中考数学题分类解析

合集下载

2022年全国各省中考数学真题分类解析相交与平行

2022年全国各省中考数学真题分类解析相交与平行
行,方案 2,根据三角形内角和定理可知,直线 AB,CD 所夹锐角与 180°﹣∠AEH﹣∠CFG 相等,故方案 2 可行.
1901
(2022•随州中考)如图,直线 l1∥l2,直线 l 与 l1,l2 相交,若图中∠1=60°,则∠2 为(
A.30° B.40° C.50° D.60°

【解析】选 D.∵l1∥l2,∴∠1=∠2,∵∠1=60°,∴∠2=60°.
B、∠1 和∠3 是同位角,故 B 正确;C、∠2 和∠3 是内错角,故 C 错误;D、∠3 和∠4 是邻补角,故 D 错误.
1901
(2022•毕节中考)如图,m∥n,其中∠1=40°,则∠2 的度数为(

A.130° B.140° C.150° D.160°
【解析】选 B.如图,
∵m∥n,∠1=40°,∴∠3=∠1=40°,
∵∠1=∠3,∴∠2=∠1=50°,
1901
(2022•泸州中考)如图,直线 a∥b,直线 c 分别交 a,b 于点 A,C,点 B 在直线 b 上,AB⊥AC,若∠1=130°,
则∠2 的度数是(
A.30°

B.40°
C.50°
D.70°
【解析】选 B.如图所示,
∵直线 a∥b,∴∠1=∠DAC,
1901
(2022•雅安中考)如图,已知直线 a∥b,直线 c 与 a,b 分别交于点 A,B,若∠1=120°,则∠2=(
A.60° B.120° C.30° D.15°
【解析】选 A.∵∠1=120°,∴它的对顶角是 120°,∵a∥b,∴∠2=60°.
1901
(2022•北部湾中考)如图,直线 a∥b,∠1=55°,则∠2 的度数是(

中考数学必考题型分析及解题策略总结

中考数学必考题型分析及解题策略总结

中考数学必考题型分析及解题策略总结一、必考题型分析1、线段、角的计算与证明问题中考的解答题一般是分两到三部分的。

第一部分基本上都是一些简单题或者中档题,目的在于考察基础。

第二部分往往就是开始拉分的中难题了。

对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。

2、图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。

在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。

3、动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。

动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。

另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。

所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。

4、一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。

几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。

相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。

中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。

一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。

但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。

5、多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。

这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。

2022年全国各省中考数学真题分类解析全等三角形

2022年全国各省中考数学真题分类解析全等三角形

(2022•云南中考)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF.若添加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE【解析】选D.∵OB平分∠AOC,∴∠DOE=∠FOE,又OE=OE,若∠ODE=∠OFE,则根据AAS可得△DOE≌△FOE,故选项D符合题意,而增加OD=OE不能得到△DOE≌△FOE,故选项A不符合题意,增加OE=OF不能得到△DOE≌△FOE,故选项B不符合题意,增加∠ODE=∠OED不能得到△DOE≌△FOE,故选项C不符合题意.(2022•金华中考)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO≌△DCO的依据是()A.SSS B.SAS C.AAS D.HL【解析】选B.在△AOB和△DOC中,{OA=OD∠ADB=∠DOCOB=OC,∴△AOB≌△DOC(SAS),(2022•扬州中考)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为△ABC,提供下列各组元素的数据,配出来的玻璃不一定符合要求的是()A.AB,BC,CA B.AB,BC,∠B C.AB,AC,∠B D.∠A,∠B,BC【解析】选C.A.利用三角形三边对应相等,两三角形全等,三角形形状确定,故此选项不合题意;B.利用三角形两边、且夹角对应相等,两三角形全等,三角形形状确定,故此选项不合题意;C.AB,AC,∠B,无法确定三角形的形状,故此选项符合题意;D.根据∠A,∠B,BC,三角形形状确定,故此选项不合题意(2022•成都中考)如图,在△ABC 和△DEF 中,点A ,E ,B ,D 在同一直线上,AC ∥DF ,AC =DF ,只添加一个条件,能判定△ABC ≌△DEF 的是( )A .BC =DEB .AE =DBC .∠A =∠DEFD .∠ABC =∠D【解析】选B .∵AC ∥DF ,∴∠A =∠D ,∵AC =DF ,∴当添加∠C =∠F 时,可根据“ASA ”判定△ABC ≌△DEF ;当添加∠ABC =∠DEF 时,可根据“AAS ”判定△ABC ≌△DEF ;当添加AB =DE 时,即AE =BD ,可根据“SAS ”判定△ABC ≌△DEF .(2022•黄冈中考)如图,已知AB ∥DE ,AB =DE ,请你添加一个条件 ∠A =∠D ,使△ABC ≌△DEF .【解析】添加条件:∠A =∠D .∵AB ∥DE ,∴∠B =∠DEC ,在△ABC 和△DEF 中,{∠A =∠DAB =DE ∠B =∠DEC,∴△ABC ≌△DEF (ASA ).答案:∠A =∠D .(答案不唯一)(2022•龙东中考)如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,OA =OC ,请你添加一个条件 OB=OD (答案不唯一) ,使△AOB ≌△COD .【解析】添加的条件是OB =OD ,理由是:在△AOB 和△COD 中,{AO =CO∠AOB =∠COD BO =DO,∴△AOB ≌△COD (SAS ).答案:OB =OD (答案不唯一).又∠A=90°,∴∠A=∠EFB,①∵AD∥BC,∴∠AEB=∠FBE,②又BE=EB,③∴△BAE≌△EFB(AAS).同理可得△EDC≌△CFE(AAS),④∴S△BCE=S△EFB+S△EFC=12S矩形ABFE+12S矩形EFCD=12S矩形ABCD.【解析】由题知,在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴∠A=∠EFB,①∵AD∥BC,∴∠AEB=∠FBE,②又BE=EB,③∴△BAE≌△EFB(AAS).同理可得△EDC≌△CFE(AAS),④∴S△BCE=S△EFB+S△EFC=12S矩形ABFE+12S矩形EFCD=12S矩形ABCD,答案:①∠A=∠EFB,②∠AEB=∠FBE,③BE=EB,④△EDC≌△CFE(AAS).∴① ∠ADC =∠F .∵EF ∥BC ,∴② ∠1=∠2 .又∵③ AC =AC ,∴△ADC ≌△CFA (AAS ).同理可得:④ △ADB ≌△BEA (AAS ) .S △ABC =S △ADC +S △ABD =12S 矩形ADCF +12S 矩形AEBD =12S 矩形BCFE =12ah .【解析】证明:∵AD ⊥BC ,∴∠ADC =90°.∵∠F =90°,∴∠ADC =∠F ,∵EF ∥BC ,∴∠1=∠2,∵AC =AC ,在△ADC 与△CFA 中,{AC =AC∠1=∠2∠ADC =∠F,∴△ADC ≌△CFA (AAS ).同理可得:④△ADB ≌△BEA (AAS ),∴S △ABC =S △ADC +S △ABD =12S 矩形ADCF +12S 矩形AEBD =12S 矩形BCFE =12ah .答案:①∠ADC =∠F ,②∠1=∠2,③AC =AC ,④△ADB ≌△BEA (AAS ).(2022•宜宾中考)已知:如图,点A 、D 、C 、F 在同一直线上,AB ∥DE ,∠B =∠E ,BC =EF .求证:AD =CF .(2022•乐山中考)如图,B 是线段AC 的中点,AD ∥BE ,BD ∥CE .求证:△ABD ≌△BCE .【解析】∵点B 为线段AC 的中点,∴AB =BC ,∵AD ∥BE ,∴∠A =∠EBC ,∵BD ∥CE ,∴∠C =∠DBA ,在△ABD 与△BCE 中{∠A =∠EBCAB =BC ∠DBA =∠C,∴△ABD ≌△BCE .(ASA )(2022•衡阳中考)如图,在△ABC 中,AB =AC ,D 、E 是BC 边上的点,且BD =CE .求证:AD =AE .【解析】:∵AB =AC ,∴∠B =∠C ,在△ABD 和△ACE 中,{AB =AC∠B =∠C BD =CE,∴△ABD ≌△ACE (SAS ),∴AD =AE(2022•陕西中考)如图,在△ABC 中,点D 在边BC 上,CD =AB ,DE ∥AB ,∠DCE =∠A .求证:DE =BC .【解析】:∵DE ∥AB ,∴∠EDC =∠B ,在△CDE 和△ABC 中,{∠EDC =∠BCD =AB ∠DCE =∠A,(2022•桂林中考)如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF=DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.【证明】(1)∵BF=DE,BF﹣EF=DE﹣EF,∴BE=DF;(2)∵四边形ABCD为平行四边形,∴AB=CD,且AB∥CD,∴∠ABE=∠CDF,在△ABE和△CDF中,{AB=CD∠ABE=∠CDF BE=DF.∴△ABE≌△CDF(SAS).(2022•玉林中考)问题情境:在数学探究活动中,老师给出了如图的图形及下面三个等式:①AB=AC;②DB =DC;③∠BAD=∠CAD.若以其中两个等式作为已知条件,能否得到余下一个等式成立?解决方案:探究△ABD与△ACD全等.问题解决:(1)当选择①②作为已知条件时,△ABD与△ACD全等吗?全等(填“全等”或“不全等”),理由是三边对应相等的两个三角形全等;(2)当任意选择两个等式作为已知条件时,请用画树状图法或列表法求△ABD≌△ACD的概率.【解析】(1)在△ABD和△ACD中,{AB=ACAD=ADDB=DC,∴△ABD≌△ACD(SSS).答案:全等,三边对应相等的两个三角形全等;(2)树状图:所有可能出现的结果(①②)(①③)(②①)(②③)(③①)(③②)共有六种等可能的情况,符合条件的有(①②)(①③)(②①)(③①)有四种,令△ABD ≌△ACD 为事件A ,则P (A )=23.(2022•福建中考)如图,点B ,F ,C ,E 在同一条直线上,BF =EC ,AB =DE ,∠B =∠E .求证:∠A =∠D .【证明】∵BF =EC ,∴BF +CF =EC +CF ,即BC =EF ,在△ABC 和△DEF 中,{AB =DE ∠B =∠E BC =EF,∴△ABC ≌△DEF (SAS ),∴∠A =∠D . (2022•长沙中考)如图,AC 平分∠BAD ,CB ⊥AB ,CD ⊥AD ,垂足分别为B ,D .(1)求证:△ABC ≌△ADC ;(2)若AB =4,CD =3,求四边形ABCD 的面积.【解析】(1)∵AC 平分∠BAD ,∴∠BAC =∠DAC ,∵CB ⊥AB ,CD ⊥AD ,∴∠B =90°=∠D ,在△ABC 和△ADC 中,{∠B =∠D∠BAC =∠DAC AC =AC,∴△ABC ≌△ADC (AAS );(2)由(1)知:△ABC ≌△ADC ,∴BC =CD =3,S △ABC =S △ADC ,∴S △ABC =12AB •BC =12×4×3=6, ∴S △ADC =6,∴S 四边形ABCD =S △ABC +S △ADC =12.答:四边形ABCD 的面积是12.(2022•吉林中考)如图,AB =AC ,∠BAD =∠CAD .求证:BD =CD .【解析】在△ABD 与△ACD 中,{AB =AC∠BAD =∠CAD AD =AD,。

