六年级奥数第4-6讲(等差数列-等比数列-找规律填数)
按规律填数的几种方法
按规律填数的几种方法1.等差数列填数法:等差数列是指数列中相邻两项之间的差值保持一致的数列。
使用等差数列填数法时,首先需要确定首项和公差的值,即数列中的第一个数和相邻两项之间的差值。
然后可以使用公式 an = a1 + (n-1)d 来计算数列中的任意项。
例如,假设首项为3,公差为2,则数列中的前几项为3、5、7、9、11、..,可以通过计算得知数列中的第20项为3+(20-1)×2=412.等比数列填数法:等比数列是指数列中相邻两项之间的比值保持一致的数列。
使用等比数列填数法时,首先需要确定首项和公比的值,即数列中的第一个数和相邻两项之间的比值。
然后可以使用公式an = a1 × r^(n-1) 来计算数列中的任意项。
3.斐波那契数列填数法:斐波那契数列是指数列中每一项都是前两项的和的数列。
使用斐波那契数列填数法时,首先确定数列中的前两项,然后可以通过递推公式 an= an-1 + an-2 来计算数列中的后续项。
例如,假设前两项为1和1,则数列中的前几项为1、1、2、3、5、8、13、..,可以通过递推公式得知数列中的第10项为554.平方数列填数法:平方数列是指数列中每一项都是前一项的平方的数列。
使用平方数列填数法时,首先确定数列中的首项,然后可以通过递推公式 an = an-1^2 来计算数列中的后续项。
例如,假设首项为2,则数列中的前几项为2、4、16、256、..,可以通过递推公式得知数列中的第5项为2^4=16除了以上这些常见的方法,还有很多其他的规律填数方法,如等差递增数列、等差递减数列、阶乘数列等等,每种方法都有其特定的规则和计算方式。
在实际应用中,通过观察数列中的规律,并结合相应的公式计算,可以得到数列中任意一项的值。
六年级找规律的知识点
六年级找规律的知识点在数学学习中,找规律是一个非常重要的能力,可以帮助我们理解数学中的模式和关系。
六年级学生正处于数学学习的关键阶段,因此,掌握找规律的知识点对他们的数学能力提升至关重要。
下面将介绍六年级找规律的几个知识点。
一、数列的规律数列是由一列数字按照一定规律排列而成的。
在六年级,学生需要掌握数列的常见规律,包括等差数列和等比数列。
1. 等差数列等差数列是指数列中相邻两项之差都相等的数列。
例如,2、4、6、8、10就是一个等差数列,公差为2。
学生需要学会通过观察数列中的数字来确定公差,进而找到数列的下一项。
2. 等比数列等比数列是指数列中相邻两项之比都相等的数列。
例如,1、3、9、27、81就是一个等比数列,公比为3。
学生需要学会通过观察数列中的数字来确定公比,进而找到数列的下一项。
二、图形的规律除了数列,图形中也存在着各种规律。
在六年级,学生需要通过观察图形来找到其中的规律。
1. 图形的对称性对称是图形中最常见的规律之一。
学生需要学会判断图形是否对称,并能够在对称的基础上进行延伸。
例如,正方形具有对称性,如果你把正方形绕中心点旋转180度,图形仍然保持不变。
2. 图形的增量规律图形的增量规律指的是图形的某个特征在每一步中以相同的方式进行增减。
例如,一个图形由一行方块组成,每一步增加一行方块,并且每一行方块的个数都增加了一。
学生需要观察图形的特征,找到图形增量的规律,并应用到下一步中。
三、算术运算的规律六年级的学生在数学学习中会接触到各种算术运算,而这些运算中也存在着一些规律。
1. 加减法的规律加法和减法的规律是数学学习中最基础的规律之一。
学生需要掌握各种加减法运算的特点,并能够通过观察数字的排列来找规律。
例如,从0开始每次加1的数列,可以用n表示第n次操作的结果。
2. 乘除法的规律乘法和除法也具有各自的规律。
学生需要学会通过观察数字之间的关系来找到乘除法的规律,并能够应用到解题中。
例如,乘法中的倍数规律,两个偶数相乘得到偶数,一个奇数和一个偶数相乘得到偶数。
小三奥数 第6讲:找规律填数(二)
学员编号:年级:课时数:学员姓名:辅导科目:学科教师:授课T (同步知识主题) C (专题方法主题)T (学法与能力主题)类型授课日期时段教学内容第六讲:找规律填数(二)我们常将一个数列与一些规律简单的数列进行比较,例如,偶数数列2,4,6,8…的第100项显然是200,而1 990址第995项,将奇数数列1,3,5,7,…与偶数列比较,就知道第100个奇数是200 -1= 199.而1 989是第995个奇数下面的例1显示一个数列与它的“差数列”间的关系..找出数列的规律,并在括号内填入适当的数:1,2,4,7,l1,16,( ),( ) .从第2项起,每一项减去前一项得数列l,2,3,4,5,…,这个由差组成的“差数列”,第6、7项分别是6、7.所以原数列的第7、8项分别是16+6=22.22+7=29.即括号内应填入22,29.找规律,在括号内填入适当的数:2,6,12,20,30,42,( ) ..找出数列的规律,并在括号内填入适当的数:25,3,22,3,l9,3,( ),( )由观察可以知道,所有偶数项数的项全由3组成.再来看一下奇数项数的项25,22,19,….从22起,每一个都比前一个少3.所以括号内应该填入16,3.发现规律,并在括号内填入适当的数:15,6,3,7,11,8,( ),( ) .例2表示,有些数列可以拆成两个数列(或者说,由两个数列组成),分别由奇数项数的项和偶数项数的项构成.而这两个数列的规律都不难发现.)已知算式:1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,….问:第几个算式的得数是1 992?不难看出,各个算式中,被加数是l,2,3,4,每4个循环一次.