六年级下册数学试题-小升初奥数必考题型汇总(六)人教版 无答案
人教版六年级下册数学小升初常见题型与考点集锦
小升初赢在起点数学常见题型与考点集锦(六)1 、甲、乙、丙三名员工共同修剪6060平方米草地,甲的修剪效率为30平方米/分钟,乙的修剪效率为40平方米/分钟,丙的修剪效率为60平方米/分钟。
上午,甲7点30分开始修剪,乙7点45分开始修剪,丙8点15分开始修剪,他们同一时间完成工作,乙用了()分钟。
A.56B.57C.58D.592 、一头羊用10米长的绳子拴在一个长方形小屋外的墙角处,小屋长9米、宽7米,小屋周围都是草地,羊能吃到草的草地面积为()平方米。
A.B.C.D.3 、小王打算购买围巾和手套送给朋友们,预算不超过500元。
已知围巾的单价是60元,手套的单价是70元,如果小王至少购买3条围巾和2双手套,那么不同的选购方式有()种。
A.3B.5C.7D.94、一艘轮船先顺水航行40千米,再逆水航行24千米,共用了8小时。
若该船先逆水航行20千米,再顺水航行60千米,也用了8小时。
则在静水中这艘船每小时航行()千米。
A.11B.12C.13D.145 、某家有三个古董钟,时针都掉了,只剩下分针,而且都走的较快,每小时分别快2分钟、6分钟及12分钟。
如果在中午将这三个钟的分针都调整指向钟面的12点位置,()小时后这3个钟的分针会指在相同的分钟位置。
A.24B.26C.28D.306 、文化广场上从左到右一共有5面旗子,分别代表中国、德国、美国、英国和韩国。
如果将5面旗子从左到右分别记作A、B、C、D、E,那么从中国的旗子开始,按照ABCDEDCBABCDEDCBA......的顺序数,数到第313个字母时,是代表()的旗子。
A.英国B.德国C.中国D.韩国7 、某电影公司准备在1—10月中选择两个不同的月份,在其当月的首日分别上映两部电影。
为了避免档期冲突影响票房,现决定两部电影中间相隔至少3个月,则有()种不同的排法。
A.21B.28C.42D.568 、小张购买艺术品A,在其价格上涨X%后卖出盈利Y元,用卖价的一半购买艺术品B,又在其价格上涨X%后卖出盈利Z元,发现Z大于Y。
六年级下册人教版数学奥数题
六年级下册人教版数学奥数题第一章几何运算1.1 三角形的判定根据给定的条件判定下列图形是否为三角形,并给出理由。
1) 图形ABC,AB = AC = 3 cm,∠BAC = 60°。
解析:由于两边相等且夹角为60°,符合边边角(SSA)判定三角形的条件,故图形ABC是一个三角形。
2) 图形PQR,PQ = 6 cm,QR = 7 cm,RP = 10 cm。
解析:根据三角形两边之和大于第三边的性质,可以得有:PQ +QR > RP,PQ + RP > QR,QP + RP > QR。
将给定的数值代入可以得到:6 + 7 > 10,6 + 10 > 7,7 + 10 > 6。
这些不等关系成立,因此图形PQR是一个三角形。
3) 图形XYZ,XY = 4 cm,YZ = 8 cm,ZX = 6 cm。
解析:同样利用三角形两边之和大于第三边的性质进行判定,我们可以得到:XY + YZ > ZX,XY + ZX > YZ,YZ + ZX > XY。
将给定的数值代入可以得到:4 + 8 > 6,4 + 6 > 8,8 + 6 > 4。
这些不等关系成立,因此图形XYZ是一个三角形。
1.2 相似与全等判断下列图形是否相似,并给出相似的理由。
1) 图形ABC与图形DEF。
解析:两个三角形相似的条件是对应角相等且对应边成比例。
通过观察可以发现∠A = ∠D,∠B = ∠E,∠C = ∠F。
并且,AC : DF = 2 : 4 = 1 : 2,BC : EF = 3 : 6 = 1 : 2。
因此,图形ABC与图形DEF相似。
2) 图形GHJ与图形KLM。
解析:同样利用相似三角形的条件进行观察,我们可以发现∠G = ∠K,∠H = ∠L,∠J = ∠M,并且GH : KL = 4 : 6 = 2 : 3,HJ : LM = 6 : 9 = 2 : 3。
六年级下册小升初奥数题
【导语】奥数是奥林匹克数学竞赛的简称。
1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第xx届国际数学奥林匹克竞赛。
以下是整理的《六年级下册⼩升初奥数题》相关资料,希望帮助到您。
1.六年级下册⼩升初奥数题 1、计算: 0.8÷3÷9/20×3/2÷0.64×27.9 8/25÷[(53/12-85/24)×4/7+50 87×0.25+3/4×6.87 4.6+(63/5-3.5) 477×9.9+47.7 5.52-7.35+3/8×10 7.2×22/9+5.22 8.2÷41/10×3/8 2、甲、⼄、丙三⼈每分钟分别⾏60⽶、50⽶和40⽶,甲从B地、⼄和丙从A地同时出发相向。
2.六年级下册⼩升初奥数题 1、⼀个圆盘上按顺时针⽅向依次排列着编号为1到7的七盏彩灯,通电后每 个时刻只有三盏亮着,每盏亮6秒后熄灭,同时其顺时针⽅向的下⼀盏灯开始亮,如此反复。
若通电时编号为1,3,5的三盏先亮,则200秒后亮着的三盏彩灯的 编号是: A.1,3,6 B.1,4,6 C.2,4,7 D.2,5,7 2、某公司管理⼈员、技术⼈员和后勤服务⼈员⼀⽉份的平均收⼊分别为6450元、8430元和4350元,收⼊总额分别为5.16万元、33.72万元和5.22万元, 则该公司这三类⼈员⼀⽉份的⼈均收⼊是: A.6410元 B.7000元 C.7350元 D.7500元 3、某⼀楼⼀户住宅楼共17层,电梯费按季度缴纳,分摊规则为:第⼀层的住户不缴纳;第⼆层及以上的住户,每层⽐下⼀层多缴纳10元。
若第⼀季度该住宅楼某单元的电梯费共计1904元,则该单元第7层住户⼀季度应缴纳的电梯 费是: A.72元 B.82元 C.84元 D.94元 4、⼀艘游轮在海上匀速航⾏,航向保持不变。
六年级下册数学奥数试题-逻辑推理 人教版(无答案)
逻辑推理知识导航:提到数学,人们往往把目光盯在数学概念、公式、法则等数学知识和计算能力方面,这样是不全面的。
其中逻辑思维能力就是培养数学能力的一个重要内容。
新课程标准中特别提到,加强学生逻辑思维能力的培养是进行数学教学的主要目的之一。
教材中的例题、练习、活动等形式,直接呈现这方面的内容。
逻辑思维能力的培养一方面通过学习数学基础知识来获得,另一方面也要结合实际。
选择合适的内容进行有序的强化训练。
逻辑推理问题的最大特点是:题目中给出的条件多且关系复杂;有些条件知识一个个判断,而不是具体的数据;还有些条件是数据和判断的结合体。
这就需要我们通过对相关条件、数据进行梳理剖析、推测、判断来获得某些结论。
常用的解题方法有:排除法、假设法、列表法、画图法等。
经典例题1小明的妈妈将银行存折的六位数密码遗忘,只知道这个密码的开头和结尾的数字(如下图所示),并且知道这个密码每相邻的三个数字之和是15,你能破译这个密码吗?举一反三11、小林家的电话号码是一个七位数,他告诉同学们第一位和第三位分别是8和2,且相邻的3个数字的和是15,你知道小林家的电话号码吗?2、有一只密码箱所设的密码是一个七位数,已知这个密码的头尾两数互质且和为8,而任意相邻的两个数字总是左边大右边小,你能破译出这个密码吗?3、某商品的编号是一个六位数,,第一位和第四位数字均为7,第二位比第三位大1,每相邻的四个数字之和是25,这个编号是多少?经典例题2某运动员的参赛号码是一个三位数,现有五个三位数:874、765、123、364、925,其中每一个数与运动员号码恰好有一个相同数字在同一个数位上,这个运动员的参赛号码是多少?举一反三21、现有六个三位数。
其中五个分别是724、839、637、596、208,第六个数比其中三个数小,比另两个数大,它的个位、十位上的数字与另五个数的相应数位上的数字不同,且个位上不是最小的,第六个数是多少?2、某家庭有四个成员,他们的年龄各不相同,总和是129,而其中三个人的年龄是平方数,如果后退15年,这四个人中仍有三个人的年龄是平方数,你知道他们各自的年龄吗?3、有8个球编号是1至8,其中有6个球一样重,另外两个球都轻1克。
六年级下册数学试题-小升初奥数必考题型汇总(六)人教版
小升初奥数必考题型汇总(六)1.甲早上从某地出发匀速前进,一段时间后,乙从同一地点出发以同样的速度同向前进,在上午10点时,乙走了6千米,他们继续前进,在乙走到甲在上午l0时到达的位置时,甲共走了2.8千米,则此时乙走了( )。
A.11.4千米B.14.4千米C.10.8千米D.5.4千米3.科学家对平海岛屿进行调查,他们先捕获30只麻雀进行标记,后放飞,再捕捉50只,其中有标记的有lo只,则这一岛屿上的麻雀大约有( )。
A.150只B.300只C.500只D.1500只4.一批零件,如果第一天甲做,第二天乙做,这样交替轮流做,完成的天数恰好是整数。
如果第一天乙做,第二天甲做,这样交替轮流做,做到上次轮流完成时所用的天数后,还剩40个不能完成,已知甲、乙工作效率的比是7:3。
则甲每天做( )。
A.30个B.40个C.70个D.120个5.水池装有一个排水管和若干个每小时注水量相同的注水管,注水管注水时,排水管同时排水,若用2个注水管注水,8小时可注满水池,若用9个注水管,24小时可注满水,现在用8个注水管注水,那么可用( )注满水池。
A.12小时B.36小时C.48小时D.72小时6.已知3x2=2x+1,则9x4-4x2-4x+1=( )A.0 B.1 C.2 D.47.一批武警战士平均分成若干小组执勤。
如果每4人一组,恰好余1人。
如果每4人一组,恰好也余1人。