2022年全国各省中考数学真题分类解析函数初步

2022年全国各省中考数学真题分类解析函数初步

(2022•桂林中考)桂林作为国际旅游名城,每年吸引着大量游客前来观光.现有一批游客分别乘坐甲乙两辆旅游大巴同时从旅行社前往某个旅游景点.行驶过程中甲大巴因故停留一段时间后继续驶向景点,乙大巴全程匀速驶向景点.两辆大巴的行程s(km)随时间t(h)变化的图象(全程)如图所示.依据图中信息,下列说法错误的是()A.甲大巴比乙大巴先到达景点B.甲大巴中途停留了0.5hC.甲大巴停留后用1.5h追上乙大巴D.甲大巴停留前的平均速度是60km/h【解析】选C.由图象可得,甲大巴比乙大巴先到达景点,故选项A正确,不符合题意;甲大巴中途停留了1﹣0.5=0.5(h),故选项B正确,不符合题意;甲大巴停留后用1.5﹣1=0.5h追上乙大巴,故选项C错误,符合题意;甲大巴停留前的平均速度是30÷0.5=60(km/h),故选项D正确,不符合题意.(2022•玉林中考)龟兔赛跑之后,输了比赛的兔子决定和乌龟再赛一场.图中的函数图象表示了龟兔再次赛跑的过程(x表示兔子和乌龟从起点出发所走的时间,y1,y2分别表示兔子与乌龟所走的路程).下列说法错误的是()A.兔子和乌龟比赛路程是500米B.中途,兔子比乌龟多休息了35分钟C.兔子比乌龟多走了50米D.比赛结果,兔子比乌龟早5分钟到达终点【解析】选C.A.“龟兔再次赛跑”的路程为500米,原说法正确,故此选项不符合题意;B.乌龟在途中休息了35﹣30=5(分钟),兔子在途中休息了50﹣10=40(分钟),兔子比乌龟多休息了35分钟,原说法正确,故此选项不符合题意;(2022•江西中考)甲、乙两种物质的溶解度y(g)与温度t(℃)之间的对应关系如图所示,则下列说法中,错误的是()A.甲、乙两种物质的溶解度均随着温度的升高而增大 B.当温度升高至t2℃时,甲的溶解度比乙的溶解度大C.当温度为0℃时,甲、乙的溶解度都小于20g D.当温度为30℃时,甲、乙的溶解度相等【解析】选D.由图象可知,A、B、C都正确,当温度为t1时,甲、乙的溶解度都为30g,故D错误. (2022•温州中考)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t 分钟.下列选项中的图象,能近似刻画s与t之间关系的是()A. B. C. D.【解析】选A.由题意可知:小聪某次从家出发,s米表示他离家的路程,所以C,D错误;小聪在凉亭休息10分钟,所以A正确,B错误.(2022•重庆中考A卷)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h(m)随飞行时间t(s)的变化情况,则这只蝴蝶飞行的最高高度约为()A.5m B.7m C.10m D.13m【解析】选D.观察图象,当t=3时,h=13,∴这只蝴蝶飞行的最高高度约为13m.A.3时B.6时C.9时D.12时【解析】选C.由图形可知,在这一时段内心跳速度最快的时刻约为9时.(2022•河北中考)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是()A. B. C. D.,【解析】选C.∵一个人完成需12天,∴一人一天的工作量为112∵m个人共同完成需n天,∴一人一天的工作量为1,mn∵每人每天完成的工作量相同,∴mn=12.,∴n是m的反比例函数,∴选取6组数对(m,n),在坐标系中进行描点,则正确的是:C.∴n=12m1301 (2022•宜昌中考)如图是小强散步过程中所走的路程s(单位:m)与步行时间t(单位:min)的函数图象.其中有一时间段小强是匀速步行的.则这一时间段小强的步行速度为()m/min D.20m/minA.50m/min B.40m/min C.2007【解析】选D.由函数图象知,从30﹣70分钟时间段小强匀速步行,=20(m/min).∴这一时间段小强的步行速度为2000−120070−30(2022•武汉中考)匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线).这个容器的形状可能是()A. B. C. D.【解析】选D.注水量一定,函数图象的走势是稍陡,平缓,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为选项D.体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x表示时间,y表示张强离家的距离,则下列结论不正确的是()A.张强从家到体育场用了15min B.体育场离文具店1.5kmC.张强在文具店停留了20min D.张强从文具店回家用了35min【解析】选B.由图象知,A.张强从家到体育场用了15min,故A选项不符合题意;B.体育场离文具店2.5﹣1.5=1(km),故B选项符合题意;C.张强在文具店停留了65﹣45=20(min),故C选项不符合题意;D.张强从文具店回家用了100﹣65=35(min),故D选项不符合题意.(2022•乐山中考)甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分钟)之间的函数关系如图所示.根据图中信息,下列说法错误的是()A.前10分钟,甲比乙的速度慢B.经过20分钟,甲、乙都走了1.6千米C.甲的平均速度为0.08千米/分钟D.经过30分钟,甲比乙走过的路程少【解析】选D.由图象可得:前10分钟,甲的速度为0.8÷10=0.08(千米/分),乙的速度是1.2÷10=0.12(千米/分),∴甲比乙的速度慢,故A正确,不符合题意;经过20分钟,甲、乙都走了1.6千米,故B正确,不符合题意;∵甲40分钟走了3.2千米,∴甲的平均速度为3.2÷40=0.08(千米/分钟),故C正确,不符合题意;∵经过30分钟,甲走过的路程是2.4千米,乙走过的路程是2千米,∴甲比乙走过的路程多,故D错误,符合题意A.B.C.D.【解析】选D.过D点作DE⊥AC于点E.∵AB∥CD,∴∠ACD=∠BAC,∵AC平分∠DAB,∴∠BAC=∠CAD,∴∠ACD=∠CAD,则CD=AD=y,即△ACD为等腰三角形,则DE垂直平分AC,∴AE=CE=12AC=3,∠AED=90°,∵∠BAC=∠CAD,∠B=∠AED=90°,∴△ABC∽△AED,∴ACAD=ABAE,∴6y=x3,∴y=18 x,∵在△ABC中,AB<AC,∴x<6(2022•台州中考)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m,600m.他从家出发匀速步行8min到公园后,停留4min,然后匀速步行6min到学校.设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是()A.B.C.D.【解析】选C.吴老师从家出发匀速步行8min到公园,则y的值由400变为0,吴老师在公园停留4min,则y的值仍然为0,吴老师从公园匀速步行6min到学校,则在18分钟时,y的值为600感器是一种气敏电阻(图1中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是()A.呼气酒精浓度K越大,R1的阻值越小B.当K=0时,R1的阻值为100C.当K=10时,该驾驶员为非酒驾状态D.当R1=20时,该驾驶员为醉驾状态【解析】选C.由图2可知,呼气酒精浓度K越大,R1的阻值越小,故A正确,不符合题意;由图2知,K=0时,R1的阻值为100,故B正确,不符合题意;由图3知,当K=10时,M=2200×10×10﹣3=22(mg/100mL),∴当K=10时,该驾驶员为酒驾状态,故C不正确,符合题意;由图2知,当R1=20时,K=40,∴M=2200×40×10﹣3=88(mg/100mL),∴该驾驶员为醉驾状态,故D正确,不符合题意.(2022•永州中考)学枝组织部分师生去烈士陵园参加“不忘初心,牢记使命”主题教育活动.师生队伍从学校出发,匀速行走30分钟到达烈士陵园,用1小时在烈士陵园进行了祭扫和参观学习等活动,之后队伍按原路匀速步行45分钟返校.设师生队伍离学校的距离为y米,离校的时间为x分钟,则下列图象能大致反映y 与x关系的是()A.B.C.D.【解析】选A.根据已知0≤x≤30时,y随x的增大而增大,当30<x≤90时,y是一个定值,当90<x≤135时,y随x的增大而减小,∴能大致反映y与x关系的是A.(2022•雅安中考)一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶.过了一段时间,汽车到达下一个车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下面的哪一幅图可以近似地刻画出汽车在这段时间内的速度变化情况()A.B.C.D.(2022•毕节中考)现代物流的高速发展,为乡村振兴提供了良好条件.某物流公司的汽车行驶30km后进入高速路,在高速路上匀速行驶公司的汽车行驶30km后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1h到达目的地.汽车行驶的时间x(单位:h)与行驶的路程y(单位:km)之间的关系如图所示.请结合图象,判断以下说法正确的是()A.汽车在高速路上行驶了2.5hB.汽车在高速路上行驶的路程是180kmC.汽车在高速路上行驶的平均速度是72km/hD.汽车在乡村道路上行驶的平均速度是40km/h【解析】选D.∵3.5h到达目的地,在乡村道路上行驶1h,∴汽车下高速公路的时间是2.5h,∴汽车在高速路上行驶了2.5﹣0.5=2(h),故A错误,不符合题意;由图象知:汽车在高速路上行驶的路程是180﹣30=150(km),故B错误,不符合题意;汽车在高速路上行驶的平均速度是150÷2=75(km/h),故C错误,不符合题意;汽车在乡村道路上行驶的平均速度是(220﹣180)÷1=40(km/h),故D正确,符合题意.(2022•哈尔滨中考)一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示.如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为()A.150km B.165km C.125km D.350km【解析】选A.当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为:(50﹣35)×(500÷50)=150(km).A.AF=5B.AB=4C.DE=3D.EF=8【解析】选D.由图②的第一段折线可知:点P经过4秒到达点B处,此时的三角形的面积为12,∵动点P从点A出发,以每秒1个单位长度的速度沿A→B→C→D→E路线匀速运动,∴AB=4.∵12×AF•AB=12,∴AF=6,∴A选项不正确,B选项也不正确;由图②的第二段折线可知:点P再经过2秒到达点C处,∴BC=2,由图②的第三段折线可知:点P再经过6秒到达点D处,∴CD=6,由图②的第四段折线可知:点P再经过4秒到达点E处,∴DE=4.∴C选项不正确;∵图①中各角均为直角,∴EF=AB+CD=2+6=8,∴D选项的结论正确.(2022•仙桃中考)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形的面积为S1,小正方形与大正方形重叠部分的面积为S2,若S=S1﹣S2,则S随t变化的函数图象大致为()A.B.C.D.【解析】选A.随着t的增加,s由大变小,所以排除B;由于边长不同,不能是0,且恒定,然后再逐渐变大,所以排除D;由于t是匀速,所以就对称,所以可以排除C;所以只剩下选项A.(2022•绥化中考)小王同学从家出发,步行到离家a 米的公园晨练,4分钟后爸爸也从家出发沿着同一路线骑自行车到公园晨练,爸爸到达公园后立即以原速折返回到家中,两人离家的距离y (单位:米)与出发时间x (单位:分钟)的函数关系如图所示,则两人先后两次相遇的时间间隔为( )A .2.7分钟B .2.8分钟C .3分钟D .3.2分钟【解析】选C .由图象可得,小明的速度为a12米/分钟,爸爸的速度为:a (12−4)÷2=a4(米/分钟), 设小明出发m 分钟两人第一次相遇,出发n 分钟两人第二次相遇,a12m =(m ﹣4)•a 4,a 12n +a 4[n ﹣4﹣(12﹣4)÷2]=a , 解得m =6,n =9,n ﹣m =9﹣6=3.(2022·遵义中考)遵义市某天的气温y 1(单位:℃)随时间t (单位:h )的变化如图所示,设y 2表示0时到t 时气温的值的极差(即0时到t 时范围气温的最大值与最小值的差),则y 2与t 的函数图象大致是( )A .B .C .D .【解析】选A .因为极差是该段时间内的最大值与最小值的差.所以当t 从0到5时,极差逐渐增大;t 从5到气温为25℃时,极差不变;当气温从25℃到28℃时极差达到最大值.直到24时都不变.只有A 符合.(2022•临沂中考)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y(单位:km)与时间x(单位:h)的对应关系如图所示,下列说法中不正确的是()A.甲车行驶到距A城240km处,被乙车追上B.A城与B城的距离是300kmC.乙车的平均速度是80km/hD.甲车比乙车早到B城【解析】选D.由题意可知,A城与B城的距离是300km,故选项B不合题意;甲车的平均速度是:300÷5=60(km/h),乙车的平均速度是:300÷(4﹣1)=80(km/h),故选项C不合题意;设乙车出发x小时后追上甲车,则60(x+1)=80x,解得x=3,60×4=240(km),即甲车行驶到距A城240km处,被乙车追上,故选项A不合题意;由题意可知,乙车比甲车早到B城,故选项D符合题意.(2022•苏州中考)一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y(升)与时间x(分钟)之间的函数关系如图所示,则图中a的值为.(2022•威海中考)按照如图所示的程序计算,若输出y的值是2,则输入x的值是1.【解析】当x>0时,1x+1=2,解得x=1.当x≤0时,2x﹣1=2,解得x=1.5,因为1.5>0,舍去.所以x=1.答案:1.家跑步去体育场锻炼,锻炼结束后,步行回家吃早餐,饭后骑自行车到学校.图中x表示时间,y表示王强离家的距离.则下列结论正确的是①③④.(填写所有正确结论的序号)①体育场离王强家2.5km②王强在体育场锻炼了30min③王强吃早餐用了20min④王强骑自行车的平均速度是0.2km/min【解析】由图象中的折线中的第一段可知:王强家距离体育场2.5千米,用时15分钟跑步到达,∴①的结论正确;由图象中的折线中的第一段可知:王强从第15分钟开始锻炼,第30分钟结束,∴王强锻炼的时间为:30﹣15=15(分钟),∴②的结论不正确;由图象中的折线中的第三段可知:王强从第30中开始回家,第67分钟到家;由图象中的折线中的第四段可知:王强从第67分钟开始吃早餐,第87分钟结束,∴王强吃早餐用时:87﹣67=20(分钟),∴③的结论正确;由图象中的折线中的第四段可知:王强从第87分钟开始骑车去往3千米外的学校,第102分钟到达学校,∴王强骑自行车用时为:102﹣87=15(分钟),∴王强骑自行车的平均速度是:3÷15=0.2(km/min)∴④的结论正确.综上,结论正确的有:①③④,答案:①③④.(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x .【解析】(1)函数的图象如图所示:根据图象可知:选择函数y =kx +b ,将(0,1),(1,2)代入得{b =1k +b =2,解得{k =1b =1,∴函数表达式为:y =x +1(0≤x ≤5); (2)当y =5时,x +1=5,∴x =4.答:当水位高度达到5米时,进水用时x 为4小时.【解析】(1)①如图:②通过观察函数图象,当x=4时,y=200,当y值最大时,x=21;(2)该函数的两条性质如下(答案不唯一):①当2≤x≤7时,y随x的增大而增大;②当x=14时,y有最小值为80;(3)由图象,当y=260时,x=5或x=10或x=18或x=23,∴当5<x<10或18<x<23时,y>260,即当5<x<10或18<x<23时,货轮进出此港口.(2022•天津中考)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km,超市离学生公寓2km.小琪从学生公寓出发,匀速步行了12min到阅览室;在阅览室停留70min后,匀速步行了10min到超市;在超市停留20min后,匀速骑行了8min返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离ykm与离开学生公寓的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开学生公寓的时间/min 5 8 50 87 112离学生公寓的距离/km0.5 0.8 1.2 1.6 2(Ⅱ)填空:①阅览室到超市的距离为0.8 km;②小琪从超市返回学生公寓的速度为0.25 km/min;③当小琪离学生公寓的距离为1km时,他离开学生公寓的时间为10或116 min.(Ⅲ)当0≤x≤92时,请直接写出y关于x的函数解析式.0.08x−5.36(82<x≤92)(2022•陕西中考)如图,是一个“函数求值机”的示意图,其中y是x的函数.下面表格中,是通过该“函数求值机”得到的几组x与y的对应值.输入x…﹣6 ﹣4 ﹣2 0 2 …输出y…﹣6 ﹣2 2 6 16 …根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为8 ;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值.【解析】(1)当输入的x值为1时,输出的y值为y=8x=8×1=8,。

中考数学应用题归类解析

中考数学应用题归类解析

01方程型应用题方程型应用题包括一元一次方程应用题、二元一次方程组应用题、分式方程应用题、一元二次方程应用题。

(1)一元一次方程应用题例题1:某校甲、乙、丙三位同学一起调查了高峰时段盐靖高速、盐洛高速和沈海高速的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“盐靖高速车流量为每小时2000辆.”乙同学说:“沈海高速的车流量比盐洛高速的车流量每小时多400辆.”丙同学说:“盐洛高速车流量的5倍与沈海高速车流量的差是盐靖高速车流量的2倍.”请你根据他们所提供的信息,求出高峰时段盐洛高速和沈海高速的车流量分别是多少?解:设盐洛高速车流量每小时x辆,由题意,得5x-(x+400)=2000×2.解得x=1100则x+400=1500.答:高峰时段盐洛高速和沈海高速的车流量分别是1100辆、1500辆.(2)二元一次方程组应用题例题2:在元旦节来临之际,小明准备给好朋友赠送一些钢笔和笔记本作为元旦礼物,经调查发现,1支钢笔和2个笔记本要35元;3支钢笔和1个笔记本要55元.(1)求一支钢笔和一个笔记本分别要多少元?(2)小明购买了a支钢笔和b个笔记本,恰好用完80元钱.若两种物品都要购买,请你帮他设计购买方案.(3)分式方程应用题例题3:某校八年级(一)班和(二)班的同学,在双休日参加修整花卉的实践活动.已知(一)班比(二)班每小时多修整2盆花,(一)班修整66盆花所用的时间与(二)班修整60盆花所用时间相等.(一)班和(二)班的同学每小时各修整多少盆花?(4)一元二次方程应用题例题4:现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.求该快递公司投递总件数的月平均增长率.解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意,得10(1+x)2=12.1 解方程的,x1=0.1,x2=-2.1(不符合题意,舍去)答:该快递公司投递总件数的月平均增长率为10%.02函数型应用题函数型应用题包括一次函数应用题、反比例函数应用题、二次函数应用题、三角函数应用题。

分式与分式方程(3大考点)(解析版)三年(2022-2024)中考数学真题分类汇编(全国通用)

分式与分式方程(3大考点)(解析版)三年(2022-2024)中考数学真题分类汇编(全国通用)

