WLAN应用中H形紧凑MIMO天线的互耦抑制(IJWMT-V7-N6-5)

合集下载

《2024年面向5G移动终端的MIMO天线设计与研究》范文

《2024年面向5G移动终端的MIMO天线设计与研究》范文

《面向5G移动终端的MIMO天线设计与研究》篇一一、引言随着5G时代的到来,移动通信技术正在飞速发展。

多输入多输出(MIMO)技术因其能显著提高频谱效率和数据传输速率而成为5G通信系统的关键技术之一。

面向5G移动终端的MIMO 天线设计与研究,对于提升移动通信系统的性能具有重要意义。

本文将介绍面向5G移动终端的MIMO天线设计的基本原理、设计方法以及研究进展。

二、MIMO天线的基本原理与优势MIMO(Multiple-Input Multiple-Output)技术是一种利用多个发射天线和接收天线进行数据传输的技术。

其基本原理是通过在发送端和接收端分别设置多个天线,利用信号的空间传播特性,实现信号的并行传输和接收,从而提高通信系统的频谱效率和数据传输速率。

MIMO技术的优势在于能够有效地对抗多径干扰和信号衰落,提高通信系统的可靠性和稳定性。

三、面向5G移动终端的MIMO天线设计1. 设计要求与挑战面向5G移动终端的MIMO天线设计需要满足小型化、集成化、高效率等要求。

同时,由于5G信号的频率较高,天线的设计还需要考虑信号的传播特性和相互干扰等问题。

此外,移动终端的有限空间也给天线设计带来了挑战。

2. 设计方法与实现(1)小型化设计:通过采用新型材料、优化天线结构、提高天线的工作效率等方法,实现MIMO天线的小型化设计。

(2)集成化设计:将多个天线集成在一起,以减少移动终端的空间占用和成本。

同时,集成化设计还可以提高天线的性能和可靠性。

(3)高效能优化:采用电磁仿真软件和算法对天线进行优化,以提高天线的辐射效率和增益。

同时,还需要考虑天线的阻抗匹配和信号的相互干扰等问题。

四、MIMO天线的性能评估与实验验证1. 性能评估指标MIMO天线的性能评估主要包括辐射效率、增益、阻抗匹配、信号的相互干扰等指标。

这些指标可以通过实验测试和仿真分析来评估。

2. 实验验证方法通过搭建5G通信系统实验平台,对MIMO天线的性能进行实验验证。

《2024年面向5G移动终端的MIMO天线设计与研究》范文

《2024年面向5G移动终端的MIMO天线设计与研究》范文

《面向5G移动终端的MIMO天线设计与研究》篇一一、引言随着5G技术的快速发展,移动通信设备的需求和性能要求也在不断提高。

多输入多输出(MIMO)技术作为5G通信系统中的关键技术之一,其天线设计的重要性不言而喻。

本文旨在研究和设计面向5G移动终端的MIMO天线,以提高通信系统的性能和可靠性。

二、MIMO天线技术概述MIMO(Multiple-Input Multiple-Output)技术是一种利用多根天线进行数据传输的技术,可以在不增加频谱资源和天线发射功率的情况下,提高系统的信道容量和传输速率。

在5G移动通信系统中,MIMO技术的应用对于提高系统的性能和可靠性具有重要意义。

三、5G移动终端MIMO天线设计3.1 设计要求针对5G移动终端的MIMO天线设计,我们需要考虑以下要求:(1)高效率:天线应具有较高的辐射效率和转换效率,以保证信号的传输质量。

(2)高隔离度:多根天线之间的隔离度要高,以避免信号干扰和衰减。

(3)小型化:天线尺寸应尽可能小,以适应5G移动终端的紧凑型设计。

(4)多频段支持:天线应支持多个频段,以满足5G系统的频谱需求。

3.2 设计方案针对上述要求,我们提出了一种基于分形结构和介质谐振的MIMO天线设计方案。

该方案通过优化天线的结构参数和介质材料,实现了高隔离度、小型化和多频段支持的设计目标。

具体来说,我们采用了分形结构来减小天线的尺寸,同时利用介质谐振器来提高天线的辐射效率和转换效率。

此外,我们还通过优化天线间的距离和角度,提高了多根天线之间的隔离度。

四、仿真与实验分析为了验证所设计MIMO天线的性能,我们进行了仿真和实验分析。

首先,我们利用电磁仿真软件对天线进行了建模和仿真,得到了天线的辐射特性、阻抗特性和隔离度等参数。

然后,我们制作了实际的天线样品,并在实验室环境下进行了实验测试。

测试结果表明,所设计的MIMO天线具有较高的辐射效率、转换效率和隔离度,能够满足5G移动终端的通信需求。

《面向5G移动终端的MIMO天线设计与研究》范文

《面向5G移动终端的MIMO天线设计与研究》范文

《面向5G移动终端的MIMO天线设计与研究》篇一一、引言随着移动互联网技术的迅猛发展,5G时代已来临,对移动通信设备的性能提出了更高的要求。

多输入多输出(MIMO)技术作为5G网络的关键技术之一,其天线设计的重要性不言而喻。

本文将针对面向5G移动终端的MIMO天线设计与研究进行深入探讨,旨在提高5G移动终端的通信性能和系统容量。

二、MIMO天线技术概述MIMO(Multiple-Input Multiple-Output)技术是一种在无线通信系统中广泛应用的信号处理技术。

通过在发射端和接收端分别设置多个天线,MIMO技术能够有效地提高系统的信道容量和传输速率,同时降低信号的干扰和衰落。

在5G时代,MIMO天线技术更是成为了提高频谱效率和提升通信质量的关键手段。

三、5G移动终端MIMO天线设计1. 设计要求针对5G移动终端的MIMO天线设计,需要满足以下要求:首先,要保证天线在多个频段上的良好性能;其次,要降低天线间的相互干扰,提高系统的隔离度;此外,还需考虑天线的尺寸、重量以及制造成本等因素。

2. 设计方案(1)天线结构优化:采用紧凑型结构设计,减小天线的尺寸和重量,同时保证其在多个频段上的性能。

(2)多频段覆盖:设计具有多频段覆盖能力的MIMO天线,以满足5G网络的不同频段需求。

(3)隔离度提升:通过采用特殊的天线布局和电路设计,降低天线间的相互干扰,提高系统的隔离度。

(4)仿真与优化:利用电磁仿真软件对设计方案进行仿真验证,根据仿真结果进行优化设计。

四、MIMO天线性能研究1. 仿真与测试通过电磁仿真软件对设计的MIMO天线进行仿真验证,包括天线的辐射特性、阻抗特性以及信号传输特性等。

然后在实际环境中对天线进行测试,评估其性能表现。

2. 性能分析(1)频谱效率:通过对比实验数据和仿真结果,分析MIMO天线的频谱效率,评估其在提高系统容量的作用。

(2)抗干扰能力:分析MIMO天线在复杂电磁环境下的抗干扰能力,评估其在实际应用中的性能表现。

一种基于中和线去耦结构的高隔离度_WLAN_天线设计分析

一种基于中和线去耦结构的高隔离度_WLAN_天线设计分析

CE MAGAZINE PAGE 30一种基于中和线去耦结构的高隔离度WLAN 天线设计分析汪建安 潘旭 安凯 罗阳 王飞【摘 要】笔者设计了一种通过中和线去耦结构来改善笔记本电脑的高隔离度WLAN 天线,天线覆盖2.4GHz/5GHz/WiFi-6E 频段。