如果每6人一组,恰好还是余1人。
这批武警战士至少有( )人。
A.121 B.101 C.81 D.618.一个几何体的正视图,俯视图与侧视图都是腰长为1的等腰直角三角形。
则这个几何体的体积是( )A.1 B.1/2 C.1/3 D.1/69.一项工程计划用20天完成,实际只用了16天就完成了。
则工作效率提高了( )%。
A.20 B.25 C.50 D.6010.某股民以12元的均价买了某公司股票5000股。
该股票下跌12元时,又买入该股票3000股。
六年级下册数学试题-小升初奥数重点题型集合(六)人教版 无答案
小升初奥数重点题型集合(六)1、圆形的周长扩大至原来的2倍,它的面积比原来增大:A、1倍B、2倍C、3倍D、4倍2、某企业的固定资产,甲车间是乙车间的12,乙车间是丙车间的14,那么,丙车间是甲车间的:A、8倍B、18 C、12 D、2倍3、某外语班的30名学生中,有8人学习英语,12人学习日语,3人既学英语也学日语,问有多少人既不学英语又没学日语?A、12B、13C、14D、154、甲乙丙三人买书共花费96元钱,已知丙比甲多花16元,乙比甲多花8元,则甲乙丙三人花的钱比是:A、3:5:4B、4:5:6C、2:3:4D、3:4:55、三个圆的半径都是5cm,三个圆两两相交于圆心。
求阴影部分的面积之和。
A、29.25cm2B、33.25cm2C、35.35cm2D、39.25cm26.我们知道,一个正方形可以剪成4个小正方形,那么一个正方形能否剪成11个正方形,能否剪成13个正方形(大小不一定相同)?A.前者能,后者不能 B.前者不能,后者能C.两个都能D.两个都不能7.加工一批零件,甲独做需3天完成,乙独做需4天完成,两人同时加工,完成任务时,甲比乙多做24个,这批零件有多少个?A.168 B.154 C.196 D.336 8.某商品按20%的利润定价,然后打八折出售,结果亏损200元。
这种商品的成本多少元? A.4 800 B.5 000 C.10 000 D.8 000 9.两列火车同向而行,甲车每小时行54千米,乙车每小时行72千米。
甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了70秒,乙车的车长是( )米。
A.700 B.400 C.300 D.350 10.六年级一班有学生50人,第一次考试有38人及格,第二次考试有24人及格,其中两次考试都及格的有20人,两次考试都不及格的有多少人?A.6 B.12 C.8 D.10 11.一张考试卷共有10道题,后面的每一道题的分值都比前面一道题多2分。
六年级下册数学试题-小升初奥数母题探秘专项复习训练试题(六)人教版
小升初奥数母题探秘专项复习训练试题(六)1、若干学校联合进行团体操表演,参演学生组成一个方阵,已知方阵由外到内第二层有104人,则该方阵共有学生()人。
A.625B.841C.1024D.13692 、哥哥和弟弟在周长为800米的环形跑道上赛跑,已知哥哥每分钟跑60米,弟弟每分钟跑40米。
现在哥哥和弟弟沿着跑道同时、同地、同向起跑,且二人每跑200米都要停下来休息2分钟,那么()分钟后哥哥第一次追上弟弟。
A.78B.80C.82D.843 、77个连续自然数的和是7546,则其中第45个自然数是:A.91B.100C.104D.1054 、一个盒子中有几百颗糖,如果平均分给7个人,则多3颗,平均分给8个人则多6颗,如果再加3颗,可以平均分给5个人,则该盒子中糖的数目可能有:A.3种B.4种C.5种D.6种5 、甲乙两个乡村阅览室,甲阅览室科技类书籍数量的相当于乙阅览室该类书籍的,甲阅览室文化类书籍数量的相当于乙阅览室该类书籍的,甲阅览室科技类和文化类书籍的总量比乙阅览室两类书籍的总量多1000本,甲阅览室科技类书籍和文化类书籍的比例为20∶1,问甲阅览室有多少本科技类书籍?A.15000B.16000C.18000D.200006 、单独完成某项工作,甲需要16小时,乙需要12小时。
如果按照甲、乙、甲、乙的顺序轮流工作,每次1小时,那么完成这项工作需要多长时间?A.13小时40分钟B.13小时45分钟C.13小时50分钟D.14小时7 、甲乙两人相约见面,并约定第一人到达后,等15分钟不见第二人来就可以离去。
假设他们都在10点至10点半的任一时间来到见面地点,则两人能见面的概率有多大?A.37.5%B.50%C.62.5%D.75%8 、有一排长椅总共有65个座位,其中已经有些座位上有人就坐。
现在又有一人准备找一个位置就坐,但是此人发现,无论怎么选择座位,都会与已经就坐的人相邻。
问原来至少已经有多少人就坐?A.13B.17C.22D.339 、将边长为1的正方体一刀切割为2个多面体,其表面积之和最大为:A.B.C.D.10 、254个志愿者来自不同的单位,任意两个单位的志愿者人数之和不少于20人,且任意两个单位志愿者的人数不同,问这些志愿者所属的单位数最多有几个?A.17B.15C.14D.1211 、A、B、C、D、E是5个不同的整数,两两相加的和共有8个不同的数值,分别是17、25、28、31、34、39、42、45,则这5个数中能被6整除的有几个?A.0B.1C.2D.312 、一列队伍沿直线匀速前进,某时刻一传令兵从队尾出发,匀速向队首前进传送命令,他到达队首后马上以原速返回,当他返回队尾时,队伍行进的距离正好与整列队伍的长度相等。
六年级下册数学试题 - 小升初奥数常考题型100题(无答案) 人教新课标(2014秋)
小升初奥数常考题型100题列方程解应用题:1、李老师给幼儿园小朋友分草莓,如果每个小朋友分5个草莓还剩下14个;如果每个小朋友分7个草莓则差4个,求共有多少草莓?共有多少个小朋友?2、小明同学看见山上有一群羊,他自言自语到:“我如果有这些羊,再加上这些羊,然后加上这些羊的一半,又加上这些羊一半的一半,最后再加上我家里的那只,一共有100只羊”.山上的羊共有______只.3、张老师周六晚带六年级同学去春游,男孩戴小黄帽,女孩戴小红帽。
在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍。
问:六年级男孩、女孩各多少人?【答案】男14人,女8人(提示:每个人看不到自己的帽子)4、笑笑要将一批《530冲刺班》课本打包后送往邮局(要求每包所装册数相同),这批课本的35够打5包多44本。
如果这批课本刚好可以打9包,那么这批课本共多少本?、5、寒暑表上通常有两个刻度,摄氏度(记为℃)和华氏度(记为F。
),它们之间的换算关系是:摄氏度9325⨯+=华氏度,那么在摄氏多少度时,华氏度的值恰好比摄氏度的值大60.6、淘气同学家有一种神奇的植物,它生长得非常迅速,每天都会生长到昨天质量的2倍还多3公斤.培养了3天后,植物的质量达到45公斤,求这株植物原来有多少公斤?7、某旅游点有儿童票、成人票两种规格的门票卖,儿童票的价格为30元,成人票的价格为40元,如果是团体还可以买平均32元一位的团体票,一个由8个家庭组成的旅游团(每个家庭由两位大人,或两个大人、一个小孩组成)来景点旅游,如果他们买团体票那么可以比他们各自买票少花120元,问这个旅游团一共有多少人?8、唐代大诗人李白虽然诗写得好,但是很爱喝酒,杜甫说他是“李白斗酒诗百篇”。
传说李白喝酒曾有一道数学趣题:李白好喝酒,提壶街上走。
遇店加一倍,逢花喝一斗。
三遇店和花,喝光壶中酒。
请问此壶中,原有多少酒。
9、小明、小张、小李迪三位同学同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克.如果一个人带150千克的行李,除免费部分外,应另付行李费8元.求每人可免费携带的行李重量.10、把金放在水里称,其重量减轻119;把银放在水里称,其重量减轻110.现有一块金银合金重770克,放在水里称共减轻了50克,问这块合金含金、银各多少克?11、赵老师购买了一套教师住宅,原计划采取分期付款方式.一种付款方式是开始第一年先付7万元,以后每年付款1万元;另一种付款方式是前一半时间每年付款2万元,后一半时间,每年付款1万5千元.两种付款方式的付款总数和付款时间都相同.假如一次性付款,可以少付房款1万6千元.现在赵老师决定采用一次性付款方式.问:赵老师要付房款多少万元?12、从前有一位王子,有一天,他把几位妹妹召集起来,出了一道数学题考她们.题目是:我有金、银两个首饰箱,箱内分别装有若干件首饰,如果把金箱中25%的首饰送给第一个算对这个题目的人,把银箱中20%的首饰送给第二个算对这个题目的人,然后我再从金箱中拿出5件送给第三个算对这个题目的,再从银箱中拿出4件送给第四个算对这个题目的人.最后我的金箱中剩下的首饰比分掉的多10件,银箱中剩下的首饰与分掉的比是2:1.王子的金箱中原来有首饰________件,银箱中原来有首饰________件.13、共有多少人参加测验?14、任和同学用边长相同的正六边形白色皮块、正五边形黑色皮块总计32块,缝制成一个足球,如图所示,每个黑色皮块邻接的都是白色皮块;每个白色皮块相间地与3个黑色皮块及3个白色皮块相邻接.问:这个足球上共有多少块白色皮块?分比百应用题:15、某商品价格为1200元,降价15%后,又降价20%,由于销售额猛增,商店决定再提价25%,提价后这种商品的价格为元。
最新整理六年级下册数学试题-小升初数学专项突破之奥数真题演练(六)人教版
小升初数学专项突破之奥数真题演练(六)1 、甲、乙两名编辑校对同一本书,校对速度保持不变。
甲完成20%时乙还有420页没完成,甲完成50%时乙完成了450页。