加数是1,3,5,7,9,11,13,15,17,…,正好是奇数数列,如果和是1992,那么被加数是l或3(因为2或4加上奇数,不会等于偶数1 992),从而加数是1 991或1 989.因为(1 989 +1)÷2=995所以1989是上面奇数数列的第995项.1 991是第996项又因为995=4×248+3.所以,第995个算式是3+1 989第996个算式是4+1 991没有算式1+1 991.所以第995个算式的得数是1 992.发现规律,在括号内填入适当的数:2,5,8,11,10,13,16,19,18,( ),( )自然数按一定规律排成下表,问第200行的第5个数是多少?12 34 5 67 8 9 10……第1行1个数,第2行2个数,第3行3个数,…,第199行199个数,因此前199行共有1+2+3+…+199=(1+199)×199÷2=19 900个数,即前199行的最末一个数是19 900.第200行第5个数是19 900 +5=19 905上面的表中,100是第几行第几个数?.如右图,将自然数1,2,3,4,…按箭头所指方向顺序排列,依次在2,3,5,7,10,…的位置处拐弯,如果2算第1次拐弯,3算第2次拐弯,那么第13次拐弯处的数是什么?首先,注意到第1次拐弯在东北,笫2次拐弯在东南,第3次拐弯在西南,第4次拐弯扯西北,依此类推,每过4次拐弯就使方向循环出现.因为13=3×4+1所以第13次拐弯在东北其次,东北拐弯处的数组成数列2,10,26,…,它的每一项比数列1,9,25,…的相应项多1.数列1,4,9,16,25,36,49,64,81,100,121,…也就是1×1,2×2,3×3,4×4,5×5,6×6,…叫做平方数数列.数列1,9,25,40,…也就是1×1,3×3,5×5,7×7,…是由奇数平方组成的数列,因此,上述数列(即东北拐弯处的数列)中,26的后一项是7×7 +1=50.即第13个拐弯处的数是50.上图中第21个拐弯处的数是多少?。
等差数列与等比数列的性质
等差数列与等比数列的性质在数学的世界里,数列就像是一串有序的数字精灵,按照一定的规律排列着。
其中,等差数列和等比数列是两个非常重要的家族。
它们各自有着独特的性质,就像是家族成员的独特特征一样,让我们能够更好地理解和把握这些数列的规律。
先来聊聊等差数列。
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
这个常数被称为公差,通常用字母 d 表示。
比如说,数列2,5,8,11,14……就是一个公差为3 的等差数列。
在这个数列中,每一项都比前一项大 3。
等差数列有很多有趣的性质。
首先,它的通项公式为 an = a1 +(n 1)d ,其中 a1 是首项,n 是项数。
这个公式能让我们快速求出数列中任意一项的值。
假设首项 a1 = 2 ,公差 d = 3 ,要求第 10 项的值。
那么根据通项公式,a10 = 2 +(10 1)×3 = 2 + 27 = 29 。
其次,如果在等差数列中有 m 、n 、p 、q 这四项,且 m + n = p+ q ,那么 am + an = ap + aq 。
比如在等差数列 1,3,5,7,9 中,因为 1 + 5 = 3 + 3 ,所以 a1 + a5 = a3 + a3 ,即 1 + 5 = 3 + 3 = 6 。
另外,等差数列的前 n 项和公式也很重要。
Sn = n(a1 + an) / 2 。
如果还是以上面的数列为例,要求前 5 项的和。
先求出 a5 = 1 +(5 1)×2 = 9 ,然后 S5 = 5×(1 + 9) / 2 = 25 。
说完等差数列,再看看等比数列。
等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的数列。
这个常数被称为公比,通常用字母 q 表示。
例如,数列 2,4,8,16,32……就是一个公比为 2 的等比数列。
等比数列的通项公式为 an = a1 × q^(n 1) 。
(完整word版)六年级奥数等差数列
等差数列知识点:等差数列的和= (首项+末项)×项数÷2项数= (末项-首项)÷公差+1公差= 第二项-首项等差数列的第n项= 首项+(n-1)×公差首项= 末项-公差×(项数-1)例1、计算。
1+3+5+7+……+95+97+99解:1+3+5+7+……+95+97+99=(1+99)×50÷2=2500例2、(1+3+5+……+1997+1999)-(2+4+6+……+1996+1998)解:(1+3+5+……+1997+1999)-(2+4+6+……+1996+1998)=(1+1999)×1000÷2-(2+1998)×999÷2=-=1000例3、计算1÷1999+2÷1999+3÷1999+……+1998÷1999+1999÷1999解:1÷1999+2÷1999+3÷1999+……+1998÷1999+1999÷1999 ==例4、求首项为5,末项为155,项数是51的等差数列的和。
解:(5+155)×51÷2=160×51÷2=80×51=4080例5、有60个数,第一个数是7,从第二个数开始,后一个数总比前一个数我4 。
求这60个数的和。
