复习二项分布和泊松分布参数的区间估计.ppt
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习1:
1.参数点估计 (1)矩估计法
(2)最大似然估计法
2.估计量的判别标注
(1)无偏性 (2)有效性 (3)一致性
优选
1
复习2:
1.正态总体均值 的置信区间
x u / 2
n , x u / 2
n
2 已知 2 未知
S
S
x t (n 1)
2
n
,
x
t
2
(n
1)
n
S
S
x u
X n
u / 2
X }1
n
所以总体参数 λ 的置信区间为:
X n u / 2
X n
X n
u / 2
X n
X
XX
X
n u / 2 n , n u / 2 n
所以总体参数 nλ 的置信区间为:
X u /2 X , X u /2 X
医药数理统计方法
医药数理统计方法
例5-13.用计数器记录某放射性标本的脉冲数,已知 20分钟的读数为11286,试求20分钟内总脉冲数和每 分钟平均脉冲数的95%置信区间。
n
n i 1
xi
)
,
D( x)
1 D(
n
n i 1
xi )
n
x
1 n
n i 1
xi
~
N ( , ),
n
n
(近似服从)
医药数理统计方法
x
1 n
n i 1
xi
~
N ( , ),
n
n
(近似服从)
u x ~ N (0,1), n (近似服从) /n
x
1 n
n i 1
xi
u x ~ N (0,1), n (近似服从)
(4.94,24.14)
小结
医药数理统计方法
1.二项分布总体率 P 的置信区间
p u / 2
p(1 n
p) ,
p
u / 2
2.泊松分布参数 的置信区间
p(1 p) n
X u /2 X , X u /2 X
大样本正态近似法
医药数理统计方法
例5-11.对100只小鼠给予有机磷农药100mg/kg灌胃后 有80只死亡,试求给予该有机农药100mg/kg灌胃引起 小鼠死亡率的95%置信区间.
样本死亡率: p 80 0.80 100
总体死亡率: P
95%置信区间
1.总体率与样本率的定义
医药数理统计方法
总体率:设总体的容量为N,其中具有某种特点
n
P
p
m
n
u
p P ~ N (0,1) p(1 p)
n
u p P ~ N (0,1) p(1 p) n
医药数理统计方法
对于给定的 1 查标准正态分布双侧临界值表:
P{u / 2
p P p(1 p)
u / 2 } 1
n
P{ p u / 2
p(1 p) n P p u / 2
x/n
wenku.baidu.com
令: X
n i 1
xi x
X n
医药数理统计方法
u X / n ~ N (0,1), n (近似服从)
X /n
对于给定的 1 查标准正态分布双侧临界值表:
P{u / 2 u u / 2 } 1
P{u / 2
X
/n
X /n
u / 2 } 1
P{
X n
u / 2
X n
有80只死亡,试求给予该有机农药100mg/kg灌胃引起
小鼠死亡率的95%置信区间.
解:
n
100,
p
80 100
0.80,
0.05, u0.05/ 2
1.96;
p(1 p)
p(1 p)
p u / 2
n , p u / 2
n
0.8 1.96
0.8(1 0.8) , 0.8 1.96 100
所以总体率 P 的99%置信区间为:(7.7%,80.9%)
医药数理统计方法
2.泊松分布参数 λ 的区间估计 例5-15.用一种培养基培养某种细菌,经过一段时间 后的菌落有12个,试估计同样条件下该菌落数的99% 置信区间.
