初一数学能力测试题(4)

合集下载

(完整版)初中数学计算能力提升训练测试题

(完整版)初中数学计算能力提升训练测试题

1.化简:b b a a 3)43(4---.2.求比多项式22325b ab a a +--少ab a -25的多项式.3.先化简、再求值)432()12(3)34(222a a a a a a --+-+-- (其中2-=a )4、先化简、再求值)]23()5[(42222y xy x y xy x xy -+--+- (其中21,41-=-=y x )5、计算a a a ⋅+2433)(2)(36、(1)计算1092)21(⋅-=(2)计算532)(x x ÷(3)下列计算正确的是 ( ).(A)3232a a a =+ (B)a a 2121=- (C)623)(a a a -=⋅- (D)aa 221=-计算: (1))3()32()23(32232b a ab c b a -⋅-⋅-; (2))3)(532(22a a a -+-;(3))8(25.123x x -⋅ ; (4))532()3(2+-⋅-x x x ;(5)())2(32y x y x +-; (6)利用乘法公式计算:()()n m n m 234234+--+(7)()()x y y x 5225--- (8)已知6,5-==+ab b a ,试求22b ab a +-的值(9)计算:2011200920102⨯-(10)已知多项式3223-++x ax x 能被122+x 整除,商式为3-x ,试求a 的值1、 b a c b a 232232÷-2、 )2(23)2(433y x y x +÷+3、22222335121)433221(y x y x y x y x ÷+-4、当5=x 时,试求整式()()13152322+--+-x x x x 的值5、已知4=+y x ,1=xy ,试求代数式)1)(1(22++y x 的值6、计算:)()532(222223m m n n m n m a a b a a-÷-+-++7、一个矩形的面积为ab a 322+,其宽为a ,试求其周长8、试确定2011201075⋅的个位数字1.(辨析题)不改变分式的值,使分式115101139x y x y -+的各项系数化为整数,分子、分母应乘以(• )A .10B .9C .45D .902.(探究题)下列等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-a b c +; ④m n m --=-m n m-中,成立的是( ) A .①② B .③④ C .①③ D .②④3.(探究题)不改变分式2323523x x x x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+ 4.(辨析题)分式434y x a+,2411x x --,22x xy y x y -++,2222a ab ab b +-中是最简分式的有( ) A .1个 B .2个 C .3个 D .4个5.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m-+-.6.(技能题)通分:(1)26x ab ,29y a bc ; (2)2121a a a -++,261a -.7.(妙法求解题)已知x+1x=3,求2421x x x ++的值计算能力训练(分式2)1.根据分式的基本性质,分式a a b--可变形为( ) A .a a b -- B .a a b + C .-a a b - D .a a b + 2.下列各式中,正确的是( )A .x y x y -+--=x y x y -+;B .x y x y -+-=x y x y ---;C .x y x y -+--=x y x y +-;D .x y x y -+-=x y x y-+ 3.下列各式中,正确的是( )A .a m a b m b +=+B .a b a b ++=0C .1111ab b ac c --=-- D .221x y x y x y -=-+ 4.(2005·天津市)若a=23,则2223712a a a a ---+的值等于_______. 5.(2005·广州市)计算222a ab a b+-=_________. 6.公式22(1)x x --,323(1)x x --,51x -的最简公分母为( ) A .(x-1)2 B .(x-1)3 C .(x-1) D .(x-1)2(1-x )37.21?11x x x -=+-,则?处应填上_________,其中条件是__________.拓展创新题8.(学科综合题)已知a 2-4a+9b 2+6b+5=0,求1a -1b 的值.9.(巧解题)已知x 2+3x+1=0,求x 2+21x 的值.计算能力训练(分式方程1)选择1、(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是……………【 】A .8 B.7 C .6 D .52、(2009年上海市)3.用换元法解分式方程13101x x x x --+=-时,如果设1x y x -=,将原方程化为关于y 的整式方程,那么这个整式方程是( )A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --= 3、(2009襄樊市)分式方程131x x x x +=--的解为( ) A .1 B .-1 C .-2 D .-34、(2009柳州)5.分式方程3221+=x x 的解是( ) A .0=x B .1=x C .2=x D .3=x5、(2009年孝感)关于x 的方程211x a x +=-的解是正数,则a 的取值范围是 A .a >-1B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-26、(2009泰安)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为(A )18%)201(400160=++x x (B )18%)201(160400160=+-+xx (C )18%20160400160=-+x x (D )18%)201(160400400=+-+x x7、(2009年嘉兴市)解方程x x -=-22482的结果是( ) A .2-=xB .2=xC .4=xD .无解8、(2009年漳州)分式方程211x x =+的解是( ) A .1B .1-C .13D .13- 9、(09湖南怀化)分式方程2131=-x 的解是( ) A .21=x B .2=x C .31-=x D . 31=x10、(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是【 】A .8 B.7 C .6 D .511、(2009年广东佛山)方程121x x=-的解是( ) A .0 B .1 C .2 D .312、(2009年山西省)解分式方程11222x x x-+=--,可知方程( ) A .解为2x = B .解为4x = C .解为3x = D .无解13、(2009年广东佛山)方程121x x=-的解是( ) A .0 B .1 C .2 D .314、(2009年山西省)解分式方程11222x x x-+=--,可知方程( ) A .解为2x = B .解为4x = C .解为3x = D .无解计算能力训练(分式方程2)填空1、(2009年邵阳市)请你给x 选择一个合适的值,使方程2112-=-x x 成立,你选择的x =________。

七年级数学(下)测试题4

七年级数学(下)测试题4

七年级数学(下)测试题4班级 姓名 分数 一、选择题(每题4分,共32分)1、9的算术平方根是( )A 、±3B 、-3C 、3D 、32、已知a <b < 0,则下列式子不正确的是( ).A .a -b <0B .a -2<b -2C . 2a <2bD .ab < 13、如图,A D B C ∥,点E 在B D 的延长线上,若155ADE ∠= ,则D B C ∠的度数为( ) A.155B.50 C.45D.254、通过平移,可将左图中的福娃“欢欢”移动到图( )5、一个多边形的每一个外角都等于72°,这个多边形是 ( )(A) 正六边形 (B) 正五边形 (C) 正方形 (D) 正三角形6、已知一个二元一次方程组的解是1,2x y =-⎧⎨=-⎩,则这个方程组是( )A .3,2.x y xy +=-⎧⎨=⎩ B .3,2 1.x y x y +=-⎧⎨-=⎩ C .2,3.x y x y =⎧⎨+=⎩ D .0,3 5.x y x y +=⎧⎨-=⎩7、线段CD 是由线段AB 平移得到的,点A (-1,4)的对应点为C (4,7),则点B (-4,-1)•的对应点的坐标为( )A .(2,9)B .(5,3)C .(1,2)D .(-9,-4) 8、已知:AB ∥CD ,如图1,利用平行线的性质和三角形内角和定理可得:∠BAE +∠E +∠ECD =360°.如图2,同样:∠BAE 1+∠AE 1E 2+∠E 1E 2C +∠E 2CD =540° 则如图3中∠BAE 1+∠AE 1E 2+…+∠E n -1E n C +∠E n CD 为 ( ) A . n ·180° B . (n -1)·180° C . (n +1)·180° D . (n +2)·180°A D ECA B C D A B D C E图1 A BDCE 2图2 E 1A BDC E 2 图3E 1 E nABCE14272二、填空题(每题4分,共16分)9.命题“两直线平行,同位角相等”的题设是_______________,结论是________________. 10、如右下图,已知142ABE = ∠,72C = ∠,则A =∠ ,A B C =∠ .11、已知:01|4|2=++-y x ,那么x +y 的值是 .12. 按如下规律摆放三角形:则第(4)堆三角形的个数为_____________;第(n)堆三角形的个数为_____________. 三、计算与证明 13、(414、(3分)+;15、(5分)已知一个正数的平方根是2a+3和1-3a ,求这个正数。

鲁教版(五四制)2019-2020初一数学上册第二章有理数及其运算单元测试题4(含答案)

鲁教版(五四制)2019-2020初一数学上册第二章有理数及其运算单元测试题4(含答案)

鲁教版(五四制)2019-2020初一数学上册第二章有理数及其运算单元测试题4(含答案)1.﹣的相反数是( )A .B .C .﹣3D .32.若x 是2的相反数, 4y =,且0x y +<,则x y -=( )A .6-B .6C .2-D .23.若a 的相反数为1,则a 2019是( )A .2019B .﹣2019C .1D .﹣14.化简|- 2017| 结果正确的是( )A .12017-B .12017C .2017D .– 2017 5.如果|a+2|+(b ﹣1)2=0,那么(a+b )2009 的值是( )A .﹣2009B .2009C .﹣1D .16.下列各数:其中有理数的个数是( )A .3B .4C .5D .67.下列各对数中,数值相等的是( )A .+23与+32B .−32与()32-C .−23与()23-D .3×22与()232⨯ 8.已知,a ,b 两数在数轴上的位置如图,下列各式成立的是( )A .ab >0B .(a+1)(b+1)>0C .a+b >0D .(a ﹣1)(b ﹣1)>09.下列各组数中,相等的是( ).A .–1与(–4)+(–3)B .-3与–(–3)C .234与916D .2-4()与–16 10.-7的相反数是( )A .-7B .17-C .17D .7 11.a ※b 是新规定的这样一种运算法则:a ※b =a (a+b ),则(﹣2)※3=_.12.据媒体公布,我国国防科技大学研制的“天河二号”以每秒3386×1013次的浮点运算速度第五次蝉联冠军,已知3386×1013的结果近似为3430000,用科学记数法把近似数3430000表示成a×10n的形式,则n的值是_____.13.如果出售一个商品,获利记为正,则-20元表示________。

