.(3分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x>0的解集为()A.x<﹣1B.x>﹣1C.x>0D.﹣1<x<0【分析】利用函数图象,写出在x轴上方,直线l1在直线l2上方所对应的自变量的范围即可.【解答】解:结合图象,当﹣1<x<0时,k1x+b>k2x>0,所以k1x+b>k2x>0的解集为﹣1<x<0.故选:D.【点评】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y =kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合,运用数形结合的思想解决此类问题.二、填空题(每题3分,满分24分,将答案填在答题纸上)9.(3分)如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转7次,每次旋转45度形成的.【分析】利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案,进而判断出基本图形和旋转次数与角度.【解答】解:如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转7次,每次旋转45度形成的,故答案为:7;45.【点评】本题主要考查利用旋转设计图案,关键是掌握把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.10.(3分)如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(﹣4,2)、(﹣2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是(5,4).【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:∵两眼间的距离为2,且平行于x轴,∴右图案中右眼的横坐标为(3+2).则右图案中右眼的坐标是(5,4).故答案为:(5,4).【点评】此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11.(3分)如图,已知一次函数y=kx+b的图象与x轴交于点(3,0),与y轴交于点(0,2),不等式kx+b≥2解集是x≤0.【分析】由一次函数y=kx+b的图象过点(0,2),且y随x的增大而减小,从而得出不等式kx+b≥2的解集.【解答】解:由一次函数的图象可知,此函数是减函数,即y随x的增大而减小,∵一次函数y=kx+b的图象与y轴交于点(0,2),∴当x≤0时,有kx+b≥2.故答案为x≤0【点评】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.12.(3分)已知关于x的不等式组无解,则a的取值范围是a≥10.【分析】根据不等式组无解,可得出a≥10.【解答】解:∵关于x的不等式组无解,∴根据大大小小找不到(无解)的法则,可得出a≥10.故答案为a≥10.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13.(3分)如图,在△ABC中,AB=6,BC=9,∠B=60°,将△ABC沿射线BC的方向平移3个单位后,得到△A'B'C',连接A'C.则△A'B'C的周长为18.【分析】根据平移性质,判定△A′B′C为等边三角形,然后求解.【解答】解:由题意,得BB′=3,∴B′C=BC﹣BB′=6.由平移性质,可知A′B′=AB=6,∠A′B′C=∠B=60°,∴A′B′=B′C且∠A′B′C=60°,∴△A′B′C为等边三角形,∴△A′B′C的周长=3A′B′=18.故答案为:18.【点评】本题考查的是平移的性质,熟知图形平移后新图形与原图形的形状和大小完全相同是解答此题的关键.14.(3分)不等式组有5个整数解,则a的取范围是﹣4<a≤﹣3【分析】首先解不等式组求得解集,然后根据不等式组只有两个整数解,确定整数解,则可以得到a的范围.【解答】解:由不等式x﹣a≥0,得:x≥a,∵不等式组有5个整数解,∴这5个整数解为1、0、﹣1、﹣2、﹣3,则﹣4<a≤﹣3,故答案为:﹣4<a≤﹣3.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.(3分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积为50和39,则△EDF的面积为 5.5.【分析】作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.【解答】解:作DM=DE交AC于M,作DN⊥AC,∵DE=DG,DM=DE,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,∴△DEF≌△DNM(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△DEF=S△MDG==5.5故答案为:5.5.【点评】本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.16.(3分)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).【分析】首先根据△OA1B1是边长为2的等边三角形,可得A1的坐标为(1,),B1的坐标为(2,0);然后根据中心对称的性质,分别求出点A2、A3、A4的坐标各是多少;最后总结出A n的坐标的规律,求出A2n+1的坐标是多少即可.【解答】解:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,),B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2﹣1=3,2×0﹣=﹣,∴点A2的坐标是(3,﹣),∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵2×4﹣3=5,2×0﹣(﹣)=,∴点A3的坐标是(5,),∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6﹣5=7,2×0﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×4﹣1,…,∴A n的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n为奇数时,A n的纵坐标是,当n为偶数时,A n的纵坐标是﹣,∴顶点A2n+1的纵坐标是,∴△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).故答案为:(4n+1,).【点评】此题主要考查了坐标与图形变化﹣旋转问题,要熟练掌握,解答此题的关键是分别判断出A n的横坐标、纵坐标各是多少.三、作图题(本题满分0分)用圆规、直尺作图,不写作法,但要保留作图痕迹.17.已知线段a,求作△ABC,使AB=BC=AC=a.【分析】首先作射线AO,并在AO上取线段AB=a,再分别以A、B为圆心,a为半径画弧,两弧交于点C,然后连接AC、BC,即可得到△ABC.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了复杂作图,关键是掌握做一条线段等于已知线段的方法.四、解答题(共7小题)18.解不等式(组)(1)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.(2),并写出不等式组的整数解.【分析】(1)不等式去括号、移项合并、系数化为1即可求出不等式的解集,再在数轴上表示出不等式的解集即可.(2)先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:(1)去括号,得2x+2﹣1≥3x+2,移项,得2x﹣3x≥2﹣2+1,合并同类项,得﹣x≥1,系数化为1,得x≤﹣1,这个不等式的解集在数轴上表示为:;(2)由①得x≥﹣1,由②得x<3,所以不等式组的解集是﹣1≤x<3,则整数解是﹣1,0,1,2.【点评】考查不等式(组)的解法;求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.如图所示∠A=∠D=90°,AB=DC,点E,F在BC上且BE=CF.(1)求证:AF=DE.(2)若PO⊥EF,求证:OP平分∠EOF.【分析】(1)由于△ABF与△DCE是直角三角形,根据直角三角形全等的判定和性质即可证明;(2)先根据三角形全等的性质得出∠AFB=∠DEC,再根据等腰三角形的性质得出结论.【解答】证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形,在Rt△ABF和Rt△DCE中,,∴Rt△ABF≌Rt△DCE(HL),∴AF=DE;(2)∵Rt△ABF≌Rt△DCE(已证),∴∠AFB=∠DEC,∴OE=OF,∵OP⊥EF,∴OP平分∠EOF.【点评】本题主要考查了直角三角形全等的判定和性质及等腰三角形的性质,解题关键是由BE=CF通过等量代换得到BF=CE.20.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E.DF⊥AC 于点F.求证:AD是BC的垂直平分线.【分析】证明Rt△AED≌Rt△AFD(HL),得出∠ADE=∠ADF,证明Rt△BED≌△Rt △CFD(HL),得出∠BDE=∠CDF,则可得出结论.【解答】证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△AED和△RtAFD中,,∴Rt△AED≌Rt△AFD(HL),∴∠ADE=∠ADF,∵点D是BC的中点,∴BD=CD,在Rt△BED和Rt△CFD中,,∴Rt△BED≌△Rt△CFD(HL),∴∠BDE=∠CDF,∴∠ADB=∠ADC,即AD⊥BC,∴AD是BC的垂直平分线.【点评】本题考查全等三角形的判定与性质、角平分线的性质、垂直平分线的判定,解答本题的关键是熟练掌握全等三角形的判定与性质.21.如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形,即△A1B1C1和△A2B2C2.(1)请你指出在方格纸内如何运用平移、旋转变换,将△A1B1C1重合到△A2B2C2上;(2)在方格纸中将△A1B1C1经过怎样的变换后可以与△A2B2C2成中心对称图形,画出变换后的三角形并标出对称中心.【分析】(1)将△A1B1C1先向上平移4个单位,再向右平移3个单位后绕点C1顺时针旋转90°即可得到△A2B2C2;(2)对称中心就是对称点连线的交点,据此即可作出.【解答】解:(1)将△A1B1C1先向上平移4个单位,再向右平移3个单位后绕点C1顺时针旋转90度即可得到△A2B2C2.(2)把△A1B1C1绕点C1逆时针旋转90度即可得到△A2B2C2成中心对称的位置,对称中心为P.【点评】本题考查的是平移变换与旋转变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.作旋转后的图形的依据是旋转的性质,基本作法是①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.中心对称是旋转180度时的特殊情况.22.某餐厅计划购买12张餐桌和一批椅子(不少于12把),现从甲、乙两商场了解到同一型号的餐桌报价都为每张200元,餐椅报价都为每把50元.甲商场规定:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八五折销售,那么,什么情况下到甲商场购买更优惠.【分析】本题中去甲商场购买所花的费用=餐桌的单价×购买的餐桌的数量+餐椅的单价×实际购买的餐椅的数量(注意要减去赠送的椅子的数量).去乙商场购买所花的费用=(购买的餐桌花的钱+购买餐椅花的钱)×8.5折.如果设餐椅的数量为x,那么可用x 表示出到甲、乙两商场购买所需要费用.然后根据“甲商场购买更优惠”,让甲的费用小于乙的费用,得出不等式求出x的取值范围,然后得出符合条件的值.【解答】解:设学校计划购买x把餐椅,到甲、乙两商场购买所需要费用分别为y甲、y,乙y甲=200×12+50(x﹣12),即:y甲=1800+50x;y乙=(200×12+50x)×85%,即y乙=2040+x;当y甲<y乙时,1800+50x<2040+x,∴x<32,又根据题意可得:x≥12,∴12≤x<32,综上所述,当购买的餐椅大于等于12少于32把时,到甲商场购买更优惠.【点评】本题考查了一元一次方程的应用和一元一次不等式的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出不等式,求出所要求的值.23.某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)75每台日产量(个)10060(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?【分析】(1)设购买甲种机器x台(x≥0),则购买乙种机器(6﹣x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x的不等式,就可以求出x的范围.(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案.