高二数学圆的方程
241圆的标准方程(基础知识+基本题型)(含解析)2022高二数学(选择性必修第一册)
2.4.1圆的标准方程(基础知识+基本题型)知识点一 确定圆的几何要素确定一个圆的最基本的要素是圆心和半径,当圆心位置与半径大小确定后,圆就唯一确定了.从集合的角度理解圆(1)圆的定义在平面内,到定点的距离等于定长的点的集合,定点叫做圆心,定长叫做半径.(2)确定一个圆的条件在平面直角坐标系中,圆心为(,)A a b ,半径长为(0)r r >的圆上的点M 的集合就是集合{|||}P M MA r ==.知识点二 圆的标准方程1.圆的标准方程的推导如图所示,设圆上任意一点(,)M x y ,圆心A 的坐标为(,)a b ,由||MA r =r =,等式两边平方得222()()x a y b r -+-=.①若点(,)M x y 在圆上,易知点M 的坐标满足方程①;反之,若点(,)M x y 的坐标适合方程①,则点M 在圆上,我们把方程222()()x a y b r -+-=称为圆心为(,)A a b ,半径长为(0)r r >的圆的标准方程.确定圆的标准方程的条件(1)圆的标准方程中有三个参数a ,b ,r ,其中实数对(,)a b 是圆心的坐标,能确定圆的位置;正数r 表示圆的半径,能确定圆的大小.(2)已知圆的圆心坐标和圆的半径,即可写出圆的标准方程,反之,已知圆的标准方程,即可写出圆的圆心坐标和圆的半径.2.几种常见的特殊位置的圆的方程1.圆的标准方程的推导圆的标准方程为222()()x a y b r-+-=,圆心为(,)A a b,半径长为r.设所给点为00(,)M x y,则点M与圆的位置关系及判断方法如下:(系来判断.(2)判断点与圆的位置关系时,还可将点的坐标代入圆的标准方程的左边,与半径的平方比较大小.考点一:圆的标准方程例1.求满足下列条件的各圆的方程:(1)圆心在原点,半径是3;(2)已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上;(3)经过点()5,1P ,圆心在点()8,3C -.【思路点拨】一般情况下,如果已知圆心或易于求出圆心,可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.【答案】(1)229x y +=(2)22(2)10x y -+=(3)()()228325x y -++= 【解析】(1)229x y +=(2)线段AB 的中垂线方程为240x y --=,与x 轴的交点(2,0)即为圆心C 的坐标,所以半径为||CB =,所以圆C 的方程为22(2)10x y -+=.(3)解法一:∵圆的半径||5r CP ===,圆心在点()8,3C - ∴圆的方程是()()228325x y -++=解法二:∵圆心在点()8,3C -,故设圆的方程为()()22283x y r -++= 又∵点()5,1P 在圆上,∴()()2225813r -++=,∴225r = ∴所求圆的方程是()()228325x y -++=.例2 已知圆过两点(3,1)A ,(1,3)B -,且它的圆心在直线320x y --=上,求此圆的标准方程.解:方法1:设所求圆的标准方程为222()()x a y b r -+-=.依题意,有222222(3)(1)(1)(3)320a b r a b r a b ⎧-+-=⎪--+-=⎨⎪--=⎩,即22222262102610320a b a b r a b a b r a b ⎧+--=-⎪++-=-⎨⎪--=⎩,解得22410a b r ⎧=⎪=⎨⎪=⎩.故所求圆的标准方程为22(2)(4)10x y -+-=.方法2:直线AB 的斜率311132k -==---, 所以线段AB 的垂直平分线m 的斜率为2.线段AB 的中点的横坐标和纵坐标分别为3112x -==,1322y +==. 因此直线m 的方程为22(1)y x -=-即20x y -=.又因为圆心在直线320x y --=上,所以圆心是这两条直线的交点.联立方程,得20320x y x y -=⎧⎨--=⎩,解得24x y =⎧⎨=⎩.设圆心为C ,所以圆心坐标为(2,4),又因为半径长||r CA ==所以所求圆的标准方程为22(2)(4)10x y -+-=.方法3:设圆心为C .因为圆心C 在直线320x y --=上,所以可设圆心C 的坐标为(,32)a a -.又因为||||CA CB =2a =.所以圆心为(2,4),半径长||r CA ==.故所求圆的标准方程为22(2)(4)10x y -+-=.【总结升华】确定圆的方程的主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a ,b )和半径r ,一般步骤为:(1)根据题意,设所求的圆的标准方程为(x ―a)2+(y ―b)2=r 2;(2)根据已知条件,建立关于a 、b 、r 的方程组;(3)解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程.考点二:点与圆的位置关系例3.判断点M (6,9),N (3,3),Q (5,3)与圆(x ―5)2+(y ―6)2=10的位置关系.【答案】M 在圆上 N 在圆外 Q 在圆内【解析】 ∵圆的方程为(x ―5)2+(y ―6)2=10,分别将M (6,9),N (3,3),Q (5,3)代入得(6―5)2+(9―6)2=10,∴M 在圆上;(3―5)2+(3―6)2=13>10,∴N 在圆外;(5―5)2+(3―6)2=9<10,∴Q 在圆内.【总结升华】点与圆的位置关系,从形的角度来看,设圆心为O ,半径为r ,则点P 在圆内⇔|PQ|<r ;点P 在圆上⇔|PQ|=r ;点P 在圆外⇔|PO|>r .从数的角度来看,设圆的标准方程为(x ―a)2+(y ―b)2=r 2,圆心为A (a ,b ),半径为r ,则点M (x 0,y 0)在圆上⇔(x 0―a)2+(y 0―b)2=r 2;点M (x 0,y 0)在圆外⇔(x 0―a)2+(y 0―b)2>r 2;点M (x 0,y 0)在圆内⇔(x 0―a)2+(y 0―b)2<r 2.