安徽省2017中考数学复习第2单元方程组与不等式组第10课时一元一次不等式的应用教案
中考数学复习:专题2-11 用一元一次不等式(组)解决生活中的实际问题
专题11 用一元一次不等式(组)解决生活中的实际问题【专题综述】一元一次不等式组是在学习了一元一次不等式组的概念和解法之后,进一步探索现实世界数量关系的重要内容,是继学习了一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后续学习二元一次方程等内容的重要基础,有着承前启后的作用。
用一元一次不等式(组)解决生活中的实际问题,其主要步骤为:1、审题,设未知数;2、抓关键词,找不等关系;3、构建不等式(组)4 、解不等式(组);5、根据题意,写出合理答案。
【方法解读】一、打折问题:例1,一双运动鞋的进价是200元,标价400元,商场要获得不低于120元的利润,问:最低可以打几折?【举一反三】(湖南省娄底市)某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打().A、6折B、7折C、8折D、9折二、赛球问题:例2,甲、乙两队进行足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了12场,甲队保持不败,总得分超过26分,问:甲队至少胜了多少场?【举一反三】(江西省崇仁一中)在崇仁一中中学生篮球赛中,小方共打了10场球.他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y比前5场比赛的平均得分x要高.如果他所参加的10场比赛的平均得分超过18分(1)用含x的代数式表示y;(2)小方在前5场比赛中,总分可达到的最大值是多少?(3)小方在第10场比赛中,得分可达到的最小值是多少?三、购买问题:例3,某种肥皂零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法。
第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售。
在购买的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买几块肥皂?【举一反三】某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品一律按商品价格的9.5折优惠.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,她购买商品的价格为多少元时,两个方案所付金额相同?(3)购买商品的价格______元时,采用方案一更合算.四、分苹果问题:例4,把44个苹果分给若干名学生,若每人分苹果7个,则最后1名学生分得的苹果不足3个,求学生人数。
人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用
∴原方程组的解为y=1,将y=1 代入 2kx-3y<5 得 2×k×2-3<5,解得 k<2.
命题点 2:一次方程(组)的应用(近 3 年考查 15 次)
7.(数学文化)(2021·武汉第 7 题 3 分)我国古代数学名著《九章算术》
中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价
32 人.2 艘大船与 1 艘小船一次共可以满载游客 46 人.则 1 艘大船与 1
艘小船一次共可以满载游客的人数为
( B)
A.30
B.26
C.24
D.22
11.★(2022·武汉第 10 题 3 分)幻方是古老的数学问题,我国古代的《洛 书》中记载了最早的幻方——九宫格.将 9 个数填入幻方的空格中,要 求每一横行、 每一竖列以及两条对角线上的 3 个数之和相等,例如图① 就是一个幻方.图②是一个未完成的幻方,则 x 与 y 的和是 ( D ) A.9 B.10 C.11 D.12
14.(2020·仙桃第 12 题 3 分)篮球联赛中,每场比赛都要分出胜负,每 队胜 1 场得 2 分,负 1 场得 1 分.某队 14 场比赛得到 23 分,则该队胜 了__99__场.
15.(2020·黄冈第 19 题 6 分)为推广黄冈各县市名优农产品,市政府组 织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买 6 盒 羊角春牌绿茶和 4 盒九孔牌藕粉,共需 960 元,如果购买 1 盒羊角春牌 绿茶和 3 盒九孔牌藕粉共需 300 元,请问每盒羊角春牌绿茶和每盒九孔 牌藕粉分别需要多少元?
【分层分析】设购进创意文具袋 x 个,由题干信息①得购进笔记本为
((2x2+x+10)个,由题干信息②可列方程为 xx++(2(x2+x1+0)1=0)190.
中考数学重点难点分值题型分布
中考数学重点难点分值题型分布第一章数与式1.1实数考点1:实数的分类与实数的有关概念掌握题型:选择题、填空题; 分值:3分考试内容:1.实数的定义与分类2.实数的大小比较3.数轴4.相反数、倒数、绝对值5.无理数的估算考点2:实数的运算掌握题型:选择题、填空题;分值:3分、4分考试内容:1.平方根与立方根2.实数的混合运算考点3:科学计数法掌握与近似数了解题型:选择题;分值:3分考试内容:1.科学记数法2.近似数1.2代数式考点1:代数式理解——必考点题型:选择题;分值:4分考试内容:1.列代数式表示简单的数量关系2.能解释一些简单代数式的实际意义或几何意义考点2:求代数式的值题型:解答题;分值:6分考试内容:1.代数式的值的概念“了解2.根据问题所提供的资料,求代数式的值1.3整式考点1:整式及其运算灵活运用题型:填空题;分值:3分考试内容:1.整式的有关概念了解2.整数指数幂的意义和基本性质了解3.整式加减乘除法运算的法则4.会进行简单的整式加减乘除法运算考点2:整式乘法公式灵活运用——必考点题型:填空题;分值:3分、4分考试内容:1.完全平方公式、平方差公式的几何背景了解2.平方差公式、完全平方公式3.