七年级数学整式的乘法4
上海七年级数学秋季 第4讲:整式的乘法
七年级数学04整式的乘法内容分析:本节课能够需要同学理解整式乘法的法则,能够熟练地进行单项式,多项式之间的乘法计算.通过与有理数乘法的分配律进行类比,加深对这些法则的理解.重点是熟练掌握单项式、多项式之间的乘法法则以及推导,并能够灵活应用.难点是分清单项式与单项式相乘中,幂的运算法则,单项式与多项式相乘时结果的符号的确定。
知识结构:模块一:单项式与单项式相乘知识精讲:1、单项式与单项式相乘的运算法则单项式与单项式相乘,把它们的系数、同底数幂分别相乘的积作为积的因式,其余字母连同它的指数不变,也作为积的因式.2、单项式与单项式相乘的运算步骤(1)系数相乘的结果作为积的因数;(2)相同字母运用同底数幂的乘法法则计算;(3)把只在一个单项式里含有的字母连同它的指数作为积的一个因式.3、单项式与单项式相乘,积还是单项式.例题解析:【例1】计算:232(3)x x ⋅-的结果是().A .56x -B .56x C .62x -D .62x 【答案】【解析】【例2】()22123_________6xyz xy z xyz ⎛⎫-⋅-⋅= ⎪⎝⎭.【答案】【解析】【例3】计算:(1)()()523x xy x y -⋅⋅;(2)()2231(2)64p q pq pq ⎛⎫⋅-⋅ ⎪⎝⎭;(3)()()()3323222a b b a ab ⎡⎤-⋅-⋅-⋅⎣⎦.【答案】【解析】【例4】先化简,后求值:23332223141644x y x y x y xy ⎛⎫⎛⎫⋅-+-⋅ ⎪ ⎪⎝⎭⎝⎭,其中0.4x =, 2.5y =-.【答案】【解析】【例5】若230x y <,化简:()75122xy x y -⋅--.【答案】【解析】模块二:单项式与多项式相乘知识精讲:1、单项式与多项式相乘法则用单项式乘以多项式的每一项,再把所得的积相乘.2、单项式与多项式相乘的注意事项:(1)单项式乘多项式的结果是多项式,积的项数与原多项式的项数相同(2)单项式分别与多项式的每一项相乘时,要注意积的各项符号的确定:同号相乘得正,异号相乘得负.例题解析:【例6】下列计算中,正确的是().A .()23236x x y x xy x-=-+B .232(283)4166m m m m m m-+-=-+-C .()2276176y x x x y xy y-+-=--+D .22(1)n n n a a a a -=-【答案】【解析】【例7】解方程:2(1)(25)12x x x x ---=,x 的值是().A .2B .1C .4D .0【答案】【解析】【例8】计算:(1)212516362x x x ⎛⎫⎛⎫--+ ⎪⎝⎭⎝⎭;(2)321123123a a a a ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦.【答案】【解析】【例9】要使()()2356ax x x ++-的展开式中不含4x 项,则_____a =.【答案】【解析】【例10】设P 是一个多项式,且22453232P x y x y x ÷=-+,求P .【答案】【解析】【例11】已知单项式M N 、满足222(3)6x M x x y N +=+,求M N 、.【答案】【解析】【例12】已知210a a --=,求代数式322016a a -+的值.【答案】【解析】【例13】已知()()2()56m x x n x m x x -⋅-++=+-对于任意数x 都成立,求(1)(1)m n n m -++的值.【答案】【解析】【例14】已知20a b +=,求332()48a ab a b b +++-的值.【答案】【解析】模块三:多项式与多项式相乘知识精讲:1、多项式与多项式相乘法则多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.例题解析:【例15】关于x 的二次三项式()()7x m x -+中的常数项为14,则m 的值是().A .2B .2-C .7D .7-【答案】【解析】【例16】()()2345_______n n n n x y x y -+=.【答案】【解析】【例17】多项式321x x -+与2357x x +-的乘积中含3x 的系数是().A .13-B .13C .11-D .11【答案】【解析】【例18】若()()275x x x Ax B +-=++,则_____A =,_____B =.【答案】【解析】【例19】已知()()2283x px x x q ++-+的展开式中不含23x x 、项,则_____p =,_____q =.【答案】【解析】【例20】先化简,再求值:232(1)(2)3(2)(3)x x x x x -+--++-,其中2016x =.【答案】【解析】【例21】解方程:()()()()()()221111432x x x x x x x x +++---+=+-.【答案】【解析】【例22】已知a b m 、、均是整数,且()2(12x a x b x mx ++=++),求m 的所有可能值.【答案】【解析】【例23】如果p q a 、、均为整数,p q >且()()28x p x q x ax ++=--,求所有可能的a 值及对应的p q 、的值.【答案】【解析】【例24】阅读解答题:有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:若123456789123456786x =⨯,123456788123456787y =⨯,试比较x y 、的大小.设123456788a =,那么()21(2)2x a a a a =+-=--,2(1)y a a a a =-=-.因为()()22220x y a a a a -=----=-<,所以x y <.看完后,你学到了这种方法吗?再亲自试一试吧!若20072007200720112007200820072010x =⨯-⨯,2007200820072012y =⨯-2007200920072011⨯,试比较x y 、的大小.【答案】【解析】随堂检测:【习题1】下列式子计算结果是256x x --的是().A .()()61x x -+B .()()23x x -+C .()()61x x +-D .()()23x x +-【答案】【解析】【习题2】()222212________2x y xy ⎛⎫-= ⎪⎝⎭.【答案】【解析】【习题3】一个三项式与一个二项式相乘,在合并同类项之前,积的项数是().A .五项B .六项C .三项D .四项【答案】【解析】【习题4】若212n n ++=,则()()56_______n n -+=.【答案】【解析】【习题5】若()()2242y my y y n ++-+的乘积中不含2y 和3y 项,则____m =,____n =.【答案】【解析】【习题6】计算:(1)()222114323ab ab ab b ⎛⎫-⋅-⋅ ⎪⎝⎭;(2)()()2221121(36)3x x x x x x x --++-+;(3)()()()()3223334x y x y x y x y ++--+.【答案】【解析】【习题7】先化简,再求值:()()33242212312a ab a b a b ab ⎛⎫-⋅--+- ⎪⎝⎭,其中1a =-,2b =.【答案】【解析】【习题8】试证明代数式()()()233263516x x x x x ++-+++的值与x 的值无关.【答案】【解析】【习题9】计算:32003200220032004-⨯⨯.【答案】【解析】【习题10】已知()()2246x ay x by x xy y ++=--,求代数式()32a b ab +-的值.【答案】【解析】【习题11】一个长方形的长增加4厘米,宽减少1厘米。
七年级下册数学整式的乘除
七年级下册数学整式的乘除
在七年级下册数学中,学习了一些关于整式的乘除运算。
下面是一些相关的知识点:
1. 整式的乘法:整式的乘法是指将两个或多个整式相乘的运算。
乘法的运算法则包括:同底数幂相乘、同底数幂相除、乘法分配律等。
例如,(2x + 3)(4x - 5) = 8x^2 - 10x + 12x - 15 = 8x^2 + 2x - 15。
2. 整式的除法:整式的除法是指将一个整式除以另一个整式
的运算。
在整式除法中,除数不能为零。
除法的运算法则包括:整式除整式、整式除单项式、整式除多项式等。
例如,(6x^2 + 3x) ÷ 3x = 2x + 1。
3. 整式的约分:整式的约分是指将一个整式的各项的公因式
提取出来并约去的运算。
约分可以简化整式的形式,使其更简洁。
例如,6x^2 + 9x可以约分为3x(2x + 3)。
这些是七年级下册数学中关于整式的乘除运算的一些基本知识点。
希望对你有帮助!。
七年级数学整式的乘除
06 练习题与自测
基础知识巩固练习
整式的乘法运算
通过练习不同类型的整式乘法,如单项式乘单项式、单项 式乘多项式、多项式乘多项式等,巩固乘法分配律和结合 律的应用。
整式的除法运算
通过练习整式的除法,如单项式除以单项式、多项式除以 单项式等,掌握除法的基本法则和运算技巧。
幂的运算性质
通过练习幂的乘方、积的乘方、同底数幂的乘法、除法以 及零指数幂和负整数指数幂的运算,加深对幂运算性质的 理解。
负数底数幂运算注意事项
负数底数定义
负数底数幂表示的是负数的乘方运算,如(-2)^3表示-2的三次方。
运算规则
负数底数幂的运算需遵循乘方运算的基本法则,同时需注意负数的 奇次幂和偶次幂的结果符号不同。
注意事项
在计算过程中,需特别注意底数为负数的情况,避免出现计算错误 或遗漏。
复杂根式化简技巧
根式化简基本方法
将多项式拆分为多个单项 式的和或差。
分别相除
将拆分后的每个单项式分 别除以给定的单项式。
合并同类项
将除法运算后的结果进行 合并同类项。
带余除法及应用
带余除法定理
对于多项式f(x)和g(x),存在唯一的多项式q(x)和r(x),使得f(x) = g(x)q(x) + r(x),其中r(x)的次数小于g(x)的次数。
。
求解方程或表达式
利用数学运算和推理,求解出 未知量的值。
检验答案
将求解出的未知量值代入题目 条件进行检验,确保答案正确
。
计算题步骤规范及优化
明确计算目标
确定需要计算的目标和所需使 用的数学公式或方法。
列出计算步骤
按照数学运算的优先级和顺序 ,逐步列出计算步骤。
七年级数学整式的乘法4
② 2a4b7c (3 a3bc 3 ac2 1)
5
2
③ 3xy2xy x( y 2) x
④ an1(an1 an1 an 3)
• 3、解答题:
(1)如果y Rx b,当x R 1时,求y的值。
(2)若 2x 2 y(x m y 3xy3 ) 2x5 y 2 6x3 y n , 求m.n (3)计算图中的阴影部分的面积:
阴影部分面积的求法: 1)直接用阴影部分矩形的实际长和宽来求,
即表达式为: y(mx a b)
2)把阴影部分面积转化为大矩形的面积减 去两块空的矩形的面积,即:
S阴 y mx ya yb
• 三、过手训练: 1、例1:计算:
(1)2ab(5ab 2 3a2b)
(2)( 2 ab 2 2ab) 1 ab;
(4)求证对于任意自然数 n代数式 n(n+7)- n(n-5)+6 的值都能被6整除。
• 四、课时小结: 1、单项式乘以多项式的乘法法则及注
意事项; 2、转化的数学思想。
• 五、课6 x( x 3 y);
(4) 2a 2 ( 1 ab b 2 ) 2
• 师生互动点评: (1)、多项式每一项要包括前面的符号; (2)、单项式必须与多项式中每一项相乘,结
果的项数与原多项式项
• 数一致; (3)、单项式系数为负时,改变多项式每项的
符号。
• 2、随堂练习: (1)计算:
2、问题:如图所示, 求 图中阴影部分的面积: 阴影部分是矩形,
其面积可表示为 (mx a b ) y 平方单位。
这里的 y(mx a b) 表示一个单项式与一
个多项式的乘积。
2、问题:如图所示, 求 图中阴影部分的面积: 阴影部分是矩形,
七年级数学整式的乘法4
极为寒酸但又露出一种隐约的愚笨……女科长O.雯娃姑婆长着摇晃的中灰色面具形态的脑袋和变异的浅黑色破钟般的脖子,最出奇的是一张敦实的暗橙色炸鸡样的脸,配着
一只浮动的锅底色胸花一样的鼻子。鼻子上面是一对怪;https:///policy/ 虚拟货币政策 区块链政策;异的浅灰色软盘一样的眼睛,两边是很大的亮红色山杏
就有一种痒痒的,非;https:///polu/ 虚拟货币科普 区块链科普;常温柔的感觉。整个神漏勺海滩让人感到一种挥之不去的、深浅莫测的虚幻和动人……壮
扭公主:“是这里吗?”月光妹妹:“应该就是这里了!估计那两个魔鬼和校妖很快就要到了……”壮扭公主:“嘿嘿!那还等什么?赶快做笼子吧,到时候我负责安排那两
• 一、复习引入: 1、复习单项式与单项式的乘法法则
计算:
(1)( x2 ) x3 (2 y)3 (2 xy )2 ( x)3 y
(2) 2(a2bc)2 1 a(bc)3 (abc)3 (abc)2 2
2、问题:如图所示, 求 图中阴影部分的面积: 阴影部分是矩形,
其面积可表示为 (mx a b ) y 平方单位。
果的项数与原多项式项
• 数一致; (3)、单项式系数为负时,改变多项式每项的
符号。
2、问题:如图所示, 求 图中阴影部分的面积: 阴影部分是矩形,
其面积可表示为 (mx a b ) y 平方单位。
这里的 y(mx a b) 表示一个单项式与一
个多项式的乘积。
留下一丝清凉晨风的余香……不一会儿,神漏勺海滩迷蒙处又游荡过来一阵蛙鸣,那是一种十分神奇的声音,能让你体验到一种飘飘欲仙的动感……飘入神漏勺海滩后,身上
S阴 y mx ya yb
• 三、过手训练: 1、例1:计算:
湘教版七年级数学下册第二章--整式的乘法知识点
湘教版七年级数学下册第二章--整式的乘法知识点(总5页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除七年级下册第二章整式的乘法1.同底数幂相乘,底数不变,指数相加。
a n a m=a m+n(m,n是正整数)例:2.幂的乘方,底数不变,指数相乘。