14.计算:(1)=_____;(2)-a+2a______;=_____;(4)(-2)3=_____. 15.-1, 0, 2.5,+34 ,-1.842,-3.14,2036,-127 中,正数有_______,负数有_______. 16.水池中的水位在某天8个不同时间测得记录如下(规定上升为正,单位:厘米):+3,﹣6,﹣1,+5,﹣4,+2,﹣3,﹣2,那么,这天水池中水位最终的变化情况是_____.17.比较大小(用“<”或“>”填空):﹣23_____﹣34;﹣|﹣8|_____﹣(﹣3).18.,用幂的形式表示为________.19.为了节约用水,某市改进居民用水设施,在2017年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为________.20.=________.21.计算:22.(题文)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.23.国际足球比赛对足球的质量有严格的要求,比赛所用足球上标有:430±20(g).请问:(1)比赛所用足球的标准质量是多少?符合比赛所用足球质量的合格范围是多少?(2)组委会随机抽查了8只足球的质量,高于标准质量记为正,低于标准质量记为负,结果分别是:﹣15g,+12g,﹣24g,﹣6g,+13g,﹣5g,+22g,﹣9g,求这8只足球质量的合格率.(足球质量的合格率=)24.已知|a|=2,|b|=4,若|a﹣b|=﹣(a﹣b),求ab的值.25.计算:(1)12﹣(﹣18)+(﹣7)﹣15 (2)4+(﹣2)3×5﹣(﹣0.28)÷426.如图,一辆货车从超市出发,向东走了3 km到达小彬家,继续走了1.5 km到达小颖家,然后向西走了9.5 km到达小明家,最后回到超市.(1)小明家在超市的什么方向,距超市多远?以超市为原点,以向东的方向为正方向.用1个单位长度表示1 km,你能在数轴上表示出小明家、小彬家和小颖家的位置吗?(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?27.一般地,数轴上表示数m和数n的两点之间的距离等于,如:数轴上表示4和1的两点之间的距离是|4﹣1|=3;表示﹣3和2两点之间的距离是|﹣3﹣2|=5.根据以上材料,结合数轴与绝对值的知识回答下列问题:(1)如果表示数和﹣2的两点之间的距离是3,那么=___________;(2)若数轴上表示数的点位于﹣4与2之间,那么的值是_____;当_______时,的值最小,最小值是________.(3)依照上述方法,的最小值是________.28.29.计算题:(1)1+(﹣2)﹣(﹣5); (2)﹣4÷﹣(﹣)×(﹣30);(3)﹣24+3×+; (4)2×(3﹣)﹣5+2.30.(知识重现)我们知道,在a x=N中,已知底数a,指数x,求幂N的运算叫做乘方运算.例如23=8;已知幂N,指数x,求底数a的运算叫做开方运算,例如=2;(学习新知)现定义:如果a x=N(a>0且a≠1),即a的x次方等于N(a>0且a≠1),那么数x叫做以a 为底N的对数(logarithm),记作x=log a N.其中a叫做对数的底数,N叫做真数,x叫做以a为底N的对数.例如log28=3.零没有对数;在实数范围内,负数没有对数.(应用新知)(1)填空:在a x=N,已知幂N,底数a(a>0且a≠1),求指数x的运算叫做_____运算;(2)选择题:在式子log5125中,真数是_____A.3B.5C.10D.125(3)①计算以下各对数的值:log39;log327;log3243.②根据①中计算结果,请你直接写出log a M,log a N,log a(MN)之间的关系.(其中a>0且a≠1,M>0,N>0)参考答案1.B【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【详解】﹣的相反数是.故选B.【点睛】本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.2.D【解析】试题分析:因为x是2的相反数,所以x=-2,因为|y|=4,所以y=±4,又因为x+y<0,所以x=-2,y=-4,所以x-y=(-2)-(-4)=2.故选D.3.D【解析】【分析】先根据相反数的定义求出a,再代入计算即可求解.【详解】∵a的相反数为1,∴a=−1,∴a2019=(−1)2019=−1.故答案选:D.【点睛】本题考查了相反数的定义,解题的关键是根据相反数的定义求出a的值. 4.C【解析】解:|- 2017 |=2017.故选C.5.C【解析】【分析】根据非负数的性质列出方程求出 a 、b 的值,代入所求代数式计算即可.【详解】 解:∵∴∴故选:C .【点睛】本题考查了非负数的性质:几个非负数的和为 0 时,这几个非负数都为0.6.C【解析】【分析】有理数是整数和分数的集合,整数也可看做是分母为一的分数,有理数的小数部分是有限或为无限循环的数.【详解】是有理数,故答案是5,故选C.【点睛】本题考查的是有理数,熟练掌握有理数的概念是解题的关键.7.B【解析】A 选项中,∵233928+=+=,,∴A 中的两个数不相等; B 选项中,∵()332828-=--=-,,∴B 中的两个数相等;C 选项中,∵()223939-=--=,,∴C 中的两个数不相等;D 选项中,∵()2232123236⨯=⨯=,,所以D 中两个数不相等;故选B.8.D【解析】试题解析:∵由图可知,−2<b <−1<0<a <1,∴ab <0,故A 选项错误;a +1>0,b +1<0,(a +1)(b +1)<0,故B 选项错误;a +b <0,故C 选项错误;a −1<0,b −1<0,(a −1)(b −1)>0,故D 选项正确.故选D.点睛:根据各点在数轴上的位置判断出,a b 的取值范围,进而可得出结论.9.B【解析】试题解析:A , ()()–437.+-=- 不相等.故错误.B , ()33 3.-=--=相等.正确.C , 239.44= 不相等.故错误. D , ()241616.-=≠- 不相等.故错误.故选B.10.D【解析】由相反数的定义:“只有符号不同的两个数互为相反数”可知,-7的相反数是7. 故选D.11.-2【解析】【分析】根据题目所规定的运算法则:a ※b=a(a+b)将(﹣2)※3转化为﹣2×(﹣2+3)进行计算即可.【详解】因为:a ※b=a(a+b),所以(﹣2)※3=﹣2×(﹣2+3)=﹣2.【点睛】本题实际上还是考查了有理数的混合运算,属于新定义题型,弄清题中的新定义以及熟练使用有理数的运算法则是解本题的关键.12.6【解析】【分析】直接利用科学记数法的表示方法分析得出n的值.【详解】3430000=3.43×106,则n=6.故答案为:6.【点睛】考查了用科学记数法表示数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.13.亏损20元【解析】【分析】根据题意可以写出题目中的-20表示的意义,本题得以解决.【详解】∵出售一个商品,获利记为正,∴-20元表示亏损20元,故答案为:亏损20元.【点睛】本题考查正数和负数,解答本题的关键是明确正负数在题目中表示的实际意义.14.-9 a -4 -8【解析】【分析】根据有理数的减法法则,除法法则,乘方法则,以及合并同类项即可解出.【详解】解:(1)=-7+(-2)=-9;(2)-a+2a=(-1+2)a=a;(3)=2×(-2)=-4;(4)(-2)3=(-2) × (-2) × (-2)=-8,故答案为:-9,a,-4,-8.【点睛】考查了有理数的运算及合并同类项,掌握计算法则是基础.15. 2.5,+34,2036 ; -1, -1.842,-3.14,-127.【解析】【分析】根据正数与负数的定义,直接作答即可.【详解】解:根据正数与负数的定义,判断可得,正数有2.5,+34,2036,负数有-1, -1.842,-3.14,-127.故答案为:2.5,+34,2036;-1, -1.842,-3.14,-127.【点睛】本题考查正数与负数的定义,要求学生会区分正数与负数.16.下降6厘米【解析】【分析】明确上升为正,为负下降.依题意列式计算.【详解】(+3)+(-6)+(-1)+(+5)+(-4)+(+2)+(-3)+(-2)=-6(厘米).因此,水位最终下降了6厘米.【点睛】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.17.><【解析】(1)∵2283312-==, 3394412-==,且981212>, ∴2334->-; (2)∵88--=-, ()33--=,且83-<, ∴()83--<--.故答案为:(1)>;(2)<.18.(-)10【解析】【分析】根据乘方的相关概念即可解答.【详解】=(-)10【点睛】此题考查乘方的相关概念,所以熟悉乘方的相关概念是解答此类题目的关键.求n 个相同因数a 的积的运算叫做乘方,乘方的结果叫做幂.即a×a×……×a(n 个a),记作a n ,其中a 叫做底数,n 叫做指数.19.53.0510⨯【解析】试题解析:305000用科学记数法表示为: 53.0510.⨯故答案为: 53.0510.⨯20.【解析】==,故答案为. 21.36.【解析】【分析】根据有理数的运算法则计算即可,先算平方,再算乘除,再算加减,如果有括号先算括号里面的.【详解】原式=-1×(-32-9+ )-=32+9- -=41-5,=36.【点睛】本题考查了含乘方的有理数混合运算,解题的关键是熟练掌握有理数的混合运算的顺序和法则.22.(1)是;(2)是完全平方数的所有m值为1188或2673或4752或7425.【解析】【分析】(1)根据“极数”的概念写出即可,设任意一个“极数”为(其中1≤x≤9,0≤y≤9,且x、y为整数),整理可得由=99(10x+y+1),由此即可证明;(2)设m=(其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)=3(10x+y+1),根据1≤x≤9,0≤y≤9,以及D(m)为完全平方数且为3的倍数,可确定出D(m)可取36、81、144、225,然后逐一进行讨论求解即可得. 【详解】(1)如:1188,2475,9900(答案不唯一,符合题意即可);猜想任意一个“极数”是99的倍数,理由如下:设任意一个“极数”为(其中1≤x≤9,0≤y≤9,且x、y为整数),=1000x+100y+10(9-x)+(9-y)=1000x+100y+90-10x+9-y=990x+99y+99=99(10x+y+1),∵x、y为整数,则10x+y+1为整数,∴任意一个“极数”是99点倍数;(2)设m=(其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)==3(10x+y+1),∵1≤x≤9,0≤y≤9,∴33≤3(10x+y+1)≤300,又∵D(m)为完全平方数且为3的倍数,∴D(m)可取36、81、144、225,①D(m)=36时,3(10x+y+1)=36,10x+y+1=12,∴x=1,y=1,m=1188;②D(m)=81时,3(10x+y+1)=81,10x+y+1=27,∴x=2,y=6,m=2673;③D(m)=144时,3(10x+y+1)=144,10x+y+1=48,∴x=4,y=7,m=4752;④D(m)=225时,3(10x+y+1)=225,10x+y+1=75,∴x=7,y=4,m=7425;综上所述,满足D(m)为完全平方数的m的值为1188,2673,4752,7425.【点睛】本题考查数值问题,包括:题目翻译,数位设法,数位整除,完全平方数特征,分类讨论等,易错点是容易忽略数值上取值范围及所得关系式自身特征. 23.(1) 410g~450g (2) 75%【解析】【分析】(1)由题意易知,足球上标有:430±20(g),说明足球的标准质量为430g,最多不超过质量的20g,最少不足20g,即可求解;(2)根据标准质量和抽查结果,可准确求出每个足球的质量,在质量的合格范围内的个数容易求出,进一步可求解.【详解】(1)由题意可知:比赛所用足球的标准质量是430g,符合比赛所用足球质量的合格范围是410g~450g(2)这8只足球的质量分别为415g,442g,406g,424g,443g,425g,452g,421g,有6只足球的质量是合格的,即合格率为:×100%=75%.【点睛】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,要活学活用.24.8或﹣8.【解析】【分析】根据绝对值的性质,可知a-b<0,可得a=2,b=4或a=-2,b=4,由此即可解决问题.【详解】解:∵|a﹣b|=﹣(a﹣b),∴a﹣b<0,∵|a|=2,|b|=4,∴a=2,b=4或a=﹣2,b=4,∴ab的值8或﹣8.【点睛】考查有理数的乘法,绝对值,有理数的减法,熟练掌握绝对值的意义是解题的关键. 25.(1)8;(2)﹣35.3.【解析】【分析】(1)减法转化为加法,再计算可得;(2)将除法变换为乘法,再依据有理数的乘法法则计算可得.【详解】(1)原式=12+18﹣7﹣15=30﹣22=8;(2)原式=4﹣8×5+0.7=4﹣40+0.7=﹣35.3.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.26.(1)图详见解析,小明家在超市西边,距超市5km;(2)8km;(3)19km.【解析】【分析】(1)根据题意画出数轴,根据数轴信息即可知小明家在超市的方向;(2)根据题意列出算式,计算即可得到结果;(3)将行驶的路程相加即可得到结果.【详解】(1)如图,小明家在超市西边,距超市5km;(2)小明家距小李家3-(-5)=8(千米).答:小明家距小李家有8千米.(3)3+1.5+9.5+5=19(千米).答:货车一共行驶了19千米.【点睛】此题考查了有理数加减混合运算的应用,弄清题意是解本题的关键.27.(1)-5或1;(2)6,1,9;(3)16.【解析】【分析】(1)根据数轴上与一点距离相等的点有两个,分别位于该点左右,可得a有两个值;(2)根据-4<a<2,可得|a+4|=a+4,|a-2|=2-a;根据线段上的点与两端点的距离和最小,且让|a-1|=0,可得a的值;(3)根据线段上的点与两端点的距离和最小,-4≤a≤2时,可得原式的最小值.【详解】解:(1)∵=3,∴a+2=3,或a+2=-3,∴a=-5或a=1,故答案为:-5或1;(2)①∵-4<a<2,∴|a+4|+|a-2|=a+4+2-a=6,②∵|a+5|+|a-1|+|a-4|的值最小,∴-5<a<4,|a-1|=0,∴a=1,|a+5|+|a-1|+|a-4|的最小值等于9,故答案为:6,1,9;(3)∵|a+6|+|a-2|+|a-4|+|a+4|的最小值,∴-4≤a≤2,∵|a+6|+|a-2|+|a-4|+|a+4|的最小值=16,故答案为:16.【点睛】本题考查了数轴上点的距离,注意与一点距离相等的点有两个,线段上与两端点的距离和最小的点在线段上.28.5【解析】【分析】先计算乘方,再计算乘法,最后计算加减法即可.【详解】=,=,=2+3,=5.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.29.(1)4;(2)﹣26;(3)﹣9;(4)1.【解析】【分析】(1)根据有理数的加减运算法则进行计算;(2)根据有理数的四则混合运算法则进行计算;(3)根据实数运算法则进行计算,先算开方,再算乘法,最后算加减;(4)先去括号,再算加减.【详解】解:(1)1+(﹣2)﹣(﹣5)=1﹣2+5=4;(2)原式=﹣4×﹣×30=﹣6﹣20=﹣26;(3)原式=﹣24+3×6+(﹣3)=﹣24+18﹣3=﹣9;(4)原式=6﹣2﹣5+2=6﹣5=1.【点睛】本题考核知识点:有理数和实数的运算. 解题关键点:掌握实数的运算法则.30.(1)对数运算(2)D(3)①2,3,5, ②.【解析】【分析】根据定义即可得出答案为对数运算根据定义即可得出真数为125【详解】(1)填空:在a x=N,已知幂N,底数a(a>0且a≠1),求指数x的运算叫做对数运算;(2)选择题:在式子log5125中,真数是D,A.3B.5C.10D.125;故答案为:(1)对数;(2)D(3)①计算以下各对数的值:log39=log332=2;log327=log333=3;log3243=log335=5;②根据①中计算结果,请你直接写出log a M,log a N,log a(MN)之间的关系.(其中a>0且a≠1,M>0,N>0),关系式为:log a M+log a N=log a(MN).。

初一数学能力培养与测试答案

初一数学能力培养与测试答案

初一数学能力培养与测试答案
一、能力培养
1. 帮助学生建立正确的数学思维方式,引导学生以解决问题的态度去学习数
学知识,培养学生的数学素养。

2. 注重数学基础知识的记忆,在此基础之上继续引导学生进行归纳、概括和
总结,也就是把基确的知识用来解决新问题。

3. 注重数学基础训练,包括掌握常用公式,使学生能根据一定的原理、思想
解决新问题。

4. 养成独立完成题目的习惯,学会深入分析研究,用适当的思维方法解决以
往类似的题目。

二、测试题目:
1. 下列四个数中,最大的数是()
A. -28
B. 28
C. 0
D. 8
2. 将四个数8,11,15,-4按升序排列,则正确排列结果为()
A. 11,8,15,-4
B. 8,11,-4,15
C. -4,8,11,15
D. 11,-4,8,
15
3. 下列根据说法正确的应是()
A. 两个数相加等于零,则这两个数相等
B. 两个数相等,则这两个数相加一定等于零
C. 三个数满足,则这三个数的最小值等于它们的和
D. 三个数之和等于零,则其中一个数等于零
答案:1. B 2. C 3. A。

人教版数学七年级上册第1章有理数能力测试训练(四)(含 答案)

人教版数学七年级上册第1章有理数能力测试训练(四)(含 答案)

七年级上册第1章能力测试训练(四)一.选择题(共9小题)1.下列判断中正确的是()A.﹣(﹣a)表示一个正数B.|a|一定是正数,﹣|a|一定是负数C.如果|a|>|b|,则a>bD.如果a>b>0,则|a|>|b|2.任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和.如:23=3+5,33=7+9+11,43=13+15+17+19.……,若m3的“分裂数”中有一个是119,则m=()A.10B.11C.12D.133.在一条南北方向的跑道上,张强先向北走了10米,此时他的位置记作+10米.又向南走了13米,此时他的位置在()A.+23米处B.+13米处C.﹣3米处D.﹣23米处4.如果一个有理数与﹣7的和是正数,那么这个有理数一定是()A.负数B.零C.7D.大于7的正数5.若a=﹣2018,则式子|a2+2017a+1|+|a2+2019a﹣1|的值为()A.4034B.4036C.4037D.40386.已知a、b两数在数轴上对应的点如图所示,下列结论正确的共有()第1页(共1页)①<0,②ab>0,③a﹣b<0,④a+b>0,⑤﹣a<﹣b;⑥a<|b|A.2 个B.3 个C.4 个D.5 个7.当a<0时,下列各式不正确的是()A.a2>0B.a2=(﹣a)2C.a2=﹣a2D.(﹣a)3=﹣a3 8.已知a、c在数轴上的位置如图所示,化简|c|+|c﹣a|的结果是()A.﹣a﹣2c B.a﹣2c C.2c+a D.a9.如图,数轴上A,B,C,D,E五个点表示连续的五个整数a,b,c,d,e,且a+e=0,则下列说法:①点C表示的数字是0;②b+d=0;③e=﹣2;④a+b+c+d+e=0.正确的有()A.都正确B.只有①③正确C.只有①②③正确D.只有③不正确二.填空题(共6小题)第1页(共1页)10.|3﹣π|的绝对值是.11.若m与9﹣4m互为相反数,则m=.12.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,则a,b,c三个数的积为.13.若a+b+c=0且a>b>c,则下列几个数中:①a+b;②ab;③ab2;④b2﹣ac;⑤﹣(b+c),一定是正数的有(填序号).14.已知有理数a,b,c在数轴上对应点的位置如图所示,化简:|b﹣c|﹣2|c+a|﹣3|a﹣b|=.15.正整数a取时,是假分数且是真分数.三.解答题(共5小题)16.数a,b,c在数轴上的对应点如图所示,且表示数a的点与表示数b的点到原点距离相等.(1)用“<”号连接a,b,c,﹣c;(2)计算.17.计算:(1)12﹣(﹣18)+(﹣7)﹣20;第1页(共1页)(2)﹣5﹣9+17﹣3;(3)(﹣1)3﹣[2﹣(﹣3)2]÷(﹣);(4)(﹣7)×(﹣5)﹣90÷(﹣15)+3×(﹣1).18.某儿童服装店以每件32元的价格购进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同.若以47元为标准,将超出的钱数记为正数,不足的钱数记为负数,记录结果如下表所示:售出件数(件)763545售价(元)+3+2+10﹣1﹣2(1)该服装店在售完这30件连衣裙后,是多赚了还是少赚?多赚或少赚了多少钱?(2)该服装店在售完这30件连衣裙后,平均每件连衣裙赚了多少钱?(精确到0.01)19.若有a,b两个数,满足关系式a+b=ab﹣1,则称a.b为“共生数对“,记作(a,b).例如:当2,3满足2+3=2×3﹣1时,则(2,3)是“共生数对“.第1页(共1页)(I)若(x,﹣3)是“共生数对“,求x的值:(2)若(m,n)是“共生数对“,判断(n,m)是否也是“共生数对“,请通过计算说明:(3)请再写出两个不同的“共生数对”.20.观察下面的等式:3﹣1=﹣|﹣1+2|+31﹣1=﹣|1+2|+3(﹣2)﹣1=﹣|4+2|+3回答下列问题:(1)填空:﹣1=﹣|6+2|+3;(2)已知2﹣1=﹣|x+2|+3,则x的值是;(3)设满足上面特征的等式最左边的数为y,则y的最大值是,此时的等式为.第1页(共1页)参考答案一.选择题(共9小题)1.解:A、﹣(﹣a)不一定表示一个正数,原说法错误,故此选项不符合题意;B、|a|不一定是正数,﹣|a|不一定是负数,原说法错误,故此选项不符合题意;C、如果|a|>|b|,例如a=﹣2,b=﹣1,则a<b,原说法错误,故此选项不符合题意;D、如果a>b>0,则|a|>|b|,原说法正确,故此选项符合题意;故选:D.2.解:∵23=3+5,33=7+9+11,43=13+15+17+19,…∴m3分裂后的第一个数是m(m﹣1)+1,共有m个奇数,∵11×(11﹣1)+1=111,12×(12﹣1)+1=133,∴奇数119是底数为11的数的立方分裂后的一个奇数,∴m=11.故选:B.3.解:+10﹣13=﹣3米,故选:C.4.解:如果一个有理数与﹣7的和是正数,那么这个有理数一定是大于7的正数.故选:D.5.解:∵a=﹣2018,第1页(共1页)∴|a2+2017a+1|+|a2+2019a﹣1|=|20182﹣2017×2018+1|+|20182﹣2019×2018﹣1|=|2018×(2018﹣2017)+1|+|2018×(2018﹣2019)﹣1|=|2018+1|+|﹣2018﹣1|=2019+2019=4038,故选:D.6.解:由题意可知b<0<a,且|b|>|a|,∴,故①正确;ab<0,故②错误;a﹣b>0,故③错误;a+b<0,故④错误;﹣a<﹣b,故⑤正确;a<|b|,故⑥正确.∴正确的有①⑤⑥共3个.故选:B.7.解:A、∵a<0,∴a2>0,正确,不合题意;B、a2=(﹣a)2,正确,不合题意;C、a2=﹣a2时,a=0,故此选项错误,符合题意;D、(﹣a)3=﹣a3,正确,不合题意;第1页(共1页)故选:C.8.解:由a、c在数轴上的位置可知:c<0,a>0,且|a|>|c|,因此c﹣a<0,∴|c|+|c﹣a|=﹣c+a﹣c=a﹣2c,故选:B.9.解:∵a,b,c,d,e表示连续的五个整数,且a+e=0,∴a=﹣2,b=﹣1,c=0,d=1,e=2,于是①②④正确,而③不正确,故选:D.二.填空题(共6小题)10.解:∵3﹣π<0,∴|3﹣π|=π﹣3,故答案为:π﹣3.11.解:根据题意得:m+9﹣4m=0,移项、合并同类项得:﹣3m=﹣9,解得:m=3.故答案为:3.12.解:∵最小的自然数是0,最大的负整数是﹣1,绝对值最小的有理数是0,∴abc=0×(﹣1)×0=0,故答案为:0.第1页(共1页)13.解:∵a+b+c=0且a>b>c,∴a>0,c<0,b可以是正数,负数或0,∴①a+b=﹣c>0,②ab可以为正数,负数或0,③ab2可以是正数或0,④ac<0,∴b2﹣ac>0,⑤﹣(b+c)=a>0.故答案为:①④⑤.14.解:由有理数a,b,c在数轴上的位置可知:b﹣c>0,c+a<0,a﹣b<0,∴|b﹣c|﹣2|c+a|﹣3|a﹣b|=b﹣c+2(c+a)+3(a﹣b)=b﹣c+2c+2a+3a﹣3b=5a﹣2b+c,故答案为:5a﹣2b+c.15.解:根据真分数与假分数的意义可知,如果是假分数且是真分数,则7≤a<9,即a的取值可为7或8.故答案为:7或8.三.解答题(共5小题)第1页(共1页)16.解:(1)根据数轴可知:﹣c<a<b<c;(2)∵表示数a的点与表示数b的点到原点距离相等,∴a+b=0,则原式=3(a+b )﹣=﹣=2.17.解:(1)原式=12+18﹣7﹣20=30﹣27=3;(2)原式=﹣5﹣﹣9﹣+17+﹣3﹣=﹣5﹣9+17﹣3﹣﹣+﹣=﹣﹣+﹣=﹣=﹣;(3)原式=﹣1﹣(2﹣9)×(﹣2)=﹣1﹣(﹣7)×(﹣2)=﹣1﹣14第1页(共1页)=﹣15;(4)原式=35+6﹣3=38.18.解:(1)由表格可知:8个数中有4个为负数,说明8名同学的测试有4个不达标,4个达标,∴4÷8=50%,故这8名男生有50%达到标准;(2)7×8+(3﹣2+0+4﹣1﹣1+2﹣5)=15+0=15(个),答:他们共做了15个引体向上.19.解:(1)∵(x,﹣3)是“共生数对”,∴x﹣3=﹣3x﹣1,解得:x =;(2)(n,m)也是“共生数对”,理由:∵(m,n)是“共生数对”,∴m+n=m﹣1,∴n+m=m+n=mn﹣1=nm﹣1,∴(n,m)也是“共生数对”;(3)由a+b=ab﹣1,得b =,若a=3时,b=2;若a=﹣1时,b=0,∴(3,2)和(﹣1,0)是“共生数对”第1页(共1页)20.解:(1)∵﹣|6+2|+3=﹣5,﹣4﹣1=﹣5,故答案为﹣4;(2)由所给式子可知,x+2=2,∴x=0,故答案为0;(3)∵y﹣1=﹣|2﹣y+2|+3,∴y=﹣|y﹣4|+4,当y≥4时,y=﹣y+8,∴y=4;当y<4时,式子恒成立,∴y=4时最大,此时4﹣1=﹣|﹣2+2|+3,故答案为4,4﹣1=﹣|﹣2+2|+3.第1页(共1页)。