用平方差公式、完全平方公式进行简单计算考点3:因式分解灵活运用题型:填空题;分值:3分、4分考试内容:1.因式分解的意义及其与整式乘法之间的关系了解2.用提取公因式法、、公式法进行因式分解,会在实数范围内分解因式1.4分式与二次根式考点1:分式的概念与基本性质灵活运用——必考点题型:选择题;分值:3分考试内容:1.分式的概念了解2.确定分式有意义的条件3.确定使分式的值为零的条件4.分式的基本性质5.约分和通分考点2:分式的运算掌握——必考点题型:解答题;分值:6分考试内容:1.分式的加、减、乘、除、乘方运算法则2.简单的分式加减乘除乘方运算,用恰当方法解决与分式有关的问题考点3:二次根式掌握——必考点题型:选择题;分值:3分1.二次根式的概念2.最简二次根式3.二次根式的运算第二章方程组与不等式组2.1整式方程考点1:一元一次方程掌握,灵活运用题型:选择题、解答题;分值:3分、6分、8分考试内容:1.方程是刻画现实世界数量关系的一个数学模型了解2.运用一元一次方程解决简单的实际问题3.方程的解的概念了解4.由方程的解求方程中字母系数的值5.一元一次方程的有关概念了解6.一元一次方程的解法考点2:一元二次方程掌握,灵活运用——必考点题型:选择题、填空题;分值:3分、4分1.一元二次方程的概念了解2.一元二次方程的解法3.用一元二次方程根的判别式判断根的情况4.运用一元二次方程解决简单的实际问题2.2分式方程考点1:分式方程及其解法——必考点题型:选择题、填空题;分值:3分、4分考试内容:1.分式方程的概念2.分式方程的增根3.分式方程的求解4.分式方程的检验考点2:分式方程的应用题型:解答题;分值:10分考试内容:1.利用分式方程解决生活实际问题2.注意分式方程要对方程和实际意义进行双检验2.3方程组考点1:二元一次方程组题型:解答题;分值:7分考试内容:1.二元一次方程组的有关概念了解2.代入消元法、加减消元法的意义3.选择适当的方法解二元一次方程组考点2:二元一次方程组的应用——必考点题型:解答题;分值:9分考试内容:运用二元一次方程组解决简单的实际问题2.4不等式组考点1:不等式和一元一次不等式组题型:选择题、填空题;分值:3分、4分考试内容:1.不等式的意义了解2.根据具体问题中的数量关系列出不等式3.不等式的基本性质4.利用不等式的性质比较两个实数的大小5.一元一次不等式的解集了解6.解不等式组考点2:一元一次不等式组的应用——必考点题型:解答题;分值:8分考试内容:根据具体问题中的数量关系,用一元一次不等式或不等式组解决简单问题第三章变量与函数3.1位置的确定与变量之间的关系考点1:平面直角坐标系题型:选择题、填空题;分值:3分考试内容:1.坐标平面内点的坐标特征的运用2.坐标轴、原点对称的点的坐标的特征考点2:函数及其图象题型:选择题、填空题;分值:3分、8分考试内容:1.求函数自变量的取值范围2.根据条件写出函数关系式3.用描点法画出函数图像考点3:函数的有关应用题型:选择题;分值:3分考试内容:解决与函数有关的应用型问题3.2一次函数考点1:一次函数的概念、图象和性质题型:解答题;分值:3分、10分考试内容:1.对一次函数概念的理解理解2.根据已知条件用待定系数法确定函数解析式3.会画一次函数图象并能根据图象解决相关的问题4.根据自变量的变化判断函数值的增减情况灵活运用5.由函数值的取值范围判断自变量的取值范围,求一次函数图象的交点坐标考点2:一次函数的应用题型:解答题;分值:9分考试内容:与一次函数有关的应用问题灵活运用3.3反比例函数考点1:求反比例函数解析式题型:填空题;分值:4分考试内容:1.对反比例函数的理解2.根据已知条件用待定系数法确定反比例函数解析式考点2:反比例函数的图象和性质题型:解答题;分值:8分考试内容:1.会画反比例函数的增减性;掌握比例系数K的几何意义考点3:反比例函数的应用题型:填空题、解答题;分值:3分、9分考试内容:1.反比例函数与一次函数图象与性质的综合应用2.确定与反比例函数有关的应用型问题3.4二次函数考点1:二次函数的图象和性质题型:选择题、解答题;分值: 3分、3分考试内容:1.用配方法把抛物线的解析式y=ax2+bx+ca≠0化为y=ax-h2+ka≠0的形式2.根据已知条件用待定系数法确定二次函数的解析式3.根据抛物线的位置确定a、b、c的符号,根据公式确定抛物线的顶点和对称轴4.根据自变量的变化判断二次函数值的增减情况5.根据函数图象求一元二次方程的根,由一元二次方程根的情况判断抛物线与x轴的交点;根据图象判断一元二次不等式的解集考点2:二次函数的综合应用题型:解答题;分值:10分、12分考试内容:1.利用二次函数解决简单的实际问题2.与二次函数有关的综合应用第四章图形的认识4.1角、相交线与平行线考点1:角题型:选择题;分值:3分考试内容:1.角的有关概念了解2.角的比较、角的和差计算3.余角、补角考点2:相交线题型:选择题;分值:3分考试内容:1.对顶角2.垂线、点到直线的距离3.作已知直线的垂线4.命题、定理、证明考点3:平行线题型:选择题;分值:3分考试内容:1.平行线的性质2.平行线间的距离3.平行线的判定4.2三角形及其全等考点1:三角形的相关概念题型:选择题;分值:3分考试内容:1.角平分线、中线、高线、中位线以及性质2.画任意三角形的角平分线、中线和高3.三角形的稳定性、三边关系定理、三角形内角和定理考点2:三角形全等题型:填空题、解答题;分值:3分考试内容:1.全等三角形对应边相等、对应角相等2.三角形全等的判定定理:SAS, ASA, AAS, SSS, HL 4.3等腰三角形与直角三角形考点1:等腰三角形题型:选择题;分值:3分考试内容:1.等腰三角形的有关概念、性质和判定2.等边三角形的有关概念、性质和判定考点2:直角三角形题型:选择题;分值:3分考试内容:1.直角三角形的概念、性质和判定2.勾股定理及其逆定理:4.4多边形与平行四边形考点1:多边形题型:选择题;分值:3分考试内容:多边形和正多边形的概念、内角和与外角和公式了解考点2:平行四边形题型:解答题;分值:9分考试内容:1、平行四边形的概念和性质2、平行四边形的判定4.5特殊的平行四边形考点1:矩形题型:选择题、填空题、解答题;分值:3分、8分考试内容:1.