问乙完成全部工作时,甲:A.早已完成B.刚好完成C.还剩200页D.还剩20%2 、某工厂加工一批定制口罩,计划15天完成,做完第5天时订货方要求追加50%的订货量,且最多延迟5天交货。
问工厂的工作效率至少需要提高:A.B.C.D.3 、某种商品出厂编号的最后三位为阿拉伯数字。
现有出厂编号最后三位为001~100的产品100件,从中任意抽取1件,出厂编号后三位数字之和为奇数的概率比其为偶数的概率:A.高2%B.低2%C.高0%D.低4%4 、某工厂生产线有若干台相同的机器,平时固定有5台机器同时生产,每小时总计可以生产300件产品。
由于操作机器的人手有限,故每多上线一台机器生产,每台机器平均每小时少生产2件产品。
问至少多开多少台机器,才能使生产效率提升50%以上?A.3B.4C.5D.65、单位3个科室分别有7名、9名和6名职工。
现抽调2名来自不同科室的职工参加调研活动,问有多少种不同的挑选方式?A.146B.159C.179D.2866 、姐弟俩相差3岁,2000年姐弟两人年龄之和是妈妈年龄的四分之一,2006年姐弟两人年龄之和是妈妈年龄的二分之一。
问哪一年姐弟两人年龄之和等于妈妈的年龄?A.2012B.2018C.2024D.20277、一项测验共有29道单项选择题,答对得5分,答错减3分,不答不得分也不减分,答对15题及以上另加10分,否则另减5分。
小郑答题共得60分,问他最少有几道题未答?A.1B.2C.3D.48、某企业20多名员工参加拓展训练,共准备了16箱饮用水。
每人饮用6瓶后,将剩下的1箱半分配给所有女员工,正好每人分1瓶。
问参加拓展训练的男员工有多少人?A.10B.11C.12D.139 、某储蓄所两名工作人员一天内共办理了122件业务,其中小王经手的有84%是现金业务,小李经手的有25%为非现金业务,小李当天办理了多少件现金业务?A.36B.42C.48D.5410、有甲、乙两种不同浓度的盐水,取3克甲盐水和1克乙盐水混合可以得到浓度为x%的盐水;用1克甲盐水和3克乙盐水混合可以得到丙盐水。
人教版六年级下学期数学小升初考试试题含答案解析
人教版小升初考试数学试题一.填空题(共14小题)1.一个数四舍五入到万位是6万,这个数最大是.2.今冬峨眉山有一天的气温是﹣9℃~2℃,峨眉山这一天的温差是℃.3.3÷=0.75==:24=%=折.4.一个比的前项是4,如果前项增加8,要使比值不变,后项就该或者.5.两个因数的积是2.42,其中一个因数是22,另一个因数是.6.一个三角形三条边的长度都是整厘米数,有两条边的长度分别为4厘米和6厘米,它的第三条边最短为厘米,最长为厘米.7.一个长方体,长4分米、宽3分米、高2分米.这个长方体占地面积最大是平方分米,占地面积最小是平方分米;它的体积是立方分米,表面积是平方分米.8.等底等高的圆柱体积比圆锥的体积多48立方厘米,这个圆柱的体积为,这个圆锥的体积为.9.如图所示,4个棱长都是15厘米的正方体堆放在墙角处,露在外面的面积是.10.以新南镇为参照点,确定各地点的位置,填写下表.地点方向图上距离(cm)实际距离(km)坪山村 2.8小电站 1.7后山村 1.811.淘气的爸爸把500元存入银行,定期三年,年利率是3.33%到期后淘气的爸爸应得的利息是元.12.在明年(即2014年)出生的1000个孩子中,请你预测:(1)同月出生的孩子至少有个.(2)至少有个孩子将来不单独过生日.13.下面是小明某天从家出发到山区的行车情况统计图.小明某天外出行车情况统计图(1)小明共行驶了千米.(2)小明出发后,经过小时到达了目的地,途中休息了小时.(3)不算休息,小明平均每小时行驶千米.14.如图,有一个正六边形点阵,它的中心是一个点,算作第一层,第二层每边2个点,第三层每边3个点,…这个六边形点阵第8层上面共有个点,第n层上面共有个点.二.选择题(共5小题)15.用两根同样长的铁丝围成一个正方形和一个圆,它们的面积()A.正方形大B.圆大C.一样大D.无法比较16.小红的妈妈今年x岁,小红今年(x﹣25)岁,再过10年,她们相差()岁.A.10B.x C.25D.x﹣2517.一个数的是21,这个数的是多少?列式为()A.21÷×B.21+×C.21++18.如图,图中能围成正方体的是()图形.A.B.C.19.王叔叔的小汽车行驶km用了L汽油.平均每千米需要汽油多少升?() A.÷B.÷C.×三.判断题(共5小题)20.两个数的最大公因数是1,那么这两个数一定都是质数..(判断对错)21.一个数乘以7的积是210,这个数乘以14的积等于420.(判断对错)22.团团近几天状态好,练习跳绳的成绩已经连续5天是班级第一,明天跳绳比赛她一定又是第一.(判断对错)23.图中,共有3个角,其中有1个钝角.(判断对错)24.分子一定,分母和分数值成反比例..(判断对错)四.计算题(共3小题)25.用竖式计算6.5×2.14=4.944×0.48═26.能简算的要简算.÷××4.4+1.2÷2.5×(+)÷(﹣)×27.解方程.x﹣7.4=8+x=14x+25x=1562x﹣0.6x=4.2.五.计算题(共2小题)28.如图,大圆的半径是4dm,小圆的半径是2dm,图中阴影部分的面积是多少dm2?(π取3.14)29.在如图每格1平方厘米的方格上画一个长方形,使它的面积是12平方厘米.六.应用题(共5小题)30.中心粮库要往外地调运一批粮食,第一次运走了这批粮食的,第二次运走了余下粮食的,第三次又运走了余下粮食的,还剩下24吨.这批粮食一共有多少吨?31.750名学生,40名老师,学生票30元/张,成人票60元/张,团体45元/张(团60人及以上)方案①750名学生买学生票,老师买成人票;方案②700名学生买学生票,剩下90人买团体票.(1)算出哪种方案更划算;(2)自行设计最优方案.32.在长30厘米,宽20厘米,深14厘米的容器中,倒入3升水,水离这个容器上边的距离是多少?(列方程解答)33.比4.7的1.5倍多3.05的数是多少?34.快乐阅读,智慧理解.例:将一个长60厘米、宽45厘米、高5厘米的长方体铁块锻造成棱长为15厘米的正方体,可以做几个?同学们,这两位同学的计算方法,哪一种更简单呢?你学会了吗?在解决下面问题时赶紧用上吧!一个装有水的圆柱形容器的底面半径是10cm,现将一个底面半径为5cm,高为9cm的圆锥,完成浸没在水中后,水面比原来高了多少厘米?参考答案一.填空题(共14小题)1.【分析】一个数四舍五入后是6万,万位上可能是5,也可能是6.如果万位上是5,则千位上是5或6、7、8、9,其中5最小,其他各位上都是0时,这个数最小;如果万位上是6,则千位上是0或1、2、3、4,其中4最大,其他各位上都是9时,这个数最大.【解答】解:万位上是6,千位上是4,其他各位上都是9时,这个数最大,即64999;故答案为:64999.【点评】本题主要考查整数求近似数.注意省略“万”后面的尾数求它的近似数,是由千位上的数进行四舍五入得到的,要想求原来最大是几,“舍”去尾数时大,千位是4,其他各位都是9最大,要想求原来的数最小是几,“入”上时小,千位上是5,其他数位上是0时最小.2.【分析】这天的温差就是最高气温与最低气温的差,列式计算.【解答】解:依题意,这一天温差为:2﹣(﹣9)=2+9=11(℃).答:峨眉山这一天的温差是11℃.故答案为:11.【点评】本题主要考查温差的概念和有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.3.【分析】把0.75化成分数并化简是,根据分数的基本性质分子、分母都乘4就是;根据分数与除法的关系=3÷4;根据比与分数的关系=3:4,再根据比的基本性质比的前、后项都乘6就是18:24;把0.75的小数点向右移动两位添上百分号就是75%;根据折扣的意义75%就是七五折.【解答】解:3÷4=0.75==18:24=75%=七五折.故答案为:4,16,18,75,七五.【点评】解答此题的关键是0.75,根据小数、分数、百分数、除法、比、折扣之间的关系及分数的基本性质、比的基本性质即可解答.4.【分析】根据一个比的前项是4,若前项增加8,可知比的前项由4变成12,相当于前项乘3,根据比的性质,要使比值不变,后项也应该乘3,也即后项应扩大3倍;据此进行填空.【解答】解:一个比的前项是4,若前项增加8,可知比的前项由4变成12,相当于前项乘3,根据比的性质,要使比值不变,后项也应该乘3或增加后项的2倍;故答案为:乘3,增加后项的2倍.【点评】此题考查比的性质的运用,比的前项和后项同时乘或除以相同的数(0除外),比值才不变.5.【分析】由因数×因数=积可得:一个因数=积÷另一个因数,据此代入数据即可求解.【解答】解:2.42÷22=0.11;答:另一个因数是0.11.故答案为:0.11.【点评】此题主要考查因数、因数和积之间的关系.6.【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;进行解答即可.【解答】解:6﹣4<第三边<4+6所以2<第三边<10即第三边在2厘米~10厘米之间但不包括2厘米和10厘米,即第三条边的长最短是:2+1=3(厘米),最长是:10﹣1=9(厘米);答:第三条边的长最短是3厘米,最长是9厘米.故答案为:3,9.【点评】解答此题的关键是根据三角形的特性进行分析、解答即可.7.【分析】根据占地面积=长×宽,可得这个长方体占地面积最大是4×3平方分米,占地面积最小是3×2平方分米,依此进行解答;根据“长方体的体积=长×宽×高”进行解答即可;根据“长方体的表面积=(长×宽+长×高+宽×高)×2”进行解答.【解答】解:4×3=12(平方分米)3×2=6(平方分米)4×3×2=24(立方分米)(4×3+4×2+3×2)×2=(12+8+6)×2=26×2=52(平方分米)故答案为:12,6;24;52.