立体几何中的翻折问题的分析与解

合集下载

翻折问题

翻折问题

翻折问题立体几何在高中数学中是培养学生的空间想象能力的重要载体,其中翻折问题学生学习是一个难点,同时也是近年来高考的热点。

翻折问题实质是图形由平面到立体变化中一些线、面之间发生了变化,因此本节内容从正三角形、正方形、矩形、梯形、五边形等图形进行翻折,以便学生能更清楚熟悉模型,同时还列举了翻折模型中的平行、垂直、线线角、线面角、二面角、长度等问题。

一.翻折问题的审题建议1.过顶点作折线的垂线,如ABE沿着BE折起,作G BE F⊥并交于点,A BE在翻折过程中,点A的轨迹是以AF为直径的圆,ABE旋转一周所得的几何体是两个同底圆锥,母线分别是AB与AE。

2.弄清变与不变的量,如ABE BCDE与四边形中的角、线段长度是不变的,但在翻折过程中,AFG ABC AED AC AD∠∠∠、、、、等量是变化的。

二.平行问题例1.(2017春•让胡路区校级期中)在如图(1)的平面图形中,ABCD为正方形,CDP为等腰直角三角形,E、F、G分别是PC、PD、CB的中点,将△PCD 沿CD折起,得到四棱锥P﹣ABCD如图(2).求证:在四棱锥P﹣ABCD中,AP∥平面EFG.【分析】连接E、F,连接E、G,可得EF∥平面PAB.EG∥平面PAB.即可证平面PAB∥平面EFG【解答】证明:连接E、F,连接E、G,在四棱锥PABCD中,E,F分别为PC,PD的中点,∴EF∥CD.∵AB∥CD,∴EF∥AB.∵EF⊄平面PAB,AB⊂平面PAB,∴EF∥平面PAB.同理EG∥平面PAB.又EF∩EG=E,∴平面PAB∥平面EFG.又AP⊂平面PAB,∴AP∥平面EFG.【点评】本题考查了空间线面平行的判定,属于中档题.【变式训练1】(2017•闵行区校级模拟)如图,正△ABC的边长为4,CD是AB边上的高,EF分别是AC和BC的中点,现将△ABC沿CD翻折成直二面角A﹣DC﹣B.(1)证明:AB∥平面DEF;(2)在线段BC上是否存在点P,使AP⊥DE?如果存在,求出的值;如果不存在,请说明理由.【分析】(1)由E、F分别是AC、BC的中点,得EF∥AB,由此证明AB∥平面DEF;(Ⅱ)以点D为坐标原点,以直线DB、DC、DA分别为x轴、y轴、z轴,建立空间直角坐标系,利用向量法找出在线段BC上存在点P,使AP⊥DE.【解答】解:(1)证明:如图(2),在△ABC中,∵E、F分别是AC、BC的中点,∴EF∥AB,又AB⊄平面DEF,EF⊂平面DEF,∴AB∥平面DEF;(2)以点D为坐标原点,以直线DB、DC、DA分别为x轴、y轴、z轴,建立空间直角坐标系,如图(3)所示;则A(0,0,2),B(2,0,0),C(0,2,0),E(0,,1),F(1,,0),=(2,0,﹣2),=(﹣2,2,0),=(0,,1),=(1,,0);设=λ,则=+=(2﹣2λ,2λ,﹣2),由AP⊥DE得•=0,∴×2λ+1×(﹣2)=0,解得λ=,∴在线段BC上存在点P,使AP⊥DE,且=.【点评】本题考查了直线与平面平行的证明与满足条件的点是否存在的判断问题,阶梯式要注意向量法的合理运用.二.垂直问题例2.(2017春•三元区校级月考)如图,在四形边ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使CD⊥平面ABD,构成三棱锥A﹣BCD.则在三棱锥A﹣BCD中,下列结论正确的是()A.AD⊥平面BCD B.AB⊥平面BCDC.平面BCD⊥平面ABC D.平面ADC⊥平面ABC【分析】由题意推出CD⊥AB,AD⊥AB,推出AB⊥平面ADC,可得平面ABC ⊥平面ADC.【解答】解:∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°∴BD⊥CD又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD故CD⊥平面ABD,则CD⊥AB,又AD⊥AB故AB⊥平面ADC,所以平面ABC⊥平面ADC.故选D.【点评】本题考查平面与平面垂直的判定,考查逻辑思维能力,是中档题.例3.(2016•杨浦区校级模拟)已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折的过程中()A.存在某个位置,使得直线AB和直线CD垂直B.存在某个位置,使得直线AC和直线BD垂直C.存在某个位置,使得直线AD和直线BC垂直D.无论翻折到什么位置,以上三组直线均不垂直【分析】假设各选项成立,根据线面位置关系推导结论,若得出矛盾式子,则假设错误,得出正确选项.【解答】解:对于A,若存在某个位置,使得直线AB与直线CD垂直,∵CD⊥BC,∴CD⊥平面ABC,∴平面ABC⊥平面BCD,过点A作平面BCD的垂线AE,则E在BC上,∴当A在平面BCD上的射影在BC上时,AB⊥CD.故A正确;对于B,若存在某个位置,使得直线AC与直线BD垂直,作AF⊥BD,则BD⊥平面AFC,∴BD⊥EC,显然这是不可能的,故B错误;对于C,若存在某个位置,使得直线AD与直线BC垂直,则BC⊥平面ACD,BC⊥AC,∴AB>BC,即1>2,显然这是不可能的,故C错误.故选:A.【点评】本题主要考查了空间的线面和面面的垂直关系,翻折问题中的变与不变,空间想象能力和逻辑推理能力,有一定难度,属中档题.【变式训练2】(2017春•辛集市校级月考)如图,在正方形ABCD中,E、F 分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个空间图形,使B、C、D三点重合,重合后的点记为H,那么,在这个空间图形中必有()A.AG⊥△EFH所在平面B.AH⊥△EFH 所在平面C.HF⊥△AEF所在平面D.HG⊥△AEF所在平面【分析】本题为折叠问题,分析折叠前与折叠后位置关系、几何量的变与不变,可得HA、HE、HF三者相互垂直,根据线面垂直的判定定理,可判断AH与平面HEF的垂直.【解答】解:根据折叠前、后AH⊥HE,AH⊥HF不变,∴AH⊥平面EFH,B 正确;∵过A只有一条直线与平面EFH垂直,∴A不正确;∵AG⊥EF,EF⊥AH,∴EF⊥平面HAG,∴平面HAG⊥AEF,过H作直线垂直于平面AEF,一定在平面HAG内,∴C不正确;∵HG不垂直于AG,∴HG⊥平面AEF不正确,D不正确.故选B【点评】本题考查直线与平面垂直的判定,一般利用线线⇔线面⇔面面,垂直关系的相互转化判断.【变式训练3】(2016秋•杭州期末)如图所示,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使面ABD⊥面BCD,连结AC,则下列命题正确的是()A.面ABD⊥面ABC B.面ADC⊥面BDC C.面ABC⊥面BDC D.面ADC⊥面ABC【分析】证明CD⊥平面ABD,因此有AB⊥CD.又因为AB⊥AD,AD∩DC=D,所以AB⊥平面ADC,即可得到平面ADC⊥平面ABC.【解答】解:由题意知,在四边形ABCD中,CD⊥BD.在三棱锥A﹣BCD中,平面ABD⊥平面BCD,两平面的交线为BD,所以CD⊥平面ABD,因此有AB⊥CD.又因为AB⊥AD,AD∩DC=D,所以AB⊥平面ADC,于是得到平面ADC⊥平面ABC.故选D.【点评】本题考查线面垂直、面面垂直的判定,考查学生分析解决问题的能力,属于中档题.三.线线角例4.(2017•浙江模拟)矩形ABCD中,,BC=1,将△ABC与△ADC 沿AC所在的直线进行随意翻折,在翻折过程中直线AD与直线BC成的角范围(包含初始状态)为()A.B.C.D.【分析】求出两个特殊位置,直线AD与直线BC成的角,即可得出结论.【解答】解:由题意,初始状态,直线AD与直线BC成的角为0,DB=时,AD⊥DB,AD⊥DC,∴AD⊥平面DBC,AD⊥BC,直线AD与直线BC成的角为,∴在翻折过程中直线AD与直线BC成的角范围(包含初始状态)为[0,].故选:C.【点评】本题考查两直线所成的角的范围的求法,考查学生的计算求解能力、推理论证能力、空间思维能力,考查数形结合思想、分类讨论思想、转化化归思想,是中档题.例5.(2017春•涵江区校级期中)正方形ABCD,沿对角线BD折成直二面角A ﹣BD﹣C,则折后的异面直线AB与CD所成的角的大小为()A.30°B.45°C.60°D.90°【分析】取BD中点O,连结AO、CO,以O为原点,OC为x轴,OD为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出折后的异面直线AB与CD所成的角.【解答】解:取BD中点O,连结AO、CO,设正方形ABCD边长为,∵沿对角线BD折成直二面角A﹣BD﹣C,∴AO⊥BD,CO⊥BD,AO⊥CO,以O为原点,OC为x轴,OD为y轴,OA为z轴,建立空间直角坐标系,A(0,0,1),B(0,﹣1,0),C(1,0,0),D(0,1,0),=(0,﹣1,﹣1),=(﹣1,1,0),设折后的异面直线AB与CD所成的角为θ,则cosθ=|cos<>|===,∴θ=60°.∴折后的异面直线AB与CD所成的角为60°.故选:C.【点评】本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.(2016•浙江一模)如图四边形ABCD,AB=BD=DA=2.BC=CD=,【变式训练4】现将△ABD沿BD折起,使二面角A﹣BD﹣C的大小在[,],则直线AB与CD所成角的余弦值取值范围是()A.[0,]∪(,1)B.[,]C.[0,]D.[0,]【分析】取BD中点O,连结AO,CO,以O为原点,OC为x轴,OD为y轴,过点O作平面BCD的垂线为z轴,建立空间直角坐标系,利用向量法能求出直线AB与CD所成角的余弦值取值范围.【解答】解:取BD中点O,连结AO,CO,∵AB=BD=DA=2.BC=CD=,∴CO⊥BD,AO⊥BD,且CO=1,AO=,∴∠AOC是二面角A﹣BD﹣C的平面角,以O为原点,OC为x轴,OD为y轴,过点O作平面BCD的垂线为z轴,建立空间直角坐标系,B(0,﹣1,0),C(1,0,0),D(0,1,0),设二面角A﹣BD﹣C的平面角为θ,则,连AO、BO,则∠AOC=θ,A(),∴,,设AB、CD的夹角为α,则cosα==,∵,∴cos,∴|1﹣|∈[0,].∴cos.故选:D.【点评】本题考查异面直线所成角的取值范围的求法,是中档题,解题时要认真审题,注意向量法的合理运用.【变式训练5】(2016•浙江二模)如图,边长为1的菱形ABCD中,∠DAB=60°,沿BD将△ABD翻折,得到三棱锥A﹣BCD,则当三棱锥A﹣BCD体积最大时,异面直线AD与BC所成的角的余弦值为()A.B.C.D.【分析】菱形ABCD中,∠DAB=60°,△ABD、△CBD为边长为1的等边三角形,将△ABD沿BD翻折过程中,点A在底面BDC的投影在∠DCB的平分线上,三棱锥的高最大时,平面ABD⊥平面BCD.【解答】解:△ABD、△CBD为边长为1的等边三角形,将△ABD沿BD翻折形成三棱锥A﹣BCD如图:点A在底面BDC的投影在∠DCB的平分线CE上,则三棱锥A﹣BCD的高为△AEC过A点的高;所以当平面ABD⊥平面BCD时,三棱锥A﹣BCD的高最大,体积也最大,此时AE⊥平面BCD;求异面直线AD与BC所成的角的余弦值:平移BC到DC′位置,|cos∠ADC′|即为所求,AD=DC=1,AE=,EC′=,AC′=|cos∠ADC′|=||=,所以异面直线AD与BC所成的角的余弦值为,故选B.【点评】本题考查异面直线所成角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.【变式训练6】(2016•丽水校级模拟)如图,长方形ABCD,M,N分别为AB,AD上异于点A的两点,现把△AMN沿着MN翻折,记AC与平面BCD所成的角为θ1,直线AC与直线MN所成的角为θ2,则θ1与θ2的大小关系是()A.θ1=θ2B.θ1>θ2C.θ1<θ2D.不能确定【分析】作AO⊥平面BCD,垂足是O,连接CO,过点C作直线l∥MN,在l上取点H,令CH=CO,在△AOC和△AHC 中,CO=CH,AO⊥平面BCD,从而AO<AH,由此能求出θ1<θ2.【解答】解:作AO⊥平面BCD,垂足是O,连接C过点C作直线l∥MN,在l上取点H,令CH=CO,在△AOC和△AHC中,CO=CH,AO⊥平面BCD,∴AO<AH,∴∠ACO<∠ACH,∵AC与平面BCD所成的角为θ1,直线AC与直线MN所成的角为θ2,AO⊥平面BCD,CH∥MN,∴∠ACO=θ1,∠ACH=θ2。

立体几何中的翻折问题

立体几何中的翻折问题

AE = CFꎬ EF 交 BD 于 点 Hꎬ
将△DEF 沿 EF 折到△D′EF
的位置.
(1) 证明:AC⊥HD′ꎻ
(2) 若 AB
= 5ꎬAC
= 6ꎬAE

5 4
ꎬ OD′
=2
2 ꎬ求五棱锥
D′—ABCFE 的体积.
解析 (1) 由已知得 AC⊥BDꎬAD = CDꎬ又由 AE = CF
得AADE = CCDFꎬ故 AC∥EF.
参考文献:
[1]柴勤. 高中数学教学中学生解题能力的培养策略 [ J] . 考试周刊ꎬ208(45) :71.
[2]陈志全. 如何在高中数学教学中培养学生的数学 思维能力[ J] . 考试周刊ꎬ2018(43) :69.
[ 责任编辑:杨惠民]
立体几何中的翻折问题
莫碧华
( 重庆市第三十七中学校 400084)
由此得 EF⊥HDꎬEF⊥HD′ꎬ所以 AC⊥HD′.
— 32 —
为折痕ꎬ把△ABD 和△ACD 翻折成互相垂直的两个平面 后ꎬ某学生得出下列四个结论:
①AB⊥CDꎻ ②△BAC 是等边三角形ꎻ ③三棱锥 D—ABC 是正三棱锥ꎻ ④平面 ABD⊥平面 ABCꎻ 其中正确的是 . (写出所有正确命题的序号) 解析 由题知ꎬCD⊥平面 ABDꎬ故 CD⊥ABꎬ①正确ꎻ AD 为等腰直角△ABC 的斜边 BC 上的高ꎬ平面 ABD⊥平 面 ACDꎬ则 AB = AC = BCꎬ△BAC 是等边三角形ꎬ②正确ꎻ 易知 DA = DB = DCꎬ又由②知③正确ꎻ由①知④错. 故填: ①②③. 点评 涉及翻折中的线面位置关系的判定ꎬ根据翻 折前后所对应的平面图形与空间图形的位置关系ꎬ判定 线线、线面、面面的平行、垂直等位置关系.