矩形的概念、性质2.矩形的判定考点2:菱形题型:选择、解答;分值:3分、10分考试内容:1、菱形的概念、性质2、菱形的判定考点3:正方形题型:选择题、解答题;分值:3分考试内容:1.正方形具有矩形和菱形的性质2.既是矩形又是菱形的四边形是正方形4.6梯形依据考情选用题型:填空题;分值:3分考试内容:1.梯形的概念和性质2.等腰梯形的概念、性质和判定3.直角梯形的概念第五章圆5.1圆的性质及与圆有关的位置关系考点1:圆的有关概念与性质题型:选择题、解答题;分值:3分、4分、9分考试内容:1.垂径定理及其推论的应用2.弧、圆心角、圆周角之间的关系3.圆周角定理及其推论考点2:与圆有关的位置关系题型:选择题、解答题考试内容:1.点和圆的位置关系2.直线和圆的位置关系3.切线的性质和判定5.2与圆有关的计算题型:选择题、填空题、解答题;分值:3分、10分考试内容:1.求圆的周长、弧长及简单组合图形的周长2.求圆的面积、扇形的面积及简单组合图形的面积3.圆柱的侧面积和全面积的计算4.圆锥的侧面积和全面积的计算第六章空间与图形6.1圆形的轴对称、平移与旋转考点1:轴对称的概念及性质题型:选择题;分值:3分考试内容:1.轴对称的概念及性质2.基本图形的对称性及轴对称的应用考点2:图形的平移题型:选择题;分值:3分考试内容:1.平移的概念和性质2.简单图形的平移及平移的应用考点3:图形的旋转题型:选择题;分值:3分考试内容:1.旋转的概念及性质2.基本图形的旋转及旋转的应用6.2图形的相似考点1:相似的有关概念题型:近5年未考考试内容:成比例线段、比例的基本性质、黄金分割考点2:相似三角形的性质与判定题型:填空题;分值:3分考试内容:1.相似的概念及相似的判定2.相似的性质、多边形相似比、周长比与面积比考点3:位似的概念与性质题型:选择题;分值:3分考试内容:1.位似的概念和性质2.利用位似放大或缩小图形,会在坐标系中作位似图形并求出对应的坐标6.3解直角三角形题型:选择题、填空题、解答题;分值:3、6分考点1:锐角三角函数考试内容:1.锐角三角函数的定义及其性质2.特殊角的三角函数值考点2:解直角三角形考试内容:1.解直角三角形的概念2.直角三角形的边角关系3.仰角、俯角、坡度坡比4.用三角函数解决与直角三角形有关的实际问题6.4视图与投影考点1:几何体及其展开图题型:选择题;分值:3分考试内容:基本几何体的展开图考点2:几何体的三视图题型:选择题;分值:3分考试内容:画基本几何体或简单组合体的三视图,根据三视图描述实物考点3:投影题型:近五年未考考试内容:1.中心投影和平行投影2.影子、视点、视角和盲区的概念第七章统计与概率7.1统计考点1:数据的收集题型:选择题;分值:3分考试内容:1.普查和抽样调查2.总体、个体、样本和样本容量3.用样本估计总体的思想考点2:数据的处理题型:选择题;分值:3分考试内容:1.求一组数据的平均数包括加权平均数、众数、中位数、极差与方差2.根据具体问题,选择合适的统计量表示数据的集中程度或离散程度3.根据统计结果做出合理的判断和预测考点3:统计图表题型:解答题;分值:4分、8分考试内容:1.用扇形统计图表示数据2.频数、频率的概念,频数分布的意义和作用3.列频数分布表,画频数分布直方图和频数分布折线图4.利用统计图表解决简单的实际问题7.2概率考点1:事件的分类题型:选择题;分值:3分考试内容:不可能事件、必然事件和随机事件考点2:概率的计算题型:解答题;分值:10分考试内容:1.概率的意义2.运用列举法包括列表、画树状图计算简单事件发生的概率考点3:用频率估计概率题型:填空题;分值:3分考试内容:大量重复试验时,可以用频率估计概率解决一些实际问题。
中考数学复习 一元一次不等式(组)及应用
“≠”连接而成的式子.
2.解集:一般地,一个含有未知数的不等式的所有
的解,组成这个不等式的解集.
如果a>b,那么a±c>b±c
3.性质如果a>b,c>0,那么ac>bc或ac>bc
如果a>b,c<0,那么ac
①_<_bc或ac
②_<_bc
第1部分 第二单元 方程(组)与不等式(组)
二、一元一次不等式 一元一次不等式
第二单元 方程(组)与不等式(组)
课时 8 一元一次不等式(组)及应用
CONTENTS
目 录
课前自测 知识梳理 知识过关
第1部分 第二单元 方程(组)与不等式(组)
课前自测
1.已知a>b,则下列不等式中不正确的是( C )
A.4a>4b
B.a+4>b+4
C.-4a>-4b
D.a-4>b-4
第1部分 第二单元 方程(组)与不等式(组)
第1部分 第二单元 方程(组)与不等式(组)
广东中考
1.(2013广东)已知实数a,b,若a>b,则下列结论 正确的是( D )
A.a-5<b-5 B.2+a<2+b C.a3<b3 D.3a>3b
第1部分 第二单元 方程(组)与不等式(组)
2.(2018广东)不等式3x-1≥x+3的解集是( D )
(1)求商场销售A,B两种型号计算器的销售价格分别 是多少元?(利润=销售价格-进货价格)
(2)商场准备用不多于2 500元的资金购进A,B两种 型号计算器共70台,问最少需要购进A型号的计算器多 少台?
第1部分 第二单元 方程(组)与不等式(组)
解:(1)设 A 种型号计算器的销售价格是 x 元,B 种
人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理
第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。
安徽省中考数学总复习系统复习成绩基石第二章方程组与不等式组第8讲一元一次不等式(组)课件
有2个负整
,若|3-
x|-|x+2|的最小值为a,最大值为b,则ab=5
类型3 解不等式组
x2 8.[2018· 江西]解不等式:x-1≥ +3. 2 解:去分母,得2(x-1)≥x-2+6, 去括号,得2x-2≥x-2+6, 移项,得2x-x≥2-2+6, 合并同类项,得x≥6. 所以不等式的解集为x≥6.