例4 已知点(1,2)A 在圆C :222()()2x a y a a -++=的内部,求实数a 的取值范围. 解:因为点A 在圆的内部,所以222(1)(2)2a a a -++<.所以250a +<,52a <-.所以a 的取值范围是5|2a a ⎧⎫<-⎨⎬⎩⎭. 总结:利用已知点与圆的位置关系确定圆中的参数的值或取值范围时,可直接将点的坐标代入圆的标准方程,依据点与圆的位置关系,得出方程或不等式,求解即可.例5 已知两点1(3,8)P 和2(5,4)P ,求以线段12P P 为直径的圆的标准方程,并判断点(5,3)M ,(3,4)N ,(3,5)P 是在圆上、在圆内、还是在圆外.解:设圆心(,)C a b ,半径长为r .因为点C 为线段12P P 的中点,所以3542a +==,8462b +==,即圆心坐标为(4,6)C .又由两点间的距离公式,得1||r CP =所求圆的标准方程为22(4)(6)5x y -+-=.分别计算点M ,N ,P 到圆心C 的距离:||CM =>||CN =,||CP =所以点点M 在此圆外,点N 在此圆上,点P 在此圆内.。
高二数学圆的标准方程 圆的一般方程知识精讲 人教版
高二数学圆的标准方程 圆的一般方程知识精讲 人教版一. 本周教学内容:《解析几何》第二章第二单元§2.5 圆的标准方程;§2.6 圆的一般方程二. 重点、难点:1. 圆的定义:在平面上,到定点的距离等于定长的点的轨迹,叫做圆。
这定点叫做圆的圆心,通常用C 表示;这定点叫做圆的半径,通常用r 表示。
根据圆的定义,易导出圆的标准方程。
2. 圆的标准方程的导出:设圆心C (a ,b ),半径为r ,设P (x ,y )是圆C 上任意一点,则 ()()由圆的定义,可知,即PC r x a y b r =-+-=22()()化简,得x a y b r -+-=222此即以(,)为圆心,以为半径的圆的标准方程a b r C(1)由标准方程易得圆心坐标及半径;反之,若已知圆心坐标及半径,易得圆的标准方程。
(2)由标准方程可知,欲确定(求出)一个圆,需三个条件:a ,b ,r ,因此在求圆的方程的时候,通常要列出关于a ,b ,r 为未知的三个方程,求解a ,b ,r ,再写出标准方程。
()()若将圆的标准方程进一步去括号,整理,可得圆的一般方程。
x a y b r -+-=2223022.圆的一般方程:x y Dx Ey F ++++=当且仅当时,上述方程才表示圆,其圆心坐标为,,半径D E F DE 224022+->--⎛⎝ ⎫⎭⎪r D E F =+-12422。
事实上,上述结论可由如下方法得来:把的左式配方变形,得:x y Dx Ey F 220++++= x D y E D E F +⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪=+-22442222 若,则该方程表示以,为圆心,以为半D E F C DE D EF 22224022124+->--⎛⎝ ⎫⎭⎪+-径的圆。
若,则该方程即D E F x D y E 222240220+-=+⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪=x D y E DE =-=---⎛⎝ ⎫⎭⎪2222且,此时该方程只有一个解,,它表示一个点。
高二数学圆的方程练习题
高二数学圆的方程练习题1. 某圆的半径为3,圆心坐标为(2, -1),求该圆的方程。
解析:设该圆的方程为(x-a)² + (y-b)² = r²(a为圆心横坐标,b为圆心纵坐标,r为半径)根据已知条件得到:(x-2)² + (y+1)² = 3²将方程展开得:x² - 4x + 4 + y² + 2y + 1 = 9整理得:x² + y² - 4x + 2y - 4 = 0所以该圆的方程为x² + y² - 4x + 2y - 4 = 02. 某圆的直径的两个端点分别为A(1, 2)和B(5, 6),求该圆的方程。
解析:首先求出圆心坐标:圆心的横坐标为直径的中点的横坐标,纵坐标为直径的中点的纵坐标圆心的横坐标 = (1+5)/2 = 3圆心的纵坐标 = (2+6)/2 = 4所以该圆的圆心为(3, 4)然后求出半径:半径的长度等于直径的长度的一半直径AB的长度= √[(5-1)² + (6-2)²] = 2√2所以半径等于直径的一半:r = (2√2)/2 = √2圆心坐标为(3, 4),半径为√2,所以该圆的方程为:(x-3)² + (y-4)² = (√2)²展开得:x² + y² - 6x - 8y + 13 = 0所以该圆的方程为:x² + y² - 6x - 8y + 13 = 03. 已知圆的方程为:x² + y² + 2x - 4y - 4 = 0,求该圆的圆心坐标和半径。
解析:根据已知方程可得:(x+1)² + (y-2)² = 9将方程展开得:x² + y² + 2x - 4y + 1 + 4 - 9 = 0整理得:x² + y² + 2x - 4y - 4 = 0可见,已知的方程与题目中给出的方程相同,所以该圆的圆心坐标为(-1, 2),半径为3。
高二数学直线圆椭圆知识点
高二数学直线圆椭圆知识点直线的基本性质:1. 直线的定义:直线是由无数个点组成,且沿着同一方向延伸。
2. 直线的方程:直线可以用一般式方程、点斜式方程或两点式方程表示。
其中,一般式方程为Ax + By + C = 0,点斜式方程为y - y₁ = k(x - x₁),两点式方程为(x - x₁)/(x₂ - x₁) = (y - y₁)/(y₂ -y₁)。
3. 直线的斜率:直线的斜率表示直线的倾斜程度,可以通过斜率公式求得。
斜率公式为k = (y₂ - y₁)/(x₂ - x₁)。
4. 直线的截距:直线与坐标轴的相交点称为直线的截距。
直线与x轴相交时的截距为x轴截距,直线与y轴相交时的截距为y轴截距。
圆的基本性质:1. 圆的定义:圆是由到一个固定点距离相等的所有点组成的集合,固定点称为圆心,距离称为半径。