立体几何中的翻折问题资料

立体几何中的翻折问题资料

求解翻折问题的基本方法:
(1)先比较翻折前后的图形,弄清哪些量和位置关系在翻 折过程中不变,哪些已发生变化; (2)将不变的条件集中到立方体图形中,将问题归结为一 个条件与结论明朗化的立几问题.
(1)若二面角α-AC-β为直二面角,求二面角β-BC-γ的大小; (2)若二面角α-AC-β为60°,求三棱锥D′-ABC的体积.
H
又因为BC⊂平面β,所以BC⊥D′E, 所以BC⊥α. 而D′C ⊂ α,所以BC⊥D′C, 所以∠D′CA为二面角β-BC-γ的平面角.
由于∠D′CA=45°,
所以二面角β-BC-γ的大小为45°.
VD'-ABC
=13SDABC
•D'O=1•1AC•BC•D'O 32
=13ga2g46a=126a3
规律小结:
分析求解折叠问题的关键是分辨折叠前后的不变量和不 变关系,在求解过程中上、下底边长分别为2和6,高为 3 的等
腰梯形(如图①).将它沿对称轴OO1折成直二面角(如图②).
(1)证明:AC⊥BO1; (2)求二面角O—AC—O1的正弦值.
从而O1F= O1 A O1C
AC 所以sin∠O1FE=
O O
1E 1F
=2 =
1
3
3 1 4
.又O1E=OO1·sin30°= 3.
3 2
,
立体几何中的翻折问题
如有一只小虫要从A爬到点M,
N
所走的最短路径是什么?
E
N
M
E
F
D
C
A
B
N
MN
M
E
E F
F
D
C
D
C
A

翻折问题

翻折问题

翻折问题立体几何在高中数学中是培养学生的空间想象能力的重要载体,其中翻折问题学生学习是一个难点,同时也是近年来高考的热点。

翻折问题实质是图形由平面到立体变化中一些线、面之间发生了变化,因此本节内容从正三角形、正方形、矩形、梯形、五边形等图形进行翻折,以便学生能更清楚熟悉模型,同时还列举了翻折模型中的平行、垂直、线线角、线面角、二面角、长度等问题。

一.翻折问题的审题建议1.过顶点作折线的垂线,如沿着折起,作,F于点并交BEAG?BEBEABE在翻折过程中,点A的轨迹是以AF为直径的圆,旋转一周所得的几何体ABE是两个同底圆锥,母线分别是AB与AE。

2.弄清变与不变的量,如中的角、线段长度是不变的,BCDEABE与四边形但在翻折过程中,等量是变化的。

AD、AC、AEDAFG、?ABC、??二.平行问题例1.(2017春?让胡路区校级期中)在如图(1)的平面图形中,ABCD为正方形,CDP为等腰直角三角形,E、F、G分别是PC、PD、CB的中点,将△PCD 沿CD折起,得到四棱锥P﹣ABCD如图(2).求证:在四棱锥P﹣ABCD中,AP∥平面EFG.【分析】连接E、F,连接E、G,可得EF∥平面PAB.EG∥平面PAB.即可证平面PAB∥平面EFG,PC分别为F,E中,PABCD,在四棱锥G、E,连接F、E【解答】证明:连接.PD的中点,∴EF∥CD.∵AB∥CD,∴EF∥AB.∵EF?平面PAB,AB?平面PAB,∴EF∥平面PAB.同理EG∥平面PAB.又EF∩EG=E,∴平面PAB∥平面EFG.又AP?平面PAB,∴AP∥平面EFG.【点评】本题考查了空间线面平行的判定,属于中档题.【变式训练1】(2017?闵行区校级模拟)如图,正△ABC的边长为4,CD是AB 边上的高,EF分别是AC和BC的中点,现将△ABC沿CD翻折成直二面角A﹣DC﹣B.(1)证明:AB∥平面DEF;?如果存在,求出的值;如果AP⊥DE2)在线段BC上是否存在点P,使(不存在,请说明理由.∥平ABAB,由此证明BC的中点,得EF∥、【分析】(1)由E、F分别是AC;面DEF轴,建zyx轴、轴、DBD为坐标原点,以直线、DC、DA分别为(Ⅱ)以点.DEAP ⊥,使立空间直角坐标系,利用向量法找出在线段BC上存在点P中,),在△ABC)证明:如图(【解答】解:(12,∥EFAB、、EF分别是ACBC的中点,∴∵,平面EFDEF?又AB平面,?DEF∴AB∥平面DEF;(2)以点D为坐标原点,以直线DB、DC、DA分别为x轴、y轴、z轴,;建立空间直角坐标系,如图(3)所示),2,00,0),C(0,(则A0,0,2),B(2,),,0F(1E(0,,,1),2,=),(﹣,0),2,0,﹣22=(,,10=(0,,1);),=(2,﹣2λ,则2=),+=(设2=λ,﹣λ=0,?得由AP⊥DEλ=,解得,×)21×(﹣2=0λ+∴,且DEP,使AP⊥=.∴在线段BC上存在点【点评】本题考查了直线与平面平行的证明与满足条件的点是否存在的判断问题,阶梯式要注意向量法的合理运用.二.垂直问题例2.(2017春?三元区校级月考)如图,在四形边ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使CD⊥平面ABD,构成三棱锥A﹣BCD.则在三棱锥A﹣BCD中,下列结论正确的是()A.AD⊥平面BCD B.AB⊥平面BCDC.平面BCD⊥平面ABC D.平面ADC⊥平面ABC【分析】由题意推出CD⊥AB,AD⊥AB,推出AB⊥平面ADC,可得平面ABC ⊥平面ADC.【解答】解:∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°∴BD⊥CD又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD故CD⊥平面ABD,则CD⊥AB,又AD⊥AB故AB⊥平面ADC,所以平面ABC⊥平面ADC.故选D.【点评】本题考查平面与平面垂直的判定,考查逻辑思维能力,是中档题.例3.(2016?杨浦区校级模拟)已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折的过程中()A.存在某个位置,使得直线AB和直线CD垂直垂BDAC和直线B.存在某个位置,使得直线直垂和直线BCC.存在某个位置,使得直线AD直.无论翻折到什么位置,以上三组直线均不垂直D【分析】假设各选项成立,根据线面位置关系推导结论,若得出矛盾式子,则假设错误,得出正确选项.垂直,与直线CDA,若存在某个位置,使得直线AB【解答】解:对于,⊥平面ABCBC,∴CD∵CD⊥上,BC,则E在,过点A作平面BCD的垂线AE∴平面ABC⊥平面BCD正确;ACD.故上的射影在BC上时,AB⊥∴当A在平面BCD垂直,与直线BD对于B,若存在某个位置,使得直线AC错误;B⊥EC,显然这是不可能的,故AFC⊥BD,则BD⊥平面,∴BD作AF 垂直,BCAD与直线对于C,若存在某个位置,使得直线,⊥AC⊥平面ACD,BC则BC错误.,显然这是不可能的,故C1>BC,即>2AB∴.A故选:翻折问题中的变与不变,本题主要考查了空间的线面和面面的垂直关系,【点评】空间想象能力和逻辑推理能力,有一定难度,属中档题.【变式训练2】(2017春?辛集市校级月考)如图,在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个空间图形,使B、C、D三点重合,重合后的点记为H,那么,在这个空间图形中必有()A.AG⊥△EFH所在平面B.AH⊥△EFH 所在平面C.HF⊥△AEF所在平面D.HG⊥△AEF所在平面【分析】本题为折叠问题,分析折叠前与折叠后位置关系、几何量的变与不变,可得HA、HE、HF三者相互垂直,根据线面垂直的判定定理,可判断AH与平面HEF的垂直.【解答】解:根据折叠前、后AH⊥HE,AH⊥HF不变,∴AH⊥平面EFH,B 正确;∵过A只有一条直线与平面EFH垂直,∴A不正确;∵AG⊥EF,EF⊥AH,∴EF⊥平面HAG,∴平面HAG⊥AEF,过H作直线垂直于平面AEF,一定在平面HAG内,∴C不正确;∵HG不垂直于AG,∴HG⊥平面AEF不正确,D不正确.故选B【点评】本题考查直线与平面垂直的判定,一般利用线线?线面?面面,垂直关系的相互转化判断.,BC∥AD中,ABCD杭州期末)如图所示,四边形?秋2016】(3【变式训练.AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使面ABD⊥面BCD,连结AC,则下列命题正确的是()A.面ABD⊥面ABC B.面ADC⊥面BDC C.面ABC⊥面BDC D.面ADC⊥面ABC【分析】证明CD⊥平面ABD,因此有AB⊥CD.又因为AB⊥AD,AD∩DC=D,所以AB⊥平面ADC,即可得到平面ADC⊥平面ABC.【解答】解:由题意知,在四边形ABCD中,CD⊥BD.在三棱锥A﹣BCD中,平面ABD⊥平面BCD,两平面的交线为BD,所以CD⊥平面ABD,因此有AB⊥CD.又因为AB⊥AD,AD∩DC=D,所以AB⊥平面ADC,于是得到平面ADC⊥平面ABC.故选D.【点评】本题考查线面垂直、面面垂直的判定,考查学生分析解决问题的能力,属于中档题.三.线线角中,,BC=1,将△浙江模拟)矩形ABCDABC与△ADC例4.(2017?沿AC所在的直线进行随意翻折,在翻折过程中直线AD与直线BC成的角范围(包含初始状态)为().D..B .AC【分析】求出两个特殊位置,直线AD与直线BC成的角,即可得出结论.【解答】解:由题意,初始状态,直线AD与直线BC成的角为0,DB=时,AD⊥DB,AD⊥DC,∴AD⊥平面DBC,AD⊥BC,成的角为BC,直线AD与直线,[0AD与直线BC成的角范围(包含初始状态)为].∴在翻折过程中直线故选:C.【点评】本题考查两直线所成的角的范围的求法,考查学生的计算求解能力、推理论证能力、空间思维能力,考查数形结合思想、分类讨论思想、转化化归思想,是中档题.例5.(2017春?涵江区校级期中)正方形ABCD,沿对角线BD折成直二面角A ﹣BD﹣C,则折后的异面直线AB与CD所成的角的大小为()90°.60°DB.45°C.30°A.O,以AO、CO【分析】取BD中点O,连结轴,zOA为轴,x轴,OD为y为原点,OC为利用向量法能求出折后的建立空间直角坐标系,所成的角.CDAB 与异面直线,COAO、【解答】解:取BD中点O,连结,﹣CBDBD折成直二面角A设正方形ABCD﹣边长为,∵沿对角线,⊥CO⊥BD,AO∴AO⊥BD,CO轴,建立空间直角坐标系,为zy轴,OA为原点,OC为x轴,OD为以O ),,10D(0,,,10),C(1,00),(,(A0,01),B0,﹣),0,1,1,﹣11),=(﹣,﹣=(0,所成的角为θAB设折后的异面直线与CD=>|cos<|cosθ=则,==.∴θ=60°.所成的角为CD60°与∴折后的异面直线AB.故选:C【点评】本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.BC=CD=,AB=BD=DA=2.浙江一模)如图四边形ABCD,【变式训练4】(2016?,的大小在][,则直线折起,使二面角ABD沿BDA﹣BD﹣C现将△)所成角的余弦值取值范围是(AB与CD,0]D..[0[,,∪(1)B.][,].A[0C,]【分析】取BD中点O,连结AO,CO,以O为原点,OC为x轴,OD为y轴,轴,建立空间z作平面BCD的垂线为过点OCD与直角坐标系,利用向量法能求出直线AB所成角的余弦值取值范围.,COAO,O【解答】解:取BD中点,连结,BDCOAB=BD=DA=2.⊥BC=CD=,∴∵,AO=CO=1AO⊥BD,且,的平面角,﹣CBDAOC是二面角A﹣∴∠轴,yx轴,OD为以O为原点,OC为建立空间直角坐标系,轴,BCD的垂线为z过点O作平面),1,0),D(0,00B(0,﹣1,),C(1,0,,则﹣C的平面角为θ,设二面角A﹣BD)(,、连AOBO,则∠AOC=θ,A,∴,,αAB设、CD的夹角为,则cosα==.[∈∵﹣1,∴|,∴cos|,0].cos∴.故选:D【点评】本题考查异面直线所成角的取值范围的求法,是中档题,解题时要认真审题,注意向量法的合理运用.(2016?浙江二模)如图,边长为1的菱形ABCD中,∠DAB=60°,【变式训练5】沿BD将△ABD翻折,得到三棱锥A﹣BCD,则当三棱锥A﹣BCD体积最大时,异面直线AD与BC所成的角的余弦值为().DC .B..A【分析】菱形ABCD中,∠DAB=60°,△ABD、△CBD为边长为1的等边三角形,将△ABD沿BD翻折过程中,点A在底面BDC的投影在∠DCB的平分线上,三棱锥的高最大时,平面ABD⊥平面BCD.【解答】解:△ABD、△CBD为边长为1的等边三角形,将△ABD沿BD翻折形成三棱锥A﹣BCD如图:点A在底面BDC的投影在∠DCB的平分线CE上,则三棱锥A﹣BCD的高为△AEC过A点的高;所以当平面ABD⊥平面BCD时,三棱锥A﹣BCD的高最大,体积也最大,此时AE⊥平面BCD;求异面直线AD与BC所成的角的余弦值:平移BC到DC′位置,|cos∠ADC′|即为所求,AC′=EC′=AE=,AD=DC=1,,=,||||cos∠ADC′=所成的角的余弦值为,AD与BC所以异面直线故选B.【点评】本题考查异面直线所成角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.【变式训练6】(2016?丽水校级模拟)如图,长方形ABCD,M,N分别为AB,AD上异于点A的两点,现把△AMN沿着MN翻折,记AC与平面BCD所成的角为θ,直线AC与直线MN所成的角为θ,则θ与θ的大小关系是()2211=θB.θ>θC.θ<θA.θD.不能确定212112【分析】作AO⊥平面BCD,垂足是O,连接CO,过点C作直线l∥MN,在l上取点H,令CH=CO,在△AOC和△AHC 中,CO=CH,AO⊥平面BCD,从而AO<AH,由此能求出θ<1θ.2【解答】解:作AO⊥平面BCD,垂足是O,连接C过点C作直线l∥MN,在l上取点H,令CH=CO,,⊥平面BCD中,CO=CH,AOAHC在△AOC和△,<AH∴AO,<∠ACH∴∠ACO,θ所成的角为,直线AC与直线MN∵AC与平面BCD所成的角为θ21,MNBCD,CH∥AO⊥平面.Cθ<θ.故选:∴∠ACO=θ,∠ACH=θ∴2211。

立体几何中的翻转与折叠问题

立体几何中的翻转与折叠问题

∵ AP=2,MP= √2 AP ⊥MP, ∴ tan ∠AMP=2√2
2
∴二面角A-EF-P大小为arctan ∠ AMP=2√2
(2) ∵ AP⊥PE,PE⊥PF,PF⊥AP,
∴VP-ABC=
1 3
×1×1×2=
2 3
(3)利用体积桥,

设P到平面AEF的距离为h,则S△AEF · h=3 VP-ABC
学生课前通过网络搜集资料,课上通 过学生动手操作、多媒体展示、师生互 动的讨论等环节,让学生在亲历探究的 过程中获得知识,从而达到培养能力的 目的,使学生情感、意志和能力都得到 充分的发展。
一.教学内容分析 二.教学对象分析 三.教学目标 四.教学方法 五.课堂结构和教学过程 六.教学评价 七.多媒体的应用
课堂小结 课后纸笔评价(分层作业)
五、课堂结构和教学过程
【课堂小结】
平面图形
翻 折 、展 剪开 拼 平面图形
不变量
位置关系 数量关系
解题关键
变量
位置关系 数量关系
五、课堂结构和教学过程
课后纸笔评价(分层作业)
变式训练:如图,已知ABCD是上下底边长分 D O 1
必 别为2和6,高为3 的等腰梯形,将它沿对称轴
一.教学内容分析 二.教学对象分析 三.教学目标 四.教学方法 五.课堂结构和教学过程 六.教学评价 七.多媒体的应用
三、教学目标
◆知识与技能目标: 1.使学生掌握翻折问题的解题方法,并会初步应用。 2.通过立体几何中翻折问题的学习,进一步掌握立体几何中
距离与成角的求法。
◆能力与方法目标: 1.培养学生的动手实践能力。 2.在实践过程中,使学生提高对立体图形的分析能力,进一
求解翻折问题的基本方法:

高考数学难点突破八立体几何中的翻折问题答案

高考数学难点突破八立体几何中的翻折问题答案

高考数学难点突破八----立体几何中的翻折问题一、知识储备翻折问题就是把平面图形经过折叠变成一个空间图形,实际上,折叠问题就是轴对称的问题,折痕就是对称轴,重合的即是全等图形,解决折叠问题时,要把运动着的空间图形不断地与原平面图形进行对照,看清楚其中哪些量在变化,哪些量没有变化,从而寻找出解决问题的方法,达到空间问题与平面问题相互转化的目的。