【点评】此题根据长方体的占地面积的计算方法、长方体表面积的计算方法和体积的计算方法进行解答即可.8.【分析】等底等高的圆柱的体积是圆锥体积的3倍,因此它们的体积差除以2就是圆锥的体积,用圆锥的体积乘3就是圆柱的体积.【解答】解:48÷2=24(立方厘米)24×3=72(立方厘米)答:圆柱的体积是72立方厘米,圆锥的体积是24立方厘米.故答案为:72立方厘米,24立方厘米.【点评】本题考查的目的是使学生理解掌握:等底等高的圆柱与圆锥之间的体积关系,即等底等高的圆柱是圆锥体积的3倍.据此关系可以解决有关的实际问题.9.【分析】根据图形可知,前面外露4个正方形面,上面外露3个正方形面,右面外露2个正方形面,根据正方形的面积公式计算出每一个面的面积乘总的面数即可.【解答】解:15×15×(4+3+2)=225×9=2025(平方厘米)答:露在外面的面积是2025平方厘米.故答案为:2025平方厘米.【点评】从图中看出三个方向得出露出外面的总面数是解决问题的关键.10.【分析】根据图上距离和比例尺计算各地与新南镇的实际距离,根据图示确定方向的方法,结合图上信息确定各点位置即可.【解答】解:比例尺1:100000即图上1厘米表示实际1千米所以图上2.8厘米表示实际2.8千米图上1.7厘米表示实际1.7千米图上1.8厘米表示实际1.8千米如表所示:地点方向图上距离(cm)实际距离(km)坪山村北偏西45° 2.8 2.8小电站南偏东60° 1.7 1.7后山村北 1.8 1.8故答案为:北偏西45°;2.8;南偏东60°;1.7;北;1.8.【点评】此题主要考查依据方向(角度)和距离判定物体位置的方法以及比例尺的意义.11.【分析】在本题中,本金是500元,时间是3年,年利率是3.33%,把这些数据代入关系式“利息=本金×年利率×时间”,问题得以解决.【解答】解:500×3.33%×3=500×0.0333×3=16.65×3=49.95(元)答:到期可淘气的爸爸应得的利息是49.95元.故答案为:49.95.【点评】这种类型属于利息问题,有固定的计算方法,利息=本金×利率×时间,找清数据与问题,代入公式计算即可.12.【分析】(1)因为2014年是平年,有12个月,把这12个月看做12个抽屉,1000个小朋友看做1000个元素,这里要考虑最差情况:尽量使1000个小朋友平均分配在12个抽屉里,根据“至少数=商+1”解答即可;(2)假如前365人都不在同一天出生,那么,第366人必然跟他们之中的某个人同一天出生,那么,就只有365﹣1=364人单独过生日;所以1000﹣(365﹣1)=636,即至少有636个孩子将来不单独过生日.【解答】解:(1)1000÷12=83(人)…4(人)83+1=84(人)答:同月出生的孩子至少有84个.(2)1000﹣(365﹣1)=1000﹣364=636(人)答:至少有636个孩子将来不单独过生日.故答案为:84,636.【点评】此题属于典型的抽屉原理习题,解答此类题的关键是找出把谁看作“抽屉个数”,把谁看作“物体个数”,然后根据抽屉原理解答即可.13.【分析】(1)根据统计图可以看出,小明一共行驶了360千米.(2)从图中可以看作,小明经过6小时到达了目的地.图中折线平衡的位置表示小明在休息,所以,一共休息了1小时.(3)利用公式:速度=路程÷时间,求小明平均每小时行驶的路程为:360÷(6﹣1)=75(千米/小时).【解答】解:1)小明共行驶了360千米.(2)小明出发后,经过6小时到达了目的地,途中休息了1小时.(3)360÷(6﹣1)=360÷5=75(千米/小时)答:不算休息,小明平均每小时行驶75千米.故答案为:360;6;1;75.【点评】本题主要考查单式折线统计图,关键根据统计图找出解决问题的条件,解决问题.14.【分析】根据图示:一层点数:1个;二层点数:1+6×1=7(个);三层点数:1+6+6×2=19(个);……;八层点数:1+6×(1+2+3+……+7)=169(个)……n层点数:1+6×(1+2+3+……+n﹣1)=(3n2﹣3n+1)个.据此解答.【解答】解:一层点数:1个二层点数:1+6×1=7(个)三层点数:1+6+6×2=19(个)……八层点数:1+6×(1+2+3+ (7)=1+6×=1+168=169(个)……n层点数:1+6×(1+2+3+……+n﹣1)=1+6×=(3n2﹣3n+1)个答:这个六边形点阵第8层上面共有169个点,第n层上面共有(3n2﹣3n+1)个点.故答案为:169;(3n2﹣3n+1).【点评】本题主要考查数与形结合的规律,关键根据所给图形发现规律,并运用规律做题.二.选择题(共5小题)15.【分析】周长相同,正方形的面积小于圆的面积,依此即可作出选择.【解答】解:同样长的两根铁丝分别围成一个正方形和一个圆,即正方形和圆的周长相同,正方形的面积小于圆的面积.故选:B.【点评】考查了周长相同的图形在所有图形中,圆的面积最大,是一个经典题型.16.【分析】因为不管经过多长时间,小红与妈妈的年龄差是不变的,也就是说今年她们相差25岁,那么过10年后她们仍相差25岁.据此即可解答.【解答】解:x﹣(x﹣25)=25(岁)答:再过10年,她们相差25岁.故选:C.【点评】解答此题应抓住年龄差不变来求解,因为不管经过多少年,二人增长的年龄是一样的,故差不变.17.【分析】由“一个数的是21”,则这个数为21÷,要求这个数的是多少,用乘法计算.【解答】解:21÷×=28×=24;答:一个数的是21,这个数的是24.故选:A.【点评】此题考查了分数应用题的两种基本类型:(1)“已知一个数的几分之几是多少,求这个数”的应用题,用除法计算;(2)“已知一个数,求它的几分之几是多少”的应用题,用乘法计算.18.【分析】根据正方体展开图的11种特征,选项A不属于正方体展开图,不能围成正方体;选项B属于正方体展开图的“1﹣4﹣1”型,选项C属于正方体展开图的“3﹣3”型,都能围成正方体.【解答】解:根据正方体展开图的特征,选项A不能围成正方体;选项B和选项C都能围成正方体.故选:BC.【点评】正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.19.【分析】根据除法的意义,用所用汽油升数除以所行里程,即得平均每千米用多少升汽油.【解答】解:÷=(升)答:平均每千米需要汽油升.故选:B.【点评】类型的题目关键看谁是单一的量,谁是单一量谁就是除数.三.判断题(共5小题)20.【分析】根据互质数的意义,公因数只有1的两个数叫做互质数.成为互质数的两个数不是没有公因数,而是公因数只有1.【解答】解:公因数只有1的两个数叫做互质数.成为互质数的两个数不一定都是质数,如4和5,4是合数.故答案为:×.【点评】此题考查的目的是使学生理解掌握互质数的概念及意义.21.【分析】先用210除以7求出这个数,再用这个数乘14,看积是否等于420,由此求解.【解答】解:210÷7×14=30×14=420这个数乘14的积等于420,原题说法正确.故答案为:√.【点评】解决本题也可以根据积的变化规律求解:一个因数不变,另一个因数由7变成14,相当于乘2,那么积也乘2,210×2=420,所以原题说法正确.22.【分析】团团练习跳绳的成绩已经连续5天是班级第一,明天跳绳比赛她一定又是第一,属于不确定事件,在一定条件下可能发生,也可能不发生的事件,据此判断.【解答】解:团团近几天状态好,练习跳绳的成绩已经连续5天是班级第一,明天跳绳比赛她一定又是第一.属于确定事件中的可能事件,并不表示一定会是第一.原题说法错误.故答案为:×.【点评】此题考查的是事件的确定性和不确定性,应明确事件的确定性和不确定性,并能结合实际进行正确判断.23.【分析】观察图形可知,图中单个角是3个,两个小角组成的角是2个,三个小角组成的角是1个,据此加起来一共有6个角,而原题说共有3个角是错误的,据此即可判断.【解答】解:根据题干分析可得,图中角一共有:3+2+1=6(个),所以原题说法是错误的.故答案为:×.【点评】此题主要考查了图形的计数,要注意分别计数,做到不重不漏.24.【分析】判断分母与分数值是否成正比例,就看这两种量是否是对应的比值一定,如果是比值一定,就成正比例,如果不是比值一定或比值不一定,就不成正比例.【解答】解:根据分数与除法的关系,知道分子相当于被除数,分母相当于除数,分数值相当于商,故被除数=商×除数,得出分数值×分母=分子(一定),所以,分子一定,分母和分数值成反比例;故答案为:正确.【点评】此题属于根据正、反比例的意义,辨识两种相关联的量是否成正比例,就看这两种量是否是对应的比值一定,再做出判断.四.计算题(共3小题)25.【分析】根据小数乘法运算的计算法则计算即可求解.【解答】解:6.5×2.14=13.914.944×0.48═2.37312【点评】考查了小数乘法运算,关键是熟练掌握计算法则正确进行计算.26.【分析】算式①中先把除法转化为乘法,然后按照从左到右进行计算即可;算式②中先把除法转化为乘法,再根据乘法分配律进行简算;算式③中先把小数转化为分数,再根据乘法分配律进行简算;算式④中先计算小括号里面的,再把除法转化为乘法,再从左到右计算即可.【解答】解:①÷×=××=×=②×4.4+1.2÷=×4.4+1.2×=×(4.4+1.2)==3.2③2.5×(+)=×(+)=×+×=+==④÷(﹣)×=×=×===【点评】此题考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算律简算.27.