北师大版七年级数学上册第四章测试题(附答案)

北师大版七年级数学上册第四章测试题(附答案)

北师大版七年级数学上册第四章测试题(附答案)一、单选题(共12题;共24分)1.下列说法中错误的是()A. 经过两点有且只有一条直线B. 垂直于弦的直径平分这条弦C. 角平分线上的点到角两边的距离相等D. 过直线l上的一点有且只有一条直线垂直于l2.下列说法错误的是()A. 直线没有端点B. 两点之间的所有连线中,线段最短C. 0.5°等于30分D. 角的两边越长,角就越大3.如图,将三个同样的正方形的一个顶点重合放置,如果∠1=α,∠2=β,那么∠3的度数是( )A. 90°-α-βB. 90°-α+βC. 90°+α-βD. α+β-90°4.A,B,C,D四个村庄之间的道路如图,从A去D有以下四条路线可走,其中路程最短的是()A. A→B→C→DB. A→C→DC. A→E→DD. A→B→D5.如图,从笔直的公路旁一点P出发,向西走到达;从P出发向北走也到达l.下列说法错误的...是()A. 从点P向北偏西45°走到达lB. 公路l的走向是南偏西45°C. 公路l的走向是北偏东45°D. 从点P向北走后,再向西走到达l6.下列现象:①用两个钉子就可以把木条固定在墙上.②从A地到B地架设电线,总是尽可能沿着线段AB架设.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象有()A. ①②B. ①③C. ②④D. ③④7.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A. 20°或50°B. 20°或60°C. 30°或50°D. 30°或60°8.如图,C、D是线段AB上的两点,且D是线段AC的中点.若AB=10cm,BC=4cm,则AD的长为()A. 2cmB. 3cmC. 4cmD. 6cm9.如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A. 14cmB. 11cmC. 6cmD. 3cm10.某工程队,在修建兰宁高速公路时,有时需将弯曲的道路改直,根据什么公理可以说明这样做能缩短路程().A. 直线的公理B. 直线的公理或线段的公理C. 线段最短的公理D. 平行公理11.下列是某同学在一次测验中解答的填空题,其中填错了的是( )A. -2的相反数是2B. |-2|=2C. ∠α=32.7°,∠β=32°42′,则∠α-∠β=0度D. 函数y=的自变量x的取值范围是x<112.如图,小王从A处出发沿北偏东方向行走至B处,又从B处沿南偏东方向行走至C处,则等于()A. B. C. D.二、填空题(共6题;共6分)13.已知数轴上两点A,B表示的数分别为6,-4,点A与点B的距离是________.14.如图,AB∥CD,OE平分∠BOC,OF⊥OE, OP⊥CD,∠ABO=40°,则下列结论:①∠BO E=70°;②OF 平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论有________(填序号)15.点C是线段AB 上一点,BC=4 厘米,D 是AC 的中点,DB=7 厘米,则AB=________厘米.16.若∠α=59°21′36″,这∠α的补角为________.17.如图,两根木条的长度分别为和,在它们的中点处各打一个小孔(小孔大小忽略不计). 将这两根木条的一端重合并放置在同一条直线上,则两小孔间的距离________ .18.一条线段上有四个点A,B,C,D,且线段AB=10cm,BC=8cm,点D为AC的中点,则线段AD的长是________。

初一下数学能力训练题(A)

初一下数学能力训练题(A)

1、一种细胞的直径约为1.56×10-6米,那么它的一百万倍相当于( )A 、玻璃跳棋棋子的直径B 、数学课本的宽度C 、初中学生小丽的身高D 、五层楼房的高度 2、已知36+mx 4+x 42是完全平方式,则m 的值为 ( )A 、2B 、±2C 、-6D 、±6 3、如图所示,AB//CD ,∠E=27°,∠C =52°,则∠EAB 的度数为( ) A 、25° B 、63° C 、79° D 、101° 4、如图,已知△ABC 中,∠A =40°,剪去∠A 后成四边形, 则∠1+∠2=______________。

5、观察下列等式: 第一行 3=4-1 第二行 5=9-4 第三行 7=16-9 第四行 9=25-16 … …按照上述规律,第n 行的等式为_____________________。

6、袋中有同样大小的4个小球,其中3个红色,1个白色。

从袋中任意地同时摸出两个球,这两个球颜色相同的概率是( )A 、21B 、31C 、32D 、41 7、计算:2-30)31(-)21-(+)3-π(。

8、先化简,再求值:-ab)(÷ab +2b)+2b)(a -a (3,其中a=2,b=-1。

9、如右图,AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠BEF 交CD 于点G ,∠1=50 , 求∠2的度数。

AB CDE(第3题图)1、用激光测距仪测量两座山峰之间的距离,从一座山峰发出的激光经过-510×4秒到达另一座山峰,已知光速为810×3米/秒,则两座山峰之间的距离用科学记数法表示为( ) A、310×2.1米B 、310×12米C、410×2.1米D、510×2.1米2、如右图,若△ABC ≌△DEF ,则∠E 等于 ( )A 、30°B 、50°C 、60°D 、100° 3、如图,三角形被遮住的两个角不可能是 ( )A 、一个锐角,一个钝角B 、两个锐角C 、一个锐角,一个直角D 、两个钝角4、观察下列图形,根据变化规律推测第100个与第_______个图形位置相同。

教师专业能力考试试题 初中数学试卷 (4)

教师专业能力考试试题 初中数学试卷  (4)

2022 第1页(共6页)秘密★启用前贵阳市2022年初中学业水平考试试题卷数 学同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时间为120分钟.考试形式闭卷 . 2.一律在答题卡相应位置作答,在试题卷上答题视为无效. 3.不能使用科学计算器.一、选择题:以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每小题3分,共36分. 1.下列各数为负数的是(A )−2(B )0(C )3(D 52.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是(A ) (B ) (C ) (D ) 3.中国科学技术大学利用“墨子号”科学实验卫星,首次实现在地球上相距1200公里的两个地面站之间的量子态远程传输,对于人类构建全球化量子信息处理和量子通信网络迈出重要一步.1200这个数用科学记数法可表示为 (A )0.12×104(B )1.2×104(C )1.2×103(D )12×1024.如图,将菱形纸片沿着线段AB 剪成两个全等的图形,则∠1的度数是 (A )40° (B )60°(C )80°(D )100°53x 在实数范围内有意义,则 x 的取值范围是(A )x ≥3(B )x >3(C )x ≤3(D )x <3(第2题)(第4题)2022 第2页(共6页)6.如图,在△ABC 中,D 是AB 边上的点,∠B =∠ACD , 12AC AB ∶=∶,则△ADC 与△ACB 的周长比是(A )12∶ (B )12∶(C )13∶(D )14∶7.某校九年级选出三名同学参加学校组织的“法治和安全知识竞赛”.比赛规定,以抽签 方式决定每个人的出场顺序.主持人将表示出场顺序的数字1,2,3分别写在3张同样的纸条上,并将这些纸条放在一个不透明的盒子中,搅匀后从中任意抽出一张,小星第一个抽.下列说法中正确的是 (A )小星抽到数字1的可能性最小 (B )小星抽到数字2的可能性最大(C )小星抽到数字3的可能性最大(D )小星抽到每个数的可能性相同8.如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个 小正方形拼成的大正方形.若图中的直角三角形的两条直角边 的长分别为1和3,则中间小正方形的周长是 (A )4 (B )8(C )12(D )169.如图,已知∠ABC =60°,点D 为BA 边上一点,BD =10,点O 为线段BD 的中点,以点O 为圆心,线段OB 长为半径作弧,交BC 于点E ,连接DE ,则BE 的长是 (A )5 (B )52(C )53(D )5510.如图,在平面直角坐标系中有P ,Q ,M ,N 四个点,其中恰有三点在反比例函数ky x =(k >0)的图象上.根据图中四点的位置,判断这四个点中不在函数ky x =的图象上的点是(A )点P (B )点Q(C )点M(D )点N11.小红在班上做节水意识调查,收集了班上7位同学家里上个月的用水量(单位:吨)如下:5,5,6,7,8,9,10.她发现,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则去掉的两个数可能是(A )5,10(B )5,9(C )6,8(D )7,8(第6题)(第9题)(第10题)(第8题)2022 第3页(共6页)12.在同一平面直角坐标系中,一次函数y =ax +b 与y =mx +n (a <m <0)的图象如图所示.小星根据图象得到如下结论:①在一次函数y =mx +n 的图象中,y 的值随着x 值的增大而增大;②方程组y ax b y mx n -⎧⎨-⎩==的解为32x y -⎧⎨⎩==;③方程mx +n =0的解为2x =; ④当x =0时,1ax b +-=. 其中结论正确的个数是 (A )1 (B )2 (C )3(D )4二、填空题:每小题4分,共16分. 13.因式分解:a 2+2a = ▲ .14.端午节到了,小红煮好了10个粽子,其中有6个红枣粽子,4个绿豆粽子.小红想从煮好的粽子中随机捞一个,若每个粽子形状完全相同,被捞到的机会相等,则她捞到红枣粽子的概率是 ▲ .15.“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”.如:从左到右列出的算筹数分别表示方程中未知数x ,y 的系数与相应的常数项,即可表示方程x +4y =23,则表示的方程是 ▲ .16.如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,AC =B C =6cm ,∠ACB =∠ADB =90°.若BE =2AD , 则△ABE 的面积是 ▲ cm 2,∠AEB = ▲ 度.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本题满分12分)(1)a ,b 两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a ▲ b ,ab ▲ 0;(2)在初中阶段我们已经学习了一元二次方程的三种解法,他们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程. ① x 2+2x −1=0;② x 2−3x =0;③ x 2−4x =4;④ x 2−4=0.(第17题)(第12题)(第16题)2022 第4页(共6页)18.(本题满分10分)小星想了解全国2019年至2021年货物进出口总额变化情况,他根据国家统计局2022年发布的相关信息,绘制了如下的统计图,请利用统计图中提供的信息回答下列问题:(1)为了更好的表现出货物进出口额的变化趋势,你认为应选择 ▲ 统计图更好(填“条形”或“折线”);(2)货物进出口差额是衡量国家经济的重要指标,货物出口总额超过货物进口总额的差额称为货物进出口顺差,2021年我国货物进出口顺差是 ▲ 万亿元; (3)写出一条关于我国货物进出口总额变化趋势的信息. 19.(本题满分10分)一次函数3y x --=的图象与反比例函数ky x =的图象相交于A (-4,m ),B (n ,-4)两点. (1)求这个反比例函数的表达式;(2)根据图象写出使一次函数值小于反比例函数值的x 的取值范围. 20.(本题满分10分)国发〔2022〕2号文发布后,贵州迎来了高质量快速发展,货运量持续增加.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?(第18题)(第19题)2022 第5页(共6页)21.(本题满分10分)如图,在正方形ABCD 中,E 为AD 上一点,连接BE ,BE 的 垂直平分线交AB 于点M ,交CD 于点N ,垂足为O ,点F 在DC 上, 且MF ∥AD .(1)求证:△ABE ≌△FMN ; (2)若AB =8,AE =6,求ON 的长.22.(本题满分10分)交通安全心系千万家.高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪C 和测速仪E 到路面之间的距离CD =EF =7m ,测速仪C 和E 之间的距离CE =750m ,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪C 处测得小汽车在隧道入口A 点的俯角为25°,在测速仪E 处测得小汽车在B 点的俯角为60°,小汽车在隧道中从点A 行驶到点B 所用的时间为38s (图中所有点都在同一平面内). (1)求A ,B 两点之间的距离(结果精确到1m );(2)若该隧道限速22m/s ,判断小汽车从点A 行驶到点B 是否超速?通过计算说明理由.3.7,sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)23.(本题满分12分)如图,AB 为⊙O 的直径,CD 是⊙O 的切线,C 为切点,连接BC .ED 垂直平分OB ,垂足为E ,且交BC 于点F ,交BC 于点P ,连接BF ,CF . (1)求证:∠DCP =∠DPC ;(2)当BC 平分∠ABF 时,求证:CF //AB ;(3)在(2)的条件下,OB =2,求阴影部分的面积.(第21题)(第22题)(第23题)24.(本题满分12分)已知二次函数24=.++y ax ax b(1)求二次函数图象的顶点坐标(用含a,b的代数式表示);(2)在平面直角坐标系中,若二次函数的图象与x轴交于A,B两点,AB=6,且图象过(1,c),(3,d),(−1,e),(−3,f )四点,判断c,d,e,f的大小,并说明理由;(3)点M(m,n)是二次函数图象上的一个动点,当−2≤m≤1时,n的取值范围是−1≤n≤1,(第24题)求二次函数的表达式.25.(本题满分12分)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.如图,在□ABCD中,AN为BC边上的高,AD m=,点M在AD边上,且BA=BM,AN点E是线段AM上任意一点,连接BE,将△ABE沿BE翻折得△FBE.(1)问题解决:如图①,当∠BAD=60°,将△ABE沿BE翻折后,使点F与点M重合,则AM=▲;AN(2)问题探究:如图②,当∠BAD=45°,将△ABE沿BE翻折后,使EF∥BM,求∠ABE的度数,并求出此时m的最小值;(3)拓展延伸:当∠BAD=30°,将△ABE沿BE翻折后,若EF⊥AD,且AE=MD,根据题意在备用图中画出图形,并求出m的值.图①图②备用图(第25题)2022第6页(共6页)。

初中数学一元一次不等式(组)单元综合能力达标测试题4(附答案)

初中数学一元一次不等式(组)单元综合能力达标测试题4(附答案)
(1)王老师为什么说他搞错了?试用方程的知识给予解释;
(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本,但笔记本的单价已经模糊不清,只能辨认应为小于5的整数,笔记本的单价可能为多少元?
参考答案
1.A
【解析】

解①得:x≥a+b,
解②得:x< ,
根据题意得:
解得: ,
所以 .
故选A.
【详解】
设胜的场次为x,则负的场次为32-x,则根据题意可得:
,解得不等式为 ,故这个队至少要胜20场才有希望进入季后赛.
【点睛】
本应用题关键学会利用方程的思想解不等式。
13.0,1,2
【解析】
【分析】
先按照解不等式的方法求出不等式的解集,然后再在其解集中确定符合题意的非负整数解即可.
【详解】
解:移项得: ,
故选:C
【点睛】
本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的不等关系,列不等式求解.
7.C
【解析】
【分析】
利用方差的意义、不等号的性质、全等三角形的判定及确定圆的条件对每个选项逐一判断后即可确定正确的选项.
【详解】
A.方差越大,越不稳定,故选项错误;
B.在不等式的两边同时乘以或除以一个负数,不等号方向改变,故选项错误;
(1)请为校方设计可能的租车方案;
(2)在(1)的条件下,校方根据自愿的原则,统计发现有 人参加,请问校方应如何租车,且又省钱?
24.我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.