类型2 不等式(组)的解 3.[2018· 泰安]不等式组 有3个整数解,则a的取
值范围是( B )
A.-6≤a<-5 C.-6<a<-5 B.-6<a≤-5 D.-6≤a≤-5
解题要领►解决含有参数的不等式需要按以下几个步骤:①解不 等式或不等式组,含有参数的也要解,把参数当已知数来解,这 是必不可少的步骤;②借助于数轴,形象准确的把握不等式组有 解,无解,以及有几个整数解的问题;③注意端点值,这类问题 一般都与端点有关,一是用数轴来说明是哪个端点;二是进行检 验,有无端点是不是满足题意.
人均支出费用为y元,
根据题意,得 解得
答:清理养鱼网箱的人均支出费用为2000元,清理捕鱼网箱的人
均支出费用为3000元.
(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40 人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元, 且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清 理人员方案? (2)设m人清理养鱼网箱,则(40-m)人清理捕鱼网箱,
根据题意,得
解得18≤m<20. ∵m为整数,∴m=18或m=19,
则分配清理人员方案有两种:
方案一:18人清理养鱼网箱,22人清理捕鱼网箱; 方案二:19人清理养鱼网箱,21人清理捕鱼网箱.
14.[2018· 湘潭]湘潭市继2017年成功创建全国文明城市之后,又准 备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分 类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需 550元,且垃圾箱的单价是温馨提示牌单价的3倍. (1)求温馨提示牌和垃圾箱的单价各是多少元? 解:(1)设温馨提示牌的单价为x元,则垃圾箱的单价为3x元, 根据题意,得2x+3×3x=550,
重难点 含参类方程与不等式问题 中考数学复习
重难点突破 含参类方程与不等式问题目 录题型01 根据分式方程解的情况求字母的值或取值范围题型02 整式方程(组)与一元一次不等式组结合求参数的问题题型03 同解方程组题型04 根据二元一次方程组解满足的情况求参数题型05 二元一次方程组整数解问题题型06 利用相反数求二元一次方程组参数题型07 已知方程的解求参数题型08 根据一元二次方程根的情况求参数题型09 根据一元一次不等式组的整数解求参数的取值范围题型10 根据一元一次不等式组的解集的情况求参数的取值范围题型11整式方程(组)与一元一次不等式结合求参数的问题题型01 根据分式方程解的情况求字母的值或取值范围1.(2023·山东淄博·中考真题)已知x =1是方程m2−x −1x−2=3的解,那么实数m 的值为( )A .−2B .2C .−4D .42.(2023·黑龙江牡丹江·中考真题)若分式方程ax +2=1−3x +2的解为负数,则a 的取值范围是( )A .a <−1且a ≠−2B .a <0且a ≠−2C .a <−2且a ≠−3D .a <−1且a ≠−33.(2023·山东日照·中考真题)若关于x 的方程xx−1−2=3m2x−2解为正数,则m 的取值范围是( )A .m >−23B .m <43C .m >−23且m ≠0D .m <43且m ≠234.(2023·四川巴中·中考真题)关于x 的分式方程x +mx−2+12−x =3有增根,则m = .5.(2020·黑龙江牡丹江·中考真题)若关于x 的分式方程2x−1=mx 有正整数解,则整数m 的值是( )A .3B .5C .3或5D .3或4题型02 整式方程(组)与一元一次不等式组结合求参数的问题6.(2020·重庆·中考真题)若关于xx +3≤a的解集为x ≤a ;且关于y 的分式方程y−a y−2+3y−4y−2=1有正整数解,则所有满足条件的整数a 的值之积是( )A .7B .-14C .28D .-567.(2023·重庆·中考真题)若关于x 的一元一次不等式组x +32≤42x−a ≥2,至少有2个整数解,且关于y 的分式方程a−1y−2+42−y =2有非负整数解,则所有满足条件的整数a 的值之和是 .8.(2024·重庆·模拟预测)已知关于x 的一元一次不等式组2(3−x )+1<−xx +a−2<0有解且最多5个整数解,且关于y 的分式方程y +ay−3−3=43−y 的解为正整数,则满足条件的所有整数a 的和为 .9.(2024·重庆开州·二模)若关于x 的方程x +22−x+ax x−2=−2有正整数解,且关于y 的不等式组2y−43<22a−y−1≤0至少有两个整数解,则符合条件的所有整数a 的和为 .10.(2024·四川成都·模拟预测)若整数a 使得关于x 的分式方程ax−122−x+3=xx−2有整数解,且使得二次函数y =(a−2)x 2+2(a−1)x +a +1的值恒为非负数,则所有满足条件的整数a 的值之和是.题型03 同解方程组11.(2020·广东·中考真题)已知关于x,y的方程组ax+23y=−103x+y=4与x−y=2x+by=15的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.12.(2021·广东·二模)解关于x、y的方程组时,小明发现方程组ax+by=2x−y=8的解和方程组5x+2y=b2x+3y=−9的解相同.(1)求方程组的解;(2)求关于t的方程(at﹣b)2+2(at﹣b)﹣3=0的解.题型04 根据二元一次方程组解满足的情况求参数13.(2023·四川眉山·中考真题)已知关于x,y的二元一次方程组3x−y=4m+1x+y=2m−5的解满足x−y=4,则m 的值为()A.0B.1C.2D.314.(2022·山东聊城·中考真题)关于x,y的方程组2x−y=2k−3x−2y=k的解中x与y的和不小于5,则k的取值范围为()A.k≥8B.k>8C.k≤8D.k<815.(2023·四川泸州·中考真题)关于x,y的二元一次方程组2x+3y=3+ax+2y=6的解满足x+y>22,写出a的一个整数值.16.(2024·浙江宁波·模拟预测)若关于x,y的方程组2x−y=5kx+y=4k+3的解满足x−y≤5,则k的取值范围是.题型05 二元一次方程组整数解问题17.(2022·广东揭阳·模拟预测)如果关于x,y的方程组4x−3y=66x+my=26的解是整数,那么整数m的值为( )A.4,−4,−5,13B.4,−4,−5,−13C.4,−4,5,13D.