天线整体尺寸为90mm*9.2mm*0.4mm,并且MIMO 单元天线形式为一种PIFA 形式。

仿真表明,通过在MIMO 单元天线之间增加带有两个寄生枝节的中和线去耦结构能够有效地提高MIMO 单元天线之间的隔离度。

单元天线端口之间在2.4~2.484GHz 和5.15~7.125GHz 频段内具有较高的隔离度(S21<20 dB)。

同时,天线结构简单,成本低,能够应用在实际的笔记本终端产品。

【关键词】多输入多输出(MIMO)天线;中和线去耦;天线隔离度作者简介:汪建安,合肥联宝信息技术有限公司,助理工程师;潘旭,合肥联宝信息技术有限公司,中级工程师;安凯,合肥联宝信息技术有限公司,助理工程师;罗阳,合肥联宝信息技术有限公司,助理工程师;王飞,合肥联宝信息技术有限公司,助理工程师引言在当前的通信领域之中,无线移动通信发展得最为快速,同时也是最为活跃的领域。

但是在无线通信技术快速发展的同时,用户对于通信产品的要求越来越高,特别是对于设备数据的传输速率、信道质量、信道容量等需求越来越高[1]。

为了实现更高的数据吞吐量以及更短的通信延迟,多输入多输出(MIMO)技术已经广泛运用于第5代与第6代无线局域网(Wireless Local Area Network, WLAN)。

面对笔记本电脑产品的日益小型化,新时期的笔记本电脑设计要求天线能够同时实现尽可能多的功能,天线的小尺寸、宽频带以及高性能等是无线终端天线技术发展的迫切需要[2]。

已知常见的MIMO天线解耦技术有:分集技术、添加寄生枝节技术、缺陷地设计、去耦网络技术等[3]。

分集技术主要是利用对天线的摆放位置进行调整并达到改善MIMO天线单元间隔离度的目的,但其要求天线单元间的距离足够大,因此很难实现天线小型化。

MIMO-OFDM技术在无线通信系统中的应用研究

MIMO-OFDM技术在无线通信系统中的应用研究

MIMO-OFDM技术在无线通信系统中的应用研究邹杨;崔金斗;鱼佳欣;王卫平【摘要】MIMO技术即在发射端和接收端分别使用多个发射天线和接收天线,能在不增加带宽的情况下成倍地提高通信系统的容量和信道利用率.OFDM技术即在可用频段内,将信道"划分",进行"串并转换",使得子信道上的符号周期增加,降低甚至避免了每个子信道上的ISI,从而有效地对抗信道衰落.通过对MIMO-OFDM原理的阐述,以及对信道容量公式进行推理,得到了信道容量的近似公式,之后结合两者的优点来构建一个MIMO-OFDM无线局域网系统,并应用MATLAB工具对MIMO技术和OFDM技术是否结合、调制方式、发收数目等进行仿真对比分析,定性地得到了影响系统误码率的影响因子.%MIMO technology, using multiple transmitting and receiving antennas at the transmitting end and the receiving end, could exponentially improve the capacity and channel utilization of the communication systems without incraesing the bandwidth. OFDM technology, which divids the channel and executes serial-parallel conversion in available spectrum, could make the symbol period of the sub channel increase, then reduce or even avoid ISI in each sub channel to withstand channel fading. By describing the priciple of MIMO-OFDM and deducing the channel capacity expression, the approximate formula of channel capacity is obtained. Later, combining the advantages of both, a MIMO-OFDM wireless communication system is constructed, then using MATLAB to simulate the combination of MIMO and OFDM, modulation mode, numbers of transmitting and receiving, then the influence factors of the system error rate can be obtained qualitatively.【期刊名称】《微处理机》【年(卷),期】2017(038)004【总页数】6页(P30-34,50)【关键词】MIMO-OFDM技术;信道容量;WLAN技术;空时编码;无线通信;误码率;QPSK调制【作者】邹杨;崔金斗;鱼佳欣;王卫平【作者单位】中国洛阳电子装备试验中心,河南济源,459000;中国洛阳电子装备试验中心,河南济源,459000;中国洛阳电子装备试验中心,河南济源,459000;中国洛阳电子装备试验中心,河南济源,459000【正文语种】中文【中图分类】TP311MIMO(Multiple-Input Multiple-Output多输入多输出)技术是无线通信领域智能天线技术的重大突破。

mimo技术及其在wlan中的应用

mimo技术及其在wlan中的应用
8PSK、16APSK等映射下,使用不同接收天线数目时级联卷积码和空时分组编码后获得的误码率曲线图.
8.学位论文罗孝彬空时编码技术及其与复数旋转码的结合研究2005
未来无线通信系统要求更高的通信质量和传输速率,这使得人们努力开发更有效的编码、调制和信号处理技术来提高无线通信的质量和频谱效率。
本论文的主要工作如下:介绍了无线衰落信道模型及与空时编码技术密切相关的发射分集技术,同时介绍了空时编码的系统模型,并对不同的空时编码方案进行了性能比较;详细阐述了分层空时编码的编码方法,并对垂直分层空时编码在原译码算法的基础上提出了一种改进的译码算法,通过仿真曲线比较了原译码算法和改进后的译码算法的性能;深入研究了正交和准正交空时分组编码的编译码算法,针对准正交空时分组编码译码较复杂的特点,引入分层空时编码的译码思想,提出了采用线性译码方案对其译码,通过仿真比较了不同译码算法的性能;针对空时编码技术缺少编码增益的问题,提出了将复数旋转码与空时编码技术相结合来提高系统的性能。对于分层空时编码和空时分组编码分别给出了不同的结合方案,最后对不同的结合方案进行了性能仿真和比较。
7.学位论文朱建国无线通信中空时编码的研究2004
空时编码技术是近年来在无线通信领域中新兴的一个研究领域,它的主要目的是用来解决无线通信中下行传输信号多径衰落的问题.空时编码通过天线分集技术,将时间域信号处理技术和空间域信号处理技术有机地结合起来,充分利用了信号空间处理与信道的空间和时间的特性,有效地改善了分集增益和编码增益,并有效地消除干扰和抗多径衰落,从而大幅度提高了无线通信系统的容量,为解决无线通信中的带宽问题提供了一条新的解决方法.该文首先回顾了多输入多输出系统及其信道容量问题,讨论了发射和接收分集技术,并在此基础上引出空时编码的讨论,详细地分析了三种基本的空时编码技术:分层空时码、空时格码和空时分组码;针对正交空时分组码,深入地研究其编码设计和译码方法,并给出了一种简化的最大似然译码方法;同时,也对级联编码方案进行分析,尝试将正交空时分组码和卷积码相级联,在保持已有分集增益的情况下提供一定的编码增益.该文的主要工作在于:1.给出一种空时分组码的简化最大似然译码方法.在分析空时分组码译码算法的基础上,从星座映射的几何结构出发,对传统的最大似然译码方法进行简化,仿真的结果表明,同传统的最大似然译码方法相