【解答】解:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6﹣x)台.依题意,得7x+5×(6﹣x)≤34.解这个不等式,得x≤2,即x可取0,1,2三个值.∴该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台.方案二:购买甲种机器1台,购买乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台.(2)根据题意,100x+60(6﹣x)≥380,解之,可得:x≥,由上题解得:x≤2,即≤x≤2,∴x可取1,2两个值,即有以下两种购买方案:方案一购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;方案二购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元.∴为了节约资金应选择方案一.故应选择方案一.【点评】解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案是解决本题的关键.24.问题的提出:如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和P A+PB+PC的值为最小?问题的转化:把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,这样就把确定P A+PB+PC 的最小值的问题转化成确定BP+PP′+P′C′的最小值的问题了,请你利用图1证明:P A+PB+PC=BP+PP′+P′C′.问题的解决:当点P到锐角△ABC的三顶点的距离之和P A+PB+PC的值为最小时,请你用一定的数量关系刻画此时的点P的位置∠APB=∠APC=120°.问题的延伸:如图2是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.【分析】(1)问题的转化:根据旋转的性质证明△APP'是等边三角形,则PP'=P A,可得结论;(2)问题的解决:运用类比的思想,把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,由“问题的转化”可知:当B、P、P'、C'在同一直线上时,P A+PB+PC的值为最小,确定当:∠APB=∠APC=120°时,满足三点共线;(3)问题的延伸:如图3,作辅助线,构建直角△ABC',利用勾股定理求AC'的长,即是点P到这个三角形各顶点的距离之和的最小值.【解答】解:问题的转化:如图1,由旋转得:∠P AP'=60°,P A=P'A,∴△APP'是等边三角形,∴PP'=P A,∵PC=P'C,∴P A+PB+PC=BP+PP′+P′C′.问题的解决:满足:∠APB=∠APC=120°时,P A+PB+PC的值为最小;理由是:如图2,把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,由“问题的转化”可知:当B、P、P'、C'在同一直线上时,P A+PB+PC的值为最小,∵∠APB=120°,∠APP'=60°,∴∠APB+∠APP'=180°,∴B、P、P'在同一直线上,由旋转得:∠AP'C'=∠APC=120°,∵∠AP'P=60°,∴∠AP'C'+∠AP'P=180°,∴P、P'、C'在同一直线上,∴B、P、P'、C'在同一直线上,∴此时P A+PB+PC的值为最小,故答案为:∠APB=∠APC=120°;问题的延伸:如图3,Rt△ACB中,∵AB=2,∠ABC=30°,∴AC=1,BC=,把△BPC绕点B逆时针旋转60度得到△BP′C′,连接PP′,当A、P、P'、C'在同一直线上时,P A+PB+PC的值为最小,由旋转得:BP=BP',∠PBP'=60°,PC=P'C',BC=BC',∴△BPP′是等边三角形,∴PP'=PB,∵∠ABC=∠APB+∠CBP=∠APB+∠C'BP'=30°,∴∠ABC'=90°,由勾股定理得:AC'===,∴P A+PB+PC=P A+PP'+P'C'=AC'=,则点P到这个三角形各顶点的距离之和的最小值为.【点评】本题主要考查三角形的旋转变换的性质、勾股定理、等边三角形的判定与性质等知识点,将待求线段的和通过旋转变换转化为同一直线上的线段来求是解题的关键.。
八年级第二学期期中数学试卷含答案(共3套,北师大版)
北师大版八年级下学期数学期中试卷时间:100分钟 总分:120分一.选择题(每题4分,共40分)1.在二次根式中,x 的取值范围是( )。
A 、x <1B 、x >1C 、x ≥1D 、x ≠12.下列运算中,错误的是( )=3=C.= 16925=+= 3.x 26-是经过化简的二次根式,且与2是同类二次根式,则x 为( ) (A )、-2 (B )、2 (C )、4 (D )、-44.用配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -=B .2(2)2x += C .2(2)2x -=- D .2(2)6x -= 5. 某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为 ( ) A 、200(1+x)2=1000 B 、200+200×2x=1000 C 、200+200×3x=1000 D 、200[1+(1+x)+(1+x)2]=1000 6. 正多边形的每个内角与外角之比为3:1,则其边数为( ) A 、6 B 、7 C 、8 D 、97.a 、b 、c 分别是三角形的三边,则方程()022=++++b a cx x b a 的根的情况是( ) A .没有实数根 B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根8.如图,AD 是△ABC 边BC 上的高,有下列条件中的某一个能推出△ABC 是等腰三角形的共有( )个w W w.x K b 1. c om①∠BAD =∠ACD ②∠BAD =∠CAD , ③AB+BD =AC+CD ④AB-BD =AC-CDA 、 1个B 、 2个C 、 3个D 、4个9.已知三角形的两边长分别是4和7,第三边是方程x 2-16x +55=0的根,则第三边长是 ( )A 、5B 、11C 、5或11D 、610.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( )A.10B.54C. 10或54D.10或172 二.填空题(每题4分,共20分)11.已知52x =4x -的结果是 __________12.若一元二次方程式x 2-2x-3599=0的两根为a 、b ,且a >b ,则2a-b= __________ 13. 已知x,y 为实数且|6-3x|+(y-5)²=3x-6-23)y (x -,则x-y=__________14.有一个三角形的两边是6和10,要使这个三角形为直角三角形,则第三边的长为_____________________15.定义:如果一元二次方程:ax 2+bx +c =0(a ≠0)满足 a + b + c = 0,那么我们称这个方程为“凤凰”方程,已知ax 2+bx +c=0(a ≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是__________①.a = c ②a = b ③ b =-c ④b=-2a 三.解答题(60分) 16.(8分)计算: (1) ()()13132+- (2))21(--1-12+(π-2013)0-|3-2|17.解方程(10分)(1)22)12()3(+=-x x (2) 12211xx x +=-+18、已知关于x 的方程03522=-++p x x 的一个根是4-,求方程的另一个根和p 的值.(10分)19、阅读下面的例题: 解方程X 2-∣X ∣-2=0解:(1)当x ≥0时,原方程化为X 2-X-2=0,解得X 1=2,X 2=-1(不合题意,舍去).(2)当X ﹤0时,原方程化为X 2+X-2=0,解得X 1=1(不合题意,舍去),X 2=-2. ∴原方程的根是X 1=2,X 2=-2.请参照例题解方程X 2-∣X-1∣-1=0.20,(10分)清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S ,则第一步:6S=m =k ;第三步:分别用3、4、5乘以k ,得三边长”.(1)当面积S 等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(5分)(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.(5分)21(12分).如图:已知等腰三角形AC的底边AB=100cm,O为AB的中点,OC=100cm,一动点P 由A以2cm/s的速度向B点同时,另一动点Q由点O以3cm/s的速度沿OC方向出发。
八年级数学下册期中考试卷及答案(北师大版)
八年级数学下册期中考试卷及答案(北师大版)(满分:150分;考试时间:120分钟)一、单选题(共10题;共40分)1.(4分)下列各式中,能用平方差公式分解因式的是( )A .x 2+y 2B .x 2-y 2C .–x 2-y 2D .x-y 22.(4分)下列图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个3.(4分)如图,三条公路两两相交,现计划修建一个油库,要求油库到这三条公路的距离相等,那么选择油库的位置有( )处.A .1B .2C .3D .44.(4分)若x+a <y+a ,ax >ay ,则( )A .x >y ,a >0B .x >y ,a <0C .x <y ,a >0D .x <y ,a <05.(4分)若把分式2x yxy+ 中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍 B .不变C .缩小为原来的110D .缩小为原来的11006.(4分)如图,在▱ABCD 中,用直尺和圆规作▱BAD 的平分线AG 交BC 于点E .若BF=6,AB=5,则AE 的长为( )A .4B .6C .8D .107.(4分) 如图,函数 2y x =和 5y ax =+ 的图象交于点 (),3A m ,则不等式 25x ax <+ 的解集是 ( )A .32x <B .3x <C .32x >D .3x >8.(4分)如图,边长为5的等边三角形ABC 中,M 是高 CH 所在直线上的一个动点,连接MB ,将线段 BM 绕点B 逆时针旋转 60︒ 得到 BN ,连接 HN .则在点M 运动过程中,线段 HN 长度的最小值是( )A .54B .1C .2D .529.(4分)任何一个正整数 n 都可以进行这样的分解: n s t =⨯ ( s 、 t 是正整数,且s t ),如果 p q ⨯ 在 n 的所有这种分解中两因数之差的绝对值最小,我们就称 p q ⨯ 是 n 的最佳分解,并规定: ()pF n q=.例如18可以分解成 118⨯ , 29⨯ , 36⨯ 这三种,这时就有 31(18)62F == ,给出下列关于 ()F n 的说法: ①1(2)2F =;②1(48)3F = ;③()21n F n n n +=+ ;④若 n 是一个完全平方数,则 ()1F n = ,其中正确说法的个数是( )A .4B .3C .2D .110.(4分)如图,在▱ABCD 中,▱DAB 的平分线交CD 于点E ,交BC 的延长线于点G ,▱ABC 的平分线交CD 于点F ,交AD 的延长线于点H ,AG 与BH 交于点O ,连接BE ,下列结论错误的是( )A .BO=OHB .DF=CEC .DH=CGD .AB=AE二、填空题(共5题;共20分)11.(4分)函数 23y x =- 的自变量 x 的取值范围是 . 12.(4分)运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是 .13.(4分)一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 叠合,顶点B 、C 、D在一条直线上).将三角尺DEF 绕着点F 按顺时针方向旋转n°后(0<n <180 ),如果EF▱AB ,那么n 的值是 .14.(4分)如图,函数y =2x 和y =ax+4的图象相交于点A (n ,2),则不等式2x≥ax+4的解集为 .15.(4分)如图,A、B、C、D、E、F、G都在▱O的边上,OA=AB=BC=CD=DE=EF=FG,若▱EFG=30°,则▱O=.三、计算题(共1题;共12分)16.(12分)解下列不等式(1)(6分)4x-2+1132 55xx x>++ --(2)(6分)762 23xx->+四、解答题(共6题;共78分)17.(10分)大学生小李自主创业,春节期间购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型1012B型1523A型文具?18.(10分)如图,有一个长方形,通过不同方法计算图形的面积,验证了一个多项式的因式分解,请写出这个式子.19.(12分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元。
北师大版八年级下学期期中考试数学试卷及答案