−4,5,−5,1318.(23-24八年级上·重庆沙坪坝·期末)关于x,y的二元一次方程组kx+y=43x+y=0的解为整数,关于z的不等式组3z>z−44z−2k−13≤1有且仅有2个整数解,则所有满足条件的整数k的和为( )A.6B.7C.11D.1219.(22-23七年级下·重庆·阶段练习)已知关于x,y的二元一次方程组ax+2y=612x−y=1的解为整数,且关于z的方程z−a2−z3=1的解为非负数,求满足条件的所有整数a的和为()A.2B.4C.9D.11题型06 利用相反数求二元一次方程组参数20.(2022·四川南充·二模)已知x、y满足方程组x+2y=2m−12x+y=5,且x与y互为相反数,则m的值为()A.m=−2B.m=2C.m=−3D.m=321.(2020·浙江杭州·模拟预测)已知关于x,y的方程组3x−5y=2ax−2y=a−5则下列结论中正确的是()①当a=5时,方程组的解是x=10y=20;②当x,y的值互为相反数时,a=20;③当2x⋅2y=212时,a=14;④不存在一个实数a,使得x=y.A.①②④B.①②③C.②③④D.②③22.(2021·内蒙古包头·二模)若满足方程组4x+y=3m+32x−y=m−1的x与y互为相反数,则m的值为()A.2B.−2C.11D.−11题型07 已知方程的解求参数23.(2023·湖南永州·中考真题)关于x的一元一次方程2x+m=5的解为x=1,则m的值为()A.3B.−3C.7D.−724.(2021·浙江金华·中考真题)已知x=2y=m是方程3x+2y=10的一个解,则m的值是.25.(2023·江苏镇江·中考真题)若x=1是关于x的一元二次方程x2+mx−6=0的一个根,则m的值为.26.(2023·四川内江·中考真题)已知a、b是方程x2+3x−4=0的两根,则a2+4a+b−3=.题型08 根据一元二次方程根的情况求参数27.(2023·广东广州·中考真题)已知关于x的方程x2−(2k−2)x+k2−1=0有两个实数根,则(k−1)2−(2−k )2的化简结果是( )A .−1B .1C .−1−2kD .2k−328.(2023·江苏连云港·中考真题)若关于x 的一元二次方程x 2−2x +m =0有两个不相等的实数根,则m 的取值范围是 .29.(2021·四川内江·中考真题)若关于x 的一元二次方程ax 2+4x−2=0有实数根,则a 的取值范围为 .30.(2023·湖北襄阳·中考真题)关于x 的一元二次方程x 2+2x +3−k =0有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个根为α,β,且k 2=αβ+3k ,求k 的值.题型09 根据一元一次不等式组的整数解求参数的取值范围31.(2023·广东潮州·二模)如果关于x 的不等式组6x−m ≥05x−n <0的整数解仅为1,2,3,那么适合这个不等式组的整数对(m,n )共有( )A .42对B .36对C .30对D .11对32.(2024·河南安阳·一模)已知不等式组2(x−1)>3x +12x <a,有四个整数解,则a 的取值范围为 .33.(2023·四川宜宾·中考真题)若关于x+1>x +a①1≥52x−9②所有整数解的和为14,则整数a 的值为 .题型10 根据一元一次不等式组的解集的情况求参数的取值范围34.(2023·湖北鄂州·中考真题)已知不等式组x−a >2x +1<b的解集是−1<x <1,则(a +b )2023=( )A .0B .−1C .1D .202335.(2023·湖北黄石·中考真题)若实数a 使关于x 的不等式组−2<x−1<3x−a >0的解集为−1<x <4,则实数a的取值范围为.36.(2023·山东聊城·≥x−23≥x的解集为x ≥m ,则m 的取值范围是 .题型11 整式方程(组)与一元一次不等式结合求参数的问题37.(2022·四川泸州·中考真题)若方程x−3x−2+1=32−x 的解使关于x 的不等式(2−a )x−3>0成立,则实数a 的取值范围是 .38.(2023·四川泸州·一模)已知方程3−a a−4−a =14−a ,且关于x 的不等式a ≤x <b 只有3个整数解,则b 的取值范围是 .39.(2021·湖北荆州·中考真题)已知:a 是不等式5(a−2)+8<6(a−1)+7的最小整数解,请用配方法解关于x 的方程x 2+2ax +a +1=0.40.(2022·江苏苏州·一模)若不等式3x +2≤4x−1的最小整数解是方程23x−13mx =1的解,求m 的值.重难点突破 含参类方程与不等式问题解析目 录题型01 根据分式方程解的情况求字母的值或取值范围题型02 整式方程(组)与一元一次不等式组结合求参数的问题题型03 同解方程组题型04 根据二元一次方程组解满足的情况求参数题型05 二元一次方程组整数解问题题型06 利用相反数求二元一次方程组参数题型07 已知方程的解求参数题型08 根据一元二次方程根的情况求参数题型09 根据一元一次不等式组的整数解求参数的取值范围题型10 根据一元一次不等式组的解集的情况求参数的取值范围题型11整式方程(组)与一元一次不等式结合求参数的问题原创精品资源学科网独家享有版权,侵权必究!题型01 根据分式方程解的情况求字母的值或取值范围1.(2023·山东淄博·中考真题)已知x =1是方程m2−x −1x−2=3的解,那么实数m 的值为( )A .−2B .2C .−4D .4【答案】B 【分析】将x =1代入方程,即可求解.【详解】解:将x =1代入方程,得m2−1−11−2=3解得:m =2故选:B .【点睛】本题考查分式方程的解,解题的关键是将x =1代入原方程中得到关于m 的方程.2.(2023·黑龙江牡丹江·中考真题)若分式方程ax +2=1−3x +2的解为负数,则a 的取值范围是( )A .a <−1且a ≠−2B .a <0且a ≠−2C .a <−2且a ≠−3D .a <−1且a ≠−3【详解】解:去分母得:a =x +2−3,解得:x =a +1,∵分式方程ax +2=1−3x +2的解是负数,∴a +1<0,x +2≠0,即a +1+2≠0,解得:a <−1且a ≠−3,故选:D .【点睛】此题主要考查了分式方程的解,正确解分式方程是解题关键.3.(2023·山东日照·中考真题)若关于x的方程xx−1−2=3m2x−2解为正数,则m的取值范围是()A.m>−23B.m<43C.m>−23且m≠0D.m<43且m≠234.