解:(1)末项为: 7+4×(60-1)=7+4×59=7+236=243(2)60个数的和为:(7+243)×60÷2=250×60÷2=7500例6、数列3、8、13、18、……的第80项是多少?例7、求3+7+11+……+99=?例8、一个15项的等差数列,末项为110,公差为7,这个等差数列的和是多少?例9、一个大礼堂,第一排有28个座位,以后每排比前排多一个座位,第35排是最后一排,这个大礼堂共有多少个座位?练一练一、计算1、2+4+6+……+96+982、68+65+……+11+83、2+3+4+……+2000+2001+2002+2003二、列式计算1、8、15、22……这列数的第100项是多少?2、一个有20项的等差数列,公差为5,末项是104,这个数列的首项是几?3、一个公差为4的等差数列,首项为7,末项为155.这个数列共有多少项?4、有一列数,已知第1个数为11,从第二个数起每个数都比前一个数多3,这列数的前100个数的和是多少?三、解答下列各题1、王师傅每天工作8小时,第1小时加工零件50个,从第二小时起每小时比前一小时多加工零件3个,求王师傅一天加工多少个零件?2、时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下,时钟一昼夜敲打多少次?3、一个剧院设置了30排座位,第一排有38个座位,往后每排都比前一排多1个座位,这个剧院共有多少个座位?4、一个物体从空中自由落下,第一秒下落4.9米,以后每秒多下落9.8米,经过20秒落到地面,物体原来离地面多高?。
【五升六】小学数学奥数第4讲:等差数列-教案
六年级备课教员:×××第4讲等差数列一、教学目标: 1. 理解分数等差数列的意义。
2. 在原有基础上加深对于等差数列的认知。
3. 能够熟练运用等差公式准确计算。
二、教学重点:明白分数等差数列的意义并能够熟练运算。
三、教学难点:对于等差数列各种变式求法及分数乘除法的熟练运算。
四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分钟)师:同学们,老师前两天看了一篇关于哈雷彗星的文章,你们猜猜这篇文章里讲了什么内容?(PPT出示)生:……师:好了,同学们就开始瞎猜了,老师给一个范围,与它每次出现的时间有关?生:……师:刚刚有一位同学说对了一半,这篇文章告诉了哈雷彗星下次出现的时间,但为什么老师讲只说对了一半呢?看了下面这组数据你们就会明白了。
1682年 1758年 1834年 1910年 1986年同学们,这是在过去三百多年里,人们看到哈雷彗星的时间;看了之后你能说出哈雷彗星下次出现的时间吗?生:……师:有同学知道吗?其实当你们用后面一个数减去前面一个数时就会发现:1758 -1682=76、1834-1758=76、1910-1834=76、1986-1910=76;哈雷彗星每 76年才出现一次,那么下一次出现的时间就应该是:1986+76=2062年。
师:像刚刚这种情况的数列我们叫做等差数列,相信大家都已经知道了,今天我们就来学有关分数的等差数列。
板书:等差数列(PPT出示)二、探索发现授课(40分钟)(一)例题一:(10分钟)已知一组等差数列的第1项是21,末项是412,公差是41。
这组等差数列有多少项?(PPT 出示)师:同学们,在题目中你得出了什么信息呢?生:……师:对的,题中首先告诉我们这是一组等差数列,而且还告诉了首项是21,公 差是41,最后一项是412;那告诉了这么多,要求的是什么呢?有哪位同 学可以告诉老师?生:要求的是这组等差数列一共有多少项。
等差数列等比数列知识点归纳总结
等差数列等比数列知识点归纳总结等差数列和等比数列是高中数学中非常重要的概念,它们在解决各种数学问题中都起着重要的作用。
本文将对等差数列和等比数列的基本概念、性质、求和公式以及应用进行归纳总结。
一、等差数列等差数列是指一个数列中的每一项与前一项之间的差都相等。
这个相等的差值被称为等差数列的公差,通常用字母d表示。
1. 基本概念一个等差数列可以以通项公式的形式表示为:an = a1 + (n - 1) * d,其中an表示数列的第n项,a1表示第一项,d表示公差。
2. 性质(1)公差:等差数列的公差d是等差数列中相邻两项的差,公差可以是正数、负数或零。
(2)公式:等差数列的通项公式为an = a1 + (n - 1) * d,其中n表示项数。
(3)前n项和:等差数列的前n项和可以通过求和公式Sn = n * (a1 + an) / 2来计算。
3. 应用等差数列广泛应用于数学和物理等领域,常见的应用包括:(1)数学题目中的差额、间隔、递推关系等。
(2)物理问题中的匀速直线运动、连续等差分布等。
(3)经济学中的利润、销售额等。
二、等比数列等比数列是指一个数列中的每一项与前一项之间的比都相等。
这个相等的比值被称为等比数列的公比,通常用字母r表示。
1. 基本概念一个等比数列可以以通项公式的形式表示为:an = a1 * r^(n-1),其中an表示数列的第n项,a1表示第一项,r表示公比。
2. 性质(1)公比:等比数列的公比r是等比数列中相邻两项的比值,公比可以是正数、负数或零。
(2)公式:等比数列的通项公式为an = a1 * r^(n-1),其中n表示项数。
(3)前n项和:等比数列的前n项和可以通过求和公式Sn = a1 * (1 - r^n) / (1 - r)来计算。
3. 应用等比数列也广泛应用于数学和物理等领域,常见的应用包括:(1)数学题目中的倍数关系、增长衰减等。
(2)物理问题中的连续等比分布、指数增长等。
等差数列与等比数列的计算
等差数列与等比数列的计算数列是数学中常见的概念,是一个按照一定规律排列的一系列数的集合。
数列又可以分为等差数列和等比数列两种类型。
在解题过程中,我们经常需要计算数列的总和、项数等各种问题。
本文将详细介绍等差数列和等比数列的计算方法。
一、等差数列的计算等差数列是指数列中的每个数与它前面的一个数之差都相等。
设等差数列的第一项为a₁,公差为d,第n项为aₙ,则有以下公式可供计算:1. 等差数列的通项公式等差数列的通项公式表示第n项的数与第一项之间的关系。