八年级下学期期中考试数学试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第三章《图形的平移和旋转》班级姓名得分一、选择题(本大题共15小题,共45.0分)1.如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A. 6B. 5C. 4D. 3√32.如图,已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD,连接DE,则∠BDE的度数为()A. 105°B. 120°C. 135°D. 150°3.不等式x−2≥−3x−18的负整数解共有()A. 1 个B. 2个C. 3个D. 4个4.如图,一次函数y=kx+3(k≠0)的图象与正比例函数y=mx(m≠0)的图象相交于点P,已知点P的横坐标为1,则关于x的不等式(k−m)x>−3的解集为()A. x<1B. 1<x<2C. 2<x<3D. x>35.以下四个图案中,既是轴对称图形又是中心对称图形的有()A. 4个B. 3个C. 2个D. 1个6.将点A(1,−1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A. (−2,1)B. (−2,−1)C. (2,1)D. (2,−1)7.等腰三角形的一个角比另一个角2倍少20度,等腰三角形顶角的度数是()A. 140°或44°或80°B. 20°或80°C. 44°或80°D. 140°8.如图,在Rt△ABC中,∠ACB=90°,分别以点B和BC的长为半径作弧,两弧相交点C为圆心,大于12于D、E两点,作直线DE交AB于点F,交BC于点G,连结CF.若AC=3,CG=2,则CF的长为()A. 52B. 3C. 2D. 729.不等式6−4x≥3x−8的非负整数解为()A. 2个B. 3个C. 4个D. 5个10.现规定一种新运算,a※b=ab+a−b,其中a、b为常数,若(2※3)+(m※1)=6,<−m的解集是()则不等式3x−22B. x<0C. x>1D. x<2A. x<−4311.如图,在△ABC中,∠C=64°,将△ABC绕着点A顺时针旋转后,得到△AB′C′,且点C′在BC上,则∠B′C′B的度数为()A. 42°B. 48°C. 52°D. 58°12.如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC边上,且AB′=CB′,则∠C′的度数为()A. 18°B. 20°C. 24°D. 28°13.如图,在平面直角坐标系xoy中,A(0,2),B(0,6),动点C在y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是()A. 2B. 3C. 4D. 514.若关于x的不等式mx+1>0的解集是x<15,则关于x的不等式(m−1)x>−1−m的解集是()A. x<−23B. x>−23C. x<23D. x>2315.如图,△ABC中,∠A=30°,∠ACB=90°,BC=2,D是AB上的动点,将线段CD绕点C逆时针旋转90°,得到线段CE,连接BE,则BE的最小值是()A. √3−1B. √32C. √3D. 2二、填空题(本大题共5小题,共25.0分)16.如图,长方形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E,F,连接CE,则CE的长为________.17.某校组织开展了“诗词大会”的知识竞赛初赛,共有20道题.答对一题加10分,答错或不答一题扣5分,小辉在初赛得分超过160分顺利进入决赛.设他答对x道题,根据题意,可列出关于x的不等式为___________.18.已经点P(a+2,a−1)在平面直角坐标系的第四象限,则a的取值范围是______19.已知,大正方形的边长为5厘米,小正方形的边长为2厘米,起始状态如图所示.大正方形固定不动,把小正方形以1厘米/秒的速度向右沿直线平移,设平移的时间为t秒,两个正方形重叠部分的面积为S平方厘米.当S=2时,小正方形平移的时间为______秒.20.如图,把等边△ABC沿着D E折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=______cm.三、解答题(本大题共7小题,共80.0分)21.(8分)解下列关于x的不等式组{x−52+1>x−3,x−(3x−1)≤x+8.,并把解集表示在数轴上。
最新北师大版八年级数学下册期中考试试卷及答案
八年级数学下册期中考试试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第三章《图形的平移和旋转》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。
在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(−2,1).则点B的对应点的坐标为()A. (5,3)B. (−1,−2)C. (−1,−1)D. (0,−1)2.如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A. AC=DEB. BC=EFC. ∠AEF=∠DD. AB⊥DF3.下列四个判断:其中正确的有()①若ac2>bc2,则a>b;②若a>b,则a|c|>b|c|;<1;③若a>b,则ba④若a>0,则b−a<b,A. 1个B. 2个C. 3个D. 3个4.下列式子中,是不等式的有()①2x=7;②3x+4y;③−3<2;④2a−3≥0;⑤x>1;⑥a−b>1.A. 5个B. 4个C. 3个D. 1个5.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中等边三角形是()A. ①②③B. ①②④C. ①③④D. ①②③④6.在△ABC中,已知a,b,c分别是∠A,∠B,∠C的对边,则下列条件中,不能判定△ABC是等腰三角形的是()A. a=3,b=3,c=4B. a∶b∶c=2∶3∶4C. ∠B=50°,∠C=80°D. ∠A∶∠B∶∠C=1∶1∶27.如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90∘,得到△A′B′C′,则点A的对应点A′的坐标是()A. (0,4)B. (2,−2)C. (3,−2)D. (−1,4)8.下列剪纸图形中,既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个9.若关于x的不等式组{2−x2>2x−43,−3x>−2x−a的解集是x<2,则a的取值范围是()A. a≥2B. a<−2C. a>2D. a≤210.不等式4x+1>x+7的解集在数轴上表示正确的是()A. B.C. D.11.如图,点P是∠AOB的平分线上一点,PC⊥OA于点C,PD⊥OB于点D,连接CD交OP于点E,下列结论不一定正确的是()A. PC=PDB. OC=ODC. OP垂直平分CDD. OE=CD12.如图,已知点P到AE,AD,BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是()A. ④B. ②③C. ①②③D. ①②③④13.如图,线段OA=2,OP=1,将线段OP绕点O任意旋转时,线段AP的长度也随之改变,则下列结论:①AP的最小值是1,最大值是4;②当AP=2时,△APO是等腰三角形;③当AP=1时,△APO是等腰三角形;④当AP=√3时,△APO是直角三角形;⑤当AP=√5时,△APO是直角三角形.其中正确的是()A. ①④⑤B. ②③⑤C. ②④⑤D. ③④⑤14.五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为()A. 11B. 12C. 13D. 1415.如图,已知P(3,2),B(−2,0),点Q从P点出发,先移动到y轴上的点M处,再沿垂直于y轴的方向向左移动1个单位至点N处,最后移动到点B处停止,当点Q 移动的路径最短时(即三条线段PM、MN、NB长度之和最小),点M的坐标为()A. (0,12)B. (0,23)C. (0,43)D. (0,45)卷Ⅱ二、填空题(本大题共5小题,共25.0分) 16. 如图,将△ABC 绕点C 顺时针旋转至△DEC ,使点D 落在BC 的延长线上,已知∠A =27°,∠B =40°,则∠ACE =________°.17. 由不等式a >b 得到am <bm ,则m 应满足的条件是 . 18. 在Rt △ABC 中,∠C =90°,∠B =40°,则∠A 的度数是 .19. 若关于x 的不等式(a +1)x >a +1的解集为x >1,则a 的取值范围是 .20. 图甲所示的四张牌,若只将其中一张牌旋转180°后得到图乙,则旋转的牌是 .三、解答题(本大题共7小题,共80.0分) 21. (8分)(1)计算:(−3)2−√4+(12)0;(2)解不等式组:{x −2<32x +1>7.22. (8分)如图,已知△ABC ,∠C =90°,AC <BC ,D 为BC 上一点,且到A ,B 两点距离相等. (1)用直尺和圆规,作出点D 的位置(不写作法,保留作图痕迹); (2)连结AD ,若∠B =40°,求∠CAD 的度数.23.(12分)如图1,在某住房小区的建设中,为了提高业主的宜居环境,小区准备在一个长为(4a+3b)米,宽为(2a+3b)米的长方形草坪上修建一横一竖,宽度均为b米的通道.(1)通道的面积共有多少平方米?(2)剩余草坪的面积是多少平方米?(3)若修两横一竖,宽度均为b米的通道(如图2),已知a=2b,剩余草坪的面积是216平方米,求通道的宽度是多少米?24.(10分)如图,△ABC中,AB=AC=2,∠ACB=30∘,将△ABC沿边AC所在的直线折叠,点B落在点E处,再将△ACE沿射线CA的方向平移,得到△A′C′E′,连接A′B,若A′B=2√3.求:(1)BC的长;(2)平移的距离.25.(12分)王老师所在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球.他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买.三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次65700第二次37710第三次78693(1)王老师是第_____________次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买多少个篮球?26.(14分)如图,∠AOB=60°,OC平分∠AOB,C为角平分线上一点,过点C作CD⊥OC,垂足为C,交OB于点D,CE//OA交OB于点E.判断△CED的形状,并说明理由.27.(16分)如图1,在△ABC中,∠ACB=90°,AC=BC,D为AB上一点,连接CD,将CD绕点C顺时针旋转90°至CE,连接AE.(1)求证:△BCD≌△ACE;(2)如图2,连接ED,若CD=2√2,AE=1,求AB的长;(3)如图3,若点F为AD的中点,分别连接EB和CF,求证:CF⊥EB.答案1.C2.D3.B4.B5.D6.B7.D8.B9.A10.A11.D12.D13.C14.D15.A16.4617.m<018.50°19.a>−120.方块521.(1)解:原式=9−2+1=8.(2)解:{x−2<3 ①2x+1>7 ②,由①得,x<5;由②得,x>3.∴不等式组的解为3<x<5.22.解:(1)如图,点D为所作;(2)△ABC中,∵∠C=90°,∠B=40°,∴∠BAC=50°,∵AD=BD,∴∠B=∠BAD=40°,∴∠CAD=∠BAC−∠BAD=10°.23.解:(1)S通道=b(2a+3b)+b(4a+3b)−b2 =2ab+3b2+4ab+3b2−b2=(6ab+5b2)(平方米).答:通道的面积共有(6ab+5b2)平方米;=(4a+3b)(2a+3b)−(6ab+5b2)(2)S草坪=8a2+6ab+12ab+9b2−(2ab+3b2+4ab+3b2−b2)=8a2+18ab+9b2−6ab−5b2=(8a2+12ab+4b2)(平方米).答:剩余草坪的面积是(8a2+12ab+4b2)平方米;=(4a+3b)(2a+3b)−[2b(2a+3b)+b(4a+3b)−2b2] (3)S草坪=8a2+18ab+9b2−(4ab+6b2+4ab+3b2−2b2)=8a2+18ab+9b2−8ab−7b2=8a2+10ab+2b2, ∵a=2b,∴32b2+20b2+2b2=54b2=216,∴b2=4,∴b=2(米).答:通道的宽度是2米.24.解:(1)作AD⊥BC于D,在Rt△ADC中,AC=2,∠ACB=30∘,AC=1,∴AD=12∴DC=√AC2−AD2=√22−12=√3,∵AB=AC,∠ADC=90∘,∴BC=2DC=2√3.(2)∵A′B=BC=2√3,∠ACB=30∘,∴∠2=∠ACB=30∘,∴∠1+∠3=180∘−30∘−30∘=120∘,∵AB=AC,∠ACB=30∘,∴∠1=∠ACB=30∘,∴∠3=90∘.在Rt△ABA′中,∠2=30∘,AB=2,∴AA′=4.即平移的距离是4.25.解:(1)三(2)足球的标价为50元,篮球的标价为80元.(3)最多可以购买38个篮球.26.解:△CED是等边三角形,理由如下:∵OC平分∠AOB,∠AOB=60°,∴∠AOC=∠COE=30°.∵CE//OA,∴∠AOB=∠CED=60°.∵CD⊥OC,∴∠OCD=90°.∴∠EDC=60°.∴△CED是等边三角形.27.解:(1)由旋转可得EC=DC,∠ECD=90°=∠ACB,∴∠BCD=∠ACE,又∵AC=BC,∴△BCD≌△ACE(SAS);(2)由(1)可知AE=BD=1,∠CAE=∠B=45°=∠CAB,∴∠EAD=90°,∴DE=√(2√2)2+(2√2)2=4,∴AD=√42−12=√15.∴AB=AD+BD=√15+1;(3)如图,过C作CG⊥AB于G,则AG=12AB,∵∠ACB=90°,AC=BC,∴CG=12AB,即CGAB=12,∵点F为AD的中点,∴FA=12AD,∴FG=AG−AF=12AB−12AD=12(AB−AD)=12BD,由(1)可得:BD=AE,∴FG=12AE,即FGAE=12,∴CGAB =FGAE,又∵∠CGF=∠BAE=90°,∴△CGF∽△BAE,∴∠FCG=∠ABE,∵∠FCG+∠CFG=90°,∴∠ABE+∠CFG=90°,∴CF⊥BE.。