2. 圆的方程:圆的标准方程为(x - h)² + (y - k)² = r²,其中(h, k)为圆心坐标,r为半径。
3. 圆的弧长:圆弧的长度称为圆的弧长。
圆的弧长可以通过弧度制或度数制来计算。
4. 圆的面积:圆的面积可以通过公式πr²来计算,其中π取近似值3.14。
椭圆的基本性质:1. 椭圆的定义:椭圆是平面上到两个定点的距离之和等于常数的点的集合。
2. 椭圆的焦点:椭圆的定点称为焦点,焦点到椭圆上任意一点的距离之和等于常数。
3. 椭圆的长轴与短轴:椭圆的长轴是通过两个焦点并且垂直于焦点连线的线段,短轴是通过椭圆的圆心且垂直于长轴的线段。
4. 椭圆的离心率:离心率是椭圆焦点与长轴的距离之比,每个椭圆都有一个离心率,离心率大于1时,椭圆变成双曲线,离心率等于1时,椭圆变成抛物线。
总结:数学中直线、圆和椭圆是常见的几何图形,它们有着各自的定义和基本性质。
直线的方程可以用一般式方程、点斜式方程或两点式方程表示,而圆的方程为标准方程。
椭圆的定义是任意一点到两个定点的距离之和等于常数。
高二数学必修二 第四章 圆与圆的方程知识点总结
第四章 圆 与 方 程★1、圆的定义:平面内到肯定点的间隔 等于定长的点的集合叫做圆,定点圆心,定长为圆的半径。
设M (x,y )为⊙A 上随意一点,则圆的集合可以写作:P = {M |MA| = r }★2、圆的方程(1)标准方程()()222r b y a x =-+-,圆心()b a ,,半径为r ; 点00(,)M x y 与圆222()()x a y b r -+-=的位置关系:当2200()()x a y b -+->2r ,点在圆外; 当2200()()x a y b -+-=2r ,点在圆上 当2200()()x a y b -+-<2r ,点在圆内; (2)一般方程022=++++F Ey Dx y x(x+D/2)2+(y+E/2)2=(D 2+E 2-4F)/4 (0422>-+F E D )当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+=当0422=-+F E D 时,表示一个点;当0422<-+F E D 时,方程不表示任何图形。
(3)求圆的方程的方法:待定系数法:先设后求。
确定一个圆须要三个独立条件,若利用圆的标准方程,需求出a ,b ,r ;若利用一般方程,须要求出D ,E ,F ; 干脆法:干脆依据已知条件求出圆心坐标以及半径长度。
另外要留意多利用圆的几何性质:如弦的中垂线必经过圆心,以此来确定圆心的位置。
★3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种状况:(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的间隔 为22B AC Bb Aa d +++=,则有相离与C l r d ⇔>;相切与C l r d ⇔=;相交与C l r d ⇔< (2)过圆外一点的切线:设点斜式方程,用圆心到该直线间隔 =半径,求解k ,②若求得两个一样的解,带入切线方程,得到一条切线;接下来验证过该点的斜率不存在的直线(此 时,该直线肯定为另一条切线)(3)22=r 2,圆上一点为(x 0,y 0),则过此★4、圆与圆的位置关系:通过两圆半径的与(差),与圆心距(d )之间的大小比拟来确定。
高二数学圆的方程知识点
高二数学圆的方程知识点圆是几何中的重要概念之一,它在数学中有着广泛的应用。
在高二数学中,我们需要掌握圆的方程及相关的知识点。
本文将介绍高二数学圆的方程知识点,以帮助同学们更好地理解和掌握这一内容。
一、圆的基本概念圆是由平面上距离一个固定点(圆心)距离相等的所有点构成的图形。
圆由圆心和半径唯一确定。
二、圆的一般方程圆的一般方程形式为:(x-a)² + (y-b)² = r²其中,(a, b)为圆心的坐标,r为半径的长度。
三、圆的标准方程圆的标准方程形式为:x² + y² + Dx + Ey + F = 0其中,D、E、F为常数,表示圆心及半径的信息。
四、圆的参数方程圆的参数方程形式为:x = a + r*cosθy = b + r*sinθ其中,(a, b)为圆心的坐标,r为半径的长度,θ为参数。
五、圆的切线方程圆的切线方程与切点的坐标有关,一般可以通过求导数来得到。
切线方程的一般形式为:y - y₀ = k(x - x₀)其中,(x₀, y₀)为切点的坐标,k为切线的斜率。
六、圆与直线的位置关系1. 直线与圆相交:直线与圆有两个交点。
2. 直线与圆外切:直线与圆相切,且切点位于圆的外部。
3. 直线与圆内切:直线与圆相切,且切点位于圆的内部。
4. 直线与圆相离:直线与圆没有交点。
七、圆与圆的位置关系1. 外离:两个圆没有交点,且它们的圆心间的距离大于两个圆的半径之和。
2. 外切:两个圆有且仅有一个切点,且它们的圆心间的距离等于两个圆的半径之和。
3. 相交:两个圆有两个交点,且它们的圆心间的距离小于两个圆的半径之和。
4. 内切:两个圆有且仅有一个切点,且它们的圆心间的距离等于两个圆的半径之差。
5. 内含:一个圆完全包含在另一个圆的内部。
八、圆的相关性质1. 直径垂直于弦:如果一条弦的两个端点都在圆的直径上,那么这条弦垂直于直径。
2. 弦的性质:如果两条弦相交于圆上的一个点,那么这两条弦的交点到各自弦上任意一点的线段长度相等。
高二数学教案 圆的方程9篇
高二数学教案圆的方程9篇圆的方程 1§7.6 圆的方程(第二课时)㈠课时目标1.掌握圆的一般式方程及其各系数的几何特征。
2.待定系数法之应用。
㈡问题导学问题1:写出圆心为(a,b),半径为r的圆的方程,并把圆方程改写成二元二次方程的形式。