核心是抓牢折痕就是翻折前与翻折后平面图形的公共底边,折痕与公共底边上两高所在平面垂直。

二、应用举例例1.如图,在矩形ABCD 中,M 在线段AB 上,且1AM AD ==,3AB =,将ADM ∆沿DM 翻折.在翻折过程中,记二面角A BC D --的平面角为θ,则tan θ的最大值为(C )ABCD例2.在矩形ABCD 中,4,3AB AD ==,E 为边AD 上的一点,1DE =,现将ABE ∆沿直线BE 折成A BE '∆,使得点A '在平面 BCDE 上的射影在四边形BCDE 内(不含边界),设二面角 A BE C '--的大小为θ,直线,A B A C ''与平面BCDE 所成的角分 别为αβ,,则( D ) A.βαθ<< B.βθα<< C.αθβ<< D.αβθ<<例3.如图,矩形ABCD 中心为, O BC AB >,现将DAC 沿着对角线AC 翻折成EAC ,记BOE a ∠=,二面角B AC E --的平面角为β,直线DE 和BC 所成角为γ,则( D )A. ,2a ββγ>>B. ,2a ββγ><C. ,2a ββγ<>D. ,2a ββγ<<例4.如图,在ABC △中,1AB =,22BC =,4B π=,将ABC △绕边AB 翻转至ABP △,使面ABP ⊥面ABC ,D 是BC 中点,设Q 是线段PA 上的动点,则当PC 与DQ 所成角取得最小值时,线段AQ 的长度为( B ) A .5 B .25C .35D .25例5.已知在矩形ABCD 中,2AD AB =,沿直线BD 将ABD ∆ 折成'A BD ∆,使得点'A 在平面BCD 上的射影在BCD ∆内(不含边界),设二面角'A BD C --的大小为θ,直线','A D A C 与平面BCD 所成的角分别为,αβ,则( )A. αθβ<<B. βθα<<C. βαθ<<D. αβθ<< 【答案】DQ DPCBA【解析】分析:由题意画出图形,由两种特殊位置得到点A′在平面BCD上的射影的情况,由线段的长度关系可得三个角的正弦的大小,则答案可求.详解:如图,∵四边形ABCD为矩形,∴BA′⊥A′D,当A′点在底面上的射影O落在BC上时,有平面A′BC⊥底面BCD,又DC⊥BC,可得DC⊥平面A′BC,则DC⊥BA′,∴BA′⊥平面A′DC,在Rt△BA′C中,设BA′=1,则,∴A′C=1,说明O为当A′点在底面上的射影E落在BD上时,可知A′E⊥BD,设BA′=1,则A D'=,要使点A′在平面BCD上的射影F在△BCD内(不含边界),则点A′的射影F落在线段OE上(不含端点).可知∠A′EF为二面角A′﹣BD﹣C的平面角θ,直线A′D与平面BCD所成的角为∠A′DF=α,直线A′C与平面BCD所成的角为∠A′CF=β,<,而A′C的最小值为1,可求得DF>CF,∴A′C<A′D,且A′E=13∴sin∠A′DF<sin∠A′CF<sin∠A′EO,则α<β<θ.故答案为:D点睛:本题主要考查二面角的平面角和直线与平面所成的角,考查正弦函数的单调性,意在考查学生对这些基础知识的掌握能力和空间想象能力分析推理能力.例6、(嘉兴市2020年1月期终)已知矩形ABCD ,4AB =,2BC =,E 、F 分别为AB 、CD 的中点,沿直线DE 将ADE △翻折成PDE △,在点P 从A 至F 的运动过程中,CP 的中点G 的轨迹长度为 .22π分析:设 AC ,FC 的中点为 M , N ,CP 的中点G 的轨迹是以 MN 为直径的半圆.例7、(宁波市2020年1月期终)已知平面四边形ABCD 中,90A C ∠=∠=︒,BC CD =,AB AD >,现将ABD △沿对角线BD 翻折得到三棱锥A BCD '-,在此过程中,二面角A BC D '--、A CDB '--的大小分别为α,β,直线A B '与平面BCD 所成角为γ,直线A D '与平面BCD 所成角为δ,则( )A .γδβ<<B .γαβ<<C .αδβ<<D .γαδ<<例8、(柯桥一中2020年1月期终)已知在矩形ABCD 中,2AB =,4AD =,E ,F 分别在边AD ,BC 上,且1AE =,3BF =,如图所示, 沿EF 将四边形AEFB 翻折成A EFB '',则在翻折过程中,二面角B CD E '--的大小为θ,则tan θ的最大值为( C ) A.5B.5C.4例9、(名校合作体2020年3月)已知C 为ABD Rt ∆斜边BD 上一点,且ACD ∆为等边三角形,现将ABC ∆沿AC 翻折至C B A '∆,若在三棱锥ACD B -'中,直线B C '和直线B A '与平面ACD 所成角分别为βα,,则( )A. βα<<0B.βαβ2≤<C.βαβ32≤≤例10、(2020年1月嘉兴期终)已知矩形ABCD ,4AB =,2BC =,E 、F 分别为AB 、CD 的中点,沿直线DE 将ADE △翻折成PDE △,在点P 从A 至F 的运动过程中,CP 的中点G 的轨迹长度为 .分析:取DE 中点O ,连CO PO ,,则点G 的轨迹是以CO 的中点为圆心,2221=PO 为半径的半圆,轨迹长为22ππ=r例11、(2020年4月温州模拟)如图,在ABC ∆中,点M 是边BC 的中点,将ABN ∆沿着AM 翻折成M B A '∆,且点B '不在平面AMC 内,点P 是线段C B '上一点,若二面角B AM P '--与二面角C AM P --的平面角相等,则直线AP 经过C B A '∆的( A ) A. 重心 B. 垂心 C. 内心 D.外心G PFD B A例12、(2020年嘉兴一模)将边长为1的正方形ABCD 沿对角线BD 翻折,使得二面角A BD C --的平面角的大小为π3,若点E ,F 分别是线段AC 和BD 上的动点,则BE CF 的取值范围为 ( )A .[1,0]-B .1[1,]4-C .1[,0]2-D . 11[,]24-例13、(2020年5月暨阳联考)如图:ABC ∆中,︒=∠⊥90,ACB BC AB ,D 为AC 的中点,ABD ∆沿BD 边翻折过程中,直线AB 与BC 直线所成的最大角,最小角分别记为11βα,,直线AD 与直线BC 所成的最大角,最小角分别记为22βα,,则有( D )A. ββαα≤<121,B. 2121ββαα><,C. 2121ββαα≤≥,D.2121ββαα>≥,分析一:翻折到180时,,AB BC 所成角最小,可知130β=,,AD BC 所成角最小,20β=,翻折0时,,AB BC 所成角最大,可知190α=,翻折过程中,可知AD 的投影可与BC 垂直,所以,AD BC 所成最大角290α=,所以 1190,30αβ︒︒==,2290,0αβ︒︒==分析二:对角线向量定理例14、(2020年4月台州二模)如下图①,在直角梯形ABCD 中,90=∠=∠=∠DAB CDB ABC , 30=∠BCD ,4=BC ,点E 在线段CD 上运动,如下图②,沿BE 将BEC ∆折至C BE '∆,使得平面⊥'C BE 平面ABED ,则C A '的最小值为 .⇒例15、(2020年嘉兴市基础知识测试)如图,矩形ABCD 中,2,1==BC AB ,点E 为AD 中点,将ABE ∆沿BE 折起,在翻折过程中,记二面角B DC A --的平面角大小为α,则当α最大时,=αtan ( ) A. 22 B. 32 C. 31 D.21。

解决翻折问题的关键:找准“变”与“不变”

解决翻折问题的关键:找准“变”与“不变”

解决翻折问题的关键:找准“变”与“不变”作者:韩文美来源:《新高考·数学基础》2019年第04期立体几何的翻折问题是指将一平面图形翻折后变成空间图形,然后根据平面图形的数量关系、位置关系等的变化与否来研究空间图形中各元素间的数量关系、位置关系等问题.所以,解决翻折问题的关键是确定翻折前后的不变量与改变量.一般情况下,在折线同侧的量,折叠前后不变,“跨过”折线的量,折叠前后可能会发生变化,把握这点是解决这类问题的关键.一、翻折中的判定问题通过平面图形的翻折后变成空间图形,进而研究翻折后的空间图形中的点、线、面的位置关系,判定相关的点、线、面的平行或垂直关系,以及相应量的变化等.例1 如图1,矩形ABCD中,E为边AB的中点,将△ADE沿直线DE翻转成△Al DE.若M为线段A,C的中点,则在△ADE翻转过程中,正确的命题是____ .故填答案:①②④.点评平面图形翻折为空间图形问题的关键是看翻折前后线面位置关系的变化,不变的和变化的量反映了翻折后的空间图形的结构特征,据此可加以分析与判断.二、翻折中的距離问题通过平面图形的翻折后变成空间图形后的距离问题,往往涉及空间几何体的表面积与体积,以及空间距离等数量关系的证明与计算等.例2 如图3,菱形ABCD的对角线AC与BD交于点0,点E,F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D'EF的位置.三、翻折中的探究问题结合平面图形的数量关系与位置关系研究翻折后的空间图形中的点、线、面的开放与创新探索问题,包括点、线的位置确定,存在性或探究性问题等.例3 如图4,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD 上的一点.将△ADE沿DE翻折起到△A1DE的位置,使A1F⊥CD,如图5.(1)求证:DE∥平面AlCB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使AC⊥平面DEQ?说明理由.分析(l)由D,E分别为AC,AB的中点,通过线线平行的转化,易证DE∥平面A1 CB;(2)由题中线线垂直可证DE⊥平面A1DC,进而有DE⊥A1F,结合线面垂直的判定可证A1F⊥平面BCDE,进而得到对应的线线垂直关系;(3)分别取A1C,A1B的中点P,Q,可得PQ∥BC,平面DEQ即为平面DEP,结合(2)中的线面垂直关系的转化,利用线线垂直关系来证明对应的线面垂直关系,进而得以解决存在性问题.点评在解决翻折中的开放、创新或探究性问题时,一般通过先确定存在性、位置关系等开放性结论,再通过合理的推理与分析来说明.而正确的翻折处理、直观图的判定以及科学的推理论证都是必不可少的.立体几何的翻折问题背景简单,但立意较深,对考生的空间想象能力要求很高,可以有效改善同学们对立体几何的思维定势,构造空间立体几何结构直观图,使静态数学动态化,优化思维品质。

立体几何翻折问题

立体几何翻折问题

角线 BD 翻折,则异面直线 BE 与 CF 所成角的取值范围是
A.
(6
,
3
)
B.
(6,Leabharlann 2]C.(3
,
2
]
D.
( , 2 )
33
过 F 作 FH ∥ EB,交 AD于 H .设菱形 ABCD的边长为 1,

3 4
CH
21 4
, cos CFH
CF 2 FH 2 CH 2 2 *CF * FH
2
2
3
2
3
4
CH 2 15 CH 2 16
2* 3 * 3 24
3 4
5 4 CH 2 Q 3 CH 21 cos CFH [ 1 , 1]
43
4
4
22
CFH
的取
值范
围是
[ 3
,
2 3
]
,但
异面直线
BE 与
CH
所成角的范围是(
3
, ] 2
定义法: 对于异面直线所成的角,如利用平 行线转化为平面角,把空间问题转 化为平面问题
的夹
角范围是
[
3
,
2 3
] ∴异面直线
BE, CF
所成角的范围是

3
,
2
]
.
1、特殊法(极端情形),关注特殊位置、特殊图形、特殊点等. 2、建立角或者边的关系的函数,转化为函数的最值问题. 3、充分挖掘翻折过程中点、线、面的几何本质.
2、翻折之后的求值问题
2、翻折之后的求值问题
向量法
BE ( 3 , 3 cos , 3 sin ), FC (0, 3 ,0)

专题01 翻折问题(解析版)

专题01 翻折问题(解析版)