一种结构紧凑的高隔离度MIMO_天线

一种结构紧凑的高隔离度MIMO_天线

doi:10.3969/j.issn.1003-3106.2023.12.015引用格式:黄涛,杨雪霞.一种结构紧凑的高隔离度MIMO天线[J].无线电工程,2023,53(12):2842-2848.[HUANGTao,YANGXuexia.ACompactMIMOAntennawithHighIsolation[J].RadioEngineering,2023,53(12):2842-2848.]一种结构紧凑的高隔离度MIMO天线黄 涛,杨雪霞(上海大学通信与信息工程学院,上海200444)摘 要:提出了一种适用于5G移动终端的紧凑型高隔离度多输入多输出(Multiple InputMultiple Output,MIMO)微带贴片天线。

该天线由2个水平放置的天线单元组成,方形辐射贴片位于介质板的上表面,并由同轴探针直接馈电。

天线仅由单层介质基板构成,厚度为1.5mm。

天线单元的边到边间距仅为0.011λ0(λ0为天线中心频率对应自由空间的波长),紧凑的结构使得天线单元间的耦合非常强烈。

在2个天线单元的上下两侧引入了U型枝节,通过在U型枝节上产生与原耦合相抵消的新耦合路径,以提高单元间的隔离度。

实测结果表明,提出的天线反射系数|S11|<-10dB的频段为3.475~3.520GHz,端口隔离度高于22dB,峰值增益为5.9dBi,包络相关系数(EnvelopeCorrelationCoefficient,ECC)小于0.008。

该去耦结构还可应用于多元贴片天线阵列的解耦。

关键词:紧凑型;高隔离度;多输入多输出;贴片天线;U型枝节中图分类号:TN822文献标志码:A开放科学(资源服务)标识码(OSID):文章编号:1003-3106(2023)12-2842-07ACompactMIMOAntennawithHighIsolationHUANGTao,YANGXuexia(SchoolofCommunicationandInformationEngineering,ShanghaiUniversity,Shanghai200444,China)Abstract:AcompacthighisolationMultiple InputMultiple Output(MIMO)microstrippatchantennafor5Gmobileterminalsisproposed.Theantennaconsistsoftwohorizontallyplacedantennaelements.Thesquareradiationpatchislocatedontheuppersurfaceofthedielectricplateandisfedbythecoaxialprobe.Atthesametime,theantennaisonlycomposedofsingle layerdielectricsubstratewiththicknessof1.5mm.Theedge to edgespacingoftheantennaelementisonly0.011λ0(λ0isthefree spacewavelengthcorrespondingtotheantennacenterfrequency).Duetothecompactstructure,thecouplingbetweentheantennaelementsisverystrong.Forthisreason,U shapedbranchesareintroducedonbothsidesofthetwoantennaelements,andanewcouplingpathisgeneratedontheU shapedbranchtooffsettheoriginalcouplingtoimprovetheisolationbetweentheelements.Themeasuredresultsshowthattheproposedantennacovers3.475~3.520GHzwhenthereflectioncoefficientof|S11|islessthan-10dB.Theportisolationishigherthan22dB,thepeakgainis5.9dBi,andtheEnvelopeCorrelationCoefficient(ECC)islessthan0.008.Inaddition,thedecouplingstructurecanalsobeappliedtothedecouplingofmultiplepatchantennaarray.Keywords:compact;highisolation;MIMO;patchantenna;U shapedbranch收稿日期:2023-04-09基金项目:国家自然科学基金(62171270)FoundationItem:NationalNaturalScienceFoundationofChina(62171270)0 引言随着5G/6G移动通信的快速发展,人们对高速和高质量数据传输的需求日益增加,多输入多输出(Multiple InputMultiple Output,MIMO)技术成为无线通信系统的关键技术。

用于5G_智能手机的宽带高隔离度MIMO_天线

用于5G_智能手机的宽带高隔离度MIMO_天线

164 2024RadioEngineeringVol 54No 1doi:10.3969/j.issn.1003-3106.2024.01.022引用格式:姚婷,杨雪霞.用于5G智能手机的宽带高隔离度MIMO天线[J].无线电工程,2024,54(1):164-172.[YAOTing,YANGXuexia.BroadbandHigh isolationMIMOAntennafor5GSmartphoneApplication[J].RadioEngineering,2024,54(1):164-172.]用于5G智能手机的宽带高隔离度MIMO天线姚 婷,杨雪霞(上海大学通信与信息工程学院,上海200444)摘 要:提出了一种用于第五代移动通信(5G)智能手机的紧凑型宽带高隔离度多输入多输出(Multiple InputMultiple Output,MIMO)天线对,将其在手机两侧边框内表面对称放置,组成相关性低的8元MIMO阵列。

采用耦合馈电方式设计了宽带倒F天线(IFA)单元,以零间距镜像对称的方式组成一个结构紧凑的双单元天线对,其-6dB阻抗带宽为3.3~6.5GHz(65.3%),完全覆盖了n77/n78/n79和LTEband46的5G频段,其尺寸仅为26.8mm×6mm(0.29λ0×0.07λ0,λ0为3.3GHz的自由空间波长)。

利用差/共模对消理论及加载分布式电容的方法提高了天线对两端口间隔离度,带内隔离度高于11dB,在n79和LTEband46频段(4.4~5.925GHz)隔离度高于15dB,且在4.9GHz中心频点处的峰值隔离度能达到40dB,在整个带内的天线总效率为59%~88.8%。

为了提高8元MIMO阵列隔离度,在相邻两天线对之间的接地板上蚀刻矩形缺陷地去耦结构,单元间包络相关系数(EnvelopeCorrelationCoefficient,ECC)均小于0.1。