(a n)m=a mn(m,n是正整数)例:3.积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
(ab)n=a n b n(m,n是正整数)例:4.单项式与单项式相乘,把它们的系数、同底数幂分别相乘。
例:5.单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加。
a(m+n)=am+an6.多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加。
(a+b)(m+n)=am+an+bm+bn例:7.平方差公式,即两个数的和与这两个数的差的积等于这两个数的平方差。
(a+b)(a-b)=a2-b2 (公式右边:符号相同项的平方-符号相反项的平方) 例:8.完全平方公式口诀:头平方和尾平方,头尾两倍在中央,中间符号是一样。
(a+b)2=a2+2ab+b2 =a2+b2+2ab (a-b)2=a2-2ab+b2=a2+b2-2ab例:9.公式的灵活变形:(a+b)2+(a-b)2=(a2+2ab+b2)+(a2-2ab+b2)=2a2+2b2,(a+b)2-(a-b)2=(a2+2ab+b2)-(a2-2ab+b2)=2ab+2ab=4ab,a2+b2=(a+b)2-2ab,④a2+b2= (a-b)2+2ab,⑤(a+b)2=(a-b)2+4ab,⑥(a-b)2=(a+b)2-4ab01各个击破命题点1幂的运算【例1】若a m+n·a m+1=a6,且m+2n=4,求m,n的值.【思路点拨】已知m+2n=4,只要再找到一个关于m,n的二元一次方程即可组成方程组求解.可根据同底数幂的乘法法则,由等式左右两边a的指数相等即可得到.【解答】【方法归纳】对于乘方结果相等的两个数,如果底数相等,那么指数也相等.1.(徐州中考)下列运算正确的是( )A.3a2-2a2=1 B.(a2)3=a5C.a2·a4=a6D.(3a)2=6a22.若2x=3,4y=2,则2x+2y的值为________.命题点2多项式的乘法【例2】化简:2(x-1)(x+2)-3(3x-2)(2x-3).【解答】【方法归纳】在计算多项式乘法时,要注意不漏项,不重项.多项式与多项式相乘,结果仍是多项式,在合并同类项之前,积的项数等于两个多项式项数的积.3.(佛山中考)若(x+2)(x-1)=x2+mx+n,则m+n=( )A.1 B.-2C.-1 D.24.下列各式中,正确的是( )A.(-x+y)(-x-y)=-x2-y2B.(x2-1)(x-2y2)=x3-2x2y2-x+2y2C.(x+3)(x-7)=x2-4x-4D.(x-3y)(x+3y)=x2-6xy-9y2命题点3适用乘法公式运算的式子的特点【例3】下列多项式乘法中,可用平方差公式计算的是( )A.(2a+b)(2a-3b) B.(x+1)(1+x)C.(x-2y)(x+2y) D.(-x-y)(x+y)【方法归纳】能用平方差公式进行计算的两个多项式,其中一定有完全相同的项,剩下的是互为相反数的项,其结果是相同项的平方减去相反项的平方.5.下列多项式相乘,不能用平方差公式的是( )A.(-2y-x)(x+2y)B.(x-2y)(-x-2y)C.(x-2y)(2y+x)D.(2y-x)(-x-2y)6.下列各式:①(3a-b)2;②(-3a-b)2;③(-3a+b)2;④(3a+b)2,适用两数和的完全平方公式计算的有________(填序号).命题点4利用乘法公式计算【例4】先化简,再求值:(2a-b)(b+2a)-(a-2b)2+5b2.其中a=-1,b=2.【思路点拨】把式子的前两部分分别运用平方差公式和完全平方公式化简.【解答】【方法归纳】运用平方差公式时,要看清两个因式中的相同项和相反数项,其结果是相同项的平方减去相反数项的平方.7.下列等式成立的是( )A.(-a-b)2+(a-b)2=-4abB.(-a-b)2+(a-b)2=a2+b2C.(-a-b)(a-b)=(a-b)2D.(-a-b)(a-b)=b2-a28.若(a2+b2+1)(a2+b2-1)=15,那么a2+b2的值是________.9.计算:(1)(a+b)2-(a-b)2-4ab;(2)[(x+2)(x-2)]2;(3)(a+3)(a-3)(a2-9).命题点5乘法公式的几何背景【例5】(1)如图,请用两种不同的方式表示图中的大正方形的面积;(2)你根据上述结果可以得到一个什么公式?(3)利用这个公式计算:1022.【思路点拨】根据图形可以得到:图形的面积有两种计算方法,一种是根据正方形的面积等于边长的平方计算;另一种方法是图形中两个长方形面积与两个正方形的面积的和,即可得到公式;然后利用公式计算即可.【解答】【方法归纳】根据同一个图形的面积的两种表示,所得到的代数式的值相等,由此可得到对应的代数恒等式.10.将图1中阴影部分的小长方形变换到图2位置,根据两个图形的面积关系可以得到一个关于a、b的恒等式为( )图 1 图2A.(a-b)2=a2-2ab+b2B.(a+b)2=a2+2ab+b2C.(a+b)(a-b)=a2-b2D.a(a-b)=a2-ab11.(枣庄中考)图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是( )A.2ab B.(a+b)2C.(a-b)2D.a2-b202整合集训一、选择题(每小题3分,共24分)1.(钦州中考)计算(a3)2的结果是( )A.a9B.a6C.a5D.a2.(巴彦淖尔中考)下列运算正确的是( )A.x3·x2=x5B.(x3)2=x5C.(x+1)2=x2+1 D.(2x)2=2x23.如果a2n-1·a n+5=a16,那么n的值为( )A.3 B.4C .5D .64.下列各式中,与(1-a)(-a -1)相等的是( )A .a 2-1B .a 2-2a +1C .a 2-2a -1D .a 2+15.如果(x -2)(x +3)=x 2+px +q ,那么p 、q 的值为( )A .p =5,q =6B .p =-1,q =6C .p =1,q =-6D .p =5,q =-66.(-x +y)( )=x 2-y 2,其中括号内的是( )A .-x -yB .-x +yC .x -yD .x +y7.一个长方体的长、宽、高分别是3a -4、2a 、a ,它的体积等于( )A .3a 3-4a 2B .a 2C .6a 3-8aD .6a 3-8a 28.已知a =814,b =275,c =97,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a 二、填空题(每小题4分,共16分)9.若a x =2,a y =3,则a 2x +y=________.10.计算:3m 2·(-2mn 2)2=________.11.(福州中考)已知有理数a ,b 满足a +b =2,a -b =5,则(a +b)3·(a -b)3的值是________.12.多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,请写出所有可能的单项式为________. 三、解答题(共60分) 13.(12分)计算:(1)(-2a 2b)3+8(a 2)2·(-a)2·(-b)3; (2)a(a +4b)-(a +2b)(a -2b)-4ab ; (3)(2x -3y +1)(2x +3y -1).14.(8分)已知a +b =1,ab =-6,求下列各式的值.(1)a 2+b 2;(2)a 2-ab +b 2.15.(10分)先化简,再求值:(1)(常州中考)(x +1)2-x(2-x),其中x =2; (2)(南宁中考)(1+x)(1-x)+x(x +2)-1,其中x =12.16.(10分)四个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪ab c d ,定义⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,这个记号就叫做2阶行列式. 例如:⎪⎪⎪⎪⎪⎪1234=1×4-2×3=-2 . 若⎪⎪⎪⎪⎪⎪x +1 x +2x -2 x +1=10,求x 的值.17.(10分)如图,某校有一块长为(3a +b)米,宽为(2a +b)米的长方形地块,学校计划将阴影部分进行绿化,中间将修建一座雕像. (1)用含a 、b 的代数式表示绿化面积并化简; (2)求出当a =5米,b =2米时的绿化面积.18.(10分)小华和小明同时计算一道整式乘法题(2x +a)(3x +b).小华把第一个多项式中的“a”抄成了-a ,得到结果为6x 2+11x -10;小明把第二个多项式中的3x 抄成了x ,得到结果为2x 2-9x +10.(1)你知道式子中a ,b 的值各是多少吗?(2)请你计算出这道题的正确结果.参考答案各个击破【例1】 由已知得a 2m +n +1=a 6,所以2m +n +1=6,即2m +n =5.又因为m +2n =4,所以m =2,n =1.【例2】 原式=2(x 2+2x -x -2)-3(6x 2-9x -4x +6)=-16x 2+41x -22. 【例3】 C【例4】 原式=(4a 2-b 2)-(a 2-4ab +4b 2)+5b 2=3a 2+4ab.当a =-1,b =2时,原式=3×(-1)2+4×(-1)×2=-5.【例5】 (1)方法一:(a +b)2.方法二:a 2+2ab +b 2.(2)(a +b)2=a 2+2ab +b 2.(3)1022=(100+2)2=1002+2×100×2+22=10 404. 题组训练1.C 2.6 3.C 4.B 5.A 6.②④ 7.D 8.49.(1)原式=a 2+2ab +b 2-a 2+2ab -b 2-4ab =0.(2)原式=(x 2-4)2=x 4-8x 2+16.(3)原式=(a 2-9)(a 2-9)=a 4-18a 2+81. 10.C 11.C 整合集训1.B 2.A 3.B 4.A 5.C 6.A 7.D 8.A 9.12 10.12m 4n 411.1 000 12.±4x 或4x 413.(1)原式=-8a 6b 3-8a 6b 3=-16a 6b 3.(2)原式=a 2+4ab -(a 2-4b 2)-4ab =a 2+4ab -a 2+4b 2-4ab =4b 2.(3)原式=[2x -(3y -1)][2x +(3y -1)]=4x 2-(3y -1)2=4x 2-(9y 2-6y +1)=4x 2-9y 2+6y -1.14.(1)原式=(a +b)2-2ab =1+12=13.(2)原式=(a +b)2-3ab =12-3×(-6)=1+18=19.15.(1)原式=x 2+2x +1-2x +x 2=2x 2+1.当x =2时,原式=8+1=9. (2)原式=1-x 2+x 2+2x -1=2x.当x =12时,原式=2×12=1.16.(x +1)2-(x -2)(x +2)=2x +5=10,解得x =2.5. 17.(1)S 阴影=(3a +b)(2a +b)-(a +b)2=6a 2+3ab +2ab +b 2-a 2-2ab -b 2=5a 2+3ab(平方米).(2)当a =5,b =2时,5a 2+3ab =5×25+3×5×2=125+30=155(平方米).18.(1)根据题意,得(2x -a)(3x +b)=6x 2+(2b -3a)x -ab =6x 2+11x -10;(2x +a)(x +b)=2x 2+(a +2b)x +ab =2x 2-9x +10,所以⎩⎪⎨⎪⎧2b -3a =11,a +2b =-9. 解得⎩⎪⎨⎪⎧a =-5,b =-2.(2)正确的算式为:(2x -5)(3x -2)=6x 2-19x +10.。
1.4.1整式的乘法单项式乘以单项式课件北师大版七年级数学下册【04】
用了乘法结合律 交换律
解:原式= (2 1)(xx)( y2 y) 3
把系数相乘
把相同字母的幂分别相乘
2 x11 y21 2 x2 y3
3
3
6
7
单项式乘以单项式法则:
单项式与单项式相乘,把它们的 系数、相同字母分别相乘,对于只在 一个单项式里含有的字母,则连同它 的指数作为积的一个因式。
-12a3b3
(6) 1 (a 2 )2 • (4a3 )2 4
4a10
21
14
15
下面计算对不对?如果不对,应当怎样改正?
× (1)3a3 ·2a2=6a6 ( ) 6a5 √ (2)2x2 ·3x2=6x4 ( ) × (3)3x2·4x2=12x2 ( ) 12x4
16
细心算一算: (1) 3x2·5x3 = 15X5 (2) 4y·(-2xy2) = -8xy3 (3) (-3x2y) ·(-4x) = 12x3y (4) (-4a2b)(-2a) = 8a3b
2
(2)(5x3 ) (2x2 y) 10 x5 y
(3)(3ab) (4b2 ) 12ab3
(4)(5a2b3 )(4b2c) 20a2b5c
14
随堂练习
1.计算:
(1)3x2·5x3
(2) 4y·(-2xy2)
(3) (3x2y)·(-4x) (4) (-2a) (-3a2)
(5) (3×105)(5×102)
6x3 y2
例1. 计算:
9
有积的乘方怎么办?运 算时应先算什么?
(1) (-5a2b)(-3a); (2) (2x)2(-5xy2).
人教版初中数学《整式的乘法》演示课件
人教版初中数学《整式的乘法》实用 实用课 件(PPT 优秀课 件)
第十四章 整式的乘法与因式分解 14.1 整式的乘法
第6课时 多(PPT 优秀课 件)
人教版初中数学《整式的乘法》实用 实用课 件(PPT 优秀课 件) 人教版初中数学《整式的乘法》实用 实用课 件(PPT 优秀课 件)
15
人教版初中数学《整式的乘法》实用 实用课 件(PPT 优秀课 件)
人教版初中数学《整式的乘法》实用 实用课 件(PPT 优秀课 件)
【综合运用】
11.(8分)若a,b,k均为整数且满足等式(x+a)(x+b)=x2+kx+36,
写出两个符合条件的k的值.