专题01 翻折问题一、解答题1.(2020·江苏南京·统考模拟预测)如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,BD=6,DC=4,求AD的长.小明同学利用翻折,巧妙地解答了此题,按小明的思路探究并解答下列问题:(1)分别以AB,AC所在直线为对称轴,画出△ABD和△ACD的对称图形,点D的对称点分别为点E,F,延长EB和FC相交于点G,求证:四边形AEGF是正方形;(2)设AD=x,建立关于x的方程模型,求出AD的长.【答案】(1)证明见解析;(2)12.【分析】(1)先根据△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根据对称的性质得到AE=AF,从而说明四边形AEGF是正方形;(2)利用勾股定理,建立关于x的方程模型(x−6)2+(x−4)2=102,求出AD=x=12.【详解】(1)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF,∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°,∴∠EAF=90°.又∵AD⊥BC,∴∠E=∠ADB=90°,∠F=∠ADC=90°,∴四边形AEGF是矩形,又∵AE=AD,AF=AD,∴AE=AF,∴矩形AEGF是正方形;(2)解:设AD=x,则AE=EG=GF=x.∵BD=6,DC=4,∴BE=6,CF=4,∴BG=x﹣6,CG=x﹣4,在Rt△BGC中,BG2+CG2=BC2,∴(x﹣6)2+(x﹣4)2=102.化简得:x2﹣10x﹣24=0解得:x1=12,x2=﹣2(舍去)所以AD=x=12.2.(2019秋·江苏盐城·九年级校考期中)在初二的数学学习中,我们已经了解了直角三角形斜边上的中线等于斜边的一半.张老师在课堂上又提出了这样的问题:如图1,在Rt△ABC中,∠ACB=90°,∠BAC=30°,那么BC与AB有怎样的数量关系?(1)经过小组合作交流后,小明代表小组发言,他们发现了AB=2BC,证明方法如下:证明:如图2,把△ABC沿着AC翻折,得到△ADC∴∠ACD=∠ACB=90°,∴∠BCD=∠ACD+∠ACB=90°+90°=180°,∴点B、C、D三点共线.又∵∠DAC=∠BAC=30°,∴∠BAD=60°,(请在下面补全小明的证明过程)(2)受到小明“翻折”方法的启发,另一组代表小刚发言:如图3,在△ABC中,如果把条件“∠ACB=90°”改为“∠ACB=135°”,保持“∠BAC=30°”不变,若BC=1,求AB的长.【答案】(1)AB=2BC;补全证明过程见解析;(2)【分析】(1)根据翻折的性质可得AB=AD,BC=BD,即可证明△ABD是等边三角形,可得AB=BD,即可AB;证明BC=12(2)如图,把△ABC沿着AC翻折,得到△ADC,连接BD,根据翻折的性质可得∠DAC=∠BAC=30°,∠ACD=∠ACB=135°,AB=AD,CD=BC=1,可得∠BAD=60°,∠BCD=90°,即可证明△ABD是等边三角形,可得AB=BD,根据勾股定理可得,即可得答案.【详解】(1)∵把△ABC沿着AC翻折,得到△ADC,∴AB=AD,BC=BD,∴△ABD是等边三角形,∴AB=BD=2BC.(2)如图,把△ABC沿着AC翻折,得到△ADC,连接BD,∵∠ACB=135°,∠BAC=30°,BC=1,∴∠DAC=∠BAC=30°,∠ACD=∠ACB=135°,AB=AD,CD=BC=1,∴∠BCD=360°-135°-135°=90°,∠BAD=60°,∴△ABD是等边三角形,=∴.3.(2021秋·江苏南京·九年级统考期中)问题:如图1,在等边三角形△ABC中,点E在AB上,点D在CB的延长线上,ED=EC,回答下列问题:(1)与AE相等的线段是.(2)请证明(1)中得到的结论,证明思路如下:①小聪思路:如图2,过E作EF//BC,交AC于点F,请你完成剩下解答过程;②小明思路:如图3,把△EBD沿BE翻折得到△EBF,连接CF,请你完成剩下解答过程.【答案】(1)BD;(2)①见解析;②见解析【分析】(1)思路见(2)(2)①过E作EF//BC,证明△AEF为等边三角形,再证明△DBE≌△EFC,即可得到BD=EF=AE;②把△EBD沿BE翻折得到△EBF,连接CF,得到△EBD≌△EBF,再证明△ACE≌△BCF,即可得到AE=BF=BD;【详解】(1)BD(2)①小聪思路:过点E作EF//BC,交AC于F∵△ABC是等边三角形∴∠ABC =∠ACB =∠A =60°,AB =BC =AC∵EF //BC ∴∠AEF =∠ABC =60°,∠AFE =∠ACB =60°,∠FEC =∠ECB∵又∠A =60° ∴△AEF 是等边三角形∴AE =AF =EF ,∠EFC =∠DBE =120°,∴CF =BE∵ED =EC∴∠D =∠ECB∴∠D =∠FEC∴∠FCE =∠BED在△DBE 和△EFC 中,CF BE FCE BEDCE DE =ìïÐ=Ðíï=î∴△DBE ≌△EFC (SAS )∴BD =EF∴BD =AE②小明思路:∵DE =EC ∴∠ECB =∠D∵∠ABC =∠DEB +∠D ,∠ACB =∠ACE +∠ECB∴∠DEB =∠ACE∵△EBD 翻折到△EBF∴△EBD ≌△EBF ∴∠DEB =∠FEB ,DE =EF∴∠DEB =∠ACE =∠FEB∵∠CEB =∠CEF +∠FEB =∠A +∠ACE ∴∠CEF =∠A =60°∵DE =EF =CE ∴△ECF 为等边三角形∴CE =CF ,∠ECF =60°∴∠ACE +∠ECB =∠ECB +∠BCF∴∠ACE =∠BCF ,在△ACE 和△BCF 中CF BE BCF ACEAC BC =ìïÐ=Ðíï=î∴△ACE ≌△BCF (SAS )∴AE =BF =BD4.(2022·江苏南京·统考一模)阅读下面的问题及解决途径.结合阅读内容,完成下面的问题.(1)填写下面的表格.(2)将函数y =-2x 2+3x +1的图像沿y 轴翻折,所得到的图像对应的函数表达式为 .(3)将函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的图像先向左平移1个单位长度,再沿y 轴翻折,最后绕原点旋转180°,求所得到的图像对应的函数表达式.【答案】(1)1x +,y ,61y x =+(2)2323y x x -=-+(3)2(2)y ax a b x a b c=--+---【分析】(1)阅读题干材料,弄清题中材料中图形平移的规律,“左加右减”进行求解即可;(2)根据二次函数图像与几何变换,将x 换成x -,整理后即可得出翻折后的解析式,根据二次函数的性质即可求得结论;(3)利用图像向左平移、关于,x y 轴翻折、绕坐标原点旋转的规律进行解答.【详解】(1)解:设平移后新的函数图像上任意点P 的坐标为(,)x y ,将点P 向右平移1个单位长度得点(1,)P x y ¢+平移后的图像对应的函数表达式为:61y x =+,故答案为:1x +,y ,61y x =+;(2)解:将二次函数2231y x x =-++的图像沿着y 轴翻折,所得到的图像对应的函数表达式是22()3()1y x x +=--×-+,即2323y x x -=-+,故答案为:2323y x x -=-+;(3)解:将2y ax bx c =++(a ,b ,c 是常数,a ≠0)的图像先向左平移1个单位长度,得2(1)(1)y a x b x c =++++,再沿y 轴翻折,得2(1)(1)y a x b x c =-++-++,即2(21)(1)y a x x b x c =-++-+,最后绕原点旋转180°,得2(21)(1)y a x x b x c -=+++++,整理得:2(2)y ax a b x a b c =--+---,故答案为:2(2)y ax a b x a b c =--+---.答:所得到的图像对应的函数表达式2(2)y ax a b x a b c =--+---.5.(2022秋·江苏无锡·九年级统考期中)在数学活动《折纸与证明》中,有这样的一段活动材料:①如图①,把正方形ABCD 对折后再展开,折痕为EF ;②如图②,将点A 翻折到EF 上点A ¢处,且使折痕过点B ;③如图③,沿A C ¢折叠,得A BC ¢V (如图④).回答下列问题:(1)判断:A BC ¢V 的形状为______________;并说明你的理由;(2)若正方形纸片的边长为2,则线段A F ¢的平方的值为______________.【答案】(1)等边三角形,理由见解析(2)3【分析】(1)由折叠的性质可知EF 垂直平分BC ,结合正方形的性质可知A C A B AB BC ¢¢===,可判断A BC ¢V 是等边三角形.(2)利用勾股定理解直角A FB ¢D 可得222A F A B FB ¢¢=-.【详解】(1)解:等边三角形.理由如下:∵如图②,把正方形纸片ABCD 对折,折痕为EF ,∴EF 垂直平分BC .∵将点A 翻折,折痕过点B ,且使点A 落在EF 的点A ¢处,∴A C A B AB BC ¢¢===.∴A BC ¢V 是等边三角形.(2)解:∵正方形纸片的边长为2,EF 垂直平分BC ,∴2A B AB ¢==,112122FB BC ==´=,90A FB ¢Ð=°,∴2222213A F A B FB ¢¢=-=-=,线段A F ¢的平方的值为3.6.(2022秋·江苏扬州·九年级统考期中)【问题背景】小明遇到这样一个问题:如图1,在Rt ABC V 中,9060A CB ,A Ð=°Ð=°,CD 平分ACB Ð,试判断BC 和AC AD 、之间的数量关系.【初步探索】小明发现,将ACD V 沿CD 翻折,使点A 落在BC 边上的E 处,展开后连接DE ,则得到一对全等的三角形,从而将问题解决(如图2)(1)写出图2中全等的三角形____________________;(2)直接写出BC 和AC AD 、之间的数量关系__________________;【类比运用】(3)如图3,在ABC V 中,2C B Ð=Ð,AD 平分32CA B ,A B ,A D Ð==,求ACD V 的周长.小明的思路:借鉴上述方法,将ACD V 沿AD 翻折,使点C 落在AB 边上的E 处,展开后连接DE ,这样可以将问题解决(如图4);请帮小明写出解答过程:【实践拓展】(4)如图5,在一块形状为四边形ABCD 的空地上,养殖场丁师傅想把这块地用栅栏围成两个小型的养殖场,即图5中的ABC V 和ACD V ,若AC 平分10m 17m 9m BAD BC CD AC AD Ð====,,,.请你帮丁师傅算一下需要买多长的栅栏.【答案】(1)A C D E C D @V V ;(2)BC AC AD =+;(3)ACD V 的周长为5;(4)需要买67m 长的栅栏【分析】(1)将ACD V 沿CD 翻折得到ECD V ,则A CD E C D @V V ,即可得答案;(2)由90,60ACB A Ð=°Ð=°,得30B Ð=°,由翻折得,E C A C E D A D ==,60CED A Ð=Ð=°,得30EDB B Ð=Ð=°,所以E D E B A D ==,于是B C E C E B A C A D =+=+;(3)将ACD V 沿AD 翻折,使点C 落在AB 边上的点E 处,展开后连接DE ,则,A C A E CD E D ==,2AED C B Ð=Ð=Ð,于是得2B E D B B Ð=Ð+Ð,则B EDB Ð=Ð,得EB ED CD ==,所以3A C C D A B +==,即可得答案;(4)将ACD V 沿AC 翻折,使点C 落在AB 边上的点E 处,连接CE ,作CF AB ^于F ,设m EF BF c ==,则()9A F x m =+,可得方程()222217910x x -+=-,解得:6x =,即可求得6m EF BF ==,()21m AB =,则()91010211767m AD BC CD AB AC ++++=++++=,可得答案.【详解】解:(1)如图2,ACD QV 沿CD 翻折得到ECDV A C D E C D \@V V ;(2)BC AC AD =+,理由:90,60ACB A Ð=°Ð=°Q ,30B \Ð=°,由翻折得,E C A C E D A D ==,60CED A Ð=Ð=°,603030E D B C E D B \Ð=Ð-Ð=°-°=°,EDB B \Ð=Ð,ED EB \=,EB AD \=,B C E C E B A C A D \=+=+;(3)如图4,将ACD V 沿AD 翻折,使点C 落在AB 边上的点E 处,展开后连接DE ,由翻折得,A C A E CD E D ==,2AED C B Ð=Ð=Ð,A E D E D B B Ð=Ð+ÐQ ,2B E D B B \Ð=Ð+Ð,B EDB \Ð=Ð,EB ED \=,CD EB \=,3A C C D A E E B A B \+=+==,325A C C D A D \++=+=,ACD V 的周长为5;(4)如下图5,将ACD V 沿AC 翻折,使点C 落在AB 边上的点E 处,连接CE ,作CF AB ^于F ,10m,17m,9m BC CD CA AD ====Q ,9m,10m AE AD CE CD \====,10m BC CE \==,CF AB ^Q ,\90,A FC B FC E F B F Ð=Ð=°=,设m EF BF c ==,则()9m AF x =+,22222A C A F B C B F C F -=-=Q ,()222217910x x \-+=-,解得:6x =,6m EF BF ==Q ,()96621m AB AE EF BF \=++=++=,()91010211767m AD BC CD AB AC \++++=++++=,\需要买67m 长的栅栏.7.(2022秋·江苏盐城·九年级校联考阶段练习)如图,在边长为1的小正方形组成的网格中有一个ABC V ,按要求回答下列问题:(1)ABC V 的面积为 ;(2)画出将ABC V 向右平移6格,再向上平移3格后的111A B C △;(3)画出ABC V 绕点B 顺时针旋转90°后的图形22A BC V ;(4)画出ABC V 沿直线EF 翻折后的图形33A B C △.【答案】(1)3(2)见解析(3)见解析(4)见解析【分析】(1)直接利用三角形面积求法得出答案;(2)利用平移的性质得出对应点位置,进而得出111A B C △;(3)直接利用旋转的性质得出对应点位置,进而得出22A BC V ;(4)直接利用翻折变换的性质得出对应点位置,进而得出33A B C △.【详解】(1)ABC V 的面积为:13232´´=;故答案为:3;(2)如图所示:111A B C △即为所求;(3)如图所示:22A BC V 即为所求;(4)如图所示:33A B C △即为所求;8.(2020·江苏无锡·统考一模)阅读材料:等腰三角形具有性质“等边对等角”.事实上,不等边三角形也具有类似性质“大边对大角”:如图1.在△ABC 中,如果AB >AC ,那么∠ACB >∠ABC .证明如下:将AB 沿△ABC 的角平分线AD 翻折(如图2),因为AB >AC ,所以点B 落在AC 的延长线上的点B '处.于是,由∠ACB >∠B ',∠ABC =∠B ',可得∠ACB >∠ABC .(1)灵活运用:从上面的证法可以看出,折纸常常能为证明一个命题提供思路和方法.由此小明想到可用类似方法证明“大角对大边”:如图3.在△ABC 中,如果∠ACB >∠ABC ,那么AB >AC .小明的思路是:沿BC 的垂直平分线翻折……请你帮助小明完成后面的证明过程.(2)拓展延伸:请运用上述方法或结论解决如下问题:如图4,已知M 为正方形ABCD 的边CD 上一点(不含端点),连接AM 并延长,交BC 的延长线于点N .求证:AM +AN >2BD .【答案】(1)证明见解析;(2)证明见解析.【分析】(1)设BC的中垂线交BC于点E,交AB于点D,连接DC,结合中垂线的性质定理与三角形三边长的关系,即可得到结论;(2)延长DC到点E,使得CE=CN,连接AE交BC于点F.易证△ACE≌△CAN,得AE=AN.过点C作PQ⊥AC,分别交AN、AE于点P、Q,结合“三角形中,大角对大边”,得AP+AQ>2AC,QE>CQ,PC>PM,进而得QE>PM,即AM+AN>AP+AQ,然后即可得到结论.【详解】(1)设BC的中垂线交BC于点E,交AB于点D,连接DC.将∠B沿BC的中垂线DE翻折(如图3),使点B落在点C处.∵∠ACB>∠ABC,∴CD在△ABC的内部,∵DE为BC的中垂线,∴DB=DC.∵在△ADC中,AD+DC>AC,∴AD+DB>AC.即AB>AC;(2)如图4,延长DC到点E,使得CE=CN,连接AE交BC于点F.∵∠ACE=∠ACN=135°,CE=CN,AC=AC,∴△ACE≌△ACN(SAS),∴AE=AN.过点C作PQ⊥AC,分别交AN、AE于点P、Q.∵∠ACP=∠ACQ=90°,∴AP>AC,AQ>AC,∴AP+AQ>2AC.∵∠ACD>∠E,∠ACD=45°,∠QCE=135°-90°=45°,∴∠QCE>∠E,∴QE>CQ.同理可得:PC>PM.∵△ACE≌△ACN,∴∠CAN=∠CAE,又∵AC=AC,∠ACP=∠ACQ=90°,∴△ACP≌△ACQ(ASA),∴PC=CQ,∴QE>PM,∴AM+AN=AM+AE=AM+AQ+QE>AM+AQ+PM=AP+AQ.又∵AP+AQ>2AC,∴AM+AN>2AC.∵正方形ABCD中,AC=BD,∴AM+AN>2BD.9.(2022秋·江苏·九年级期末)折纸,常常能为证明一个命题提供思路和方法.例如,在△ABC中,AB>AC(如图1),怎样证明∠C>∠B呢?把AC沿∠A的平分线AD翻折,因为AB>AC,所以点C落在AB上的点C′处(如图2).于是,由∠AC′D =∠C,∠AC′D>∠B,可得∠C>∠B.利用上述方法(或者思路)解决下列问题:(1)如图2,上述阅读材料中,若∠B=45°,∠C=60°,则∠C′DB=_______°.(2)如图3,△ABC中,∠ACB=90°,AD平分∠BAC,交BC于点D.若CD=2,AB=6.求△ABD的面积.(3)如图4,△ABC中,已知AD⊥BC于点D,且CD=AB+BD.若∠C=24°,求∠CAB的度数.【答案】(1)15;(2)△ABD的面积为6;(3)∠CAB=108°.【分析】(1)利用折叠的性质和三角形的外角性质,即可求出答案;(2)把AC沿角平分线AD翻折,点C落在AB上的点C'处,得DC'=CD=2,即可求出△ABD的面积;(3)把AB沿AD翻折,点B落在BC上的点B'处,则BD=DB',求得AB'=B'C,然后得到∠B'AC=∠C =24°,从而得到∠B=∠AB'B=48°,即可求出答案.【详解】解:(1)由折叠的性质,则∠AC′D=∠C=60°,∵∠B=45°,∴∠C′DB=60°-45°=15°;故答案为:15°.(2)如图,把AC沿角平分线AD翻折,点C落在AB上的点C'处,∵AD是角平分线,∠ACB=90°,∴DC'=DC=2,∠AC'D=∠ACD=90°,∵DC'是高,∴△ABD的面积为6.(3)如图,把AB沿AD翻折,点B落在BC上的点B'处,则BD=DB',∴AB'=AB=B'C,∴∠B'AC=∠C =24°∴∠B=∠AB'B=48°,∴∠CAB=108°.10.(2021春·江苏无锡·九年级江苏省锡山高级中学实验学校校考期中)问题背景如图1,矩形ABCD中,AB=AB AD<,M、N分别是AB、CD的中点,折叠矩形ABCD,使点A落在MN上的点K处,折痕为BP.(1)用直尺和圆规在图1中的AD 边上作出点P (不写作法,保留作图痕迹);(2)连接AK ,判断ABK V 的形状;(3)如图2,若点E 是直线MN 上的一个动点.连接EB ,在EB 左侧作等边三角形BEF ;连接MF ,则MF 的最小值是______;(4)如图3,若点E 是射线KM 上的一个动点将BEK △沿BE 翻折,得BET △,BT 所在直线交直线MN 于点Q ,当TQE △是直角三角形时,KE 的长为多少?请直接写出答案.【答案】(1)见详解;(2)ABK V 是等边三角形,理由见详解;(3(4)4或12【分析】(1)作∠ABK 的平分线交AD 于P ,点P 即为所求;(2)先求出∠BKM =30°;根据对称性可得∠AKB =60°,进而即可得到答案;(3)由△FBA ≌△EBK ,因为FM 、EH 分别是AB 、BK 上的中线,推出FM =EH ,根据垂线段最短可知,当HE ⊥MN 时,EH 的值最小,进而即可求解;(4)分四种情形分别画出图形,求解即可;【详解】解:(1)如图①中,点P 即为所求:(2)连接AK ,在Rt △BKM 中,∵sin ∠BKM =BM BK =12,∴∠BKM =30°.∵M 、N 分别是AB 、CD 的中点,∴MN 是矩形ABCD 的对称轴,∴∠AKM =∠BKM =30°,AK =BK ,∴∠AKB =60°,∴ABK V 是等边三角形;(3)如图②中,连接AF ,取BK 的中点H ,连接EH .∵等边三角形BEF中,∴∠FBE=∠ABK=90°-∠BKM=90°-30°=60°,又∵BF=BE,BA=BK,∴∠FBA=∠EBK,∴△FBA≌△EBK(SAS),∵FM、EH分别是AB、BK上的中线,∴FM=EH,根据垂线段最短可知,当HE⊥MN时,EH的值最小,最小值EH=12∴FMAB MKB=30°,(4)∵MB=12∴MK=6,如图,当∠TEQ=90°时,则TE∥MB,∴∠MBQ=∠T=∠MKB=30°,∴MQ=,设EK=ET=x,则QE,x+x+2=6,解得:x EK如图,当∠TQE=90°时,此时点Q与点M重合,QE=2=,∴EK=6-2=4;如图当∠TEQ=90°时,则∠BEM=45°,∴EM=BM∴EK如图:当∠TQE=90°时,此时点Q与点M重合,∵∠TEM=90°-∠T=60°,×60°=30°,∴∠KEB=12∴∠EKB=∠KEB=30°,∴ME=MK=6,∴EK=12.综上所述,满足条件的EK的值为4或12.11.