通项公式可以表示为:aₙ = a₁ + (n - 1)d其中,aₙ表示等差数列的第n项,a₁表示等差数列的第一项,d表示等差数列的公差,n表示等差数列的项数。
2. 等差数列的前n项和等差数列的前n项和是指数列从第一项到第n项的所有数的和。
前n项和可以表示为:Sn = (n/2)(a₁ + aₙ)其中,Sn表示等差数列的前n项和,n表示等差数列的项数,a₁表示等差数列的第一项,aₙ表示等差数列的第n项。
二、等比数列的计算等比数列是指数列中的每个数与它前面的一个数的比值都相等。
设等比数列的第一项为a₁,公比为r,第n项为aₙ,则有以下公式可供计算:1. 等比数列的通项公式等比数列的通项公式表示第n项的数与第一项之间的关系。
通项公式可以表示为:aₙ = a₁ * r^(n-1)其中,aₙ表示等比数列的第n项,a₁表示等比数列的第一项,r表示等比数列的公比,n表示等比数列的项数。
2. 等比数列的前n项和等比数列的前n项和是指数列从第一项到第n项的所有数的和。
前n项和可以表示为:Sn = a₁ * (1 - r^n) / (1 - r)其中,Sn表示等比数列的前n项和,a₁表示等比数列的第一项,r 表示等比数列的公比,n表示等比数列的项数。
总结:等差数列和等比数列的计算方法主要涵盖了通项公式和前n项和的计算。
通过这些公式,我们可以轻松地求解等差数列和等比数列中的各种问题。
等差数列与等比数列的性质
等差数列与等比数列的性质数列在数学中起着重要的作用,它们是由一系列按照一定规律排列的数所组成的。
其中,等差数列和等比数列是最常见的两种数列类型,它们都有着自身特定的性质和规律。
本文将介绍等差数列和等比数列的性质以及它们在数学中的应用。
一、等差数列的性质等差数列是指数列中相邻两项之差固定的数列。
设数列的首项为a₁,公差为d,则它的一般项可表示为aₙ = a₁ + (n-1)d,其中n为项数。
1.1 等差数列的通项公式等差数列的通项公式可以通过首项和公差来表示。
假设首项为a₁,公差为d,则等差数列的通项公式为aₙ = a₁ + (n-1)d。
1.2 等差数列的前n项和等差数列的前n项和可以通过项数和首项、末项之和的一半再乘以项数来表示。
设前n项和为Sₙ,则Sₙ = n * (a₁ + aₙ) / 2。
1.3 等差数列的性质等差数列具有以下性质:(1)相邻两项之差相等;(2)任意三项成等差数列;(3)n个连续的自然数之和为n²;(4)若等差数列的和等于某项的积,则这些项必为等差数列。
二、等比数列的性质等比数列是指数列中相邻两项之比固定的数列。
设数列的首项为a₁,公比为q,则它的一般项可表示为aₙ = a₁ * q^(n-1),其中n为项数。
2.1 等比数列的通项公式等比数列的通项公式可以通过首项和公比来表示。
假设首项为a₁,公比为q,则等比数列的通项公式为aₙ = a₁ * q^(n-1)。
2.2 等比数列的前n项和等比数列的前n项和可以通过项数和首项、末项之差再除以公比再加1来表示。
设前n项和为Sₙ,则Sₙ = (a₁ * (q^n - 1)) / (q - 1)。
2.3 等比数列的性质等比数列具有以下性质:(1)相邻两项之比相等;(2)任意三项成等比数列;(3)若等比数列的前n项和存在,则当n趋向无穷时,和趋向于无穷;(4)若等比数列的各项均为正数,且和存在,则公比q必定在0到1之间。
三、等差数列与等比数列的应用等差数列与等比数列在数学中有着广泛的应用。
小学奥数讲义-等差数列的认识与公式运用
本讲知识点属于计算板块的部分,难度较三年级学到的该内容稍大,最突出一点就是把公式用字母表示。
要求学生熟记等差数列三个公式,并在公式中找出对应的各个量进行计算。
一、等差数列的定义⑴ 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、 从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、 从第二项起,每一项比前一项小5 ,递减数列⑵ 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。
项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯() 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯() 回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=知识点拨教学目标等差数列的认识与公式运用③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++ 11002993985051=++++++++共50个101()()()()101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和(1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(), 题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;② 65636153116533233331089++++++=+⨯÷=⨯=(), 题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.模块一、等差数列基本概念及公式的简单应用等差数列的基本认识【例 1】 下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。