人教版初中数学《整式的乘法》实用 实用课 件(PPT 优秀课 件)
人教版初中数学《整式的乘法》实用 实用课 件(PPT 优秀课 件)
解:因为(x+a)(x+b)=x2+kx+36,所以 x2+(a+b)x+ab= x2+kx+36,根据等式的对应项的系数相等可得kab==a+ 36b. ,又因为 a,b,k 均为整数,36=1×36=2×18=3×12=4×9=6×6=(- 1)×( - 36) = ( - 2)×( - 18) = ( - 3)×( - 12) = ( - 4)×( - 9) = ( - 6)×(-6).所以 a,b 对应的值共有 10 对,从而求出 a+b 的值, 即 k 的值有 10 个,分别为±37,±20,±15,±13,±12.只要写 出其中的两个即可
人教版初中数学《整式的乘法》实用 实用课 件(PPT 优秀课 件)
人教版初中数学《整式的乘法》实用 实用课 件(PPT 优秀课 件)
5.(9分)计算: (1)(3x-5)(3x+5); 解:原式=9x2-25 (2)(x-1)(x2+x+1); 解:原式=x3-1 (3)(3x-y)(y+3x)-(4x-3y)(4x+3y). 解:原式=-7x2+8y2
北师大版数学七年级下册第一章整式的乘除第4节整式的乘法课后练习
第一章整式的乘除第4节整式的乘法课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分 一、单选题1.(8)(23)mx x +-展开后不含x 的一次项,则m 为( )A .3B .0C .12D .242.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a +b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”计算(a +b )20的展开式中第三项的系数为( )A .2020B .2019C .191D .1903.已知8个长为a ,宽为b 的小长方形(如图1),不重叠无空隙地摆放(如图2),在长方形ABCD 中,3AB b a =+,当BC 的长度变化时,左上角阴影面积1S 与右下角阴影面积2S 的差没有变化,在a ,b 之间的关系应满足( )A .52b a =B .2b a =C .3b a =D .53b a = 4.下列运算正确的是( )A .224347x x x +=B .333236x x x ⋅= 311⎛⎫5.下列计算正确的是()A.326a a a⋅=B.()()2133a a a++=-C.624a a a÷=D.()22ab ab=6.观察下列等式:9011⨯+=,91211⨯+=,92321⨯+=,93431⨯+=,…根据以上规律得出920192020⨯+的结果是()A.20181B.20191C.20201D.202117.若()()23515x x x mx+-=+-,则m的值为()A.2B.2-C.5D.5-8.如图,长为(cm)y,宽为(cm)x的大长方形被分割为7小块,除阴影A,B外,其余5块是形状、大小完全相同的小长方形,其较短的边长为5cm,下列说法中正确的是()①小长方形的较长边为15y-;①阴影A的较短边和阴影B的较短边之和为5x y-+;①若x为定值,则阴影A和阴影B的周长和为定值;①当15x=时,阴影A和阴影B的面积和为定值.A.①①B.①①C.①①①D.①①9.我国南宋数学家杨辉用“三角形”解释二项和的乘方规律,称之为“杨辉三角”,这个“三角形”给出了()(1,2,3,4,)na b n+=的展开式的系数规律(按n的次数由大到小的顺序)111()a b a b+=+121222()2a b a ab b+=++1331+=+++33223()33a b a a b ab b146414322344()464a b a a b a b ab b+=++++请依据上述规律,写出20212x x ⎛⎫- ⎪⎝⎭展开式中含2019x 项的系数是( )A .-2021B .2021C .4042D .-4042 10.由多项式乘法可得:()()2232222333a b a ab b a a b ab a b ab b a b +-+=-++-+=+,即得等式:①()()2233a b a ab b a b +-+=+,我们把等式①叫做多项式乘法的立方和公式,下列应用这个立方和公式进行的变形正确的是( )A .()()2233248x y x y x y ++=+B .()()3227339x x x x +=+-+C .()()22332242x y x xy y x y +-+=+D .()()32111a a a a +=+++评卷人得分二、填空题 11.(__224)4x y =;2223()()a b a b =__. 12.已知()()2144x x x px +-=+-,则p 的值是_______.13.如果22(1)m n ++与22(1)m n +-的乘积为15,那么22m n +的值为__.14.若2(3)()15x x a x bx -+=+-,则a b +=__________.15.将7张如图①所示的小长方形纸片按图①的方式不重叠地放在长方形ABCD 内,未被覆盖的部分恰好被分割为两个长方形,面积分别为1S ,2S .已知小长方形纸片的宽为a ,长为4a ,则21=S S -______(结果用含a 的代数式表示).评卷人得分三、解答题 16.计算:322223()(2)a b b ab -+-.17.因为()()2326x x x x +-=+-,所以()()2623x x x x +--=+÷,这说明26x x +-能被2x -整除,同时也说明26x x +-有一个因式是2x -时,因式2x -为0,那么多项式26x x +-的值也为0,利用上面的结果求解:(1)多项式A 能被x +4整除,商为2x -1,求多项式A ;(2)已知x -2能整除214x kx +-,求k 的值.18.小轩计算一道整式乘法的题:(x +m )(5x ﹣4),由于小轩将第一个多项式中的“+m ”抄成“﹣m ”,得到的结果为5x 2﹣34x +24.(1)求m 的值;(2)请计算出这道题的正确结果.19.观察下列图形与等式的关系:按照以上图形与等式的规律,解答下列问题:(1)写出第5个等式: .(2)写出你猜想的第n 个等式: .(用含n 的等式表示),并证明(已知:1+2+3+……+n =(1)2n n +).20.先化简,再求值:(3)(4)2(1)(5)y y y y +---+,其中2y =-21.若()2133x p x x q ⎛⎫+-+ ⎪⎝⎭的积中不含x 项与2x 项 (1)求p 、q 的值;(2)求代数式20192020p q 的值22.观察下列各式:9﹣1=4×2=8;16﹣4=6×2=12;25﹣9=8×2=16;36﹣16=10×2=20;……(1)这些等式反映了自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示这个规律是.(2)用含n的等式证明这个规律.23.(1)某居民住房的结构如图所示,房子的主人打算把卧室以外的地面都铺上地砖,至少需要多少平方米的地砖?如果所用地砖的价格是b元/m2,那么购买地砖至少需要多少元?(2)房屋的高度为hm,现需要在客厅和卧室的墙壁上贴壁纸,那么至少需要多少平方米的壁纸?如果所用壁纸的价格是a元/m2,贴1m2壁纸的人工费用为5元,求贴完壁纸的总费用是多少元?(计算时不扣除门、窗所占面积)24.在长方形ABCD内,将两张边长分别为a 和b (a b >)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S ,当42AD AB -=时求21S S -的值(用含a 、b 的代数式表示).25.我国古代数学的许多发现都曾位居世界前列,如图1的“杨辉三角”就是其中的一例.如图2,某同学发现杨辉三角给出了()na b +(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应()2222a b a ab b +=++展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着()3322333a b a a b ab b +=+++展开式中各项的系数等等.(1)填出()4a b +展开式中共有________项,第三项是________.(2)直接写出()512y -的展开式.(4)利用上面的规律计算:26541126215222⎫⎫⎛⎛+⨯⨯-+⨯⨯- ⎪ ⎪⎝⎝⎭⎭33212021522⎫⎛+⨯⨯-+⨯ ⎪⎝⎭456111621222⎫⎫⎫⎛⎛⎛⨯-+⨯⨯-+-- ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭.参考答案:1.C【解析】【分析】先根据多项式乘以多项式法则进行计算,合并同类项,根据已知得出方程2m -24=0,求出即可.【详解】解:(8)(23)mx x +-2231624mx mx x =-+-23(224)16mx m x =-+-+,(8)(23)mx x +-展开后不含x 的一次项,2240m ∴-=,12m =∴.故选:C .【点睛】本题考查了多项式乘以多项式的应用,能熟练地运用法则进行计算是解此题的关键. 2.D【解析】【分析】根据图形中的规律即可求出(a +b )20的展开式中第三项的系数;【详解】解:找规律发现(a +b )3的第三项系数为3=1+2;(a +b )4的第三项系数为6=1+2+3;(a +b )5的第三项系数为10=1+2+3+4;不难发现(a +b )n 的第三项系数为1+2+3+…+(n -2)+(n -1),①(a +b )20第三项系数为1+2+3+…+19=190,故选:D .【点睛】此题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力. 3.C【解析】【分析】用含a、b、AD的式子表示出S1−S2,根据S1−S2的值总保持不变,即与AD的值无关,整理后,让AD的系数为0即可.【详解】解:①S1−S2=3b(AD−a)−a(AD−5b),整理,得:S1−S2=(3b−a)AD+2ab,①若AB长度不变,BC(即AD)的长度变化,而S1−S2的值总保持不变,①3b−a=0,解得:3b=a.故选:C.【点睛】此题考查了整式的加减,用含a、b、AD的式子表示出S1−S2是解本题的关键.4.C【解析】【分析】分别根据合并同类项法则,单项式乘单项式的运算法则,单项式除单项式的运算法则以及积的乘方运算法则逐一判断即可.【详解】解:A.3x2+4x2=7x2,故本选项不合题意;B.2x3•3x3=6x6,故本选项不合题意;C.2a÷2a﹣2=a3,故本选项符合题意;D.32631128a b a b⎛⎫-=-⎪⎝⎭,故本选项不合题意.故选:C.【点睛】本题主要考查了合并同类项,单项式乘单项式,同底数幂的除法、负整数指数幂以及积的乘方,熟记相关运算法则是解答本题的关键.5.C【解析】【分析】分别根据同底数幂的乘法、多项式乘多项式、同底数幂的除法、积的乘方对各选项进行逐一判断即可.【详解】A. 325a a a ⋅=,故本选项错误;B. ()()213+43a a a a ++=+,故本选项错误;C. 624a a a ÷=,故本选项正确.D. ()222ab a b =,故本选项错误;故选:C .【点睛】本题考查的是同底数幂的乘法与除法、积的乘方及多项式乘多项式,熟知以上知识是解答此题的关键.6.B【解析】【分析】 根据题目提供的算式找到规律:第n 个数为:9×(n ﹣1)+n =10×(n ﹣1)+1,进而即可求解.【详解】解:由上述等式可得,当其为第n 个数时,即9×(n ﹣1)+n =10×(n ﹣1)+1,①9×2019+2020=10×2019+1=20191.故选:B .【点睛】本题主要考查了规律性问题的一般知识,能够从中找出其内在之间的联系,进而熟练求解.7.B【解析】【分析】先根据多项式乘以多项式法则展开,合并后即可得出答案.【详解】解:()()22+-=-+-=--,355315215x x x x x x x①()()2+-=+-,x x x mx3515①m=-2,故选:B.【点睛】本题考查了多项式乘以多项式,能够灵活运用法则进行计算是解此题的关键.8.A【解析】【分析】①观察图形,由大长方形的长及小长方形的宽,可得出小长方形的长为(y-15)cm,说法①正确;①由大长方形的宽及小长方形的长、宽,可得出阴影A,B的较短边长,将其相加可得出阴影A的较短边和阴影B的较短边之和为(2x+5-y)cm,说法①错误;①由阴影A,B 的相邻两边的长度,利用长方形的周长计算公式可得出阴影A和阴影B的周长之和为2(2x+5),结合x为定值可得出说法①正确;①由阴影A,B的相邻两边的长度,利用长方形的面积计算公式可得出阴影A和阴影B的面积之和为(xy-25y+375)cm2,代入x=15可得出说法①错误.【详解】解:①①大长方形的长为y cm,小长方形的宽为5cm,①小长方形的长为y-3×5=(y-15)cm,说法①正确;①①大长方形的宽为x cm,小长方形的长为(y-15)cm,小长方形的宽为5cm,①阴影A的较短边为x-2×5=(x-10)cm,阴影B的较短边为x-(y-15)=(x-y+15)cm,①阴影A的较短边和阴影B的较短边之和为x-10+x-y+15=(2x+5-y)cm,说法①错误;①①阴影A的较长边为(y-15)cm,较短边为(x-10)cm,阴影B的较长边为3×5=15cm,较短边为(x-y+15)cm,①阴影A的周长为2(y-15+x-10)=2(x+y-25),阴影B的周长为2(15+x-y+15)=2(x-y+30),①阴影A和阴影B的周长之和为2(x+y-25)+2(x-y+30)=2(2x+5),①若x为定值,则阴影A和阴影B的周长之和为定值,说法①正确;①①阴影A的较长边为(y-15)cm,较短边为(x-10)cm,阴影B的较长边为3×5=15cm,较短边为(x-y+15)cm,①阴影A的面积为(y-15)(x-10)=(xy-15x-10y+150)cm2,阴影B的面积为15(x-y+15)=(15x-15y+225)cm2,①阴影A和阴影B的面积之和为xy-15x-10y+150+15x-15y+225=(xy-25y+375)cm2,当x=15时,xy-25y+375=(375-10y)cm2,说法①错误.综上所述,正确的说法有①①.故选:A.