【分析】(1)根据等式的性质,方程两边同时加上7.4求解;(2)根据等式的性质,方程两边同时减去求解;(3)先化简方程,再根据等式的性质,方程两边同时除以39求解;(4)先化简方程,再根据等式的性质,方程两边同时除以1.4求解.【解答】解:(1)x﹣7.4=8x﹣7.4+7.4=8+7.4x=15.4;(2)+x=+x﹣=x=;(3)14x+25x=15639x=15639x÷39=156÷39x=4;(4)2x﹣0.6x=4.21.4x=4.21.4x÷1.4=4.2÷1.4x=3.【点评】此题考查了根据等式的性质解方程,即等式两边同加上、同减去、同乘上或同除以一个不为0的数,等式仍相等.同时注意“=”上下要对齐.五.计算题(共2小题)28.【分析】大圆的半径是4dm,小圆的半径是2dm,然后根据圆环的面积公式S=π(R2﹣r2);列式计算即可求解.【解答】解:3.14×(42﹣22)=3.14×12=37.68(dm2)答:阴影部分的面积是37.68dm2.【点评】本题考查了圆环的面积公式S=π(R2﹣r2)的灵活运用.29.【分析】面积是12平方厘米的长方形的长与宽的积是12平方厘米,所以长方形的长与宽可能是:长12厘米,宽1厘米(或者长6厘米宽2厘米、或长4厘米宽3厘米),由此画出这个些图形即可.【解答】解:根据分析作图如下:(答案不唯一,合理即可.)【点评】此题主要考查的是长方形周长公、面积公式的灵活应用.六.应用题(共5小题)30.【分析】这批粮食的总数量看作单位“1”,第一次运走了这批粮食的后还剩下总吨数的(1﹣),第二次运走了余下粮食的后还剩下总吨数的(1﹣)×(1﹣),第三次又运走了余下粮食的后还剩下总吨数的(1﹣)×(1﹣)×(1﹣),这时还剩下24吨,即总吨数的(1﹣)×(1﹣)×(1﹣)是24吨,根据分数除法的意义,用24除以(1﹣)×(1﹣)×(1﹣)就等于总吨数.【解答】解:24÷[(1﹣)×(1﹣)×(1﹣)]=24÷[]=24×5=120(吨)答:这批粮食一共有120吨.【点评】本题比较难,是复杂的分数除法问题,关键是找出单位“1”和24对应的分率.31.【分析】(1)根据两种方案的购票方式,分别计算两种方案所需钱数,然后进行比较,得出比较便宜的方案.(2)根据三种票价可知,学生票最便宜,其次是团体票,最贵的是成人票,所以成人尽量买团体票,学生尽量买学生票.让40名老师和20名学生组成团体,买团体票,剩余学生买学生票,所需钱数为:(40+20)×45+(750﹣20)×30=24600(元).然后和上面的方案所需钱数进行比较,找到最佳方案.【解答】解:(1)方案一:30×750+60×40=22500+2400=24900(元)方案二:30×700+45×90=21000+4050=25050(元)24900<25050答:方案一比较划算.(2)让40名老师和20名学生组成团体,买团体票,剩余学生买学生票,所需钱数为:(40+20)×45+(750﹣20)×30=2700+21900=24600(元)24600<24900<25050答:最佳方案为:让40名老师和20名学生组成团体,买团体票,剩余学生买学生票,所需钱数最少,为24600元.【点评】本题主要考查最佳方案问题,关键根据三种票件及人数,寻找最佳方案.32.【分析】根据题意设倒入水后,水面高x厘米,则距离容器上边(14﹣x)厘米,3升=3000立方厘米,根据水的体积不变,利用长方体体积公式列方程为:30×20x=3000,解方程即可求解.【解答】解:设把水倒入容器高x厘米,3升=3000立方厘米30×20x=3000600x=3000x=514﹣5=9(厘米)答:水离这个容器上边的距离是9厘米.【点评】本题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.33.【分析】要求比4.7的1.5倍多3.05的数是多少,应先求出4.7的1.5倍是多少,即4.7×1.5,然后加上3.05即可.【解答】解:4.7×1.5+3.05,=7.05+3.05,=10.1;答:比4.7的1.5倍多3.05的数是10.1.【点评】解答此题应明确要求的问题是什么,要求什么,必须先求出什么.34.【分析】先根据:圆锥的体积V=πr2h,求出圆锥的体积,也就是上升的水的体积,然后用上升的水的体积除以圆柱的底面积,即是上升的水的高度.【解答】解:圆锥的体积是:×3.14×52×9=3.14×75=235.5(立方厘米)圆柱形容器的底面积是:3.14×102=3.14×100=314(平方厘米)水面上升了:235.5÷314=0.75(厘米)简便算法:=0.75(厘米)答:水面升高了0.75厘米.【点评】此题的解答思路是:先求出圆锥的体积,再求圆柱形容器的底面积,用体积除以圆柱的底面积,即为所求.。
人教版六年级下学期数学小升初试题含答案解析
人教版小升初考试数学试题一.选择题(共5小题)1.下面几组相关联的量中,成正比例的是()A.看一本书,每天看的页数和看的天数B.圆锥的体积一定它的底面积和高C.修一条路已经修的米数和未修的米数D.同一时间、地点每棵树的高度和它影子的长度2.商场搞促销活动,原价80元的商品,现在八折出售,可以便宜()元.A.100B.64C.163.把30g糖溶入90g水中,糖占糖水的()A.33.3%B.20%C.25%4.把10克糖放入100克水中制成糖水,糖占糖水的()A.B.C.5.一个三角形和一个平行四边形面积相等,底也相等,三角形的高是平行四边形高的() A.2倍B.一半C.无法确定二.判断题(共5小题)6.教室门的打开和关上,门的运动是既平移又旋转.(判断对错)7.自然数可分为质数和合数两种..(判断对错)8.5℃比﹣2℃的温度高3℃.(判断对错)9.淘气数出如图中有16条线段.(判断对错)10.长方体中,相对的棱长的长度相等且互相相平行.(判断对错)三.填空题(共10小题)11.在第42次《中国互联网络发展状况统计报告》中显示“我国手机网民达到788200000.”横线上的数读作,其中“2”在单位,表示,改写成以“万”为单位的数是,省略“亿”后面的尾数约是.“今年新增网民三千五百零九万人”,横线上的数写作.12.如图共有条对称轴.13.一块长30米、宽20米的长方形菜地.要在菜地的四周围一圈围栏,需要米的围栏,这块菜地的面积是平方米.14.如图,图和图可以拼成一个平行四边形,如果每个小方格的面积是1cm2,这个平行四边形的面积是cm2.15.当a=3,b=2时,式子3a﹣2b的值是,式子a2+b2的值是.16.把改写成数值比例尺是.17.一个立体图形,从正面看到的形状是,从左面看到的形状是.搭这样的立体图形,最少需要个小正方体,最多需要个小正方体.18.王叔叔去年买了一支股票,该股票去年跌了20%,今年内上涨%才能保持原值.19.一个圆锥体的高是3分米,底面半径是3分米,底面积是平方分米,体积是立方厘米,与它等底等高的圆柱体积是立方厘米.20.如图,用同样规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空:当黑色瓷砖为20块时,白色瓷砖为块;当白色瓷砖为n2(n为正整数)块时,黑色瓷砖为块.四.计算题(共2小题)21.用你喜欢的方法计算.(1)(2)()×(3)22.解方程.(1)x﹣1.3=1.3(2)8.5﹣5x=8(3)x+x=26(4)=8:4.五.解答题(共1小题)23.计算下面图形的周长和面积.六.应用题(共5小题)24.列式计算(1)一个数减去120后是330,这个数是多少?(2)350减去一个数,差是170,这个数是多少?25.幼儿园购买了3个小熊玩具,一共花了27元,照这样计算,购买7个这样的小熊玩具需要多少钱?26.学校买来足球和排球各6个,买足球用去264元,买排球用去180元.每个足球比每个排球贵多少元?27.一条72千米的公路,如果甲工程队单独修需要20天,乙工程队单独修需要30天,现在甲乙两工程队合修需要多少天?28.AB两地相距600米,甲乙两人同时分别从A、B两地向同一个方向行走,甲前乙后.甲每分行40米,6分钟后乙追上甲,求乙的速度.参考答案一.选择题(共5小题)1.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:A、因为每天看的页数×所看的天数=一本书的总页数(一定),是乘积一定,所以看一本书,每天看的页数和所看的天数成反比例;B、圆锥的底面积×高=体积×3(一定),是乘积一定,所以圆锥的底面积和高成反比例.C、修了的米数+未修的米数=一条路的总米数(一定),是和一定,所以修了的米数和未修的米数不成比例.D、因为:影子的长度÷物体的高度=每单位长度的物体映出的影子的长度(一定),因此,在同一时间和地点,物体的高度与影子的长度成正比例;故选:D.【点评】此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.2.【分析】把原价看作单位“1”,现在八折出售,也就是现价是原价的80%,降低的价格是原价的(1﹣80%),根据一个数乘百分数的意义,用乘法解答.【解答】解:80×(1﹣80%=80×0.2=16(元))答:可以便宜16元.故选:C.【点评】此题考查的目的是理解掌握“折”数与百分数之间的联系及应用,关键是确定单位“1”.3.【分析】先把糖和水的质量相加,求出糖水的总质量,再用糖的质量除以糖水的总质量即可求解.【解答】解:30÷(30+90)=30÷120=25%答:糖占糖水的25%.故选:C.【点评】本题是求一个数是另一个数的百分之几,关键是看把谁当成了单位“1”,单位“1”的量为除4.