小学数学中的等差数列与等比数列
小学数学中的等差数列与等比数列数学在小学阶段的学习是非常重要的,其中包括了等差数列和等比数列的学习。
等差数列和等比数列是数学中常见的序列形式,对于数学知识的理解和应用有着重要的作用。
本文将介绍小学数学中的等差数列和等比数列的概念、性质以及应用。
一、等差数列等差数列是指一组数字按照相等的差值逐次增加(或递减)的数列。
其中,首项为a,公差为d。
等差数列的通项公式为An=a+(n-1)d。
在小学阶段,对于等差数列的学习主要包括以下几个方面:1. 概念理解首先,学生需要理解等差数列的概念,即一组数字按照相等的差值逐次增加(或递减)。
可以通过具体的数列例子来帮助学生理解,比如2,5,8,11,14就是一个等差数列,其中差值为3。
2. 判断等差数列学生需要学会判断给定的数列是否为等差数列。
可以通过观察相邻两项的差值是否相等来判断,如果相等则为等差数列。
同时,学生需要注意等差数列的公差是固定的,也就是说差值是保持不变的。
3. 求和公式学生需要了解等差数列的求和公式,即Sn=n/2(a+l),其中Sn表示前n项和,a表示首项,l表示末项。
通过掌握求和公式,可以简化对等差数列求和的计算。
二、等比数列等比数列是指一组数字按照相等的比值逐次增加(或递减)的数列。
其中,首项为a,公比为r。
等比数列的通项公式为An=a*r^(n-1)。
在小学阶段,对于等比数列的学习主要包括以下几个方面:1. 概念理解同样,学生需要理解等比数列的概念,即一组数字按照相等的比值逐次增加(或递减)。
可以通过具体的数列例子来帮助学生理解,比如2,4,8,16,32就是一个等比数列,其中比值为2。
2. 判断等比数列学生需要学会判断给定的数列是否为等比数列。
可以通过观察相邻两项的比值是否相等来判断,如果相等则为等比数列。
同时,学生需要注意等比数列的公比是固定的,也就是说比值是保持不变的。
3. 求和公式学生需要了解等比数列的求和公式,即Sn=a(1-r^n)/(1-r),其中Sn表示前n项和,a表示首项,r表示公比。
数列的等差数列与等比数列知识点总结
数列的等差数列与等比数列知识点总结在数学的广袤领域中,数列是一个重要的概念,而等差数列和等比数列则是其中最为基础且关键的两种类型。
理解和掌握它们的知识点,对于解决各种数学问题以及培养逻辑思维能力都具有至关重要的意义。
一、等差数列(一)定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。
这个常数叫做等差数列的公差,常用字母\(d\)表示。
例如:数列\(2, 4, 6, 8, 10\cdots\)就是一个公差为\(2\)的等差数列。
(二)通项公式等差数列的通项公式为:\(a_n = a_1 +(n 1)d\),其中\(a_n\)表示第\(n\)项的值,\(a_1\)表示首项,\(n\)表示项数,\(d\)表示公差。
比如,在等差数列\(3, 5, 7, 9, 11\cdots\)中,首项\(a_1 = 3\),公差\(d = 2\),那么第\(5\)项\(a_5 = 3 +(5 1)×2 = 11\)。
(三)等差中项若\(a\),\(b\),\(c\)成等差数列,则\(b\)为\(a\),\(c\)的等差中项,且\(b =\frac{a + c}{2}\)。
例如:\(4\)是\(2\)和\(6\)的等差中项,因为\(\frac{2 +6}{2} = 4\)。
(四)前\(n\)项和公式等差数列的前\(n\)项和公式有两个:\(S_n =\frac{n(a_1 + a_n)}{2}\)\(S_n = na_1 +\frac{n(n 1)d}{2}\)假如有一个等差数列\(1, 3, 5, 7, 9\cdots\),要求前\(5\)项的和。
首项\(a_1 = 1\),第\(5\)项\(a_5 = 9\),项数\(n = 5\),那么\(S_5 =\frac{5×(1 + 9)}{2} = 25\)或者,利用另一个公式,公差\(d = 2\),\(S_5 = 5×1 +\frac{5×(5 1)×2}{2} = 25\)(五)性质1、若\(m + n = p + q\),则\(a_m + a_n = a_p + a_q\)。
等差等比数列知识点 归纳总结
等差等比数列知识点归纳总结数学中的数列是一系列按照一定规律排列的数的集合。
在数列中,等差数列和等比数列是两种常见的形式。
它们具有一些特定的性质和规律,对于理解数学的推理和应用领域都具有重要意义。
本文将对等差数列和等比数列的知识点进行归纳总结,以帮助读者更好地理解和运用这些概念。
一、等差数列的概念和性质等差数列是指数列中的相邻两项之差保持恒定的数列。
每一项与它的前一项之差称为等差d。
等差数列通常表示为{a,a + d,a + 2d,...},其中a是首项,d是公差。
等差数列具有以下性质:1. 公差:等差数列的公差是相邻两项之差,常用字母d表示。
2. 通项公式:等差数列的通项公式可以通过首项和公差来表示。
通项公式为an = a + (n - 1)d,其中an表示第n项,a表示首项,d表示公差。
3. 首项和末项:等差数列的首项为a,末项为an。
4. 求和公式:等差数列的前n项和可以使用求和公式来表示。
求和公式为Sn = (n/2)(a + an),其中Sn表示前n项和。
5. 通项之和:对于相等间隔的等差数列,任意两项之和都等于首项和末项的和。
二、等比数列的概念和性质等比数列是指数列中的相邻两项之商保持恒定的数列。
每一项与它的前一项之比称为公比r。
等比数列通常表示为{a,ar,ar^2,...},其中a是首项,r是公比。
等比数列具有以下性质:1. 公比:等比数列的公比是相邻两项之比,常用字母r表示。