专题07分式与分式方程(3大考点)(解析版)三年(2022-2024)中考数学真题分类汇编(全国通用)【考点归纳】一、考点01解分式方程----------------------------------------------------------------------------------------------------------------------------1二、考点02分式方程的解-----------------------------------------------------------------------------------------------------------------------11三、考点03分式方程的应用-------------------------------------------------------------------------------------------------------------------16考点01解分式方程一、考点01解分式方程1.(2024·山东济宁·中考真题)解分式方程1513126x x-=---时,去分母变形正确的是()A .2625x -+=-B .6225x --=-C .2615x --=D .6215x -+=2.(2024·四川泸州·中考真题)分式方程322x x-=--的解是()A .73x =-B .=1x -C .53x =D .3x =1362x -+=-,39x -=-,3x =,经检验3x =是该方程的解,故选:D .3.(2024·四川德阳·中考真题)分式方程153x x =+的解是()A .3B .2C .32D .344.(2023·辽宁大连·中考真题)解方程311x x x+=--去分母,两边同乘(1)x -后的式子为()A .133(1)x x +=-B .13(1)3x x +-=-C .133x x -+=-D .13(1)3x x+-=【答案】B【分析】本题考查了解分式方程时去分母,找到分式方程的公分母是解题的关键.根据分式方程的解法,两侧同乘(1)x -化简分式方程即可.【详解】解:分式方程的两侧同乘(1)x -得:13(1)3x x +-=-.故选:B .5.(2023·海南·中考真题)分式方程115x =-的解是()A .6x =B .6x =-C .5x =D .5x =-【答案】A【分析】先去分母将分式方程化为整式方程,解方程得到x 的值,再检验即可得到答案.【详解】解:去分母得:15x =-,解得:6x =,检验,当6x =时,510x -=≠,∴原分式方程的解是6x =,故选:A .【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的步骤,注意要检验.6.(2023·黑龙江哈尔滨·中考真题)方程231x x =+的解为()A .1x =B .=1x -C .2x =D .2x =-7.(2023·湖南·中考真题)将关于x 的分式方程21x x =-去分母可得()A .332x x -=B .312x x -=C .31x x -=D .33x x-=8.(2023·甘肃兰州·中考真题)方程213x =+的解是()A .1x =B .=1x -C .5x =D .5x =-【答案】B【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得解.【详解】解:去分母得:23x =+,解得=1x -,经检验=1x -是分式方程的解.故选:B .【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法是解题的关键.9.(2023·上海·中考真题)在分式方程2221521x x x x -+=-中,设221x y x -=,可得到关于y 的整式方程为()A .2550y y ++=B .2550y y -+=C .2510y y ++=D .2510y y -+=10.(2024·浙江·中考真题)若11x =-,则x =【答案】3【分析】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:21x =-,移项合并得:3x -=-,解得:3x =,经检验,3x =是分式方程的解,故答案为:311.(2024·北京·中考真题)方程11023x x+=的解为.12.(2024·四川宜宾·中考真题)分式方程301x x +-=的解为.13.(2023·江苏·中考真题)方程1121x -=+的解是.故答案为:2x =-【点睛】此题考查了分式方程的求解,解题的关键是掌握分式方程的求解方法.14.(2023·北京·中考真题)方程31512x x=+的解为.【答案】1x =【分析】方程两边同时乘以()251x x +化为整式方程,解整式方程即可,最后要检验.【详解】解:方程两边同时乘以()251x x +,得651x x =+,解得:1x =,经检验,1x =是原方程的解,故答案为:1x =.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.15.(2023·江苏苏州·中考真题)分式方程123x x +=的解为x =.【答案】3-【分析】方程两边同时乘以3x ,化为整式方程,解方程验根即可求解.【详解】解:方程两边同时乘以3x ,()312x x +=解得:3x =-,经检验,3x =-是原方程的解,故答案为:3-.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.16.(2023·重庆·中考真题)若关于x 的一元一次不等式组+34222x x a ⎧≤⎪⎨⎪-≥⎩,至少有2个整数解,且关于y 的分式方程14222a y y-+=--有非负整数解,则所有满足条件的整数a 的值之和是.17.(2022·山东威海·中考真题)按照如图所示的程序计算,若输出y的值是2,则输入x的值是.18.(2022·四川成都·中考真题)分式方程144x x x-+=的解是.19.(2024·福建·中考真题)解方程:122x x +=+-.20.(2024·陕西·中考真题)解方程:2111x x +=--.【答案】3x =-【分析】本题主要考查了解分式方程,先去分母变分式方程为整式方程,然后再解整式方程,最后对方程的解进行检验即可.21.(2024·广东广州·中考真题)解方程:x x=.2522.(2023·西藏·中考真题)解分式方程:1-=.11x x23.(2023·山西·中考真题)解方程:1122x x +=.24.(2022·青海西宁·中考真题)解方程:220x x x x-=+-.【答案】7x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:方程两边同乘()()11x x x +-,得()()41310x x --+=,解得7x =,检验:当7x =时,()()110x x x +-≠,所以,原分式方程的解为7x =.【点睛】本题主要考查了解分式方程,掌握求解的方法是解题的关键,注意解分式方程一定要验根.25.(2022·江苏苏州·中考真题)解方程:311x x x+=.二、考点02分式方程的解26.(2024·四川遂宁·中考真题)分式方程2111m x x =---的解为正数,则m 的取值范围()A .3m >-B .3m >-且2m ≠-C .3m <D .3m <且2m ≠-27.(2024·黑龙江齐齐哈尔·中考真题)如果关于x 的分式方程01m x x -=+的解是负数,那么实数m 的取值范围是()A .1m <且0m ≠B .1m <C .1m >D .1m <且1m ≠-【答案】A【分析】本题考查了根据分式方程的解的情况求参数,解分式方程求出分式方程的解,再根据分式方程的28.(2024·黑龙江大兴安岭地·中考真题)已知关于x 的分式方程233x x -=--无解,则k 的值为()A .2k =或1k =-B .2k =-C .2k =或1k =D .1k =-29.(2023·山东淄博·中考真题)已知1x =是方程322x x -=--的解,那么实数m 的值为()A .2-B .2C .4-D .430.(2023·黑龙江·中考真题)已知关于x 的分式方程122x x +=--的解是非负数,则m 的取值范围是()A .2m ≤B .2m ≥C .2m ≤且2m ≠-D .2m <且2m ≠-31.(2022·重庆·中考真题)若关于x 的一元一次不等式组1351x x a-⎧-≥⎪⎨⎪-⎩<的解集为2x ≤-,且关于y 的分式方程1211y a y y -=-++的解是负整数,则所有满足条件的整数a 的值之和是()A .-26B .-24C .-15D .-1332.(2024·黑龙江牡丹江·中考真题)若分式方程311x mx x x =-的解为正整数,则整数m 的值为.33.(2024·重庆·中考真题)若关于x 的一元一次不等式组2133423x x x a+⎧≤⎪⎨⎪-<+⎩的解集为4x ≤,且关于y 的分式方程8122a y y y --=++的解均为负整数,则所有满足条件的整数a 的值之和是.34.(2024·四川达州·中考真题)若关于x 的方程122x x --=无解,则k 的值为.35.(2023·四川巴中·中考真题)关于x 的分式方程322x x ++=有增根,则m =.三、考点03分式方程的应用36.(2024·山东·中考真题)为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为()A .200B .300C .400D .50037.(2024·内蒙古呼伦贝尔·中考真题)A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30千克,A型机器人搬运900千克所用时间与B型机器人搬运600千克所用时间相等.A,B 两种机器人每小时分别搬运多少干克化工原料?()A.60,30B.90,120C.60,90D.90,6038.(2024·四川达州·中考真题)甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x个零件.可列方程为()A.120120301.2x x-=B.120120301.2x x-=C.120120301.260x x-=D.120120301.260x x-=39.(2024·甘肃临夏·中考真题)端午节期间,某商家推出“优惠酬宾”活动,决定每袋粽子降价2元销售.细心的小夏发现,降价后用240元可以比降价前多购买10袋,求:每袋粽子的原价是多少元?设每袋粽子的原价是x元,所得方程正确的是()A.240240102x x-=+B.240240102x x-=-C.240240102x x-=D.240240102x x-=40.(2023·山东青岛·中考真题)某校组织学生进行劳动实践活动,用1000元购进甲种劳动工具,用2400元购进乙种劳动工具,乙种劳动工具购买数量是甲种的2倍,但单价贵了4元.设甲种劳动工具单价为x 元,则x满足的分式方程为.41.(2023·内蒙古呼和浩特·中考真题)甲、乙两船从相距150km的A,B两地同时匀速沿江出发相向而行,甲船从A地顺流航行90km时与从B地逆流航行的乙船相遇.甲、乙两船在静水中的航速均为30km/h,则江水的流速为km/h.42.(2023·湖北武汉·中考真题)我国古代数学经典著作《九章算术》记载:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”如图是善行者与不善行者行走路程s(单位:步)关于善行者的行走时间t的函数图象,则两图象交点P的纵坐标是.43.(2022·江西·中考真题)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为.44.(2024·云南·中考真题)某旅行社组织游客从A地到B地的航天科技馆参观,已知A地到B地的路程为300千米,乘坐C型车比乘坐D型车少用2小时,C型车的平均速度是D型车的平均速度的3倍,求D型车的平均速度.答:D型车的平均速度为100km/h.45.(2024·江苏扬州·中考真题)为了提高垃圾处理效率,某垃圾处理厂购进A、B两种机器,A型机器比B 型机器每天多处理40吨垃圾,A型机器处理500吨垃圾所用天数与B型机器处理300吨垃圾所用天数相等.B 型机器每天处理多少吨垃圾?46.(2024·广西·中考真题)综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg水.浓度关系式:0.50.5ddw=+前后.其中d前、d后分别为单次漂洗前、后校服上残留洗衣液浓度;w为单次漂洗所加清水量(单位:kg)【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要多少清水?(2)如果把4kg清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.【答案】(1)只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要9.5kg清水.(2)进行两次漂洗,能达到洗衣目标;(3)两次漂洗的方法值得推广学习47.(2024·重庆·中考真题)为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?48.(2023·山东济南·中考真题)某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A 型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.(1)求A型,B型机器人模型的单价分别是多少元?(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少?最少花费是多少元?49.(2023·辽宁沈阳·中考真题)甲、乙两人加工同一种零件,每小时甲比乙多加工2个这种零件,甲加工25个这种零件所用的时间与乙加工20个这种零件所用的时间相等,求乙每小时加工多少个这种零件.【答案】乙每小时加工8个这种零件.50.(2023·宁夏·中考真题)“人间烟火味,最抚凡人心”,地摊经济、小店经济是就业岗位的重要来源.某经营者购进了A型和B型两种玩具,已知用520元购进A型玩具的数量比用175元购进B型玩具的数量多30个,且A型玩具单价是B型玩具单价的1.6倍.(1)求两种型号玩具的单价各是多少元?根据题意,甲、乙两名同学分别列出如下方程:甲:520175301.6x x=+,解得5x=,经检验5x=是原方程的解.乙:5201751.630x x=⨯-,解得65x=,经检验65x=是原方程的解.则甲所列方程中的x表示_______,乙所列方程中的x表示_______;(2)该经营者准备用1350元以原单价再次购进这两种型号的玩具共200个,则最多可购进A型玩具多少个?51.(2023·山东·中考真题)某校组织学生去郭永怀纪念馆进行研学活动.纪念馆距学校72千米,部分学生乘坐大型客车先行,出发12分钟后,另一部分学生乘坐小型客车前往,结果同时到达.已知小型客车的速度是大型客车速度的1.2倍,求大型客车的速度.52.(2023·贵州·中考真题)为推动乡村振兴,政府大力扶持小型企业.根据市场需求,某小型企业为加快生产速度,需要更新生产设备,更新设备后生产效率比更新前提高了25%,设更新设备前每天生产x件产品.解答下列问题:(1)更新设备后每天生产_______件产品(用含x的式子表示);(2)更新设备前生产5000件产品比更新设备后生产6000件产品多用2天,求更新设备后每天生产多少件产品.53.(2023·广东·中考真题)某学校开展了社会实践活动,活动地点距离学校12km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min,求乙同学骑自行车的速度.54.(2023·重庆·中考真题)某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?。

中考数学真题分类解析(三)整式考题汇编及解析

中考数学真题分类解析(三)整式考题汇编及解析
3•a2的结果是( )
A.aB.a6C.6aD.a5
【解析】选D.a3•a2=a5.
0301
(2022•丽水中考)计算﹣a2•a的正确结果是( )
A.﹣a2B.aC.﹣a3D.a3
【解析】选C.﹣a2•a=﹣a3.
0301
(2022•绍兴中考)下列计算正确的是( )
0301
(2022•遂宁中考)下列计算中正确的是( )
A.a3•a3=a9B.(﹣2a)3=﹣8a3C.a10÷(﹣a2)3=a4D.(﹣a+2)(﹣a﹣2)=a2+4
【解析】选B.A.原式=a6,故该选项不符合题意;B.原式=﹣8a3,故该选项符合题意;
C.原式=a10÷(﹣a6)=﹣a4,故该选项不符合题意;D.原式=(﹣a)2﹣22=a2﹣4,故该选项不符合题意.
【解析】选D.A.m+m=2m,故本选项不合题意;
B.2(m﹣n)=2m﹣2n,故本选项不合题意;
C.(m+2n)2=m2+4mn+4n2,故本选项不合题意;
D.(m+3)(m﹣3)=m2﹣9,故本选项符合题意;
0301
(2022•德阳中考)下列计算正确的是( )
A.(a﹣b)2=a2﹣b2B. 1C.a÷a• aD.( ab2)3 a3b6
0301
(2022•自贡中考)下列运算正确的是( )
A.(﹣1)2=﹣2 B.( )( )=1 C.a6÷a3=a2D.( )0=0
【解析】选B.A.原式=1,故该选项不符合题意;B.原式=( )2﹣( )2=3﹣2=1,故该选项符合题意;
C.原式=a3,故该选项不符合题意;D.原式=1,故该选项不符合题意.
【解析】选A.A.a3+a3=2a3≠2a6,故选项A计算不正确;B.(﹣a3)2=a6,故选项B计算正确;