(2022春·江苏扬州·九年级校联考期中)问题情境:如图,在正方形ABCD中,CE⊥DF.易证:CE=DF.(不需要写出证明过程)问题探究:在“问题情境”的基础上请研究.(1)如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段AE与MN之间的数量关系,并说明理由.(2)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,CQ(图中未连),判断线段EQ与CQ之间的数量关系,并说明理由.(3)在(2)的条件下延长EQ交边AD于点F.则∠AEF= °;(4)拓展提高:如图3,若该正方形ABCD边长为8,将正方形沿着直线MN翻折,使得BC的对应边B′C′恰好经过点A,过点A作AG⊥MN,垂足分别为G,若AG=5,请直接写出AC′的长.【答案】(1)AE=MN,理由见解析;(2)EQ=CQ,理由见解析;(3)45;(4)2.【分析】(1)过点B作BF//MN交CD于点F,则四边形M BFN为平行四边形,得出MN =BF,BF⊥AE,由ASA证得△ABE≌△BCF,得出AE= BF,即可得出结论;(2)在图2中,连接AQ、CQ,易证△ABQ≌△CBQ,所以AQ=CQ,再根据垂直平分线的性质得到AQ=EQ,所以可得EQ=CQ(3)连接AQ,过点Q作HI// AB,分别交AD,BC于点H、I,则四边形ABIH为矩形,得出HI⊥AD,HI ⊥BC,HI = AB= AD,证△DHQ是等腰直角三角形,得HD= HQ,AH = QI,由H L证得Rt△AHQ≌Rt△QIE,得∠AQH =∠QEI,证∠AQE=90°,得△AQE是等腰直角三角形,即可得出结果;(4)延长AG交BC于E,则EG = AG= 5,得AE=10,由勾股定理得:BE,则CE= BC-BE,由折叠的性质即可得出结果.(1)(1)证明:∵四边形ABCD是正方形,∴∠ABE=∠BCD=90°,AB=BC,AB∥CD,过点B作BF∥MN交CD于点F,如图1所示:∴四边形MBFN为平行四边形,∴MN=BF,BF⊥AE,∴∠ABF+∠BAE=90°,∵∠ABF+∠CBF=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,{BAE CBF AB BC ABE BCFÐ=Ð=Ð=Ð,∴△ABE≌△BCF(ASA),∴AE=BF,∴AE=MN;(2)解:在图2中,连接AQ、CQ,在△ABQ和△CBQ中,{AB CB ABQ CBQ BQ BQ=Ð=Ð=,∴△ABQ≌△CBQ,∴AQ=CQ,∵MN⊥AE于F,F为AE中点,∴AQ=EQ,∴EQ=CQ(3)解:连接AQ,过点Q作HI// AB,分别交AD.BC于点H、I,如图3所示:∵四边形ABCD是正方形,∴四边形ABIH为矩形,∴HI⊥AD,HI⊥.BC,HI= AB= AD,∵BD是正方形ABCD的对角线,∴∠BDA = 45°,∴△DHQ是等腰直角三角形,∴HD=HQ,AH=QI,∵MN是AE的垂直平分线,AQ= QE,在Rt△AHQ和Rt△QIE中,∵AQ= QE,AH= QI,∴Rt△AHQ≌Rt△QIE(HL),∴∠AQH =∠QEI,∠AQH+∠EQI = 90°,△AQ E是等腰直角三角形,∠EAQ=∠AEQ=45°,即∠AEF= 45°故答案为:∠AEF=45°;(4)解:拓展提高:由(3)延长AG交BC于E,如图4所示:则EG =AG =5,∴AE = 10,在Rt △ABE 中,BE 6==CE = BC - BE = 8-6=2,由折叠的性质得: AC '=CE =2,故答案为: AC ′=2.12.(2022·江苏盐城·校联考一模)(1)背景问题:如图①,已知矩形ABCD ,E 是边CD 上一点,将△BCE 沿BE 翻折,使得C 落在AD 上的点F 处,求证:△ABF ∽△DFE .(1)尝试应用:如图②,已知四边形ABCD 中,∠A =∠D =90°,点E 在AD 上,∠BEC =90°,2∠BCE +∠ECD =180°,过点E 作EF ⊥BC 垂足为F ,若EF =2,BC =5,求AE 的长.(2)拓展创新:如图③,已知矩形ABCD ,AB =9,BC =12,E 是边CD 上一动点,将△BCE 沿BE 翻折至△BPE ,连接AP 在上取点T ,使得PT =2AT ,连接DT ,求出DT 长度的最小值.【答案】(1)见解析;(2(3)4【分析】(1)由矩形的性质和翻折得到∠BFE =∠A =∠D =∠C =90°,由同角的余角相等可推得∠DEF =∠AFB ,证得△EDF ∽△FAB ;(2)证明△ECF ∽△BEF ,得CF =1,BF =4 ,由△ABF ∽△DFE ,2∠BCE +∠ECD =180°,构造矩形ABGD ,由BG =AD 建立方程,解方程求解即可;(3)在AB 边上取Q ,使得BO =2AQ ,连接TQ ,则ATQ APB V V ∽求得4TQ =,可得T 在以Q 为圆心4为半径的圆上,根据点圆关系求最值即可.【详解】(1)证明:如图1,在矩形ABCD 中,∠A =∠D =∠C =90°,由翻折得∠EFB =∠C =90°.∵∠DEF +∠DFE =90°,∠AFB +∠DFE =180°−90°=90°,∴∠DEF=∠AFB,∴△ABF∽△DFE.(1)尝试应用:如图2,过点B作BG⊥CD,交DC的延长线于点G,设DE=m,CD=x.∵EF⊥BC,∴∠EFC=∠BFE=90°,∵∠BEC=90°,∴∠ECF=90°−∠CEF=∠FEB,∴△ECF∽△BEF,EF CFBF EF\=\EF2=CF·BF25EF BC==,Q()225CF CF\=-解得CF=1,或4(舍去)\CF=1,BF=4\EC==EB==∵△ABF∽△DFE∴12 CD DE CE AE AB BC===设CD=x,则AE=2x∵2∠BCE+∠ECD=180°∴D、C、G共线,在矩形ABGD中则DG x AB==由BG=AD得2x=∴AE=(2)拓展创新:在AB边上取Q,使得BQ=2AQ,连接TQQ PT =2AT ,PAB TAQÐ=Ð\ATQ APBV V ∽\13TQ AQ AT PB AB AP ===143TQ PB \==\T 在以Q 为圆心4为半径的圆上,当点T 落在DQ 上,即DT =DQ−4时,DT 的值最小,9AB DC ==Q \133AQ AB ==Q 90CB =°DQ \==∴DTmin =413.(2023·江苏·九年级专题练习)如图,在矩形ABCD 中,BD 是对角线,AB =6cm ,BC =8cm 点E 从点D 出发,沿DA 方向匀速运动,速度是2cm/s ;点F 从点B 出发,沿BD 方向匀速运动,速度是1cm/s ,MN 是过点F 的直线,分别交AB 、BC 于点M 、N ,且在运动过程中始终保持MN ⊥BD .连接EM 、EN 、EF ,两点同时出发,设运动时间为t (s )(0<t <3.6),请回答下列问题:(1)求当t 为何值时,△EFD ∽△ABD ?(2)求当t 为何值时,△EFD 为等腰三角形;(3)将△EMN 沿直线MN 进行翻折,形成的四边形能否是菱形?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)当t 的值为207时,△EFD ∽△ABD(2)当t 的值为5021或103时△EFD 为等腰三角形(3)不存在,理由见解析【分析】(1)当△EFD ∽△ABD 时,得到相似比DE DF DA DB=,解得207t =即可;(2)根据题意,等腰三角形分三种情况:EF =DE 时;EF =DF 时;DE =DF 时;作出相应图形,结合条件求解即可;(3)假设存在这样的菱形,当EM EN =时,过点E 作EQ ⊥BC 于点Q ,利用勾股定理求出两条线段长,根据相等关系列方程求解即可确定结论存在与否.【详解】(1)解:如图所示:在矩形ABCD 中,AD =BC =8cm ,∠A =∠ABC =90°,在Rt △ABD 中由勾股定理得10BD ===(cm ),由题意得:DE =2t cm ,BF =t cm ,∴()10DF BD BF t =-=-cm ,∵△EFD ∽△ABD ,∴DE DF DA DB =,∴210810t t -=,解得207t =∴当t 的值为207时,△EFD ∽△ABD ;(2)解:△EFD 为等腰三角形有三种情况:①EF =DE 时,点E 在DF 的垂直平分线上,过点E 作EG ⊥DF 于点G ,如图所示:则11022t DG DF -==cm ,在Rt △DEG 中,4cos 15DG DE Ð==,∴5DG =4DE ,∴105422t t -´=´,解得:5021t =;②EF =DF 时,点F 在DE 的垂直平分线上,过点F 作FH ⊥AD 于点H ,如图所示:则12DH DE t ==cm ,在Rt △DHF 中,4cos 15DH DF Ð==,∴5DH =4DF ,∴()5410t t =-,解得409t =,∵40 3.69>,∴不合题意舍去;③DE =DF 时,则2t =10-t ,解得:103t =;综上:当t 的值为5021或103时,△EFD 为等腰三角形;(3)解:不存在.假设△EMN 沿直线MN 翻折后点E 落在点E ¢处,由折叠得:EM E M ¢=,EN E N ¢=,当翻折后的四边形为菱形时,EM E M E N E N ¢¢¢===,∴EM =EN ,∴22EM EN =,过点E 作EQ ⊥BC 于点Q ,如图所示:则四边形EQCD 为矩形,∴EQ =CD =6cm ,CQ =DE =2t cm ,∴51382844NQ BC CQ BN t t t æö=--=--=-ç÷èø,∴222222131696852100416EN EQ NQ t t t æö=+=+-=-+ç÷èø,∵563AM AB BM t æö=-=-ç÷èøcm ,()82AE t =-cm ,∴()2222225616825210039ME AM AE t t t t æö=+=-+-=-+ç÷èø,∴22611695210052100916t t t t -+=-+,此方程无解,∴不存在这样的菱形.14.(2022秋·江苏·九年级期中)(1)【原题呈现】在课本中,安排有这样一个思考问题:“如图1,在Rt △ABC 中,∠ACB =90°,∠BAC =30°,那么BC 和AB 有怎样的数量关系?试证明你的结论”老师在课堂中提出这样的问题,并展示了小明的部分解答小明:AB =2B C .证明:把△ABC 沿着AC 翻折,得到△AD C .∴∠ACD =∠ACB =90°,∴∠BCD =∠ACD +∠ACB =90°+90°=180°,即:点B 、C 、D 在一条直线上.(请在下面补全小华后面的证明过程)(2)【变式拓展】如图2,在△ABC 中,把(1)中条件“∠ACB =90°”改为“∠ACB =135°”,保持“∠BAC =30°”不变,则2AB = 2BC .(3)【能力迁移】我们发现,翻折可以探索图形性质,请利用翻折解决下面问题.如图3,点D 是△ABC 内一点,AD =AC ,∠BAD =∠CAD =20°,∠ADB +∠ACB =210°,探求AD 、DB 、BC 三者之间的数量关系,并说明理由.【答案】(1)见解析(2)2(3)222BD BC AD +=,理由见解析【分析】(1)根据翻折的性质得出点B 、C 、D 共线,再由等边三角形的判定和性质即可证明;(2)把∆ABC 沿着AC 翻折,得到∆ADC ,根据翻折的性质得出∆ABD 为等边三角形,由题意确定∠BCD =90°,运用勾股定理即可得出结论;(3)把△ABD延AB边翻折得到△AEB,连接ED,EC,由翻折及各角之间的关系得出△AEC为等边三角形,再由勾股定理及等量代换即可得出结论.【详解】(1)证明:把△ABC沿着AC翻折,得到△ADC.∴∠ACD=∠ACB=90°,∴∠BCD=∠ACD+∠ACB=90°+90°=180°,即:点B、C、D共线,∴AB=AD,∵∠BAC=30°,∴∠ABC=60°,∴△ABD为等边三角形,∴AB=BD=2BC;(2)如图所示,把∆ABC沿着AC翻折,得到∆ADC,由翻折得:AD=AB,∠CAD=∠CAB=30°,BC=CD,∴∠BAD=60°,∴∆ABD为等边三角形,∴AB=BD,∵∠ACB=∠ACD=135°,∴∠BCD=90°,2222\=+=,BD BC CD BC2即22AB BC=;2(3)222+=;BD BC AD理由:把△ABD延AB边翻折得到△AEB,连接ED,EC,∵∠BAD=∠CAD=20°,∴∠EAB=20°,∴∠EAC=60°,∵∠ACB +∠ADB =210°,∠AEB =∠ADB ,∴∠ACB =∠AEB =210°,∴∠EBC =360°-210°-60°=90°,∵AD =AC ,AE =AD ,∴AE =AC ,∴△AEC 为等边三角形,∴EC =AE =AD ,在Rt △EBC 中,222BE BC EC +=,∵BC =BD ,EC =AD ,∴222BD BC AD +=.15.(2022秋·江苏盐城·九年级校联考阶段练习)问题情境:如图1,P 是O e 外的一点,直线PO 分别交O e 于点A ,B .(1)探究证明:如图2,在O e 上任取一点C (不与点A ,B 重合),连接PC ,求证:<AP PC ;(2)直接应用:如图3,在Rt ABC △中,=90ACB а,3AB AC ==,以BC 为直径的半圆O 交AB 于D ,P 是弧CD 上的一个动点,则AP 的最小值是 .(3)构造运用:如图4,在边长为2的菱形ABCD 中,=60A а,M 是AD 的中点,N 是AB 边上一动点,将AMN V 沿MN 所在的直线翻折得到A MN ¢V ,连接A B ¢,则A B ¢长度的最小值为 .(4)综合应用:如图5,平面直角坐标系中,分别以点()2,3A -,点()4,5B ,分别以1,2为半径作A e 、B e ,M ,N 分别是A e ,B e 上的动点,直接写出PM PN +的最小值为 .【答案】(1)见解析321-(4)7【分析】(1)在POC △中,根据“三角形两边之差小于第三边”可求证;(2)连接OA 交O e 于点P ,根据勾股定理求得OA ,进而求得AP ;(3)A ¢的轨迹是以M 为圆心,半径是1的圆,故连接BM ,求得BM ,进而求得A B ¢的最小值;(4)作点A 关于x 轴的对称点C ,连接CB 交x 轴于点P ,求出BC 的长,进而求得PM PN +的最小值.(1)证明:如图1,<PO OC PC -Q ,()<AP OA OC PC \+-,OA OC =Q ,<AP PC \;(2)解:如图2,连接OA ,交半O e 于点P ,13==22CO BC \,在Rt AOC V 中,OA ===∴32AP OA OP =-=,\AP 32,32;(3)解:如图3,连接BM 、BD ,交M ⊙于点1A ,∵四边形ABCD 是菱形,AB AD \=,=60BAM аQ ,ABD \V 是等边三角形,∵M 是AD 的中点,A ¢的轨迹是以M 为圆心,半径是1的圆,=90AMB \а,1112AM A M AD ===,BM \==,∴111A B BM A M =-=,A B \¢1-,1;(4)解:如图4,作点A 关于x 轴的对称点C ,连接BC ,交x 轴于点P ,交B e 于点N ,连接PA 交A e 于M ,PA PC \=,PA PB PC PB BC \+=+=,∵点()2,3A -,点()4,5B ,∴点(2,3)C --,10BC \==,∵分别以1,2为半径作A e 、B e ,=1AM \,2BN =,PM PN \+PA PB AM BN =+-- 1012=--=7,故答案是:7.16.(2022秋·江苏盐城·九年级校考阶段练习)函数图象是研究函数的重要工具,类比一次函数的学习,对函数32y x =-的图象与性质进行探究.下表是探究过程中的部分信息:x …2-1-012 (32)y x =-…4a2-14…请按要求完成下列各小题:(1)a 的值为______;(2)在图中画出该函数的图象;(3)结合函数的图象,解决下列问题:①下列说法正确的是:______.(填所有正确选项)A .函数图像关于x 轴对称B .当0x =时,函数有最小值,最小值为2-C .当0x >时,y 随x 的增大而增大②直接写出不等式1324x <-<的解集为______.(4)将该函数图像在直线1y =上方的部分保持不变,下方的部分图像沿直线1y =进行翻折,得到新函数图像,若经过点()2,0-的一次函数y kx b =+图像与新函数图像W 只有1个交点时,请直接写出k 满足的条件______.【答案】(1)1(2)见解析(3)①BC ;②2<<1x --或12x <<(4)3k ³或3k <-或13k =【分析】(1)把=1x -代入32y x =-即可求出a 的值;(2)先描点再连线画出函数图像即可;(3)①根据函数图象可以看出函数图像关于y 轴对称,关于x 轴不对称,即可判断A 错误;根据函数图象可判断当0x =时,函数有最小值,最小值为2-,得出B 正确;根据函数图象可判断当0x >时,y 随x 的增大而增大,得出C 正确;②根据函数图象写出不等式的解集即可;(4)根据题意画出翻折后的图像,然后数形结合求出k 的范围即可.【详解】(1)解:把=1x -代入32y x =-得:3121y =´--=,即1a =,故答案为:1.(2)解:该函数的图象,如图所示:(3)解:①A .函数图像关于y 轴对称,故A 错误;B .当0x =时,函数有最小值,最小值为2-,故B 正确;C .当0x >时,y 随x 的增大而增大,故C 正确;故答案为:BC ;②根据函数图象可知,当2<<1x --或12x <<时,1324x <-<;故答案为:2<<1x --或12x <<;(4)解:如图所示:设点()2,4A ,()1,1B ,()0,4C ,()11D -,,()2,4E -,设AB 的解析式为11y k x b =+,把()2,4A ,()1,1B 代入得:1111241k b k b +=ìí+=î,解得:1132k b =ìí=-î,AB 的解析式为:()321y x x =->,设CD 的解析式为22y k x b =+,把()0,4C ,()11D -,代入得:22141b k b =ìí-+=î,解得:2234k b =ìí=î,CD 的解析式为:()3410y x x =+-<<,设DE 的解析式为33y k x b =+,把()11D -,,()2,4E -代入得:3333241k b k b -+=ìí-+=î,解得:3332k b =-ìí=-î,DE 的解析式为:()341y x x =--<-,根据图像可知,当直线y kx b =+经过()2,0-和点()1,1B 时,直线y kx b =+与图像W 只有一个交点,把()2,0-,()1,1B 代入得:201k b k b -+=ìí+=î,解得:13k =;∵123k k ==,∴AB CD ∥,根据图像可知,当直线y kx b =+与AB 平行时,直线y kx b =+与图像W 只有一个交点,且此时直线y kx b =+绕点()2,0-继续逆时针旋转,直到与DE 平行之前,直线y kx b =+与图像W 只有一个交点,∴当3k ³或3k <-时,直线y kx b =+与图像W 只有一个交点;综上分析可知,当3k ³或3k <-或13k =时直线y kx b =+与图像W 只有一个交点.故答案为:3k ³或3k <-或13k =.17.(2017江苏省宿迁市,第25题,10分)如图,在平面直角坐标系xOy 中,抛物线2=23y x x --交x 轴于A ,B 两点(点A 在点B 的左侧),将该抛物线位于x 轴上方曲线记作M ,将该抛物线位于x 轴下方部分沿x 轴翻折,翻折后所得曲线记作N ,曲线N 交y 轴于点C ,连接AC 、BC .(1)求曲线N 所在抛物线相应的函数表达式;(2)求△ABC 外接圆的半径;(3)点P 为曲线M 或曲线N 上的一动点,点Q 为x 轴上的一个动点,若以点B ,C ,P ,Q 为顶点的四边形是平行四边形,求点Q 的坐标.【答案】(1)223y x x =-++;(2(3)Q (0)或(4,0)或(5,0)或(0)或(2,0)或(1,0).【详解】试题分析:(1)由已知抛物线可求得A 、B 坐标及顶点坐标,利用对称性可求得C 的坐标,利用待定系数法可求得曲线N 的解析式;(2)由外接圆的定义可知圆心即为线段BC 与AB 的垂直平分线的交点,即直线y =x 与抛物线对称轴的交点,可求得外接圆的圆心,再利用勾股定理可求得半径的长;(3)设Q (x ,0),当BC 为平行四边形的边时,则有BQ ∥PC 且BQ =PC ,从而可用x 表示出P 点的坐标,代入抛物线解析式可得到x 的方程,可求得Q 点坐标,当BC 为平行四边形的对角线时,由B 、C 的坐标可求得平行四边形的对称中心的坐标,从而可表示出P 点坐标,代入抛物线解析式可得到关于x 的方程,可求得P 点坐标.试题解析:(1)在2=23y x x --中,令y =0可得x 2﹣2x ﹣3=0,解得x =﹣1或x =3,∴A (﹣1,0),B (3,0),令x =0可得y =﹣3,又抛物线位于x 轴下方部分沿x 轴翻折后得到曲线N ,∴C (0,3),设曲线N 的解析式为2y ax bx c =++,把A 、B 、C 的坐标代入可得:09303a b c a b c c -+=ìï++=íï=î,解得:123a b c =-ìï=íï=î,∴曲线N 所在抛物线相应的函数表达式为223y x x =-++;(2)设△ABC 外接圆的圆心为M ,则点M 为线段BC 、线段AB 垂直平分线的交点,∵B (3,0),C (0,3),∴线段BC 的垂直平分线的解析式为y =x ,又线段AB 的解析式为曲线N 的对称轴,即x =1,∴M (1,1),∴MB△ABC(3)设Q (t ,0),则BQ =|t ﹣3|.①当BC 为平行四边形的边时,如图1,则有BQ ∥PC ,∴P 点纵坐标为3,即过C 点与x 轴平行的直线与曲线M 和曲线N 的交点即为点P ,x 轴上对应的即为点Q ,当点P 在曲线M 上时,在2=23y x x --中,令y =3可解得x或x =1,∴PCPC﹣1.。