-2ax-2by+ =0问题2:下列方程是否表示圆的方程,判断一个方程是否为圆的方程的标准是什么?①;② 1③ 0;④ -2x+4y+4=0⑤ -2x+4y+5=0; ⑥ -2x+4y+6=0㈢教学过程[情景设置]把圆的标准方程展开得 -2ax-2by+ =0可见,任何一个圆的方程都可以写成下面的形式:+Dx+Ey+F=0 ①提问:方程表示的曲线是不是圆?一个方程表示的曲线是否为圆有标准吗?[探索研究]将①配方得 : ( ) ②将方程②与圆的标准方程对照.⑴当>0时, 方程②表示圆心在 (- ),半径为的圆.⑵当 =0时,方程①只表示一个点(- ).⑶当<0时, 方程①无实数解,因此它不表示任何图形.结论: 当>0时, 方程①表示一个圆, 方程①叫做圆的一般方程.圆的标准方程的优点在于明确地指出了圆心和半径,而一般方程突出了形式上的特点:⑴和的系数相同,不等于0;⑵没有xy这样的二次项.以上两点是二元二次方程A +Bxy+C +Dx+Ey+F=0表示圆的必要条件,但不是充分条件[知识应用与解题研究][例1] 求下列各圆的半径和圆心坐标.⑴ -6x=0; ⑵ +2by=0(b≠0)[例2]求经过O(0,0),A(1,1),B(2,4)三点的圆的方程,并指出圆心和半径。
分析:用待定系数法设方程为 +Dx+Ey+F=0 ,求出D,E,F即可。
[例3]已知一曲线是与两个定点O(0,0)、A(3,0)距离的比为的点的轨迹,求此曲线的方程,并画出曲线。
分析:本题直接给出点,满足条件,可直接用坐标表示动点满足的条件得出方程。
反思研究:到O(0,0),A(1,1)的距离之比为定植k(k>0)的点的轨迹又如何?当k=1时为直线,k>0时且k≠1时为圆。
高二数学圆的方程总结
高二数学圆的方程总结一、概述圆是数学中的基础几何图形之一,它具有许多重要的性质和特点。
圆的方程是描述圆的数学表达式,可以通过方程推导出圆的各种性质和关系。
本文将以高二数学的学习内容为基础,总结圆的方程及其相关知识。
二、圆的定义圆是由平面上到一个固定点的距离等于一个常数的所有点组成的集合。
这个固定点称为圆心,到圆心的距离称为半径。
圆的方程可以表示为:(x-a)² + (y-b)² = r²,其中(a, b)为圆心坐标,r为半径。
三、圆的标准方程1. 中心在原点的圆的方程:x² + y² =r²。
此时,圆心坐标为(0, 0)。
2. 中心不在原点的圆的方程:(x-a)² + (y-b)² = r²。
此时,圆心坐标为(a, b)。
四、圆的一般方程当圆的方程不满足标准方程形式时,我们可以通过变换将其转化为一般方程。
一般方程的形式为:Ax² + Ay² + Bx + Cy + D = 0。
五、圆的性质1. 圆的半径相等:圆上任意两点的距离都等于半径的长度。
2. 圆的直径:通过圆心的两个点组成的线段称为直径,直径的长度等于半径的两倍。
3. 圆的弦:圆上任意两点组成的线段称为弦。
4. 圆的切线:与圆只有一个交点的直线称为切线,切线与半径垂直。
5. 圆与直线的位置关系:直线与圆相交、外切、内切或不相交。
6. 圆的面积:圆的面积公式为πr²,其中π是一个无理数,约等于3.14。
7. 圆的周长:圆的周长公式为2πr。
六、圆的方程的应用1. 圆的方程可以用于求解与圆相关的几何问题,如求圆与直线的交点坐标、判断点是否在圆内等。
2. 圆的方程在物理学、工程学等领域也有广泛应用,如计算圆形物体的面积、设计圆形的轮胎等。
七、总结圆的方程是描述圆的数学表达式,可以通过方程推导出圆的性质和关系。
本文简要总结了圆的方程的标准形式和一般形式,以及圆的性质和应用。
高二圆与方程的知识点总结
高二圆与方程的知识点总结圆与方程是高二数学学习中的重要知识点,掌握好这部分内容对于后续学习和解题都非常关键。
本文将对高二圆与方程的知识点进行总结,帮助同学们更好地理解和应用这些知识。
一、圆的基本性质1. 定义:平面上到定点距离相等的点的集合就是一个圆。
2. 圆的部分:圆心、半径和圆周。
3. 公式:- 圆心坐标公式:设圆心为(a,b),半径为r,则圆的方程为:(x-a)² + (y-b)² = r²。
- 圆的一般方程:将圆心坐标公式展开,整理得:x² + y² + Dx + Ey + F = 0。
(注:D、E、F为常数)二、直线与圆的位置关系1. 直线与圆相交的情况:- 相离:直线与圆没有交点。
- 相切:直线与圆有且仅有一个交点。
- 相交:直线与圆有两个交点。
2. 直线与圆的判别方法:- 写出直线方程和圆方程,将直线方程代入圆方程,解方程组即可得到交点或判别关系。
- 使用几何方法判别,如定理、推论等。
三、圆的方程与位置关系1. 一般方程的性质:- 如果D²+E² > 4F,则方程代表一个实心圆。
- 如果D²+E² = 4F,则方程代表一个过圆心的直线。
- 如果D²+E² < 4F,则方程代表一个过圆心的虚圆。
2. 圆的标准方程:- 圆的标准方程为:(x-h)² + (y-k)² = r²。
其中,(h, k)为圆心坐标,r为半径。
四、圆的切线与法线1. 切线与法线的定义:- 切线:圆上的一点到圆心的直线称为该点处的切线。
- 法线:垂直于切线的直线称为切线的法线。
2. 切线的斜率公式:- 设圆的方程为:x² + y² + Dx + Ey + F = 0,过圆上一点P(x₀, y₀)的切线方程为:xx₀ + yy₀ + (Dx₀+Ey₀) + F = 0。
数学高二圆的知识点
数学高二圆的知识点数学高二阶段,圆是一个重要的几何形状。
掌握圆的知识点对于解题和应用数学都具有重要意义。
本文将针对高二阶段学习的圆相关知识进行全面介绍。
一、圆的定义与性质圆是平面上一组点,这些点到圆心的距离都相等。
圆的性质包括:1. 圆心:圆的中心点,通常用字母O表示。
2. 半径:圆心到圆上任意一点的距离,通常用字母r表示。
3. 直径:穿过圆心并且两端点都在圆上的线段,直径的长度是半径的2倍。
4. 弦:连接圆上任意两点的线段。
5. 弧:圆上的一段弧线,通常用小写字母a表示。
6. 弦长:弦的长度,通常用小写字母s表示。
7. 弧长:弧的长度,通常用小写字母l表示。
8. 弧度制:用弧长所对应的圆心角的弧度数来度量角的大小。
二、圆的方程圆的方程有两种一般形式,分别是标准方程和一般方程。
1. 标准方程:对于圆心坐标为(h, k)、半径为r的圆,它的标准方程为:(x - h)² + (y - k)² = r²2. 一般方程:对于通用方程Ax² + By² + Cx + Dy + E = 0,若满足条件:A² + B² ≠ 0,且完全平方式表示,即:(x - h)² + (y - k)² + r² = 0三、圆的相关定理在高二阶段,圆相关的定理有以下几个重要的:1. 圆的切线定理:如果直线与圆相切,那么切点到圆心的距离与切线垂直。