2022年全国各省中考数学真题分类解析菱形

2022年全国各省中考数学真题分类解析菱形

(2022•武威中考)如图1,在菱形ABCD中,∠A=60°,动点P从点A出发,沿折线AD→DC→CB方向匀速运动,运动到点B停止.设点P的运动路程为x,△APB的面积为y,y与x的函数图象如图2所示,则AB的长为()A.√3B.2√3C.3√3D.4√3【解析】选B.在菱形ABCD中,∠A=60°,∴△ABD为等边三角形,设AB=a,由图2可知,△ABD的面积为3√3,∴S△ABD=√34a2=3√3,解得:a=2√3.(2022•自贡中考)如图,菱形ABCD对角线交点与坐标原点O重合,点A(﹣2,5),则点C的坐标是()A.(5,﹣2)B.(2,﹣5)C.(2,5)D.(﹣2,﹣5)【解析】选B.∵四边形ABCD是菱形,∴OA=OC,即点A与点C关于原点对称,∵点A(﹣2,5),∴点C的坐标是(2,﹣5).(2022•株洲中考)如图所示,在菱形ABCD中,对角线AC与BD相交于点O,过点C作CE∥BD交AB的延长线于点E,下列结论不一定正确的是()A.OB=12CE B.△ACE是直角三角形C.BC=12AE D.BE=CE【解析】选D.∵四边形ABCD是菱形,∴AO=CO=12,AC⊥BD,∵CE∥BD,∴△AOB∽△ACE,∴∠AOB=∠ACE=90°,AOAC=OBCE=ABAE=12,∴△ACE是直角三角形,OB=12CE,AB=12AE,(2022•河南中考)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 为CD 的中点.若OE =3,则菱形ABCD 的周长为( )A .6B .12C .24D .48【解析】选C .∵四边形ABCD 为菱形,∴AC ⊥BD ,AB =BC =CD =DA ,∴△COD 为直角三角形.∵OE =3,点E 为线段CD 的中点,∴CD =2OE =6.∴C 菱形ABCD =4CD =4×6=24.(2022•赤峰中考)如图,菱形ABCD ,点A 、B 、C 、D 均在坐标轴上.∠ABC =120°,点A (﹣3,0),点E是CD 的中点,点P 是OC 上的一动点,则PD +PE 的最小值是( )A .3B .5C .2√2D .32√3【解析】选A .根据题意得,E 点关于x 轴的对称点是BC 的中点E ',连接DE '交AC 与点P ,此时PD +PE 有最小值为DE ',∵四边形ABCD 是菱形,∠ABC =120°,点A (﹣3,0),∴OA =OC =3,∠DBC =60°,∴△BCD 是等边三角形,∴DE '=OC =3,即PD +PE 的最小值是3.(2022•海南中考)如图,菱形ABCD 中,点E 是边CD 的中点,EF 垂直AB 交AB 的延长线于点F ,若BF :CE =1:2,EF =√7,则菱形ABCD 的边长是( )A .3B .4C .5D .45√7【解析】选B .过点D 作DH ⊥AB 于点H ,如图,∵四边形ABCD是菱形,∴AD=AB=CD,AB∥CD.∵EF⊥AB,DH⊥AB,∴DH∥EF,∴四边形DHFE为平行四边形,∴HF=DE,DH=EF=√7.∵点E是边CD的中点,∴DE=12CD,∴HF=12CD=12AB.∵BF:CE=1:2,∴设BF=x,则CE=2x,∴CD=4x,DE=HF=2x,AD=AB=4x,∴AF=AB+BF=5x.∴AH=AF﹣HF=3x.在Rt△ADH中,∵DH2+AH2=AD2,∴(√7)2+(3x)2=(4x)2.解得:x=±1(负数不合题意,舍去),∴x=1.∴AB=4x=4.即菱形ABCD的边长是4.A .52 B .5 C .10 D .20 【解析】选C .由作图过程可得:PQ 为BD 的垂直平分线,∴BM =MD ,BN =ND .设PQ 与BD 交于点O ,如图,则BO =DO .∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠MDO =∠NBO ,∠DMO =∠BNO ,在△MDO 和△NBO 中,{∠MDO =∠NBO∠DMO =∠BNO OD =OB,∴△MDO ≌△NBO (AAS ),∴DM =BN ,∴四边形BNDM 为平行四边形,∵BM =MD ,∴四边形MBND 为菱形,∴四边形MBND 的周长=4BM .设MB =x ,则MD =BM =x ,∴AM =AD ﹣DM =4﹣x ,在Rt △ABM 中,∵AB 2+AM 2=BM 2,∴22+(4﹣x )2=x 2,解得:x =52,∴四边形MBND 的周长=4BM =10.(2022•武威中考)如图,菱形ABCD 中,对角线AC 与BD 相交于点O ,若AB =2√5cm ,AC =4cm ,则BD 的长为8 cm .【解析】∵四边形ABCD 是菱形,AC =4cm ,∴AC ⊥BD ,BO =DO ,AO =CO =2cm ,∵AB =2√5cm ,∴BO =√AB 2−AO 2=4cm ,∴DO =BO =4cm ,∴BD =8cm.答案:8.(2022•温州中考)如图,在菱形ABCD 中,AB =1,∠BAD =60°.在其内部作形状、大小都相同的菱形AENH和菱形CGMF ,使点E ,F ,G ,H 分别在边AB ,BC ,CD ,DA 上,点M ,N 在对角线AC 上.若AE =3BE ,则MN 的长为 √32 .【解析】连接DB 交AC 于点O ,作MI ⊥AB 于点I ,作FJ ⊥AB 交AB 的延长线于点J ,如图所示,∵四边形ABCD 是菱形,∠BAD =60°,AB =1,∴AB =BC =CD =DA =1,∠BAC =30°,AC ⊥BD ,∵△ABD 是等边三角形,∴OD =12,∴AO =√AD 2−DO 2=√12−(12)2=√32, ∴AC =2AO =√3,∵AE =3BE ,∴AE =34,BE =14,∵菱形AENH 和菱形CGMF 大小相同,∴BE =BF =14,∠FBJ =60°,∴FJ =BF •sin60°=14×√32=√38, ∴MI =FJ =√38,∴AM =MI sin30°=√3812=√34, 同理可得,CN =√34, ∴MN =AC ﹣AM ﹣CN =√3−√34−√34=√32. 答案:√32.DQ ﹣P 'Q 的最大值为 16√23.【解析】如图,连接BD 交AC 于点O ,过点D 作DK ⊥BC 于点B ,延长DE 交AB 于点R ,连接EP ′交AB 于点J ,作EJ 关于AC 的对称线段EJ ′,则DP ′的对应点P ″在线段EJ ′上.当点P 是定点时,DQ ﹣QP ′=AD ﹣QP ″,当D ,P ″,Q 共线时,QD ﹣QP ′的值最大,最大值是线段DP ″的长,当点P 与B 重合时,点P ″与J ′重合,此时DQ ﹣QP ′的值最大,最大值是线段DJ ′的长,也就是线段BJ 的长.∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =OC ,∵AE =14.EC =18,∴AC =32,AO =OC =16,∴OE =AO ﹣AE =16﹣14=2,∵DE ⊥CD ,∴∠DOE =∠EDC =90°,∵∠DEO =∠DEC ,∴△EDO ∽△ECD ,∴DE 2=EO •EC =36,∴DE =EB =EJ =6,∴CD =√EC 2−DE 2=√182−62=12√2,∴OD =√DE 2−OE 2=√62−22=4√2,∴BD =8√2,∵S △DCB =12×OC ×BD =12BC •DK , ∴DK =12×16×8√212√212×16×8√26√2=323, ∵∠BER =∠DCK ,∴sin ∠BER =sin ∠DCK =DK CD =32312√2=4√29, ∴RB =BE ×4√29=8√23,3(2022•达州中考)如图,菱形ABCD的对角线AC,BD相交于点O,AC=24,BD=10,则菱形ABCD的周长为52.【解析】∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,AO=CO,BO=DO,∵AC=24,BD=10,∴AO=12AC=12,BO=12BD=5,在Rt△AOB中,AB=√AO2+BO2=√122+52=13,∴菱形的周长为13×4=52.答案:52(2022•娄底中考)菱形ABCD的边长为2,∠ABC=45°,点P、Q分别是BC、BD上的动点,CQ+PQ的最小值为√2.【解析】连接AQ,作AH⊥BC于H,∵四边形ABCD是菱形,∴AB=CB,∠ABQ=∠CBQ,∵BQ=BQ,∴△ABQ≌△CBQ(SAS),(2022•天津中考)如图,已知菱形ABCD的边长为2,∠DAB=60°,E为AB的中点,F为CE的中点,AF与DE相交于点G,则GF的长等于√194.【解析】如图,过点F作FH∥CD,交DE于H,过点C作CM⊥AB,交AB的延长线于M,连接FB,∵四边形ABCD是菱形,∴AB=CD=BC=2,AB∥CD,∴FH∥AB,∴∠FHG=∠AEG,∵F是CE的中点,FH∥CD,∴H是DE的中点,∴FH是△CDE的中位线,∴FH=12CD=1,∵E是AB的中点,∴AE=BE=1,∴AE=FH,∵∠AGE=∠FGH,∴△AEG≌△FHG(AAS),∴AG=FG,∵AD∥BC,4(2022•陕西中考)如图,在菱形ABCD中,AB=4,BD=7.若M、N分别是边AD、BC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为√152.【解析】连接AC交BD于O,∵四边形ABCD为菱形,∴BD⊥AC,OB=OD=72,OA=OC,由勾股定理得:OA=√AB2−OB2=√42−(72)2=√152,∵ME⊥BD,AO⊥BD,∴ME∥AO,∴△DEM∽△DOA,∴MEOA=DMAD,即ME√152=4−AM4,解得:ME=4√15−√15AM8,同理可得:NF=√15AM8,∴ME+NF=√15 2,答案:√152.(2022•台州中考)如图,在菱形ABCD 中,∠A =60°,AB =6.折叠该菱形,使点A 落在边BC 上的点M 处,折痕分别与边AB ,AD 交于点E ,F .当点M 与点B 重合时,EF 的长为 3√3 ;当点M 的位置变化时,DF 长的最大值为 6﹣3√3 .【解析】如图1中,∵四边形ABCD 是菱形,∴AD =AB =BC =CD ,∠A =∠C =60°,∴△ADB ,△BDC 都是等边三角形,当点M 与B 重合时,EF 是等边△ADB 的高,EF =AD •sin60°=6×√32=3√3.如图2中,连接AM 交EF 于点O ,过点O 作OK ⊥AD 于点K ,交BC 于点T ,过点A 作AG ⊥CB 交CB 的延长线于点G ,取AD 的中点R ,连接OR .∵AD ∥CG ,OK ⊥AD ,∴OK ⊥CG ,∴∠G =∠AKT =∠GTK =90°,∴四边形AGTK 是矩形,∴AG =TK =AB •sin60°=3√3,∵OA =OM ,∥AOK =∠MOT ,∠AKO =∠MTO =90°,(2022•黔东南州中考)如图,矩形ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD.若AC=10,则四边形OCED的周长是20.【解析】∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∴OC=DE,OD=CE,∵矩形ABCD的对角线AC,BD相交于点O,∴OC=12AC=5,OD=12BD,BD=AC,∴OC=OD=5,∴OC=OD=CE=DE,∴平行四边形OCED是菱形,∴C菱形OCED=4OC=4×5=20.答案:20.(2022•哈尔滨中考)如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB上,连接AE,点F为CD 的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为2√5.【解析】∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=4,BO=DO,∴AE=√AO2+EO2=√9+16=5,∴BE=AE=5,∴BO=8,∴BC=√BO2+CO2=√64+16=4√5,∵点F为CD的中点,BO=DO,∴OF=12BC=2√5.答案:2√5.【解析】添加的条件是AB =CD ,理由如下:∵AB ∥CD ,AB =CD ,∴四边形ABCD 是平行四边形,又∵AC ⊥BD ,∴平行四边形ABCD 是菱形.答案:AB =CD (答案不唯一).(2022•龙东中考)如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,∠BAD =60°,AD =3,AH 是∠BAC的平分线,CE ⊥AH 于点E ,点P 是直线AB 上的一个动点,则OP +PE 的最小值是 32√6 .【解析】连接OE ,过点O 作OF ⊥AB ,垂足为F ,并延长到点O ′,使O ′F =OF ,连接O ′E 交直线AB 于点P ,连接OP ,∴AP 是OO ′的垂直平分线,∴OP =O ′P ,∴OP +PE =O ′P +PE =O ′E ,此时,OP +PE 的值最小,∵四边形ABCD 是菱形,∴AD =AB =3,∠BAC =12∠BAD ,OA =OC =12AC ,OD =OB =12BD ,∠AOD =90°, ∵∠BAD =60°,∴△ADB 是等边三角形,∴BD =AD =3,∴OD =12BD =32,∴AO =√AD 2−DO 2=√32−(32)2=32√3,∴AC =2OA =3√3, ∵CE ⊥AH ,∴∠AEC =90°,∴OE =OA =12AC =32√3,∴∠OAE =∠OEA ,∵AE 平分∠CAB ,∴∠OAE =∠EAB ,∴∠OEA =∠EAB ,∴OE ∥AB ,∴∠EOF =∠AFO =90°,在Rt △AOF 中,∠OAB =12DAB =30°,∴OF =12OA =34√3,∴OO ′=2OF =32√3, 在Rt △EOO ′中,O ′E =√EO 2+OO ′2=√(32√3)2+(32√3)2=32√6,∴OE +PE =32√6,∴OP +PE 的最小值为32√6. 答案:32√6.(2022·安徽中考)已知四边形ABCD 中,BC =CD ,连接BD ,过点C 作BD 的垂线交AB 于点E ,连接DE .【解析】(1)证明:设CE 与BD 交于点O ,∵CB =CD ,CE ⊥BD ,∴DO =BO ,∵DE ∥BC ,∴∠DEO =∠BCO ,∵∠DOE =∠BOC ,∴△DOE ≌△BOC (AAS ),∴DE =BC ,∴四边形BCDE 是平行四边形,∵CD =CB ,∴平行四边形BCDE 是菱形;(2)(i )解:∵DE 垂直平分AC ,∴AE =EC 且DE ⊥AC ,∴∠AED =∠CED ,又∵CD =CB 且CE ⊥BD ,∴CE 垂直平分DB ,∴DE =BE ,∴∠DEC =∠BEC ,∴∠AED =∠CED =∠BEC ,又∵∠AED +∠CED +∠BEC =180°,∴∠CED =13×180°=60°;(ii )证明:由(i )得AE =EC ,又∵∠AEC =∠AED +∠DEC =120°,∴∠ACE =30°,同理可得,在等腰△DEB 中,∠EBD =30°,∴∠ACE =∠ABF =30°, 在△ACE 与△ABF 中,{∠ACE =∠ABF∠CAE =∠BAF AE =AF,∴△ABF ≌△ACE (AAS ),∴AC =AB ,又∵AE =AF ,∴AB ﹣AE =AC ﹣AF ,即BE =CF .(2022•连云港中考)如图,四边形ABCD 为平行四边形,延长AD 到点E ,使DE =AD ,且BE ⊥DC .(1)求证:四边形DBCE 为菱形;(2)若△DBC 是边长为2的等边三角形,点P 、M 、N 分别在线段BE 、BC 、CE 上运动,求PM +PN 的最小值.【解析】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∵DE =AD ,∴DE =BC ,∵E 在AD 的延长线上,∴DE ∥BC ,∴四边形DBCE是平行四边形,∵BE⊥DC,∴四边形DBCE是菱形;(2)解:作N关于BE的对称点N',过D作DH⊥BC于H,如图:由菱形的对称性知,点N关于BE的对称点N'在DE上,∴PM+PN=PM+PN',∴当P、M、N'共线时,PM+PN'=MN'=PM+PN,∵DE∥BC,∴MN'的最小值为平行线间的距离DH的长,即PM+PN的最小值为DH的长,在Rt△DBH中,∠DBC=60°,DB=2,=√3,∴PM+PN的最小值为√3.∴DH=DB•sin∠DBC=2×√32(2022•滨州中考)如图,菱形ABCD的边长为10,∠ABC=60°,对角线AC、BD相交于点O,点E在对角线BD 上,连接AE,作∠AEF=120°且边EF与直线DC相交于点F.(1)求菱形ABCD的面积;(2)求证AE=EF.【解析】(1)作AG⊥BC交BC于点G,如图所示,∵四边形ABCD是菱形,边长为10,∠ABC=60°,=5√3,∴BC=10,AG=AB•sin60°=10×√32∴菱形ABCD的面积是:BC•AG=10×5√3=50√3,即菱形ABCD的面积是50√3;(2)证明:连接EC,∵四边形ABCD是菱形,∠ABC=60°,∴EO垂直平分AC,∠BCD=120°,∴EA=EC,∠DCA=60°,∴∠EAC=∠ECA,∠ACF=120°,∵∠AEF=120°,∴∠EAC+∠EFC=360°﹣∠AEF﹣∠ACF=360°﹣120°﹣120°=120°,∵∠ECA+∠ECF=120°,∴∠EFC=∠ECF,∴EC=EF,∴AE=EF.(2022•舟山中考)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:∵AC⊥BD,OB=OD,∴AC垂直平分BD.∴AB=AD,CB=CD,∴四边形ABCD是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.【解析】赞成小洁的说法,补充条件:OA=OC,证明如下:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,又∵AC⊥BD,∴平行四边形ABCD是菱形.(2022•凉山州中考)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交CE的延长线于点F.(1)求证:四边形ADBF是菱形;(2)若AB=8,菱形ADBF的面积为40.求AC的长.【解析】(1)证明:∵AF∥BC,∴∠AFC=∠FCD,∠F AE=∠CDE,∵点E是AD的中点,∴AE=DE,∴△F AE≌△CDE(AAS),∴AF=CD,∵点D是BC的中点,∴BD=CD,∴AF=BD,∴四边形AFBD是平行四边形,(2022•南充中考)如图,在菱形ABCD中,点E,F分别在边AB,BC上,BE=BF,DE,DF分别与AC交于点M,N.求证:(1)△ADE≌△CDF.(2)ME=NF.【证明】(1)∵四边形ABCD是菱形,∴DA=DC,∠DAE=∠DCF,AB=CB,∵BE=BF,∴AE=CF,在△ADE和△CDF中,{DA=DC∠DAE=∠DCF AE=CF,∴△ADE≌△CDF(SAS);(2)由(1)知△ADE≌△CDF,∴∠ADM=∠CDN,DE=DF,∵四边形ABCD是菱形,∴∠DAM=∠DCN,∴∠DMA=∠DNC,∴∠DMN=∠DNM,∴DM=DN,∴DE﹣DM=DF﹣DN,∴ME=NF.(2022•广元中考)如图,在四边形ABCD中,AB∥CD,AC平分∠DAB,AB=2CD,E为AB中点,连结CE.(1)求证:四边形AECD为菱形;(2)若∠D=120°,DC=2,求△ABC的面积.【解析】(1)证明:∵E为AB中点,∴AB=2AE=2BE,∵AB=2CD,∴CD=AE,又∵AE∥CD,∴四边形AECD是平行四边形,∵AC平分∠DAB,∴∠DAC=∠EAC,∵AB∥CD,∴∠DCA=∠CAB,∴∠DCA=∠DAC,∴AD=CD,∴平行四边形AECD是菱形;(2)∵四边形AECD是菱形,∠D=120°,∴AD=CD=CE=AE=2,∠D=120°=∠AEC,∴AE=CE=BE,∠CEB=60°,∴∠CAE=30°=∠ACE,△CEB是等边三角形,∴BE=BC=EC=2,∠B=60°,∴∠ACB=90°,∴AC=√3BC=2√3,∴S△ABC=12×AC×BC=12×2×2√3=2√3.【解析】(1)①证明:∵CE⊥AB,CF⊥AD,∴∠BEC=∠DFC=90°,∵四边形ABCD是菱形,∴∠B=∠D,BC=CD,∴△BEC≌△DFC(AAS),∴CE=CF;②连接AC,如图1,∵E是边AB的中点,CE⊥AB,∴BC=AC,∵四边形ABCD是菱形,∴BC=AC,∴△ABC是等边三角形,∠EAC=60°,在Rt△ACE中,AE=2,∴CE=AE•tan60°=2×√3=2√3;(2)方法一:如图2,延长FE交CB的延长线于M,∵四边形ABCD是菱形,∴AD∥BC,AB=BC,∴∠AFE=∠M,∠A=∠EBM,∵E是边AB的中点,∴AE=BE,∴△AEF≌△BEM(AAS),∴ME=EF,MB=AF,∵AE=3,EF=2AF=4,∴ME=4,BM2,BE=3,∴BC=AB=2AE=6,∴MC=8,∴MBME =24=12,MEMC=48=12,∴MBME=MEMC,∵∠M为公共角,∴△MEB∽△MCE,∴BEEC =MBME=24,∵BE=3,∴CE=6;方法二:如图3,延长FE 交CB 的延长线于M ,过点E 作EN ⊥BC 于点N ,∵四边形ABCD 是菱形,∴AD ∥BC ,AB =BC ,∴∠AFE =∠M ,∠A =∠EBM ,∵E 是边AB 的中点,∴AE =BE ,∴△AEF ≌△BEM (AAS ),∴ME =EF ,MB =AF ,∵AE =3,EF =2AF =4,∴ME =4,BM 2,BE =3,∴BC =AB =2AE =6,∴MC =8,在Rt △MEN 和Rt △BEN 中,ME 2﹣MN 2=EN 2,BE 2﹣BN 2=EN 2,∴ME 2﹣MN 2=BE 2﹣BN 2,∴42﹣(2+BN )2=32﹣BN 2,解得:BN =34,∴CN =6−34=214, ∴EN 2=BE 2﹣BN 2=32﹣(34)2=13516,在Rt △ENC 中,CE 2=EN 2+CN 2=13516+44116=57616=36,∴CE =6.(2022•娄底中考)如图,以BC 为边分别作菱形BCDE 和菱形BCFG (点C ,D ,F 共线),动点A 在以BC 为直径且处于菱形BCFG 内的圆弧上,连接EF 交BC 于点O .设∠G =θ.(1)求证:无论θ为何值,EF 与BC 相互平分;并请直接写出使EF ⊥BC 成立的θ值.(2)当θ=90°时,试给出tan ∠ABC 的值,使得EF 垂直平分AC ,请说明理由.【解析】(1)∵四边形BCFG ,四边形BCDE 都是菱形,∴CF ∥BG ,CD ∥BE ,CB =CF =CD =BG =BE ,∵D ,C ,F 共线,∴G ,B ,E 共线,∴DF ∥EG ,DF =GE ,∴四边形DEGF 是平行四边形,∴EF 与BC 互相平分.当EF ⊥FG 时,∵GF =BG =BE ,∴EG =2GF ,∴∠GEF =30°,∴θ=90°﹣30°=60°;(2)当tan ∠ABC =2时,EF 垂直平分线段AC .理由:如图(2)中,设AC 交EF 于点J .∵四边形BCFG 是菱形,∴∠G =∠FCO =90°,∵EF 与BC 互相平分,∴OC =OB ,∴CF =BC ,∴FC =2OC ,∴tan ∠FOC =tan ∠ABC ,∴∠ABC =∠FOC ,∴OJ ∥AB ,∵OC =OB ,∴CJ =AJ ,∵BC 是直径,∴∠BAC =∠OJC =90°,∴EF 垂直平分线段AC.(2022•岳阳中考)如图,点E ,F 分别在▱ABCD 的边AB ,BC 上,AE =CF ,连接DE ,DF .请从以下三个条件:①∠1=∠2;②DE =DF ;③∠3=∠4中,选择一个合适的作为已知条件,使▱ABCD 为菱形. (1)你添加的条件是 ① (填序号);(2)添加了条件后,请证明▱ABCD 为菱形.【解析】(1)添加的条件是∠1=∠2,答案:①;(2)证明:∵四边形ABCD 是平行四边形,∴∠A =∠C ,在△ADE 和△CDF 中,{∠1=∠2∠A =∠C AE =CF,∴△ADE ≌△CDF (AAS ),∴AD =CD ,∴▱ABCD 为菱形.【解析】(1)M 与B 重合时,如图1,∵PQ ⊥AB ,∴∠PQA =90°,∴PA =12AB =2,∴t =2;(2)①当0≤t ≤2时,∵AM =2t ,∴BM =4﹣2t ,∵△APQ ≌△BMF ,∴AP =BM ,∴t =4﹣2t ,∴t =43;②当2<t ≤4时,∵AM =2t ,∴BM =2t ﹣4,∵△APQ ≌△BMF ,∴AP =BM ,∴t =2t ﹣4,∴t =4;综上所述,t 的值为4或43; (3)①0≤t ≤2时,如图2,在Rt △APQ 中,PQ =√32t ,∴MQ =32t ,∴S =12PQ ⋅MQ =12×√32t ×32t =3√38t 2; ②当2<t ≤4时,如图3,∵BF =t ﹣2,MF =√3(t ﹣2),∴S △BFM =12BF •MF =√32(t −2)2,∴S =S △PQM ﹣S △BFM =−√38t 2+2√3t −2√3;∴S ={3√38t 2(0≤t ≤2)−√38t 2+2√3t −2√3(2<t ≤4); (4)连接AE ,如图4,∵△PQE 为等边三角形,∴PE =√32t ,在Rt △APE 中,tan ∠PAE =PE PA =√32t t =√32, ∴∠PAE 为定值,∴点E 的运动轨迹为直线,∵AP =t ,∴AE =√AP 2+PE 2=√t 2+(√32t)2=√72t ,当t =2时,AE =√7,(2022•荆州中考)如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【解析】(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;(2)如图2中,菱形ABDC,菱形BECF即为所求.(2022•长沙中考)如图,在▱ABCD中,对角线AC,BD相交于点O,AB=AD.(1)求证:AC⊥BD;(2)若点E,F分别为AD,AO的中点,连接EF,EF=32,AO=2,求BD的长及四边形ABCD的周长.【解析】(1)∵四边形ABCD是平行四边形,AB=AD,∴▱ABCD是菱形,∴AC⊥BD;(2)∵点E,F分别为AD,AO的中点,∴EF是△AOD的中位线,∴OD=2EF=3,由(1)可知,四边形ABCD是菱形,∴AB=BC=CD=AD,AC⊥BD,BD=2OD=6,在Rt△AOD中,由勾股定理得:AD=√AO2+OD2=√22+32=√13,∴C菱形ABCD=4AD=4√13.(2)若AE=BE=2,求BF的长.【解析】(1)∵四边形ABCD是正方形,四边形HEFG是菱形,∴AD=CD,ED=GD,∠ADB=∠CDB,∠EHB=∠GHB,∴∠ADB﹣∠EHB=∠CDB﹣∠GHB,即∠ADE=∠CDG,在△ADE和△CDG中,{AD=CD∠ADE=∠CDG ED=GD,∴△ADE≌△CDG(SAS);(2)过E作EQ⊥DF于Q,则∠EQB=90°,∵四边形ABCD是正方形,∴∠A=90°,AD=AB=AE+EF=2+2=4,∠EBQ=∠CBD=45°,∴∠QEB=45°=∠EBQ,∴EQ=BQ,∵BE=2,∴2EQ2=22,∴EQ=BQ=√2(负数舍去),在Rt△DAE中,由勾股定理得:DE=√AD2+AE2=√42+22=2√5,∵四边形EFGH是菱形,∴EF=DE=2√5,∴QF=√EF2−EQ2=√(2√5)2−(√2)2=3√2,∴BF=QF﹣QB=3√2−√2=2√2.【解析】(1)作PE⊥AC于点E,在Rt△APE中,cos30°=AE AP,∴AE=AP•cos30°=√3x,∵∠APQ=120°,∴∠AQP=180°﹣120°﹣30°=30°,∴AP=PQ,∴点E为AQ中点,∴AQ=2√3x(cm),答案:2√3x.(2)如图,∵∠APQ=120°,∴∠MNB=∠PQB=60°,∵∠B=60°,∴△MNB为等边三角形,∴AP=PQ=PN=MN=NB,即AP+PN+NB=3AP=AB,∴3×2x=6,解得x=1.(3)当0≤x≤1时,作QF⊥AB于点F,∵∠A =30°,AQ =2√3x ,∴QF =12AQ =√3x ,∵PN =PQ =AP =2x ,∴y =PN •QF =2x •√3x =2√3x 2.当1<t ≤32时,QM ,NM 交BC 于点H ,K ,∵AB =6cm ,∠A =30°,∴AC =√32AB =3√3cm ,∴CQ =AC ﹣AQ =3√3−2√3x ,∴QH =2√3CQ =2√3(3√3−2√3x )=6﹣4x , ∴HM =QM ﹣QH =2x ﹣(6﹣4x )=6x ﹣6, ∵△HKM 为等边三角形,∴S △HKM =√34HM 2=9√3x 2﹣18√3x +9√3, ∴y =2√3x 2﹣(9√3x 2﹣18√3x +9√3)=﹣7√3x 2+18√3x ﹣9√3. 当32<x ≤3时,重叠图形△PQM 为等边三角形,PQ =PB =AB ﹣AP =6﹣2x ,∴y =√34PB 2=√34(6﹣2x )2=√3x 2﹣6√3x +9√3.综上所述,y ={ 2√3x 2(0≤x ≤1)−7√3x 2+18√3x −9√3(1<x ≤32)√3x 2−6√3x +9√3(32<x ≤3)。