北师大版八年级数学下册期中学情评估 附答案 (2)
北师大版八年级数学下册期中学情评估一、选择题(每题3分,共30分)1.下列图形中是中心对称图形的是( )2.用反证法证明命题“若在△ABC中,AB≠AC,则∠B≠∠C”时,首先应假设( ) A.∠A=∠B B.AB=ACC.∠A=∠C D.∠B=∠C3.已知a<b,则下列式子一定成立的是( )A.a-3>b-3 B.ac<bcC.2a3<2b3D.3-2a<3-2b4.不等式x+3≥1的解集在数轴上表示正确的是( )A. B.C. D.5.如图,在△ABC中,∠ABC=90°,沿BC所在的直线向右平移得到△DEF,下列结论中,不一定成立的是( )A.EC=CF B.∠A=∠DC.AC∥DF D.∠DEF=90°6.某地计划在A,B,C三个村庄附近建一个文化活动中心,并且要求这三个村庄到活动中心的距离相等,其中AB=1 000米,BC=600米,AC=800米,则活动中心的位置应在( )A.AC中点B.BC中点C.AB中点D.∠C的平分线与AB的交点7.如图,直线y=kx+b(k≠0)经过点(-1,2),则不等式kx+b≤2的解集为( ) A.x>-1 B.x<-1C.x≥3 D.x≤-1(第7题) (第10题) (第14题)8.若△ABC的三边长a,b,c满足(a-c)2=b2-2ac,则( )A.∠A为直角B.∠B为直角C.∠C为直角D.△ABC不是直角三角形9.我们用[a]表示不大于a的最大整数,例如:[1.3]=1,[2.7]=2,若[x]+3=1,则x的取值范围是( )A.-4≤x<-3 B.-3≤x≤-2C.-2≤x<-1 D.0≤x<210.如图,在△AOB中,BO=3.将△AOB绕点O逆时针方向旋转90°,得到△A′OB′,连接BB′.则线段BB′的长为( )A.2 B.2 2C.3 D.3 2二、填空题(每题3分,共15分)11.在平面直角坐标系内,将点A(2,3)向右平移4个单位长度得到的点的坐标是________.12.已知等腰三角形的两边长a,b满足|a-5|+b-4=0,则该等腰三角形的周长为________.13.一元一次不等式x-32>1的最小整数解是________.14.如图,△ABC的三条角平分线交于点O,若O到AB的距离为3,且△ABC的周长为18,则△ABC的面积为________.15.若不等式组⎩⎨⎧x -1>a ,1-3x ≥x -7无解,则a 的取值范围是______. 三、解答题(一)(每题8分,共24分)16.解不等式组⎩⎨⎧2(x +2)>x -1,①x +8>4x -1,②并把它的解集在数轴上表示出来.17.如图,在边长均为1的正方形网格中建立如图所示的平面直角坐标系,已知A (1,0),B (4,2),C (2,4).(1)将△ABC 沿着x 轴向左平移5个单位长度后得到△A ′B ′C ′,请在图中画出△A ′B ′C ′,则C 的对应点C ′的坐标为________;(2)线段A ′B ′可以看成是线段BA 绕着某个定点旋转180°后得到的图形,这个定点的坐标是________.18.如图,在△ABC 中,∠ACB =90°,将△ABC 沿AB 方向平移至△DEF ,AE =8 cm ,DB =2 cm.连接CF .(1)AC 和DF 的数量关系为________,位置关系为________;(2)∠BGF =________°;(3)求△ABC 沿AB 方向平移的距离;(4)若AC =4 cm, 求四边形AEFC 的周长.四、解答题(二)(每题9分,共27分)19.如图,在Rt △ABC 中,已知∠ACB =90°,AD 平分∠BAC ,点D 在BC 上,DE⊥AB ,垂足为E ,EF ∥BC .求证:EC 平分∠FED .20.OF 是∠MON 的平分线,点A 在射线OM 上,P ,Q 是直线ON 上的两动点,点Q在点P 的右侧,且PQ =OA ,作线段OQ 的垂直平分线,分别交直线OF ,ON 于点B ,点C ,连接AB ,PB .(1)如图①,当P ,Q 两点都在射线ON 上时,线段AB 与PB 的数量关系是________;(2)如图②,当P ,Q 两点都在射线ON 的反向延长线上时,线段AB ,PB 是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由.21.阅读下列材料:求不等式(2x -1)(x +1)>0的解集.解:根据“同号两数相乘,积为正”可得:①⎩⎨⎧2x -1>0,x +1>0或②⎩⎨⎧2x -1<0,x +1<0.解①得x>12;解②得x<-1.∴不等式的解集为x>12或x<-1.请你仿照上述方法解决问题:(1)求不等式(2x-3)(x+3)<0的解集;(2)求不等式13x-1x+2≥0的解集.五、解答题(三)(每题12分,共24分)22.某校开展“冰雪结缘”滑雪体验课程.先后两次在某商场购买滑雪护具和防护头盔,第一次买6套滑雪护具和5个防护头盔共花费1 900元;第二次买2套滑雪护具和7个防护头盔共花费1 700元.(1)求每套滑雪护具和每个防护头盔各多少元;(2)如果现在商场均以标价的8折对滑雪护具和防护头盔进行促销,学校决定从该商场一次性购买总量为20的滑雪护具和防护头盔,且总费用不能超过2 900元,那么最多可以购买多少个防护头盔?23.(1)阅读理解:如图①,等边三角形ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的大小.思路提示:考虑到PA,PB,PC不在一个三角形中,采用转化与化归的数学思想,可以将△ABP绕顶点A逆时针旋转60°到△ACP′处,连接PP′,此时△ACP′≌△ABP,这样,就可以利用全等三角形的知识,并结合已知条件,将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB=________;(2)变式拓展:请你利用第(1)问的方法,解答下面问题:如图②,在△ABC中,∠CAB=90°,AB=AC,E,F为BC上的点且∠EAF=45°,BE=8,CF=6,求EF的大小;(3)能力提升:如图③,在Rt△ABC中,∠ACB=90°,AC=1,∠ABC=30°,点O为Rt△ABC内一点,连接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°,则(OA+OB+OC)2=________.答案一、1.C 2.D 3.C 4.D 5.A 6.C 7.D 8.B 9.C10.D 提示:∵将△AOB绕点O逆时针方向旋转90°,得到△A′OB′,∴B′O =BO=3,∠BOB′=90°,∴BB′=BO2+B′O2=9+9=32,故选D.二、 11.(6,3) 12.13或14 13.6 14.2715.a≥1 提示:解不等式x-1>a,得x>a+1,解不等式1-3x≥x-7,得x ≤2.∵不等式组无解,∴a+1≥2,∴a≥1.三、 16.解:解不等式①,得x>-5,解不等式②,得x<3,则不等式组的解集为-5<x<3,将不等式组的解集在数轴上表示如下:17.解:(1)如图.(-3,4) (2)(0,1)18.解:(1)AC=DF;AC∥DF(2)90(3)由平移得AD=BE,∵AE=8 cm,DB=2 cm,∴AD=BE=8-22=3(cm),∴平移的距离为3 cm.(4)在Rt△ABC中,∵∠ACB=90°,AC=4 cm,AB=AD+DB=3+2=5(cm),∴BC=52-42=3(cm),∴EF=BC=3 cm.又∵CF=AD=3 cm,∴四边形AEFC的周长=AC+AE+EF+CF=4+8+3+3=18(cm).四、19.证明:∵AD平分∠BAC,∠ACB=90°,DE⊥AB,∴DE =DC ,∴∠DCE =∠DEC .∵EF ∥BC ,∴∠DCE =∠FEC ,∴∠FEC =∠DEC ,∴EC 平分∠FED .20.解:(1)AB =PB提示:如图①,连接BQ .∵BC 垂直平分OQ ,∴BO =BQ ,∴∠BOQ =∠BQO ,∵OF 平分∠MON ,∴∠AOB =∠BOQ ,∴∠AOB =∠BQO ,∵OA =PQ ,∴△AOB ≌△PQB (SAS),∴AB =PB .(2)存在,证明如下:如图②,连接BQ .∵BC 垂直平分OQ ,∴BO =BQ ,∴∠BOQ =∠BQO ,∵OF 平分∠MON ,∠BOQ =∠FON ,∴∠AOF =∠BOQ ,∴∠AOF =∠BQO ,∴∠AOB =∠BQP ,∵OA =PQ ,∴△AOB ≌△PQB (SAS),∴AB =PB .21.解:(1)根据“异号两数相乘,积为负”可得:①⎩⎨⎧2x -3>0,x +3<0或②⎩⎨⎧2x -3<0,x +3>0.解①得无解;解②得-3<x <32. ∴不等式的解集为-3<x <32. (2)易得:①⎩⎨⎧13x -1≥0,x +2>0或② ⎩⎨⎧13x -1≤0,x +2<0.解①得x ≥3;解②得x <-2.∴不等式的解集为x ≥3或x <-2.五、22.解:(1)设每套滑雪护具x 元,每个防护头盔y 元,根据题意,得⎩⎨⎧6x +5y =1 900,2x +7y =1 700,解得⎩⎨⎧x =150,y =200. 答:每套滑雪护具150元,每个防护头盔200元.(2)设购买m 个防护头盔,则滑雪护具需购买(20-m )套,根据题意,得 200×0.8m +150×0.8(20-m )≤2 900,解得m ≤12.5,∵m 是正整数,∴m =12.答:最多可以购买12个防护头盔.23.解:(1)150°(2)如图,把△ABE 绕点A 逆时针旋转90°得到△ACE ′,连接E ′F .由旋转的性质得AE ′=AE ,CE ′=BE ,∠CAE ′=∠BAE ,∠ACE ′=∠B ,∠EAE ′=90°.∵∠EAF =45°,∴∠E ′AF =90°-45°=45°,∴∠EAF =∠E ′AF .在△EAF 和△E ′AF 中,∵AE =AE ′,∠EAF =∠E ′AF ,AF =AF ,∴△EAF ≌△E ′AF (SAS),∴E ′F =EF .∵∠CAB =90°,AB =AC ,∴∠B =∠ACB =45°,∴∠E ′CF =45°+45°=90°.由勾股定理得E ′F 2=CE ′2+FC 2,即EF 2=BE 2+FC 2.∴EF 2=82+62=100,解得EF =10.(3)7 提示:如图,将△AOB 绕点B 顺时针旋转60°至△A ′O ′B 处,连接OO ′,在Rt △ABC 中,∠ACB =90°,AC =1,∠ABC =30°,∴AB =2,∴BC =AB 2-AC 2=22-12=3,∵△AOB 绕点B 顺时针旋转60°得到△A ′O ′B ,∴A ′B =AB =2,BO =BO ′,A ′O ′=AO ,∠A ′BA =∠O ′BO =60°.∴△BOO ′是等边三角形,∠A ′BC =∠ABC +60°=30°+60°=90°.∴BO =OO ′,∠BOO ′=∠BO ′O =60°.∵∠AOC =∠COB =∠BOA =120°,∴∠COB +∠BOO ′=∠BO′A′+∠BO′O=120°+60°=180°,∴C,O,A′,O′四点共线,在Rt△A′BC中,A′C=BC2+A′B2=(3)2+22=7,∴OA+OB+OC =A′O′+OO′+OC=A′C=7,∴(OA+OB+OC)2=7.故答案为7.11。
北师大版八年级数学下学期末期中考试试题及答案七