【点睛】本题考查了列代数式以及整式的混合运算,逐一分析四条说法的正误是解题的关键.9.D【解析】【分析】先观察规律,再按照规律写出第一项、第二项,其中第二项2019x,写出系数即可【详解】解:根据规律可以发现:20212xx⎛⎫-⎪⎝⎭第一项的系数为1,第二项的系数为2021,①第一项为:x2021,第二项为:20202020201922202120214042x x xx x⎛⎫-=-=-⎪⎝⎭故选:D【点睛】本题考查杨辉三角多项式乘法找规律的问题,观察发现式子中的规律是关键10.B【解析】【分析】根据多项式乘法的立方和公式判断即可.【详解】解:A 、(x +2y )(x 2﹣2xy +4y 2)=x 3+8y 3,原变形错误,故此选项不符合题意; B 、x 3+27=(x +3)(x 2﹣3x +9),原变形正确,故此选项符合题意;C 、(x +2y )(x 2﹣2xy +4y 2)=x 3+8y 3,原变形错误,故此选项不符合题意;D 、a 3+1=(a +1)(a 2﹣a +1),原变形错误,故此选项不符合题意,故选:B .【点睛】本题主要考查学生的阅读理解能力及多项式乘法的立方和公式.透彻理解公式是解题的关键.11. 22xy ± 105a b【解析】【分析】根据积的乘方、幂的乘方和同底数幂的乘法计算即可;【详解】2224(2)4xy x y ±=;22234263105()()a b a b a b a b a b ==; 故答案为:22xy ±;105a b .【点睛】本题主要考查了幂的运算性质,准确分析计算是解题的关键.12.-3【解析】【分析】先利用多项式乘以多项式计算,后根据恒等式的对应项相同,计算即可【详解】①()()21444+-=-+-x x x x x=234--x x ,且()()2144x x x px +-=+-,①22434+-=--x px x x ,①p = -3,故答案为:-3.【点睛】本题考查了多项式乘以多项式,恒等式成立的条件,熟练进行多项式乘以多项式的计算是解题的关键.13.4【解析】【分析】根据题意列出等式,再根据平方差公式进行计算,最后求出答案即可. 【详解】解;22(1)m n ++与22(1)m n +-的乘积为15,2222(1)(1)15m n m n ∴+++-=,222()115m n ∴+-=,即222()16m n +=,解得:224m n +=(负数舍去),故答案为:4.【点睛】 本题考查了平方差公式,能求出(m 2+n 2)2=16是解此题的关键.14.7【解析】【分析】利用多项式乘以多项式化简等式的左边,根据恒等式的意义,构造方程,逐一解答计算即可.【详解】①(x -3)(x +a )=233x ax x a +--=2(3)3x a x a +--,2(3)()15x x a x bx -+=+-①215x bx +-=2(3)3x a x a +--,①b =a -3,-3a =-15,①a =5,b =2,①a +b =5+2=7,故答案为:7.【点睛】本题考查了多项式乘以多项式,恒等式的意义,方程的解法,代数式的值计算,熟练运用多项式的乘法化简和恒等式的意义是解题的关键.15.24a【解析】【分析】可设长方形ABCD 的长为m ,分别求出S 1,S 2,再代入S 2-S 1计算即可求解.【详解】解:设长方形ABCD 的长为m ,则S 2-S 1=(m-3a )×4a-(m-4a )×4a=4ma-12a 2-4am+16a 2×=4a 2.故答案为:4a 2.【点睛】本题考查了列代数式和整式的运算,关键是熟练掌握长方形的面积公式,准确的进行整式计算.16.367a b -【解析】【分析】原式先计算积的乘方和幂的乘方,再计算单项式乘以单项式,最后合并即可.【详解】解:322223()(2)a b b ab -+-324368a b b a b =- 36368a b a b =-367a b =-.【点睛】此题主要考查了积的乘方和幂的乘方,单项式乘以单项式以及合并同类项,熟练掌握运算法则是解答此题的关键.17.(1)2274x x +-;(2)5【解析】【分析】(1)根据被除数=除数×商,得A =(x +4)(2x -1),化简即可;(2)根据因式2x -为0,那么多项式26x x +-的值也为0,得到x -2=0,即x =2是方程214x kx +-=0的根,利用根的定义求解即可.【详解】(1)①多项式A 能被x +4整除,商为2x -1,①根据被除数=除数×商,得A =(x +4)(2x -1)=2284-+-x x x=2274x x +-;(2)根据因式2x -为0,那么多项式26x x +-的值也为0,①x =2是方程214x kx +-=0的根,利用根的定义求解即可. ①222140+-=k ,解得k =5.【点睛】本题考查了阅读学习问题,多项式的乘法与除法的互逆应用,方程根的意义,准确理解阅读内容,熟练掌握方程根的意义是解题的关键.18.(1)m =6;(2)5x 2+26x ﹣24【解析】【分析】(1)根据多项式乘多项式的运算法则相乘,然后合并同类项后与结果相对应即可得; (2)将m 的值代入,根据多项式乘多项式的运算法则即可得.【详解】(1)()()54x m x --25(45)4x m x m =-++253424x x =-+则有4534m +=,解得:6m =;(2)当6m =时,()()654x x +-2543024x x x =-+-252624x x =+-.【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解题关键.19.(1)2+3+4+5+6+5+4+3+2=62-2;(2)2+3+…+(n -1)+n +(n -1)+…+3+2=n 2-2,证明见解析.【解析】【分析】(1)先根据图形和所给的等式,写出第五个等式即可;(2)先总结所给等式的规律,然后猜想出第n 个等式,然后对1+2+3+……+n =(1)2n n +变形进行证明即可.【详解】解:(1)由题意可得,第五个等式为:2+3+4+5+6+5+4+3+2=62-2故填2+3+4+5+6+5+4+3+2=62-2;(2)由所给等式猜想第n 个等式为2+3+…+(n -1)+n +(n -1)+…+3+2=n 2-2证明如下:①1+2+3+……+n =(1)2n n + ①2(1+2+3+……+n )= n 2+n①1+2+3+…+(n -1)+n +n +(n -1)+…+3+2+n +1= n 2+n①1+2+3+…+(n -1)+n +n +(n -1)+…+3+2+n +1-n-2= n 2+n -n-2①2+3+…+(n -1)+n +(n -1)+…+3+2=n 2-2.【点睛】本题主要考查了数字的变化规律,通过观察、分析、归纳到规律并证明规律是解答本题的关键.20.292y y ---;12.【解析】【分析】利用多项式乘以多项式法则计算,去括号合并得到最简结果,把y 的值代入计算即可求出值.【详解】解:(3)(4)2(1)(5)y y y y +---+22(12)2(45)y y y y =---+-22122810y y y y =----+292y y =---,当2y =-时,原式()()22922=---⨯--12=. 【点睛】 此题考查了整式的混合运算-化简求值,熟练掌握运算法则,准确计算是解本题的关键. 21.(1)13p =,3q =;(2)3 【解析】【分析】(1)先用多项式乘以多项式的运算法则展开求它们的积,并且把p 、q 看作常数合并关于x 的同类项,令x 2及x 的系数为0,分别求出p 、q 的值.(2)把p 、q 的值代入求解即可.【详解】解:(1)21(3)()3x p x x q +-+ =2321333x x qx px px pq -++-+ =23131)(3+3()x p x q p x pq -+-+ 又①式子展开式中不含x 2项和x 项,①310p -=,13=03q p - 解得,13p =,3q = (2)当13p =,3q =时,20192019201920201=()(3)31333p p q q q =⨯⨯=⨯= 【点睛】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.22.(1)(n +2)2﹣n 2=4(n +1);(2)见解析【解析】【分析】(1)根据题目中的等式,可以写出发现的规律;(2)先将等号左边化简,然后再变形,即可得到结论成立.【详解】解:(1)①9﹣1=4×2=8,即(1+2)2-12=2(2×1+2);16﹣4=6×2=12,即(2+2)2-22=2(2×2+2);25﹣9=8×2=16,即(3+2)2-32=2(2×3+2);36﹣16=10×2=20,即(4+2)2-42=2(2×4+2);…,①第n 个式子是(n +2)2﹣n 2=2(2n +2)=4(n +1),故答案为:(n +2)2﹣n 2=4(n +1);(2)证明:①(n +2)2﹣n 2=n 2+4n +4﹣n 2=4n +4=4(n +1),①(n +2)2﹣n 2=4(n +1)成立.【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现式子的变化特点,写出相应的式子.23.(1)至少需要11xy 平方米的地砖,购买地砖至少需要11bxy 元;(2)至少需要(12hx +8hy )平方米的壁纸,贴完壁纸的总费用是(12ahx +8ahy +60hx +40hy )元【解析】【分析】(1)求出卫生间,厨房及客厅的面积之和即可得到需要地砖的面积;用地砖的面积乘以地砖的价格即可得出需要的费用;(2)求出客厅与卧室的面积,乘以高hm ,即可得到需要的壁纸数;用需要的壁纸数乘以壁纸的价格即可得出贴完壁纸的总费用.【详解】解:(1)由题意得:xy +y ×2x +2y ×4x=xy +2xy +8xy=11xy (m 2).11xy •b =11bxy (元).答:至少需要11xy 平方米的地砖,购买地砖至少需要11bxy 元;(2)由题意得:2y •h ×2+4x •h ×2+2x •h ×2+2y •h ×2=4hy +8hx +4hx +4hy=(12hx +8hy ) m 2.(12hx +8hy )×a +(12hx +8hy )×5=(12ahx +8ahy +60hx +40hy )元;答:至少需要(12hx +8hy )平方米的壁纸,贴完壁纸的总费用是(12ahx +8ahy +60hx +40hy )元.【点睛】本题考查了整式的混合运算应用,根据图形列出代数式并熟练根据法则进行计算是解题的关键.24.42b【解析】【分析】设AB x =,则42AD x =+,根据图形得出21S S -,再根据整式的运算法则即可求出答案.【详解】解:设AB x =,则42AD x =+,21S S -[][]()(42)(42)(42)()(42)()x a x b x a a x x a x a a b =-+-++--+-++--2222(424242)(42424242)x x bx ax a ab ax a a x ax x a ax bx a b a ab =+---+++---+-+-+--+222242424242424242x x bx ax a ab ax a a x ax x a ax bx a b a ab =+---+++--+-+-+-++-42b =【点睛】本题考查了列代数式和整式的混合运算,解题的关键是:能灵活运用整式的运算法则进行计算.25.(1)5;226a b ;(2)234511*********y y y y y -+-+-;(3)2n S =;(4)66564【解析】【分析】(1)展开的项数等于字母a 的不同指数的个数即4,3,2,1,0,根据杨辉三角形的规律确定各项的系数即可;(2)先计算()5a b +的展开式,后将a,b 的值特殊化计算即可;(3)猜想指数为0,为1,为2,为3的系数之和,透过枚举法猜想其中的规律;(4)逆向使用公式求解即可.【详解】(1)由杨辉三角的系数规律可得, ()4432234464a b a a b a b ab b +=++++,∴展开式共有5项,第三项是226a b .(2)()543225345510105a a b a b a a a b b b b =++++++,当1a =,2b y =-时,原式()()2152102y y =+⨯-+⨯-()()()345102522y y y +⨯+⨯--+-234511*********y y y y y =-+-+-, ()523451211040808032y y y y y y ∴-=-+-+-.(3)第一行各项系数和为012=,即()0a b +的各项系数和为02,第二行各项系数和为122=,即()1a b +的各项系数和为12,第三行各项系数和为242=,即()2a b +的各项系数和为22,第三行各项系数和为382=,即()3a b +的各项系数和为32,…由此可得()n a b +的各项系数和为2n ,2n S ∴=. (4)由杨辉三角可知,原式61212⎫⎛=-- ⎪⎝⎭ 6312⎫⎛=- ⎪⎝⎭729164=- 66564=. 【点睛】 本题考查了杨辉三角形,二项式的展开,熟练掌握杨辉三角形的特点,灵活运用公式,活用一般与特殊的思想是解题的关键.。
初中数学北师大版七年级下册第一章4整式的乘法第2课时整式的乘法课件
32
第2课时 整式的乘法(二)
(4m-3n)x+4n.
(4m-3n)x+4n. -2 B.
=-2x3+6x2+x-15.
C. p=1,q=6
D. p=-1,q=6
1. 如果(x-2)(x-3)=x2+px+q,那么p,q的值是( )
所以2b-3a=0,b-3=0.
解:(ax2+bx+1)(2x2-3x+1)=2ax4+(2b-3a)·
C. p=1,q=6
D. p=-1,q=6
2. 若(x+3)(2x-5)=2x2+bx-15 ,则b为( C )
A. -2
B. 2
C. 1
D. -1
3. 如图1-4-1,有正方形卡片A类、B类和长方形卡片C类各若 干张,如果要拼一个长为(a+3b),宽为(2a+b)的大长方形 ,那么需要A类、B类和C类卡片的张数分别为(A ) A. 2,3,7 B. 3,7,2 C. 2,5,3 D. 2,5,7
第一章 整式的乘除
4 整式的乘法 第2课时 整式的乘法(二)
目录
01 名师导学 02 课堂讲练 03 分层训练
名师导学 A.多项式乘多项式:先用一个多项式的___每__一__项_____乘另一个 多项式的_____每__一__项_____,再把所得的积_____相__加_____.
1. 计算:(3x-1)(2x+1)=_____6_x_2_+_x_-_1_____.
2. 已知(x2+mx+n)(x2-3x+2)中,不含x3项和x项,求m ,n的值.
解:原式=x4-3x3+2x2+mx3-3mx2+2mx+nx2-3nx+2n=x4-(3-m )x3+(2-3m+n)x2+(2m-3n)x+2n. 由题意,得3-m=0,2m-3n=0. 解得m=3,n=2.