中考数学试卷典型题及解析

中考数学试卷典型题及解析

一、填空题1. 已知等腰三角形ABC中,AB=AC,∠BAC=40°,则∠ABC的度数是______。

解析:在等腰三角形ABC中,∠BAC=40°,根据等腰三角形的性质,∠ABC=∠ACB。

所以,∠ABC的度数=180°-∠BAC=180°-40°=140°。

答案:140°2. 若a、b、c是等差数列的前三项,且a+b+c=21,b+c=14,则等差数列的公差是______。

解析:由等差数列的性质可知,b=a+d,c=a+2d。

又因为a+b+c=21,所以a+(a+d)+(a+2d)=21,即3a+3d=21。

又因为b+c=14,所以a+d+a+2d=14,即2a+3d=14。

解这个方程组,得到a=3,d=4。

因此,等差数列的公差是4。

答案:4二、选择题1. 已知函数f(x)=2x+1,若f(x)>0,则x的取值范围是______。

A. x>0B. x≥0C. x<0D. x≤0解析:函数f(x)=2x+1,要使f(x)>0,即2x+1>0。

解这个不等式,得到x>-1/2。

因此,x的取值范围是x>0。

答案:A2. 已知直角三角形ABC中,∠C=90°,AB=5,AC=4,则BC的长度是______。

A. 3B. 4C. 5D. 6解析:由勾股定理可知,BC²=AB²-AC²。

将AB=5,AC=4代入,得到BC²=5²-4²=25-16=9。

因此,BC=√9=3。

答案:A三、解答题1. 已知函数f(x)=x²-4x+3,求函数f(x)的最小值。

解析:首先,将函数f(x)写成顶点式,即f(x)=(x-2)²-1。

因为二次函数的顶点坐标为(-b/2a,f(-b/2a)),所以函数f(x)的顶点坐标为(2,-1)。

中考数学试卷题目分类汇总

中考数学试卷题目分类汇总

一、选择题1. 数与代数- 实数的运算- 代数式的化简- 分式的运算- 根据方程求未知数- 解不等式及不等式组- 函数的性质与应用2. 几何与图形- 直线、射线、线段的概念及性质- 角的概念及性质- 平行线、相交线、垂直线的判定- 四边形、多边形的概念及性质- 圆的概念及性质- 三角形的概念及性质,如三角形全等、相似3. 统计与概率- 数据的收集、整理、描述- 平均数、中位数、众数的计算- 概率的基本概念及计算- 事件的相互关系及概率的运算二、填空题1. 数与代数- 实数的性质及运算- 代数式的化简及求值 - 分式的化简及运算- 根据方程求未知数- 解不等式及不等式组2. 几何与图形- 几何图形的性质及判定 - 几何图形的变换- 几何问题的解决方法 - 圆的相关计算3. 统计与概率- 数据的描述及分析- 概率的计算与应用三、解答题1. 数与代数- 复杂方程的求解- 函数问题及实际应用 - 代数问题的综合应用 - 函数与几何的结合问题2. 几何与图形- 几何图形的证明- 几何问题的解决方法 - 几何图形的应用- 几何问题的综合应用3. 统计与概率- 统计数据的分析及处理- 概率的计算与应用- 统计与概率的实际问题四、实验题1. 数与代数- 使用计算器进行计算- 利用计算机软件进行数据处理2. 几何与图形- 利用计算机软件绘制几何图形- 利用计算机软件进行几何问题的探究3. 统计与概率- 利用计算机软件进行数据分析- 利用计算机软件进行概率问题的探究五、应用题1. 数与代数- 生活、生产、科技等领域的实际问题 - 经济、金融、物理等领域的实际问题2. 几何与图形- 建筑设计、城市规划等领域的实际问题 - 物理实验、天文观测等领域的实际问题3. 统计与概率- 社会调查、市场分析等领域的实际问题- 医学研究、生物统计等领域的实际问题总结:中考数学试卷题目分类汇总涵盖了数与代数、几何与图形、统计与概率三个主要模块,旨在考查学生对数学知识的掌握程度、应用能力及创新思维。