一种适用于MIMO移动端多天线单元的分析与设计

一种适用于MIMO移动端多天线单元的分析与设计

一种适用于MIMO移动端多天线单元的分析与设计侯轶;姜兴【摘要】通过对微带天线不同馈电形式下的多天线单元进行比较,采用缝隙耦合馈电的模型,利用仿真软件对其进行仿真优化并加工出实物.经实测结果表明:水平极化端口和垂直极化端口在设计频段2.11~2.17 GHz内电压驻波比(VSWR)<1.5,两个极化端口隔离度<-40 dB,实测与仿真结果基本一致.该天线平面结构适用于MIMO 移动端多天线,可满足MIMO技术通信链路两端使用多天线的需求.【期刊名称】《桂林电子科技大学学报》【年(卷),期】2010(030)002【总页数】4页(P101-104)【关键词】双极化;双边侧馈;同轴背馈;缝隙耦合【作者】侯轶;姜兴【作者单位】桂林电子科技大学信息与通信学院,广西,桂林,541004;桂林电子科技大学信息与通信学院,广西,桂林,541004【正文语种】中文【中图分类】TN82随着移动无线通信技术的飞快发展,对大容量的信息传输要求越来越浓。

如何应对移动用户数量不断增长的问题,而又不增加额外的频带带宽条件下,在匮乏的频谱资源内对数据进行高可靠性、高数率、高覆盖率的传输已经成为当今无线通信领域一个重要而紧迫的研究课题。

正是在这种背景下,提出了了多输入多输出技术这个概念。

20世纪 90年代贝尔实验室的研究者们将 MIMO这个概念应用到无线通信传输系统中后,从实际的测试平台上证明了 MIMO能够有数十倍甚至百倍的提高无线通信系统中的容量和频谱利用率的作用[1-2],能有效的对抗多径衰落,至此引起了世界各国学者们的极大关注,使MIMO技术得到了很快的发展,成为当今新一代移动通信传输系统关键的技术之一。

MIMO系统的移动终端设备安置多根天线时必须尽量降低减小天线的尺寸,而且还得满足相应的带宽、增益、极化隔离度等电性能指标。

在当今研究中,适用于 MIMO系统中移动终端的多天线形式多为单根单极化天线的类型[3]。

用于WLAN的紧凑型低耦合MIMO天线的设计

用于WLAN的紧凑型低耦合MIMO天线的设计

用于WLAN的紧凑型低耦合MIMO天线的设计
艾热提·阿克木江;郜参观;范荣
【期刊名称】《伊犁师范学院学报(自然科学版)》
【年(卷),期】2018(012)001
【摘要】提出一种用于WLAN无线通信系统的紧凑、双频带、高隔离度的多输入多输出(MIMO)天线.天线由2个对称的改善U型开槽来实现双频的PIFA组成.回波损耗带宽(S 11≤-10 dB)覆盖WLAN 2.4 GHz、WLAN 5.2 GHz、WLAN 5.8 GHz.天线利用缺陷接地结构提高了2个PIFA间的隔离度,带宽内保持隔离度-15 dB以下.该天线尺寸小、相互耦合程度低且方向图全向性好,完全适合于WLAN终端设备安装使用.
【总页数】6页(P74-79)
【作者】艾热提·阿克木江;郜参观;范荣
【作者单位】伊犁师范学院电子与信息工程分院,新疆伊宁 835000;伊犁师范学院电子与信息工程分院,新疆伊宁 835000;伊犁师范学院电子与信息工程分院,新疆伊宁 835000
【正文语种】中文
【中图分类】TN820
【相关文献】
1.一种应用于WLAN的定向辐射紧凑型双频PIFA天线设计 [J], 徐圣彬
2.用于WLAN/WiMAX的双频紧凑型天线 [J], 褚庆昕;叶亮华
3.一种用于WLAN/WiMAX的三频MIMO天线设计 [J], 阳松;李彦良
4.应用于移动终端的低耦合MIMO天线设计 [J], 丁晓倩
5.一种可应用于WLAN的高隔离度双频MIMO天线设计 [J], 严冬;郭琪富;程威;李杰;胡安沙
因版权原因,仅展示原文概要,查看原文内容请购买。

MIMO-OFDM系统的小区间干扰抑制技术研究

MIMO-OFDM系统的小区间干扰抑制技术研究

MIMO-OFDM系统的小区间干扰抑制技术研究
何翠;刘娟
【期刊名称】《电信快报:网络与通信》
【年(卷),期】2009(000)004
【摘要】首先简要介绍了MMO(多输入多输出)系统的特点和缺点,结合OFDM(正交频分复用)技术后MIMO-OFDM系统的原理,并针对一些信号检测技术的优缺点具体阐述了MIMO-OFDM系统小区间干扰抑制技术研究现状.然后对MIMO-OFDM系统小区间干扰抑制技术进行了介绍,对目前MIMO-OFDM系统小区间干扰抑制技术的研究状况进行了综述.最后对LTE(长期演进)小区间干扰抑制技术的研究进行了解释说明,再次对需要进一步研究的问题进行了讨论.
【总页数】4页(P39-41,45)
【作者】何翠;刘娟
【作者单位】重庆邮电大学通信与信息工程学院,重庆市,400065;重庆邮电大学通信与信息工程学院,重庆市,400065
【正文语种】中文
【相关文献】
1.抑制LTE系统小区间干扰的软频率复用改进方案 [J], 万晓榆;刘乙樟;樊自甫
2.OFDM系统的小区间干扰抑制技术研究 [J], 沈嘉
3.多小区MIMO系统中小区间干扰抑制的预编码研究 [J], 蒋攀;张瑞;宋荣方
4.基于TD-LTE系统的小区间干扰抑制策略研究 [J],
5.OFDM系统的小区间干扰抑制技术研究 [J], 沈嘉
因版权原因,仅展示原文概要,查看原文内容请购买。

一种适用于5G智能终端的新型自解耦天线对

一种适用于5G智能终端的新型自解耦天线对

一种适用于5G智能终端的新型自解耦天线对袁军;肖疆;肖刘;尚新文;易红霞;李飞;金锋【期刊名称】《现代电子技术》【年(卷),期】2023(46)3【摘要】MIMO技术是5G通信的核心技术,然而在空间受限的智能设备上布置更多的天线将导致天线间相互耦合,造成MIMO系统性能损失;加之智能设备朝全面屏发展的趋势,天线占用的空间也被进一步压缩。

因此在小的净空下实现高隔离度是当前5G智能设备天线设计的关键。

针对以上问题,文中设计了一种新型自解耦MIMO天线对。

该天线对的两个端口在天线一体化结构设计中考虑解耦设计,无需任何额外的解耦结构。

仿真结果表明:该自解耦天线对在3.4~3.6 GHz频段上的隔离度大于19 dB;4×4 MIMO系统各端口间的隔离度在3.4~3.6 GHz频段上优于16.7 dB,ECC<0.022,系统仿真的总效率达到88%~94%;该方案在净空1 mm的前提下实现。