立体几何中的翻折问题

立体几何中的翻折问题

立体几何中的翻折问题作者:熊杰
来源:《新高考·高二数学》2017年第09期
小时候我们将白纸翻折成很多具有立体感的图形,这些图形具有怎样的特点?翻折前后的图形又有怎样的区别与联系?
一、区分变和不变的元素是解决翻折问题的关键
1.将一平面图形进行翻折,位于棱的两侧的同一个半平面内的元素相对位置关系和数量关系保持不变.比如,原本垂直于棱的直线翻折后仍垂直于棱.
2.分别位于两个半平面内的元素,翻折后其相对位置关系和数量关系一般会发生变化.比如,原来相交的直线翻折后可能就是異面的关系了.
由此可见,在处理这类问题时,不变量可以结合原图形来求、证;变化了的量应到翻折后的立体图形中去求、证.
二、借助展开图,空间问题平面化处理。

高考数学难点突破八立体几何中的翻折问题

高考数学难点突破八立体几何中的翻折问题

高考数学难点突破八--------立体几何中的翻折问题一、知识储备翻折问题就是把平面图形经过折叠变成一个空间图形,实际上,折叠问题就是轴对称的问题,折痕就是对称轴,重合的即是全等图形,解决折叠问题时,要把运动着的空间图形不断地与原平面图形进行对照,看清楚其中哪些量在变化,哪些量没有变化,从而寻找出解决问题的方法,达到空间问题与平面问题相互转化的目的。

核心是抓牢折痕就是翻折前与翻折后平面图形的公共底边,折痕与公共底边上两高所在平面垂直。

二、应用举例例1.如图,在矩形ABCD 中,M 在线段AB 上,且1AM AD ==,3AB =,将ADM ∆沿DM 翻折.在翻折过程中,记二面角A BC D --的平面角为θ,则tan θ的最大值为( )ABCD例2.在矩形ABCD 中,4,3AB AD ==,E 为边AD 上的一点,1DE =,现将ABE ∆沿直线BE 折成A BE '∆,使得点A '在平面 BCDE 上的射影在四边形BCDE 内(不含边界),设二面角 A BE C '--的大小为θ,直线,A B A C ''与平面BCDE 所成的角分 别为αβ,,则 A.βαθ<< B.βθα<< C.αθβ<< D.αβθ<<例3.如图,矩形ABCD 中心为, O BC AB >,现将DAC 沿着对角线AC 翻折成EAC ,记BOE a ∠=,二面角B AC E --的平面角为β,直线DE 和BC 所成角为γ,则( )A. ,2a ββγ>>B. ,2a ββγ><C. ,2a ββγ<>D. ,2a ββγ<<例4.如图,在ABC △中,1AB =,22BC =,4B π=,将ABC △绕边AB 翻转至ABP △,使面ABP ⊥面ABC ,D 是BC 中点,设Q 是线段PA 上的动点,则当PC 与DQ 所成角取得最小值时,线段AQ 的长度为( ) A .5 B .25C .35D .25例5.已知在矩形ABCD 中,2AD AB =,沿直线BD 将ABD ∆ 折成'A BD ∆,使得点'A 在平面BCD 上的射影在BCD ∆内(不含边界),设二面角'A BD C --的大小为θ,直线','A D A C 与平面BCD 所成的角分别为,αβ,则( )A. αθβ<<B. βθα<<C. βαθ<<D. αβθ<<Q DPCBA例6、(嘉兴市2020年1月期终)已知矩形ABCD ,4AB =,2BC =,E 、F 分别为AB 、CD 的中点,沿直线DE 将ADE △翻折成PDE △,在点P 从A 至F 的运动过程中,CP 的中点G 的轨迹长度为 .例7、(宁波市2020年1月期终)已知平面四边形ABCD 中,90A C ∠=∠=︒,BC CD =,AB AD >,现将ABD △沿对角线BD 翻折得到三棱锥A BCD '-,在此过程中,二面角A BC D '--、A CDB '--的大小分别为α,β,直线A B '与平面BCD 所成角为γ,直线A D '与平面BCD 所成角为δ,则( )A .γδβ<<B .γαβ<<C .αδβ<<D .γαδ<<例8、(柯桥一中2020年1月期终)已知在矩形ABCD 中,2AB =,4AD =,E ,F 分别在边AD ,BC 上,且1AE =,3BF =,如图所示, 沿EF 将四边形AEFB 翻折成A EFB '',则在翻折过程中,二面角B CD E '--的大小为θ,则tan θ的最大值为( ) A.5C.4例9、(2020年3月名校合作体)已知C 为ABD Rt ∆斜边BD 上一点,且ACD ∆为等边三角形,现将ABC ∆沿AC 翻折至C B A '∆,若在三棱锥ACD B -'中,直线B C '和直线B A '与平面ACD 所成角分别为βα,,则( )A. βα<<0B.βαβ2≤<C.βαβ32≤≤D.βα3≥例10、(2020年1月嘉兴期终)已知矩形ABCD ,4AB =,2BC =,E 、F 分别为AB 、CD 的中点,沿直线DE 将ADE △翻折成PDE △,在点P 从A 至F 的运动过程中,CP 的中点G 的轨迹长度为 .例11、(2020年4月温州模拟)如图,在ABC ∆中,点M 是边BC 的中点,将ABN ∆沿着AM 翻折成M B A '∆,且点B '不在平面AMC 内,点P 是线段C B '上一点,若二面角B AM P '--与二面角C AM P --的平面角相等,则直线AP 经过C B A '∆的( ) A. 重心 B. 垂心 C. 内心 D.外心B DACG PFD C B A例12、(2020年嘉兴一模)将边长为1的正方形ABCD 沿对角线BD 翻折,使得二面角A BD C --的平面角的大小为π3,若点E ,F 分别是线段AC 和BD 上的动点,则BE CF 的取值范围为 ( )A .[1,0]-B .1[1,]4-C .1[,0]2-D . 11[,]24-例13、(2020年5月暨阳联考)如图:ABC ∆中,︒=∠⊥90,ACB BC AB ,D 为AC 的中点,ABD ∆沿BD 边翻折过程中,直线AB 与BC 直线所成的最大角,最小角分别记为11βα,,直线AD 与直线BC 所成的最大角,最小角分别记为22βα,,则有( )A. ββαα≤<121,B. 2121ββαα><,C. 2121ββαα≤≥,D.2121ββαα>≥,例14、(2020年4月台州二模)如下图①,在直角梯形ABCD 中,90=∠=∠=∠DAB CDB ABC , 30=∠BCD ,4=BC ,点E 在线段CD 上运动,如下图②,沿BE 将BEC ∆折至C BE '∆,使得平面⊥'C BE 平面ABED ,则C A '的最小值为 .⇒例15、(2020年9月嘉兴基础知识测试)如图,矩形ABCD 中,2,1==BC AB ,点E 为AD 中点,将ABE ∆沿BE 折起,在翻折过程中,记二面角B DC A --的平面角大小为α,则当α最大时,=αtan ( ) A. 22 B. 32 C. 31 D.21。

立体几何中的翻折问题

立体几何中的翻折问题

第三讲 立体几何中的翻折问题翻折问题包含折叠与展开两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现. 翻折问题是立体几何的一类典型问题,是实践能力与创新能力考查的好素材. 解答翻折问题的关键在于翻折前后的平面图形与立体图形,哪些发生了变化,哪些没有发生变化. 这些未变化的已知条件,往往就是我们分析问题和解决问题的依据. 例1(1)把正方形ABCD 沿对角线AC 折起,当以A 、B 、C 、D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为_____.(2)如图所示,已知正方形纸片ABCD ,M 、N 分别是AD 、BC 的中点,把BC 边向上翻折,使点C 恰好落在MN 上的P 点处,BQ 为折痕,则PBQ ∠=.QBD CA例2 (1)已知三棱锥A BCD -的底面是等边三角形,三条侧棱长都等于1,且6BAC π∠=,动点M ,N 分别在棱AC ,AD 上运动,则△BMN 周长最小值为.(2) 如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,090ACB ∠=,6AC =,1BC CC =P 是BC 1上一动点,则1CP PA +的最小值为_______.(3)二面角l αβ--的大小为0120,A α∈,B β∈,且l B A 两点在、上的射影分别A '、B ',321=''='='B A A A B B ,,其中,点上是lC 任一点,则BC AC +的最小值为.DB例3(1)矩形ABCD 与ADEF 所在的平面互相垂直,将DEF ∆沿FD 翻折,翻折后的点E 恰与BC 上的点P 重合.设1AB =,FA x =(1x >),AD = y ,则当x =时,y 有最小值.(2)如图所示,将正方形纸片ABCD 翻折,使点B 落在CD 边上点E 处(不与C ,D 重合),压平后得到折痕MN . 设1CE CD n =,则AMBN=.(用含n 的式子表示)例4(1)四边形ABCD 中,AD //BC ,AD = AB ,045BCD ∠=,090BAD ∠=,将△ABDADFEPEBDCAN沿对角线BD 折起,记折起后点A 的位置为P ,且使平面PBD ⊥平面BCD . ①求证:平面PBC ⊥平面PDC ;②求折叠后二面角P -BC -D 的平面角的正切值.变式【2009浙江理17】A BCBC如图,在长方形中,,,为的中点,为线段(端点除外)上一动点.现将沿折起,使平面平面.在平面内过点作,为垂足.设,则的取值范围是.第四讲圆锥曲线定义与几何性质1.椭圆ABCD 2AB =1BC =E DC F EC AFD ∆AF ABD ⊥ABC ABD D DK AB ⊥K AK t =t(1)概念:在平面内与两个定点F 1、F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹 (2(a >b >0)(a >b >0)-a ≤x ≤a -b ≤y ≤b -b ≤x ≤b -a ≤y ≤a2(1)概念:平面内动点P 与两个定点F 1、F 2(|F 1F 2|=2c >0)的距离之差的绝对值为常数2a (2a <2c ),则点P 的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距. a b a b x ≥a 或x ≤-a ,y ∈R x ∈R ,y ≤-a 或y ≥a3.抛物线(1)概念:平面内与一个定点F 和一条定直线l (F ∉l )距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l 叫做抛物线的准线. (2p 的几何意义:焦点F 到准线l 的距离例1.已知F 1、F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A 、B 两点.若|F 2A |+|F 2B |=12,则|AB |=________.变式1如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点,则127PF P F P F +++=___________.变式2已知F 1,F 2是椭圆2214x y +=的两个焦点,P 为椭圆上一动点,则使|PF 1|·|PF 2|取最大值时的点P坐标为___________.变式3若以椭圆上一点和两个焦点为顶点的三角形面积的最大值1,则椭圆长轴长的最小值为___________.例2.P是双曲线22:1412x yC-=右支上的一点,F1,F2分别为左右焦点.(1)双曲线渐近线方程为___________.(2) 与曲线C渐近线相同且经过点(2,的双曲线方程为___________.(3)焦半径1PF 的取值范围为,焦半径2PF 的取值范围为___________.(4)△12PF F 的内切圆的圆心的横坐标为___________.例3. 【2015·浙江卷】如图所示,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1变式4点P 是抛物线y 2=4x 上的动点,点Q 为圆x 2+(y -4)2=1上的动点,若P 点到y 轴的距离为d ,则|PQ |+d 的最小值为.例4. 已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),过焦点2F 向12F PF ∠的外角平分线作垂线,垂足为T ,并延长2F T 交1F P 于点Q ,求点Q的轨迹方程以及点T的轨迹方程.。

立体几何翻折问题解题技巧

立体几何翻折问题解题技巧

立体几何翻折问题解题技巧
1.了解几何基本概念:理解几何基本概念对解决立体几何翻折问题非常重要。

例如,了解正方体和长方体的各个面,边和角的定义和性质,可以使你更好地理解问题。

2.学习折纸技巧:理解如何折纸,可以帮助你在三维空间中可视化对象的形状和位置。

3.掌握坐标系:使用坐标系可以使你更好地定位点,线和平面。

4.分析图形:在解决立体几何翻折问题时,需要仔细观察图形,分析它们的特点和性质,有助于确定解决方案。

5.采用逆向思维:有时,采用逆向思维可以解决问题。

这意味着从最终形状开始,逆向推导出折纸的过程。

6.实践练习:最终,为了掌握立体几何翻折问题的解决技巧,需要多做实践练习,根据不同的问题,采用不同的解决方法。

高中数学复习 立体几何中的翻折问题典例分析

高中数学复习  立体几何中的翻折问题典例分析


设平面 ABF 的一个法向量为 n x, y, z ,则由


FAn

0,


x

3z 0,

令 z 1,则 n

3,3,1 .
F Bn 0, 3x 3y 0,
平面
AEF
的一个法向量为
p

0,1, 0
(1)求证: BF / / 面 A1DE ; (2)求证:面 A1DE 面 DEBC ; (3)求四棱锥 A1 DEBC 的体积.
分析(1)取 DA1 的中点 G ,连接 FG 、 GE ,通过证明 BF // EG ,利用直线与平面平行 的判定定理证明 BF / / 面 A1DE ;(2)取 DE 的中点 H ,连接 A1H 、 CH ,通过证明 A1H 面 DEBC ,然后通过平面与平面垂直的判定定理证明面 A1DE 面 DEBC ;(3)
(Ⅰ)求证: BD PA ; (Ⅱ)求四棱锥 P BFED 的体积.
分析(Ⅰ)由题证明 EF AO, EF PO ,则 EF 平面 POA ,可得 BD PA ;(Ⅱ)
由勾股定理可得 PO BO ,又 PO EF ,可知 PO 为四棱锥 P BFED 的高,则四棱锥
,所以 cos
n, p

pn
3
13

p n 13
显然二面角 E AF B 是锐角,所以ຫໍສະໝຸດ 面角 E AF B 的余弦值为 3
13
.
13
例 2 如图,在边长为 4 的菱形 ABCD 中, DAB 60 ,点 E, F 分别是边 CD , CB 的中 点, AC EF O ,沿 EF 将 CEF 翻折到 PEF ,连接 PA, PB, PD ,得到如图的五棱 锥 P ABFED ,且 PB 10 .

(完整版)立体几何中的翻折问题

(完整版)立体几何中的翻折问题

从而O1F= O1AO1C
AC 所以sin∠O1FE=
O1E O1F
=2 =
3 13
.又O1E=OO1·sin30°=
13 .
4
3,OC⊥BO1,知BO1⊥平面AOC.
设OC∩O1B=E,过点E作EF⊥AC于F,连接O1F,
则EF是O1F在平面AOC内的射影.
由线面垂直得AC⊥O1F,
所以∠O1FE是二面角O-AC-O1的平面角.
由已知,OA=3,OO1= 3,O1C=1,
所以O1A= OA2 OO12 =2 3 ,AC= O1A2 O1C2 = 13 ,
H
又因为BC⊂平面β,所以BC⊥D′E, 所以BC⊥α. 而D′C ⊂ α,所以BC⊥D′C, 所以∠D′CA为二面角β-BC-γ的平面角.
由于∠D′CA=45°,
所以二面角β-BC-γ的大小为45°.
VD' - ABC
=
1 3
SDABC

D'O
=
1 3

1 2
AC

BC

D'O
=
1 3
ga2
g
6 4
a
=
6 12
a3
规律小结:
分析求解折叠问题的关键是分辨折叠前后的不变量和不 变关系,在求解过程中充分利用不变量和不变关系.
如图,已知四边形ABCD是上、下底边长分别为2和6,高为 3 的等
腰梯形(如图①).将它沿对称轴OO1折成直二面角(如图②).
(1)证明:AC⊥BO1; (2)求二面角O—AC—O1的正弦值.
立体几何中的翻折问题
如有一只小虫要从A爬到点M, 所走的最短路径是什么?