(2023·四川巴中·中考真题)关于x的分式方程x+mx−2+12−x=3有增根,则m=.∴m =2x−5=−1,故答案为:−1.【点睛】本题考查分式方程的知识,解题的关键是掌握分式方程的增根.5.(2020·黑龙江牡丹江·中考真题)若关于x 的分式方程2x−1=mx 有正整数解,则整数m 的值是( )A .3B .5C .3或5D .3或4题型02 整式方程(组)与一元一次不等式组结合求参数的问题6.(2020·重庆·中考真题)若关于x x +3≤a的解集为x ≤a ;且关于y 的分式方程y−a y−2+3y−4y−2=1有正整数解,则所有满足条件的整数a 的值之积是( )A .7B .-14C .28D .-56【答案】A【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a 的值,求出之和即可.7.(2023·重庆·中考真题)若关于x的一元一次不等式组2≤42x−a≥2,至少有2个整数解,且关于y的分式方程a−1y−2+42−y=2有非负整数解,则所有满足条件的整数a的值之和是.解得:a≥1且a≠5∴a的取值范围是1≤a≤6,且a≠5∴a可以取:1,3,∴1+3=4,故答案为:4.【点睛】本题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解题关键.8.(2024·重庆·模拟预测)已知关于x的一元一次不等式组2(3−x)+1<−xx+a−2<0有解且最多5个整数解,且关于y的分式方程y+ay−3−3=43−y的解为正整数,则满足条件的所有整数a的和为.故答案为:−20.9.(2024·重庆开州·二模)若关于x的方程x+22−x +axx−2=−2有正整数解,且关于y的不等式组2y−43<22a−y−1≤0至少有两个整数解,则符合条件的所有整数a的和为.故答案为:1.10.(2024·四川成都·模拟预测)若整数a使得关于x的分式方程ax−122−x +3=xx−2有整数解,且使得二次函数y=(a−2)x2+2(a−1)x+a+1的值恒为非负数,则所有满足条件的整数a的值之和是.题型03 同解方程组11.(2020·广东·中考真题)已知关于x,y的方程组ax+23y=−103x+y=4与x−y=2x+by=15的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.12.(2021·广东·二模)解关于x、y的方程组时,小明发现方程组ax+by=2x−y=8的解和方程组5x+2y=b2x+3y=−9的解相同.(1)求方程组的解;(2)求关于t的方程(at﹣b)2+2(at﹣b)﹣3=0的解.题型04 根据二元一次方程组解满足的情况求参数13.(2023·四川眉山·x,y的二元一次方程组3x−y=4m+1x+y=2m−5的解满足x−y=4,则m 的值为()A.0B.1C.2D.3【答案】B【分析】将方程组的两个方程相减,可得到x−y=m+3,代入x−y=4,即可解答.【详解】解:3x−y=4m+1①x+y=2m−5②,①−②得2x−2y=2m+6,∴x−y=m+3,代入x−y=4,可得m+3=4,解得m=1,故选:B.【点睛】本题考查了根据解的情况求参数,熟练利用加减法整理代入是解题的关键.14.(2022·山东聊城·中考真题)关于x,y的方程组2x−y=2k−3x−2y=k的解中x与y的和不小于5,则k的取值范围为()A.k≥8B.k>8C.k≤8D.k<8【答案】A【分析】由两式相减,得到x+y=k−3,再根据x与y 的和不小于5列出不等式即可求解.【详解】解:把两个方程相减,可得x+y=k−3,根据题意得:k−3≥5,解得:k≥8.所以k的取值范围是k≥8.故选:A.【点睛】本题考查二元一次方程组、不等式,将两式相减得到x与y的和是解题的关键.2,写出15.(2023·四川泸州·中考真题)关于x,y的二元一次方程组2x+3y=3+ax+2y=6的解满足x+y>2a的一个整数值.16.(2024·浙江宁波·模拟预测)若关于x,y的方程组2x−y=5kx+y=4k+3的解满足x−y≤5,则k的取值范围是.【答案】k≤3【分析】本题主要考查二元一次方程组和一元一次不等式的解法,把方程组的解求出,即用k表示出x、y,代入不等式x−y≤5,转化为关于k的一元一次不等式,可求得k的取值范围.【详解】解:2x−y=5k①x+y=4k+3②由①+②可得:3x=9k+3,所以:x=3k+1③把③代入②得:3k+1+y=4k+3,解得:y=k+2,代入x−y≤5可得:3k+1−(k+2)≤5,解得:k≤3,故答案为:k≤3.题型05 二元一次方程组整数解问题17.(2022·广东揭阳·模拟预测)如果关于x,y的方程组4x−3y=66x+my=26的解是整数,那么整数m的值为( )A.4,−4,−5,13B.4,−4,−5,−13C.4,−4,5,13D.−4,5,−5,13318.(23-24八年级上·重庆沙坪坝·期末)关于x,y的二元一次方程组kx+y=43x+y=0的解为整数,关于z的不等式组3z>z−44z−2k−13≤1有且仅有2个整数解,则所有满足条件的整数k的和为( )A.6B.7C.11D.1219.(22-23七年级下·重庆·阶段练习)已知关于x,y的二元一次方程组12x−y=1的解为整数,且关于z的方程z−a2−z3=1的解为非负数,求满足条件的所有整数a的和为()A.2B.4C.9D.11题型06 利用相反数求二元一次方程组参数20.(2022·四川南充·二模)已知x、y满足方程组x+2y=2m−12x+y=5,且x与y互为相反数,则m的值为()A.m=−2B.m=2C.m=−3D.m=3【答案】A【分析】根据题意可得x+y=0,由方程组的解法可得3x+3y=2m+4,代入计算即可.【详解】解:x+2y=2m−1①2x+y=5②,①+②得,3x+3y=2m+4,即3(x+y)=2m+4,又∵x与y互为相反数,∴x+y=0,即2m+4=0,解得m=-2,故选:A.【点睛】本题考查二元一次方程组的解,掌握二元一次方程组的解法以及相反数的定义是正确解答的前提.21.(2020·浙江杭州·模拟预测)已知关于x,y的方程组3x−5y=2ax−2y=a−5则下列结论中正确的是()①当a=5时,方程组的解是x=10y=20;②当x,y的值互为相反数时,a=20;③当2x⋅2y=212时,a=14;④不存在一个实数a,使得x=y.A.①②④B.