初中数学冀教版七年级上册第一章 有理数1.2 数轴-章节测试习题(4)

初中数学冀教版七年级上册第一章 有理数1.2 数轴-章节测试习题(4)

章节测试题1.【题文】如图1,已知在数轴上有A、B两点,点A表示的数是,点B表示的数是9.点P在数轴上从点A出发,以每秒2个单位的速度沿数轴正方向运动,同时,点Q在数轴上从点B出发,以每秒3个单位的速度在沿数轴负方向运动,当点Q到达点A时,两点同时停止运动.设运动时间为秒.(1)AB= ;时,点Q表示的数是;当时,P、Q两点相遇;(2)如图2,若点M为线段AP的中点,点N为线段BP中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长;(3)如图3,若点M为线段AP的中点,点T为线段BQ中点,则点M表示的数为________;点T表示的数为________ ;MT=_________ .(用含t的代数式填空)【答案】(1)15;6;3;(2)MN长度不变,理由见解析;(3)t-6,9- ,15-【分析】(1)根据题意即可得到结论;M为AP中点,N为BP中点,得到,,根据即可求出的长度.根据图形,即可得出结论.【解答】解:(1)15 ; 6 ; 3 ;(2)答:MN长度不变,理由如下:M为AP中点,N为BP中点,(3) ;;.2.【题文】把数-2,1.5,-(-4),-3,(-1)4,-|+0.5|在数轴上表示出来,然后用“<”把它们连接起来.【答案】在数轴上表示数略,-3<-2<-|+0.5|<(-1)4<1.5<-(-4).【分析】把各个数在数轴上表示出来,根据数轴右边的数总比在左边的数大,按照从左到右的顺序排列起来即可.【解答】解:把数-2,1.5,-(-4),-3,(-1)4,-|+0.5|在数轴上表示出来如下:用“<”把它们连接起来为:-3<-2<-|+0.5|<(-1)4<1.5<-(-4).3.【题文】如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2.已知点A,B是数轴上的点,请参照图并思考,完成下列各题.(1)若点A表示数,将A点向右移动5个单位长度,那么终点B表示的数是,此时A,B两点间的距离是________.(2)若点A表示数3,将A点向左移动6个单位长度,再向右移动5个单位长度后到达点B,则B表示的数是________;此时A,B两点间的距离是________.(3)若A点表示的数为m,将A点向右移动n个单位长度,再向左移动t个单位长度后到达终点B,此时A、B两点间的距离为多少?【答案】(1) 3 ,5 ;(2) 2 ; 1 ;(3)【分析】(1)由数轴上面的点表示的数查出结果即可,并根据绝对值求出两点间的距离;(2)由数轴上面的点表示的数查出结果即可,并根据绝对值求出两点间的距离;(3)结合(1)和(2)的距离与平移的关系直接列式即可(距离为两次移动的单位长度的差的绝对值).【解答】解:(1)(1) 3 ,5 ;(2) 2 ; 1 ;(3)4.【题文】点A、B在数轴上分别表示实数、,A、B两点之间的距离记作AB.当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB==.当A、B两点都不在原点时:(1)如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB -OA====(2)如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB -OA====(3)如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA===回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=.(2)数轴上表示2和-4的两点A和B之间的距离AB=.(3)数轴上表示和-2的两点A和B之间的距离AB=,如果AB=2,则的值为.(4)若代数式有最小值,则最小值为.【答案】(1);(2)6 ;(3),0或-4;(4)5.【分析】根据数轴上A、B两点之间的距离表示为即可求出答案.【解答】解:(1)综上所述,数轴上A、B两点之间的距离(2)数轴上表示2和-4的两点A和B之间的距离(3)数轴上表示和-2的两点A和B之间的距离如果,则的值为或由题意可知:当x在−2与3之间时,此时,代数式|x+2|+|x−3|取最小值,最小值为故答案为:(1);(2)6 ;(3),0或-4;(4)5.5.【题文】请将下列各数在数轴上表示出来,并用“<”把它们连接起来.﹣22, 0,﹣(﹣3),+(﹣2.5),|﹣|【答案】答案见解析【分析】根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案.【解答】解:如图,由数轴上的点表示的数右边的总比左边的大,得﹣22<+(﹣2.5)<0<|﹣|<﹣(﹣3)6.【题文】如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为-1,正方形ABCD的面积为16.(1)数轴上点B表示的数为;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为,移动后的正方形与原正方形ABCD重叠部分的面积记为S.① 当S =4时,画出图形,并求出数轴上点表示的数;② 设正方形ABCD的移动速度为每秒2个单位长度,点E为线段的中点,点F在线段上,且. 经过秒后,点E,F所表示的数互为相反数,直接写出的值.【答案】(1)-5;(2)– 4或2;(3)t=4.【分析】(1)、根据正方形的面积得出AB=4,根据点A所表示的数得出点B所表示的数;(2)、①、根据题意得出矩形的一边长为4,要使面积为4,则另一边长为1,然后根据向左移动和向右移动两种情况分别画出图形得出答案;②、用含t的代数式分别表示出点E和点F所表示的数,然后根据互为相反数的两个数的和为零列出方程得出答案.【解答】试题分析:解:(1)、–5;(2)、∵正方形ABCD的面积为16,∴边长为4.当S=4时,①若正方形ABCD向左平移,如图1,重叠部分中的A'B =1,∴AA'=3.则点A'表示–1–3= – 4.②若正方形ABCD向右平移,如图2,重叠部分中的AB'=1,∴AA'=3.则点A'表示–1+3= 2,∴点A'表示的数为– 4或2.图1图2(3)t=4.方法总结:本题主要考查的就是数轴上的动点问题以及在数轴上两点之间的距离计算,属于中等难度的题型,解答这个问题最关键的就是要明确两点之间的距离方法.在用代数式来表示点所表示的数时,同学们一定要注意向右移动,则用原数加上移动的距离;向左移动,则用原数减去移动的距离.7.【题文】如图,数轴上的点A、B、C分别表示数﹣3、﹣1、2.(1)A、B两点的距离AB=________ ,A、C两点的距离AC=________ ;(2)通过观察,可以发现数轴上两点间距离与这两点表示的数的差的绝对值有一定关系,按照此关系,若点E表示的数为x,则AE=________ ;(3)利用数轴直接写出|x﹣1|+|x+3|的最小值=________ .【答案】(1)2;5;(2)|x+3|;(3)4【分析】(1)直接利用数轴可得AB,AC的长;(2)结合数轴可得出点E表示的数为x,则AE的长为:|x+3|;(3)直接利用数轴可得出|x﹣1|+|x+3|的最小值.【解答】解:(1)如题图所示:AB=-1-(-3)=2,AC=2-(-3)=5,故答案为:2,5;(2)根据题意可得:AE=|x-(-3)|=|x+3|,故答案为:|x+3|;(3)由数轴可知:| x-1|相当于x 到数轴上1的距离,| x+3 |相当于x到-3的距离,所以绝对值之和的最小值为到两点距离之和的最小值,也就是x在两点之间时,所以最小值为5,即|x﹣1|+|x+3|的最小值为:4,故答案为:4.【方法总结】本题考查了数轴与绝对值,通过计算发现数轴上两点间的距离实际是就是求数轴上这两点所表示的数的差的绝对值是解题的关键.8.【题文】在数轴上表示数:﹣2,+1.5,﹣,0,,﹣3,按从小到大的顺序用“<”连接起来.【答案】答案见解析【分析】将各数表示在数轴上,比较大小,按从小到大的顺序用“<”连接起来即可.【解答】解:将各数表示在数轴上,如图所示:则﹣3<﹣2<﹣<0<+1.5<.9.【题文】把下面的直线补充成一条数轴,并把下列各数在数轴上表示出来,再按从小到大的顺序用“<”连接起来:﹣3,0,+3.5,,0.5.【答案】答案见解析.【分析】根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案.【解答】解:如图:;数轴上的点表示的数右边的总比左边的大,得﹣3<﹣1<0<0.5<+3.5.10.【题文】有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点到原点的距离相等.(1)用“”“ ”“ ”填空:b 0,a+b 0,a-c 0,b-c 0;(2)化简.【答案】(1)<,=, >, <;(2)a-c+b【分析】(1)、根据数轴可得:b为负数,则;a和b互为相反数,则a+b=0;,则;,则;(2)、根据数轴可得:a+b=0,,;根据去绝对值的法则将绝对值去掉,然后进行合并同类项得出答案.【解答】解:(1) <,=, >, <(2)原式==a-c+b11.【题文】根据如图所示的数轴,解答下面问题.(1)写出点A表示的数的绝对值;(2)对A,B点进行如下操作:先把点A,B表示的数乘﹣,再把所得数对应的点向右平移1个单位长度,得到对应点A′,B′,在数轴上表示出点A′,B′.【答案】(1)点A表示的数的绝对值是3;(2)点A′表示的数是: 2,点B′表示的数是:﹣1【分析】(1)数轴上点A所对应的数即为所求;(2)先把点A,B表示的数分别乘以-,再分别加1得到A′,B′.然后在数轴上表示.【解答】解:(1)点A表示的数的绝对值是3;(2)点A′表示的数是:﹣3×(﹣)+1=2,点B′表示的数是:6×(﹣)+1=﹣1,在数轴上表示如下:12.【题文】已知数轴上,点O为原点,点A对应的数为11,点B对应的数为b,点C在点B右侧,长度为3个单位的线段BC在数轴上移动,(1)如图1,当线段BC在O,A两点之间移动到某一位置时,恰好满足线段AC=OB,求此时b的值;(2)线段BC在数轴上沿射线AO方向移动的过程中,是否存在AC﹣OB=AB?若存在,求此时满足条件的b的值;若不存在,说明理由.【答案】(1)线段AC=OB,此时b的值是4;(2)若AC﹣OB=AB,满足条件的b值是或﹣5.【分析】(1)由题意可知B点表示的数比点C对应的数少3,进一步用b表示出AC、OB之间的距离,联立方程求得b的数值即可;(2)分别用b表示出AC、OB、AB,进一步利用AC-0B=AB建立方程求得答案即可.【解答】解:(1)由题意得:11﹣(b+3)=b,解得:b=4.答:线段AC=OB,此时b的值是4.(2)由题意得:①11﹣(b+3)﹣b=(11﹣b),解得:b=.②11﹣(b+3)+b=(11﹣b),解得:b=﹣5.答:若AC﹣OB=AB,满足条件的b值是或﹣5.13.【答题】实数在数轴上的位置如图所示,下列各式正确的是()A.B.C.D.【答案】D【分析】根据数轴左边的数小于右边的数以及绝对值的几何意义即可解答.【解答】解:根据实数a、0、b在数轴上的位置可以得知:a<0,0<b,a<b,根据实数a、b在数轴上与原点的距离大小可知:|a|>|b|.选D.方法总结:此题主要考查了利用数轴比较实数的大小,同时考查了绝对值的几何意义.解答此题的关键是熟知:数轴上的任意两个数,右边的数总比左边的数大.14.【答题】在数轴上,表示数的点到原点的距离是个单位长度,数是的倒数,则()A. 或B. 或C. 或D. 或【答案】B【分析】由数的点到原点的距离是个单位长度,可求出a的值;由数是的倒数,可求出b的值,再分情况求a+b;【解答】解:因为数的点到原点的距离是个单位长度,所以a=5或a=-5;因为数是的倒数,所以b=-3;当a=5时a+b=5-3=2;当a=-5时,a+b=-5-3=-8;故选B.。

(易错题)人教版初中七年级数学上册第三章《一元一次方程》模拟测试(含答案解析)(4)

(易错题)人教版初中七年级数学上册第三章《一元一次方程》模拟测试(含答案解析)(4)