中考数学题型归类总结1

中考数学题型归类总结1

阅读理解类问题
总结
这类题目通常会给出一段文字或图形信息,要求学生通过阅读和理解,解决问 题。
示例
给出一段关于三角形的文字描述,其中提到了三角形的底和高,但未直接给出 面积。学生需要通过阅读理解,找出三角形面积的计算方法,并解决问题。
操作探究类问题
总结
这类题目通常会要求学生通过实际操作或探究,解决问题。
中考数学题型归类总结1
汇报人: 2023-12-11
目录
• 代数部分 • 几何部分 • 应用题部分 • 创新题部分
01
代数部分
实数
01
02
03
实数的分类
有理数和无理数,其中无 理数包括无限不循环小数 ,例如π和根号2等。
实数的运算
加、减、乘、除、平方、 开方等运算,需要注意运 算顺序和精度要求。
三角形
直角三角形
勾股定理的 应用
等腰三角形
等腰三角形 的性质与判 定
直角三角形 的性质与判 定
等边三角形 的性质与判 定
四边形
平行四边形
01
02
平行四边形的性质与判定
平行四边形的面积计算
03
04 矩形
矩形的性质与判定
05
06
矩形的面积计算

圆的性质
01
圆的周长与面积计算
02
圆的内接四的应用
05
圆周角定理的应用
06
03
应用题部分
方案设计类问题
总结词
考查学生综合运用数学知识解决实际问题的能力。
详细描述
这类问题通常以工程、生产、消费、规划等实际应用为背 景,要求学生根据题目要求设计一个方案,并运用数学知 识对方案的可行性进行分析和比较。

辽宁省各市中考数学分类解析 专题6:函数的图像与性质

辽宁省各市中考数学分类解析 专题6:函数的图像与性质

辽宁各市中考数学试题分类解析汇编专题6:函数的图像与性质 锦元数学工作室 编辑一、选择题1. (辽宁鞍山3分)如图,点A 在反比例函数()3y=x 0x>的图象上,点B 在反比例函数()ky=x 0x>的图象上,AB⊥x 轴于点M ,且AM :MB=1:2,则k 的值为【 】A . 3B .-6C .2D .6 【答案】B 。

【考点】反比例函数图象上点的坐标特征。

【分析】如图,连接OA 、OB .∵点A 在反比例函数()3y=x 0x>的图象上,点B 在反比例函数()ky=x 0x>的图象上,AB⊥x 轴于点M , ∴S △AOM =32,S △BOM =k 2。

∴S △AOM :S △BOM =32:k 2=3:|k|。

∵S △AOM :S △BOM =AM :MB=1:2,∴3:|k|=1:2。

∴|k|=6。

∵反比例函数()ky=x 0x>的图象在第四象限,∴k<0。

∴k=-6。

故选B 。

2. (辽宁鞍山3分)如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点B 坐标(﹣1,0),下面的四个结论:①OA=3;②a+b+c<0;③ac>0;④b 2﹣4ac >0.其中正确的结论是【 】A.①④ B.①③ C.②④ D.①②【答案】A。

【考点】二次函数图象与系数的关系,二次函数的性质,一元二次方程根的判别式。

【分析】∵由图象知,点B坐标(﹣1,0),对称轴是直线x=1,∴A的坐标是(3,0)。

∴OA=3。

∴结论①正确。

∵由图象知:当x=1时,y>0,∴把x=1代入二次函数的解析式得:y=a+b+c>0。

∴结论②错误。

∵抛物线的开口向下,与y轴的交点在y轴的正半轴上,∴a<0,c>0。

∴ac<0。

∴结论③错误。

∵抛物线与x轴有两个交点,∴b2﹣4ac>0。

∴结论④正确。

综上所述,结论①④正确。

故选A。

3. (辽宁本溪3分)如图,已知点A在反比例函数4y=x图象上,点B在反比例函数ky=x(k≠0)的图象上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为C、D,若OC=13OD,则k的值为【】A、10B、12C、14D、16 【答案】B。

2022年全国各省中考数学真题分类解析一次函数

2022年全国各省中考数学真题分类解析一次函数

(2022·安徽中考)在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是()A.B.C.D.【解析】选D.∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴;若a<0,则一次函数y=ax+a2是减函数,交y轴的正半轴,y=a2x+a是增函数,交y轴的负半轴,且两直线的交点的横坐标为1.(2022•泸州中考)如图,在平面直角坐标系xOy 中,矩形OABC 的顶点B 的坐标为(10,4),四边形ABEF是菱形,且tan ∠ABE =43.若直线l 把矩形OABC 和菱形ABEF 组成的图形的面积分成相等的两部分,则直线l 的解析式为( )A .y =3xB .y =−34x +152C .y =﹣2x +11D .y =﹣2x +12【解析】选D .连接OB ,AC ,它们交于点M ,连接AE ,BF ,它们交于点N ,则直线MN 为符合条件的直线l ,如图,∵四边形OABC 是矩形,∴OM =BM .∵B 的坐标为(10,4),∴M (5,2),AB =10,BC =4.∵四边形ABEF 为菱形,BE =AB =10.过点E 作EG ⊥AB 于点G ,在Rt △BEG 中,∵tan ∠ABE =43,∴EG BG =43, 设EG =4k ,则BG =3k ,∴BE =√EG 2+BG 2=5k ,∴5k =10,∴k =2,∴EG =8,BG =6,∴AG =4.∴E (4,12).∵B 的坐标为(10,4),AB ∥x 轴,∴A (0,4).∵点N 为AE 的中点,∴N (2,8).设直线l 的解析式为y =ax +b ,∴{5a +b =22a +b =8,解得:{a =−2b =12,A .青海湖水深16.4m 处的压强为188.6cmHgB .青海湖水面大气压强为76.0cmHgC .函数解析式P =kh +P 0中自变量h 的取值范围是h ≥0D .P 与h 的函数解析式为P =9.8×105h +76【解析】选A .由图象可知,直线P =kh +P 0过点(0,68)和(32.8,309.2),∴{P 0=6832.8k +P 0=309.2,解得{k ≈7.4P 0=68. ∴直线解析式为:P =7.4h +68.故D 错误,不符合题意;∴青海湖水面大气压强为68.0cmHg ,故B 错误,不符合题意;根据实际意义,0≤h ≤32.8,故C 错误,不符合题意;将h =16.4代入解析式,∴P =7.4×16.4+68=188.6,即青海湖水深16.4m 处的压强为188.6cmHg ,故A 正确,符合题意.(2022•抚顺中考)如图,在同一平面直角坐标系中,一次函数y =k 1x +b 1与y =k 2x +b 2的图象分别为直线l 1和直线l 2,下列结论正确的是( )A .k 1•k 2<0B .k 1+k 2<0C .b 1﹣b 2<0D .b 1•b 2<0【解析】选D .∵一次函数y =k 1x +b 1的图象过一、二、三象限,∴k 1>0,b 1>0,∵一次函数y =k 2x +b 2的图象过一、三、四象限,∴k 2>0,b 2<0,∴A 、k 1•k 2>0,故A 不符合题意;B 、k 1+k 2>0,故B 不符合题意;C 、b 1﹣b 2>0,故C 不符合题意;D 、b 1•b 2<0,故D 符合题意.(2022•德阳中考)如图,已知点A(﹣2,3),B(2,1),直线y=kx+k经过点P(﹣1,0).试探究:直线与线段AB有交点时k的变化情况,猜想k的取值范围是k≤﹣3或k≥13.【解析】当k<0时,∵直线y=kx+k经过点P(﹣1,0),A(﹣2,3),∴﹣2k+k=3,∴k=﹣3;∴k≤﹣3;当k>0时,∵直线y=kx+k经过点P(﹣1,0),B(2,1),∴2k+k=1,∴k=13.∴k≥13;综上,直线与线段AB有交点时,猜想k的取值范围是:k≤﹣3或k≥1 3.答案:k≤﹣3或k≥1 3.(2022•丽水中考)因疫情防控需要,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km /h .两车离甲地的路程s (km )与时间t (h )的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程s (km )与时间t (h )的函数表达式;(3)问轿车比货车早多少时间到达乙地?【解析】(1)∵货车的速度是60km /h ,∴a =9060=1.5(h );(2)由图象可得点(1.5,0),(3,150),设直线的表达式为s =kt +b ,把(1.5,0),(3,150)代入得:{1.5k +b =03k +b =150, 解得{k =100b =−150, ∴s =100t ﹣150;(3)由图象可得货车走完全程需要33060+0.5=6(h ),∴货车到达乙地需6h ,∵s =100t ﹣150,s =330,解得t =4.8,∴两车相差时间为6﹣4.8=1.2(h ),∴货车还需要1.2h 才能到达.答:轿车比货车早1.2h 到达乙地.(2022•成都中考)随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18km /h ,乙骑行的路程s (km )与骑行的时间t (h )之间的关系如图所示.(1)直接写出当0≤t ≤0.2和t >0.2时,s 与t 之间的函数表达式;(2)何时乙骑行在甲的前面?【解析】(1)当0≤t ≤0.2时,设s =at ,把(0.2,3)代入解析式得,0.2a =3,解得:a =15,∴s =15t ;当t >0.2时,设s =kt +b ,把(0.2,3)和(0.5,9)代入解析式,得{0.5k +b =90.2k +b =3,解得{k =20b =−1, ∴s =20t ﹣1,事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时. (1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB ,AB 分别表示大巴、轿车离开学校的路程s (千米)与大巴行驶的时间t (小时)的函数关系的图象.试求点B 的坐标和AB 所在直线的解析式;(3)假设大巴出发a 小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a 的值.【解析】(1)设轿车出发后x 小时追上大巴, 依题意得:40(x +1)=60x ,解得x =2. ∴轿车出发后2小时追上大巴,此时,两车与学校相距60×2=120(千米),答,轿车出发后2小时追上大巴,此时,两车与学校相距120千米; (2)∵轿车出发后2小时追上大巴,此时,两车与学校相距120千米, ∴大巴行驶了13小时, ∴B (3,120), 由图象得A (1,0),设AB 所在直线的解析式为y =kt +b , ∴{k +b =03k +b =120,解得{k =60b ==60, ∴AB 所在直线的解析式为y =60t ﹣60;(3)依题意得:40(a +1.5)=60×1.5,解得a =34. ∴a 的值为34【解析】(1)设直线AB 的解析式为y =kx +b ,把A (﹣8,19),B (6,5)代入,得{−8k +b =196k +b =5,解得{k =−1b =11,∴直线AB 的解析式为y =﹣x +11;(2)①由题意直线y =mx +n 经过点(2,0),∴2m +n =0;②∵线段AB 上的整数点有15个:(﹣8,19),(﹣7,18),(﹣6,17),(﹣5,16),(﹣4,15),(﹣3,14),(﹣2,13),(﹣1,12),(0,11),(1,10),(2,9),(3,8),(4,7),(5,6),(6,5). 当射线CD 经过(2,0),(﹣7,18)时,y =﹣2x +4,此时m =﹣2,符合题意, 当射线CD 经过(2,0),(﹣1,12)时,y =﹣4x +8,此时m =﹣4,符合题意, 当射线CD 经过(2,0),(1,10)时,y =﹣10x +20,此时m =﹣10,符合题意, 当射线CD 经过(2,0),(3,8)时,y =8x ﹣16,此时m =8,符合题意, 当射线CD 经过(2,0),(5,6)时,y =2x ﹣4,此时m =2,符合题意, 其他点都不符合题意.综上所述,符合题意的m 的值有5个.(2022•衡阳中考)冰墩墩(BingDwenDwen )、雪容融(ShueyRhonRhon )分别是2022年北京冬奥会、冬残奥会的吉祥物.冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国.小雅在某网店选中两种玩偶.决定从该网店进货并销售.第一次小雅用1400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元. (1)求两种玩偶的进货价分别是多少?(2)第二次小雅进货时,网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍.小雅计划购进两种玩偶共40个,应如何设计进货方案才能获得最大利润,最大利润是多少元?【解析】(1)设冰墩墩的进价为x 元/个,雪容融的进阶为y 元/个, 由题意可得:{15x +5y =1400x +y =136,解得{x =72y =64,答:冰墩墩的进价为72元/个,雪容融的进阶为64元/个; (2)设冰墩墩购进a 个,则雪容融购进(40﹣a )个,利润为w 元, 由题意可得:w =28a +20(40﹣a )=8a +800, ∴w 随a 的增大而增大,∵网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍, ∴a ≤1.5(40﹣a ), 解得a ≤24,∴当a =24时,w 取得最大值,此时w =992,40﹣a =16,答:冰墩墩购进24个,雪容融购进16个时才能获得最大利润,最大利润是992元(2022·新疆生产建设兵团中考)A ,B 两地相距30km ,甲、乙两人分别开车从A 地出发前往B 地,其中甲先出发1h .如图是甲,乙行驶路程y 甲(km ),y 乙(km )随行驶时间x (h )变化的图象,请结合图象信息,解答下列问题:(1)填空:甲的速度为 60 km /h ;(2)分别求出y 甲,y 乙与x 之间的函数解析式; (3)求出点C 的坐标,并写出点C 的实际意义.【解析】(1)甲的速度为:300÷5=60(km /h ), 答案:60;(2)由(1)可知,出y 甲与x 之间的函数解析式为y 甲=60x (0<x ≤5);设y 乙与x 之间的函数解析式为y 乙=kx +b ,根据题意得:{k +b =04k +b =300,解得{k =100b =−100,∴y 乙=100x ﹣100(1<x ≤3); (3)根据题意,得60x =100x ﹣100, 解得x =2.5, 60×2.5=150(km ),∴点C 的坐标为(2.5,1500),故点C 的实际意义是甲车出发2.5小时后被乙车追上,此时两车行驶了150km(3)求线段MN 的函数解析式;(4)在乙运动的过程中,何时两人相距80米?(直接写出答案即可)【解析】(1)由图象知:当x =0时,y =1200, ∴A 、B 两地之间的距离是1200米;由图象知:乙经过20分钟到达A ,∴乙的速度为120020=60(米/分).答案:1200;60;(2)由图象知:当x =607时,y =0,∴甲乙二人的速度和为:1200÷607=140(米/分), 设甲的速度为x 米/分,则乙的速度为(140﹣x )米/分, ∴140﹣x ==60,∴x =80.∴甲的速度为80(米/分), ∵点M 的实际意义是经过c 分钟甲到达B 地,∴c =1200÷80=15(分钟),∴a =60×15=900(米).∵点M 的实际意义是经过20分钟乙到达A 地,∴b =900﹣(80﹣60)×5=800(米); 答案:900;800;15;(3)由题意得:M (15,900),N (20,800), 设直线MN 的解析式为y =kx +n ,∴{15k +n =90020k +n =800,解得:{k =−20n =1200,∴直线MN 的解析式为y =﹣20x +1200; (4)在乙运动的过程中,二人出发后第8分钟和第647分钟两人相距80米.理由:①相遇前两人相距80米时,二人的所走路程和为1200﹣80=1120(米), ∴1120÷140=8(分钟);②相遇后两人相距80米时,二人的所走路程和为1200+80=1280(米), ∴1280÷140=647(分钟). 综上,在乙运动的过程中,二人出发后第8分钟和第647分钟两人相距80米.(2)当15≤x ≤45时,请直接写出y 关于x 的函数表达式; (3)当小明离家2km 时,求他离开家所用的时间.【解析】(1)小明家离体育场的距离为2.5km ,小明跑步的平均速度为2.515=16km /min ;答案:2.5,16;(2)如图,B (30,2.5),C (45,1.5),设BC 的解析式为:y =kx +b ,则{30k +b =2.545k +b =1.5,解得:{k =−115b =4.5, ∴BC 的解析式为:y =−115x +4.5, ∴当15≤x ≤45时,y 关于x 的函数表达式为:y ={2.5(15≤x ≤30)−115x +4.5(30<x ≤45); (3)当y =2时,−115x +4.5=2,∴x =752,2÷16=12, ∴当小明离家2km 时,他离开家所用的时间为12min 或752min .50(2022•龙东中考)为抗击疫情,支援B 市,A 市某蔬菜公司紧急调运两车蔬菜运往B 市.甲、乙两辆货车从A市出发前往B 市,乙车行驶途中发生故障原地维修,此时甲车刚好到达B 市.甲车卸载蔬菜后立即原路原速返回接应乙车,把乙车的蔬菜装上甲车后立即原路原速又运往B 市.乙车维修完毕后立即返回A 市.两车离A 市的距离y (km )与乙车所用时间x (h )之间的函数图象如图所示. (1)甲车速度是 100 km /h ,乙车出发时速度是 60 km /h ;(2)求乙车返回过程中,乙车离A 市的距离y (km )与乙车所用时间x (h )的函数解析式(不要求写出自变量的取值范围);(3)乙车出发多少小时,两车之间的距离是120km ?请直接写出答案.【解析】(1)由图象可得,甲车的速度为:500÷5=100(km /h ), 乙车出发时速度是:300÷5=60(km /h ), 答案:100,60;(2)乙车返回过程中,设乙车离A 市的距离y (km )与乙车所用时间x (h )的函数解析式是y =kx +b , ∵点(9,300),(12,0)在该函数图象上, ∴{9k +b =30012k +b =0,解得{k =−100b =1200, 即乙车返回过程中,乙车离A 市的距离y (km )与乙车所用时间x (h )的函数解析式是y =﹣100x +1200; (3)设乙车出发m 小时,两车之间的距离是120km ,(2022•包头中考)由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x 天(x 取整数)时,日销售量y (单位:千克)与x 之间的函数关系式为y ={12x ,0≤x ≤10−20x +320,10<x ≤16,草莓价格m (单位:元/千克)与x 之间的函数关系如图所示.(1)求第14天小颖家草莓的日销售量;(2)求当4≤x ≤12时,草莓价格m 与x 之间的函数关系式;(3)试比较第8天与第10天的销售金额哪天多?【解析】(1)∵当10≤x ≤16时,y =﹣20x +320,∴当x =14时,y =﹣20×14+320=40(千克).答:第14天小颖家草莓的日销售量是40千克.(2)当4≤x ≤12时,设草莓价格m 与x 之间的函数关系式为m =kx +b ,∵点(4,24),(12,16)在m =kx +b 的图象上,∴{4k +b =2412k +b =16,解得:{k =−1b =28,∴函数解析式为m =﹣x +28. (3)当0≤x ≤10时,y =12x ,∴当x =8时,y =12×8=96,当x =10时,y =12×10=120;当4≤x ≤12时,m =﹣x +28,∴当x =8时,m =﹣8+28=20,当x =10时,m =﹣10+28=18∴第8天的销售金额为:96×20=1920(元),第10天的销售金额为:120×18=2160(元),∵2160>1920,∴第10天的销售金额多.(2022·牡丹江中考)2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了 1.9小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?【解析】(1)1.9;(2)设直线EF的解析式为y乙=kx+b,∵点E(1.25,0)、点F(7.25,480)均在直线EF上,(2022•吉林中考)李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段时间内,水温y (℃)与加热时间x (s )之间近似满足一次函数关系,根据记录的数据,画函数图象如下:(1)加热前水温是 20 ℃.(2)求乙壶中水温y 关于加热时间x 的函数解析式.(3)当甲壶中水温刚达到80℃时,乙壶中水温是 65 ℃.【解析】(1)由图象得x =0时y =20,∴加热前水温是20℃,答案:20.(2)设乙壶中水温y 关于加热时间x 的函数解析式为y =kx +b ,将(0,20),(160,80)代入y =kx +b 得{20=b 80=160k +b, 解得{k =38b =20, ∴y =38x +20.(3)甲水壶的加热速度为(60﹣20)÷80=12℃/s ,∴甲水壶中温度为80℃时,加热时间为(80﹣20)÷12=120s , 将x =120代入y =38x +20得y =65,答案:65。