2. 弦切角定理:如果一个弦与切线交于弦上一点,那么切线和弦所夹的角等于弦所对的弧的角。
3. 弦长定理:在同一个圆中,两个相交弦的弦长乘积等于这两条弦相交处外部的两个弧长乘积。
4. 弧角定理:同一个圆上的两个弧所对的圆心角相等,且弧与圆心角所对的弧长也相等。
四、圆的应用圆的知识不仅仅局限于几何推导,还涉及到实际生活中的许多应用。
以下是一些常见的圆的应用:1. 圆的面积计算:圆的面积计算公式为S = πr²,其中π是一个常数,约等于3.14159。
高二数学期末复习之圆的方程
高二数学期末复习之圆的方程一.典型例题1.求与直线 y=x 相切,圆心在直线 y=3x 上且被 y 轴截得的弦长为22的圆的方程.[解析]:设圆心坐标为0)r(r ),3,(001>半径为x x O ,则r x x =-23002x r =⇒,又2202)2(,22r x AB =+∴= 22202020±=⇒=+⇒x x x ,2=∴r即圆的方程为:4)23()2(4)23()2(2222=-+-=+++y x y x 或2.求经过点)1,2(-A ,和直线1=+y x 相切,且圆心在直线x y 2-=上的圆方程.2. [解析]: 由题意知:过A (2,-1)且与直线:x +y=1垂直的直线方程为:y=x -3,∵圆心在直线:y=-2x 上, ∴由 32-=-=x y x y ⇒21-==y x 即)2,1(1-o ,且半径2)21()12(221=+-+-==AO r ,∴所求圆的方程为:2)2()1(22=++-y x3.已知直线l :y=k(x +22)与圆O :x 2+y 2=4相交于A 、B 两点,O 是坐标原点,三角形ABO 的面积为S .(1)试将S 表示成k 的函数,并求出它的定义域;(2)求S 的最大值,并求取得最大值时k 的值.3. [解析]:(1)22222114)122(42122,022:k k k kAB k kd k y kx l l O +-=+-=∴+=∴=+-→ 2221)1(2421k k k d AB S l O +-=⋅=∴→,定义域:01120≠<<-⇒<<→k k d l O 且.(2)设23)2)(1()1(),1(12222-+-=--=-≥=+t t t t k k t t k 则81)431(224231242324222+--=-+-=-+-⋅=∴t t t t t t S ,222124,3334,431max =⋅=±===∴S k t t 时,即当,∴S 的最大值为2,取得最大值时k=33±.4.设圆1C 的方程为2224)23()2(m m y x =--++,直线l 的方程为2++=m x y . (1)求1C 关于l 对称的圆2C 的方程;(2)当m 变化且0≠m 时,求证:2C 的圆心在一条定直线上,并求2C 所表示的一系列圆的公切线方程. [解析]:(1)圆C 1的圆心为C 1(-2,3m+2)设C 1关于直线l 的对称点为C 2(a ,b )则⎪⎩⎪⎨⎧++-=++-=+--2222231223m a b m a m b 解得:⎩⎨⎧+=+=112m b m a∴圆C 2的方程为2224)1()12(m m y m x =--+--(2)由⎩⎨⎧+=+=112m b m a 消去m 得a -2b+1=0, 即圆C 2的圆心在定直线:x -2y+1=0上.设直线y=kx+b 与圆系中的所有圆都相切,则m kbm m k 21)1()12(2=+++-+即0)1()1)(12(2)34(22=-++-+-+--b k m b k k m k∵直线y=kx+b 与圆系中的所有圆都相切,所以上述方程对所有的m )0(≠m 值都成立,所以有: ⎪⎩⎪⎨⎧=-+=-+-=-- 0)1(0)1)(12(20342b k b k k k ⇒⎪⎩⎪⎨⎧=-=4743b k ,所以2C 所表示的一系列圆的公切线方程为:4743+-=x y 二.巩固练习 (一)、选择题1.原点必位于圆:0)1(22222=-+--+a y ax y x )1(>a 的 (C ) A .内部 B .圆周上 C .外部 D .均有可能 2.“点M在曲线y =|x |上”是“点M到两坐标轴距离相等”的(C )A .充要条件B .必要不充分条件C .充分不必要条件D .非充分非必要条件3.从动点)2,(a P 向圆1)3()3(22=+++y x 作切线,其切线长的最小值是( A )A . 4B .62C .5D .264.若曲线x 2+y 2+a 2x +(1–a 2)y –4=0关于直线y –x =0的对称曲线仍是其本身,则实数a =(B )A .21±B .22±C .2221-或D .2221或- 5.圆422=+y x 截直线0323=-+y x 所得的弦长是 ( A )A .2B .1C .3D .32 6.若圆)0(022222>=++-+k y kx y x 与两坐标轴无公共点,那么实数k 的取值范围是( B )A .20<<kB .21<<kC . 10<<kD .2>k 7.若直线)2(-=x k y 与曲线21x y -=有交点,则 ( C ) A .k 有最大值33,最小值33- B .k 有最大值21,最小值21-C .k 有最大值0,最小值 33-D .k 有最大值0,最小值21-8.直线y = x + b 与曲线x =21y -有且仅有一个公共点,则b 的取值范围是 (B )A .|b|=2B .211-=≤<-b b 或C .21≤≤-bD .以上都错 9.圆9)3()3(22=-+-y x 上到直线3 x + 4y -11=0的距离等于1的点有 ( C )A .1个B .2个C .3个D .4个 10.直线0323=-+y x 与圆 θθsin 23cos 21+=+=y x (θ为参数)的位置关系是 ( C )A . 相离B .相切C . 相交但不过圆心D . 相交且过圆心11.