北师大版八年级数学下学期末期中考试试题及答案一、单选题(将唯一正确答案的代号填在题后括号内,每题3分,共36分) 1.在Rt △ABC 中,∠C =90°,∠B =30°,则( ) A .AB =2ACB .AC =2ABC .AB =ACD .AB =3AC2.关于x 的不等式()22m x m +>+的解集是1x <,则m 的取值范围是( ) A .0m ≥ B .0m ≤ C .2m <- D .2m >- 3.如图,OC 平分∠AOB ,CM ⊥OB 于点M ,CM =3,则点C 到射线OA 的距离为( )A .5B .4C .3D .23题图 4题图4.如图,将△ABD 沿△ABC 的角平分线AD 所在直线翻折,点B 在AC 边上的落点记为点E .已知∠C =20°,AB +BD =AC ,那么∠B 等于( ) A .80°B .60°C .40°D .30°5.步步高超市从某商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打( )折. A .6B .7C .8D .96.一个三角形的周长是偶数,其中的两条边分别为5和9,则满足上述条件的三角形个数为 ( ) A .2个B .4个C .6个D .8个7.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,•从学生中征集到设计方案有等腰三角形、正三角形、平行四边形、菱形等四种图案,你认为符合条件的是( ). A .等腰三角形 B .正三角形 C .平行四边形 D .菱形8.如图,两只蚂蚁以相同的速度沿甲、乙两条不同的路线,同时从A 出发爬向终点B ,则( ) A .按甲路线走的蚂蚁先到终点 B .按乙路线走的蚂蚁先到终点 C .两只蚂蚁同时到终点D .无法确定9.一次函数y =kx +b (k ,b 是常数,k ≠0)的图象如图所示,则不等式kx +b >0的解集是( ) A .x >0B .x >3C .x <0D .x <310.如下图,将△ABC 绕点C 顺时针方向旋转43︒得A CB ∆'',若AC A B ''⊥,则BAC ∠等于( ) A .43︒B .45︒C .47︒D .50︒10题图 11题图 12题图11.如图,△ABC 中,DE 垂直平分AB ,垂足为D ,交BC 于E ,若∠B =32°,AC =CE ,则∠C 的度数是( ) A .52°B .55°C .60°D .65°12.如图,一个直角三角板ABC 绕其直角顶点C 旋转到△DCE 的位置,若∠BCD = 29°30′,则下列结论错误的是( ) A .∠ACD =119°30′ B .∠ACE −∠BCD =120° C .∠ACE =150°30′D .∠ACD =∠BCE二、填空题(将正确答案填在题中横线上,每题3分,共24分)13.据中央气象台“天气预报”报道,某市今天的最低气温是17℃,最高气温是25℃,则今天气温t (℃)的范围是_________.14.已知等腰三角形的一个外角是80°,则它顶角的度数为______.15.△ABO 与△A 1B 1O 在平面直角坐标系中的位置如图所示,它们关于点O 成中心对称,其中点A (4, 2),则点A 1的坐标是________.15题图 16题图16.如图,在△ABC 中,EF 是AB 的垂直平分线,与AB 交于点D ,BF =4,CF =1,则AC 的长为______.17.对于一个数x ,我们用(]x 表示小于x 的最大整数 ,例如:(]2.62=,(](]34,109-=-=,如果(]3x =,则x 的取值范围为__________.2x a ->⎧202119.如图,在△ABC 中,∠C =90°,AC =BC ,BD 平分∠ABC 交AC 于点D ,DE ⊥AB 于点E .若AB =10cm ,则△ADE 的周长为______cm.19题图 20题图20.如图,△ABC 和△DEC 关于点C 成中心对称,若AC =1,AB =2,90BAC ∠=︒,则AE 的长是______. 三、解答题(本题共有8小题,共66分)21.(本题5分)一次知识竞赛中共有20题,答对一题得5分,不答得0分,答错扣2分.小林同学有2题没答.(1)设小林同学答错x 题,则他答对 题; (2)最终小林同学得分超过69分,则他至多答错了几题?22.(本题5分)如图所示,在4×3的正方形网格中,从点A 出发的四条线段AB 、AC 、AD 、AE ,它的另一个端点B 、C 、D 、E 均在格点上(正方形网格的交点).(1)若每个小正方形的边长都是1,分别求出AB 、AC 、AD 、AE 的长度(结果保留根号). (2)在AB 、AC 、AD 、AE 四条线段中,是否存在三条线段,它们能构成直角三角形?如果存在,请指出是哪三条线段,并说明理由.22题图23.(本题6分)在平面直角坐标系xOy 中,已知三角形ABC 的三个顶点坐标分别为(4,3)A ,(3,1)B ,(1,2)C ,(2)将△ABC 先向左平移4个单位,在向下平移3个单位,得到111A B C △,画出111A B C △,并写出点1A 的坐标.23题图24.(本题8分)已知关于x ,y 的方程组232x y m x y m +=-⎧⎨-=⎩的解x ,y 均为负数.(1)求m 得取值范围 (2)化简:|3||1|m m -++25.(本题8分)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为()3,5A -,()2,1B -,()1,3C -,(1)若△ABC 和111A B C △关于原点O 成中心对称图形,画出图形并写出111A B C △的各顶点的坐标; (2)将△ABC 绕着点O 按顺时针方向旋转90°得到222A B C △,作出222A B C △,并写出各顶点的坐标.25题图26.(本题8分)如图,△ABC是等边三角形,点D、E分别在边BC、AC上,且AE=CD,AD与BE 相交于点P,BQ⊥AD于点Q.(1)求证:△ABE≌△CAD.(2)求∠PBQ的度数.26题图27.(本题10分)如图,在△ABC中,∠B=60°,点M从点B出发沿线段BC方向,在线段BC上运动.在点M运动的过程中,连结AM,并以AM为边在线段BC上方,作等边△AMN,连结CN.(1)当∠BAM=______°时,AB=2BM;(2)请添加一个条件:__________,使得△ABC为等边三角形;当△ABC为等边三角形时,求证:CN+CM=AC.27题图28.(本题10分)材料阅读:如图①所示的图形,像我们常见的学习用品—圆规.我们不妨把这样图形叫做“规形图”.(1)观察“规形图”,试探究BDC ∠与A ∠,B ,C ∠之间的数量关系,并说明理由; (2)请你直接利用以上结论,解决以下两个问题:Ⅰ.如图②,把一块三角尺DEF 放置在ABC △上,使三角尺的两条直角边DE ,DF 恰好经过点B ,C ,若40A ∠=︒,则ABD ACD ∠+∠=_____︒.Ⅱ.如图③,BD 平分ABP ∠,CD 平分ACP ∠,若40A ∠=︒,130BPC ∠=︒,求BDC ∠的度数.参考答案1.A. 解析:如图所示.在Rt △ABC 中,∠C =90°,∠B =30°,则AB =2AC . 故选A .2.C. 解析:∵关于x 的不等式()22m x m +>+的解集是1x <, ∴20m +<,解得:2m <-,故选:C . 3.C. 解析:过C 作CF ⊥AO .∵OC 为∠AOB 的平分线,CM ⊥OB ,∴CM =CF . ∵CM =3,∴CF =3.故选C .4.C. 解析:根据折叠的性质可得BD =DE ,AB =AE ,∠B=∠AED , ∵AC =AE+EC ,AB+BD =AC ,∴DE =EC , ∴∠EDC =∠C =20°,∴∠B=∠AED =∠EDC+∠C =40°,故选:C . 5.B. 解析:设至多可打x 折, 则12008008005%10x-≥⨯, 解得x ≥7, 即至多可打7折. 故选:B .6.B. 解析:∵两条边分别为5和9,设第三边长为x , 第三边的取值范围是:9-5<x <9+5,即4<x <14,∵5+9=14,所以第三边长应为偶数,大于4而小于14的偶数有6、8、10、12共4个,故选:B .7.D. 解析:等腰三角形、正三角形、平行四边形、菱形这四种图案中, ∵轴对称图形的有等腰三角形、正三角形、菱形, 中心对称图形的有平行四边形、菱形,∴既是中心对称图形又是轴对称图形的是菱形. 故选D.8. C. 解析:∵将甲的路线分别向左侧和下方平移,可发现甲、乙两只蚂蚁的行程相同,且两只蚂蚁的速度相同,∴两只蚂蚁同时到达. 故选C.9.D. 解析:函数y =kx +b 的图象经过点(3,0),并且函数值y 随x 的增大而减小,所以当x <3时,函数值大于0,即关于x 的不等式kx +b >0的解集是x <3. 故选:D .10.C. 解析:∵将△ABC 绕点C 顺时针方向旋转43︒得A CB ∆'',点A 对应点A′, ∴∠ACA ′=43°,BAC ∠=∠A′,∵AC A B ''⊥,∴∠A′=180°-90°-43°=47°, ∴BAC ∠=∠A′=47°.故选C . 11.A. 解析:连接AE ,如图:∵DE 垂直平分AB ,∴EA=EB ,∴∠EAB=∠B=32°, ∵AC=CE ,∴∠CAE=∠CEA =∠B +∠EAB =64°, ∴∠C=180°-64°-64°=52°,故选:A .12.B. 解析:由旋转的性质得:90ACB DCE ∠=∠=︒,ACB BCD DCE BCD ∴∠+∠=∠+∠,即ACD BCE ∠=∠,则选项D 正确2930BCD '∠=︒,90293011930ACD BCD ACB ''∴∠=∠=︒+︒=︒∠+, 则选项A 正确360AC ACE B C C B D E D ∠-=∠-∠∠︒-36090293090'=︒-︒-︒-︒15030'=︒,则选项C 正确150302930121ACE BCD''∴∠-∠=︒-︒=︒,则选项B错误故选:B.13.17≤t≤25. 解析:因为最低气温是17℃,所以17≤t,最高气温是25℃,t≤25,则今天气温t(℃)的范围是17≤t≤25.故答案为:17≤t≤25.14.100°. 解析:等腰三角形一个外角为80°,那相邻的内角为100°,三角形内角和为180°,如果这个内角为底角,内角和将超过180 °,所以100°只可能是顶角.故答案为:100°.15.(-4,-2). 解析:∵△ABO与△A1B1O关于点O成中心对称,点A(4,2),∴点A1的坐标是:(-4,-2).故答案为:(-4,-2).16.5. 解析:∵EF是AB的垂直平分线,∴F A=BF=4,∴AC=AF+FC=5.故答案为:5.17.﹣3<x≤﹣2或3<x≤4. 解析:当x<0时,∵(]3x=,∴x>﹣3,∴﹣3<x≤﹣2;当x>0时,∵(]3x=,∴x>3,∴3<x≤4,综上所述,x的取值范围是﹣3<x≤﹣2或3<x≤418.-1. 解析:由不等式得x>a+2,x<12 b,∵-1<x<1,∴a+2=-1,12b=1,∴a=-3,b=2,∴(a+b)2021=(-1)2021=-1.19.10. 解析:∵BD平分∠ABC交AC于D,DE⊥AB于E,∴∠DBE=∠DBC,∠BED=∠C=90°,BD=BD,∴△BDE≌△BDC(AAS),∴DE=DC,BE=BC,∴△ADE的周长=DE+DA+AE=DC+DA+AE=CA+AE=BC+AE=BE+AE=AB=10cm.故答案为:10.20.. 解析:∵△DEC 与△ABC关于点C成中心对称,∴DC=AC=1,DE=AB=2,∴在Rt△EDA中,AE的长是:AE====.故答案为:22.21.解:(1)设小聪答错了x 道题,则答对20218x x --=-,(2)由题意,得5(18-x )-2x >69 ,所以9052x x -->69,所以7x ->21- ,解得,x <3, 答:小林同学至多答错2题22.解:(1)22125AB =+=,222313AC =+=,222222AD =+=,222425AE =+=;(2)存在,线段AB ,AC ,AD 可以构成直角三角形, 理由为:2225813AB AD AC +=+==满足勾股定理, ∴线段AB ,AC ,AD 可以构成直角三角形. 23.解:(1)如图所示:△ABC 即为所求,△ABC 的面积为:11123121312 2.5222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯=;(2)如图所示:111A B C △即为所求;A 1的坐标为:(0,0). 24.解:(1)由题意可知,1x m =-,1y m =--,因为0x <,0y <,即:m -1<0, -m -1<0, 解得,m <1, m >-1, 所以-1<m <1.(2)由(1)-1<m <1,所以m -3<0,m +1>0.所以原式(3)(1)m m =--++4=.25.解:(1)如图,△A 1B 1C 1为所作,因为△ABC 和△A 1B 1C 1关于原点O 成中心对称图形,所以A 1(3,-5),B 1(2,-1),C 1(1,-3);(2)如图,△A 2B 2C 2为所作,A 2(5,3),B 2(1,2),C 2(3,1);26.解:(1)∵△ABC是等边三角形,∴=,60AB AC∠=∠=︒,BAC C∴≌;∵,ABE CAD=AE CD≌,(2)ABE CADABE CAD∴∠=∠,BAD CHO BAC∠+∠=∠=︒,60∴∠+∠=︒,BAD ABE60∠=∠+∠,BPQ BAD ABE∴∠=︒,BPQ60⊥,BQ AD∴∠=︒,BQP90∴∠+∠=︒,PBQ BPQ90∴∠=︒-∠=︒-︒=︒.90906030PBQ BPQ27.解:(1)当∠BAM=30°时,∴∠AMB=180°﹣60°﹣30°=90°,∴AB=2BM;故答案为:30;(2)添加一个条件AB=AC,可得△ABC为等边三角形;故答案为:AB=AC;如图1中,∵△ABC 与△AMN 是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,∴∠BAC ﹣∠MAC =∠MAN ﹣∠MAC ,即∠BAM =∠CAN ,在△BAM 与△CAN 中,AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩,∴△BAM ≌△CAN (SAS ),∴BM =CN ,∴AC =BC =CN+MC .28.解:(1)如图①,连接AD 并延长至点F ,根据外角的性质,可得 BDF BAD B ∠=∠+∠,CDF C CAD ∠=∠+∠,又BDC BDF CDF ∠=∠+∠,BAC BAD CAD ∠=∠+∠,BDC A B C ∴∠=∠+∠+∠;(2)Ⅰ.由(1),可得BDC ABD ACD A ∠=∠+∠+∠;又40A ∠=︒,90D ∠=︒,904050ABD ACD ∴∠+∠=︒-︒=︒, 故答案为:50︒;Ⅱ.由(1),可得BPC BAC ABP ACP ∠=∠+∠+∠,BDC BAC ABD ACD ∠=∠+∠+∠,1304090ABP ACP BPC BAC ∴∠+∠=∠-∠=︒-︒=︒, 又BD 平分ABP ∠,CD 平分ACP ∠,()1452ABD ACD ABP ACP ∴∠+∠=∠+∠=︒, 454085BDC ∴∠=︒+︒=︒.。
最新北师大版八年级数学下册期中考试试题(2篇)