相比于已有设计,该设计在现有5G智能手机的高集成度MIMO天线领域具有可导入性。

【总页数】4页(P17-20)【作者】袁军;肖疆;肖刘;尚新文;易红霞;李飞;金锋【作者单位】中国科学院空天信息创新研究院;中国科学院大学电子电气与通信工程学院;是德科技(中国)有限公司【正文语种】中文【中图分类】TN82-34【相关文献】1.一种适用于5G网络的宽带圆极化天线设计2.一种适用于5G通信系统的双频圆极化毫米波天线3.一种适用于5G终端的宽带双极化毫米波端射天线阵列4.核心肌群训练联合干扰电治疗治疗腰椎间盘突出患者的临床效果观察5.一种适用于高铁动车组的新型车载四端口组合天线因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I.J. Wireless and Microwave Technologies, 2017, 6, 46-57Published Online November 2017 in MECS()DOI: 10.5815/ijwmt.2017.06.05Available online at /ijwmtMutual Coupling Reduction between H Shaped Compact MIMOAntenna for WLAN ApplicationPratima.C.Nirmal a,*, Anil Nandgaonkar a, Sanjay Nalbalwar aa Department of Electronics & Telecommunication,DBATU, Lonere , Raigad – 402103, India.Received: 19 May 2017; Accepted: 16 June 2017; Published: 08 November 2017AbstractA simple compact H shaped MIMO antenna for WLAN application at resonating frequency 5.8 GHz is propose in this paper. The center to center spacing between closely placed H shaped MIMO antenna is 0.311λo. The mutual coupling between the proposed antenna is reduced by using dumbbell shaped DGS at the center of the groundplane. These dumbbell shape defect act as bandstop filter because of its inductance and capacitance effect, helps to suppress the surface wave propagation of waves. The filter characteristic of the dumbbell shaped DGS is studied to achieve isolation over the 5.725-5.875 GHz frequency band. Further the parametric study such as length, width and the spacing of dumbbell shaped DGS is optimized and studied in order to achieve good isolation among the MIMO antenna elements. The proposed MIMO structure is fabricated on low cost FR4 substrate having thickness of 1.6mm and the overall dimension of MIMO antenna is 40mm x 24 mm leading to compact size of antenna. The mutual coupling reduces from 24 dB to 34 dB by placing dumbbell shaped DGS. The envelope correlation coefficient for the proposed antenna is below less than 0.04 dB for the operating frequency band. The proposed H shaped MIMO antenna is tested and the measured result follows the simulation results. Therefore the proposed antenna is a good candidate for WLAN application.Index Terms: DGS (Defected Ground Structure), Mutual coupling, ECC (Envelope correlation coefficient), Isolation, Parasitic Elements, EBG (Electromagnetic Bandgap Structure)© 2017 Published by MECS Publisher. Selection and/or peer review under responsibility of the Research Association of Modern Education and Computer Science1. IntroductionDue to rapid increase in the demand of capacity and data rate in wireless communication systems, MIMO antenna came in to existence. Earlier, the SISO (Single Input and Single output) system in which single antenna * Corresponding author.E-mail address: pratima.nirmal@was employed to transmit and receive the data efficiently was employed. But this system cannot fulfill the demands of higher data rate due to its limited bandwidth handling capacity and they also suffer from multipath fading which reduces the signal to noise ratio level of the received signal [1-2]. The MIMO antennas use many antenna at the transmitter and at the receiver side to increase the capacity and throughput of system. The capacity of channel is well utilized in MIMO antenna without using extra spectrum and radiation power [3]. Besides these MIMO antennas uses various diversity schemes such as polarization diversity, pattern diversity and space diversity to overcome the multipath fading. Although MIMO antenna has several advantages, the challenge lies in the designing of efficient MIMO antennas [4]. The MIMO antenna design should be compact, have good impedance bandwidth, less VSWR, less mutual coupling and good radiation properties over the operating frequency band so that it can be easily integrate and can be efficiently used for many applications such as WLAN, Wi-Fi, WI-Max, LTE , Bluetooth, UWB etc.Many researchers had studied different technique such as parasitic elements, EBG structure, metametarial, DGS, etc to reduce the mutual coupling between MIMO antenna elements [5-18]. Electromagnetic bandgap structure (EBG) also known as photonic bandgap structure is widely used for improving the isolation between MIMO antenna elements. They have bandgap characteristic to suppress the surface wave. The design of EBG structure are done in such a way that the resonating frequency of bandgap should coincide with the operating frequency band of MIMO antenna so as to have huge isolation over the operating bandwidth [5-6]. The mushroom like EBG structure has been placed in between E and H coupled microstrip array to improve the isolation by 8 dB [7]. The dispersion diagram of EBG structure showing the suppression of surface wave is studied by FDTD simulation. An S shaped EBG structure is placed in between MIMO antenna having dimension of 38 mm× 68 mm to improve the isolation by 20 dB [8]. The bandgap of mushroom and fork type EBG structure for frequency 8.5-11.5 GHz and 9.1- 10.7 GHz is studied and they are employed in microstrip array for reduction of mutual coupling of about 60 dB [9]. The EBG increases the complexity in designing and fabrication process of MIMO antenna.Metamaterial has been used in recent years to reduce the mutual coupling in MIMO antenna elements [10-13]. Metamaterial are basically artificially materials that have negative permeability and permittivity which can be realized in the form of split ring resonator (SRR) or meander lines. A compact PIFA antenna fabricated on FR-4 substrate with SRR structure is used in between to lower the mutual coupling by 6 dB [10]. The isolation of 45 dB is improved by modified SRR in shape of circle between the dielectric resonator antennas working at 60 GHz frequency [11]. Complementary Split ring resonator comprises of annular rings with slit at opposite end is employed to lower the mutual coupling between MIMO antenna [12].This annular ring contributes to negative permeability and negative permittivity which improves the isolation. The mutual coupling between meander line antennas at 2.4 GHz is reduced by using labrynith SRR to have improved isolation of 45 dB and envelope correlation coefficient of 55 dB [13]. The SRR thus used is difficult to design and incorporate between MIMO antenna elements. The use of parasitic elements has been reported in [14-15] to improve the isolation.U shaped parasitic element is placed between suspended MIMO antennas at 2.44 GHz frequency to lower the mutual coupling by 38 dB [14]. The advantage of using parasitic element is its simple to