中考数学真题分类汇编及解析(十八) 线段、角

中考数学真题分类汇编及解析(十八) 线段、角

(2022•威海中考)图1是光的反射规律示意图.其中,PO是入射光线,OQ是反射光线,法线KO⊥MN,∠POK是入射角,∠KOQ是反射角,∠KOQ=∠POK.图2中,光线自点P射入,经镜面EF反射后经过的点是()
A.A点B.B点C.C点D.D点
【解析】选B.根据直线的性质补全图2并作出法线OK,如下图所示:
根据图形可以看出OB是反射光线.
(2022•河北中考)平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是()
A.1 B.2 C.7 D.8
【解析】选C.因为平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形,
所以1+d+1+1>5且1+5+1+1>d,所以d的取值范围为:2<d<8,所以则d可能是7.
(2022•十堰中考)如图,工人砌墙时,先在两个墙脚的位置分别插一根木桩,再拉一条直的参照线,就能使砌的砖在一条直线上.这样做应用的数学知识是()
A.两点之间,线段最短 B.两点确定一条直线 C.垂线段最短 D.三角形两边之和大于第三边
【解析】选B.这样做应用的数学知识是两点确定一条直线.
(2022•桂林中考)如图,点C是线段AB的中点,若AC=2cm,则AB=4cm.
【解析】根据中点的定义可得:AB=2AC=2×2=4cm,
答案:4.。

中考数学真题分类汇编及解析(二十一)角平分线、线段垂直平分线、中位线

中考数学真题分类汇编及解析(二十一)角平分线、线段垂直平分线、中位线

(2022•广东中考)如图,在△ABC 中,BC =4,点D ,E 分别为AB ,AC 的中点,则DE =( )A .14B .12C .1D .2【解析】选D .因为点D ,E 分别为AB ,AC 的中点,BC =4,所以DE 是△ABC 的中位线,所以DE =12BC =12×4=2.(2022•南充中考)如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,DE ∥AB ,交AC 于点E ,DF ⊥AB 于点F ,DE =5,DF =3,则下列结论错误的是( )A .BF =1B .DC =3 C .AE =5D .AC =9【解析】选A .因为AD 平分∠BAC ,∠C =90°,DF ⊥AB , 所以∠1=∠2,DC =FD ,∠C =∠DFB =90°,因为DE ∥AB ,所以∠2=∠3,所以∠1=∠3,所以AE =DE , 因为DE =5,DF =3,所以AE =5,CD =3,故选项B 、C 正确; 所以CE =√DE 2−CD 2=4,所以AC =AE +EC =5+4=9,故选项D 正确; 因为DE ∥AB ,∠DFB =90°, 所以∠EDF =∠DFB =90°, 所以∠CDF +∠FDB =90°, 因为∠CDF +∠DEC =90°, 所以∠DEC =∠FDB , 因为∠C =∠DFB ,CD =FD , 所以△ECD ≌△DFB (AAS ), 所以CE =BF =4,故选项A 错误;(2022•德阳中考)如图,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的中点,则下列结论一定正确的是( )A .四边形EFGH 是矩形B .四边形EFGH 的内角和小于四边形ABCD 的内角和C .四边形EFGH 的周长等于四边形ABCD 的对角线长度之和 D .四边形EFGH 的面积等于四边形ABCD 的面积的14【解析】选C .A .如图,连接AC ,BD ,在四边形ABCD 中,因为点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的中点,所以EH ∥BD ,EH =12BD ,FG ∥BD ,FG =12BD ,所以EH ∥FG ,EH =FG ,所以四边形EFGH 是平行四边形,故A 选项错误;B .因为四边形EFGH 的内角和等于360°,四边形ABCD 的内角和等于360°,故B 选项错误;C .因为点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的中点,所以EH =12BD ,FG =12BD ,所以EH +FG =BD , 同理:EF +HG =AC ,所以四边形EFGH 的周长等于四边形ABCD 的对角线长度之和,故C 选项正确; D .四边形EFGH 的面积不等于四边形ABCD 的面积的14,故D 选项错误.A .12B .9C .6D .3√2【解析】选B .因为AB =AC ,AD 是△ABC 的角平分线,所以BD =CD =12BC =3,AD ⊥BC ,在Rt △EBD 中,∠EBC =45°, 所以ED =BD =3,所以S △EBC =12BC •ED =12×6×3=9(2022•河北中考)如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l ,则l 是△ABC 的( )A .中线B .中位线C .高线D .角平分线【解析】选D .由已知可得,∠1=∠2,则l 为△ABC 的角平分线.2101(2022•宜昌中考)如图,在△ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若AB =7,AC =12,BC =6,则△ABD 的周长为( )A .25B .22C .19D .18【解析】选C .由题意可得,MN 垂直平分BC ,所以DB =DC , 因为△ABD 的周长是AB +BD +AD ,所以AB +BD +AD =AB +DC +AD =AB +AC , 因为AB =7,AC =12,所以AB +AC =19,所以△ABD 的周长是19.A .△ABC 是等边三角形B .AB ⊥CDC .AH =BHD .∠ACD =45°【解析】选ABC .由作法得CD 垂直平分AB ,AC =BC =AB ,所以△ABC 为等边三角形,AB ⊥CD ,AH =BH ,所以A 、B 、C 选项符合题意; 所以∠ACD =12∠ACB =30°.所以D 选项不符合题意(2022•眉山中考)在△ABC 中,AB =4,BC =6,AC =8,点D ,E ,F 分别为边AB ,AC ,BC 的中点,则△DEF 的周长为( ) A .9B .12C .14D .16【解析】选A.如图,点E ,F 分别为各边的中点, 所以DE 、EF 、DF 是△ABC 的中位线,所以DE =12BC =3,EF =12AB =2,DF =12AC =4, 所以△DEF 的周长=3+2+4=9(2022•毕节中考)在△ABC 中,用尺规作图,分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N .作直线MN 交AC 于点D ,交BC 于点E ,连接AE .则下列结论不一定正确的是( )A .AB =AE B .AD =CDC .AE =CED .∠ADE =∠CDE 【解析】选A .由作图可知,MN 垂直平分线段AC , 所以AD =DC ,EA =EC ,∠ADE =∠CDE =90°, 故选项B ,C ,D 正确.②作直线PQ 交AB 于点D ;③以点D 为圆心,AD 长为半径画弧交PQ 于点M ,连接AM 、BM . 若AB =2√2,则AM 的长为( )A .4B .2C .√3D .√2【解析】选B .由作图可知,PQ 是AB 的垂直平分线,所以AM =BM , 因为以点D 为圆心,AD 长为半径画弧交PQ 于点M ,所以DA =DM =DB , 所以∠DAM =∠DMA ,∠DBM =∠DMB ,因为∠DAM +∠DMA +∠DBM +∠DMB =180°,所以2∠DMA +2∠DMB =180°, 所以∠DMA +∠DMB =90°,即∠AMB =90°,所以△AMB 是等腰直角三角形,所以AM =√22AB =√22×2√2=2.(2022•怀化中考)如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,若S △ADE =2,则S △ABC = 8 .【解析】因为D ,E 分别是AB ,AC 的中点, 所以DE :BC =1:2,DE ∥BC , 所以△ADE ∽△ABC , 所以S △ADE S △ABC =(DE BC)2=14,即2S △ABC=14,所以S △ABC =8. 答案:8(2022•株洲中考)如图所示,点O 在一块直角三角板ABC 上(其中∠ABC =30°),OM ⊥AB 于点M ,ON ⊥BC 于点N ,若OM =ON ,则∠ABO = 15 度.【解析】方法一:因为OM ⊥AB ,ON ⊥BC ,OM =ON , 所以点O 在∠ABC 的平分线上,(2022•扬州中考)“做数学”可以帮助我们积累数学活动经验.如图,已知三角形纸片ABC,第1次折叠使点B落在BC边上的点B′处,折痕AD交BC于点D;第2次折叠使点A落在点D处,折痕MN交AB′于点P.若BC=12,则MP+MN=6.【解析】如图2,由折叠得:AM=MD,MN⊥AD,AD⊥BC,所以GN∥BC,所以AG=BG,所以GN是△ABC的中位线,所以GN=12BC=12×12=6,因为PM=GM,所以MP+MN=GM+MN=GN=6.答案:61【解析】设MN 交BC 于D ,连接EC ,如图:由作图可知:MN 是线段BC 的垂直平分线, 所以BE =CE =4, 所以∠ECB =∠B =45°, 所以∠AEC =∠ECB +∠B =90°, 在Rt △ACE 中,AE =√AC 2−CE 2=√52−42=3, 所以AB =AE +BE =3+4=7, 答案:7.(2022•达州中考)如图,在Rt △ABC 中,∠C =90°,∠B =20°,分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧分别相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则∠CAD 的度数为 50° .【解析】因为∠C =90°,∠B =20°, 所以∠CAB =90°﹣∠B =90°﹣20°=70°, 由作图可知,MN 垂直平分线段AB , 所以DA =DB ,所以∠DAB =∠B =20°,所以∠CAD =∠CAB ﹣∠DAB =70°﹣20°=50°, 答案:50°【解析】因为CD =AD ,CE =EB ,所以DE 是△ABC 的中位线,所以AB =2DE , 因为DE =10m ,所以AB =20m , 答案:20.(2022•苏州中考)如图,在平行四边形ABCD 中,AB ⊥AC ,AB =3,AC =4,分别以A ,C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线,与BC 交于点E ,与AD 交于点F ,连接AE ,CF ,则四边形AECF 的周长为 10 .【解析】因为AB ⊥AC ,AB =3,AC =4, 所以BC =√AB 2+AC 2=5,由作图可知,MN 是线段AC 的垂直平分线, 所以EC =EA ,AF =CF ,所以∠EAC =∠ACE , 因为∠B +∠ACB =∠BAE +∠CAE =90°, 所以∠B =∠BAE ,所以AE =BE , 所以AE =CE =12BC =2.5, 因为四边形ABCD 是平行四边形,所以AD =BC =5,CD =AB =3,∠ACD =∠BAC =90°, 同理证得AF =CF =2.5,所以四边形AECF 的周长=EC +EA +AF +CF =10, 答案:10(2022•衡阳中考)如图,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径作圆弧,两弧相交于点M 和点N ,作直线MN 交CB 于点D ,连接AD .若AC =8,BC =15,则△ACD 的周长为 23 .【解析】根据作图过程可知:MN 是线段AB 的垂直平分线,(2022•台州中考)如图,在△ABC中,∠ACB=90°,D,E,F分别为AB,BC,CA的中点.若EF的长为10,则CD的长为10 .【解析】因为E,F分别为BC,CA的中点,所以EF是△ABC的中位线,所以EF=12AB,所以AB=2EF=20,在Rt△ABC中,∠ACB=90°,D为AB中点,AB=20,所以CD=12AB=10,答案:10(2022•福建中考)如图,在△ABC中,D,E分别是AB,AC的中点.若BC=12,则DE的长为6.【解析】因为D,E分别是AB,AC的中点,所以DE为△ABC的中位线,所以DE=12BC=12×12=6.答案:6.(2022•荆州中考)如图,在Rt△ABC中,∠ACB=90°,通过尺规作图得到的直线MN分别交AB,AC于D,E,连接CD.若CE=13AE=1,则CD=√6.【解析】如图,连接BE,因为CE=13AE=1,所以AE=3,AC=4,而根据作图可知MN为AB的垂直平分线,所以AE=BE=3,在Rt△ECB中,BC=√BE2−CE2=2√2,所以AB=√AC2+BC2=2√6,因为CD 为直角三角形ABC 斜边上的中线,所以CD =12AB =√6. 答案:√6.(2022•梧州中考)如图,在△ABC 中,∠ACB =90°,点D ,E 分别是AB ,AC 边上的中点,连接CD ,DE .如果AB =5m ,BC =3m ,那么CD +DE 的长是 4 m .【解析】因为点D ,E 分别是AB ,AC 边上的中点,所以DE 是△ABC 的中位线,所以DE =12BC , 因为BC =3m ,所以DE =1.5m ,因为∠ACB =90°,所以CD =12AB , 因为AB =5m ,所以CD =2.5m ,所以CD +DE =2.5+1.5=4(m ). 答案:4.(2022·牡丹江中考)在Rt △ABC 中,∠C =90°,AD 平分∠CAB ,AC =6,BC =8,CD = 3 .【解析】如图,过点D 作DE ⊥AB 于E , 因为∠C =90°,AC =6,BC =8, 所以AB =√AC 2+BC 2=√62+82=10, 因为AD 平分∠CAB , 所以CD =DE ,所以S △ABC =12AC •CD +12AB •DE =12AC •BC , 即12×6•CD +12×10•CD =12×6×8,解得CD =3.答案:3(2022•吉林中考)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,点E 是边AD 的中点,点F 在对角线AC 上,且AF =14AC ,连接EF .若AC =10,则EF = 52 .【解析】在矩形ABCD 中,AO =OC =12AC ,AC =BD =10,因为AF =14AC ,所以AF =12AO ,所以点F 为AO 中点,所以EF 为△AOD 的中位线,所以EF =12OD =14BD =52.答案:52(2022•广东中考)如图,已知∠AOC =∠BOC ,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E .求证:△OPD ≌△OPE .【证明】因为∠AOC =∠BOC ,PD ⊥OA ,PE ⊥OB ,所以PD =PE ,在Rt △OPD 和Rt △OPE 中,{OP =OP PD =PE,所以Rt △OPD ≌Rt △OPE (HL ). (2022•赤峰中考)如图,已知Rt △ABC 中,∠ACB =90°,AB =8,BC =5.(1)作BC 的垂直平分线,分别交AB 、BC 于点D 、H ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD ,求△BCD 的周长.【解析】(1)如图,DH 为所作;。