2. 通项公式:等比数列的通项公式可以通过首项和公比来表示。
通项公式为an = a * r^(n-1),其中an表示第n项,a表示首项,r表示公比。
3. 首项和末项:等比数列的首项为a,末项为an。
4. 求和公式:等比数列的前n项和可以使用求和公式来表示。
求和公式为Sn = a * (1 - r^n) / (1 - r),其中Sn表示前n项和。
5. 通项之积:对于相等间隔的等比数列,任意两项之积都等于首项和公比的幂次方之积。
小学奥数培优-等差数列(含答案)
第四讲等差数列(一)解题方法若干个数排成一列,称为数列。
数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项,数列中数的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
【引例】:等差数列:3、6、9、…、96,这是一个首项为3,末项为96,项数为32,公差为3的数列。
计算等差数列的相关公式:(1)通项公式:第几项=首项+(项数-1)×公差(2)项数公式:项数=(末项-首项)÷公差+1(3)求和公式:总和=(首项+末项)×项数÷2注:在等差数列中,如果已知首项、末项、公差,求总和时,应先求出项数,然后再利用等差数列求和公式求和。
例题1有一个数列:4、7、10、13、…、25,这个数列共有多少项【提示】仔细观察可以发现,后项与其相邻的前项之差都是3,所以这是一个以4为首项,以公差为3的等差数列,根据等差数列的项数公式即可解答。
解:由等差数列的项数公式:项数=(末项-首项)÷公差+1,可得,项数=(25-4)÷3+1=8,所以这个数列共有8项。
引申1、有一个数列:2,6,10,14,…,106,这个数列共有多少项?。
答:这个数列共有27项2、有一个数列:5,8,11,…,92,95,98,这个数列共有多少项?答:这个数列共有19项3、在等差数列中,首项=1,末项=57,公差=2,这个等差数列共有多少项?答:这个等差数列共有29项。
例题2有一等差数列:2,7,12,17,…,这个等差数列的第100项是多少?提示:仔细观察可以发现,后项与其相邻的前项之差等于5,所以这是一个以2为首项,以公差为5的等差数列,根据等差数列的通项公式即可解答解:由等差数列的通项公式:第几项=首项+(项数-1)×公差,可得,第100项=2+(1OO-1)×5=497,所以这个等差数列的第100项是497。
六年级奥数第4-6讲(等差数列,等比数列,找规律填数)
等差数列知识导航:把数列的第1项记为1a ,第2项记为2a ,……第n 项记为n a ,相邻两项的差(常数)记为d ,则有d a a +=12;d a d a a 2123+=+=;d a d a d a a 321234+=+=+=;……d n a a n )1(1-+=2)1(2)(11321÷-⨯+⨯=÷+⨯=+⋅⋅⋅+++=d n n a n a a n a a a a s n n n1、在⋅⋅⋅、、、、、145114835221这一列数中的第8个数是2、观察规律填写第五、第六个数:1、4、7、10、 、 。
3、在8与36之间插入6个数,使它们同这两个数成等差数列。
4、已知一个等差数列的首项为5,公差是2,那么它的第10项、第15项各是多少?5、梯子的最高一级宽32cm ,最低一级宽110cm ,中间还有9级,各级的宽度成等差数列,计算当中一级的宽。
等比数列知识导航:把数列的第1项记为1a ,第2项记为2a ,……第n 项记为n a ,相邻两项的比记为q ,则有q a a 12=;2123q a q a a ==;3134q a q a a ==;……11-=n n q a aqq a q a q a a a a a s n n n n --=-⨯-=+⋅⋅⋅+++=1)1(111321 1、根据规律填空:3、5、9、17、 、65。
2、观察算式,填入括号内19=1×9+(1+9);29=2×9+(2+9);39=3×9+(3+9);那么1289==N ×9+(N+9)3、在一列数2,2,4,8,2,…中,从第3个数开始,每个数都是它前面两个数的乘积的个位数字。
按这个规律,这列数中的第2004个数是 。
4、根据下列数字排列规律写出第6个数:2,3,29,427,…。
找规律填数知识导航:1、利用等差数列求数。
2、利用等比数列求数。
等差数列与等比数列的知识点总结
等差数列与等比数列的知识点总结等差数列与等比数列是数学中常见的两种数列,它们在数学和实际生活中都有着重要的应用。
下面将从定义、性质、求和公式和应用等几个方面对等差数列和等比数列进行全面总结。
**一、等差数列的基本概念**等差数列是指一个数列中,从第二项起,每一项与它的前一项的差等于同一个常数的数列。
一般来说,等差数列的通项公式为:a_n=a_1+(n-1)d,其中a_n表示数列的第n项,a_1表示数列的首项,n表示项数,d表示公差。
**二、等差数列的性质**1. 等差数列的通项公式:a_n=a_1+(n-1)d2. 等差数列的前n项和公式:S_n=\frac{n}{2}(2a_1+(n-1)d)3. 等差数列的性质:任意三项成等差数列,等差中项相等。
4. 等差数列的性质:首项与末项的关系。
**三、等差数列的应用**等差数列在实际生活中有着广泛的应用,比如在金融领域中的等额还款、在物理学中的匀速运动等等。
**四、等比数列的基本概念**等比数列是指一个数列中,从第二项起,每一项与它的前一项的比等于同一个常数的数列。
一般来说,等比数列的通项公式为:a_n=a_1 \cdot q^{n-1},其中a_n表示数列的第n项,a_1表示数列的首项,n表示项数,q表示公比。