整式的乘法运算
整式的乘法运算整式是由数字、字母和乘法、加法运算符组成的代数表达式。
在数学中,整式的乘法运算是一项基本且常见的操作。
通过对整式的乘法运算,我们可以得到一个新的整式,从而求解复杂的代数问题。
下面将介绍整式的乘法运算及其相关概念和规则。
1. 整式的乘法定义整式的乘法是指将两个或多个整式相乘,得到一个新的整式。
整式的乘法运算通常涉及到乘法分配律和乘法合并同类项的规则。
乘法分配律表示:对于任意的整式a、b和c,有a×(b+c) = a×b + a×c。
乘法合并同类项是指将相同字母的乘积合并为一个同类项。
例如,将3x与2x 相乘得到6x²,其中6是系数,x²是字母的乘积。
2. 整式的乘法规则在进行整式的乘法运算时,需要注意以下几个规则:(1) 系数相乘:将两个整式的系数相乘得到新的系数。
(2) 字母相乘:将两个整式中相同字母的指数相加得到新的指数。
(3) 合并同类项:将相同字母的乘积合并为一个同类项。
(4) 乘法交换律:整式的乘法满足交换律,即a×b = b×a。
3. 实例演示为了更好地理解整式的乘法运算,我们来看几个实例:(1) 将3x²与2x相乘。
3x² × 2x = 6x³通过系数相乘,得到6;通过字母相乘,x²与x相乘得到x³,因此结果是6x³。
(2) 将4ab²与(-5a²b³)相乘。
4ab² × (-5a²b³) = -20a³b⁵系数相乘得到-20,字母相乘时,a与a²相乘得到a³,b²与b³相乘得到b⁵,因此结果是-20a³b⁵。
4. 注意事项在进行整式的乘法运算中,需要注意一些特殊情况和要点:(1) 乘法的顺序:乘法运算符具有优先级,在计算整式的乘法时,需要按照从左到右的顺序进行计算。
第4讲整式的乘法(3个知识点+3种题型+过关检测)(学生版) 24-25学年七年级数学上册(沪教版)
第04讲 整式的乘法(3个知识点+3种题型+过关检测)知识点1:单项式与单项式相乘单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式.【要点归纳】(1)单项式的乘法法则的实质是乘法的交换律和同底数幂的乘法法则的综合应用.(2)单项式的乘法方法步骤:积的系数等于各系数的积,是把各单项式的系数交换到一起进行有理数的乘法计算,先确定符号,再计算绝对值;相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算;只在一个单项式里含有的字母,要连同它的指数写在积里作为积的一个因式.(3)运算的结果仍为单项式,也是由系数、字母、字母的指数这三部分组成.(4)三个或三个以上的单项式相乘同样适用以上法则.知识点2:单项式与整式相乘单项式与整式相乘,就是用单项式去乘整式的每一项,再把所得的积相加.即()m a b c ma mb mc ++=++.【要点归纳】(1)单项式与整式相乘的计算方法,实质是利用乘法的分配律将其转化为多个单项式乘单项式的问题.(2)单项式与整式的乘积仍是一个整式,项数与原整式的项数相同.(3)计算的过程中要注意符号问题,整式中的每一项包括它前面的符号,同时还要注意单项式的符号.(4)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果.知识点3:整式与整式相乘整式与整式相乘,先用一个整式的每一项乘另一个整式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.【要点归纳】整式与整式相乘,仍得整式.在合并同类项之前,积的项数应该等于两个整式的项数之积.整式与整式相乘的最后结果需化简,有同类项的要合并.特殊的二项式相乘:()()()2x a x b x a b x ab ++=+++.题型一:单项式乘单项式(共9小题)1.(2022秋•嘉定区校级期末)计算221(6)3a b ab ×-= .2.(2023秋•静安区校级月考)计算,结果用科学记数法表示:53(310)(510)-´´´= .3.(2023秋•闵行区校级月考)674(310)(510)(410)´´´= .4.(2022秋•杨浦区期中)计算:32347(2)()x x x x x -×-×+-.5.(2023秋•闵行区期中)计算:522312()(2)()2x x x x ×---×-.6.(2023秋•奉贤区期中)计算:37423256(2)5()x x x x x ×-×--.7.(2023秋•奉贤区期中)计算:423223()()(3)2a a a a a a -×---××.8.(2023秋•浦东新区校级期中)计算:2232(3)(2)a b ab ab ×-+.9.(2023秋•闵行区校级期中)计算:37423253(2)3()x x x x x ×-×--.题型二:单项式乘整式(共11小题)10.(2023秋•奉贤区期中)计算:23(2)x x x ---= .11.(2023秋•松江区期末)计算:2(23)x y -= .12.(2023秋•浦东新区期中)计算:21(1)(3)3x x x +-×-= .13.(2023秋•奉贤区期中)计算:223(2)a a ab b -×-+.14.(2023秋•宝山区校级月考)计算:32212(2)(3)23x x x x --+×-.15.(2023秋•青浦区校级期中)计算:2221(23)52x x x xy y xy --++.16.(2023秋•浦东新区期中)计算:23[2(2)2(2)]2x x x y y x y x -+--+.17.(2023秋•松江区月考)计算:32222442(3)()3()(3)3xy x y x x y xy x ×-+-×--.18.(2023秋•松江区月考)计算:2432216(2)()32xy y xy xy -+-.19.(2023秋•闵行区校级月考)计算:229(2)()x x xy y xy --+-.20.(2022秋•青浦区期中)试用整式的运算说明:当10y z +=时,我们计算xy xz ´可以将十位数字与十位数字加一相乘的结果顺次写在千位和百位,将两个数个位数字的乘积顺次写在十位和个位,如果乘积不足两位数可以用0补齐十位.(例:计算3139´时,可以口算3412´=,199´=,则最终结果为1209)题型三:整式乘整式(共10小题)21.(2023秋•静安区校级月考)如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为(23)a b +,宽为()a b +的大长方形,则需要C 类卡片( )A .2张B .3张C .4张D .5张22.(2022秋•浦东新区校级期中)如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为(3)a b +,宽为(2)a b +的大长方形,则需要A 类、B 类和C 类卡片的张数分别为( )A .2,5,3B .3,7,2C .2,3,7D .2,5,723.(2023秋•浦东新区期末)若2(2)(3)x x x px q +-=++,则p 的值为( )A .5-B .1-C .5D .124.(2023秋•浦东新区期末)计算:(21)(32)x x -+= .25.(2023秋•普陀区校级期末)计算:1(3)(912)2x x +-= .26.(2023秋•崇明区期末)计算:(32)(2)a b a b +-= .27.(2023秋•青浦区期末)如图,现有边长为a 的正方形A 、边长为b 的正方形B 和长为2b 宽为a 的长方形C 的三类纸片(其中)a b >.用这三类纸片拼一个长为26a b +、宽为3a b +的长方形(不重叠且不留缝隙),那么需要C 类纸片 张.28.(2022秋•青浦区期中)已知222(2)(235)x ax bx x x -++-+的展开式中不含三次项和四次项,则展开式中二次项和一次项的系数之和为 .29.(2022秋•青浦区期中)计算:232(1)(1)n n n n x x x x ++-+.30.(2022秋•长宁区校级月考)计算:(2)(31)3(1)(25)x x x x -+-+-一.选择题(共5小题)1.(2022秋•浦东新区校级期中)下列运算中,正确的是( )A .236()x x -=B .236236m m m ×=C .333()xy x y -=-D .22244(3)6a b a b =2.(2023秋•浦东新区校级期末)53(410)(2510)´´´的计算结果是( )A .810010´B .17110´C .10110´D .1510010´3.(2023秋•松江区月考)2123(2)(0.5)()4m n n m x y x y x y --×-×的结果是( )A .2122m n x y +-B .22234m n x y -C .21234m nx y +D .212234m n x y ++4.(2023秋•闵行区校级月考)若m 、n 为整数,且2()()12x m x n x ax ++=++,则a 不可能是()A .7B .6C .13-D .8-5.(2023秋•静安区校级月考)若单项式8a x y -和214b x y 的积为562x y -,则ab 的值为( )A .2B .30C .15-D .15二.填空题(共8小题)6.(2023秋•宝山区期末)计算:223a a ×= .7.(2023秋•普陀区校级期末)计算:38321()711a a ×-= .8.(2023秋•普陀区期末)计算:(5)(2)x y x y -+= .9.(2023秋•静安区校级月考)若22(8)(3)x ax x x b ++-+的乘积中不含2x 和3x 项,a b += .10.(2022春•冷水滩区校级期中)若二项式3x a +与2x +相乘,化简后结果中不出现一次项,则a 的值是 .11.(2022秋•杨浦区期末)已知:3a b +=,23ab =,化简(1)(1)a b --的结果是 .12.(2022秋•浦东新区校级期中)有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2)a b +,宽为(3)a b +的矩形.则需要A 类卡片 张,B 类卡片 张,C 类卡片 张.13.(2022秋•长宁区校级期中)若p 、q 、r 均为整数(0)p q >>,且2()()15x p x q x rx ++=--,则r 的值为 .三.解答题(共8小题)14.(2023秋•松江区月考)计算:242345(2)x x x ×+-.15.(2023秋•闵行区校级月考)计算:(1)(32)(76)m n m n +-; (2)2323()()()[()]b a a b b a a b ---+-.16.(2023秋•松江区月考)计算:2(35)(23)(41)x x x x ---+.17.(2023秋•松江区月考)若22(3)(3)x nx x x m -+++的展开式中不含2x 和3x 项,求m 、n 的值.18.(2023秋•武侯区校级期末)若2228()(3)3x px x x q ++-+的展开式中不含2x 和3x 的项.(1)求p ,q 的值;(2)求代数式23120142016(2)(3)p q pq p q --++的值.19.(2024•灞桥区校级开学)如图,某校园内有一块长为(2)a b m +,宽为(2)a b m -的长方形空地()a b >.为美化环境,计划在这块空地上修建一个长为(2)a b m -,宽为bm 的长方形花圆,并将花圆四周余下的空地修建成通道,请用含有a 、b 的代数式表示通道的面积.20.(2023秋•静安区校级月考)探究应用:(1)计算:2(1)(1)x x x -++= ;22(2)(42)x y x xy y -++= .(2)上面的乘法计算结果很简洁,你发现了什么规律(公式)?用含字母a 、b 的等式表示该公式为: .(3)下列各式能用第(2)题的公式计算的是 .A .2(2)(24)m m m +++B .22(2)(22)m n m mn n -++C .2(3)(93)n n n -++D .22()(2)m n m mn n -++(4)设9101A =-,利用上述规律,说明A 能被37整除.21.(2023秋•右玉县期末)综合与实践如图1,长方形的两边长分别为1m +,7m +;如图2.长方形的两边长分别为2m +,4m +.(其中m 为正整数)E .(1)图1中长方形的面积1S = ;图2中长方形的面积2S = ;比较1S 2S (选填“<”、“ =”或“>” );(2)现有一正方形,其周长与图1中的长方形周长相等.①求正方形的边长;(用含m 的代数式表示)②试探究:该正方形的面积S 与图1中长方形的面积1S 的差(即1)S S -是一个常数,并求出这个常数.。
七下数学整式的乘法
七下数学整式的乘法
整式的乘法是指两个或多个整式相乘的运算。
在七年级数学中,通常会涉及到单项式与单项式、单项式与多项式、多项式与多项式
的乘法。
下面我将从这几个方面来详细解释整式的乘法。
首先,单项式与单项式的乘法。
单项式是只包含一个字母和一
个数的代数式,例如3x、-2y^2。
当两个单项式相乘时,只需要将
它们的系数相乘,并且将它们的字母部分相乘。
例如,(3x)(-2y^2) = 3 (-2) x y^2 = -6xy^2。
其次,单项式与多项式的乘法。
多项式是由多个单项式相加或
相减而成的代数式,例如2x + 3、-4a^2b + 5ab^2。
当一个单项式
与一个多项式相乘时,需要将单项式中的每一项与多项式中的每一
项分别相乘,然后将所得的乘积再相加。
例如,2x (3x^2 4x + 5) = 2x 3x^2 + 2x (-4x) + 2x 5 = 6x^3 8x^2 + 10x。
最后,多项式与多项式的乘法。
同样需要将一个多项式中的每
一项与另一个多项式中的每一项进行相乘,然后将所得的乘积再相加。
这里需要应用分配律和合并同类项的规则。
例如,(3x 2)(2x + 5) = 3x 2x + 3x 5 2 2x 2 5 = 6x^2 + 15x 4x 10 = 6x^2 +
11x 10。
在进行整式的乘法运算时,需要注意保持代数式的格式,正确地进行系数和字母的相乘,并最终合并同类项。
这样才能得到正确的乘积。
希望这些解释能帮助你更好地理解七年级数学中整式的乘法。
春学期七年级数学下册第一章整式的乘除4整式的乘法同步课件(北师大版)
解析 (1)2x3·5x2=(2×5)(x3·x2)=10x5. (2)3x2y5·(-2xy2z)=[3×(-2)](x2·x)·(y5·y2)·z=-6x3y7z.
4.计算:
(1)
1 3
a
4b3
·(-6a2b);
(2)(-x2y2)·(3xy)2;
(3)- 3 a2b3· 5 abc.
1.小明做了四道单项式乘法题,其中他做对的一道是 ( )
A.3x2·2x3=5x5
B.3a3·4a3=12a9
C.2m2·3m3=6m3 D.3y3·6y3=18y6
答案 D 3x2·2x3=6x5;3a3·4a3=12a6;2m2·3m3=6m5;3y3·6y3=18y6.故选D.
2.计算:3x2(7x2-4x+2)-5x(2x-1)=
3.计算:2m2·(-2mn)·
1 2
m2
n3
.
解析
2m2·(-2mn)·
1 2
m2
n3
=
2
(2)
1 2
(m2·mn·m2n3)=2m5n4.
4.先化简,再求值:(x+2y)(2x+y)-(3x-y)(x+2y),其中x=9,y= 1 .