一、选择题1.(0分)[ID :68202]若│x -2│+(3y+2)2=0,则x+6y 的值是( )A .-1B .-2C .-3D .322.(0分)[ID :68200]如图33⨯网格中,每一横行、每一竖列以及两条斜对角线上的三个数的和都相等,则b a -的值是( )A .3-B .2-C .2D .33.(0分)[ID :68189]新制作的渗水防滑地板是形状完全相同的长方形.如图,三块这样的地板可以拼成一个大的长方形.如果大长方形的周长为150cm ,那么一块渗水防滑地板的面积是( ).A .2450cmB .2600cmC .2900cmD .21350cm 4.(0分)[ID :68183]某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元 5.(0分)[ID :68257]一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( )A .120元B .125元C .135元D .140元 6.(0分)[ID :68255]下列运用等式的性质对等式进行的变形中,错误的是( ) A .()()2211a x b x +=+若,则a b =B .若a b =,则ac bc =C .若a b =,则22a b c c= D .若x y =,则33x y -=- 7.(0分)[ID :68241]若代数式4x +的值是2,则x 等于( ) A .2B .2-C .6D .6- 8.(0分)[ID :68236]若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=﹣16中,m 的值为( )A .8B .﹣8C .6D .﹣69.(0分)[ID :68234]如图,长方形ABCD 中,AB 3cm =,BC 2cm =,点P 从A 出发,以1cm/s的速度沿A B C→→运动,最终到达点C,在点P运动了3秒后点Q开始以2cm/s的速度从D运动到A,在运动过程中,设点P的运动时间为t,则当APQ△的面积为22cm时,t的值为()A.2或103B.2或113C.1或103D.1或13310.(0分)[ID:68219]如图,正方ABCD形的边长是2个单位,一只乌龟从A点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A点出发以6个单位/秒的速度逆时针绕正方形运动,则第2020次相遇在()A.点A B.点B C.点C D.点D11.(0分)[ID:68217]如图,将长和宽分别是 a,b 的长方形纸片的四个角都剪去一个边长为 x 的正方形.用含 a,b,x 的代数式表示纸片剩余部分的面积为()A.ab+2x2B.ab﹣2x2C.ab+4x2D.ab﹣4x212.(0分)[ID:68210]一张试卷共有25道题,若做对1题得4分,做错1题扣1分,小明做了全部试题只得了70分,那么小明做对了()道.A.17 B.18 C.19 D.2013.(0分)[ID:68180]商店将进价2400元的彩电标价3200元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为()A.九折B.八五折C.八折D.七五折14.(0分)[ID:68179]一游泳池计划注入一定体积的水,按每小时500立方米的速度注水,注水2小时,注水口发生故障,停止注水,经20分钟抢修后,注水速度比原来提高了20%,结果比预定的时间提前了10分钟完成注水任务,则计划注入水的体积为() A.34000m B.32500m C.32000m D.3500m15.(0分)[ID:68175]甲、乙、丙三辆卡车所运货物的质量之比为,已知甲车比乙车少运货物吨,则三辆卡车共运货物()A .吨B .吨C .吨D .吨二、填空题16.(0分)[ID :68357]我们规定:若关于x 的一元一次方程ax =b 的解为b +a ,则称该方程为“和解方程“.例如:方程2x =﹣4的解为x =﹣2,而﹣2=﹣4+2,则方程2x =﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x 的一元一次方程3x =a 是“和解方程”,则a 的值为_____;(2)已知关于x 的一元一次方程﹣2x =ab +b 是“和解方程“,并且它的解是x =b ,则a +b 的值为_____.17.(0分)[ID :68356]关于x 的方程927x kx -=+的解是自然数,则整数k 的值为________.18.(0分)[ID :68355]解关于x 的方程,有如下变形过程:①由2316x =-,得2316x =-; ②由342x -=,得324x =-; ③由0.221 1.530.1x x -+=+,得366045x x +=-+; ④由253x x -=,得352x x -=. 以上变形过程正确的有_____.(只填序号)19.(0分)[ID :68341]某商贩卖出两双皮鞋,相比进价,一双盈利30%,另一双亏本10%,两双共卖出200元.商贩在这次销售中要有盈利,则亏本的那双皮鞋的进价必须低于_________元20.(0分)[ID :68324]定义一种运算:1(1)(1)x a b a b a b *=++++,若设5213*=,则34*=________.21.(0分)[ID :68307]已知222a b c k b c a c a b===+++,则k =______. 22.(0分)[ID :68293](1)如果33x y -=,那么x =_________; (2)如果2m n =,那么3m =___________. 23.(0分)[ID :68288]解方程:1225y y -+=. 解:去分母,得____________.去括号,得______________.移项,得_______________.合并同类项,得______________.方程两边同除以3,得_______________.24.(0分)[ID :68284]方程3622y y y -+=,左边合并同类项后,得____________. 25.(0分)[ID :68267](1)由等式325x x =+的两边都________,得到等式5x =,这是根据____________;(2)由等式1338x -=的两边都______,得到等式x=_____,这是根据__________________. 26.(0分)[ID :68279]甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.若甲队胜场是平场的2倍,平场比负场多一场,共得了21分,则甲队胜了______场,平了______场,负了______场.27.(0分)[ID :68273]一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人.三、解答题28.(0分)[ID :68404]如图,在一条不完整的数轴上,一动点A 向左移动4个单位长度到达点B ,再向右移动7个单位长度到达点C .(1)若点A 表示的数为0,求点B 、点C 表示的数;(2)如果点A ,C 表示的数互为相反数,求点B 表示的数;(3)在(1)的条件之下,若小虫P 从点B 出发,以每秒0.5个单位长度的速度沿数轴向右运动,同时另一只小虫Q 恰好从点C 出发,以每秒0.2个单位长度的速度沿数轴向左运动,设两只小虫在数轴上的点D 相遇,点D 表示的数是多少?29.(0分)[ID :68450]解下列方程:(1)2(x -1)=6;(2)4-x =3(2-x);(3)5(x +1)=3(3x +1)30.(0分)[ID :68438]解方程:2x 13+=x 24+-1.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.B2.D3.A4.C5.B6.C7.B8.D9.A10.A11.D12.C13.A14.B15.C二、填空题16.【详解】解:(1)解方程3x=a得x=∵关于x的一元一次方程3x=a是和解方程∴=3+a解得a=﹣;(2)∵方程﹣2x=ab+b的解是x=b∴﹣2b=ab+b∵方程﹣2x=ab+b 是和解方程∴b=a17.0或6或8【分析】先解方程得到一个含有字母k的解然后根据解是自然数解出k的值即可【详解】解:移项得9x-kx=2+7合并同类项得(9-k)x=9因为方程有解所以k≠9则系数化为1得x=又∵关于x的方18.无【分析】①方程x系数化为1求出解即可做出判断;②方程移项得到结果即可做出判断;③方程去分母得到结果即可做出判断;④方程去分母得到结果即可做出判断【详解】①由得;②由得;③由得;④由得则以上变形过程19.【分析】设亏本的那双皮鞋的进价为x元则亏本的那双皮鞋的售价为(1-10)x元盈利的那双皮鞋的售价为200-(1-10)x元盈利的那双皮鞋的进价为元根据商贩在这次销售中要有盈利即可得出关于x的一元一次20.【分析】根据定义新运算及求出x的值即可求出的值【详解】解:∵∴∴∴∴故答案为:【点睛】本题主要考查定义新运算的知识解答此题的关键是根据所给出的式子得出x 的值再利用新的运算方法解决问题21.1或-2【分析】分类讨论:①当时将等式变形即可求出k的值;②当时则代入原等式即可求出k的值【详解】解:①当时∵∴∴∴∴∴;②当时则∴故答案为:1或-2【点睛】此题考查的是等式的基本性质根据等式的基本22.-y【解析】【分析】(1)根据等式性质2把等式两边都除以−3即可得到x=−y;(2)根据等式性质2把等式两边都除以3即可得到【详解】(1)∵−3x=3y∴x=−y;故答案为:−y;(2)∵∴;故答案23.Y=3【解析】【分析】根据解一元一次方程的法则对应各个步骤即可【详解】去分母得5(y-1)=2(y+2)去括号得5y-5=2y+4移项得5y-2y=5+4合并同类项得3y=9系数化为1得y=3;【点24.y=6【解析】【分析】先合并同类项再进行化简即可【详解】合并同类项得:y=6【点睛】本题考查合并同类项熟练掌握计算法则是解题关键25.减去2x等式的性质1;除以等式的性质2【解析】【分析】根据等式的性质即可作答等式的性质1等式两边加同一个数(或式子)结果仍得等式;性质2等式两边乘同一个数或除以一个不为零的数结果仍得等式【详解】(126.632【解析】【分析】设甲队胜了x场则平了场负了场根据一场得3分平一场得1分负一场得0分共得了21分可列方程求解【详解】设甲队胜了x场则平了场负了场根据题意可得:解得:x=6所以故答案为:632【点27.7【解析】【分析】设其中的男生有x人根据每位男生看到白色与红色的安全帽一样多可以表示出女生有(x-1)人再根据每位女生看到白色的安全帽是红色的2倍列方程求解【详解】设男生有x人则女生有(x−1)人根三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【分析】根据非负数的性质,可求得x 、y 的值,再将x ,y 的值代入可得出答案.【详解】解:∵│x -2│+(3y+2)2=0,∴x-2=0且3y+2=0,解得x=2,y=-23, ∴x+6y=2+6×(-23)=2-4=-2. 故选:B .【点睛】本题考查了非负数的性质,能够利用非负数的和为零得出x 、y 的值是解题关键. 2.D解析:D【分析】根据题意,可以找到很多数量关系,那么选取合适的关系列出等式是关键,仔细观察网格图,可以发现第一纵行与第二橫行互相交叉,有相同的空格,同时包含了参数a 与b ,根据该等量关系可以列出等式解答.【详解】解:设第二橫行第一个空格为字母c ,如下图,据题意得, 85a c c b ++=++,移项可得, 3b a -=.故选:D.【点睛】本题以幻方形式考查等式与方程的应用,理解题意,观察图形,找到合适的等量关系列出等式是解答关键.3.A解析:A【分析】设小长方形的长为x,根据大的长方形对边相等得到小长方形的宽为2x,再根据长方形的周长列等量关系得到2(2x+2x+x)=150,再解方程求出x,然后计算小长方形的面积.【详解】解:设小长方形的长为x,则宽为2x,根据题意得2(2x+2x+x)=150,解得x=15,2x=30,所以x•2x=15×30=450.答:一块渗水防滑地板的面积为450cm2.故选A.【点睛】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.4.C解析:C【分析】设盈利上衣成本x元,亏本上衣成本y元,由题意得:135-x=25%x;y-135=25%y;求出成本可得.【详解】设盈利上衣成本x元,亏本上衣成本y元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.5.B解析:B【分析】设每件的成本价为x元,列方程求解即可.【详解】设每件的成本价为x元,⨯+=+,0.8(140%)15x x解得x=125,故选:B.【点睛】此题考查一元一次方程的实际应用—销售问题,正确理解题意是列方程解决问题的关键. 6.C解析:C【分析】根据等式的性质,逐项判断即可.【详解】解:A、根据等式性质2,a(x2+1)=b(x2+1)两边同时除以(x2+1)得a=b,原变形正确,故这个选项不符合题意;B、根据等式性质2,a=b两边都乘c,即可得到ac=bc,原变形正确,故这个选项不符合题意;C、根据等式性质2,c可能为0,等式两边同时除以c2,原变形错误,故这个选项符合题意;D、根据等式性质1,x=y两边同时减去3应得x-3=y-3,原变形正确,故这个选项不符合题意.故选:C.【点睛】此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.7.B解析:B【分析】x+=2,解方程可得.由已知可得4【详解】x+=2,解得x=-2.由已知可得4故选B.【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程.8.D解析:D【详解】因为xΔy=xy+x+y,且2Δm=-16,所以2m+2+m=-16,解得m=- 6,故选D.考点:1.新定义题2.一元一次方程.9.A解析:A【分析】首先分P 运动了3秒以内和3秒以后两种情况,分别结合速度和距离的关系列出等式,从而完成求解.【详解】四边形ABCD 是矩形AD BC 2cm ∴==,当点P 在AB 边时AB 3cm =∴此时点Q 还在点D 处,AP t = ∴APQ 12t 22S =⨯⨯=△ ∴t 2=;3秒后,点P 在BC 上∴()AQ 22t 3=-- ∴()APQ 1322t 322S ⎡⎤=⨯⨯--=⎣⎦△ ∴10t 3= ∴当APQ △的面积为22cm 时,t 的值为2或103. 故选A .【点睛】 本题考察了矩形、一元一次方程、三角形面积计算等知识;求解的关键是熟练掌握矩形、一元一次方程的性质,并运用到实际问题的求解过程中,即可得到答案.10.A解析:A【分析】设运动x 秒后,乌龟和兔子第2020次相遇,根据路程=速度×时间,即可得出关于x 的一元一次方程,解之即可得出x 的值,将其代入2x 中可求出乌龟运动的路程,再结合正方形的周长,即可得出乌龟和兔子第2020次相遇点.【详解】解:设运动x 秒后,乌龟和兔子第2020次相遇,依题意,得:2x +6x =2×4×2020,解得:x =2020,∴2x =4040.又∵4040÷(2×4)=505,505为整数,∴乌龟和兔子第2020次相遇在点A .故选:A .【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 11.D解析:D【分析】用长方形的面积减去四周四个小正方形的面积列式即可.【详解】∵长方形的面积为ab ,4个小正方形的面积为4x 2,∴剩余部分的面积为:ab-4x 2,故选D.【点睛】本题考查了列代数式,根据题意用字母表示长长方形和正方形的面积是解题关键. 12.C解析:C【分析】此题等量关系为:做对题所得分-做错题所扣分数=70分,设小明做对了x 道,则做错了(25-x)道,根据题意列方程求解即可.【详解】解:设小明做对了x 道,则做错了(25-x)道,根据题意得:4x-(25-x)×1=70,解得:x=19,故选:C .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.13.A解析:A【分析】设该商品的打x 折出售,根据销售价以及进价与利润和打折之间的关系,得出等式,然后解方程即可.【详解】设该商品的打x 折出售,根据题意得,32002400(120%)10x ⨯=+ 解得:x=9.答:该商品的打9折出售。

人教版数学七年级上册第一章《有理数》真题单元测试4(含解析)

人教版数学七年级上册第一章《有理数》真题单元测试4(含解析)

人教版数学七年级上册第一章《有理数》真题单元测试4(含解析)一、单选题1.(2021七上·仁寿月考)–4的绝对值是()A.4B.–4C.12D.−14 2.(2018·大庆模拟)﹣15的相反数是()A.5B.15C.﹣15D.﹣5 3.(2022·玉山模拟)与13互为倒数的数是()A.−13B.13C.3D.−3 4.(2020·石城模拟)在3、-5、0、2这四个数中,最小的一个数是()A.3B.-5C.0D.25.(2020七上·鲤城期中)如图,数轴上点A表示的数可能是()A.-2.6B.2.6C.-1.6D.1.66.(2019七上·椒江期末)随着全民健身活动的深入开展,越来越多的人加入到体育锻炼的队伍中来.据不完全统计,2018年全国参与区、县级以上组织举办的体育活动的人数就达到了约15000000人.数据15000000用科学记数法表示为().A.15×106B.1.5×107C.1.5×108D.0.15×108 7.(2021七上·赵县月考)在−2,−1,0,1这四个数中,最小的数是()A.−2B.−1C.0D.18.(2020七上·江汉期中)某蓄水池的标准水位记为0m,如果用正数表示水面高于标准水位的高度,那么水面低于标准水位0.1m和高于标准水位0.2m分别表示为()A.+0.1m,+0.2m B.﹣0.1m,+0.2mC.+0.1m,﹣0.2m D.﹣0.1m,﹣0.2m9.(2019·南昌模拟)|−2019|的值是()A.2019B.−2019C.12019D.2019或−201910.(2023·官渡)今年春节档电影中《流浪地球2》凭借优质的口碑一路逆袭,被很多人评为“国产科幻电影之光”,吸引众多影迷纷纷走入影院为这部国产科幻电影打call,据了解《流浪地球2》上映首日的票房约为4.4亿,4.4亿可用科学记数法表示为()A.4.4×109B.4.4×108C.0.44×109D.44.0×108二、填空题11.(2017·云南)2的相反数是.12.(2021·开远模拟)计算:|−47|=.13.(2019八下·绿园期末)计算:(−2)3+2019°+|−2|+(13)−1=.14.(2019七上·思明期中)月球的直径约为3476000米,将3476000用科学记数法表示应为,将3476000取近似数并精确到十万位,得到的值应是.15.(2020七上·青岛月考)−315的倒数是;平方等于81的数是,立方等于−64的数是.三、计算题16.计算:6+(-6)17.(2019七上·利辛月考)计算:|-9|÷3+(12−23)×12+32 18.(2017九下·盐城期中)计算:|−4|+(2+1)0−12 19.(2021七上·马关期末)24÷(−2)3−(−12)×(−4)+|−6|.20.(2017·兰山模拟)计算:(12)﹣2﹣(3﹣2)0+2sin30°+|﹣3|.21.(2021七上·滨州月考)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)(16+113−0.75)×(−24)(3)−14−(23−16)×13×[2−(−3)2]2.22.(2020七上·凌海期中)计算:(−8)−(−16)+(−9)+(−12)四、解答题23.(2021七上·福绵期中)14,﹣1,20%,0,﹣5.0,10,﹣0.23,1317,﹣4负有理数集合:{…};正分数集合:{…};自然数集合:{…}.24.(2021七上·济宁月考)把下列各数表示在数轴上:−1,13,0,4,−212,−3,2.5.答案解析部分1.【答案】A【解析】【解答】解:∵|-4|=-(-4)=4,∴-4的绝对值是4.故答案为:A.【分析】负数的绝对值等于它的相反数,据此解答即可.2.【答案】B【解析】【解答】﹣15的相反数是15.故答案为:B.【分析】只有符号不同的两个数互为相反数可求解。

人教版七年级上册数学第四章测试题(含答案)

人教版七年级上册数学第四章测试题(含答案)

人教版七年级上册数学第四章测试题(含答案)(考试时间:120分钟满分:120分)分数:____________第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.下列图形中,∠1和∠2互为余角的是(D)A BC D2.如图,某同学的家在A处,书店在B处,星期日他到书店去买书,想尽快赶到书店,则他选择最近的一条路线是(B)A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M→B3.如图,下列图形中,是四棱柱的侧面展开图的为(A)A B C D4.如图所示,将左边的图形折成一个立方体后为右边的四个立方体中的(B)A BC D5.下列判断中错误的有(D)①延长射线OA;②直线比射线长,射线比线段长;③如果线段P A=PB,那么点P是线段AB的中点;④连接两点间的线段,叫做两点间的距离.A.0个B.2个C.3个D.4个6.如图,下列说法中不正确的是(D)A.OC的方向是南偏东30°B.OA的方向是北偏东45°C.OB的方向是西偏北30°D.∠AOB的度数是75°7.以长方形3 cm长的边所在直线为轴旋转一周形成圆柱体甲,以长方形2 cm长的边所在直线为轴旋转一周形成圆柱体乙,记两个圆柱的体积为V甲,V乙,侧面积为S甲,S乙,则下列式子中正确的是(A)A.V甲<V乙,S甲=S乙B.V甲>V乙,S甲>S乙C.V甲=V乙,S甲=S乙D.V甲>V乙,S甲<S乙8.★点P,Q在线段AB中点的同一侧,点P将AB分为2∶3的两段,点Q将AB分为3∶4的两段,若PQ=2 cm,则AB的长为(C)A.80 cm B.75 cm C.70 cm D.60 cm9.★如图,∠AOB=∠COD,若∠AOD=110°,∠BOC=70°,则以下结论中正确的有①∠AOC=∠BOD=90°;②∠AOB=20°;③∠AOB=∠AOD-∠AOC;④∠AOB=2 11∠BOD.(C)A.1个B.2个C.3个D.4个10.射线OA上有B,C两点,若OB=8,BC=2,线段OB,BC的中点分别为D,E,则线段DE的长为(D)A.5 B.3 C.1 D.5或3第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.一个角的补角是36°35′,这个角是143°25′.12.C ,D 是直线AB 上两点,D 是AC 的中点,且BC =13AC ,DC =3 cm ,则AB = 4或8 cm.13.如图,O 为直线AB 上一点,已知∠1=40°,OD 平分∠BOC ,则∠AOD = 110° .第13题图 第14题图14.如图,点A ,O ,B 在同一条直线上,射线OD 平分∠BOC ,射线OE 在∠AOC 的内部,且∠DOE =90°,写出图中所有互为余角的角: ∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4 .15.如图,一个正三棱柱的底面边长为3 cm ,侧棱长为5 cm ,则此三棱柱共有 3 个侧面,侧面展开图的面积为 45 cm 2.16.★有两根木条,一根长60 cm ,另一根长100 cm ,将它们的一端重合,放在同一条直线上,则两根木条的中点间的距离是 80cm 或20cm .17.★如图①所示的纸片是∠AOB 的一部分,OC 平分∠AOB ,如图②,把∠AOB 沿OC 对折成∠COB (OA 与OB 重合),从O 点引一条射线OE ,使∠BOE =12∠EOC ,再沿OE 把角剪开,若剪开后得到的3个角中最大的一个角为80°,则∠AOB = 120 °.18.★如图,下列几何体是由棱长均为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n 个几何体中只有两个面涂色的小立方体共有 (8n -4) 个.选择、填空题答题卡一、选择题(每小题3分,共30分) 题号12345678 9 10 得分 答案 D B A B D D A CCD二、填空题(每小题3分,共24分)得分:________11. 143°25′ 12. 4或8 13. 110°14. ∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4 15. 3 45 16. 80cm 或20cm 17. 120 18. (8n -4)三、解答题(共66分)19.(8分)计算:(1)48°39′+67°31′-21°17′;解:原式=116°10′-21°17′=94°53′.(2)23°53′×3-107°43′÷5.解:原式=71°39′-21°32′36″=50°6′24″.20.(9分)如图,已知A,B,O三点.根据下列要求画图:(1)连接线段AB;(2)画射线OA、射线OB;(3)在线段AB上取一点C,在射线OA上取一点D(点C,D不与点A重合),画直线CD,使直线CD与射线OB交于点E.题图答图解:如图.21.(8分)如图,已知∠AOE是平角,∠DOE=20°,OB平分∠AOC,且∠COD∶∠BOC =2∶3,求∠BOC的度数.解:设∠COD=2x°,则∠BOC=3x°.∵OB平分∠AOC,∴∠AOB=3x°.∴2x+3x+3x+20=180.解得x=20.∴∠BOC=3×20°=60°.22.(10分)李老师到市场买菜,发现如果把10千克的菜放到托盘秤上,指标盘上的指针转了180度.第二天李老师就给同学们出了两个问题.(1)如果把0.6千克的菜放到托盘秤上,指针转过多少度角?(2)如果指针转了7°12′,这些菜有多少千克?解:(1)由题意得(180÷10) ×0.6=10.8(度).即指针转过10.8度角.(2)(10÷180)×7°12′=0.4(千克).故这些菜有0.4千克.23.(10分)画图并计算:如图,已知线段AB =2 cm ,延长线段AB 至点C ,使得BC =12AB ,再反向延长AC 至点D ,使得AD =AC .(1)准确地画出图形,并标出相应的字母;(2)线段DC 的中点是哪个点?线段AB 的长是线段DC 长的几分之几? (3)求出线段BD 的长度.解:(1)画图如图所示..(2)线段DC 的中点是点A ,线段AB 的长是线段DC 长的13.(3)∵BC =12AB =12×2=1(cm).∴AC =AB +BC =2+1=3(cm).∵AD =AC =3 cm ,∴BD =DA +AB =3+2=5(cm).24.(9分)已知m ,n 满足算式(m -6)2+||n -2=0.(1)求m ,n 的值;(2)已知线段AB =m ,在直线AB 上取一点P ,恰好使AP =nPB ,点Q 为PB 的中点,求线段AQ 的长.解:(1)m =6,n =2.(2)线段AB =6,AP =2PB ,①当点P 在线段AB 上时,如图①, ∵P A +PB =AB ,而AB =6,AP =2PB , ∴2PB +PB =6, ∴PB =2,AP =4.∵点Q 是BP 的中点,∴PQ =12PB =1,∴AQ =AP +PQ =4+1=5;②当点P 在线段AB 的延长线上时,如图②, ∵P A =PB +AB ,AB =6,AP =2PB , ∴6+PB =2PB ,PB =6, ∵点Q 为BP 的中点, ∴BQ =12PB =3,∴AQ =AB +BQ =6+3=9, ∴线段AQ 的长为5或9.25.(12分)如图①,点O 为直线AB 上一点,将直角三角板OMN 的直角顶点放在点O 处,射线OC 平分∠MOB .① ②(1)若∠AOM =30°,求∠CON 的度数;(2)若∠AOM =α,直接写出∠CON 的度数(用含α的代数式表示);(3)将图①中的直角三角板OMN 绕顶点O 顺时针旋转至图②的位置,一边OM 在射线OB 的上方,另一边ON 在直线AB 的下方.①探究∠AOM 和∠CON 的度数之间的关系,写出你的结论,并说明理由; ②当∠AOC =3∠BON 时,求∠AOM 的度数. 解:(1)∵∠AOM =30°,∴∠BOM =180°-∠AOM =150°. ∵∠MON =90°,OC 平分∠BOM , ∴∠CON =∠MON -12∠BOM =15°.(2)∵∠AOM =α,∴∠BOM =180°-∠AOM =180°-α. ∵∠MON =90°,OC 平分∠BOM , ∴∠CON =∠MON -12∠BOM =12α.故∠CON =12α.(3)设∠AOM =β,则∠BOM =180°-β, ①∠AOM =2∠CON ,理由:∵OC 平分∠BOM ,∴∠MOC =12∠BOM =12(180°-β)=90°-12β.∵∠MON =90°,∴∠CON =∠MON -∠MOC =12β,∴∠AOM =2∠CON ;②由①知∠BON =∠MON -∠BOM =β-90°, ∠AOC =∠AOM +∠MOC =90°+12β,∵∠AOC =3∠BON ,∴90°+12β=3(β-90°),解得β=144°,∴∠AOM =144°.。