fabricate. Further F shaped parasitic element which is fabricated on the other side of substrate has been reported for dual band MIMO antenna operating at 2.5 GHz and 5.2 GHz frequency [15]. The parasitic patch is electromagnetically coupled to antenna and it also helps to improve the gain of the antenna. Besides above all method for the reduction of mutual coupling, defected ground structure is widely used because it is simple to fabricate with less complexity [16-20]. Defected ground structure introduces defect in the ground plane which disturb the current distribution of the ground plane thus affecting the resonant frequency of the antenna and improving the isolation. A MIMO antenna with edge to edge spacing of 0.260 λ operating at frequency 9.1 GHz is designed [16]. Three rectangular slit as a defects is introduced in the ground plane to improve the isolation by 35 dB. The dimension and position of slits has been optimized to have huge isolation over the operating band. With help of stub and small strip, isolation between compact square monopole antennas is improved [17]. The monopole antenna has wide bandwidth (3.1-10.6 GHz) with envelope correlation coefficient of 0.2 dB as well as stableradiation pattern over the bandwidth. A new tree shape DGS having three branches has been incorporated in between UWB band antennas to have S21< -16 dB over the entire band [18] The overall dimension of UWB antenna is 35 mm x 40 mm and is fabricated on taconic dielectric substrate.A PIFA antenna with side to side spacing of 10 mm is designed on FR-4 Substrate at frequency 2.31 GHz[19]. The isolation of about more than 20 dB between these elements is achieved by placing number of slits in the ground plane. This proposed technique can be applied to more than three or four antenna elements. Two elliptical patches placed at an angle of 450with respect to each other with the supplementary ground are proposed [20]. The slit is etched at the center of the groundplane, thus improving the isolation by 25 dB at 2.4 GHz. The design is easy to fabricate and have good impedance bandwidth with improved radiation characteristic. A compact multiband U shaped monopole for WLAN, Wi-MAX and lower UWB applications has been reported [21]. Mutual coupling less than -18 dB is achieved between multiband MIMO antenna is obtained by incorporating three dumbbell shaped DGS at the center of the ground plane. Reduction of mutual between closely placed MIMO antennas at 5.8 GHz is done by using transmission line [22]. The parameter of transmission line is optimized to have a isolation of 48 dB.In this paper, a compact H shaped MIMO antenna has been designed. To improve the isolation between H shaped compact MIMO antennas, a dumbbell shaped DGS is used. This dumbbell shape defect act as bandstop filter because of its inductance and capacitance effect, helps to suppress the surface wave propagation and hence improve the isolation. The filter characteristic of the dumbbell shaped DGS is studied to obtain isolation over the 5.725-5.875 GHz frequency band. Further the parametric study such as length, width and the spacing of dumbbell shaped DGS is optimized and studied in order to achieve good isolation among the MIMO antenna element. The mutual coupling reduces from 20 dB to 34 dB by placing dumbbell shaped DGS.2. Antenna Design and ResultsA compact H shape antenna with center to center spacing of 0.311λo is designed in this paper as shown in Fig.1 (b). The antenna is fed by coaxial probe and constructed on FR-4 substrate having thickness of 1.6 mm and dielectric constant of 4.4. The simulated S11< -10 dB over 5.725-5.875 GHz frequency but S21 is still high leading to mutual coupling between the H shaped antenna elements. To improve the isolation between these two H shape MIMO antenna elements, a dumbbell shaped DGS is introduced in the ground plane as shown in Fig.1(c). This dumbbell shaped DGS increases the effective inductance and capacitance. It acts as a band stop filter at frequency 5.8 GHz which block the current to propagate from one to another antenna element. The step by step evolution of proposed H shaped MIMO antenna is as shown in Fig.1. Initially a rectangular shaped microstrip antenna has been designed using equation (1), (2), (3) and (4) to have more fringing fields and good radiation efficiency [23]. The width can be calculated by using (1):w=v o2f r ×√2εr+1(1)where v o is velocity of light, εr is substrate dielectric constant and f r is resonant frequency of antenna.The length of antenna can be calculated by following formula:L=o2fε2ΔL (2)where(i) εreff is effective dielectric constant which is obtained by using (3) as follows:εreff=εr +12r2 √1+ 12 ℎW(3)where h is thickness of the substrate (ii) ΔL can be calculated as:Δ L=0.412 ℎ (εeff+0.3)(εeff −0.258)(wℎ+0.264)(w+0.8)(4)(a) (b)(c)Fig.1. Evolution of Proposed structure (a) Antenna 1 (b) Antenna 2 and (c) proposed Antenna StructureThen, a MIMO antenna consisting of two rectangular patches with center to center spacing of 15 mm is designed on common groundplane leading to Antenna 1. Antenna 2 is formed by cutting a rectangular slot from the top and bottom of rectangular MIMO antenna leading to H shaped MIMO antenna. These slots are introduced to increase the total current length on the surface of the patch antenna and thus it will increase the impedance bandwidth of the H shaped MIMO antenna. The antenna is made to resonant at 5.8 GHz frequency for WLAN application. The dimension of the proposed MIMO antenna is listed in Table no.1.Table.1. Dimension of proposed AntennaNoParameter Dimension in mm2 Width of patch (W) 15 mm3 Substrate Height 1.59 mm6 W1 5 mm7 Overall dimension 40 mm x 24 mmThe simulated H shaped MIMO antenna with and without dumbbell shaped DGS as shown in Fig. 2(a) and 2 (b) respectively. It has been observed that MIMO antenna without DGS has huge mutual coupling across the operating frequency 5.725- 5.875 GHz band which will lead to high signal interference and losses, thus it is not suitable for WLAN application. Hence, to lower the mutual coupling and to improve the isolation, a dumbbell shaped DGS is introduced in the ground plane. By introducing a dumbbell shaped DGS, the mutual coupling significantly reduces to 34 dB from 24 dB at 5.8 GHz as shown in the Fig. 2(b) respectively.