已知圆C : θθsin 22cos 2+=+=y a x (a>0,为参数θ)及直线l :03=+-y x ,若直线l 被C 截得的弦长为32,则a =( C )A .2B .22-C .12-D .12+12.过两圆:x 2 + y 2 + 6 x + 4y = 0及x 2+y 2+ 4x + 2y – 4 =0的交点的直线的方程 ( A )A .x +y+2=0B .x +y-2=0C .5x +3y-2=0D .不存在 (二)、填空题13.过P (1,2)的直线l 把圆05422=--+x y x 分成两个弓形当其中劣孤最短时直线l 的方程为 032=+-y x14.斜率为3,且与圆 x 2 + y 2=10 相切的直线方程是 103±=x y .15.已知BC 是圆2522=+y x 的动弦,且|BC|=6,则BC 的中点的轨迹方程是______.1622=+y x16.若实数x ,y 满足xy y x 则,3)2(22=+-的最大值是 .3高二数学期末复习之椭圆一.典型例题例1 求适合条件的椭圆的标准方程. (1)长轴长是短轴长的2倍,且过点 ;(2)在 轴上的一个焦点与短轴两端点的联线互相垂直,且焦距为6.(1)或 .(2)例2.求焦点在坐标轴上,且经过和两点的椭圆的标准方程.例3在椭圆上求一点,使,其中,是椭圆的两焦点.方案一:由题意得,,解方程得,或.再设,则有或,解方程即可.方案二:设,由椭圆的第二定义得,,,,∴,,.例4.的底边,和两边上中线长之和为30,求此三角形重心的轨迹和顶点的轨迹.的轨迹方程为,其轨迹是椭圆(除去轴上两点).例5.已知椭圆的中心在原点,且经过点,,求椭圆的标准方程.或例6. 求椭圆上的点到直线的距离的最小值.例7. 已知点在圆 上移动,点 在椭圆 上移动,求的最大值.设椭圆上一点 ,又 ,于是.而∴当 时, 有最大值5.故 的最大值为6例8. 已知椭圆 及直线 .(1)当 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为 ,求直线的方程.解:(1)把直线方程代入椭圆方程得,即 ., 解得.(2)设直线与椭圆的两个交点的横坐标为,,由(1)得, .根据弦长公式得.解得.因此,所求直线的方程为.例9. 以椭圆的焦点为焦点,过直线上一点作椭圆,要使所作椭圆的长轴最短,点应在何处?并求出此时的椭圆方程.解:如图所示,椭圆的焦点为,.点关于直线的对称点的坐标为(-9,6),直线的方程为.解方程组得交点的坐标为(-5,4).此时最小.所求椭圆的长轴,因此,所求椭圆的方程为.例10. 已知椭圆,(1)求过点且被平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过引椭圆的割线,求截得的弦的中点的轨迹方程;(4)椭圆上有两点、,为原点,且有直线、斜率满足,求线段中点的轨迹方程.解:设弦两端点分别为,,线段的中点,则①-②得.由题意知,则上式两端同除以,有,将③④代入得.⑤(1)将,代入⑤,得,故所求直线方程为.⑥将⑥代入椭圆方程得,符合题意,故即为所求.(2)将代入⑤得所求轨迹方程为:.(椭圆内部分)(3)将代入⑤得所求轨迹方程为.(椭圆内部分)(4)由①+②得,⑦将③④平方并整理得,⑧,⑨将⑧⑨代入⑦得,⑩再将代入⑩式得,即.二.巩固练习1.如果方程表示焦点在轴上的椭圆,那么实数的取值范围是( D )A.B.(0,2)C.D.(0,1)2.过点(3,-2)且与有相同焦点的椭圆方程是(A )A. B.C.D.3.已知椭圆的焦点,,是椭圆上一点,且是,的等差中项,则椭圆的方程是( C ).A.B.C.D.4.已知,是椭圆上的动点,是线段上的点,且满足,则动点的轨迹方程是( B ).A.B.C.D.5.对于椭圆,下列说法正确的是( D ).A.焦点坐标是B.长轴长是5C.准线方程是 D.离心率是6.离心率为、且经过点的椭圆的标准方程为( D ).A.B.或C.D.或7.椭圆的左、右焦点为,,以为圆心作圆过椭圆中心并交椭圆于点,,若直线是⊙的切线,则椭圆的离心率为( D ).A.B.C. D.8.如果椭圆的弦被点平分,那么这条弦所在的直线的方程是( D )A.B.C.D.9.直线与椭圆恒有公共点,则的取值范围是(C)A.B.C.D.10.已知椭圆的方程为,如果直线与椭圆的一个交点在轴上的射影恰好是椭圆的右焦点,则的值为( B )A.2 B.C.D.811.点是椭圆上一点,以点以及焦点、为顶点的三角形的面积等于1,则点的坐标为_________.或或或.12.点是椭圆上一点,是其焦点,若,则的面积为_________________.13.已知,是椭圆内的点,是椭圆上的动点,则的最大值为______________,最小值为___________.,14.如图在中,,,则以为焦点,、分别是长、短轴端点的椭圆方程是______________.15.已知是椭圆上一点,若到椭圆右准线的距离是,则到左焦点的距离为_____________.16.若椭圆的离心率为,则它的长半轴长是______________.1或217.若椭圆上存在点到两焦点的连线互相垂直,则椭圆离心率的取值范围是_____________.18.设椭圆上动点到定点的距离最小值为1,则的值为_________19.已知直线交椭圆于,两点,点坐标为(0,4),当椭圆右焦点恰为的重心时,求直线的方程.设,,由及为的重心有,得,,.所以中点为(3,-2).又、在椭圆上,故,.两式相减得到,可得即为的斜率,由点斜式可得的方程为.20.椭圆中心在原点,焦点在轴上,离心率,它与直线交于,两点,且,求椭圆方程.20.设椭圆方程为,由可得.由直线和椭圆方程联立消去可得.设,得,即,化简得,由韦达定理得,解出,故所求椭圆方程为.21.椭圆上有一点,使(为坐标原点,为椭圆长轴右端点),试求椭圆离心率的取值范围.21.由已知,设,则、,由得,化简得.因为在一、四象限,所以,于是,易求出,所以.22.已知,为椭圆上的两点,是椭圆的右焦点.若,的中点到椭圆左准线的距离是,试确定椭圆的方程.由椭圆方程可知、两准线间距离为.设,到右准线距离分别为,,由椭圆定义有,所以,则,中点到右准线距离为,于是到左准线距离为,,所求椭圆方程为.。
高二数学必修二-第四章-圆与圆的方程知识点汇总