【分析】要求糖占糖水的几分之几,用糖的质量除以糖水的质量即可,所以先用糖的质量加水的质量求出糖水的质量,再用糖的质量除以糖水的质量即可.【解答】解:10÷(10+100)=10÷110=答:糖占糖水的.故选:C.【点评】此题解答的关键是理解“糖水”的含义:糖水=糖+水.5.【分析】根据三角形和平行四边形的面积公式可得:三角形的高=面积×2÷底;平行四边形的高=面积÷底,由此即可进行比较,解答问题.【解答】解:三角形的高=面积×2÷底,平行四边形的高=面积÷底,当三角形和平行四边形的面积和底分别相等时,三角形的高是平行四边形的高的2倍.故选:A.【点评】考查了平行四边形的面积和三角形的面积公式,解题的关键是知道底相等、面积也相等的三角形和平行四边形中三角形的高是平行四边形的高的2倍.二.判断题(共5小题)6.【分析】门的开、关是门扇绕轴运动,根据旋转的意义,属于旋转现象.【解答】解:教室门的打开和关上,门的运动是旋转,故原题说法错误;故答案为:×.【点评】根据旋转的意义,在平面内,将一个图形饶一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.如钟摆的摆动,开、关门窗等.7.【分析】1是自然数,但1既不是质数,也不是合数.【解答】解:自然数中的1既不是质数,也不是合数,所以自然数不能仅分为质数和合数两种;故答案为:×.【点评】本题找出反例自然数“1”,它既不是质数,也不是合数.8.【分析】这是一道有关温度的运算题目,用零下5℃减去零下2℃;据此解答解即可.【解答】解:5﹣(﹣2)=7(℃)答:5℃比﹣2℃的温度高7℃.;所以原题说法错误.故答案为:×.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.9.【分析】先数出在线段AB上的线段的条数是5+4+3+2+1=15(条),同理,在线段CD上的线段条数也是15条,再加上竖着的6条小线段,据此加起来就是这个图形中线段的总条数,据此即可判断.【解答】解:根据题干分析可得:(5+4+3+2+1)×2+6=15×2+6=30+6=36(条)所以图中一共有36条线段,淘气的说法是错误的.故答案为:×.【点评】此题主要考查了线段的计数方法:在同一条直线上的线段的计数方法是:先数出单个的小线段的条数是n条,则线段的总条数就是1+2+3+…+n条.10.【分析】根据长方体的特征,长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此判断.【解答】解:长方体中,相对的棱长的长度相等且互相平行.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的特征及应用.三.填空题(共10小题)11.【分析】整数的读法:从高位到低位,一级一级地读,每一级末尾的0都不读出来,其余数位连续几个0都只读一个零,据此读出改写成以万为单位的数,就是从右边起数到万位,再把个级的4个0去掉,加上单位“万”即可;据此改写;省略亿后面的尾数,就是求它的近似数,要把亿位的下一位千万位上是几进行四舍五入,同时带上“亿”字;整数的写法:从高位到低位,一级一级地写,哪一级某个数位上一个单位也没有,就在那个数位上写0;据此解答.【解答】解:7 8820 0000 读作:七亿八千八百二十万其中“2”在十万位,表示2个十万7 8820 0000=78820万7 8820 0000≈8亿三千五百零九万写作:3509 0000,故答案为:七亿八千八百二十万,十万,2个十万,78820万,8亿,3509 0000.【点评】本题主要考查整数的读写法、改写和求近似数,注意改写和求近似数时要带计数单位.12.【分析】根据轴对称图形的定义:一个图形沿一条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,据此即可解答.【解答】解:如图共有4条对称轴.故答案为:4.【点评】此题主要考查如何确定轴对称图形的对称轴条数及位置.13.【分析】根据长方形的周长=(长+宽)×2,用(30+20)×2计算即可得到围栏的长度,再根据长方形的面积=长×宽,用30×20计算即可得到这块菜地的面积.【解答】解:(30+20)×2=50×2=100(米)30×20=600(平方米)答:一块长30米、宽20米的长方形菜地.要在菜地的四周围一圈围栏,需要100米的围栏,这块菜地的面积是600平方米.故答案为:100,600.【点评】本题考查长方形的周长和面积,明确长方形的周长=(长+宽)×2、长方形的面积=长×宽是解答本题的关键.14.【分析】根据各图形的点以及平行四边形的特征可以判断:图①和图③可以拼成一个平行四边形,这个平行四边形的底3厘米、高3厘米,利用平行四边形面积公式计算其面积即可.【解答】解:图①和图③可以拼成一个平行四边形,3×3=9(平方厘米)答:这个平行四边形的面积是9平方厘米.故答案为:①、③;9.【点评】本题考查了学生对拼组图形周长的计算能力.画图可更好的帮助学生理解.15.【分析】把a=3,b=2分别代入含字母的式子3a﹣2b,a2+b2中,计算即可求出式子的数值.【解答】解:3a﹣2b=3×3﹣2×2=9﹣4=5a2+b2=32+22=9+4=13答:式子3a﹣2b的值是5,式子a2+b2的值是13.故答案为:5;13.【点评】此题考查含字母的式子求值的方法:把字母表示的数值代入式子,进而求出式子的数值.16.【分析】依据线段比例尺的意义,即图上距离1厘米表示实际距离40千米,再据“比例尺=图上距离:实际距离”即可将线段比例尺转化成数值比例尺.【解答】解:由题意可知:此线段比例尺表示的是图上距离1厘米代表实际距离40千米,又因40千米=4000000厘米,则1厘米:4000000厘米=1:4000000;故答案为:1:4000000.【点评】此题主要考查线段比例尺和数值比例尺的互化,解答时要注意单位的换算.17.【分析】由两个视图可知:分两层两列:下层至少要3个正方体,最多要6个,上层只能1个,一共至少4个正方体;最多6+1=7个正方体,由此即可解答.【解答】解:最少:3+1=4(个)最多:6+1=7(个)答:最少需要4个小正方体,最多需要7个小正方体.故答案为:4,7.【点评】本题是考查从不同方向观察物体和几何体.是培养学生的观察、分析和空间想象能力.18.【分析】设这种股票的原价是1;先把这种股票的原价看成单位“1”,下跌后的价格是原价的1﹣20%,用乘法求出下跌后的价格;然后求出原价与下跌后的价格差,用价格差除以下跌后的价格就是需要上涨百分之几.【解答】解:设原价是1;1×(1﹣20%)=0.8;(1﹣0.8)÷0.8=0.2÷0.8=25%;答:今年内要上涨25%,才能使该股票才能回到原价位.故答案为:25%.【点评】解答此题的关键是分清两个单位“1”的区别,找清各自以谁为标准,再把数据设出,根据基本的数量关系求解.19.【分析】根据圆的面积公式S=πr2和圆锥的体积公式:V=sh代入数据可求圆锥的底面积和圆锥的体积,再根据等底等高的圆柱体积是圆锥体积的3倍,根据乘法的意义列式计算即可求解.【解答】解:3.14×32=3.14×9=28.26(平方分米);×28.26×3=28.26(立方分米),28.26立方分米=28260立方厘米;28.26×3=84.78(立方分米),84.78立方分米=84780立方厘米.答:底面积是28.26平方分米,体积是28260立方厘米,与它等底等高的圆柱体积是84780立方厘米.故答案为:28.26,28260,84780.【点评】考查了圆的面积和圆锥的体积,以及等底等高的圆柱体积是圆锥体积的3倍的关系的灵活运用.20.【分析】由题意可知:第n个图形的瓷砖的总数有(n+2)2个,白瓷砖的数量为n2个,用总数减去白瓷砖的数量即为黑瓷砖的数量.【解答】解:第n个图形有n2块白瓷砖,瓷砖的总数是(n+2)2,则黑瓷砖有(n+2)2﹣n2=4n+4块;那么当黑色瓷砖为20块时,(n+2)2﹣n2=20,解得n=4,那么白瓷砖为42=16.故答案为:16,4n+4.【点评】此题主要考查学生对图形变化类这个知识点的理解和掌握,此题有一定拔高难度,属于难题,解答此题的关键是通过观察和分析,找出其中的规律.四.计算题(共2小题)21.【分析】(1)根据乘法交换律进行简算;(2)、(3)根据乘法分配律进行简算.【解答】解:(1)=×=×=(2)()×=+==(3)=×()=×2=【点评】考查了运算定律与简便运算,注意灵活运用所学的运算定律进行简便计算.22.【分析】(1)根据等式性质,方程两边同加上1.3即可;(2)根据等式性质,方程两边同加上5x,两边再同减去8,再同除以5即可;(3)先化简,再根据等式性质,方程两边同除以即可;(4)未知内项=,依此即可求解.【解答】解:(1)x﹣1.3=1.3x﹣1.3+1.3=1.3+1.3x=2.6(2)8.5﹣5x=88.5﹣5x+5x=8+5x8+5x﹣8=8.5﹣85x=0.55x÷5=0.5÷5x=0.1(3)x+x=26x=26x÷=26÷x=40(4)=8:4x=x=0.125【点评】此题考查了学生解方程的能力,解答方程一般根据等式的性质来求解,在解答时注意等号对齐.五.解答题(共1小题)23.【分析】这个图形的周长等于直径是40米的圆的周长与长80米的两条直线段的长度之和,面积等于直径40米的圆的面积与长80米,宽40米的长方形的面积之和,据此计算即可解决问题.【解答】解:3.14×40+80×2=125.6+160=285.6(米)3.14×(40÷2)2+80×40=1256+3200=4456(平方米)答:这个图形的周长是285.6米,面积是4456平方米.