初中数学浙教版七年级下册第3章 整式的乘除3.3 多项式的乘法-章节测试习题(4)

初中数学浙教版七年级下册第3章 整式的乘除3.3 多项式的乘法-章节测试习题(4)

章节测试题1.【题文】若关于x的多项式(x2+x-n)(mx-3)的展开式中不含x2和常数项,求m,n的值.【答案】m=3,n=0.【分析】本题考查了利用多项式的不含问题求字母的值,先按照多项式与多项式的乘法法则乘开,再合并关于x的同类项,然后令不含项的系数等于零,列方程求解即可.【解答】解:原式=mx3+(m-3)x2-(3+mn)x+3n,由展开式中不含x2和常数项,得到m-3=0,3n=0,解得m=3,n=0.2.【题文】化简:a(3-2a)+2(a+1)(a-1).【答案】3a-2.【分析】先去括号,然后再合并同类项即可.【解答】解:原式=3a-2a2+2(a2-1)=3a-2a2+2a2-2=3a-2.3.【题文】计算:(1)6mn2·(2-mn4)+(-mn3)2;(2)(1+a)(1-a)+(a-2)2(3)(x+2y)2-(x-2y)2-(x+2y)(x-2y)-4y2.【答案】(1)12mn2- 7m2n6;(2)-4a+5;(3)-x2+8xy.【分析】(1)根据单项式乘多项式法则和积的乘方法则计算后,再合并同类项即可;(2)根据乘法公式计算后,再合并同类项即可;(3)根据乘法公式计算后,再合并同类项即可.【解答】解:(1)原式=12mn2- 6m2n6-m2n6=12mn2- 7m2n6(2)原式=1-a2+a2-4a+4=-4a+5(3)原式=x2+4xy+4y2-x2+4xy-4y2-x2+4y2-4y2=-x2+8xy4.【题文】计算:(2m-3)(2m+5) -(4m-1).【答案】【分析】先进行多项式乘法运算,然后再合并同类项即可.【解答】解:原式=.5.【题文】已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.【答案】p=3,q=1.【分析】根据整式的乘法,化简完成后,根据不含项的系数为0求解即可.【解答】解:∵(x2+px+8)(x2﹣3x+q)=x4﹣3x3+qx2+px3﹣3px2+pqx+8x2﹣24x+8q=x4+(p﹣3)x3+(q﹣3p+8)x2+(pq﹣24)x+8q.∵乘积中不含x2与x3项,∴p﹣3=0,q﹣3p+8=0,∴p=3,q=1.6.【题文】化简:(1)(-ab-2a)(-a2b2);(2)(2m-1)(3m-2).【答案】(1) a3b3+a3b2;(2) 6m2-7m+2.【分析】(1)根据单项式乘以多项式的运算法则进行计算即可求得结果;(2)根据多项式乘以多项式的运算法则进行计算即可求得结果.【解答】解:(1)原式=a3b3+a3b2;(2)原式=6m2-4m-3m+2=6m2-7m+2.7.【答题】若的值使得x2+4x+a=(x-5)(x+9)-2成立,则的值为______【答案】-47【分析】先根据整式的运算化简,再根据系数相等解答即可.【解答】∵(x-5)(x+9)-2=x2+9x-5x-45-2= x2+4x-47.∴a=-47.8.【答题】若(x+p)与(x+5)的乘积中,不含x的一次项,则p的值是______.【答案】-5【分析】根据整式的乘法运算解答即可.【解答】利用多项式乘以多项式法则计算得到(x+p)(x+5)=x2+(p+5)x+2p,根据乘积中不含一次项可知p+5=0,即p=-5.故答案为:-5.9.【答题】如果(x―3)(x+a)的乘积不含关于x的一次项,那么a=______.【答案】3【分析】根据整式的乘法运算解答即可.【解答】(x-3)(x+a)=x2+(a-3)-3a,由乘积中不含一次项,得到a-3=0,解得a=3.10.【答题】要使的乘积中不含项,则与的关系是()A. 相等B. 互为相反数C. 互为倒数D. 关系不能确定【答案】A【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把p、q看作常数合并关于x的同类项,令x2系数为0,得出p与q的关系.【解答】解:(x2+px+2)(x﹣q)=x3﹣qx2+px2﹣pqx+2x﹣2q=x3+(p﹣q)x2﹣(pq﹣2)x﹣2q因为乘积中不含x2项,则p﹣q=0,即p=q.选A.11.【答题】M是关于x的三次式,N是关于x的五次式,下列说法正确的是()A. M+N是八次式B. N-M是二次式C. M·N是八次式D. M·N是十五次式【答案】C【分析】根据整式的运算解答即可.【解答】∵M是关于x的三次式,N是关于x的五次式,∴M•N是关于x的八(3+5)次式.选C.12.【答题】(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,则m的值是()A. 0B.C. ﹣D. ﹣【答案】C【分析】根据整式的运算解答即可.【解答】解:(x2﹣mx+6)(3x﹣2)=3x3﹣(2+3m)x2+(2m+18)x﹣12,∵(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,∴2+3m=0,解得,m=,选C.13.【答题】如图,根据计算长方形ABCD的面积,可以说明下列哪个等式成立()A.B.C.D.【答案】D【分析】根据整式的运算解答即可.【解答】长方形ABCD的面积的两种表示方法可得,选D.14.【答题】当a=时,代数式(a-4)(a-3)-a(a+2)的值为()A. 9B. -9C. 3D.【答案】A【分析】先化简,再代入求值即可.【解答】解:(a-4)(a-3)-a(a+2)= =-9a+12当a=时,原式==9选A.15.【答题】如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片()A. 2张B. 3张C. 4张D. 5张【答案】B【分析】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.【解答】解:(a+2b)(a+b)=a2+ab+2ab+2b2=a2+3ab+2b2,则需要C类卡片张数为3选B.16.【答题】下列计算正确的是()A. -3x2y·5x2y=2x2yB. -2x2y3·2x3y=-2x5y4C. 35x3y2÷5x2y=7xyD. (-2x-y)(2x+y)=4x2-y2【答案】C【分析】根据整式的运算解答即可.【解答】解:A、-3x2y·5x2y=-15x4y2,故此选项错误;B、-2x2y3·2x3y=-4x5y4,故此选项错误;C、35x3y2÷5x2y=7xy,故此选项正确;D、 (-2x-y)(2x+y)=-4x2-y2+4xy,故此选项错误.选C.17.【答题】已知多项式(x+3)(x+n)=x2+mx-21,则m的值是()A. -4B. 4C. -2D. 2【答案】A【分析】根据整式的运算解答即可.【解答】∵(x+3)(x+n)=x2+nx+3x+3n= x2+(n+3)x+3n,∴x2+(n+3)x+3n =x2+mx-21,∴ ,解之得.选A.18.【答题】如果(x﹣2)(x﹣3)=x2+px+q,那么p、q的值是()A. p=﹣5,q=6B. p=1,q=﹣6C. p=1,q=6D. p=1,q=﹣6【答案】A【分析】先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q的值.【解答】解:∵(x-2)(x-3)=x2-5x+6,又∵(x-2)(x-3)=x2+px+q,∴x2+px+q= x2-5x+6,∴p=﹣5,q= 6选A.19.【答题】下列运算正确的是()A. (x2)3=x5B. (-3x2y)3=-9x6y3C. (a+b)(a+b)=a2+b2D.【答案】D【分析】根据整式的运算判断解答即可.【解答】解:A、(x2)3=x6,故本选项错误;B、(-3x2y)3=-27x6y3,故本选项错误;C、(a+b)(a+b)=a2+2ab+b2,故本选项错误;D、4x3y2•(-xy2)=-2x4y4,故本选项正确.选C.20.【答题】若,,则().A.B.C.D.【答案】A【分析】先根据整式的运算化简,再整体代入求解即可.【解答】∵,,∴原式=选A.。

第2章有理数的运算—有理数的混合运算+计算能力达标测试题人教版七年级数学上册+

第2章有理数的运算—有理数的混合运算+计算能力达标测试题人教版七年级数学上册+

2024-2025学年人教版七年级数学上册《第2章有理数的运算—有理数的混合运算》计算能力达标测试题(附答案)(满分120分)1.计算:(1);(2).2.计算:(1)13+(﹣5)﹣(﹣21)﹣19;(2)(﹣2)2+[18﹣(﹣3)×2]÷4.3.计算:(1)6+8×(﹣)3﹣2÷;(2)(﹣+﹣)×(﹣48)﹣(﹣1)2022.4.计算:.5.计算:(1)(﹣﹣+1)÷(﹣);(2)﹣12022+(﹣16)÷(﹣2)3﹣|﹣3|÷32×(﹣).6.计算:(1)(﹣)×2÷(﹣1);(2)﹣12×(﹣5)÷[(﹣3)2+2×(﹣5)].7.计算:(﹣1)2+×[2×(﹣6)﹣(﹣4)2].8.计算下列各题(1)2×(﹣3)3﹣4×(﹣3)+15;(2).9.(1);(2).10.计算:(1);(2).11.计算:(1)﹣66×4﹣(﹣2.5)÷(﹣0.1);(2)﹣22÷×(﹣)2+[9﹣(﹣+)×36].12.计算:﹣12023÷|﹣|﹣[2+(﹣3)2﹣24×()].13.计算:(﹣10)3+[(﹣4)2÷(﹣8)﹣(1+32)×2].14.(1);(2)(1﹣+)÷(﹣)﹣8×(﹣)3.15.计算:(1);(2)﹣1﹣[6﹣(﹣11)+(﹣8)];(3);(4)(﹣22)×(﹣3)2+(﹣32)÷4.16.计算:|﹣2|+32+6×+(﹣1)2023.17.计算:﹣14﹣|0.5﹣1|×2﹣(﹣3)2÷(﹣).18.计算:.19.阅读下面的计算方法:(﹣)÷(﹣+).分析:利用倒数的意义,先求原式的倒数,再得原式的值.解:(﹣+)÷(﹣)=(﹣+)×(﹣12)=﹣8+9﹣2=﹣1,所以原式=﹣1.根据材料提供的方法,尝试完成计算:(1﹣﹣)÷(﹣)+(﹣)÷(1﹣﹣).20.设a、b都表示有理数,规定一种新运算“△”:当a≥b时,a△b=b2;当a<b时,a △b=2a﹣b.例如:1△2=2×1﹣2;3△(﹣2)=(﹣2)2=4.(1)求(﹣3)△(﹣4)的值;(2)求(﹣2△3)△(﹣8).参考答案1.解:(1)=×8﹣6×=4﹣4=0;(2)=(+﹣)×(﹣12)=×(﹣12)+×(﹣12)﹣×(﹣12)=﹣4﹣9+10=﹣3.2.解:(1)13+(﹣5)﹣(﹣21)﹣19=13﹣5+21﹣19=10;(2)(﹣2)2+[18﹣(﹣3)×2]÷4=4+(18+6)÷4=4+24÷4=4+6=10.3.解:(1)6+8×(﹣)3﹣2÷=6+8×(﹣)﹣2×3=6﹣1﹣6=﹣1;(2)(﹣+﹣)×(﹣48)﹣(﹣1)2022=﹣×(﹣48)+×(﹣48)﹣×(﹣48)﹣1=8﹣36+4﹣1=﹣25.4.解:=1+|﹣8+9|﹣×24+×24=1+1﹣6+4=0.5.解:(1)(﹣﹣+1)÷(﹣)=(﹣﹣+1)×(﹣24)=﹣×(﹣24)﹣×(﹣24)+×(﹣24)=8+15﹣30=﹣7;(2)﹣12022+(﹣16)÷(﹣2)3﹣|﹣3|÷32×(﹣)=﹣1+(﹣16)÷(﹣8)﹣3÷9×(﹣)=﹣1+2﹣×(﹣)=﹣1+2+=1.6.解:(1)(﹣)×2÷(﹣1)=(﹣)×2÷(﹣)=(﹣)×2×(﹣)=1;(2)﹣12×(﹣5)÷[(﹣3)2+2×(﹣5)]=﹣1×(﹣5)÷(9﹣10)=﹣1×(﹣5)÷(﹣1)=5÷(﹣1)=﹣5.7.解:(﹣1)2+×[2×(﹣6)﹣(﹣4)2]=1+×(﹣12﹣16)=1+×(﹣28)=1﹣7=﹣6.8.解:(1)2×(﹣3)3﹣4×(﹣3)+15=2×(﹣27)+12+15=﹣54+12+15=﹣27;(2)=(﹣+﹣)×36﹣(﹣4)2×(﹣1+1)=﹣×36+×36﹣×36﹣16×=﹣27+20﹣21﹣14=﹣42.9.解:(1)=﹣3×4×(﹣)×(﹣)=﹣6;(2)=﹣1+16×4﹣(1﹣9)×(﹣)=﹣1+64﹣(﹣8)×(﹣)=﹣1+64﹣1=.10.解:(1)=﹣8×(﹣+﹣)×6=﹣48×(﹣+﹣)=﹣48×(﹣)﹣48×﹣48×(﹣)=8﹣36+4=﹣24;(2)=﹣1﹣[2﹣(﹣8)]×(﹣)×=﹣1﹣10×(﹣)×=﹣1+=.11.解:(1)原式=﹣264﹣25=﹣289;(2)原式=﹣4÷×+(9﹣×36+×36﹣×36)=﹣4××+9﹣28+33﹣6=﹣+9﹣28+33﹣6=﹣.12.解:﹣12023÷|﹣|﹣[2+(﹣3)2﹣24×()]=﹣1÷﹣(2+9﹣24×)=﹣1×3﹣(11﹣13)=﹣3﹣(﹣2)=﹣3+2=﹣1.13.解:(﹣10)3+[(﹣4)2÷(﹣8)﹣(1+32)×2]=﹣1000+[16÷(﹣8)﹣(1+9)×2]=﹣1000+(﹣2﹣10×2)=﹣1000+(﹣2﹣20)=﹣1000+(﹣22)=﹣1022.14.解:(1)=﹣8÷4+6×﹣7=﹣2+4﹣7=2﹣7=﹣5;(2)(1﹣+)÷(﹣)﹣8×(﹣)3=(﹣+)×(﹣24)﹣8×(﹣)=﹣×24+×24﹣×24+1=﹣36+15﹣14+1=﹣21﹣14+1=﹣35+1=﹣34.15.解:(1)=﹣1﹣(÷﹣1)×(﹣)=﹣1﹣(×﹣1)×(﹣)=﹣1﹣(﹣1)×(﹣)=﹣1﹣(﹣)×(﹣)=﹣1﹣=﹣;(2)﹣1﹣[6﹣(﹣11)+(﹣8)]=﹣1﹣(6+11﹣8)=﹣1﹣9=﹣10;(3)=17×﹣×10+5×=×(17﹣10+5)=×12=15;(4)(﹣22)×(﹣3)2+(﹣32)÷4=(﹣4)×9+(﹣8)=﹣36+(﹣8)=﹣44.16.解:|﹣2|+32+6×+(﹣1)2023=2+9+6×+(﹣1)=2+9+(﹣4)+(﹣1)=6.17.解:原式=﹣1﹣×2﹣9×(﹣)=﹣1﹣1+6=4.18.解:原式===.19.解:∵(1﹣﹣)÷(﹣)=(﹣﹣)×(﹣)=×(﹣)﹣×(﹣)﹣×(﹣)=﹣2+1+=﹣,根据倒数的意义,(﹣)÷(1﹣﹣)=﹣3,∴(1﹣﹣)÷(﹣)+(﹣)÷(1﹣﹣)=﹣﹣3=﹣.20.解:(1)根据题中的新定义得:原式=(﹣4)2=16;故答案为:16;(2)(﹣2△3)△(﹣8)=(﹣2×2﹣3)△(﹣5)=﹣7△(﹣8)=(﹣8)2=64.。