高二数学必修二-第四章-圆与圆的方程知识点汇总————————————————————————————————作者:————————————————————————————————日期:第四章 圆 与 方 程★1、圆的定义:平面内到一定点的距离等于定长的点的集合叫做圆,定点为圆心,定长为圆的半径。
设M (x,y )为⊙A 上任意一点,则圆的集合可以写作:P = {M | |MA| = r }★2、圆的方程(1)标准方程()()222r b y a x =-+-,圆心()b a ,,半径为r ;点00(,)M x y 与圆222()()x a y b r -+-=的位置关系:当2200()()x a y b -+->2r ,点在圆外; 当2200()()x a y b -+-=2r ,点在圆上 当2200()()x a y b -+-<2r ,点在圆内; (2)一般方程022=++++F Ey Dx y x(x+D/2)2+(y+E/2)2=(D 2+E 2-4F)/4 (0422>-+F E D )当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+=当0422=-+F E D 时,表示一个点;当0422<-+F E D 时,方程不表示任何图形。
(3)求圆的方程的方法:①待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;②直接法:直接根据已知条件求出圆心坐标以及半径长度。
另外要注意多利用圆的几何性质:如弦的中垂线必经过圆心,以此来确定圆心的位置。
★3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为22B A C Bb Aa d +++=,则有相离与C l r d ⇔>;相切与C l r d ⇔=;相交与C l r d ⇔<(2)过圆外一点的切线:设点斜式方程,用圆心到该直线距离=半径,求解k ,①若求得两个不同的解,带入所设切线的方程即可;②若求得两个相同的解,带入切线方程,得到一条切线;接下来验证过该点的斜率不存在的直线(此 时,该直线一定为另一条切线)(3) 过圆上一点的切线方程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)= r 2两圆的位置关系 判断条件 公切线条数外离 d>r1+r2 4条 外切 d=r1+r2 3条 相交 |r1-r2|<d<r1+r2 2条 内切 d=|r1-r2| 1条 内含d<|r1-r2|0条★4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。
高二数学圆的相关知识点
高二数学圆的相关知识点圆是数学中一个重要的几何图形,其中包含着各种有趣的性质和定理。
在高二数学学习中,了解和掌握圆的相关知识点是非常重要的。
本文将介绍高二数学中与圆相关的几个重要知识点,包括圆的定义、圆的性质、圆的方程和圆与直线的位置关系等。
一、圆的定义圆是平面上一组到一个固定点的距离都相等的点构成的图形。
在平面几何中,我们常用一个固定的点称为圆心,并用字母O表示;用一个固定的长度称为半径,并用字母r表示。
用圆心O和半径r可以确定一个圆。
二、圆的性质1. 圆上任意两点到圆心的距离相等。
这是圆的定义的一个直接推论,也是圆的最基本性质之一。
无论在圆上取任意两点,它们到圆心的距离都相等。
2. 圆的直径是最长的。
圆的直径是通过圆心并且两端点都在圆上的线段,它是圆中最长的线段。
3. 圆的弦与半径的关系。
对于一个圆,如果一条线段的两个端点都在圆上,那么这条线段被称为圆的弦。
我们可以发现,在圆上任意取一弦,它与圆心的连线垂直且平分这条弦。
4. 圆的切线与半径的关系。
沿着圆上一点的切线与过该点的半径垂直。
5. 圆上的两个任意相交弦的乘积等于这两个弦的交点到圆心的距离的平方减去到圆心的距离的平方。
设在圆上任意取两个相交弦AB和CD,交于点E,并设OE的长度为d,则有AB·CD = d^2 - OE^2。
三、圆的方程在平面直角坐标系中,圆的方程有三种常用的表示方法:标准方程、一般方程和参数方程。
1. 标准方程标准方程是最常用的表示圆的方程。
设圆的圆心坐标为(h, k),半径为r,则圆的标准方程为(x-h)^2 + (y-k)^2 = r^2。
2. 一般方程一般方程是圆的另一种表达方式。
设圆的圆心坐标为(h, k),半径为r,则圆的一般方程为x^2 + y^2 + Dx + Ey + F = 0。
其中,D = -2h,E = -2k,F = h^2 + k^2 - r^2。
3. 参数方程参数方程是通过参数化的方式表示圆的方程。
高二数学圆的一般曲线方程
总结:两个充要条件
⑴x2+y2+Dx+Ey+F=0 表示成圆的
充要条件是D2+E2-4F> 0
⑵ Ax2+Bxy+Cy2+Dx+Ey+ F=0表示成圆的 充要条件 A=C≠0 且 D2+E2-4AF/4A>0
B=0
再思考?
若给你x2+y2+Dx+Ey+F=0 ……①这个式子,是否一定表圆呢?
对①进行配方得 :
(x+D/2)2+(y+E/2)2=(D2+E2-4F)/4 ……② 分情况讨论:
⑴ 当D2+E2-4F> 0时 ②式表示成圆,此时我们称②式为 圆的一般方程。 圆心(a,b)
⑵当D2+E2-4F= 0时 ②式(x+D/2)2+(y+E/2)2=0 表示成一点 坐标( - D/2, - E/2)
⑶ 当D2+E2-4F<0时 方程②没实数解,因不表任何图形 小结: ①式并不是在任何情况下 都表示成圆,由上⑴ ⑵ ⑶ 分析我们可得出下面的结论 x2+y2+Dx+Ey+F=0 表示成圆的 充要条件是D2+E2-4F> 0
课堂小练
例1 x2+y2+(a-1)x+2ay+a=0表圆, 则a的取值范围a>1或a<1/5
圆的一般方程
(x-a)2 +(y-b)2=r2 x2+y2+Dx+Ey+F=0
Ax2+Bxy+Cy2+Dx+Ey+ F=0
圆的一般方程(16页)高二数学北师版选择性必修1
思考:如果方程x2+y2+Dx+Ey+F=0能表示圆的方程,有什么条件?