**五、等比数列的性质**1. 等比数列的通项公式:a_n=a_1 \cdot q^{n-1}2. 等比数列的前n项和公式:S_n=\frac{a_1(1-q^n)}{1-q},当|q|<1时成立3. 等比数列的性质:首项、末项、项数的关系。
4. 等比数列的性质:任意三项成等比数列,等比中项与等比积。
**六、等比数列的应用**等比数列同样在实际中有着广泛的应用,比如在利息计算中的等比增长、在生物学中的细胞分裂等等。
**结语**等差数列与等比数列是数学中基础而重要的概念,它们不仅在数学理论中有着重要的意义,而且在实际生活中也有着广泛的应用。
等差数列和等比数列的公式总结
等差数列和等比数列的公式总结1. 什么是等差数列?等差数列,顾名思义,就是每个数之间的差都是一样的。
想象一下,你在逛超市,发现有一款零食,价格每次涨一块钱。
第一天10块,第二天11块,第三天12块……你能想到这个规律吗?每天都在加一块,这就是等差数列的魅力!简单来说,如果我们把这个序列写出来,就可以看到:10, 11, 12, 13,依此类推。
这里面,1110=1,1211=1,这个“1”就是我们说的公差。
1.1 等差数列的通项公式好啦,讲到这里,肯定有人好奇,等差数列的通项公式是啥?其实,它特别简单。
我们用字母来表示,假设第一项是 ( a_1 ),公差是 ( d ),那么第 ( n ) 项可以用这个公式表示:。
a_n = a_1 + (n1) times d 。
举个例子,如果第一项是2,公差是3,那么想要知道第5项是多少呢?只要把公式代进去:。
a_5 = 2 + (51) times 3 = 2 + 12 = 14 。
哎呀,14块钱的零食又来了,想想都馋!1.2 等差数列的求和公式说到求和,等差数列也有它的独门秘籍。
假如你想要把前 ( n ) 项的和加起来,别着急,有个公式可以帮你轻松搞定:。
S_n = frac{n{2 times (a_1 + a_n) 。
或者,你也可以用这个公式:S_n = frac{n{2 times (2a_1 + (n1)d) 。
别看公式长得有点吓人,其实运用起来还真不难!想象一下,你在计算一堆零食的总价,第一天买了10块,第二天11块,第三天12块,……,总共买了5天的,怎么算呢?我们先算出第5项是14,然后带入公式:。
S_5 = frac{5{2 times (10 + 14) = frac{5{2 times 24 = 60 。
哎哟,60块钱的零食,真是爽到飞起!2. 什么是等比数列?再来聊聊等比数列。
这种数列可有意思了!它的特点是每个数之间的比是固定的。
想象你正在进行一个小投资,第一年投100块,第二年收益翻倍,结果是200块,第三年又翻倍成400块……这就是等比数列!用数字来表示就是:100, 200, 400,瞧,翻得飞起。
小学等差等比数列知识点归纳总结
小学等差等比数列知识点归纳总结【小学等差等比数列知识点归纳总结】数列是数学中一个重要的概念,它由一系列按照特定规律排列的数所组成。
在小学阶段,学生们将接触到两种常见的数列,即等差数列和等比数列。
本文将对小学等差等比数列的知识点进行归纳总结。
一、等差数列(Arithmetic Progression)等差数列是指数列中相邻两项之差相等的一种数列。
等差数列的通项公式为:an = a1 + (n - 1)d,其中an表示第n项,a1表示首项,d表示公差。
1. 公差等差数列中,相邻两项之差称为公差。
公差可以是正数、负数或零。
2. 首项等差数列中的第一项称为首项,通常表示为a1。
3. 通项公式等差数列中的通项公式可以通过首项和公差来计算任意一项的值。
4. 前n项和公式等差数列的前n项和公式为Sn = (n/2)(a1 + an),其中Sn表示前n项和。
二、等比数列(Geometric Progression)等比数列是指数列中相邻两项之比相等的一种数列。
等比数列的通项公式为:an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。
1. 公比等比数列中,相邻两项之比称为公比。
公比可以是正数或负数,但不能为零。
2. 首项等比数列中的第一项称为首项,通常表示为a1。
3. 通项公式等比数列中的通项公式可以通过首项和公比来计算任意一项的值。
4. 前n项和公式等比数列的前n项和公式为Sn = (a1 * (r^n - 1))/(r - 1),其中Sn表示前n项和。
三、等差数列与等比数列的关系等差数列和等比数列都是数学中常见的数列形式。
它们之间存在一定的联系。
1. 等差数列的前n项和与等差数列的平均数等差数列的前n项和可以表示为Sn = n * (a1 + an)/2,其中an表示第n项。
而等差数列的平均数可以表示为(a1 + an)/2,即首项与末项的平均值。
2. 等差数列的前n项和与等比数列的前n项和之比当等比数列的公比为1时,等比数列变为等差数列。
如何求解等差数列和等比数列
如何求解等差数列和等比数列等差数列和等比数列是数学中常见且重要的数列。
在解题过程中,我们需要掌握一些基本的求解方法和公式。
本文将详细介绍如何求解等差数列和等比数列的方法和步骤。
一、等差数列的求解方法等差数列是指数列中相邻两项之差都相等的数列。
设等差数列的首项为a₁,公差为d,第n项为aₙ。
1. 求解等差数列的前n项和要求解等差数列的前n项和,可以使用等差数列求和公式。
等差数列的前n项和公式为:Sn = (n/2) * (a₁ + aₙ)其中,Sn表示前n项和,n表示项数,a₁表示首项,aₙ表示第n项。
2. 求解等差数列的第n项要求解等差数列的第n项,可以使用等差数列通项公式。