3
4
知识点二 单项式与多项式的乘法
单项式乘 多项式
知识详解
法则
字母表示
举例
单项式与多项式相乘,就是用单 项式去乘多项式的每一项,再把 所得的积相加
a(m+n+k)=am+an+ak
4a2(3ab2-5ab3) =4a2·3ab2-4a2·5ab3 =12a3b2-20a3b3
初中数学 什么是整式的乘法
初中数学什么是整式的乘法整式的乘法指的是将两个或多个整式相乘得到一个新的整式。
整式是由常数、变量及它们的乘积和幂次的和或差组成的代数式。
下面将详细介绍整式的乘法运算的定义、性质以及如何进行整式的乘法。
一、整式的乘法定义设有两个整式A和B,表示为:A = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₂x² + a₁x + a₀B = bₙxᵐ + bₙ₋₁xᵐ⁻¹ + ... + b₂x² + b₁x + b₀其中,aₙ、aₙ₋₁、...、a₂、a₁、a₀和bₙ、bₙ₋₁、...、b₂、b₁、b₀为常数系数,x为变量,n和m 为幂次。
整式A和B的乘积表示为A * B,即:A *B = (aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₂x² + a₁x + a₀) * (bₙxᵐ + bₙ₋₁xᵐ⁻¹ + ... + b₂x² + b₁x + b₀)二、整式乘法的性质整式的乘法具有以下性质:1. 乘法交换律:对于任意两个整式A和B,有A * B = B * A。
即整式的乘法满足交换律。
2. 乘法结合律:对于任意三个整式A、B和C,有(A * B) * C = A * (B * C)。
即整式的乘法满足结合律。
3. 乘法分配律:对于任意三个整式A、B和C,有A * (B + C) = A * B + A * C。
即整式的乘法满足左分配律。
三、整式的乘法运算整式的乘法运算可以通过展开和合并同类项的方法进行。
例如,设有两个整式A和B,表示为:A = 2x² + 3xy - 4y²B = 5x - 2y我们将A与B相乘,即A * B,得到:A *B = (2x² + 3xy - 4y²) * (5x - 2y)按照乘法分配律的定义进行展开和合并,得到:A *B = 2x² * 5x + 2x² * (-2y) + 3xy * 5x + 3xy * (-2y) - 4y² * 5x - 4y² * (-2y)进一步计算,得到:A *B = 10x³ - 4x²y + 15x²y - 6xy² - 20xy² + 8y³将上述结果进行合并同类项,得到最后的乘积结果:A *B = 10x³ + 11x²y - 26xy² + 8y³总结:整式的乘法是将两个或多个整式相乘得到一个新的整式。
11.1整式的乘法(第4课时 单项式与单项式、整式相乘)(课件)-七年级数学上册(沪教版2024)
1 2
解: ⋅ ( − 2 z)
2
1
= × −1 ⋅ ⋅ 2 ⋅ 2 ⋅ z
2
1 3 2
=− z
2
(2)
(-4ax2)·
(-3a2x3)
解:(-4ax2)·
(-3a2x3)
=[(-4)×(-3)]
= 12a3x5.
(a·a2)(x2·x3)
(3) (-2x)3·
(5x2y)2 .
【解】∵ m =3, n =3,
∴-2 x3 m+1 y2 n ·7 xn+6 y3+ m =-2 x7 y6·7 x9 y5=-14 x16 y11.
18. (1)一张长方形硬纸板的长为(5 a2+4 b2)m,宽为6 a4 m,在它的四个角上分
别剪去一个边长为 a3 m的小正方形,然后折成一个无盖的盒子,请你求
的运算.(难点)
新知探究
1.单项式乘单项式
问题 光的速度约为3×105 km/s,1光年是指光在真空中经过1年所行的距离,它
是一个长度单位,若取一年的时间约为 3.15x107 s,则1光年的距离大约为多少?
1光年等于光在真空中的速度乘一年的时间,即
(3×105)×(3.15×107)
=(3×3.15)×(105×107)
= − ⋅ 2 + − ⋅ 2 − − ⋅ 2
= − 3 − 2 2 + 2
2 − 2 ⋅ 2
3
解: 2 − 2 ⋅ 2 3
= − 2 ⋅ 8 3 3
= −8 5 4
4 43 − 2 + 1 ⋅ −2
2
解: 4 43 − 2 + 1 ⋅ −2 2
初中数学整式的乘法(含答案)
第一讲整式乘除1.1 整式的乘法◆赛点归纳整式的乘法包括单项式以单项式、单项式乘以多项式、多项式乘以多项式等内容.◆解题指导例1(2001,全国竞赛)若a,b是正数,且满足12345=(111+a)(111-b),则a 与b•之间的大小关系是().A.a>b B.a=b C.a<b D.不能确定【思路探究】由题设易得乘积式111(a-b),若能说明111(a-b)>0,即可比较a•与b的大小.这可利用多项式乘法推得.例2求在展开(5a3-3a2b+7ab2-2b3)(3a2+2ab-3b2)中,a3b2和a2b3的系数.【思路探究】若根据多项式乘以多项式法则直接运算,计算量就比较大;若用竖式计算,就很方便.【思维误区】有位同学这样解答例2,你认为对吗?【解】5 -3 7 -1×) 3 2 -3________________________________________________-15 +9 -21 +6+10 -6 +14 -4+) +15 -9 +21 -6___________________________________________________+15 +1 0 +17 -25 +6∴原式=15a5+a4b+17a2b3-25ab4+6b5.因为展开后的多项式没有a3b2项,所以a3b2系数不存在,a2b3的系数为17.例3 (2001,武汉市竞赛)若3x3-x=1,则9x4+12x3-3x2-7x+2001的值等于().A.1999 B.2001 C.2003 D.2005【思路探究】显然是无法直接代入求值的,必须将要求的代数式经过变形,使之含有3x3-x-1的乘积的代数和的形式,再求其值就不难了.例4 (2002,黄冈市竞赛)已知m、n互为相反数,a、b互为负倒数,x•的绝对值等于3,则x3-(1+m+n+ab)x2+(m+n)·x2001+(-ab)2002的值等于________.【思路探究】要求此多项式的值,显然不能直接运用多项式乘法展开它,由题设可知,多项式(1+m+n+ab)、(m+n)与(-ab)都等于特殊值.例5 (2000,“希望杯”,初二)已知多项式2x2+3xy-2y2-x+8y-6•可以分解为(•x+2y+m)(2x-y+n)的形式,那么3211mn+-的值是______.【思路探究】由题设可知,两个一次三项式的积等于2x2+3xy-2y2-x+8y-6.•根据多项式恒等的条件可列出关于m、n的二元一次方程组,进而不难求出m、n的值.【拓展题】按下面规则扩充新数:已知a和b两数,可按规则c=ab+a+b扩充一个新数,而a,b,c•三个数中任取两数,按规则又可扩充一个新数,……,每扩充一个新数叫做一次操作.现有数1和4.(1)求按上述规则操作三次得到的最大新数;(2)能否通过上述规则扩充得到1999,并说明理由.◆探索研讨在求解整式乘法比较复杂的相关问题时,运用整式乘法法则进行计算或求解相关问题,一般不宜直接运用整式乘法法则,请结合本节例题,总结自己的发现.◆能力训练1.已知m2+m-1=0,那么代数式m3+2m2-1997的值是().A.1997 B.-1997 C.1996 D.-19962.若19a+98b=0,则ab是().A.正数B.非正数C.负数D.非负数3.(2002,“希望杯”,初二)已知a>b>c,M=a2b+b2c+c2a,N=ab2+bc2+ca2,则M与N的大小关系是( ).A .M<NB .M>NC .M=ND .不能确定4.(2001,山东省竞赛)某商店经销一批衬衣,进价为每件m•元,•零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,•那么调价后每件衬衣的零售价是( ).A .m (1+a%)(1-b%)元B .ma%(1-b%)元C .m (1+a%)b%元D .m (1+a%b%)元5.若a=199519951996199619971997,,199619961997199719981998b c ==,则( ). A .a<b<c B .b<c<a C .c<b<a D .a<c<b6.若n 是奇自然数,a 1,a 2,…,a n 是n 个互不相同的负整数,则( ).A .(a 1+1)(a 2+2)…(a n +n )是正整数B .(a 1-1)(a 2-2)…(a n -n )是正整数C .(11a +1)(21a +2) (1)a +n )是正数 D .(1-11a )(2-21a )…(n -1n a )是正数 7.(x ,y )称为数对,其中x ,y 都是任意实数,定义数对的加法,乘法运算如下: (x 1,y 1)+(x 2,y 2)=(x 1+x 2,y 1+y 2),(x 1,y 1)·(x 2,y 2)=(x 1x 2-y 1y 2,x 1y 2+y 1x 2).则不成立的运算规律是( ).A .乘法交换律:(x 1,y 1)·(x 2,y 2)=(x 2,y 2)·(x 1,y 1)B .乘法结合律:(x 1,y 1)(x 2,y 2)·(x 3,y 3)=(x 1,y 1)((x 2,y 2)·(x 3,y 3))C .乘法对加法的分配律:(x ,y )·((x 1,y 1)+(x 2,y 2))=((x ,y )·(x 1,y 1))+((x ,y )·(x 2,y 2))D .加法对乘法的分配律:(x ,y )+((x 1,y 1)·(x 2,y 2))=((x ,y )+(x 1,y 1))·((x ,y )+(x 2,y 2))8.计算:(3x+9)(2x-5)=________.9.若m=-1998,则│m2+11m-999│-│m2+22m+999│+20=______.10.若x3+x2+x+1=0,则y=x97+x98+…+x103的值是_____.11.如果(1-3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,那么│a1│+│a2│+│a3│+│a4│+│a5│的值为_________.12.已知a,b,c,d是四个不同的有理数,且(a+c)(a+d)=1,(b+c)(b+d)=1,则(a+c)(b+c)的值为________.13.已知A,B,C,D为一直线上的顺次四点,且AC=10,BD=8,求AB·CD+BC·AD的值.14.计算:(12+13+…+12002)(1+12+…+12001)-(1-12+…+12002)(12+13+…+12001).15.在(x2-ax+b)(ax2+x-b)的展开式中,x2的系数是1,x的系数是9,求整数a和b 的值.16.已知3n+11m能被10整除,试证:3n+4+11m+2也能被10整除.答案:解题指导例1 A [提示:∵12345=(111+a )(111-b )=1112+111(a -b )-ab ,∴111(a -b )=12345-1112+ab=24+ab .∵a>0,b>0,∴ab>0.∴24+ab>0,即a -b>0,∴a>b .]例2 a 3b 2的系数为0,a 2b 3的系数为17.例3 D [提示:由已知有3x 3-x -1=0,9x 4+12x 3-3x 2-7x+2001=3x (3x 3-x -1)+4(3x 3-x -1)+2005=2005.若将3x 3-x=1代入,如何求?]例4 28或-26. [提示:∵m 、n 互为相反数,∴m+n=0.∵a 、b 互为负倒数,∴ab=-1.∴x 3-(1+m+n+ab )x 2+(m+n )x 2001+(-ab )2002=x 3-(1+0-1)x 2+0+[-(-1)] 2002=x 3+1=±│x│3+1=28(3),26(3).x x =⎧⎨-=-⎩] 例5 -78. [提示:由题意知(x+2y+m )(2x -y+n )=2x 2+3xy -2y 2-x+8y -6.又(x+2y+m )(2x -y+n )=2x 2+3xy -2y 2+(2m+n )x+(2n -m )y+nm ,根据多项式恒等的条件,得3221,2,1728, 3.186.m n m m n m n n mn +=-⎧=-⎧+⎪-==-⎨⎨=-⎩⎪=-⎩解得故.] 【拓展题】(1)第一次只能得到1×4+4+1=9.若要求最大新数,第二次应取4和9,得到4×9+4+9=49.同理,第三次取9和49,得9×49+9+49=499.则499就是扩充三次的最大数.(2)∵c=ab+a+b=(a+1)(b+1)-1,∴c+1=(a+1)(b+1).取数a和c可得新数d=(a+1)(c+1)-1,∴d+1=(a+1)(c+1)=(a+1)(a+1)(b+1)=(a+1)2(b+1).取数b和c可得新数e=(b+1)(c+1)-1,k∴e+1=(b+1)(c+1)=(b+1)(a+1)(b+1)=(b+1)2(a+1).设扩充后的新数为x,则总存在x+1=(a+1)m·(b+1)n(m、n为正整数).当a=1,b=4时,x+1=2m×5n,又1999+1=2000=24×53,∴1999可以通过上述规则扩充得到.能力训练1.D [提示:由m2+m-1=0,知m2+m=1,∴m3+2m2-1997=m(m2+m)+m2-1997=m+m2-1997=-1996.]2.B [提示:由19a+98b=0,得a=-9819b,ab=9819-b2≤0.]3.B [提示:证明M-N>0.]4.C [提示:由题意知,每件衬衣进价为m元,零售价比进价高a%,•那么零售价是m+ma%元,后又调整为原来零售价的b%出售,那么调整后每件衬衣的零售价为m(1+a%)×b%]5.A [提示:设A=19951995,B=19961996,C=19971997,D=•19981998,•则有B=•A+10001,C=B+10001,D=C+10001.∴(B+10001)(B -10001)=B 2-100012,即C·A=B 2-100012. ∴C·A<B 2.由于B 、C 均为正数,所以1995199519961996,1996199619971997A B B C <<即. 同理,可以得到1996199619971997,1997199719981998B C C D <<即.] 6.D [提示:a 1,a 2,…a n 是n 个互不相同的负整数,其中n 是奇自然数,若a 1=-1,a 1+1=0, 则(a 1+1)(a 2+2)…(a n +n )=0,排除A ;若a 1=-1,a 2=-2,a 3=-3,…,a n =-n ,则(a 1-1)(a 2-2)…(a n -n )=(-2)(-4)(-6)…(-2n )=(-1)n 2×4×6×…×(2n )<0.因为n 是奇数,故排除B ;若a 1=-1,+1=0,则(11a +1).(21a +2) (1)a +n )=0,又排除C . 如果运用直接证法,如何证明?]7.D [提示:易见乘法交换律成立.