立体几何中翻折问题(微专题)(解析版)

立体几何中翻折问题(微专题)(解析版)

立体几何中翻折问题(微专题)一、题型选讲题型一、展开问题1(2022·广东佛山·高三期末)长方体ABCD-A1B1C1D1中,AB=1,AD=AA1=2,E为棱AA1上的动点,平面BED1交棱CC1于F,则四边形BED1F的周长的最小值为()A.43B.213C.2(2+5)D.2+42【答案】B【分析】将几何体展开,利用两点之间直线段最短即可求得截面最短周长.【详解】解:将长方体展开,如图所示:当点E为BD1与AA1的交点,F为BD1与CC1的交点时,截面四边形BED1F的周长最小,最小值为2BD1=222+(1+2)2=213.故选:B.1.(2022·湖北武昌·高三期末)已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为22的菱形,B,C分别为AE,FD的中点,BD=22,则在该四面体中()A.BE⊥CDB.BE与平面DCE所成角的余弦值为21015D.四面体ABCD的外接球表面积为9πC.四面体ABCD的内切球半径为10530【答案】ACD【分析】几何体内各相关线段的计算即可.【解析】由题意得,展开图拼成的几何体如下图所示,AB=CD=2,AD=BD=BC=AC=22,取AB中点M,CD中点N,MN中点O,连MN、OA,过O作OH⊥CM于H,则OH是内切球的半径,OA是外接球的半径.所以AM=CN=12AB=22,CM=AN=AC2-CN2=222-222=302MN=CM2-CN2=3022-22 2=7对于A:AN⊥CD,BN⊥CD,AN∩BN=N,故CD⊥平面ABN,而BE⊂平面ABN,所以BE⊥CD,故A正确;对于B:由于CD⊂平面ACD,故平面ABN⊥平面ACD,故∠BAN是BE与平面DCE所成角,故cos∠BAN=AMAN=22×230=1515,故B错误;对于C:OH=CNCM12MN=22×230×12×7=10530,故C正确;对于D:OA2=AM2+12MN2=22 2+72 2=94所以外接球的表面积为9π,故D正确.故选:ACD2.【2020年高考全国Ⅰ卷理数】如图,在三棱锥P-ABC的平面展开图中,AC=1,AB=AD= 3,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=.【答案】-14【解析】∵AB ⊥AC ,AB =3,AC =1,由勾股定理得BC =AB 2+AC 2=2,同理得BD =6,∴BF =BD =6,在△ACE 中,AC =1,AE =AD =3,∠CAE =30°,由余弦定理得CE 2=AC 2+AE 2-2AC ⋅AE cos30°=1+3-2×1×3×32=1,∴CF =CE =1,在△BCF 中,BC =2,BF =6,CF =1,由余弦定理得cos ∠FCB =CF 2+BC 2-BF 22CF ⋅BC=1+4-62×1×2=-14.故答案为:-14.题型二、折叠问题2(2022·河北唐山·高三期末)如图,四边形ABCD 是边长为2的正方形,E 为AB 的中点,将△AED 沿DE 所在的直线翻折,使A 与A 重合,得到四棱锥A -BCDE ,则在翻折的过程中()A.DE ⊥AAB.存在某个位置,使得A E ⊥CDC.存在某个位置,使得A B ∥DED.存在某个位置,使四棱锥A -BCDE 的体积为1【答案】AB 【分析】过A 作A O ⊥DE ,垂足为O ,证得DE ⊥平面A AO ,可判定A 正确;取DC 的中点G ,连接EG ,A G ,当A 在平面ABCD 上的投影在FG 上时,可判定B 正确;连接A B ,由直线A B 与DE 是异面直线,可判定C错误;求得A O=25,结合体积公式求可判定D错误.【详解】对于A中,如图所示,过A 作A O⊥DE,垂足为O,延长AO交BC于点F,因为DE⊥AO,且AO∩A O=O,所以DE⊥平面A AO,又因为A A⊂平面A AO,所以DE⊥AA ,所以A正确;对于B中,取DC的中点G,连接EG,A G,当A 在平面ABCD上的投影在FG上时,此时DC⊥平面A EG,从而得到A E⊥CD,所以B正确;对于C中,连接A B,因为E⊂平面A BE,D⊄平面A BE,所以直线A B与DE是异面直线,所以不存在某个位置,使得A B∥DE,所以C错误;对于D中,由V A -BCDE=13×12×(1+2)×2×h=1,解得h=1,由A 作A O⊥DE,可得A O=A E⋅A DDE=1×25=25,即此时四棱锥的高h∈0,25 5,此时25<1,所以不存在某个位置,使四棱锥A -BCDE的体积为1,所以D错误.故选:AB.1.(2022·江苏宿迁·高三期末)如图,一张长、宽分别为2,1的矩形纸,A,B,C,D分别是其四条边的中点.现将其沿图中虚线折起,使得P1,P2,P3,P4四点重合为一点P,从而得到一个多面体,则()A.在该多面体中,BD=2B.该多面体是三棱锥C.在该多面体中,平面BAD⊥平面BCDD.该多面体的体积为112【答案】BCD利用图形翻折,结合勾股定理,确定该多面体是以A ,B ,C ,D 为顶点的三棱锥,利用线面垂直,判定面面垂直,以及棱锥的体积公式即可得出结论.【解析】由于长、宽分别为2,1,A ,B ,C ,D 分别是其四条边的中点,现将其沿图中虚线折起,使得P 1,P 2,P 3,P 4四点重合为一点P ,且P 为BD 的中点,从而得到一个多面体ABCD ,所以该多面体是以A ,B ,C ,D 为顶点的三棱锥,故B 正确;AB =BC =CD =DA =32,AC =BD =1,AP =CP =22,故A 不正确;由于22 2+22 2=1,所以AP ⊥CP ,BP ⊥CP ,可得BD ⊥平面ACP ,则三棱锥A -BCD 的体积为13×BD ×S △ACP =13×1×12×22×22=112,故D 正确;因为AP ⊥BP ,AP ⊥CP ,所以AP ⊥平面BCD ,又AP ⊂平面BAD ,可得平面BAD ⊥平面BCD ,故C 正确.故选:BCD2.(2022·江苏海安·高三期末)如图,ABCD 是一块直角梯形加热片,AB ∥CD ,∠DAB =60°,AB =AD =4dm .现将△BCD 沿BD 折起,成为二面角A -BD -C 是90°的加热零件,则AC 间的距离是dm ;为了安全,把该零件放进一个球形防护罩,则球形防护罩的表面积的最小值是dm 2.(所有器件厚度忽略不计)【答案】4设E 为BD 的中点,由题可得AE ⊥平面BCD ,进而可求AC ,再结合条件可得△DAB 的中心为棱锥C -ABD 的外接球的球心,即求.【解析】∵ABCD 是一块直角梯形加热片,AB ∥CD ,∠DAB =60°,AB =AD =4dm .∴△DAB 为等边三角形,BC =23dm ,DC =2dm ,设E 为BD 的中点,连接AE ,CE ,则AE ⊥BD ,又二面角A -BD -C 是90°,∴AE ⊥平面BCD ,CE ⊂平面BCD ,∴AE ⊥CE ,又CE =2dm ,AE =23dm ,∴AC =AE 2+CE 2=4dm ,设△DAB 的中心为O ,则OE ⊥平面BCD ,又E 为BD 的中点,△BCD 为直角三角形,∴OB =OC =OD =OA ,即O 为三棱锥C -ABD 的外接球的球心,又OA =23×23=433dm ,故球形防护罩的表面积的最小值为4π⋅OA 2=64π3dm 2.故答案为:4,64π3.3.(2022·河北保定·高三期末)如图,DE 是边长为4的等边三角形ABC 的中位线,将△ADE 沿DE 折起,使得点A 与P 重合,平面PDE ⊥平面BCDE ,则四棱雉P -BCDE 外接球的表面积是.【答案】52π3求出四边形BCDE 外接圆的圆半径,再设四棱锥P -BCDE 外接球的球心为O ,由R 2=OO 2+O B 2求出半径,代入球的表面积公式即可.【解析】如图,分别取BC ,DE 的中点O ,F ,连接PF ,O F .因为△ABC 是边长为4的等边三角形,所以PF =O F =3,所以O B =O C =O D =O E =2,则四边形BCDE 外接圆的圆心为O ,半径r =2.设四棱锥P -BCDE 外接球的球心为O ,连接OO ,过点O 作OH ⊥PF ,垂足为H .易证四边形HFO O 是矩形,则HF =OO ,OH =O F =3.设四棱锥P -BCDE 外接球的半径为R ,则R 2=OO 2+O B 2=OH 2+PH 2=O F 2+PF -OO 2,即R 2=OO 2+22=3 2+3-OO 2,解得R 2=133,故四棱锥P -BCDE 外接球的表面积是4πR 2=52π3.故答案为:52π3题型三、折叠的综合性问题3(2022·江苏扬州·高三期末)在边长为6的正三角形ABC 中M ,N 分别为边AB ,AC 上的点,且满足AM AB =ANAC=λ,把△AMN 沿着MN 翻折至A ′MN 位置,则下列说法中正确的有()A.在翻折过程中,在边A ′N 上存在点P ,满足CP ∥平面A ′BMB.若12<λ<1,则在翻折过程中的某个位置,满足平面A ′BC ⊥平面BCNMC.若λ=12且二面角A ′-MN -B 的大小为120°,则四棱锥A ′-BCNM 的外接球的表面积为61πD.在翻折过程中,四棱锥A ′-BCNM 体积的最大值为63【答案】BCD 【分析】通过直线相交来判断A 选项的正确性;通过面面垂直的判定定理判断B 选项的正确性;通过求四棱锥A -BCNM 外接球的表面积来判断C 选项的正确性;利用导数来求得四棱锥A -BCNM 体积的最大值.【详解】对于选项A,过P作PQ⎳MN⎳BC,交AM于Q,则无论点P在A′N上什么位置,都存在CP与BQ相交,折叠后为梯形BCQP,则CP不与平面A′BM平行,故选项A错误;对于选项B,设D,E分别是BC,MN的中点,若12<λ<1,则AE>DE,所以存在某一位置使得A′D⊥DE,又因为MN⊥A′E,MN⊥DE,且A′E∩DE=E,所以MN⊥平面A′DE,所以MN⊥A′D,DE∩MN=E,所以A′D⊥平面BCNM,所以A′BC⊥平面BCNM,故选项B正确;对于选项C,设D,E分别是BC,MN的中点,若λ=12且二面角A′-MN-B的大小为120°,则△AMN为正三角形,∠BMN=120°,∠C=60°,则BCNM四点共圆,圆心可设为点G,其半径设为r,DB=DC=DM=DN=3,所以点G即为点D,所以r=3,二面角A′-MN-B的平面角即为∠A′ED=120°,过点A′作A′H⊥DE,垂足为点H,EH=334,DH=934,A′H=94,DH2=24316,设外接球球心为O,由OD2+32=R294-OD2+24316=R2,解得R2=614,所以外接球的表面积为S=4πR2=61π,故选项C正确;对于选项D,设D,E分别是BC,MN的中点,设h是四棱锥A -BCNM的高.S△AMN=12×6λ×6λ×32=93λ2,S△ABC=12×6×6×32=93,所以S四边形BCNM=93(1-λ2),则V A′-BCNM=13×93(1-λ2)×h≤33(1-λ2)×A′E=33(1-λ2)×33λ=27(-λ3+λ),λ∈(0,1),可设f(λ)=27(-λ3+λ),λ∈(0,1),则f λ =27(-3λ2+1),令f λ =0,解得λ=33,则函数f(λ)在0,33上单调递增,在33,1上单调递减,所以f(λ)max=f33=63,则四棱锥A′-BCN体积的最大值为63,故选项D正确.故选:BCD1.(2021·山东滨州市·高三二模)已知正方形ABCD的边长为2,将△ACD沿AC翻折到△ACD 的位置,得到四面体D -ABC,在翻折过程中,点D 始终位于△ACD所在平面的同一侧,且BD 的最小值为2,则下列结论正确的是()A.四面体D -ABC的外接球的表面积为8πB.四面体D -ABC体积的最大值为63C.点D的运动轨迹的长度为22π3D.边AD旋转所形成的曲面的面积为22π3【答案】ACD【解析】对ABCD各选项逐一分析即可求解.【详解】解:对A:∵∠ABC=90o,∠AD C=90o,∴AC中点即为四面体D -ABC的外接球的球心,AC为球的直径,∴R=2,∴SD -ABC =4πR2=4π22=8π,故选项A正确;对B:当平面AD C⏊平面ABC时,四面体D -ABC体积的最大,此时高为2,∴V D -ABCmax=13×12×2×2×2=223,故选项B错误;对C :设方形ABCD 对角线AC 与BD 交于O ,由题意,翻折后当BD 的最小值为2时,△OD B 为边长为2的等边三角形,此时∠D OB =π3,所以点D 的运动轨迹是以O 为圆心2为半径的圆心角为2π3的圆弧,所以点D 的运动轨迹的长度为2π3×2=22π3,故选项C 正确;对D :结合C 的分析知,边AD 旋转所形成的曲面的面积为以A 为顶点,底面圆为以O 为圆心OD =2为半径的圆锥的侧面积的13,即所求曲面的面积为13πrl =13π×2×2=22π3,故选项D 正确.故选:ACD .2.【2022·广东省深圳市宝安区第一次调研10月】如图甲是由正方形ABCD ,等边△ABE 和等边△BCF 组成的一个平面图形,其中AB =6,将其沿AB ,BC ,AC 折起得三棱锥P -ABC ,如图乙.(1)求证:平面PAC ⊥平面ABC ;(2)过棱AC 作平面ACM 交棱PB 于点M ,且三棱锥P -ACM 和B -ACM 的体积比为1:2,求直线AM 与平面PBC 所成角的正弦值.【答案】(1)证明见解析;(2)427.【分析】(1)取AC 的中点为O ,连接BO ,PO ,证明PO ⊥AC ,PO ⊥OB ,即证PO ⊥平面ABC ,即证得面面垂直;(2)建立如图空间直角坐标系,写出对应点的坐标和向量AM 的坐标,再计算平面PBC 法向量n,利用所求角的正弦为cos AM ,n即得结果.【解析】(1)证明:如图,取AC 的中点为O ,连接BO ,PO .∵PA =PC ,∴PO ⊥AC .∵PA =PC =6,∠APC =90°,∴PO =12AC =32,同理BO =32.又PB =6,∴PO 2+OB 2=PB 2,∴PO ⊥OB .∵AC ∩OB =O ,AC ,OB ⊂平面ABC ,11∴PO ⊥平面ABC .又PO ⊂平面PAC ,∴平面PAC ⊥平面ABC ;(2)解:如图建立空间直角坐标系,根据边长关系可知,A 32,0,0 ,C -32,0,0 ,B 0,32,0 ,P 0,0,32 ,∴CB =32,32,0 ,CP =32,0,32.∵三棱锥P -ACM 和B -ACM 的体积比为1:2,∴PM :BM =1:2,∴M 0,2,22 ,∴AM =-32,2,22 .设平面PBC 的法向量为n =x ,y ,z ,则32x +32y =032x +32z =0 ,令x =1,得n =1,-1,-1 .设直线AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =-6227⋅3 =427.∴直线AM 与平面PBC 所成角的正弦值为427.。