BAFDEC 八年级数学下册期中试题一、选择题(共12小题,每小题3分,共36分)1.下列图案中是中心对称图形但不是轴对称图形的是()A .B .C .D .2.下列关于平移的说法正确的是( )A.经过平移,对应线段相等B.经过平移,对应角可能会改变C.经过平移,图形会改变D.经过平移,对应点所连的线段不相等 3.下列不等式一定成立的是( ) A .5a >4aB .x+2<x+3C .﹣a >﹣2aD .4.等腰三角形的一边为4,另一边为9,则这个三角形的周长为( ) A .17 B .22 C .13D .17或225.如图,数轴上表示的是两个不等式的解集,由它们组成的不等式组的解集为( )A .﹣1<x ≤1B .﹣1<x <1C .x >﹣1D .x ≤1 6.已知,如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB ,过O 作DE ∥BC ,分别交AB 、AC 于点D 、E , 若BD+CE =5,则线段DE 的长为( )A . 5B . 6C .7D .87.亮亮准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( )A.30x-45≥300B.30x+45≥300C.30x-45≤300D.30x+45≤3008.不等式组的解集是x >4,那么m 的取值范围是( ) A .m ≤4B .m <4C .m ≥4D .m >49.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A ′B ′C ,连接AA′,若∠1=20°,则∠B 的度数是( )A .70°B .65°C .60°D .55°10.在平面直角坐标系中,O 为坐标原点,点A 的坐标为(1,),M 为坐标轴上一点,且使得△MOA 为等腰三角形,则满足条件的点M 的个数为( ) A .4B .5C .6D .811、如图,在正方形ABCD 中,E 为DC 边上的点,连结BE ,将△BCE 绕点C 顺时针方向旋转90°得到△DCF ,连结EF ,若∠BEC=60°,则∠EFD 的度数为( )A 、10°B 、15°C 、20°D 、25° 12、如图,等边△ABC 中,BD=CE ,AD 与BE 相交于点P , 则∠APE 的度数是( )A.45°B.55°C.60°D.75° 二、填空题:(共6小题,每小题3分,共18分)13、用不等式表示:x 与5的差不大于x 的2倍: ;14.若关于x 的不等式(a+1)x >a+1的解集为x >1,则a 的取值范围是 . 15.三角形ABC 平移得到三角形DEF ,三角形ABC 的面积等于2,则三角形DEF 的面积等于 。
北师大八年级下数学期中试题及答案-最新
3.在根式① x 2 + 1 ② ③ x 2- xy ④ 27 x y 中,最简二次根式是【 】 等边三角形,点 B ,C ,E 在同一条直线上, BE第5题图OAC E BDxO 为 4,若用 x ,y 表示直角B 角形的两条直角边(x >y ),请观察图案,指出下列关系式不正确的是... A八年级下册期中考试数学试卷座 号题 号 一 1-8 二9-15 16 17 18三19 20 21 2223总 分得 分一、选择题 (每小题 3 分,共 24 分)1.下列各组数中,能够组成直角三角形的是【 】 A .3,4,5 B .4,5,6 C .5,6,7 D .6,7,8 2.若式子 2 x - 1 - 1- 2 x +1 有意义,则 x 的取值范围是【】A .x ≥ 1 1 1B .x ≤C .x =D .以上答案都不对2 2 2x 5A .① ②B .③ ④C .① ③D .① ④4.若三角形的三边长分别为 2 , 6 ,2,则此三角形的面积为【】A .223B . 2C .D . 325.如图所示,△ABC 和△DCE 都是边长为 4 的AD连接 BD ,则 BD 的长为【】A . 3B .2 3C .3 3D .4 3C 6.如图,在菱形 ABCD 中,对角线 AC 与 BD D相交于点 O ,OE ⊥AB ,垂足为 E , 若∠ADC =130°,则∠AOE 的大小为 【 】 A .75° B .65° C .55° D .50 °7.如图,矩形 ABCD 的对角线 AC ,BD 相交于点 O ,CE ∥BD ,DE ∥AC ,若 AC =4,则四边形 CODE 的周长是【 】 第6题图 A . 4 B . 6 C . 8 D .10EyC8.如图,是 4 个全等的直角三角形镶嵌而成的正方形图案,已知大正方形的面积为49,小正方形的面积三 第7题图【 】 第8题图 A . x 2 + y 2 = 49B . x - y = 2C . 2 x y + 4 = 49D . x + y = 13二、填空题( 每小题 3 分,共 21 分)9.若 x ,y 为实数,且∣x +2∣+ y - 3 =0,则(x +y )2017的值为 . 10.计算: (2 -3) 2 + ( 3 - 1)2 = .11. 实数 a ,b 在数轴上的对应点如图所示,则∣a -b ∣- a 2 =.1B C E C第75分)第13题图2+2+(5-1)0;2a32a3.a0b第11题图12.若x=2-3,则代数式(7+43)x2+(2+3)x+3=.13.如图,在平面直角坐标系中,若菱形ABCD的顶点A,B的坐标分别为(-3,0),(2,0),点D在y轴上,则点C的坐标是.14.如图所示,直线a经过正方形ABCD的顶点A,分别过顶点D,B作DE⊥a于点E,BF⊥a于点F,若DE=4,BF=3,则EF=.15.如图,R△t ABC中,∠B=90°,AB=3,△B C=4,将ABC折叠,使点B恰好落在斜边AC上,与点B'重合,AE为折痕,则E B'=.ay E AD C A DB'FA OB x B三、解答题:(本大题共8个小题,满分14题图第15题图16.(每小题4分共8分)计算:(1)18-28(2)a28a+3a50a3-517.(8分)如果最简二次根式3a-8与17-2a是同类二次根式,那么要使式子4a-2x+x-a有意义,x的取值范围是什么?18.(9分)如图,每个小正方形的边长都是1,A(1)求四边形ABCD的周长和面积(2)∠BCD是直角吗?BDC第18题图2(2)求证:四边形 AECF 是平行四边形.AFAD19.(9 分)如图所示,在□ABCD 中,点 E ,F 分别在边 BC 和 AD 上,且 CE =AF ,(1)求证:△ABE ≌ △CDF ;DBE第19题图C20.(10 分) 如图所示,在菱形 ABCD 中,点 E ,F 分别是边 BC ,AD 的中点,(1)求证:△ABE ≌ △CDF;(2)若∠B=60°,AB =4,求线段 AE 的长.FA DBE第20题图C21.(10 分)如图所示,在矩形 ABCD 中,对角线 AC ,BD 相交于点 O ,E 是 CD 的中点,连接 OE ,过点 C作 CF ∥BD 交线段 OE 的延长线于点 F ,连接 DF .求证:(1)OD =CF ;(2)四边形 ODFC 是菱形.A D OE FBC第21题图22.(10 分)如图所示,矩形 ABCD 的对角线相交于点 O ,OF ⊥AD 于点 F ,OF =2cm ,AE ⊥BD 于点 E ,且 BE ﹕BD =1﹕4,求 AC 的长.FBEOC第22题图323.(11分)在平面内,正方形ABCD与正方形CEFH如图放置,连接DE,BH,两线交于M,求证:(1)BH=DE;(2)BH⊥DE.A DM HB C FE第23题图4ïïïï ï 参考答案一、 选择题题号 1 答案A2 C3 C4 B5 D6 B7 C8 D二、填空题题号 9 答案1 10 1 11 b 12 2+ 13 (5,4) 14715332三、 解答题 16.(1) 3 2 + 1 (4 分)(2) 7a 2 2a (4 分)17.a =5; ……………………3 分5≤x ≤10 ……………………8 分18.(1)周长 26 + 3 5 + 17 ……………………3 分面积 14.5 ……………………6 分(2)是……………………7 分,证明:略.……………………9 分 19.(1)略 5分 (2)略 9分 20.(1)略 5分 (2)证出 AE 是高 8 分,AE = 2 3 10 分21.证明:(1)∵CF ∥BD∴∠DOE =∠CFE ,∵E 是 CD 的中点,∴CE =DEì ? DOE ? CFE 在△ODE 和△FCE 中, í CE = DE ,∴△ODE ≌△FCE (ASA )ïî ? DEO ? CEF∴OD =CF .……………………6 分(2)由(1)知 OD =CF ,∵CF ∥BD ,∴四边形 ODFC 是平行四边形在矩形 ABCD 中,OC =OD ,∴四边形 ODFC 是菱形.……………………10 分22.解法一:∵四边形 ABCD 为矩形,∴∠BAD =90°, OB =OD ,AC =BD ,又∵OF ⊥AD ,∴OF ∥AB ,又∵OB =OD ,∴ AB =2OF =4cm ,∵BE ︰BD =1︰4,∴BE ︰ED =1︰3 ……………………3 分 设 BE =x ,ED =3 x ,则 BD =4 x ,∵AE ⊥BD 于点 E∴ AE 2 = AB 2 - BE 2 = AD 2 - ED 2 ,∴16-x 2=AD 2-9x 2……… ………6 分 又∵AD 2=BD 2-AB 2=16 x 2-16 ,∴16-x 2=16 x 2-16-9x 2,8 x 2=32 ∴x 2=4,∴x =2 ……………………9 分 ∴BD =2×4 =8(cm ),∴AC =8 cm . ……………………10 分解法二:在矩形 ABCD 中,BO =OD =12BD ,∵BE ︰BD =1︰4,∴BE ︰BO =1︰2,即 E 是 BO 的中点……………………3 分 又 AE ⊥BO ,∴AB =A O ,由矩形的对角线互相平分且相等,∴AO =BO ……………………5 分 ∴△ABO 是正三角形,∴∠BAO =60°,∴∠OAD =90°-60°=30° ……………………8 分 在 Rt△AOF 中,AO =2OF =4,∴AC =2AO =8……………………10 分23.(1)提示:证明:△BCH ≌△DCE (SAS ) ……………………6 分(2)由(1)知 △BCH ≌△DCE ∴∠CBH =∠EDC设 BH ,CD 交于点 N ,则∠BNC =∠ DNH ∴∠CBH +∠BNC =∠EDC +∠DNH =90° ∴∠DMN =180°-90°=90°∴BH ⊥DE .……………………11 分5。
【北师大版】初二数学下期中试卷带答案
一、选择题1.如图,已知△ABC 中,点M 是BC 边上的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,若AB =8,MN =2,则AC 的长为( )A .12B .11C .10D .92.如图,在ABCD 中,AD= 10,点M 、N 分别是BD 、CD 的中点,则MN 等于( )A .4B .5C .6D .不能确定 3.如图,12l l //,平行四边形ABCD 的顶点A 在1l 上,BC 交2l 于点E ,若∠C=110°,则∠1+∠2= ( )A .110°B .90°C .80°D .70°4.现在汽车已成为人们出行的交通工具.李刚、王勇元旦那天相约一起到某加油站加油,当天95号汽油的单价为m 元/升,他俩加油的情况如图所示.半个月后的某天,他俩再次相约到同一加油站加油,此时95号汽油的单价下调为n 元/升,他俩加油的情况与上次相同,请运用所学的数学知识计算李刚、王勇两次加油谁的平均单价更低?低多少?下列结论正确的是( )A .李刚比王勇低()22m n mn -元/升B .王勇比李刚低()22mn m n -元/升 C .王勇比李刚低()22m n mn -元/升D .李刚与王勇的平均单价都是2m n +元/升 5.在一只不透明的口袋中放入5个红球,4个黑球,n 个黄球,这些球除颜色不同外,其他无任何差别.搅匀后随机从中摸出一个球恰好是黄球的概率为25,则放入口袋中的黄球的个数n 是( ) A .6B .5C .4D .3 6.关于x 的分式方程5222m x x +=--有增根,则m 的值为( ) A .2m = B .2m =- C .5m = D .5m =- 7.设,,a b c 是三角形的三边长,且满足222a b c ab bc ca ++=++,关于此三角形的形状有以下判断:①是直角三角形; ②是等边三角形; ③是锐角三角形;④是钝角三角形,其中正确的说法的个数有( )A .1个B .2个C .3个D .4个 8.如果917255+能被n 整除,则n 的值可能是( )A .20B .30C .35D .40 9.下列各式从左边到右边的变形,是因式分解的为( )A .5()5ab ac a b c ++=++B .21(1)(1)a a a -=+-C .222()2a b a ab b +=++D .22a b ab = 10.在平面直角坐标系中,点A (2, -1)向右平移3个单位,再向上平移2个单位得到点B ,则线段AB 的长度是 ( )A .8 BCD.11.若关于x 的不等式组5335x x x a -+⎧⎨⎩><无解,则a 的取值范围为( ) A .a <4 B .a=4C .a≤4D .a≥4 12.如图,在ABD ∆中,AD AB =,90DAB ︒∠=,在ACE ∆中,AC AE =,90EAC ︒∠=,CD ,BE 相交于点F ,有下列四个结论: ①BDC BEC ∠=∠;②FA 平分DFE ∠;③DC BE ⊥;④DC BE =.其中,正确的结论有( )A .①②③④B .①③④C .②③D .②③④二、填空题13.如图,ABC 的中线AD 与高CE 交于点F ,AE EF =,2FD =,24ACF S =△,则AB 的长为__________.14.某数学学习小组发现:通过连多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角钱共有3条,那么该多边形的内角和是______度.15.