中考真题大题数学答案及解析

中考真题大题数学答案及解析

中考真题大题数学答案及解析近年来,中考数学大题作为考试的重点和难点,备受考生和家长的关注。

在这篇文章中,我们将为大家介绍一些中考数学大题的答案和解析,帮助大家更好地备考和应对考试。

一、解一元二次方程在中考数学中,解一元二次方程是一个很重要的知识点。

下面我们来看一个例题。

例题:已知一元二次方程x^2-5x-14=0,请计算它的解。

解析:这是一个一元二次方程,我们可以应用求根公式来解题。

首先,求出方程的判别式:D=b^2-4ac=5^2-4×1×(-14)=25+56=81。

判别式大于0,说明方程有两个不相等的实数根。

然后,根据求根公式:x=[-b±√(b^2-4ac)]/ 2a,我们可以计算出方程的两个解。

x1=[-(-5)+√(81)]/ 2×1=(5+9)/ 2=7x2=[-(-5)-√(81)]/ 2×1=(5-9)/ 2=-2所以,方程x^2-5x-14=0的解是x1=7,x2=-2。

二、应用勾股定理解题另一个常见的中考数学大题类型是应用勾股定理解题。

下面我们来看一个例题。

例题:已知直角三角形ABC,且∠B=90°,AB=7cm,BC=24cm,请计算AC的长度。

解析:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。

即AC^2=AB^2+BC^2。

代入已知数据,得到AC^2=7^2+24^2=49+576=625。

开方得AC=25。

所以,直角三角形ABC的斜边AC的长度是25cm。

三、函数与图像的关系函数与图像的关系也是中考数学大题中常见的考点。

下面我们来看一个例题。

例题:给定函数y=2x^2+5x-3,请绘制其图像,并求出函数在x=-1处的值。

解析:首先,我们要梳理出函数的相关信息。

根据题目信息,我们知道这是一个二次函数。

对于二次函数,我们可以通过求顶点的方法来绘制函数的图像。

函数的顶点公式为x0=-b/2a,代入函数的系数,得到x0=-5/(2×2)=-5/4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学题分类解析以下是查字典数学网为您推荐的2019年中考数学题分类解析,希望本篇文章对您学习有所帮助。

2019年中考数学题分类解析【一】选择题1. (2019广东深圳3分)如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,BM0=120o,那么⊙C的半径长为【】A.6B.5C.3 D。

【考点】坐标与图形性质,圆内接四边形的性质,圆周角定理,直角三角形两锐角的关系,含30度角的直角三角形的性质。

【分析】∵四边形ABMO是圆内接四边形,BMO=120,BAO=60。

∵AB是⊙O的直径,AOB=90,ABO=90BAO=90-60=30,∵点A的坐标为(0,3),OA=3。

AB=2OA=6,⊙C的半径长= =3。

应选C。

2. (2019广东湛江4分)一个扇形的圆心角为60,它所对的弧长为2cm,那么这个扇形的半径为【】A.6cmB.12cmC.2 cmD. cm【考点】扇形的弧长公式。

【分析】因为扇形的圆心角为60,它所对的弧长为2,所以根据弧长公式,得,解得。

应选A。

3. (2019广东珠海3分)如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为【】A. 30B. 45 C .60 D.90【考点】弧长的计算。

【分析】根据弧长公式,即可求解设圆心角是n度,根据题意得,解得:n=60。

应选C。

【二】填空题1.(2019广东省4分)如图,A、B、C是⊙O上的三个点,ABC=25,那么AOC的度数是▲.【考点】圆周角定理。

【分析】∵圆心角AOC与圆周角ABC都对弧,根据同弧所对圆周角是圆心角一半的性质,得AOC=2ABC,又∵ABC=25,AOC=50。

2. (2019广东汕头4分)如图,A、B、C是⊙O上的三个点,ABC=25,那么AOC的度数是▲.【考点】圆周角定理。

【分析】∵圆心角AOC与圆周角ABC都对弧,根据同弧所对圆周角是圆心角一半的性质,得AOC=2ABC,又∵ABC=25,AOC=50。

3. (2019广东汕头4分)如图,在ABCD中,AD=2,AB=4,A=30,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,那么阴影部分的面积是▲(结果保留).【考点】平行四边形的性质,扇形面积的计算【分析】过D点作DFAB于点F。

∵AD=2,AB=4,A=30,DF=ADsin30=1,EB=AB﹣AE=2。

阴影部分的面积=平行四边形ABCD的面积-扇形ADE面积-三角形CB E的面积4. (2019广东湛江4分)如图,在半径为13的⊙O中,OC垂直弦AB 于点B,交⊙O于点C,AB=24,那么CD的长是▲.【考点】垂径定理,勾股定理。

【分析】连接OA,∵OCAB,AB=24,AD= AB=12,在Rt△AOD中,∵OA=13,AD=12,CD=OC﹣OD=13﹣5=8。

5. (2019广东肇庆3分)扇形的半径是9 cm ,弧长是3cm,那么此扇形的圆心角为▲度.【考点】弧长的计算。

【分析】由,直接利用弧长公式列式求出n的值即可:由解得:n=60。

6. (2019广东珠海4分)如图,AB是⊙O的直径,弦CDAB,垂足为E,如果AB=26,CD=24,那么sinOCE= ▲.【考点】垂径定理,勾股定理,锐角三角函数的定义。

【分析】如图,设AB与CD相交于点E,那么根据直径AB=26,得出半径OC=13;由CD=24,CDAB,根据垂径定理得出CE=12;在Rt△OCE中,利用勾股定理求出OE=5;再根据正弦函数的定义,求出sinOCE的度数:【三】解答题1. (2019广东佛山8分)如图,直尺、三角尺都和圆O相切,AB=8cm .求圆O的直径.∵AC、AB都是⊙O的切线,切点分别是E、B,OBA=90,OAE=OAB= BAC。

∵CAD=60,BAC=120。

OAB= 120=60。

BOA=30。

OA=2AB=16。

由勾股定理得:,即⊙O的半径是cm。

⊙O的直径是cm。

【考点】切线的性质,含30度角的直角三角形的性质,勾股定理,切线长定理。

【分析】连接OE、OA、OB,根据切线长定理和切线性质求出OBA= 90,OAE=OAB= BAC,求出BAC,求出OAB和BOA,求出OA,根据勾股定理求出OB即可。

2. (2019广东佛山11分)(1)按语句作图并回答:作线段AC(AC=4),以A为圆心a为半径作圆,再以C为圆心b为半径作圆(a4,b4,圆A与圆C 交于B、D两点),连接AB、BC、CD、DA.假设能作出满足要求的四边形ABCD,那么a、b应满足什么条件?(2)假设a=2,b=3,求四边形ABCD的面积.能作出满足要求的四边形ABCD,那么a、b应满足的条件是a+b4。

(2)连接BD,交AC于E,∵⊙A与⊙C交于B、D,ACDB,BE=DE。

设CE=x,那么AE=4-x,∵BC= b=3,AB= a=2,由勾股定理得:解得:。

四边形ABCD的面积是。

答:四边形ABCD的面积是。

【考点】作图(复杂作图),相交两圆的性质,勾股定理。

(2)连接BD,根据相交两圆的性质得出DBAC,BE=DE,设CE= x,那么AE=4-x,根据勾股定理得出关于x的方程,求出x,根据三角形的面积公式求出即可。

3. (2019广东广州12分)如图,⊙P的圆心为P(﹣3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.(1)在图中作出⊙P关于y轴对称的⊙P.根据作图直接写出⊙P与直线M N的位置关系.(2)假设点N在(1)中的⊙P上,求PN的长.⊙P与直线MN相交。

(2)设直线PP与MN相交于点A,那么由⊙P的圆心为P(﹣3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在⊙P上,得PN=3,AP=2,PA=8。

在Rt△APN中,在Rt△APN中,。

【考点】网格问题,作图(轴对称变换),直线与圆的位置关系,勾股定理。

【分析】(1)根据关于y轴对称的点的横坐标互为相反数,纵坐标相等找出点P的位置,然后以3为半径画圆即可。

再根据直线与圆的位置关系解答。

(2)设直线PP与MN相交于点A,在Rt△APN中,利用勾股定理求出AN的长度,在Rt△APN中,利用勾股定理列式计算即可求出PN的长度。

4. (2019广东梅州8分)如图,AC是⊙O的直径,弦BD交AC于点E.(1)求证:△ADE∽△BCE;(2)如果AD2=AEAC,求证:CD=CB.又∵AED =BEC,△ADE∽△BCE。

(2)∵AD2=AEAC,。

又∵A,△ADE∽△ACD。

AED=ADC。

又∵AC是⊙O的直径,ADC=90。

AED=90。

直径ACBD,CD=CB。

【考点】圆周角定理,对顶角的性质,相似三角形的判定和性质,线段垂直平分线上点的性质。

【分析】(1)由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可得B,又由对顶角相等,可证得:△ADE∽△BCE。

(2)由AD2=AEAC,可得,又由A是公共角,可证得△ADE∽△ACD,又由AC是⊙O的直径,可求得ACBD,由线段垂直平分线上的点到线段两端距离相等的性质可证得CD=CB。

5. (2019广东湛江10分)如图,点E在直角△ABC的斜边AB上,以A E为直径的⊙O与直角边BC相切于点D.(1)求证:AD平分(2)假设BE=2,BD=4,求⊙O的半径.∵BC是⊙O的切线,ODBC。

又∵ACBC,OD∥AC。

3。

∵OA=OD,3。

2。

AD平分BAC。

(2)解:∵BC与圆相切于点D,BD2=BEBA。

∵BE=2,BD=4,BA=8。

AE=AB﹣BE=6。

⊙O的半径为3。

【考点】切线的性质,平行的性质,切割线定理。

【分析】(1)先连接OD,杂而ODBC和ACBC,再由其平行从而得证;(2)利用切割线定理可先求出AB,进而求出圆的直径,半径那么可求出。

【没有学习切割线定理的可连接DE,证△ABD∽△DBE,得AB:BD =BD:BE求得AB=8,】6. (2019广东肇庆10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,连结BE、AD交于点P. 求证:(1)D是BC的中点;(2)△BEC ∽△ADC;(3)AB CE=2DPAD.∵AB=AC,D是BC的中点。

(2)∵AB是⊙O的直径,AEB=ADB=9 0,即CEB=CDA=90,∵C是公共角,△BEC∽△ADC。

(3)∵△BEC∽△ADC,CBE=CAD。

∵AB=AC,AD=CD,BAD=CAD。

BAD=CBE。

∵ADB=BEC=90,△ABD∽△BCE。

∵BC=2BD,,即。

∵BDP=BEC=90,PBD=CBE,△BPD∽△BCE。

,即ABCE=2DPAD。

【考点】圆周角定理,等腰三角形的性质,相似三角形的判定和性质。

【分析】(1)由AB是⊙O的直径,可得ADBC,又由AB=AC,由三线合一,即可证得D是BC的中点。

(2)由AB是⊙O的直径,AEB=ADB=90,又由C是公共角,即可证得△BEC∽△ADC。

(3)易证得△ABD∽△BCE与△BPD∽△BCE,根据相似三角形的对应边成比例与BC=2BD,即可证得ABCE=2DPAD。

7. (2019广东珠海9分) ,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上.(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论;(3)当P、C都在AB上方时(如图3),过C点作CD直线AP于D,且C D是⊙O的切线,证明:AB=4PD.(2)(1)中的结论PO∥BC成立。

理由为:由折叠可知:△APO≌△CPO,APO=CPO。

又∵OA=OP,APO。

CPO。

又∵A与PCB都为所对的圆周角,PCB。

CPO=PCB。

PO∥BC。

(3)证明:∵CD为圆O的切线,OCCD。

又∵ADCD,OC∥AD。

APO=COP。

由折叠可得:AOP=COP,APO=AOP。

又∵OA=OP,APO。

APO=AOP。

△APO为等边三角形。

AOP=60。

又∵OP∥BC,OBC=AOP=60。

又∵OC=OB,△BC为等边三角形。

COB=60。

POC=180﹣(AOP+COB)=60。

又∵OP=OC,△POC也为等边三角形。

PCO=60,PC=OP=OC。

又∵OCD=90,PCD=30。

在Rt△PCD中,PD= PC,语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。

如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。

现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。

相关文档
最新文档