一道立体几何中翻折问题的多解剖析

一道立体几何中翻折问题的多解剖析

2018年8月解法探究教学参谋一道立体几何中翻折问题的多解剖析®苏州市苏州高新区第一中学宋涛立体几何的翻折问题是指将一平面图形翻折后变成空间图形,然后根据平面图形的数量关系、位置 关系等来研究空间图形中各元素间的数量关系、位置 关系等问题.下面结合实例,将平面图形翻折,变成空间图形,再结合题目条件,来解决空间几何体的空间角(包括异面直线所成的角、线面角、二面角的平面角 等)的证明与计算等问题.此类问题往往随着翻折的变 化而产生解决问题角度的变化,切入角度多样,方法 各异.【问题】如图1,在菱形4S C B中,,线段4Z)的中点分别为五,尺现将沿对角线B D翻折, 如图2,则异面直线视与⑶所成角的取值范围是_____.图1图2分析:本题涉及立体几何问题的翻折,在翻折过程 中,求解相应变量的取值范围问题.注意翻折过程中,有 些量是不变的,而有些量是改变的.如何根据翻折的过 程来确定异面直线所成的角,可以通过异面直线所成角 的定义结合几何性质法、向量法、空间坐标法、极端思维 法、特殊模型法等众多的思维方式来处理.根据异面直线所成角的定义,利用平行线转化为平 面角,把空间问题转化为平面问题,利用解三角形来处 理与求解.解法1:如图3,过点f作交4Z)于点仏连接HC.即此时还是菱形时,由余弦定理得好(?=/)丑•3 164 4根据平行线的性质可得Z f f f C就是异面直线万£与 CF所成的角,根据余弦定理有cos Z t f f C= =则’抓C e [!,¥]•由定义异面直线所成的角的取值范围是卜|卜则异面直线M与CF所成角的取值范围是(f^ (当取值为|,此时W与〇)重合或是没有翻折时,舍去),故答案为d f丨.分析:根据向量夹角来转化异面直线所成的角,把 对应的角转化为向量5^,茂的夹角问题,利用空间向量 的线性运算与数量积来处理与求解,同时注意异面直线 所成的角与向量的夹角之间的区别与联系.解法2:设菱形4S C D的边长为1,设菱形4S C D的边长为1,可得册=丄,4 2 4当与C i?重合时,此时;当还没有翻折时,4nT#B D=l,BE=FC=^~.2由于威=丄(前+历5),技=丄(商+怒)=丄(前-2 2 22B t),高中十-y龙*? 57教学参谋1解法贼2018年8月那么裔•技=丄(S t*■前).(前-25?)=丄前.前-4 4—B i-B t^—B62-—W-B t=2 4 2丄----co^(M M),4 8 2n^.rp Y-y c o s<M,S?)则有c〇s〈5g,茂〉5=8 2 〇--------:_确A-cos(S l M).结合图形可知在翻折过程中有〇<〈放,韶〉<与,则有-丄<c o s〈M,5?〉<1,2那么C〇S〈藏砍e卜去,去),则有〈藏技〉/TT 2T T\由定义异面直线所成的角的取值范围是(〇,f卜则 异面直线与CF所成角的取值范围是d H故答案为2分析:通过建立空间直角坐标系,设出二面角4一 S f l—C的平面角的大小为0,从而确定点4的坐标为^〇,^L cos0,^l sin0j,利用空间向量的线性运算与数量积来处理与求解,根据向量的坐标表示求解向量 的夹角问题,同时注意异面直线所成的角与向量 的夹角之间的区别与联系.解法3:设菱形4f i O>的边长为1,〇S^BD=l,BE=FC=2如图4,以找坐标原点,/B、FC所在直线分别为;轴、y轴建立空间直角坐标系F—设二面角>4一B i)—C的平面角的大小为0(0e[0,i t]),V T则有叫了’〇,〇j叫-了’〇,〇j,c|o,,o|(〇,-^-^—cosO,-^-^-sin0],可得五丄,J^c o s A^^s i n f l j,\ 4 4 4 I那么5^=(sin^j,叫〇,^^,〇),~^ ~7^5C O S0贝!j有cos〈5^,^ ,=—----=—cos0,丨勝_A 24而[0,i r],那么cos〈5^,充〉=去cos0e 1—)—J,则〈鼓,記〉£ 卜由定义异面直线所成的角的取值范围是卜,则异面直线与CF所成角的取值范围是(f f j (当取齡f,此时仙与CZ*合或是没有翻折时,舍去),故答案为(f,|丨•分析:直接通过题目条件判断相应异面直线所成角 的大小取值范围的难度比较大,而通过极端思维,根 据翻折的极端位置人手,结合翻折时对应的变化带动点的变化所对应的极端位置来分析,可以很快确定答案.解法4:设二面角^一S f l—C的平面角的大小为沒 (0e[0,tt]),异面直线孤与CF所成角为a取极端思维:翻折前,几乎没动,此时,结合平面几何的性质可得此时一!,可得《>!;3 3翻折后,当平面4即丄平面BC/),此时0= ^,结合面2面垂直的性质可得a=|;继续翻折,几乎仙与£>C重合,此时0—0,结合平面几何的性质可得此时一!,可得a>!_3 3综合可得a e (H],故答案为(|,引.分析:先作出辅助线,确定与C f所成的夹角就是 异面直线S五与CF所成的角,根据翻折时//F所对应的立 体几何模型的特征,结合圆锥的性质来确定两直线的夹 角问题,从而求解异面直线所成的角.58十7龙*?高中2018年8月解法探究教学参谋圆锥曲线中的几个定值、定点问题⑩湖北省武汉市江夏一中李新桥笔者经过研究,在圆锥曲线的焦点弦问题中,隐藏 着一个定值(半离心率),现列出如下三个定理.秘 __ 1 _ e 取定理1过抛物线卢2^的焦点_直线K直线的斜 率存在)交抛物线于两点,作的中垂线交*轴于M点,则为圆锥曲线的离心率,下同).证明:依题意设直线为(*-皆)“ #0 ),联立直线与抛物线方程尸+2)’得段_“予+2p)奸平=〇,所以_2=气^,印的中点坐标为(专+告,j,直线印的中垂线方程为(*-+-告).k k 、2k”令y=0,得%=*+告,圆=P+告,IP^I=尤r h^=2/)+.,定理2过椭圆4+^=1的右焦点F的直线Z (直线ar〇的斜率存在)交椭圆于两点,叩的中垂线交%轴于MAMF]e点,则\PQ\2证明:依题意设直线为:).当A:=0时,易知1作1=2«,IMFI=c,显然\M F]_ c _ eip p r~2^"T 当w o时,联立方程2^k2cx^k2c2-(^b2=Q,y=k{x-c),a2b2~lf得(b2+c^k2)x2-所以,x^=Ay~t f,印的中点坐标b2+A2b2+A2解法5:如图5,过点f作//EB效D于点H,根据平行线的性质可得册//册,则丑f与C f所成的夹角就是异面直线财:与C/所成的角. 图5将A4BZ)沿对角线BZ)翻折时所对应的轨迹恰好是以f lG(G为D C上靠近/)点的四等分点)为底面圆直 径、Z)/^7对称轴的圆锥的母线,结合模型可知,母线位于//M G m,此时与CF此题是一道立体几何的翻折问题,但从中我们也能 体会到立体几何的两个常规思路:非向量方法和向量方 法,以此题为例,思考途径如下图:所成的夹角为母线位于C fW垂面上时,此时所成的夹角为I.则异面直线服与^所成角的取值范围是m j,故答案为图6著名数学家、教育学家G•波利亚说过:“没有任何一 个题目是彻底完成了的,总还会有些事情可以做通过从多个不同角度来处理,巧妙把该题的底蕴充分挖掘出 来,多角度出发,多方面求解,真正体现对数学知识的融 会贯通,充分展现知识的交汇与综合,达到提升能力,拓 展应用的目的.进而真正达到在学中“悟”,在“悟”中不 断提升解题技能■□高中十-y龙*? 59。

立体几何的动态问题翻折问题

立体几何的动态问题翻折问题

立体几何的动态问题之二———翻折问题立体几何动态问题的基本类型:点动问题;线动问题;面动问题;体动问题;多动问题等一、面动问题(翻折问题):(一)学生用草稿纸演示翻折过程: (二)翻折问题的一线五结论.DF AE ⊥一线:垂直于折痕的线即五结论:1)折线同侧的几何量和位置关系保持不变;折线两侧的几何量和位置关系发生改变; 2--D HF D H F ''∠)是二面角的平面角;3D DF ')在底面上的投影一定射线上; 二、翻折问题题目呈现:(一)翻折过程中的范围与最值问题1、(2016年联考试题)平面四边形ABCD 中,AD=AB=2,CD=CB= 5,且AD AB ⊥,现将△ABD 沿对角线BD 翻折成'A BD ∆,则在'A BD ∆折起至转到平面BCD 的过程中,直线'A C 与平面BCD 所成最大角的正切值为_______ .解:由题意知点A 运动的轨迹是以E 为圆心,EA 为半径的圆,当点A运动到与圆相切的时候所称的角最大,所以3tan 'A CB ∠=。

【设计意图】加强对一线、五结论的应用,重点对学生容易犯的错误12进行分析,找出错误的原因。

2、2015年10月浙江省学业水平考试18).如图,在菱形ABCD 中,∠BAD=60°,线段AD ,BD 的中点分别为E ,F 。

现将△ABD 沿对角线BD 翻折,则异面直线BE 与CF 所成角的取值范围是DABE CDABC4) ''D H DH点的轨迹是以为圆心,为半径的圆;5AD'E AE .)面绕翻折形成两个同底的圆锥ECA.(,)63ππ B. (,]62ππ C. (,]32ππ D. 2(,)33ππ分析:这是一道非常经典的学考试题,本题的解法非常多,很好的考查了空间立体几何线线角的求法。

方法一:特殊值法(可过F 作FH 平行BE,找两个极端情形) 方法二:定义法:利用余弦定理:222254cos 243FH FC CH FHC CH FH FC +-∠==-,有32144CH ≤≤11cos ,22CFH ⎡⎤∴∠∈-⎢⎥⎣⎦异面直线BE 与CF 所成角的取值范围是(,]32ππ 方法三:向量基底法:111()()222BE FC BA BD FC BA FC BF FA FC=+==+111cos ,cos ,,222BE FC FC FA ⎡⎤<>=<>∈-⎢⎥⎣⎦方法四:建系:3、(2015年浙江·理8)如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CDB '--的平面角为α,则 ( B )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≥D. A CB α'∠≤方法一:特殊值方法二:定义法作出二面角,在进行比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【原创】【试题研究】立体几何中的翻折问题的分析与解
湖北省罗田县第一中学 陈清华
1.典例分析与解
例1如图,已知等边中,分别为边的中点,为的中点,为边上一点,且,将沿折到的位置,使平面平面.
(I )求证:平面平面;
(II )求二面角的余弦值.
分析:(I )易得,.又由平面平面平面.由以和平面平面
平面;(II )先证和,再建立空间直角坐标系,然后求平面的法向量和平面的向量. 解(I )因为为等边的边的中点,所以是等边三角形,且. 因为是的中点,所以.
又由于平面平面,平面,所以平面 又平面,所以.
因为,所以,所以. 在正中知,所以.
而,所以平面.
又因为平面,所以平面平面.
ABC ∆,E F ,AB AC M EF N BC 14
CN BC =AEF ∆EF A EF '∆A EF '⊥EF CB
-A MN '⊥A BF 'E A F B '--//EF BC A M EF '⊥A EF '⊥EFCB ⇒A M '⊥EFCB ⇒A M BF '⊥//MN CF BF CF ⊥⇒BF MN ⊥⇒BF ⊥A MN '⇒A MN '⊥A BF 'MG EF ⊥A M MG '⊥M xyz -A BF
'()n = A EF '()0,1,0p = ⇒
(
)
cos ,p n n p p n == ,E F ABC ∆,AB AC A EF '∆//EF BC M EF A M EF '⊥A EF '⊥EFCB A M '⊂A EF 'A M '⊥EFCB BF ⊂EFCB A M BF '⊥14
CN BC =//MF CN //MN CF ABC ∆BF CF ⊥BF MN ⊥A M MN M '= BF ⊥A MN 'BF ⊂A BF 'A MN '⊥A BF '
(II )设等边的边长为4,取中点,连接,由题设知,由(I )知平面,又平面,所以,如图建立空间直角坐标系,则,,,,.
设平面的一个法向量为,则由
得令,则. 平面的一个法向量为,所以
显然二面角是锐角,所以二面角
例2如图,在边长为的菱形中,,
点分别是边,的中点,,沿将翻折到,连接,得到如图的五棱锥,且.
(Ⅰ)求证:;
(Ⅱ)求四棱锥的体积.
ABC ∆BC G MG MG EF ⊥A M '⊥EFCB MG
⊂EFCB A M MG '⊥M xyz -()1,0,0F -(A '()B (FA ()
FB A BF '(),,n x y z = 0,0,FA n F B n ⎧=⎪⎨=⎪⎩ 0,30,x x ⎧=⎪⎨+=⎪⎩1z =()
n = A EF '()0,1,0p = ()
cos ,p n n p p n == E A F B '--E A F B '--4ABCD 60=∠DAB F E ,CD CB O EF AC = EF CEF ∆PEF ∆PD PB PA ,,ABFED P -10=PB PA BD ⊥BFED P -
分析(Ⅰ)由题证明,则平面,可得;(Ⅱ)由勾股定理可得,又,可知为四棱锥的高,则四棱锥的体积. 解(Ⅰ)证明:∵点分别是边的中点,
∴.
∵菱形的对角线互相垂直,∴.∴.
∴,
∵平面,平面,,
∴平面,∴平面,∴.
(Ⅱ)解:设。

连接,∵,
∴为等边三角形,∴,
在中,,
在中,,∴.
∵,,平面,平面,
∴平面,
梯形的面积
∴四棱锥的体积. 2.小试牛刀
练习1已知平行四边形,,,,为的中点,把
三角形沿折起至位置,使得,是线段的中点. PO EF AO EF ⊥⊥,⊥EF POA PA BD ⊥BO PO ⊥EF PO ⊥PO BFED P -BFED P -33333
131=⨯⨯=⋅=PO S V F E ,CE CD ,EF BD ∥ABCD AC BD ⊥AC EF ⊥PO EF AO EF ⊥⊥,⊂AO POA ⊂PO POA O PO AO = ⊥EF POA ⊥BD POA PA BD ⊥H BD AO = BO 60=∠DAB ABD ∆3,32,2,4=====PO HO HA BH BD BHO RT ∆722=+=HO BH BO PBO ∆22210PB PO BO ==+BO PO ⊥EF PO ⊥O BO EF = ⊂EF BFED ⊂BO BFED ⊥PO BFED BFED 1()2
S EF BD HO =+⋅=BFED P -33333131=⨯⨯=⋅=
PO S V ABCD 4AB =2AD =60DAB ∠=°E AB ADE DE 1A DE 1
4AC =F 1A C
(1)求证:面;
(2)求证:面面;
(3)求四棱锥的体积.
分析(1)取的中点,连接、,通过证明,利用直线与平面平行的判定定理证明面;(2)取的中点,连接、,通过证明面,然后通过平面与平面垂直的判定定理证明面面;(3)利用(2)的结果,直接求解几何体的体积即可.
解(1)证明:取的中点,连接,为中点,
,且, 为平行四边形边的中点,
,且, ,且,
四边形是平行四边形,,
平面,平面,
平面.
(2)取的中点,连接,
,,,为的中点,
为等边三角形,即折叠后也为等边三角形,
,且
在中,,,,
根据余弦定理,可得,在中,
,, //BF 1A DE 1
A
DE ⊥DEBC 1A DEBC -1DA G FG GE EG BF ////BF 1A DE DE H H A 1CH 1A H ⊥DEBC 1A DE ⊥DEBC 1DA G FG GE 、F 1A C //GF DC ∴12
GF DC =E ABCD AB //EB DC ∴12
EB DC ==//EB GF ∴EB GF =∴BEGF //BF EG ∴EG ⊂ 1A DE BF ⊄1A DE //BF ∴1A DE DE H 1A H CH 、4AB = 2AD =60DAB ∠=°E AB DAE ∴∆1DA E ∆1A H DE ∴⊥1A H =DHC ∆1DH =4DC =60HDC ∠=°2222212cos 6014214132
HC DH DC DH DC =+-=+-⨯⨯⨯= °1A HC ∆1A H 13HC =1
4AC =
,即, 又,所以面,
又面,面面
(3)由第(2)问知面,
. 练习2如图,在正方形中,点分别是的中点,将分别沿、折起,使两点重合于.
(Ⅰ)求证:平面⊥平面;
(Ⅱ)求四棱锥的体积.
分析(Ⅰ)由折叠前四边形形为正方形,可得折叠后,得平面,得平面平面;(Ⅱ)作棱锥的高在中,由
,得,很容易得出四边形的面积,即可得到四棱锥的体积. 解(Ⅰ)证明:连接交于,连接.在正方形中,点是的中点,点是的中点,所以,所以,因此,所以在等腰中,是的中点,且.因此在等腰中,,从而平面.又平面,所以平面⊥平面.即平面平面.
2221
1AC A H HC ∴=+1A H HC ⊥11A H DE A H HC DE DEBC HC DEBC DE HC H
⊥⎧⎪⊥⎪⎪⊂⎨⎪⊂⎪⎪=⎩ 面面1A H ⊥DEBC 1A H ⊂ 1A DE ∴1A DE ⊥DEBC 1A H ⊥
DEBC 1111(24)3332
A DEBC h =⨯+= -DEBC 底面V =S ABCD ,E F ,A
B B
C ,AE
D DCF ∆∆D
E D
F ,A C
P PBD BFDE P BFDE -ABCD OP EF BD EF ⊥⊥,EF ⊥OPD PBD ⊥BFDE PH Rt POD ∆OD PH OP PD ⋅=⋅23PH =
BFDE 11222
S EF BD =⋅=⨯=P BFDE -EF BD O OP ABCD E AB F BC ,BE BF DE DF ==DEB DFB ∆≅∆BDE BDF ∠=∠DEF ∆O EF EF OD ⊥PEF ∆EF OP ⊥EF ⊥OPD EF ⊂BFDE BFDE OPD PBD ⊥BFDE
(Ⅱ)由(Ⅰ)的证明可知平面⊥平面,易知,
,由于,所以.作于,则平面.在中,由
,得,又四边形的面积,所以,四棱锥的体积.
POD
DEF ,222
OP OE OF OD PD =====222184OP PD OD +==90OPD ∠= PH OD ⊥H PH ⊥DEF Rt POD ∆OD PH OP PD ⋅=⋅23
PH =
BFDE 11222S EF BD =⋅=⨯=P BFDE -1439V S PH =⋅=。

相关文档
最新文档