等差数列的通项公式为:aₙ = a₁ + (n-1) * d其中,aₙ表示第n项,n表示项数,a₁表示首项,d表示公差。
二、等比数列的求解方法等比数列是指数列中相邻两项的比值都相等的数列。
设等比数列的首项为a₁,公比为q,第n项为aₙ。
1. 求解等比数列的前n项和要求解等比数列的前n项和,可以使用等比数列求和公式。
等比数列的前n项和公式为:Sn = (a₁ * (q^n - 1)) / (q - 1)其中,Sn表示前n项和,a₁表示首项,q表示公比。
2. 求解等比数列的第n项要求解等比数列的第n项,可以使用等比数列通项公式。
等比数列的通项公式为:aₙ = a₁ * q^(n-1)其中,aₙ表示第n项,a₁表示首项,q表示公比。
通过上述的求解方法和公式,我们可以轻松求解等差数列和等比数列的问题。
在实际应用中,我们可以根据题目给出的条件,确定问题所涉及的数列类型,并选择恰当的求解方法进行计算。
总结:等差数列和等比数列是数学中常见的数列类型,求解它们的方法和步骤相对简单。
对于等差数列,我们可以使用求和公式和通项公式来求解前n项和和第n项;对于等比数列,我们可以使用求和公式和通项公式来求解前n项和和第n项。
掌握了这些基本方法和公式,我们就可以有效地解决等差数列和等比数列的问题。
六年级奥数第4-6讲(等差数列-等比数列-找规律填数)
等差数列知识导航:把数列的第1项记为1a ,第2项记为2a ,……第n 项记为n a ,相邻两项的差(常数)记为d ,则有d a a +=12;d a d a a 2123+=+=;d a d a d a a 321234+=+=+=;……d n a a n )1(1-+=2)1(2)(11321÷-⨯+⨯=÷+⨯=+⋅⋅⋅+++=d n n a n a a n a a a a s n n n1、在⋅⋅⋅、、、、、145114835221这一列数中的第8个数是2、观察规律填写第五、第六个数:1、4、7、10、 、 。
3、在8与36之间插入6个数,使它们同这两个数成等差数列。
4、已知一个等差数列的首项为5,公差是2,那么它的第10项、第15项各是多少?5、梯子的最高一级宽32cm ,最低一级宽110cm ,中间还有9级,各级的宽度成等差数列,计算当中一级的宽。
等比数列知识导航:把数列的第1项记为1a ,第2项记为2a ,……第n 项记为n a ,相邻两项的比记为q ,则有q a a 12=;2123q a q a a ==;3134q a q a a ==;……11-=n n q a aqq a q a q a a a a a s n n n n --=-⨯-=+⋅⋅⋅+++=1)1(111321 1、根据规律填空:3、5、9、17、 、65。
2、观察算式,填入括号内19=1×9+(1+9);29=2×9+(2+9);39=3×9+(3+9); 那么1289==N ×9+(N+9)3、在一列数2,2,4,8,2,…中,从第3个数开始,每个数都是它前面两个数的乘积的个位数字。
按这个规律,这列数中的第2004个数是 。
4、根据下列数字排列规律写出第6个数:2,3,29,427,…。
找规律填数知识导航:1、利用等差数列求数。
2、利用等比数列求数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识导航:
把数列的第1项记为1a ,第2项记为2a ,……第n 项记为n a ,相邻两项的差(常数)记为d ,则有d a a +=12;d a d a a 2123+=+=;d a d a d a a 321234+=+=+=;……d n a a n )1(1-+=
2)1(2)(11321÷-⨯+⨯=÷+⨯=+⋅⋅⋅+++=d n n a n a a n a a a a s n n n
1、在⋅⋅⋅、、、、、14
5114835221这一列数中的第8个数是
2、观察规律填写第五、第六个数:1、4、7、10、 、 。
3、在8与36之间插入6个数,使它们同这两个数成等差数列。
4、已知一个等差数列的首项为5,公差是2,那么它的第10项、第15项各是多少?
5、梯子的最高一级宽32cm ,最低一级宽110cm ,中间还有9级,各级的宽度成等差数列,计算当中一级的宽。
知识导航:
把数列的第1项记为1a ,第2项记为2a ,……第n 项记为n a ,相邻两项的比记为q ,则有q a a 12=;2123q a q a a ==;3134q a q a a ==;……11-=n n q a a
q
q a q a q a a a a a s n n n n --=-⨯-=+⋅⋅⋅+++=1)1(111321 1、根据规律填空:3、5、9、17、 、65。
2、观察算式,填入括号内
19=1×9+(1+9);29=2×9+(2+9);39=3×9+(3+9); 那么1289=
=N ×9+(N+9)
3、在一列数2,2,4,8,2,…中,从第3个数开始,每个数都是它前面两个数的乘积的个位数字。
按这个规律,这列数中的第2004个数是 。
4、根据下列数字排列规律写出第6个数:2,3,29,4
27,…。
找规律填数
知识导航:
1、利用等差数列求数。
2、利用等比数列求数。
3、利用周期性的特点找规律。
4、其他带有规律性的问题:如一列数1,1,2,3,5,8,13,…我们不难发现,后一个数是前两个数之和。
练习:
1、1,4,7,10, , 。
2、据报道目前用超级计算机找到的最大质数是12859433-,这个质数的末尾数字是( )
A 、1
B 、3
C 、7
D 、9
3、19939319+的末位数字是( )
A 、2
B 、4
C 、6
D 、8。