由((x 1,y 1)·(x 2,y 2))·(x 3,y 3)=(x 1x 2-y 1y 2,x 1y 2+y 1x 2)·(x 3,y 3)=(x 1x 2x 3-y 1y 2x 3-x 1y 2y 3-y 1x 2y 3,x 1x 2y 3-y 1y 2y 3+x 1y 2x 3+y 1x 2x 3=(x 1,y 1)·(x 2x 3-y 2y 3,x 2y 3+y 2x 3)=(x 1,y 1)·((x 2,y 2)·(x 3,y 3)),知乘法结合律成立.由(x ,y )·((x 1,y 1)+(x 2,y 2))=(x ,y )·(x 1+x 2,y 1+y 2)=(x (x 1+x 2)-y (y 1+y 2),x (y 1+y 2)+y (x 1+x 2))=(xx 1-yy 1,xy 1+yx 1)+(xx 2-yy 2,xy 2+yx 2)=((x ,y )·(x 1,y 1))+((x ,y )·(x 2,y 2)).知乘法对加法的分配律成立.由(1,0)+(1,0)·(1,0)=(1,0)+(1,0)=(2,0)≠(2,0)·(2,0)=((1,0)+(1,0))·((1,0)+(1,0)),知加法对乘法的分配律不成立.]8.6x2+3x-45.9.20000.[提示:∵m=-1998,∴m+11=-1987,m+22=-1976.∴m2+11m=m(m+11)=1998×1987.∴m2+11m-999>0.∵m2+22m=m(m+22)=1998×1976,∴m2+22m+999>0.∴│m2+11m-999│-│m2+22m+999│+20=(m2+11m-999)-(m2+22m+999)+20=11m-999-22m-999+20=-11m-1998+20=(-1998)(-11)-1998+20=20000.]10.-1.[提示:由已知,得x4=1.∴y=x97+x98+…+x103=x97(1+x+x2+x3)+x101(1+x+x2+x3)-x104=-(x4)26=-1.]11.1023.[提示:易知a1,a3,a5均小于0,a2,a4均大于0,取x=-1时,a0-a1+a2-a3+a4-a5=45,∴-a1+a2-a3+a4-a5=1023.]12.-1.[提示:设a+b+c+d=m,a+c=x,b+c=y,则a+d=m-y,b+d=m-x,由已知得x(m-y)=y(m-x),即mx-my=0,∴m(x-y)=0,又a,b,c,d互不相同,①②∴a+c≠b+c ,即x≠y . ∴m=0.又x (m -y )=1, ∴-xy=1.故(a+c )(b+c )=xy=-1.]13.设BC=x ,则AB=10-x ,CD=8-x ,AD=18-x .∴AB·CD+BC·AD=(10-x )(8-x )+x (18-x )=80.14.设12+13+…+12001=a ,则 原式=(a+12002)(1+a )-(1+a+12002)a=12002. 15.由条件知1,9.ab b a ab b --=⎧⎨+=⎩ 由①得(a -1)(b -1)=2,因为a 、b 是整数,于是 11,12,11,12,1211121 1.a a a a b b b b -=-=-=--=-⎧⎧⎧⎧⎨⎨⎨⎨-=-=-=--=-⎩⎩⎩⎩或或或 由②检验知a=2,b=3.16.3n+4+11 m+2=3 4×3 n +11 2×11 m =81×3 n +121×11 m =80×3 n +120×11 m +(3 n +11 m ).∵10│80×3 n ,10│120×11 m ,10│3 n +11 m ,∴10│(80×3 n +120×11 m +(3 n +11 m )),即10│(3 n+4 +11 m+2).。
北师大版七年级数学下册说课稿(含解析):第一章整式的乘除4整式的乘法
北师大版七年级数学下册说课稿(含解析):第一章整式的乘除4整式的乘法一. 教材分析北师大版七年级数学下册第一章整式的乘除4整式的乘法,这部分内容是学生在学习了整式的加减法之后,进一步深化对整式的运算法则的理解。
本节内容主要包括整式乘法的基本概念、运算法则以及具体的运算方法。
通过这部分的学习,使学生能够熟练掌握整式的乘法运算,为后续学习分式的乘除法和函数的初步概念打下基础。
二. 学情分析学生在学习这部分内容时,已经有了一定的数学基础,例如整式的加减法、有理数的乘除法等。
但是,对于整式的乘法,学生可能还存在着一定的困惑,例如整式乘法的运算法则、如何快速准确地进行计算等。
因此,在教学过程中,需要结合学生的实际情况,用学生熟悉的生活实例引入整式的乘法,让学生在理解的基础上掌握整式的乘法运算。
三. 说教学目标1.知识与技能目标:使学生理解整式乘法的概念,掌握整式乘法的运算法则,能够熟练地进行整式的乘法运算。
2.过程与方法目标:通过合作交流、自主探究的学习过程,培养学生解决问题的能力,提高学生的数学思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和细心,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:整式乘法的概念、运算法则以及运算方法。
2.教学难点:整式乘法的运算方法,尤其是如何正确地合并同类项。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作交流法、自主探究法等,引导学生主动参与学习,提高学生的学习兴趣和积极性。
2.教学手段:利用多媒体课件、教学卡片等辅助教学,使学生更直观地理解整式的乘法运算。
六. 说教学过程1.引入新课:通过生活实例,引导学生思考如何计算两个多项式的乘积,激发学生的学习兴趣。
2.讲解整式乘法的概念和运算法则:引导学生通过合作交流、自主探究的方式,总结整式乘法的运算法则。
3.演示整式乘法的运算方法:通过多媒体课件或教学卡片,展示整式乘法的具体运算过程,让学生更直观地理解。
专题02 整式的乘法四种压轴题型全攻略(解析版)四川成都七年级数学下册-
专题02整式的乘法四种压轴题型全攻略【知识点梳理】整式乘法:①单项式乘单项式:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
②单项式乘多项式:根据乘法分配律,用单项式乘以多项式的每一项,再把所得的积相加。
③多项式乘多项式:先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。
整式除法:①单项式除单项式:(1)将它们的系数相除作为上的系数;(2)对于被除式和除式中都含有的字母,按同底幂的除法分别相除,作为商的因式;(3)被除式中独有的字母,则连同它的指数一起作为商的因式。
②多项式除单项式:多项式的每一项分别除以单项式,然后再把所得的商相加。
类型一、不含某一项问题【详解】(1)()()212x x ++2242x x x =+++2252x x =++∴一次项系数是5,()()2132x x +-26432x x x =-+-262x x =--∴一次项系数是1-,()()ax b mx n ++2amx axn bmx bn =+++()2amx an bm x bn=+++∴一次项系数是an bm +.(2)()()223x x mx n +++()()2269x x x mx n =++++432322666999x mx nx x mx nx x mx n=++++++++()()()432669699x m x n m x n m x n=++++++++ 即不含二次项,也不含一次项,690690n m n m ++=⎧∴⎨+=⎩,解得23m n =-⎧⎨=⎩,231m n ∴+=-+=.(3)设223M x mx =+-,则()()222331x mx x x +--+4323222623393x x x mx mx mx x x =-++-+-+-()()()4322623393x m x m x m x =+-+--++-()24323123M x x x ax bx cx ++=+++- 62339m a m b m c -=⎧⎪∴--=⎨⎪+=⎩,()()()226139a b c m m m ∴++=-+--++212139m m m =---++4=-.【点睛】本题考查了多项式乘以多项式,解决本题的关键是准确进行计算,同时理解恒等变形;类型二、与几何图形综合例.(2022上·四川成都·七年级校考期中)将7张相同的小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD 内,未被覆盖的部分恰好被分割为两个长方形,面积分别为12S S ,,已知小长方形纸片的长为a ,宽为b ,且a >b .(1)当a =9,b =2,AD =30时,请求:①长方形ABCD 的面积;②12S S -的值;(2)当AD =30时,请用含a ,b 的式子表示12S S -的值.(3)若AB 长度不变,AD 变长,将这7张小长方形纸片还按照同样的方式放在新的长方形ABCD 内,而12S S -的值总保持不变,则a ,b 满足的关系是___________.【答案】(1)①510,②48-(2)12030b ab a--(3)4a b=【分析】(1)①根据长方形的面积公式,直接计算即可;②求出12S S 、的面积,相减即可;(2)用含a 、b 的式子表示出12S S 、的面积,即可求得结论;(3)用含a 、b 、AD 的式子表示出12S S -,根据12S S -的值总保持不变,即与AD 的值无关,整理后,让AD 的系数为0即可.【详解】(1)解:①长方形ABCD 的面积为30×(4×2+9)=510;②()()12309423032948S S =-⨯⨯--⨯=-⨯﹣;(2)解:由题意得()()12430303S b a S a b =-=-,,∴()()12430303b a b S S a -=---1204303b ab a ab=--+12030b ab a =--;(3)解:由题意得()()1243S b AD a S a AD b =-=-,,∴()()1243b AD a a A S S D b -=---443b AD ab a AD ab=⋅--⋅+()4b a AD ab =-+,∵若AB 长度不变,AD 变长,而12S S -的值总保持不变,∴40b a -=,∴4a b =,故答案为:4a b =.【点评】本题主要考查了整式的混合计算的应用,有理数四则混合运算,熟练掌握运算法则是解本题的关键.【变式训练1】对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1,可以得到222()2a b a ab b +=++这个等式,请解答下列问题:(1)写出图2中所表示的数学等式______________;(最后结果)(2)根据整式乘法的运算法则,通过计算验证上述等式;(3)利用(1)中得到的结论,解决问题:若a+b+c=10,ab+ac+bc=35,求a(4)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张边长分别为b的长方形纸片拼出一个面积为(5a+2b)(3a+5b)的长方形,求x+y+z的值.【初步运用】(1)仿照例子,图③可以解释等式_______.(2)取图①中的若干个图形(三种图形都要取到)拼成一个长方形,使它的相邻两边长分别为23a b +和5a b +,不画图形,试通过计算说明需要C 类卡片多少张?【拓展运用】(3)若取图①中的若干个图形(三种图形都要取到)拼成一个长方形,使它的面积为22253a ab b ++,通过操作,你会发现拼成的长方形的长是______,宽是______,将22253a ab b ++改写成两个整式积的形式为______.并画图说明.【答案】(1)()()222a b a b a ab b ++=++;(2)15张;(3)23a b +,a b +,()()23a b a b ++,图形见解析【分析】(1)根据图②结合图形的面积即可得到结论;(2)根据多项式乘多项式的法则即可得到结论;(3)根据已知条件可画出图形,于是得到长方形的两边,即可.【详解】解:(1)图③可以解释为:()()222a b a b a ab b ++=++;故答案为:()()222a b a b a ab b ++=++;(2)∵()()2223521315a b a b a ab b ++=++,∴需要C 类卡片15张;(3)如图:通过操作,你会发现拼成的长方形的长是23a b +,宽是a b +,()()2225323a ab b a b a b ++=++.故答案为:23a b +,a b +,()()23a b a b ++【点睛】本题考查了多项式乘以多项式,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.(1)小李同学拼成一个宽为()a b +,长为(2)a b +的长方形(如图2),并用不同的方法计算面积,从而得出相应的等式:(答案直接填写到横线上);(2)如果用这三种纸片拼出一个面积为(2)(3)a b a b ++的大长方形,求需要A ,片各多少张;(3)利用上述方法,画出面积为22252a ab b ++的长方形,并求出此长方形的周长(用含这个长方形的周长为:2[(2)(2)]66b a a b a b ⨯+++=+,答:此长方形的周长为66a b +.类型三、规律性问题(1)填出()4a b +展开式中共有________项,第三项是________.(2)直接写出()512y -的展开式.利用“贾宪三角”可知:(x +“贾宪三角”中还蕴含了许多数字产生的规律,如第三斜列的数字律,若数字1是第1个数,数字表示).【答案】222x xy y ++,3x例2.若220x x +-=,则3222016x x x +-+等于()A .2020B .2019C .2018D .-2020【答案】C【分析】将220x x +-=变形为22x x =-+,22x x +=,代入3222016x x x +-+即可求解.【详解】解:∵220x x +-=,∴22x x =-+,22x x +=,∴3222016x x x +-+2222016x x x x =+-+ ()2222016x x x x =-++-+ 22016x x =++22016=+=2018.故选:C【点睛】本题考查了根据已知代数式的值求新代数式的值,将已知条件适当变形,代入所求代数式求解是解题关键.【变式训练1】.阅读材料:我们知道,()424213x x x x x -+=-+=,类似地,我们把()a b +看成一个整体,则()()()()()()424213a b a b a b a b a b +-+++=-++=+.“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,尝试应用整体思想解决下列问题:(1)把()2a b -看成一个整体,合并()()()222265a b a b a b ---+-;(2)已知222x y -=-,求261215x y --的值;(3)已知21a b -=-,25b c -=,10c d -=-,求()()()22a c b d b c -+---的值.