(a) (b)Fig.2. Simulated S Parameter (a) without DGS and (b) with DGSThe dumbbell shaped DGS consist of square head of L1 xW1 mm2, length between the dumbbell ‘L2’ and gap‘d’ between the dumbbell as shown in Fig.3(a). These DGS is introduced in the middle of the groundplane to have huge isolation. The equivalent circuit of dumbbell shape DGS is as shown in the dotted box in Fig. 3(b). The equivalent circuit of dumbbell shaped DGS consists of LC resonator circuit with inductance in parallel with capacitance [24]. This circuit has resonance frequency that depends on the value of L and C. The value of L and C depend on the area of square head and gap (d) respectively. The values of inductance (L) and capacitance (C) can be obtained by using following formula [25]:L=14π2f o C(5)C=f c2Z0 .12π (f02−f c2)(6)where f0 is resonant frequency and fc is cutoff frequency of DGS respectively.(a) (b)Fig.3. (a) Dumbbell DGS and (b) its equivalent circuitThe bandstop characteristic of proposed DGS can be studied by placing 50 Ω microstrip line abov e it as shown in Fig. 4(a). The S-parameter i.e. transmission and reflection characteristic of proposed DGS is as shown in the Fig. 4(b). It indicates that the proposed DGS has zero transmission characteristics over the operating frequency band (5.725-5.875 GHz). The dumbbell shape DGS thus design act as a bandstop filter over the wide band (5.725-5.875 GHz).(a) (b)Fig.4. (a) Proposed DGS with 50Ω transmission line and (b) its simulated S parameterThe feature of suppression of current is well explained by the surface current distribution. The surface current distribution of MIMO antenna with and without DGS at 5.8 GHz is as shown in Fig. 5(a) and 5.(b) respectively. The 1st port is excited by current and 2nd port is terminated by load of 50 ohms. The large amount of current is trapped by dumbbell shaped DGS and thus negligible amount of current is introduced in second MIMO antenna element as shown in Fig.5(b).(a) (b)Fig.5. Surface current distribution at 5.8 GHz (a) without DGS and (b) with DGSWhen DGS is introduced in the ground plane, slow wave effect of DGS shifts the resonating frequency of antenna to lower side. The parameter L1, L2, W1 and d of dumbbell shaped DGS is optimize for improving the isolation of proposed antenna. By etching dumbbell shape defect in ground, effective series inductance increases which shift the resonating frequency of antenna to lower side. The head dimension (L1 ×W1) of the DGS is varied by keeping gap (d) constant. The head of dumbbell (L1 xW1) contributes to inductance effect whereas the gap (d) contributes to conductance effect. The L1 and W1 is varied from 4 mm to 6 mm, the isolation appears at various frequencies as shown in Fig. 6 and Fig.7. The isolation of -34 dB at a resonant frequency 5.8 GHz is obtained for the length L1 = 5mm and width W1=5 mm. Similarly L2 = 12 mm is optimum value for low mutual coupling as shown in Fig.8. The gap d is varied by keeping L1 and W1 constant, thus series inductance is kept constant for all cases. With an increase in the gap distance, there is decrease in effective capacitance and thus increases the cut-off frequency of LC circuit. The d is varied from 1.5 mm to 2.5 mm as shown in Fig.9 and the optimum value of d for good isolation is 2mm.Fig.6. Simulated S21 for different value of L1 Fig.7. Simulated S21 for different value of W1Fig.8. Simulated S21 for different value of L2 Fig.9. Simulated S21 for different value of dThe radiation pattern of proposed MIMO antenna is as shown in Fig.10. It shows that antenna is directional with cross polarization level and side lobe level less than -20 dB. The plot of gain variation v/s Frequency is as shown in Fig.11. The graph shows the gain variation of less than 1 dB over the operating frequency band.Fig.10. Radiation pattern at frequency 5.8 GHz (a) when port 1 is excited (b) when port 2 is excitedFig.11. Gain variation v/s Frequency3.Fabricated Antenna & Measured ResultsA compact H shaped MIMO antenna is constructed on FR-4 substrate as shown in Fig 12 and is tested using Agilent 9916 A network analyzer. The comparison of measured and simulated S-parameter is shown in Fig.13. There is slight variation in measured and simulated result due to fabrication error and losses in conductor and connector.Fig.12. Fabricated antenna(a) (b)Fig.13. Measured and Simulated (a) S11 and (b) S21 of the proposed structureThe MIMO antenna performance can be shown by envelope correlation coefficient. It is the measure of how two antennas are well isolated from each other. The ECC should be less than 0.5 dB for MIMO applications. The envelope correlation coefficient can be calculated using (7) as follows [26]:ρ=| S11∗S12 + S21∗S22||(1−|S11|−|S21|)( 1−|S22|−|S12|)|(7) The correlation coefficient thus obtained for the proposed antenna is below 0.04 dB as shown in Fig.14Fig.14. Envelope Correlation coefficient v/s frequency4. ConclusionsA compact H shaped MIMO antenna with an improved is proposed in this paper. The dumbbell shaped DGS is introduced in the center of the groundplane to improve the isolation. The parameters of dumbbell shaped DGS is optimized to have good isolation among the antenna element. The proposed design is simple, low cost and compact. The radiation pattern is stable and ECC < 0.04 dB is achieved. Hence, the proposed antenna is suitable for WLAN application at resonating frequency 5.8 GHz. The proposed technique can be extend for improving the isolation in more than two elements of MIMO antenna.References[1]Michael A. Jensen and Jon W. Wallace, “A review of antennas and propagation for MIMOwirelesscommunications,” IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 2810-2824, Nov.2004.[2]Lizhong Zheng and D. N. C. Tse, “Diversity and multiplexing: a fundamental trade off in multiple-antennachannels,” IEEE Transactions on Information Theory, Vol. 49, No. 5, 1073-1096, May. 2003.[3] D.Gesbert, M. Shafi, Da-shan Shiu, Peter J. Smith, and Ayman Naguib, “From theory to practice: Anoverview of MIMO space-time coded wireless systemsIEEE Journal on Selected Areas in Communications, Vol. 21, No. 3, 281–302, Apr. 2003.[4]Atif Jamil, Mohd Zuki Yusoff and Noorhana Yahya," Current Issues and Challenges of MIMO AntennaDesigns", IEEE conference on Intelligent and Advanced Systems (ICIAS),Kuala Lumpur Malaysia, pp. 1-5, June. 2010.[5]Jing Liang, H. Y. D. Yang,"Microstrip Patch Antennas on Tunable Electromagnetic Band-GapSubstrates”, IEEE Transactions on Antennas and Propagation, vol.57, pp. 1612-1617, June. 2009.[6]Nabilah Ripin , Robiatun Adayiah Awang, Ahmad Asari Sulaiman , Noor Hasimah Baba and SuhailaSubahir" Rectangular Microstrip Patch Antenna with EBG Structure", IEEE Student conference on Research and Development (SCOReD) , Pulau Pinang, 2012, pp. 266 – 271.