方程x2+y2+Dx+Ey+F=0配方得<m>,只有当D2+E2-4F >0时, 方程才表示以(-,-)为圆心, 以为半径的圆.
x2+y2+Dx+Ey+F=0 (D2+E2-4F>0)
(3)x2+y2-2x-4y+10=0; (4)x2+y2-4x-2y-5=0.
解:(1)x2与y2系数不相等,方程不表示圆.(2)含xy项,方程不表示圆.(3)(-2)2+(-4)2-4×10=-20<0,此方程不表示圆.(4)(-4)2+(-2)2-4×(-5)>0,此方程表示圆,圆心坐标(2,1),半径r==.
C
A
3.若点 在圆 外,则实数 的取值范围是__________.
根据本节课所学,回答下列问题:1.圆的一般方程是什么?2.待定系数法求圆的方程的步骤有哪些?
同学们再见!
授课老师:
时间:2024年9月1日
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
同学们再见!
授课老师:
对于二元二次方程Ax2+Cxy+By2+Dx+Ey+F=0而言,圆的一般方程突出了二元二次方程表示圆时,其在代数结构上的典型特征:
1.x2与y2系数相同并且不等于0,即A=B≠0;2.没有xy这样的二次项,即C=0.
具备上述两个特征是一般二元二次方程表示圆的必要条件,但不是充分条件.
例2 已知△ABC的三个顶点为A(1,4),B(-2,3),C(4,-5),求△ABC的外接圆方程、外心坐标和外接圆半径.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的方程(1)
一、知识小结
1.圆的方程形式:
(1)圆的标准方程
以点C (,)a b 为圆心,以r 为半径的圆的方程为222()()x a y b r -+-=,上述方程叫做圆的标准方程.当0a b ==,即圆心在原点()0,0O 时,圆的标准方程为222x y r +=.
(2)圆的一般方程
当2240D E F +->时,方程220x y Dx Ey F ++++=表示一个圆,该方程叫做圆的一
般方程,圆心坐标为,2
2D F ⎛⎫-- ⎪⎝⎭ 圆的一般方程有如下特点:
①22x y 与项的系数相同且不为零;
②不含xy 项;
③2240D E F +->.
2.点与圆、直线与圆以及圆与圆的相互关系
(1)点与圆的位置关系
已知点()00,P x y 和圆()()222x a y b r -+-=,点到圆心的距离d 与圆的半径r 的大小关系决定了点与圆的位置关系:
①点P 在圆外22200()()d r x a y b r ⇔>⇔-+->; ②点P 在圆上22200()()d r x a y b r ⇔=⇔-+-=; ③点P 在圆内22200()()d r x a y b r ⇔<⇔-+-<.
(2)直线与圆的位置关系
已知直线0ax by c ++=和圆()()222x a y b r -+-=,圆心到直线的距离d 与圆的半径r 的大小关系决定了直线与圆的位置关系: ①直线与圆相离d r ⇔>,
②直线与圆相切d r ⇔=,
③直线与圆相交d r ⇔<. 已知圆的弦长为AB 、圆心到弦的距离d 以及圆的半径r ,则它们满足以下关系式:
AB =
(3)圆与圆的位置关系
两圆的圆心1C 、2C 之间的距离与两圆半径1r 、2r 的大小关系决定了圆与圆的位置关系: ①两圆外离1212C C r r ⇔>+; ②两圆外切1212C C r r ⇔=+; ③两圆相交121212r r C C r r ⇔-<<+; ④两圆内切1212C C r r ⇔=-; ⑤两圆内含1212C C r r ⇔<-.
(4)圆系方程
①过已知圆221111:0C x y D x E y F ++++=与直线:0l ax by c ++=的两交点的圆的方程一般可写成:()()221110x y D x E y F ax by c λλ+++++++=∈R .
②过两圆221111:0C x y D x E y F ++++=与222222:0C x y D x E y F ++++=的两交点的圆的方程一般可写成:
()()222211122201x y D x E y F x y D x E y F λλ+++++++++=≠-(除圆2C 外)
. 特别地,当1λ=-时,方程()()1212120D D x E E y F F -+-+-=表示两圆的公共弦所在的直线的方程.
圆的方程(2)
二、应用举例
例1、求过()0,0A ,()2,0B ,()0,4C 三点的圆的方程.
例2、求经过圆222880x y x y +---=与直线230x y +-=的两个交点,且圆心在y 轴上的圆的方程.
例3、已知圆22:412390C x y x y ++-+=和直线:3450l x y -+=,求圆C 关于直线l 对称的圆的方程.
圆的方程(3)
一、应用举例:
例4、定点()3,0A 为圆221x y +=外一点,P 为圆上一点,点Q 在线段AP 上,且 :1:3PQ QA =,求点Q 的轨迹方程.
例5、已知圆2260x y x y m ++-+=与直线230x y +-=相交于P 、Q 两点,O 为坐标原点,且OP OQ ⊥,求实数m 的值.
例6、求过点()5,3A 与圆()2
2:116C x y -+=相切的直线方程.
例7、ABC △中,2BC =,
0AB m AC =>,求点A 的轨迹方程,并说明其轨迹是什么图形.
圆的方程(4)
一、应用举例:
例8、已知圆()()22
:1225C x y -+-=,直线()()():211740l m x m y m m +++--=∈R
(1)证明不论m取什么实数,直线l与圆C相交于两点;
(2)求直线l被圆截得的线段的最短长度及此时m的值.
例9、已知圆222428360
4,2,A ,B为圆上两个动点,且+---=,点P的坐标为()
x y x y
∠=,(1)判断点P与圆的位置关系;(2)求弦AB的中点M的轨迹方程.90
APB
例10、(1)(2007年上海高考题)如图,A,B是直线l上的两点,且2
AB=.两个半径相等的动圆分别与l相切于A,B点,C是这两个圆的公共点,则圆弧AC,CB与线段AB围成图形面积S的取值范围是.Array(2)过点()
11,2
A作圆
22241640
x y x y
++--=的弦,其中弦长为整数的共有.。