【点评】本题属于求组合图形面积和周长的问题,这种类型的题目主要明确组合图形是由哪些基本的图形构成的,然后看是求几种图形的面积和还是求面积(周长)差还是和,然后根据面积(周长)公式解答即可.六.应用题(共5小题)24.【分析】(1)根据被减数=差+减数进行解答即可;(2)根据减数=被减数﹣差进行解答即可.【解答】解:(1)330+120=450;答:这个数是450.(2)350﹣170=180;答:这个数是180.【点评】此题考查了整数减法各部分之间的关系.25.【分析】根据“买了3个小熊玩具,一共花了27元”,求出每个小熊玩具的价格:27÷3,乘上7即为购买7个这样的小熊玩具需要的钱数.【解答】解:27÷3×7=9×7=63(元)答:购买7个这样的小熊玩具需要63元钱.【点评】解答此题的关键是先求得单价,再由“单价×数量=总价”计算即可.26.【分析】根据“总价÷数量=单价”分别计算出排球的单价和足球的单价,然后用“足球的单价﹣排球的单价”解答即可.【解答】解:264÷6﹣180÷6=44﹣30=14(元)答:每个足球比每个排球贵14元.【点评】解答此题的关键:根据单价、数量和总价之间的关系进行解答.27.【分析】首先根据:工作效率=工作量÷工作时间,分别用1除以两个工程队单独修需要的时间,求出两队的工作效率各是多少;然后用1除以两队的工作效率之和,求出现在甲乙两工程队合修需要多少天即可.【解答】解:1÷(+)=1÷=12(天)答:现在甲乙两工程队合修需要12天.【点评】此题主要考查了工程问题的应用,对此类问题要注意把握住基本关系,即:工作量=工作效率×工作时间,工作效率=工作量÷工作时间,工作时间=工作量÷工作效率.28.【分析】根据题意可知:两人的路程差是600米,甲每分钟行40米,先用甲的速度乘上6分钟,求出甲6分钟走了多少米,再加上原来的路程差,就是乙一共走的路程,然后用乙的路程除以6分钟就是乙的速度.【解答】解:(40×6+600)÷6=840÷6=140(米/分)答:乙的速度是140米/分.【点评】解决本题关键是理解6分钟乙比甲多走了600米,也可以根据:速度差=路程差÷追及时间进行求解.列式为:(600÷6)+40=140(米/分)。
小升初经典奥数50题参考答案与试题及答案解析 小学数学六年级下册 奥数试题及答案 人教版
小升初经典奥数50题参考答案与试题及答案解析小学数学六年级下册奥数试题及答案人教版小升初经典奥数50题参考答案与试题解析一、解答题(共25小题,满分0分)1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?考点:列方程解含有两个未知数的应用题;差倍问题。
专题:和倍问题;列方程解应用题。
分析:设一把椅子的价格是x元,则一张桌子的价格就是10x 元,根据等量关系:“一张桌子比一把椅子多288元”,列出方程即可解答.解答:解:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据题意可得方程:10x﹣x=288,9x=288,x=32;则桌子的价格是:32×10=320(元),答:一张桌子320元,一把椅子32元.点评:此题也可以用算术法计算:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10﹣1)倍,由此可求得一把椅子的价钱.再根据椅子的价钱,就可求得一张桌子的价钱,所以:一把椅子的价钱:288÷(10﹣1)=32(元)一张桌子的价钱:32×10=320(元);答:一张桌子320元,一把椅子32元.2.3箱苹果重45千克.一箱梨比一箱苹果多5千克,3箱梨重多少千克?考点:整数、小数复合应用题。
专题:简单应用题和一般复合应用题。
分析:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量.据此解答解答:解:45+5×3,=45+15,=60(千克);答:3箱梨重60千克.点评:本题的关键是先求出3箱梨比3箱苹果多的重量,然后再根据加法的意义求出3箱梨的重量.3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇.甲比乙速度快,甲每小时比乙快多少千米?考点:简单的行程问题。
专题:行程问题。
分析:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇.即可求甲比乙每小时快多少千米.解答:解:4×2÷4=8÷4,=2(千米);答:甲每小时比乙快2千米.点评:解答此题的关键是确定甲比乙在4小时内多走了多少千米,然后再根据路程÷时间=速度进行计算即可.4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱.每支铅笔多少钱?考点:整数、小数复合应用题。
六年级下册小升初奥数综合测试卷(含解析)
六年级下册小升初奥数综合测试卷(含解析)一、选择题(每题4分,共20分)1.一个长方体的表面积是33.66平方分米,其中一个面的长是2.3分米,宽是2.1分米,它的体积是()立方分米。
A. 8.4B. 9.66C. 10.08D. 11.342.一个五位数恰好等于它各位数字和的2007倍,则这个五位数是()。
A. 10035B. 20070C. 30105D. 401403.在一只口袋里装着2个红球,3个黄球和4个黑球。
从口袋中任取一个球,这个球是红球的概率是()。
A. 1/9B. 2/9C. 1/3D. 2/34.甲、乙两车分别从A、B两地出发相向而行,甲车先行三小时后乙车从B地出发,乙车出发5小时后两车还相距15千米。
甲车每小时行48千米,乙车每小时行50千米。
求A、B两地间相距多少千米?A. 360B. 400C. 420D. 4505.一个圆柱体的体积是50.24立方厘米,底面半径是2厘米。
将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米?A. 25.12B. 50.24C. 75.36D. 100.48二、填空题(每题5分,共20分)1.已知一个正方体的棱长是6厘米,则它的体积是________立方厘米。
2.一个盛有水的圆柱形容器底面内半径为5厘米,深20厘米,水深15厘米。
今将一个底面半径为2厘米,高为18厘米的铁圆柱垂直放入容器中。
求这时容器的水深是________厘米。
3.一个自然数与自身相乘的结果称为完全平方数。
已知一个完全平方数是四位数,且各位数字均小于7。
如果把组成它的数字都加上3,便得到另外一个完全平方数,求原来的四位数是________。
4.将自然数按从小到大的顺序排列成螺旋形,2处拐一个弯,在3处拐第二个弯,在5处拐第三个弯,问拐第20个弯的地方是________。
三、解答题(每题10分,共60分)1.一艘轮船顺流航行120千米,逆流航行80千米共用16时;顺流航行60千米,逆流航行120千米也用16时。
人教版六年级下学期小升初数学考试卷(含答案解析)
人教版小升初考试数学试题一、填空。
(33分)1、截至2020年2月25日,汝南县共接收抗疫捐赠款物11002200元,体现携手并肩共危难。
向湖北奉献爱心。
划线部分读作( ),以万为单位计作( )万,省略万后的尾数是( )万。
2、水库大坝的警戒水位是18m ,如果把超过18m 的部分记作“+”,把低于18m 的部分记作“-”。
一场暴雨后,水位达到18.5m ,应记作( )m ,第二天,水位下降到17.5m ,就记作( )m 。
3、如果y=,那么x 和y 成( )比例;如果y=,那么x 和y 成( )比例。
4、涛涛将3000元人民币存入银行定期3年,如果年利率是2.5%,国家规定利息税为20%,到期后,他应缴纳( )元的利息税,实得利息是( )元。
5、冰箱的容积约是200( ); 我国领土面积约约960万( )。
6、113时=( )分 600毫升=( )立方分米7、1.2千克∶250克化成最简整数比是( ),比值是( )。
8、如果7x=8y ,那么x ∶y=( )∶( ) 9、6个小组的同学栽树。
10、小兵妈妈在街上租了一间门市开了一家服装店,去年每月租金为a 元,今年每月租金比去年上涨了20%,今年每月租金是( )元,如果a=500,那么今年每月的租金是( )元。
11、16比20少( )%;24米比( )米多31。
12、右图是一个等腰直角三角形,它的面积是( )cm 2,把它以AB 为轴旋转一周,形成的形体的体积是( )cm 3。
13、一幅平面图上标有“”。
这幅平面图的数值比例尺是( ),在图上量得A 、B两地距离是3.5cm ,A 、B 两地的实际距离是( )m 。
14、一个长方体的长、宽、高分别是8m 、5m 、3m ,它的表面积是( )m 2,体积是( )m 3。
15、有30个人去参加一个会议,住在一个宾馆里,安排11个房间(3人间和2人间)刚好住完。
他们住了( )个3人间,有( )人住在2人间。
六年级下册人教版数学奥数题
六年级下册人教版数学奥数题数学是一门非常重要的学科,对于六年级的学生来说,学好数学不仅有助于提高他们的逻辑思维能力,也能为将来的学习和生活打下良好的基础。
本文将介绍一些六年级下册人教版数学奥数题,帮助学生更好地理解和掌握数学知识。
一、简单的加减法题1. 36 + 18 = ?2. 82 - 47 = ?3. 145 + 259 = ?对于这类简单的加减法题,学生只需将数字相加或相减即可。
这样的题目可以帮助学生熟悉加减法的运算规则,提高他们的计算速度和准确性。