①②③C.②③④D.②③由题意得:x+y=12,把x=25−ay=15−a代入得:25-a+15-a =12,解得:a=14,本选项正确;④若x=y,则有−2x=2a−x=a−5,可得a=a-5,矛盾,故不存在一个实数a使得x=y,本选项正确.则正确的选项有②③④,故选:C.【点睛】本题考查二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.22.(2021·内蒙古包头·二模)若满足方程组4x+y=3m+32x−y=m−1的x与y互为相反数,则m的值为()A.2B.−2C.11D.−11题型07 已知方程的解求参数23.(2023·湖南永州·中考真题)关于x的一元一次方程2x+m=5的解为x=1,则m的值为()A.3B.−3C.7D.−7【答案】A【分析】把x=1代入2x+m=5再进行求解即可.【详解】解:把x=1代入2x+m=5得:2+m=5,解得:m=3.故选:A.【点睛】本题主要考查了一元一次方程的解,以及解一元一次方程,解题的关键是掌握使一元一次方程左右两边相等的未知数的值是一元一次方程的解,以及解一元一次方程的方法和步骤.24.(2021·浙江金华·中考真题)已知x=2y=m是方程3x+2y=10的一个解,则m的值是.【答案】2【分析】把解代入方程,得6+2m=10,转化为关于m的一元一次方程,求解即可.【详解】∵x=2y=m是方程3x+2y=10的一个解,∴6+2m=10,解得m=2,故答案为:2.【点睛】本题考查了二元一次方程的解,一元一次方程的解法,灵活运用方程的解的定义,转化为一元一次方程求解是解题的关键.25.(2023·江苏镇江·中考真题)若x=1是关于x的一元二次方程x2+mx−6=0的一个根,则m的值为.26.(2023·四川内江·中考真题)已知a、b是方程x2+3x−4=0的两根,则a2+4a+b−3=.【答案】−2【分析】利用一元二次方程的解的定义和根与系数的关系,可得a+b=−3,a2+3a−4=0,从而得到a2+3a=4,然后代入,即可求解.【详解】解:∵a,b是方程x2+3x−4=0的两根,∴a+b=−3,a2+3a−4=0,∴a2+3a=4,∴a2+4a+b−3=a2+3a+a+b−3=4+(−3)−3=−2.故答案为:−2.【点睛】本题主要考查了一元二次方程的解的定义和根与系数的关系,熟练掌握一元二次方程的解的定义和根与系数的关系是解题的关键.题型08 根据一元二次方程根的情况求参数27.(2023·广东广州·中考真题)已知关于x的方程x2−(2k−2)x+k2−1=0有两个实数根,则(k−1)2−(2−k)2的化简结果是()A.−1B.1C.−1−2k D.2k−328.(2023·江苏连云港·中考真题)若关于x的一元二次方程x2−2x+m=0有两个不相等的实数根,则m的取值范围是.【答案】m<1【分析】此题考查了根的判别式,熟练掌握根的判别式与方程解的情况之间的关系是解本题的关键.根据方程有两个不相等的实数根,得到根的判别式大于0,求出m的范围即可.【详解】解:∵关于x的一元二次方程x2−2x+m=0有两个不相等的实数根,∴Δ=4−4m>0,解得:m<1.故答案为:m<1.29.(2021·四川内江·中考真题)若关于x的一元二次方程ax2+4x−2=0有实数根,则a的取值范围为.30.(2023·湖北襄阳·中考真题)关于x的一元二次方程x2+2x+3−k=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两个根为α,β,且k2=αβ+3k,求k的值.题型09 根据一元一次不等式组的整数解求参数的取值范围31.(2023·广东潮州·二模)如果关于x的不等式组6x−m≥05x−n<0的整数解仅为1,2,3,那么适合这个不等式组的整数对(m,n)共有( )A.42对B.36对C.30对D.11对33.(2023·四川宜宾·中考真题)若关于x +1>x+a①1≥52x−9②所有整数解的和为14,则整数a的值为.综上,整数a的值为2或−1故答案为:2或−1.【点睛】本题考查了含参数的一元一次不等式组的整数解问题,掌握一元一次不等式组的解法,理解参数的意义是解题的关键.题型10 根据一元一次不等式组的解集的情况求参数的取值范围34.(2023·湖北鄂州·中考真题)已知不等式组x−a>2x+1<b的解集是−1<x<1,则(a+b)2023=( )A.0B.−1C.1D.202335.(2023·湖北黄石·中考真题)若实数a使关于x的不等式组−2<x−1<3x−a>0的解集为−1<x<4,则实数a 的取值范围为.【答案】a≤−1/−1≥a【分析】根据不等式的性质解一元一次不等组,再根据不等式组的取值方法即可且求解.【详解】解:−2<x−1<3①x−a>0②,由①得,−1<x <4;由②得,x >a ;∵解集为−1<x <4,∴a ≤−1,故答案为:a ≤−1.【点睛】本题主要考查解不等式组,求不等式组解集,掌握解不等式组的方法,不等组的取值方法等知识是解题的关键.题型11 整式方程(组)与一元一次不等式结合求参数的问题37.(2022·四川泸州·中考真题)若方程x−3x−2+1=32−x 的解使关于x 的不等式(2−a )x−3>0成立,则实数a 的取值范围是 .把x =1代入不等式(2−a )x−3>0得:2−a−3>0解得a <−1故答案为:a <−1【点睛】本题综合考查分式方程的解法和一元一次不等式的解法,解题的关键是熟记相关运算法则.38.(2023·四川泸州·一模)已知方程3−a a−4−a =14−a ,且关于x 的不等式a ≤x <b 只有3个整数解,则b 的取值范围是 .39.(2021·湖北荆州·中考真题)已知:a 是不等式5(a−2)+8<6(a−1)+7的最小整数解,请用配方法解关于x 的方程x 2+2ax +a +1=0.25 / 3140.(2022·江苏苏州·一模)若不等式3x +2≤4x−1的最小整数解是方程23x−13mx =1的解,求m 的值.。
中考数学复习:第二章:方程与不等式专题复习
分式方程及其应用
•中考预知 •1、分式方程的解法; •2、分式方程实际的应用。
考点1:分式方程的解法
• 1.分式方程:分母中含有字母的方程叫分式方程. • 2.解分式方程的一般步骤: • (1)去分母,在方程的两边都乘以分母的最小公倍数,约去分母,
化成整式方程;
• (2)解这个整式方程; • (3)验根,把整式方程的根代入最简公分母,看结果是不是零,使
一次方程,它们的解就是原一元二次方程的解.