解: X 12, 0.01 查附表9可得总菌落数nλ的置信区间的上限: 上限:24.14,下限:4.94 所以同样条件下该菌落数的99%置信区为:
p(1 p) } 1
n
所以总体率P的 1 的置信区间为:
医药数理统计方法
p u / 2
p(1 n
p)
P
p u / 2
p(1 p) n
p(1 p)
p(1 p)
p u / 2
n , p u / 2
n
大样本正态近似法
医药数理统计方法
例5-11.对100只小鼠给予有机磷农药100mg/kg灌胃后
2
, n
x u
2
n
大样本非正态总体
优选
2
2.正态总体方差 2 的置信区间
(n 1)S 2
2
(n
1)
2
,
(n 1)S 2
2 1
(n
1)
2
优选
3
第五章 参数估计
第三节 二项分布和泊松分布参数的区间估计
优选
4
主要内容
一、大样本正态近似法 二、小样本精确估计法
一、大样本正态近似法
的个体数为M,则称 P M N
为具有某种特点的个体的总体率。
置信区间
样本率:设总体中抽取容量为n的样本,其中具 有某种特点的个体数为m,则称
p m n
为具有某种特点的个体的样本率。
2.二项分布总体率 P 的区间估计
医药数理统计方法
推导过程:
p
m
~
N(P,
P(1
P) )
n
n
u p P ~ N (0,1) P(1 P)
20
解: X xi 11286, n 20, 0.05, u0.05/ 2 1.96 i 1 所以20分钟内总脉冲数的95%置信区间为: X u0.05/ 2 X , X u0.05/ 2 X (11078,11494)
每分钟平均脉冲数的95%置信区间为:
X
XX
X
n u0.05/ 2 n , n u0.05/ 2 n (553.9, 574.7)
二、小样本精确估计法
医药数理统计方法
1.二项分布总体率 P 的区间估计 例5-14.给10只同品系的动物分别注射某药物,结 果有4只死亡,试求总体死亡率的99%置信区间.
解:n=10为小样本,不宜采用正态近似法。 n 10, m 4, 0.01
查附表8可得总体率P的置信区间的上下限: 上限:0.809,下限:0.077
0.8(1 0.8) 100
0.722,0.878
3.泊松分布参数 的区间估计
医药数理统计方法
设总体X服从参数为λ的泊松分布,x1, x2 , , xn 为总体的一个样本,则有:
P{X k} k e ,
k!
E( X ) , D( X )
k 0,1, 2,
E( x)
1 E(
1.参数点估计 (1)矩估计法
(2)最大似然估计法
2.估计量的判别标注
(1)无偏性 (2)有效性 (3)一致性
优选
1
复习2:
1.正态总体均值 的置信区间
x u / 2
n , x u / 2
n
2 已知 2 未知
S
S
x t (n 1)
2
n
,
x
t
2
(n
1)
n
S
S
x u
X n
u / 2
X }1
n
所以总体参数 λ 的置信区间为:
X n u / 2
X n
X n
u / 2
X n
X
XX
X
n u / 2 n , n u / 2 n
所以总体参数 nλ 的置信区间为:
X u /2 X , X u /2 X
医药数理统计方法
医药数理统计方法
例5-13.用计数器记录某放射性标本的脉冲数,已知 20分钟的读数为11286,试求20分钟内总脉冲数和每 分钟平均脉冲数的95%置信区间。
n
n i 1
xi
)
,
D( x)
1 D(
n
n i 1
xi )
n
x
1 n
n i 1
xi
~
N ( , ),
n
n
(近似服从)
医药数理统计方法
x
1 n
n i 1
xi
~
N ( , ),
n
n
(近似服从)
u x ~ N (0,1), n (近似服从) /n
x
1 n
n i 1
xi
u x ~ N (0,1), n (近似服从)
(4.94,24.14)
小结
医药数理统计方法
1.二项分布总体率 P 的置信区间
p u / 2
p(1 n
p) ,
p
u / 2
2.泊松分布参数 的置信区间
p(1 p) n
X u /2 X , X u /2 X
大样本正态近似法
医药数理统计方法
例5-11.对100只小鼠给予有机磷农药100mg/kg灌胃后 有80只死亡,试求给予该有机农药100mg/kg灌胃引起 小鼠死亡率的95%置信区间.