已知5a b +=,6ab =,b a a b+=______. 16.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人.17.若2a =,3a b -=,则2a ab -的值是_________.18.点P (m +2,2m +1)向右平移1个单位长度后,正好落在y 轴上,则m =_____. 19.关于x 的方程231x k +=的解是非负数,则k 的取值范围是___________. 20.如图,在等腰△ABC 中,AC =BC =5,AB =6,D 、E 分别为AB 、AC 边上的点,将边AD 沿DE 折叠,使点A 落在CD 上的点F 处,当点F 与点C 重合时,AD =____________.三、解答题21.如图,在▱ABCD 中,DE =CE ,连接AE 并延长交BC 的延长线于点F.(1)求证:△ADE ≌△FCE ;(2)若AB =2BC ,∠F =36°,求∠B 的度数.22.为切实做好新冠肺炎的防控工作,贯彻落实“预防为主,安全第一”的方针,某学校计划购买A 、B 两种品牌的消毒液,已知B 品牌消毒液每瓶的价格是A 品牌消毒液每瓶价格的2倍少20元,用600元买A 品牌消毒液的数量与用800元购买B 品牌消毒液的数量相同.(1)求A 、B 两种品牌消毒液每瓶的价格各是多少元?(2)若该校一次性购买A 、B 两种品牌的消毒液分别为20瓶和30瓶,请问该校此次购买消毒液花费为多少元?23.(1)分解因式:()()22 4?a x yb x y ---; (2)计算:()()222322a a b ab b a a b a b ⎡⎤---÷⎣⎦. 24.矩形ABCD 中,AB =4,AD =8,将矩形ABCD 绕点C 顺时针旋转,AD 交CBʹ于点E . (1)如图1,当∠BCE =60°,△CDDʹ的形状是 ;(2)如图2,当AE=CE 时,求阴影部分的面积.25.如图,在ABC 中,按以下步骤作图:①以B 为圆心,任意长为半径作弧,交AB 于D ,交BC 于E ;②分别以D ,E 为圆心,以大于12DE 的同样长为半径作弧,两弧交于点F ;③作射线BF 交AC 于G .如果6AB =,8BC =,ABG 的面积是15,求CBG 的面积.26.解不等式组2536x x +<⎧⎨-<⎩,并把解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】延长BN 交AC 于D ,证明△ANB ≌△AND ,根据全等三角形的性质、三角形中位线定理计算即可.【详解】解:延长BN 交AC 于D ,在△ANB 和△AND 中,90NAB NAD AN ANANB AND ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△ANB ≌△AND ,∴AD=AB=8,BN=ND ,∵M 是△ABC 的边BC 的中点,∴DC=2MN=4,∴AC=AD+CD=12,故选:A .【点睛】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.2.B解析:B【分析】利用平行四边形的性质和三角形的中位线定理即可解决问题.【详解】∵四边形ABCD 是平行四边形,∴BC=AD=10,∵点M 、N 分别是BD ,CD 的中点,∴MN=12BC=5, 故选:B .【点睛】 本题考查了平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握基本知识.3.D解析:D【分析】由平行四边形的性质得出∠BAD=∠C=110°,AD ∥BC ,由平行线的性质得出∠2=∠ADE ,∠ADE+∠BAD+∠1=180°,得出∠1+∠2=180°-∠BAD=70°即可.【详解】∵四边形ABCD 是平行四边形,∴∠BAD=∠C=110°,AD ∥BC ,∴∠2=∠ADE ,∵l 1∥l 2,∴∠ADE+∠BAD+∠1=180°,∴∠1+∠2=180°-∠BAD=70°;故选:D .【点睛】本题考查了平行四边形的性质、平行线的性质;熟练掌握平行四边形的性质和平行线的性质是解题的关键.4.A解析:A【分析】先求解李刚两次加油每次加300元的平均单价为每升:2mn m n +元,再求解王勇每次加油30升的平均单价为每升:2m n +元,再利用作差法比较两个代数式的值,从而可得答案. 【详解】解:李刚两次加油每次加300元,则两次加油的平均单价为每升: ()6006002300300300mn m n m n m n mn==+++(元),王勇每次加油30升,则两次加油的平均单价为每升:3030602m n m n ++=(元), ()()()224222m n m n mn mn m n m n m n ++∴-=-+++ ()()()222222m n m mn n m n m n --+==++ 由题意得:,m n ≠ ()()22m n m n -∴+>0, ∴ 2m n +>2mn m n +. 故A 符合题意,,,B C D 都不符合题意,故选:.A【点睛】本题考查的是列代数式,分式的加减运算,代数式的值的大小比较,掌握以上知识是解题的关键.5.A解析:A【分析】根据摸到黄球的概率已知列式计算即可;【详解】 由题可得:2545nn =++, 解得:6n =;经检验,6n =是原方程的根,故选:A .【点睛】本题主要考查了概率的求解,准确计算是解题的关键.6.D解析:D【分析】先把分式方程化为整式方程,再把增根代入整式方程,即可求解.【详解】5222m x x+=-- 去分母得:52(2)x m +-=-,∵关于x 的分式方程5222m x x+=--有增根,且增根x=2, ∴把x=2代入52(2)x m +-=-得,5m =-,即:m=-5, 故选D .【点睛】本题主要考查分式方程的增根,掌握分式方程增根的定义:使分式方程的分母为零的根,叫做分式方程的增根,是解题的关键.7.B解析:B【分析】先将原式转化为完全平方公式,再根据非负数的性质得出a b c ==.进而判断即可.【详解】∵222a b c ab bc ca ++=++,∴222222222a b c ab bc ca ++=++,即()()()2220a b b c a c -+-+-=,∴a b c ==,∴此三角形为等边三角形,同时也是锐角三角形.故选:B .【点睛】本题考查了因式分解的应用,根据式子特点,将原式转化为完全平方公式是解题的关键. 8.B解析:B【分析】两项的底数可以进行转化,25写成5的平方,利用幂的乘方转化后,就可提取公因数进行分解即可解答.【详解】()91718171717162555555156530+=+=⨯+=⨯=⨯,917255∴+能被n 整除,则n 的值可能是30,故选B .【点睛】本题考查了分解因式在计算中的应用,将所给的式子化成积的形式,关键是将两项的底数转化成相同的.9.B解析:B【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】A. 5()5ab ac a b c ++=++,结果不是整式积的形式,故错误;B. 21(1)(1)a a a -=+-,正确;C. 222()2a b a ab b +=++,是多项式乘法,不是因式分解,错误;D. 22a b ab =,左边是单项式,不是因式分解,错误;故选:B【点睛】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.10.C解析:C【分析】首先确定B 点坐标,然后利用勾股定理计算出线段AB 的长度.【详解】点A (2,-1)向右平移3个单位,再向上平移2个单位得到点B ,则B (2+3,-1+2),即B (5,1),线段AB=,故选:C .【点睛】本题主要考查了坐标与图形的变化-平移,以及勾股定理的应用,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减. 11.C解析:C【解析】解:5335x x x a -+⎧⎨⎩>①<②,由①得:x >4.∵不等式组无解,∴a ≤4.故选C . 点睛:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 12.D解析:D【分析】由△ABD 和△ACE 都是等腰直角三角形得出AB=AD ,AE=AC ,∠BAD=∠CAE=90°,再进一步得出∠DAC=∠BAE 证得△ABE ≌△ADC ,可以判断①③④;作AP ⊥CD 于P ,AQ ⊥BE 于Q ,利用面积相等证得AP= AQ ,再利用角平分线的判定定理即可判断②.【详解】∵△ABD 和△ACE 都是等腰直角三角形,∴AB=AD ,AE=AC ,∠BDA=∠ECA=45︒,又∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC ,即:∠DAC=∠BAE ,在△ABE 和△ADC 中,AB AD BAE DAC AE AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADC (SAS ),∴BE=DC ,故④正确;∠ADF=∠ABF ,∴∠BDC=45︒-∠ADF ,∠BEC=45︒-∠AEF ,而∠ADF=∠ABF ≠∠AEF ,∴∠BDC ≠∠BEC ,故①错误;∵∠ADF+∠FDB+∠DBA=90°,∴∠FDB+∠DBA+∠ABF=90°,∴∠DFB=90°,∴CD ⊥BE ,故③正确;作AP ⊥CD 于P ,AQ ⊥BE 于Q ,∵△ABE ≌△ADC ,∴ABE ADC S S =,∵BE=DC ,∴AP= AQ ,∵AP ⊥CD ,AQ ⊥BE ,∴FA 平分∠DFE ,故②正确;综上,②③④正确;故选:D .【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,角平分线的判定,熟练掌握全等三角形的判定与性质是解本题的关键.二、填空题13.【分析】延长AD 作交于点H 过点D 作根据题意可证明是等腰直角三角形结合中位线的性质证明继而证明是等腰直角三角形由勾股定理解得再根据三角形面积公式解得CH 的值设EF=x 由线段和差关系得到从而解出x 的值即 解析:62【分析】延长AD ,作AH CH ⊥交于点H ,过点D 作DQ CF ⊥,根据题意可证明AEF 是等腰直角三角形,结合中位线的性质,证明//DQ BE ,继而证明FDQ 是等腰直角三角形,由勾股定理解得2FQ DQ ==,再根据三角形面积公式解得CH 的值,设EF=x ,由线段和差关系得到EF FQ FC FQ +=-,从而解出x 的值即可.【详解】延长AD ,作AH CH ⊥交于点H ,过点D 作DQ CF ⊥,CE AB ⊥且AE=AF ,AEF ∴是等腰直角三角形,45EAF EFA ∴∠=∠=︒又90DQC BEC ∠=∠=︒,D 为BC 中点,//DQ BE ∴,且Q 为CE 中点EQ CQ ∴= 即:EF+FQ=FC-FQ45AEF ∠=︒45QFD ∴∠=︒FDQ ∴是等腰直角三角形,又2FD =2FQ DQ ∴==设EF=x ,在等腰直角三角形AEF 中,AE=EF=x ,2AF x =1242ACF S AF CH ∴=⋅⋅= 242CH x ∴=在等腰直角三角形FHC 中,48CF x∴= EF FQ FC FQ +=-48x x ∴=2248480x x ∴=∴+-=x ∴=x =-(舍去)EF AE ∴==1//,2QE BE QE BE =BE ∴=AB ∴==故答案为:【点睛】本题考查等腰直角三角形的判定与性质、中位线的性质、勾股定理等知识,是重要考点,有一定难度,掌握相关知识是解题关键.14.720【分析】由多边形的一个顶点出发的对角线共有(n-3)条可求出边数然后求内角和【详解】∵多边形的一个顶点出发的对角线共有(n-3)条∴n-3=3∴n=6∴内角和=(6-2)×180°=720°故解析:720【分析】由多边形的一个顶点出发的对角线共有(n-3)条可求出边数,然后求内角和.【详解】∵多边形的一个顶点出发的对角线共有(n-3)条,∴n-3=3,∴n=6,∴内角和=(6-2)×180°=720°,故答案是:720.【点睛】本题运用了多边形的内角和定理,关键是要知道多边形的一个顶点出发的对角线共有(n-3)条.15.【分析】原式整理成再整体代入即可求解【详解】∵∴故答案为:【点睛】本题主要考查分式的加减法解题的关键是掌握分式的加减运算法则和完全平方公式 解析:136原式整理成222()2b a b a a b ab a b ab ab++-+==,再整体代入即可求解. 【详解】∵5a b +=,6ab =, ∴222()2b a b a a b ab a b ab ab++-+== 25266-⨯= 136=. 故答案为:136. 【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和完全平方公式. 16.6【分析】先设第一组有x 人则第二组人数是15x 人根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1根据等量关系列出方程即可【详解】解:设第一组有解析:6【分析】先设第一组有x 人,则第二组人数是1.5x 人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方程即可.【详解】解:设第一组有x 人. 根据题意,得242711.5x x-=, 解得x=6.经检验,x=6是原方程的解,且符合题意.答:第一组有6人,故答案为6.