[7]Fan Yang and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG)structures: a low mutual coupling design for array applications", IEEE Transactions on Antennas and Propagation, Vol.55,pp.2936 - 2946,Jul.2003.[8] A. Veeramani, Afsane Saee Arezomand, J. Vijayakrishnan and Ferdows B. Zarrabi, “Compact S-ShapedEBG Structures for Reduction of Mutual Coupling”, 2015 Fifth International Conference on Advanced Computing & Communication Technologies, Haryana, 2015, pp. 21-25.[9]Cuong Tran Manh, Xiaoke Han, H. Hafdallah Ouslimani, Alain Priou, Aurélien Marteau and GérardCollignon, “Reduction of the coupling between Microstrip Arrays Antennas Using High Impedance Surface (HIS) Structures”, 2010 European Microwave Conference (EuMC), paris, pp.1453-1456, Sept.2010.[10]Soon Ho Hwang, Tae Sik Yang, Joon Ho Byun and Austin S. Kim, “Reduction of Mutual Couplingbetween Closely-Packed Antenna Elements with Split Ring Resonator (SRR) ” 2010 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Chengdu, 2010 , pp.1873-1875.[11]Abdolmehdi Dadgarpour, Behnam Z arghooni and Tayeb A. Denidni, “Mutual-Coupling suppression for60 GHz MIMO Antenna using Metamaterials”, 2015 IEEE International Symposium on Antennas andPropagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, 2015, pp. 422-423. [12]Vu Van Yem, Pham Van Chi and Bernard Journet, “Novel MIMO Antenna Using Complementary SplitRing Resonator (CSR R) For LTE Applications.”, 2012 International Conference on Advanced Technologies for Communications (ATC), Hanoi, 2012 , pp. 222-226.[13]Qing-Le Zhang, Yu-Ting Jin, Jia-Qi Feng and Xin Lv,“Mutual Coupling Reduction of Microstrip AntennaArray Using Metamaterial Absorber”, IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWSAMP), Suzhou, 2015, pp. 1-3. [14]Saeed Farsi ,Hadi Aliakbarian, Dominique Schreurs, Bart Nauwelaers and Guy A. E. Vandenbosch“Mutual Coupling Reduction Between Planar Antennas by Using a Simple Microstrip U-Section”, IEEE Antennas and Wireless Propagation Letters ,Vol. 11 , pp. 1501 – 1503, Dec 2012.[15]Komal A. Kalamkar, Sachin S. Khade and S. L. Badjate “A 4-shaped MIMO Antenna for WLANApplication”, Communications and Signal Processing (ICCSP), 2015 International Conference, Melmaruvathur, 2015, pp.1831 – 1834.[16]Asieh Habashi, Javad Nourinia and Changiz Ghobadi, “ A Rectangular Defected Ground Structure (DGS)for Reduction of Mutual Coupling Between Closely-Spaced Microstrip Antennas”, 20th Iranian Conference on Electrical Engineering (ICEE2012), Tehran, 2012, pp.1347 – 1350.[17]Li Liu, S. W. Cheung and T. I. Yuk, “C ompact MIMO Antenna for Portable Devices in UWBApplications”, IEEE Transaction s on Antennas and Propagation, Vol.61, no. 8, pp. 4257 –4264, May 2013.[18]Shuai Zhang, Zhinong Ying, Jiang Xiong and Sailing He “Ultrawideband MIMO/Diversity AntennasWith a Tree-Like Structure to Enhance Wideband Isolation” ,IEEE Antennas and Wireless Propagation Letters, Vol. 8, pp. 1279 – 1282, Nov.2009.[19]Chi-Yuk Chiu, Chi-Ho Cheng, Ross D. Murch, Corbett R. Rowell “Reduction of Mutual CouplingBetween Closely Packed Antenna El ements”, IEEE Transactions on Antennas and Propagation, Vol.55, pp. 1732- 1738, June. 2007[20]kyu Kim, Chang won Jung, Yong jin Kim and Young e il Kim, “Low-Profile Wideband MIMO AntennaWith Suppressing Mutual Coupling Between Two Antennas”, Microwave and O ptical Technology Letters, Vol. 50, no. 5, pp.1336–1339, May 2008.[21]Sachin S. Khade, S.L.Badjate, “A Compact Multiband U Shape MIMO Antenna for WirelessApplication ”, I.J. Wireless and Microwave Technologies, Vol.5, no.5, pp. 61-71, 2016.[22]Z. Wang , “Reducing Mutual Coupling of Closely Space Microstrip Antennas for MIMO Application at5.8 GHZ”, Journal of Electromagnetic Waves and Applications, vol.25, 399-409.[23]Girish kumar and K. P. Ray, Broadband Microstrip Antennas, Artech House, Norwood, MA, 2003.[24]Liu, H., Z. Li, and X. Sun, “Compact defected ground s tructure in M icrostrip technology,” ElectronicsLetters, Vol. 41, No. 3, 132– 134, 2005.[25]Li, G. H., X. H. Jiang, and X. M. Zhong, “A novel defected ground structure and its application to a lowpas s filter,” Microwave and Optical Technology Letters, Vol. 48, No. 9, 453–456, 2006.[26]S.Blanch, J.Romeu, and I. Corbella, “Exact representation of antenna system diversity performance frominput parameter description,” Electron. Lett er, Vol. 39, No. 9, 705–707, May 2003.Authors’ ProfilesPratima.C.Nirmal was born in India in 1990. She received her B.E degree in Electronicsand Telecommunication engineering from Mumbai University, India in 2011 and M.Edegree from Mumbai University in 2013 and is currently working toward the PhD degree inElectronics and telecommunication engineering at Dr. Babasaheb Ambedkar TechnologicalUniversity, lonere, India. Her research interests includes the design of MIMO antennas,Monopole antenna, and filtersDr. A.B.Nandgaonkar has received B.E. (Electronics & Telecomm. Engineering) fromMarathwada University, Aurangabad and M. E. (Electronics) from Dr. B.A.M.U.Aurangabad. He has completed Ph.D. in Electronics & Telecommunication. Engineeringfrom Dr. B.A.T.U. Lonere. His research Interests includes Antenna and Propagation,Microwave Engineering, EMI/EMC and Optical Communication. He had received NationalMerit Scholarship.Sanjay Nalbalwar has received B.E. (CSE) in 1990 and M.E (Electronics) in 1995 fromSGGS College of Engineering and Technology, Nanded, MS. He has completed Ph.D. fromIIT Delhi in the year 2008. He has around 22 years of teaching experience and is working asa Professor & Head of Electronics and Telecommunication Engineering Department atDr.BabasahebAmbedkar Technological University, Lonere, Raigad, Maharashtra State(India). His area of interest includes Multirate Signal Processing and Wavelet, StochasticProcess Modeling. He has to his credit around 150 papers in national and internationalconferences and 50 papers in the international journals. He is member of professional bodies like ISTE, IETE, IEEE, CSIIE. He is also working on various research projects in the area of biomedical signal processing, signal representation, signal matched wavelets, smart grid. He guided about 50 M.Tech projects and about 200 B.Tech. projects and presently guiding 6 Ph.D. students.How to cite this paper: Pratima.C.Nirmal, Anil Nandgaonkar, Sanjay Nalbalwar," Mutual Coupling Reduction between H Shaped Compact MIMO Antenna for WLAN Application", International Journal of Wireless and Microwave Technologies(IJWMT), Vol.7, No.6, pp. 46-57, 2017.DOI: 10.5815/ijwmt.2017.06.05。

相关文档
最新文档