二、多位数乘法题1. 23 × 4 = ?2. 35 × 8 = ?3. 72 × 6 = ?这类题目要求学生进行多位数相乘的运算,通过练习可以帮助学生提高他们的口算能力和乘法口诀的掌握程度。
三、应用题1. 小明有15个苹果,他想将这些苹果平均分给3个朋友,每个朋友能分到几个苹果?解析:15 ÷ 3 = 5,所以每个朋友能分到5个苹果。
2. 一辆公交车每15分钟发一车,那么它一天发车几次?解析:24小时 = 24 × 60 = 1440分钟,所以一天发车1440 ÷ 15 = 96次。
这类题目可以帮助学生将数学知识应用到实际生活中,培养他们解决问题的能力和数学思维。
四、几何形体题1. 若正方形的边长为8厘米,求其面积和周长。
解析:面积 = 边长 ×边长 = 8 × 8 = 64平方厘米,周长 = 边长 × 4 = 8 × 4 = 32厘米。
2. 一个长方形的长为12米,宽为6米,求其面积和周长。
解析:面积 = 长 ×宽 = 12 × 6 = 72平方米,周长 = (长 + 宽) × 2 = (12 + 6) × 2 = 36米。
几何形体题目可以让学生锻炼他们的空间想象力,提高他们对各种几何形体的认识和应用能力。
六年级下册数学试题-小升初奥数真题 (六)人教版
练小升初奥数真题数学考试没问题(六)1 、从3双完全相同的鞋中,随机抽取一双鞋的概率是:A.B.C.D.2 、某公司三名销售人员2011年的销售业绩如下:甲的销售额是乙和丙销售额的1.5倍,甲和乙的销售额是丙的销售额的5倍,已知乙的销售额是56万元,问甲的销售额是:A.140万元B.144万元C.98万元D.112万元3 、某网店以高于进价10%的定价销售T恤,在售出后,以定价的8折将余下的T恤全部售出,该网店预计盈利为成本的:A.3.2%B.不赚也不亏C.1.6%D.2.7%4 、小王周末组织朋友自助游,费用均摊。
结帐时,如果每人付450元,则多出100元;如果小王的朋友每人付430元,小王自己要多付60元才刚好,这次活动人均费用是()。
A.437.5元B.438.0元C.432.5元D.435.0元5 、甲工人每小时可加工A零件3个或B零件6个,乙工人每小时可加工A零件2个或B 零件7个。
甲、乙两工人一天8小时共加工零件59个,甲、乙加工A零件分别用时为x小时、y小时,且x、y皆为整数,两名工人一天加工的零件总数相差:A.6个B.7个C.4个D.5个6 、一项工程,甲一人做完需30天,甲、乙合作完成需18天,乙、丙合作完成需15天,甲、乙、丙三人共同完成该工程需:A.10天B.12天C.8天D.9天7 、出租车司机李师傅有午睡的习惯,一天,他睡午觉醒来,发现手机没电,手表停了,于是他只能打开收音机等待交通电台整点报时,如果他等待报时时间不超过15分钟,则这种可能性的大小为:A.B.C.D.8 、某人向单位圆形状的靶子内投掷一个靶点,连续投掷4次,若恰有3次落在第一象限的位置(假设以靶心为坐标原点,水平和铅直方向分别为横坐标轴建立平面直角坐标系)。
请你帮他计算一下这种可能性大小为:A.B.C.D.9、甲乙两个工程队修建一条乡村公路,甲工程队修了500米以后,乙工程队来修,根据以往资料显示,乙工程队的效率是甲工程队的2倍,乙工程队修600米公路所用的时间比甲工程队修500米公路的时间还少20天。
六年级下册数学奥数试题 假设法解题 人教版 无答案
假设法解题知识导航:由于一些含有两个或两个以上未知量的问题,我们在解答时可以根据情况采用假设法解决,所谓假设法就是把两个或两个以上的未知量假设为同一个未知量,然后按照题目中的已知条件进行推算,从而找到答案。
假设法作为一种重要的解题方法应用很广,我们不仅可以把不同的事物进行假设,还可以把事物的几种不同情况假设成同一种情况,本讲我们就此展开探究。
经典例题1、鸡和兔共27个头,72只脚。
鸡、兔各有多少只?举一反三1、1、鸡和兔共60个头,160只脚。
鸡、兔各有多少只?2、鸡比兔多16只,鸡的脚比兔的脚多12只。
鸡、兔各有多少只?3、某城市实行峰谷电价,收费标准如下:小刚家8月份用电150千瓦时,缴纳电费70.5元,你知道小刚家谷时用电多少千瓦时吗?请你算乙算。
经典例题2、星期天,小丹和姐姐去游乐场玩,她们买了1元、2元、5元的游乐劵共40张,面值共计75元,且1元的游乐劵比2元的游乐劵多5张,三种游乐劵各有多少张?举一反三2、1、明明有10元、2元、5元的游乐劵27张,面值共计108元,且10元的游乐劵比5元的少7张。
三种游乐劵各有多少张?2、王阿姨买10元、5元、4元的公园门票20张,共用去115元,其中10元和5元的门票张数相等。
三种门票各买了多少张?3、某公司有大、中、小型卡车共19辆,每次共运货155箱。
每辆大型卡车每次运10箱,每辆中型卡车每次运9箱,每辆小型卡车每次运6箱。
中型卡车和小型卡车的辆数一样多。
大卡车有多少辆?经典例题3、物资公司用大、小两种型号的卡车运货,每辆大卡车装16箱,每辆小卡车装12箱。
共有27车货,价值5000元。
若每箱便宜2元,则这批货价值4200元。
大卡车、小卡车各有多少辆?举一反三3、1、超市运来一批西瓜准备按大小分两类卖,大西瓜每千克1.2元,小西瓜每千克1元,这批西瓜共卖了168元。
如果每千克西瓜降价0.2元,这批西瓜只能卖138元。
大西瓜、小西瓜各有多少千克?2、商场有鸡蛋18箱,每个大箱装180个鸡蛋,每个小箱装120个鸡蛋,这批鸡蛋价值756元,若将每个鸡蛋便宜2分出售,则这批鸡蛋价值705.6元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初奥数必考题型汇总(六)
1.甲早上从某地出发匀速前进,一段时间后,乙从同一地点出发以同样的速度同向前进,在上午10点时,乙走了6千米,他们继续前进,在乙走到甲在上午l0时到达的位置时,甲共走了2.8千米,则此时乙走了( )。
A.11.4千米B.14.4千米C.10.8千米D.5.4千米
3.科学家对平海岛屿进行调查,他们先捕获30只麻雀进行标记,后放飞,再捕捉50只,其中有标记的有lo只,则这一岛屿上的麻雀大约有( )。
A.150只B.300只C.500只D.1500只
4.一批零件,如果第一天甲做,第二天乙做,这样交替轮流做,完成的天数恰好是整数。
如果第一天乙做,第二天甲做,这样交替轮流做,做到上次轮流完成时所用的天数后,还剩40个不能完成,已知甲、乙工作效率的比是7:3。
则甲每天做( )。
A.30个B.40个C.70个D.120个
5.水池装有一个排水管和若干个每小时注水量相同的注水管,注水管注水时,排水管同时排水,若用2个注水管注水,8小时可注满水池,若用9个注水管,24小时可注满水,现在用8个注水管注水,那么可用( )注满水池。
A.12小时B.36小时C.48小时D.72小时
6.已知3x2=2x+1,则9x4-4x2-4x+1=( )
A.0 B.1 C.2 D.4
7.一批武警战士平均分成若干小组执勤。
如果每4人一组,恰好余1人。
如果每4人一组,恰好也余1人。
如果每6人一组,恰好还是余1人。
这批武警战士至少有( )人。
A.121 B.101 C.81 D.61
8.一个几何体的正视图,俯视图与侧视图都是腰长为1的等腰直角三角形。
则这个几何体的体积是( )
A.1 B.1/2 C.1/3 D.1/6
9.一项工程计划用20天完成,实际只用了16天就完成了。
则工作效率提高了( )%。
A.20 B.25 C.50 D.60
10.某股民以12元的均价买了某公司股票5000股。
该股票下跌12元时,又买入该股票3000股。
此后这只股票涨10%,他将该股票全部卖出,则该股民操作这只股票的业绩情况是( )
A.盈利13200元B.盈利2640元C.亏损3020元D.亏损2400元
11.用铁丝折成一个如图风轮状的图案。
大圆半径为10cm,则所用铁丝总长为( ) cm
A.31.4 B.62.8 C.94.2 D.125.6
12.依序连接正方形各边的中点得到新的正方形,如此反复三次。
阴影部分与空白部分的面积比为( )
A.3:1 B.3:2 C.5:3 D.5:2
13.圆拱桥的拱高cd=2cm.跨度AB=8cm,可以计算圆拱半径是( ) cm
A.5 B.10 C.12 D.17
14. □、△、○分别代表三个数字,如果□/△=○,则下列哪一个结论不正确?
A.□=△*○ B. △=□*○C.△=□/○ D. □=○*△15.一个最简分数,分子和分母的和是50,如果分子、分母都减去5,得到的最简分数是2/3,这个分数原来是多少?
A. 20/29
B. 21/29
C. 29/30
D. 29/50
16. 甲乙两人共有100个玻璃球,若把甲的玻璃球的四分之一给乙,乙将比甲多九分之七,则甲原来有多少个玻璃球?
A. 40
B. 48
C. 56
D. 60
17. 用0、1、2、3、…、9十个数字组成5个两位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能大,问这五个两位数的和是多少?
A.279 B.301 C.351 D.357 18.某人以96元的价格出售了两枚古铜币,一枚挣了20%,一枚亏了20%.问:此人盈利或亏损的情况如何?
A.挣了8元B.亏了8元C.持平D.亏
了40元
19.有一本故事书,每2页之间有4页插图,也就是说连续的4页插图前后各有1页文字.假如这本书共有105页,而第一页是插图,则这本书共有插图多少页?
A.62 B.66 C. 78 D.84 20. 6个空瓶可以换一瓶汽水,某班同学喝了157瓶汽水,其中有一些是用喝剩下来的空瓶换的,那么他们至少要买多少瓶汽水?
A.131 B.130 C.128 D.127。