(常考题)人教版初中数学七年级数学上册第四单元《几何图形初步》测试卷(答案解析)(4)

(常考题)人教版初中数学七年级数学上册第四单元《几何图形初步》测试卷(答案解析)(4)

一、选择题1.如图,∠AOB =12∠BOD ,OC 平分∠AOD ,下列四个等式中正确的是( )①∠BOC =13∠AOB ;②∠DOC =2∠BOC ;③∠COB =12∠BOA ;④∠COD =3∠COB . A .①② B .②③ C .③④ D .①④ 2.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为( )A .140°B .130°C .50°D .40°3.如图.∠AOB =∠COD ,则( )A .∠1>∠2B .∠1=∠2C .∠1<∠2D .∠1与∠2的大小无法比较4.如图,工作流程线上A 、B 、C 、D 处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置( )A .线段BC 的任意一点处B .只能是A 或D 处C .只能是线段BC 的中点E 处D .线段AB 或CD 内的任意一点处5.如图,在ABC 中,90BAC ∠=︒,点D ,E 分别在BC ,CA 边的延长线上,EH BC ⊥于点H ,EH 与AB 交于点F .则1∠与2∠的数量关系是( ).A .12∠=∠B .1∠与2∠互余C .1∠与2∠互补D .12100∠+∠=°6.α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠∠的关系是( ).与βA.不互余且不相等B.不互余但相等C.互为余角但不相等D.互为余角且相等7.如图,CD是直角三角形ABC的高,将直角三角形ABC按以下方式旋转一周可以得到右侧几何体的是().A.绕着AC旋转B.绕着AB旋转C.绕着CD旋转D.绕着BC旋转8.下列说法正确的是()A.射线PA和射线AP是同一条射线B.射线OA的长度是3cmAB CD相交于点P D.两点确定一条直线C.直线,9.一个小立方块的六个面分别标有字母A,B,C,D,E,F,从三个不同的方向看形如图所示,则字母D的对面是( )A.字母A B.字母F C.字母E D.字母B10.一根直木棒长10厘米,棒上有刻度如图,若把它作为尺子,只测量一次,能测量的长度共有()A.7种B.6种C.5种D.4种11.高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是()A.两点确定一条直线B.两点之间,线段最短C.两条直线相交,只有一个交点D.直线是向两个方向无限延伸的12.若射线OA与射线OB是同一条射线,下列画图正确的是()A.B.C.D.二、填空题13.如图,能用O,A,B,C中的两个字母表示的不同射线有____条.14.如图所示,∠BOD =45°,那么不大于90°的角有___个,它们的度数之和是____.15.把棱长为1cm 的四个正方体拼接成一个长方体,则在所得长方体中,表面积最大等于________2cm .16.乘火车从A 站出发,沿途经过3个车站方可到达B 站,那么在A ,B 两站之间需要安排不同的车票________种.17.如图,点C 是线段AB 上一点,点M 、N 、P 分别是线段AC ,BC ,AB 的中点.3AC cm =,1CP cm =,线段PN =__cm .18.如图所示,O 是直线AB 上一点,OD 平分∠BOC, ∠COE =90°,若∠AOC =40°,则∠DOE =_________.19.一个几何体,从不同方向看到的图形如图所示.拼成这个几何体的小正方体的个数为______.20.若A ,B ,C 在同一条直线上,线段10cm AB =,2cm BC =,则A ,C 两点间的距离是________.三、解答题21.已知:点O 为直线AB 上一点,过点O 作射线OC ,100BOC ∠=︒.(1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数;(3)如图3,在(2)的条件下,作射线OP ,若BOP ∠与AOM ∠互余,请画出图形,并求COP ∠的度数.22.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示); (3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.23.一个锐角的补角比它的余角的4倍小30,求这个锐角的度数和这个角的余角和补角的度数.24.线段AD=6cm ,线段AC=BD=4cm ,E 、F 分别是线段AB 、CD 中点,求EF .25.如图,在数轴上有A ,B 两点,点A 在点B 的左侧.已知点B 对应的数为2,点A 对应的数为a .(1)若a =﹣1,则线段AB 的长为 ;(2)若点C 到原点的距离为3,且在点A 的左侧,BC ﹣AC =4,求a 的值.26.如图,已知40AOB ∠=︒,3BOC AOB ∠=∠,OD 平分AOC ∠,求BOD ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据∠AOB=12∠BOD,OC平分∠AOD,得到∠AOB=13∠AOD,∠AOC=∠DOC=12∠AOD,进而得到∠BOC=12∠AOB,∠DOC=3∠BOC从而判断出①②错误,③④正确.【详解】解:因为∠AOB=12∠BOD,所以∠AOB=13∠AOD,因为OC平分∠AOD,所以∠AOC=∠DOC=12∠AOD,所以∠BOC=∠AOC-∠AOB=12∠AOD-13∠AOD=16∠AOD=12∠AOB,故①错误,③正确;因为∠DOC=12∠AOD,∠BOC=16∠AOD,所以∠DOC=3∠BOC 故②错误,④正确.【点睛】本题考查了角的和差倍数关系,根据题意表示∠AOB=13∠AOD,∠AOC=∠DOC=12∠AOD,进而根据角的关系即可作出判断.2.C解析:C【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.【详解】设这个角为α,则它的余角为90°-α,补角为180°-α,根据题意得,180°-α=3(90°-α)+10°,180°-α=270°-3α+10°,解得α=50°.故选C .【点睛】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.3.B解析:B【解析】∵∠AOB=∠COD ,∴∠AOB-∠BOD=∠COD-∠BOD ,∴∠1=∠2;故选B .【点睛】考查了角的大小比较,培养了学生的推理能力.4.A解析:A【详解】要想4个人到工具箱的距离之和最短,据图可知:•位置在A 与B 之间时,距离之和;AD BC >+‚位置在B 与C 之间时,距离之和;AD BC =+ƒ位置在C 与D 之间时,距离之和.AD BC >+则工具箱在B 与C 之间时,距离之和最短.故选A .5.C解析:C【分析】先根据同角的余角相等得出∠1=∠BCE ,再根据∠BCE+∠2=180°,得出∠1+∠2=180°即可.【详解】∵EH ⊥BC ,∴∠1+∠B=90°,∵∠BAC=90°,∴∠BCE+∠B=90°,∴∠1=∠BCE .∵∠BCE+∠2=180°,∴∠1+∠2=180°,即∠1与∠2互补,故选:C .【点睛】本题考查了余角和补角.解题的关键是掌握余角和补角的定义,同角的余角相等的性质.6.D解析:D【分析】由α∠与β∠都是γ∠的补角可得αβ∠=∠,进而可得关于m 的方程,解方程即可求出m ,进一步即可进行判断.【详解】解:由α∠与β∠都是γ∠的补角,得αβ∠=∠,即21977m m -=-,解得:32m =,所以2197745m m -=-=.所以α∠与β∠互为余角且相等.故选:D .【点睛】本题考查了余角和补角以及简单的一元一次方程的解法,属于基本题型,熟练掌握上述基础知识是解题的关键.7.B解析:B【分析】根据直角三角形的性质,只有绕斜边旋转一周,才可以得出组合体的圆锥,进而解答即可.【详解】将直角三角形ABC 绕斜边AB 所在直线旋转一周得到的几何体是:故选:B .【点睛】本题考查了点、线、面、体,培养学生的空间想象能力及几何体的三视图.8.D解析:D【分析】根据直线、射线、线段的性质对各选项分析判断后利用排除法.【详解】解:A 、射线PA 和射线AP 不是同一条射线,故本选项错误;B 、射线是无限长的,故本选项错误;C 、直线AB 、CD 可能平行,没有交点,故本选项错误;D、两点确定一条直线是正确的.故选:D.【点睛】本题主要考查了直线、射线、线段的特性,是基础题,需熟练掌握.9.D解析:D【分析】根据与A相邻的四个面上的数字确定即可.【详解】由图可知,A相邻的四个面上的字母是B、D、E、F,所以,字母D的对面是字母B.故选:D.【点睛】本题考查了正方体相对两个面上的文字,仔细观察图形从相邻面考虑求解是解题的关键.10.B解析:B【分析】根据棒上标的数字,找出这根木棒被2、7两点分成的线段的条数即可.【详解】如图,∵线段AD被B、C两点分成AB、AC、AD、BC、BD、CD六条的线段∴能量的长度有:2、3、5、7、8、10,共6个,故选B.【点睛】本题考查的实质是找出已知图形上线段的条数.11.B解析:B【分析】本题为数学知识的应用,由题意将弯曲的道路改直以缩短路程,就用到两点间线段最短定理.【详解】解:弯曲的道路改直,使两点处于同一条线段上,两点之间线段最短.故选B.【点睛】本题考查了两点之间线段最短的性质,正确将数学定理应用于实际生活是解题关键.12.B解析:B【分析】根据射线的表示法即可确定.【详解】A、射线OA与OB不是同一条射线,选项错误;B、射线OA与OB是同一条射线,选项正确;C、射线OA与OB不是同一条射线,选项错误;D、射线OA与OB不是同一条射线,选项错误.故选B.【点睛】本题考查了射线的表示法,射线的端点写在第一个位置,第二个字母是射线上除端点以外任意一点.二、填空题13.7【分析】找射线可以先找到一个端点然后以这个端点发散本题可以分别以ABCO为端点找到不同的射线【详解】以点O为端点并且能用两个字母表示的射线是OAOBOC以点A为端点并且能用两个字母表示的射线是AC解析:7【分析】找射线可以先找到一个端点,然后以这个端点发散。

冀教版2020七年级数学下册第八章整式的乘法自主学习能力达标测试题4(附答案)

冀教版2020七年级数学下册第八章整式的乘法自主学习能力达标测试题4(附答案)