样本死亡率: p 80 0.80 100
总体死亡率: P
95%置信区间
1.总体率与样本率的定义
医药数理统计方法
总体率:设总体的容量为N,其中具有某种特点
n
P
p
m
n
u
p P ~ N (0,1) p(1 p)
n
u p P ~ N (0,1) p(1 p) n
医药数理统计方法
对于给定的 1 查标准正态分布双侧临界值表:
P{u / 2
p P p(1 p)
u / 2 } 1
n
P{ p u / 2
p(1 p) n P p u / 2
x/n
wenku.baidu.com
令: X
n i 1
xi x
X n
医药数理统计方法
u X / n ~ N (0,1), n (近似服从)
X /n
对于给定的 1 查标准正态分布双侧临界值表:
P{u / 2 u u / 2 } 1
P{u / 2
X
/n
X /n
u / 2 } 1
P{
X n
u / 2
X n
有80只死亡,试求给予该有机农药100mg/kg灌胃引起
小鼠死亡率的95%置信区间.
解:
n
100,
p
80 100
0.80,
0.05, u0.05/ 2
1.96;
p(1 p)
p(1 p)
p u / 2
n , p u / 2
n
0.8 1.96
0.8(1 0.8) , 0.8 1.96 100
所以总体率 P 的99%置信区间为:(7.7%,80.9%)
医药数理统计方法
2.泊松分布参数 λ 的区间估计 例5-15.用一种培养基培养某种细菌,经过一段时间 后的菌落有12个,试估计同样条件下该菌落数的99% 置信区间.
解: X 12, 0.01 查附表9可得总菌落数nλ的置信区间的上限: 上限:24.14,下限:4.94 所以同样条件下该菌落数的99%置信区为:
p(1 p) } 1
n
所以总体率P的 1 的置信区间为:
医药数理统计方法
p u / 2
p(1 n
p)
P
p u / 2
p(1 p) n
p(1 p)
p(1 p)
p u / 2
n , p u / 2
n
大样本正态近似法
医药数理统计方法
例5-11.对100只小鼠给予有机磷农药100mg/kg灌胃后
2
, n
x u
2
n
大样本非正态总体
优选
2
2.正态总体方差 2 的置信区间
(n 1)S 2
2
(n
1)
2
,
(n 1)S 2
2 1
(n
1)
2
优选
3
第五章 参数估计
第三节 二项分布和泊松分布参数的区间估计
优选
4
主要内容
一、大样本正态近似法 二、小样本精确估计法
一、大样本正态近似法
的个体数为M,则称 P M N
为具有某种特点的个体的总体率。
置信区间
样本率:设总体中抽取容量为n的样本,其中具 有某种特点的个体数为m,则称
p m n
为具有某种特点的个体的样本率。
2.二项分布总体率 P 的区间估计
医药数理统计方法
推导过程:
p
m
~
N(P,
P(1
P) )
n
n
u p P ~ N (0,1) P(1 P)
20
解: X xi 11286, n 20, 0.05, u0.05/ 2 1.96 i 1 所以20分钟内总脉冲数的95%置信区间为: X u0.05/ 2 X , X u0.05/ 2 X (11078,11494)
每分钟平均脉冲数的95%置信区间为:
X
XX
X
n u0.05/ 2 n , n u0.05/ 2 n (553.9, 574.7)
二、小样本精确估计法
医药数理统计方法
1.二项分布总体率 P 的区间估计 例5-14.给10只同品系的动物分别注射某药物,结 果有4只死亡,试求总体死亡率的99%置信区间.
解:n=10为小样本,不宜采用正态近似法。 n 10, m 4, 0.01
查附表8可得总体率P的置信区间的上下限: 上限:0.809,下限:0.077
0.8(1 0.8) 100
0.722,0.878
3.泊松分布参数 的区间估计
医药数理统计方法
设总体X服从参数为λ的泊松分布,x1, x2 , , xn 为总体的一个样本,则有:
P{X k} k e ,
k!
E( X ) , D( X )
k 0,1, 2,
E( x)
1 E(