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验. 17.6【分析】首先提取公因式进而将已知代入求出即可【详解】故答案为:6【点睛】此题考查因式分解整式的求值计算将多项式分解因式后进行计算较为简便解析:6首先提取公因式a ,进而将已知代入求出即可.【详解】2a =,3a b -=,2()236a ab a a b ∴-=-=⨯=.故答案为:6.【点睛】此题考查因式分解,整式的求值计算,将多项式分解因式后进行计算较为简便 . 18.-3【详解】点P (m+22m+1)向右平移1个单位长度后正好落在y 轴上则故答案为:-3解析:-3【详解】点P (m+2,2m+1)向右平移1个单位长度后(3,21)m m ++ ,正好落在y 轴上,则30,3m m +==-故答案为:-319.【分析】解方程用字母k 表示方程的解由解为非负数则构造关于k 的不等式问题可解【详解】解:解方程得∵方程的解是非负数∴解得故答案为【点睛】本题综合考查了一元一次方程和不等式解答关键是解出含有字母系数的一 解析:13k ≤ 【分析】解方程用字母k 表示方程的解,由解为非负数,则构造关于k 的不等式问题可解.【详解】解:解方程231x k +=得132k x -= ∵方程的解是非负数 ∴1302k -≥ 解得 13k ≤ 故答案为13k ≤【点睛】本题综合考查了一元一次方程和不等式,解答关键是解出含有字母系数的一元一次方程,按要求列出不等式. 20.【分析】由题意可知当C 和F 重合时DE 为AC(F)的中垂线过C 作CG 垂直于AB 交AB 于G 点可得AG=3CG=4设:AD=x 则BD=6-x 由已知可得DG=x-3在Rt △CDG 中由勾股定理列出方程可求得x 解析:256【分析】由题意可知,当C 和F 重合时,DE 为AC (F )的中垂线,过C 作CG 垂直于AB 交AB 于G 点,可得AG=3,CG=4,设:AD =x,则BD =6-x ,由已知可得DG=x-3,在Rt △CDG 中,由勾股定理列出方程可求得x ,即为AD .【详解】解:由题意可知,当C 和F 重合时,如下图由于AD 沿DE 折叠至CD ,故DE 为AC (F )的中垂线过C 作CG 垂直于AB 交AB 于G 点 设AD =x ,由中垂线性质可得,CD =AD =x ,则BD =6-x ;∵AC =5,CG 为等腰△ABC 底边AB 上的高,且AB =6∴132AG BG AB ===,CG =4, ∴DG =BG -BD =x -3; 在Rt △CDG 中,由勾股定理,得:CG ²+DG ²=CD ²;即:2224(3)x x +-=;解得:221669x x x +-+=;∴256x 故答案为:256 【点睛】本题是几何变换综合题,考查了勾股定理,垂直平分线的性质等知识,解题的关键在于画出图形和掌握作辅助线.三、解答题21.(1)见解析;(2)108°【分析】(1)利用平行四边形的性质得出AD ∥BC ,AD=BC ,证出∠D=∠ECF ,由ASA 即可证出△ADE ≌△FCE ;(2)证出AB=FB ,由等腰三角形的性质和三角形内角和定理即可得出答案.【详解】证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠D=∠ECF ,在△ADE 和△FCE 中,D ECF DE CEAED FEC ===∠∠⎧⎪⎨⎪∠∠⎩∴△ADE ≌△FCE (ASA );(2)∵△ADE ≌△FCE ,∴AD=FC ,∵AD=BC ,AB=2BC ,∴AB=FB ,∴∠BAF=∠F=36°,∴∠B=180°-2×36°=108°.【点睛】运用了平行四边形的性质,全等三角形的判定与性质,等腰三角形的性质、三角形内角和定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.22.(1)A 种品牌消毒液每瓶的价格是30元,B 种品牌消毒液每瓶的价格是40元;(2)1800元【分析】(1)设A 种品牌消毒液每瓶的价格是x 元,则B 种品牌消毒液每瓶的价格是(220)x -元;根据题意列分式方程并求解,即可得到答案;(2)结合(1)的结论,根据题意计算A 、B 两种品牌的消毒液花费,即可得到答案.【详解】(1)设A 种品牌消毒液每瓶的价格是x 元,则B 种品牌消毒液每瓶的价格是(220)x -元 根据题意得:600800220x x =- 解得:30x =经检验,30x =是原方程的解∴22040x -=元∴A 种品牌消毒液每瓶的价格是30元,B 种品牌消毒液每瓶的价格是40元;(2)A 种品牌的消毒液花费为:2030600⨯=(元) B 种品牌的消毒液花费为:30401200⨯=(元)共花费为: 60012001800+=(元),∴该校此次购买消毒液花费为1800元.【点睛】本题考查了分式方程、有理数运算的知识;解题的关键是熟练掌握分式方程、有理数运算的性质,从而完成求解.23.(1)()()()22x y a b a b -+-;(2)1ab -. 【分析】(1)提取公因式()x y -后,再利用平方差公式分解即可; (2)中括号内先利用单项式乘多项式展开,再合并同类项,然后利用多项式除以单项式法则计算即可.【详解】(1)()()224?a x y b x y --- ()()22 4x y a b =-- ()()() 2?2x y a b a b =-+-;(2)()()222322a a b ab b a a b a b ⎡⎤---÷⎣⎦ ()3222322 2a b a b a b a b a b =--+÷()32222?2?2a b a b a b =-÷ 1?ab =-.【点睛】本题考查了因式分解以及整式的混合运算,涉及的知识有:平方差公式,单项式乘多项式法则,多项式除以单项式法则以及合并同类项法则,熟练掌握运算法则是解本题的关键. 24.(1)等边三角形;(2)6【分析】(1)根据旋转的性质和等边三角形的判定方法,∠BCE=60°=∠DCDʹ,DC=DʹC 可得△CDDʹ为等边三角形.(2)由勾股定理得,CD 2+DE 2=CE 2,假设CE 为x ,DE=8-x ,列方程,求出DE 的长度,再根据三角形的面积公式,得出阴影面积.【详解】(1)△CDDʹ的形状是等边三角形,∵矩形ABCD 绕点C 顺时针旋转,∴∠BCE=60°=∠DCDʹDC=DʹC∴△C DDʹ为等边三角形(2)在△CDE 中,由勾股定理得,CD 2+DE 2=CE 2设CE 为x ,则DE=8-x∴42+(8-x )2=x 2解得,x =5,∴DE=8-5=3S 阴影=12DE CD ⋅=1342⨯⨯=6. 【点睛】 本题考查了旋转的性质,和勾股定理的应用,解题的关键是掌握旋转的性质,会利用勾股定理求线段的长度.25.20【分析】如图,过点G 作GM ⊥AB 于M ,GN ⊥BC 于N .证明GM =GN ,求出GM ,即可解决问题.【详解】解:如图,过点G 作GM ⊥AB 于M ,GN ⊥BC 于N .由作图可知,GB 平分∠ABC ,∵GM ⊥AB ,GN ⊥BC ,∴GM =GN ,∵S △ABG =12×AB×GM =15,6AB =, ∴GM =5,∴GN =GM =5,∴S △CBG =12•BC•GN =12×8×5=20. 【点睛】本题考查作图−基本作图,角平分线的性质定理,三角形的面积等知识,解题的关键是学会添加常用辅助线,利用角平分线的性质定理解决问题,属于中考常考题型.26.23x -<<,数轴见解析【分析】分别求解不等式,即可得到答案.【详解】解:不等式组得:32x x <⎧⎨>-⎩, ∴不等式组的解集为23x -<<..【点睛】此题考查求不等式组的解集,利用数轴表示不等式组的解集,正确解不等式是解题的关键.。
北师大版八年级下册数学书答案
北师大版八年级下册数学书答案【篇一:最新北师大版八年级下数学期中测试卷及答案】xt>(90分钟满分100分)沉着、冷静、快乐地迎接期中考试,相信你能行!班级:姓名得分:一、选择题(每小题3分,共30分)一.选择题2.(2013贵州省黔西南州,8,4分)在平行四边形、等腰梯形、等腰三角形、矩形、菱形五个?x?2>0,?3.(2013山东临沂,8,3分)不等式组?x的解集是()?1≥x?3??2a.x≥8 b.x>2 c.0<x<2d.2<x≤84.(2013山东滨州,11,3分)若把不等式组??2?x≥??,的解集在数轴上表示出来,则其对应x??≥???的图形为a.长方形b.线段c.射线d.直线5.(2013四川宜宾,3,3分)不等式x?2的解集在数轴上表示为( )6. (2013福建福州,6,4分)不等式1+x<0的解集在数轴上表示正确的是()a.b. c. d.7.(2013陕西,9,3分)如图,在四边形错误!未找到引用源。
中,对角线ab=ad,cb=cd,若连接ac、bd相交于点o,则图中全等三角形共有()a.1对 b.2对c.3对 d.4对8 . [2013湖南邵阳,10,3分]如图(三)所示,点e是矩形abcd的边ad延长线上的一点,且dad=de,连结be交cd于点o,连结ao.下列结论不正确的是() aa.△aob≌△bocb.△boc≌△eodb.c.△aod≌△eod d.△aod≌△boc o cb9. (2013广东省,8,3分)不等式5x-1>2x+5 的解集在数轴上表示正确的是e10.(2013四川乐山,5,3分)如图,点e是?abcd的边cd的中点,ad、be的延长线相交于点f,df=3,de=2,则错误!未找到引用源。
abcd的周长为【】a.5 b.7c.10 d.14二、填空题(每小题3分,共21分)1.(2013重庆市(a),14,4分)不等式2x-3≥x的解集是.2.(2013贵州安顺,16,4分)若关于x的不等式(1-a)x>2可化为x<范围是 .3. (湖南株洲,14,3分) 一元一次不等式组?2,则a的取值1?a?3x?2?0的解集是. x?1?0?4.(2013山东德州,17,4分)如图,在正方形abcd中,边长为2的等边三角形aef的顶点e、f分别在bc和cd上,下列结论:①ce=cf②∠aeb=75③be+df=ef④s正方形abcd=2+错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
E
2014-2015学年度
八年级下期中数学试卷
一、 选择题(5小题,每题7分,共35分) 1. 已知x >y ,下列不等式一定成立的是( ) A. ax >ay B .3x <3y C .-2x <-2y D .a 2
x >a 2
y
2.不等式2x +3≥5的解集在数轴上表示正确的是( )
3. 如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列一个条件后,仍无法判
定△ADF ≌△CBE 的是( ) A.∠A=∠C B .AD=CB C .BE=DF D .AD ∥BC
4.已知不等式组⎩
⎨⎧>>2x a
x 的解集是
2>x ,则a 的取值范围是( )
A. 2≤a B .2<a C .2=a D .2>a
5.如图,将周长为8cm 的△ABC 沿BC 方向平移1cm 得到△DEF ,则四边形
ABFD 的周长为( )
A. 9cm B .10cm
C .11cm
D .12cm
二、填空题(3小题,每题7分,共21分)
6. 已知一个等腰三角形的底边长为5,这个等腰三角形的腰长为x
,则x
的取值范围是 。
7. 一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式
0kx b +>的解集是__________________。
8.如图,Rt △
ABC 中,∠C=90°,
BC=15,斜边AB 的垂直平分线DE 与∠CAB
三、解答题(3道题,分值为12分,16分,16分,共44分)
9.解不等式组,并把不等式组的解集表示在数轴上。
()⎪⎩
⎪⎨
⎧+<-≤+--1315121
5312x x x x
x
b +
10.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D 作DE⊥AB于点E.
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长.11.一堆玩具分给若干个小朋友,若每人分3件,则剩余4件;若前面每人分4件,则最后一人得到的玩具数不足3件。
求小朋友的人数与玩具数。
2
3
2014-2015学年度
八年级下期中数学试卷参考答案
6.x >2.5 7.x >-2 8. 5
三、 解答题(3道题,分值为12分,16分,16分,共44分)
9.解:
()
⎪⎩
⎪
⎨⎧+<-≤+--1315121
53
12x x x x
①
②
解不等式
①得:x ≥-1……………3分
解不等式
②得:x<2……………6分
∴原不等式组的解集是-1≤x ≤2……………9分
数轴表示:略……………12分
10. (1)证明:∵AD 平分∠CAB
∴∠CA D=∠EAD ...............2分 ∵ DE⊥AB ∠C=90° ∴∠C =∠AED=90° (4)
又∵ AD=AD ……………6分
∴△ACD≌△AED (AAS)……………8分
(2)解:∵AD 平分∠CAB DE⊥AB
∠C=90°
∴ED=CD ……………11分 ∵ CD=1
∴ED=CD=1……………13分
∵ ∠B ED=90° ∠B=30°……………14分
∴BD=2ED=2……………16分
11.解:设小朋友有x 人,那么玩具数为(3x+4)件,则:
0<(3x+4)-4(x-1)<3 ……………5分 解得:5<x <8 ……………8分
∵x 是正整数
∴x 取6或7 ……………11分
当x=6时,玩具数3x+4=3×6+4=22(件)……………13分 当x=7时,玩具数3x+4=3×7+4=25(件)……………15分
答:小朋友有6人时,玩具数为22件;小朋友有7人时,玩具数为25件. ……………16分。