冀教版2020七年级数学下册第八章整式的乘法自主学习能力达标测试题4(附答案) 1.使()()2283x px x x q ++-+的积中不含2x 和3x 的p,q 的值分别是( )A .0,0p q ==B .3,9p q =-=-C .3,1p q ==D .3,1p q =-= 2.下列运算:(1)2a a a +=;(2)3412a a a ⨯=;(3)()22ab ab = ;(4)()326a a -=.其中错误的个数是A .1B .2C .3D .4 3.下列计算正确的是( )A .5a 3a 2-=B .236(2a )6a =C .32a 2a 2a ÷=D .453a (2a)48a ⋅-=4.下列计算中,结果正确的是( )A .236a a a ⋅=B .(2)(3)6a a a ⋅=C .236()a a =D .623a a a ÷= 5.下列计算正确的是( )A .3x+x=4x 2B .x 6÷x 2=x 3C .(-x 2)3=-x 6D .(-2x )3=-6x 3 6.“末来中国人口会不会突破15亿?“是我国人口政策调整决策中的重要考量,15亿用科学记数法表示为( )A .15×109B .1.5×108C .1.5×109D .1.597.下列计算正确的是( )A .222a? a 2a ⋅=B .824a a a ÷=C .22(2a)4a -=D .325(a )a = 8.用四舍五入法得到近似数4.005万,关于这个数有下列说法,其中正确的是( ) A .它精确到万位B .它精确到0.001C .它精确到万分位D .它精确到十位9.下列等式成立的是( )A .2﹣1=﹣2B .(a 2)3=a 5C .a 6÷a 3=a 2D .﹣2(x ﹣1)=﹣2x +2 10.下列运算正确的是( )A .x 3+x 3=x 6B .3x 3y 2÷xy 2=3x 4C .x 3•(2x )2=4x 5D .(﹣3a 2)2=6a 211.已知x 、y 是实数且满足x 2+xy+y 2﹣2=0,设M=x 2﹣xy+y 2,则M 的取值范围是_____. 12.计算:-2xy(x 2y-3xy 2)=___________.13.引入新数i ,规定i 满足运算律且i ²=-1,那么(3+i )(3-i )的值为_________. 14.随着数系不断扩大,我们引进新数i ,新 i 满足交换率、结合律,并规定:i 2=﹣1,那么(2+i )(2﹣i )=________(结果用数字表示).15.日本地震中发生核泄漏,科学家发现某放射性物的长度约为0.0000041mm ,用科学记数法表示的结果为_____________________mm16.计算:()()12x x +-= __________.17.2018年1月4日在萍乡市第十五届人民代表大会第三次会议报告指出,去年我市城镇居民人均可支配收入33080元,33080用科学记数法可表示为__.18.计算:()341x y --=________________.19.若m+n=2, 则2m 2+4mn+2n 2-1=__________;20.计算:(18a 2-3a )÷3a=_____. 21.计算:(1)3223(46)2a b a b ab ab +-÷.(2)2(32)(21)x x x +-+.(3)(x-2y)(x+2y)-(2y-x)2.22.已知M(2)=(-2)×(-2),M(3)=(-2)×(-2)×(-2),…,M(n)=-2(-2)(-2)?(-2)n ⨯⨯⨯n 个相乘.(1)计算:M(5)+M(6);(2)求2M(2 016)+M(2 017)的值;(3)说明2M(n)与M(n+1)互为相反数.23.仔细阅读材料,再尝试解决问题:完全平方式()222x 2xy y x y ±+=± 以及()2x y ±的值为非负数的特点在数学学习中有广泛的应用,比如探求2610x x ++的最大(小)值时,我们可以这样处理:例如:①用配方法解题如下:2610x x ++原式=2x +6x+9+1=2(3)1x ++ 因为无论x 取什么数,都有()23x +的值为非负数,所以()23x +的最小值为0;此时3x =- 时,进而2(3)1x ++的最小值是0+1=1;所以当3x =-时,原多项式的最小值是1.请根据上面的解题思路,探求:(1)若(x+1)2+(y-2)2=0,则x= ,y= ..(2)若x 2+y 2+6x -4y+13=0,求x ,y 的值;(3)求2810x x -+的最小值24.计算:(1)(a 2)3·(a 2)4÷(a 2)5;(2)(x -y +9)(x +y -9);(3)[(3x +4y )2-3x (3x +4y )]÷(-4y ).25.阅读理解:若x 满足(x -2015)(2002-x )=-302,试求(x -2015)2+(2002-x )2的值.解:设x -2015=a,2002-x =b ,则ab =-302且a +b =(x -2015)+(2002-x )=-13.∵(a +b )2=a 2+2ab +b 2,∴a 2+b 2=(a +b )2-2ab =(-13)2-2×(-302)=773,即(x -2015)2+(2002-x )2的值为773. 解决问题:请你根据上述材料的解题思路,完成下面一题的解答过程,若y 满足(y -2015)2+(y -2016)2=4035,试求(y -2015)(y -2016)的值.26.化简:(1) 22(3)()()2m n m n m n n --+-- (2)224432112x x x x x x x -+⎛⎫÷-++ ⎪+++⎝⎭ 27.计算:(1) 2(4)(31)(3)x x x x -+-+(2) 2(1)(2)(2)x x x +-+-28.解方程(3x -2)(2x -3)=(6x +5)(x -1)+15.参考答案1.C【解析】【分析】()()2283x px x x q ++-+=x 4+(p-3)x 3+(q-3p+8)x 2+(pq-24)x+8q,根据题意得30380p q p -=⎧⎨-+=⎩,解方程组可得. 【详解】()()2283x px x x q ++-+ =x 4-3x 3+qx 2+px 3-3px 2+pqx+8x 2-24x+8q=x 4+(p-3)x 3+(q-3p+8)x 2+(pq-24)x+8q因为不含x 2和x 3项所以30380p q p -=⎧⎨-+=⎩解得31p q =⎧⎨=⎩ 故选:C【点睛】本题考核知识点:整式乘法. 解题关键点:掌握整式乘法法则.2.C【解析】试题解析:(1)2a a a +=,计算结果正确;(2)347a a a ⨯=,原计算结果错误;(3)()222ab a b =,原计算结果错误;(4)()326a a -=-,原计算结果错误.计算结果错误的个数有3个.故选C.3.D【解析】【分析】各项计算得到结果,即可作出判断.【详解】A 、原式=2a ,不符合题意;B 、原式=8a 6,不符合题意;C 、原式=12a 2,不符合题意; D 、原式=48a 5,符合题意,故选D .【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.C【解析】选项A ,235a a a ⋅=,选项A 错误;选项B ,()()2236a a a ⋅= ,选项B 错误;选项C ,()326a a =,选项C 正确;选项D ,624a a a ÷=,选项D 错误.故选C.5.C【解析】A. 3x+x=4x ,故A 选项错误;B. x 6÷x 2=x 4,故B 选项错误;C. (-x 2)3=-x 6,故C 选项正确;D. (-2x )3=-8x 3,故D 选项错误,故选C.6.C【解析】【分析】将15亿用科学计数法表示出来即可.【详解】15亿=150000000=1.5×109.故选C .【点睛】本题主要考查科学计数法的概念:把一个数N 表示成a ×10n (1≤︱a ︱<10,n 是整数)的形式叫做科学记数法.当︱N ︱≥1时,n 等于原数N 的整数位数减1;当︱N ︱<1时,n 是一个负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零). 7.C【解析】【分析】根据整式的乘除法则即可解题.【详解】A. 232a a 2a ⋅=,所以A 错误B. 826a a a ÷=,所以B 错误,同底数幂相除,底数不变,指数相减C. 22(2a)4a -= ,正确D. 326(a )a =,所以D 错误,幂的乘方要将内外指数相乘.故选C.【点睛】本题考查了整式的乘除运算,熟悉运算法则是解题关键.8.D【解析】试题解析:近似数4.005万精确到十位.故选D .点睛:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.9.D【解析】解:A .2﹣1=12,故原题计算错误; B .(a 2)3=a 6,故原题计算错误;C .a 6÷a 3=a 3,故原题计算错误;D .﹣2(x ﹣1)=﹣2x +2,故原题计算正确.故选D .10.C【解析】试题分析:A 、原式=2x 3,故此选项错误;B 、原式=3x ,故此选项错误;C 、原式=x 3·4x 2=4x 5,故此选项正确;D 、原式=9a 4,故此选项错误.故选:D .11.23≤M≤6 【解析】【分析】把原式的xy 变为2xy-xy ,根据完全平方公式特点化简,然后由完全平方式恒大于等于0,得到xy 的范围;再把原式中的xy 变为-2xy+3xy ,同理得到xy 的另一个范围,求出两范围的公共部分,然后利用不等式的基本性质求出2-2xy 的范围,最后利用已知x 2+xy+y 2-2=0表示出x 2+y 2,代入到M 中得到M=2-2xy ,2-2xy 的范围即为M 的范围.【详解】由2220x xy y ++-=得:22220x xy y xy ++--=,即2()20x y xy +=+≥, 所以2xy ≥-; 由2220x xy y ++-=得:222230x xy y xy -+-+=,即2()230,x y xy -=-≥ 所以32xy ≤, ∴322xy -≤≤, ∴不等式两边同时乘以−2得:()()()322222xy -⨯-≥-≥⨯-,即4243xy -≤-≤, 两边同时加上2得:422242,3xy -+≤-≤+即22263xy ≤-≤, ∵2220,x xy y ++-=∴222x y xy +=-,∴2222M x xy y xy =-+=-,则M 的取值范围是23≤M≤6. 故答案为:23≤M≤6. 【点睛】此题考查了完全平方公式,以及不等式的基本性质,解题时技巧性比较强,对已知的式子进行了三次恒等变形,前两次利用拆项法拼凑完全平方式,最后一次变形后整体代入确定出M 关于xy 的式子,从而求出M 的范围.要求学生熟练掌握完全平方公式的结构特点:两数的平方和加上或减去它们乘积的2倍等于两数和或差的平方.12.-2x 3y 2+6x 2y 3【解析】解:原式=-2x 3y 2+6x 2y 3.故答案为:-2x 3y 2+6x 2y 3.13.10【解析】试题解析:原式()299110.i =-=--= 故答案为:10.14.5【解析】分析:利用平方差公式进行计算,即可得出答案.详解:原式=()222415i -=--=. 点睛:本题主要考查的就是平方差公式的应用以及新运算的使用,属于简单题型.解决这个问题的时候理解新定义是解题的关键.15.4.1⨯10-6【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】∵0.0000041第一个不为零的数字4前面有6个0,∴0.0000041=4.1⨯10-6,故答案为:4.1⨯10-6【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.16.x 2-x-2【解析】分析:按“多项式乘以多项式的法则”进行计算即可.详解:原式=222x x x -+-=22x x --.故答案为:22x x --.点睛:熟记“多项式乘以多项式的乘法法则”是解答本题的关键.17.3.308×104.【解析】【分析】正确用科学计数法表示即可.【详解】解:33080=3.308×104 【点睛】科学记数法的表示形式为10n a ⨯的形式, 其中1<|a|<10,n 为整数.确定n 的值时, 要看把原数变成a 时, 小数点移动了多少位, n 的绝对值与小数点移动的位数相同. 当原数绝对值大于10时, n 是正数; 当原数的绝对值小于1时,n 是负数.18.123xy x -+【解析】【分析】根据单项式乘以多项式运算法则直接进行运算.【详解】()341x y--=-12xy+3x.【点睛】本题考查了单项式与多项式相乘,掌握其运算法则是解决此题的关键.19.7【解析】2m2+4mn+2n2-1=2(m2+2mn+n2)-1=2(m+n)2-1=2×22-1=7,故答案为7.20.6a-1【解析】【分析】直接利用整式的除法运算法则求出答案.【详解】解:(18a2-3a)÷3a=6a-1;故答案为:6a-1.【点睛】本题考查了多项式除以单项式的法则,多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.21.(1)2a2+3ab-12b2(2)6x3+x2+x+2(3)4xy-8y2【解析】【分析】利用多项式乘除以单项式进行计算即可求出答案. 【详解】(1)原式=2a2+3ab-12b2.(2)原式= 6x3-3x2+3x+4x2-2x+2 =6x3+x2+x+2.(3)原式=x2-4y2-(4y2-4xy+x2) = x2-4y2-4y2+4xy-x2=4xy-8y2.本题考查了多项式乘多项式、整式的除法,熟练掌握多项式的运算方法是本题解题的关键. 22. (1) 32;(2) 0;(3) 详见解析.【解析】试题分析:(1)由题意可得M(5)= (-2)5, M(6)= (-2)6,根据乘方的定义进行计算即可;(2)由题意可得M(2 016)= (-2)2016, M(2017)= (-2)2017,根据同底数幂的乘法法则计算后合并即可;(3)类比(2)的方法计算2M(n)+M(n+1)的值,若值为0,则2M(n)与M(n+1)互为相反数,若值不等于0,则2M(n)与M(n+1)不互为相反数.试题解析:(1)M(5)+M(6)=(-2)5+(-2)6=-32+64=32.(2)2M(2 016)+M(2 017)=2×(-2)2 016+(-2)2 017=2×22 016-22 017=22 017-22 017=0.(3)因为2M(n)+M(n+1)=-(-2)×(-2)n +(-2)n+1=-(-2)n+1+(-2)n+1=0,所以2M(n)与M(n+1)互为相反数. 点睛:本题是一道阅读理解题,考查了乘方的意义和同底数幂的乘法法则,弄清阅读材料中的技巧是解本题的关键.23.(1)x=-1,y=2;(2)x=-3,y=2;(3)最小值为-6【解析】试题分析:利用非负数的性质求出最小值,以及此时,x y 的值即可.试题解析:(1)∵()()22120x y ++-=, 1020x y ∴+=-=,,解得12x y =-=,. ()22264130x y x y ++-+=,()()22320x y ++-=,则3020x y +=-=,,解得32x y =-=,,(3)()228104 6.x x x -+=--最小值为 6.-24.(1) a 4;(2) x 2-y 2+18y -81;(3)-3x -4y ;【分析】(1)根据同底数幂的乘除法法则求解即可;(2)利用平方差公式求解即可;(3)先提取公因式,再根据多项式的乘除法法则求解即可.【详解】(1)(a2)3·(a2)4÷(a2)5=a6·a8÷a10=a14÷a10=a4;(2)(x-y+9)(x+y-9)=[x-(y-9)][x+(y-9)]=x2-(y-9)2=x2-y2+18y-81;(3)[(3x+4y)2-3x(3x+4y)]÷(-4y)=4y(3x+4y)÷(-4y)=(12xy+16y2)÷(-4y)=-3x-4y.25.2017.【解析】试题分析:设y-2015=a,y-2016=b,则a2+b2=4035,a-b=1,根据(a-b)2=a2-2ab+b2,可以求出ab,即可解决问题.试题解析:设y-2015=a,y-2016=b,则a2+b2=4035,a-b=1,∵(a-b)2=a2-2ab+b2,∴ab=12[a2+b2-(a-b)2]=2017.∴(y-2015)(y-2016)=2017.26.(1)286m mn;(2)1 x .【解析】【分析】(1)先利用完全平方公式和平方差公式计算,再合并即可得;(2)根据分式混合运算顺序和运算法则计算可得.(1)原式=22222962m mn n m n n -+-+-.=286m mn -.原式=()22224212x x x x x x --÷++++ =()()()()22121222x x x x x x x -+⋅++-+-+ =()2222x x x x -+++=1x. 【点睛】本题主要考查分式的混合运算与整式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则及完全平方公式、平方差公式.27.(1)5x 2-3 ;(2)2x+5.【解析】【分析】利用整式运算的法则展开并化简即可,此外要合理运用完全平方公式以及平方差公式简化计算.【详解】解:(1)原式=2x 2-8x+3x 2+9x-x-3=5x 2-3;(2)原式=x 2+2x+1-(x 2-4)= x 2+2x+1-x 2+4= 2x+5.【点睛】本题考查了整式的运算,注意合理运用完全平方公式以及平方差公式.28.x=-13【解析】【分析】先把方程两边变形,然后再整理计算即可.【详解】解:原方程变形为:6x 2-9x-4x+6=6x 2-6x+5x-5+15,移项、合并同类项得:-12x=4,同除以12,系数化为1,得:x=-13.【点睛】本题考查了解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.。

最新初一数学运算能力大赛 (共4套试卷)

最新初一数学运算能力大赛 (共4套试卷)

最新初一数学运算能力大赛 (共4套试卷)同学们,数学是一门需要缜密运算的学科。

通过运算的过程,我们不仅可以提高数学成绩,还能够养成耐心、仔细的好惯,并磨练意志和毅力。

同时,良好的运算能力也能够提高数学思维能力,增强信心,养成瞻前顾后、统观全局的思维方式,这些都是成就大事业的人所必备的优良品质。

让我们来看看本次初一数学运算能力大赛的题目吧!一共有十道题,每题三分,共计120分。

1.(-1.5) + 4 +2.75 + (-5) =。

2.(-1) - 5 - (-0.25) / 4 =。

3.(-2)^(3/2) - (-4.9) - 0.6 =。

4.8 + (-1) - 5 - (-0.25) / 4 =。

5.(-1/1) + (1/1) + (-2/1) - (-3/1) - (1/1) =。

6.-4 ÷ 4 × (2/4 + 2/4 + 4/4) =。

7.-2^(3/2) * (-5) ÷ (-1) * 5 =。

8.(-2/3) ÷ 1 - (-1 + 3/4) / 5 =。

9.10 - 1 ÷ (-1/3) ÷ 1 =。

10.-1.53 × 0.75 - 0.53 × (-3/4) =。

这些题目涵盖了初一数学运算的基础知识,希望同学们认真思考、仔细作答。

加油!这是一篇数学题,需要进行计算。

首先,我们需要剔除文章中的格式错误和明显有问题的段落,因为这些错误会影响文章的可读性和正确性。

然后,我们可以对每段话进行小幅度的改写,使其更加清晰易懂。

例如:1.计算表达式25×3+(―25)×1+25×(-1) 的值。

这个表达式可以简化为 25×(3-1-1),所以答案是 50.2.计算表达式 -49 + 2×(-3 )÷(-1) 的值。

这个表达式可以简化为 -49 + 6,所以答案是 -43.3.计算表达式(3)2 2 的值。

七年级数学上册第一单元测试题 (4)

七年级数学上册第一单元测试题 (4)

七年级数学上册第一单元测试题一、选择题1.下列四个数中,哪一个是质数? A. 12 B. 21 C. 37 D. 442.计算:$-3^2 \\times (-2)^3$的值 A. 54 B. -54 C. 36 D. -363.已知:x+5=12,则x的值为 A. 7 B. -7 C. 17 D. -174.计算:$\\dfrac{2}{5} \\div \\dfrac{1}{4}$的值 A. 0.8 B. 0.2 C. 2 D. 55.若a+b=3,a−b=1,则方程组的解为 A. a=2,b=1 B. a= 1,b=2 C. a=3,b=0 D. a=0,b=3二、填空题1.$3 \\div 0 =$ \\\\2.$\\sqrt{64} =$ \\\\3.$(-9)+(5 \\times 3)-2^2 =$ \\\\4.$\dfrac{1}{3}+\dfrac{2}{5} = $ \\\\5.若2x+3=9,求x的值为 \\\\三、解答题1.计算:$(-4) \\times (-8) =$ \\\\\_2.解方程:4x−5=153.某超市打折,原价120元的商品现在打8折出售,打折后的价格是多少?4.从一个数集中取出一个数,如果这个数是3的倍数,那么它一定是偶数吗?请给出理由。

四、应用题某班级共有50名学生,男生和女生一共32人,男生比女生多8人。

求男生和女生各有多少人?解答一、选择题1. C2. B3. A4. C5. A二、填空题1.无解2.83. 44.$\\dfrac{11}{15}$5.x=3三、解答题1.32解答:两个负数相乘,结果是正数。

因此,$(-4) \\times (-8) = 32$。

2.x=5解答:将式子两边同时加上5,得到4x=20,然后将式子两边同时除以4,得到x=5。

3.打折后的价格为96元解答:打8折表示打80%,即原价乘以0.8。

所以,$120 \\times 0.8 = 96$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学能力测试题(4)
一.填空题
1.某地某天早晨的气温为220C ,中午上升了40C ,夜间又下降了100C ,那么这天夜间的气温是_________0C
2.点A 在数轴上距原点3个单位长度,且位于原点右侧,若将A 点向左移动4个单位长度,再向右移动1个单位长度,此时点A 所表示的数是________
3.平方得25的数是__________;立方得—27的数是_________ 4.有理数2
1
-
的倒数是________,绝对值是_________ 5.某种商品的零售价为a 元,顾客以8折(即零售价的80%)的优惠价购买此商品,共付款__________元
6.绝对值大于1而小于10的所有整数的和是_____________
7.在数轴上,与表示—2的点的距离是5所有数为_____________
8.从一个n ()4≥n 边形的某个顶点出发,分别连结这个顶点与其余各顶点,可以把这个n 边形分割成_________个三角形
9.某工厂今年的产值是a 万元,比去年增加了20%,则去年的产值是__________ 10.如图,用图中的字母表示阴影部分的面积是______________
二.选择题
1.有理数a 、b 在数轴上的位置如图所示,则下列各式成立的是( )
A 、a+b<0
B 、a —b>0
C 、ab<0
D 、a b >
2.将有理数m 减小5,然后再扩大3倍,最后的结果是( ) A 、35⨯-m B 、3(m —5) C 、m —5+3m D 、m —5+3(m —5)
3.光明中学共有a 个学生,其中男生人数占55%,那么该校女生人数是( ) A 、55%a B 、45%a C 、%55a D 、%
551-a 4.下列说法中正确的是( )
A 、a -是正数
B 、—a 是负数
C 、a -是负数
D 、a -不是负数 5.已知:x =3,y =2,且x>y ,则x+y 的值为( ) A 、5 B 、1 C 、5或1 D 、—5或—1 6.当a<0时,化简
a
a 等于( )
A 、1
B 、—1
C 、0
D 、1± 7.若ab ab =,则必有( )
A 、a>0,b<0
B 、a<0,b<0
C 、ab>0
D 、0≥ab
x x
b a . . .
8.下列计算中正确的是( )
A 、()()1113
4
=-⨯- B 、()933
=--
C 、931313
=⎪⎭⎫ ⎝⎛-÷ D 、9313=⎪⎭
⎫ ⎝⎛-÷-
9.下列哪个图形经过折叠不能围成一个立方体是( )
10.小明从家里出发到m 千米外的某地,原来他的骑车的速度是每小时a 千米,现在他必须提前1小时到达某地,因此他必须加快速度,问他每小时应该比原来加快多少千米( ) A 、
a
m
B 、1
-a
m m C 、a a m --1 D 、1--a m a 三.计算题
1.—14—(—23)—(—22) 2. ()⎪⎭
⎫ ⎝⎛-+-⨯-181********
3.()()(
)()
⎪⎭
⎫ ⎝⎛-⨯-⨯--⨯+⎪⎭
⎫ ⎝⎛-⨯-⨯-21222
3211422
2
2
2
4.()()
()⎥⎦
⎤⎢⎣⎡-⨯-÷⎪⎭
⎫ ⎝⎛⨯-+---22438.012523
2
(1)根据上表结果,描述所求得的一列数的变化规律
A B C D
(2)当x 非常大时,
2
100
x 的值接近于什么数?
五.如图,这是一个由小立方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请你画出它的主视图与左视图
六.(1)3个球队进行单循环赛(参赛的每一个队都与其它所有各队比赛一场),总的比赛场数是多少?4个球队呢?m 个球队呢?(代数式表示出来) (2)当m=12时,总共比赛几场?
七.股民李明星期五买进某公司的股票1000股,每股16.8元,下表是第二周一至周五每日该股票的涨跌情况(单位:元)
(1) 星期三收盘时,每股是多少元?
(2) 本周内最高价每股多少元?最低价每股多少元?
(3) 若买进股票和卖出股票都要交0.2%的各种费用,现在小明在星期五收盘前将全部股票卖出,他
的收益情况如何?
八.某民航规定旅客可以免费携带a 千克物品,但若超过a 千克,则要收一定的费用,费用规定如下:旅客的携带的重量b 千克(b>a )乘以10,再减去200,就得你应该交的费用。

(1)小明携带了50千克的物品,问他应交多少费用? (2)小王交了100元费用,问他携带了多少千克物品? (3)这里的a 等于多少?。

相关文档
最新文档