【答案】(1)()2a b -(2)27-(3)6-【分析】(1)把()2a b -提出了进行计算即可得;(2)()22612156215x y x y --=--,把222x y -=-代入进行计算即可得;(3)()()()()()()2222a c b d b c a b b c c d -+---=-+-+-,把21a b -=-,25b c -=,10c d -=-代入进行计算即可得.【详解】(1)解:()()()()()()22222265265a b a b a b a b a b ---+-=-+-=-.(2)解:()22612156215x y x y --=--,(1)写出6()a b +的展开式;(2)写出6()a b -的展开式;(3)求8()a b +展开式中所有项的系数和;(4)求2023()a b -展开式中所有项的系数和.【答案】(1)654233245661520156a a b a b a b a b ab b ++++++(2)654233245661520156a a b a b a b a b ab b ++++++(3)256(4)0【分析】(1)根据规律能得出()()()()0123a b a b a b a b ++++,,,的值,即可推出6()a b +的值;(2)根据规律得出6()a b -展开式,即可得出答案.(3)先求出()()()()0123a b a b a b a b ++++,,,的系数和,然后找到规律即可解答;(4)先求出()()()()0123a b a b a b a b ----,,,的系数和,然后找到规律即可解答.【详解】(1)解:根据“杨辉三角”以及出()()()()0123a b a b a b a b ++++,,,可得:()6654233245661520156a b a a b a b a b a b ab b +=++++++.(2)解:根据()6654233245661520156a b a a b a b a b a b ab b +=++++++可得:()6654233245661520156a b a a b a b a b a b ab b -=-+-+-+.(3)解:对于()na b +当0n =时,展开式中所有项的系数和为012=,当1n =时,展开式中所有项的系数和为122=,当2n =时,展开式中所有项的系数和为242=,当3n =时,展开式中所有项的系数和为382=,⋅⋅⋅当8n =时,展开式的项系数和为82.所以8()a b +的系数和为82256=.(4)解:对于()na b -当0n =时,展开式中所有项的系数和为0,当1n =时,展开式中所有项的系数和为0,当2n =时,展开式中所有项的系数和为0,当3n =时,展开式中所有项的系数和为0,⋅⋅⋅当8n =时,展开式的项系数和为0.所以()8a b -的系数和为0.【点睛】本题主要考查了数字规律、“杨辉三角”展开式中所有项的系数和的求法等知识点,掌握展开式中所有项的系数和得到规律是关键.4.已知2530x x -+=,求()()()43111x x x x -+--+的值.【答案】9-【分析】由2530x x -+=,可得253-=-x x ,根据()()()43111x x x x -+--+()2253x x =--,代值求解即可.【详解】解:∵2530x x -+=,∴253-=-x x ,∴()()()43111x x x x -+--+2231241x x x x x =+---++22103x x =--()2253x x =--()233=⨯--9=-,∴()()()43111x x x x -+--+的值为9-.【点睛】本题考查了多项式乘多项式,代数式求值.解题的关键在于正确的化简求值.5.如图,长为cm y ,宽为cm x 的大长方形被分㸝成7块,除阴影部分的A 和B 外,其他5块空白部分是形状、大小完全相同的小长方形,且小长方形的宽为5cm .(1)由图可知:每个小长方形的长为______cm ;(用含x 或y 的代数式表示)(2)用含x 或y 的代数式表示阴影部分A 和B 的周长之和;(结果化为最简形式)(3)当30y =时,用含x 的代数式表示阴影部分A 与B 的面积之和.【答案】(1)()15y -(2)()410cm x +(3)()230375cmx -【分析】本题考查了列代数式以及整式的混合运算;(1)观察图形,由大长方形的长等于小长方形的宽的3倍与小长方形的长的和计算即可.(2)设阴影A 的长为m ,宽为n ,阴影B 的长为p ,宽为q ,根据()15cm A l m y ==-小长方形的长,()10cm n x =-,()15cm p =,()()()1515cm q x y x y =--=-+,根据题意计算即可.(3)设阴影A 的长为m ,宽为n ,阴影B 的长为p ,宽为q ,根据()15cm A l m y ==-小长方形的长,()10cm n x =-,()15cm p =,()()()1515cm q x y x y =--=-+,根据题意计算即可.【详解】(1)根据题意,得35y l =⨯+小长方形的长,故()15cm l y =-小长方形的长,故答案为:()15y -.(2)设阴影A 的长为m ,宽为n ,阴影B 的长为p ,宽为q ,根据()15cm A l m y ==-小长方形的长,()10cm n x =-,()15cm p =,()()()1515cm q x y x y =--=-+,∴阴影部分A 的周长为()()()()2215102250cm m n y x x y +=-+-=+-,阴影部分B 的周长为()()()()2215152260cm p q x y x y +=-++=-+,∴阴影部分A 和B 的周长之和为()()()22502260410cm x y x y x +-+-+=+.(3)设阴影A 的长为m ,宽为n ,阴影B 的长为p ,宽为q ,根据()15cm A l m y ==-小长方形的长,()10cm n x =-,()15cm p =,()()()1515cm q x y x y =--=-+,∴阴影部分A 的面积为()()()()2151********cmmn y x xy y x =--=--+,阴影部分B 的面积为()()()2151********cm pq x y x y =-+=-+,∴阴影部分A 和B 的面积之和为()()()21015150151522525375cm xy y x x y xy y --++-+=-+.当30y =时,()()230375cm x -.6.阅读以下材料,回答下列问题:小明遇到这样一个问题:求计算()()()22334x x x +++所得多项式的一次项系数.小明想通过计算()()()22334x x x +++所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找()()223x x ++所得多项式中的一次项系数.通过观察发现:也就是说,只需用2x +中的一次项系数1乘以23x +中的常数项3,再用2x +中的常数项2乘以23x +中的一次项系数2,两个积相加13227⨯+⨯=,即可得到一次项系数.延续.上面的方法,求计算()()()22334x x x +++所得多项式的一次项系数.可以先用2x +的一次项系数1,23x +的常数项3,34+x 的常数项4,相乘得到12;再用23x +的一次项系数2,2x +的常数项2,34+x 的常数项4,相乘得到16;然后用34+x 的一次项系数3,2x +的常数项2,23x +的常数项3,相乘得到18,最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算()()2132x x ++所得多项式的一次项系数为______.(2)计算()()()13243x x x ++-所得多项式的一次项系数为______.(3)若计算()()()221321x x x x a x -+-+-所得多项式的一次项系数为0,则=a ______.(4)计算()51x +所得多项式的一次项系数为______,二次项系数为______.(5)计算()521x -所得多项式的一次项系数为______,二次项系数为______.【答案】(1)7(2)7-(3)1-(4)5,10(5)10,40-【分析】(1)结合已知可得(21)(32)x x ++所得多项式的一次项系数2213=⨯+⨯,即可求解;(2)结合已知可得(1)(32)(43)x x x ++-所得多项式的一次项系数1(3)231(3)412=⨯-⨯+⨯⨯-+⨯⨯,即可求解;(3)由22(1)(3)(21)x x x x a x ++-+-所得多项式中不含一次项,可得()()()()11311210a a -⨯⨯-+-⨯⨯-+⨯⨯=,即可求解;(4)(5)根据题目中提供的计算方法进行计算即可.【详解】(1)解:22137⨯+⨯=,故答案为:7;(2)1(3)231(3)4126987⨯-⨯+⨯⨯-+⨯⨯=--+=-,故答案为:7-;(3)由题意得,()()()()11311210a a -⨯⨯-+-⨯⨯-+⨯⨯=,∴222111121A B C A ABCD A C B D S S S S =--正方形四边形四边形,且115A B =,224C B =,225A C n =-,∴2154(5)25420mn n mn n S =---=--+;如图所示,图②中阴影部分面积为∴1112112A B D A ABCD C D EF S S S S =--正方形四边形四边形,且125A A =,4EF =,15C F m =-,∴2254(5)25420mn m mn m S =---=--+,∴12(25420)(25420)4()S S mn n mn m m n -=---+---+=-,当5m n -=时,124()4520S S m n -=-=⨯=,故答案为:20.【点睛】本题主要考查图像变换与面积的关系,理解图形变换中边与边的和与差的关系是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即表达式为: y(m x a b)
2)把阴影部分面积转化为大矩形的面积减
去两块空的矩形的面积,即:
S阴 y mx ya yb
• 三、过手训练: 1、例1:计算:
(1)2ab(5ab 3a b)
2 2
2 2 1 (2)( ab 2ab ) ab; 3 2
(3) 6 x( x 3 y);
2、问题:如图所示, 求 图中阴影部分的面积: 阴影部分是矩形, 其面积可表示为 (m x a b) y 平方单位。
这里的
y(m x a b) 表示一个单项式与一
个多项式的乘积。
2、问题:如图所示, 求 图中阴影部分的面积: 阴影部分是矩形, 其面积可表示为 (m x a b) y 平方单位。 阴影部分面积的求法: 1)直接用阴影部分矩形的实际长和宽来求,
2 m 3 5 2 3 n
求m.n
(3)计算图中的阴影部分的面积: (4)求证对于任意自然数
n代数式 n(n+7)- n(n-5)+6
的值都能被6整除。
• 四、课时小结: 1、单项式乘以多项式的乘法法则及注 意事项; 2、转化的数学思想。 • 五、课后作业:
P26 习题1.9
PC蛋蛋群 PC蛋蛋群
wrg52xua
活力的食物。我用法术把其它猫隔离在外,独自享用这从未有过的美味。同时,我尾巴上的金色花纹持续增加,第四条 尾巴又出现了。”“正在我欣喜之时,石壁上居然打开了一道门,石门打开的同时,一股浓烈的杀气从石门背后涌出, 我转身看去,身后猫还没来得及发出惨叫,就已经死去了。我惊恐的等着那扇门,走进来的并不是什么可怕的魔鬼,而 是一个银色头发的少女,给人一种澄澈清纯的感觉。尽管她隐藏的很好,但我还是看出,她不过是一只修为极高的 妖。”“哦……没想到百蝶也有清纯的时代……可惜当时没有照相机……”慕容凌娢貌似有些抓错了重点,“那之后又 怎么样了?百蝶为什么单单没有杀你?”“‘没想到旧地重游还能碰见同类,你我都是修炼的妖,相遇也算是缘分,我 叫百蝶。来吧,我带你出去。’那时的百蝶伸出手,对我如是所说……”茉莉45°角仰望星空,一看就是在回忆过去。 “那是的百蝶还真是心地善良啊……我是说,抛开那几只被秒的猫,百蝶确实挺乐于助人……”看到茉莉阴森的眼神, 慕容凌娢马上改了口。“她把我带出了墓地,并且告诉我,像我这样不需掠夺生命就可以增长修为的妖是很少见的,我 尾巴上的条纹就是我经历的劫数,我其实已经死过很多次,只是自己没有发觉而已。她还说她有办法可以快速提高修为, 问我愿不愿和她一起修炼。我不愿意为了增长修为而打开杀戒,毕竟,修炼对于我来说,是一种顺其自然的东西……于 是,百蝶就带着我来到了大陆东南边的海岸上,她的速度很快,几乎是在一瞬间就到达了目的地。海岸边停止一支船队, 她指着那艘最大的船对我说,‘登上它吧,它也许能带你回家。’我趁人不注意,偷偷爬上了甲板,向百蝶道谢时,她 又问我,‘真的不跟我去闯荡世界?我说‘不去。’‘不后悔?’‘绝对不后悔。’”“SO……”慕容凌娢好不容易理 清了思路,“你是登上某航海家的船才偷渡到天朝来的?这算不算生物入侵啊!”“我其实也是被百蝶坑了,本来以为 能坐上这条船回老家,结果又跑到了这个国度。然后呢……我就开始在这附近游荡,顺便等着百蝶。因为……我确实后 悔了。现在没实力干什么都麻烦,我要赶快突破万年修为大关,然后就可以为所欲为了!”“额……茉莉啊,你变 了……”第073章 古代版家长寄语“这样很好啊,朝廷需要你这样的人才,(虽然不知道你除了弹琴好听,还有什么特 长)晴朝等着你去发展(比如说那个没事儿就乱嗑 药的皇帝),历史等着你去改写(圆明园的建成及毁灭,列强入侵, WW2……要是这些都消失,那我们的历史书要少好多页啊!保护树木,从你开始。)”慕容凌娢边开导边在脑海中吐槽, 这个时代的BUG实在是太多了,要是真的修
3 3 3 2 2a b c ( a bc ac 1) 5 2
4 7
③ ④
3xy2 xy x( y 2) x
an 1 (an 1 an 1 an 3)
• 3、解答题:
(1)如果y Rx b,当x R 1时, 求y的值。
(2)若 2 x y ( x y 3xy ) 2 x y 6 x y ,
1.6
整式的乘法(二)
• 一、复习引入:
1、复习单项式与单项式的乘法法则 计算:
(1)( x ) x (2 y) (2xy) ( x) y
2 3 3 2 3
1 3 3 2 (2) 2(a bc ) a(bc ) (abc ) (abc ) 2
2 2
2、问题:如图所示, 求 图中阴影部分的面积: 阴影部分是矩形, 其面积可表示为 (m x a b) y 平方单位。
1 2 (4) 2a ( ab b ) 2
2
• 师生互动点评:
(1)、多项式每一项要包括前面的符号;
(2)、单项式必须与多项式中每一项相乘,结 果的项数与原多项式项
• 数一致;
(3)、单项式系数为负时,改变多项式每项的 符号。
• 2、随堂练习: (1)计算: ① 2xy2 ( x2 2 y 2 1) ②