典例精讲
• 1、下列方程是一元二次方程的是( )
• A.ax2 bx c 0
• B.x2 2x x2 1
• C.x 1x 3 0
• D. 1 x 2 x2
• 2、分别用下列方法解方程
• (1)(2x 1) 2 9(直接开平方法)
(2)4x2–8x+1=0(配方法)
2cx+a=0,cx2+2ax+b=0,不可能都有两个相等的实数根.
• 七、判定三角形的形状 • 例7 设a、b、c是△ABC的三边长,且关于x的方程c(x2+n)+b(x2-n)
-2ax=0(n>0)有两个相等的实数根,试判断△ABC的形状.
• 八、讨论方程有理根的问题 • 例8 m为有理数,讨论后为何值时,方程x2+4(1-m)x+3m2-2m+4k=0
典例精讲
• 1、已知a,b,c均为实数,若a>b,c≠0,下列结论不一定正确的 是( )
• A.a+c>b+c
B.c-a<c-b
• C.
D.a2>ab>b2
• 2、若a>b,则下列不等关系一定成立的是( )
• A. ac bc
B. a b cc
C. c a c b D. a c b c
2017年安徽省中考数学试卷(含答案解析版)
2017年安徽省中考数学试卷一、选择题(每题4分,共40分)1.(4分)的相反数是()A. B.﹣C.2 D.﹣22.(4分)计算(﹣a3)2的结果是()A.a6B.﹣a6 C.﹣a5D.a53.(4分)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为()A.B.C.D.4.(4分)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为( )A.16×1010B.1.6×1010 C.1.6×1011 D.0.16×10125.(4分)不等式4﹣2x>0的解集在数轴上表示为()A. B.C. D.6.(4分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为()A.60° B.50° C.40° D.30°7.(4分)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2608.(4分)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足( )A.16(1+2x)=25 B.25(1﹣2x)=16 C.16(1+x)2=25 D.25(1﹣x)2=169.(4分)已知抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A.B.C.D.10.(4分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B 两点距离之和PA+PB的最小值为()A. B. C.5 D.二、填空题(每题5分,共20分)11.(5分)27的立方根为.12.(5分)因式分解:a2b﹣4ab+4b= .13.(5分)如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为.14.(5分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=30cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),减去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为cm.三、(每题8分,共16分)15.(8分)计算:|﹣2|×cos60°﹣()﹣1.16.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物、人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.四、(每题8分,共16分)17.(8分)如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD 都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0。
中考数学复习第二单元方程(组)与不等式(组)课时训练一元一次不等式(组)及其应用
课时训练(七)一元一次不等式(组)及其应用(限时:35分钟)|夯实基础|1.[2019·广安]若m>n,下列不等式不一定成立的是()A.m+3>n+3B.-3m<-3nC.>D.m2>n22.[2019·陇南]不等式2x+9≥ (x+2)的解集是()A.x≤B.x≤-3C.x≥D.x≥-33.[2018·益阳]不等式组211-2的解集在数轴上表示正确的是 ()图K7-14.[2019·德州]不等式组2(-112-1-2的所有非负整数解的和是()A.10B.7C.6D.05.[2019·南充]若关于x的不等式2x+a≤1只有2个正整数解,则a的取值范围为 ()A.-5<a<-3B.- ≤a<-3C.-5<a≤-3D.- ≤a≤-36.[2019·聊城]若不等式组12-1无解,则m的取值范围为()A.m≤2B.m<2C.m≥2D.m>27.[2019·重庆B卷]某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分超过120分,他至少要答对的题的个数为()A.13B.14C.15D.168.[2019·绵阳]红星商店计划用不超过4200元的资金购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种9.[2019·株洲]若a 为有理数,且2-a 的值大于1,则a 的取值范围为 . 10.[2019·益阳]不等式组-1 0 -的解集为 .11.[2019·大庆]已知x=4是不等式ax -3a -1<0的解,x=2不是不等式ax -3a -1<0的解,则实数a 的取值范围是 . 12.[2019·包头]已知不等式组 2 9 - 1 - 1的解集为x>-1,则k 的取值范围是 .13.[2019·宜宾]若关于x 的不等式组-2-12 - 2- 有且只有两个整数解,则m 的取值范围是 .14.[2018·山西]2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高之和不超过115 cm .某厂家生产符合该规定的行李箱,已知行李箱的宽为20 cm,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为cm .15.(1)解不等式:4(x -1)-12<x.(2)[2019·新疆]解不等式组: 2 ( -2 ①22 -②并把解集在数轴上表示出来.16.若不等式组2112(-的整数解是关于x的方程2x-4=ax的解,求a的值.17.[2019·荆州]为拓宽学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生.现有甲、乙两种大型客车,它们的载客量和租金如表所示:2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆.(3)学校共有几种租车方案?最少租车费用是多少? |拓展提升|18.[2019·镇江]下列各数轴上表示的x的取值范围可以是不等式组2(2-1 -0的解集的是()图K7-219.[2019·重庆B卷]若数a使关于x的不等式组-21(--2(1-有且仅有三个整数解,且使关于y的分式方程1-2-11-=-3的解为正数,则所有满足条件的整数a的值之和是() A.-3 B.-2 C.-1 D.1【参考答案】1.D2.A3.A4.A [解析]解不等式5x +2>3(x -1),得x>-2;解不等式12x -1≤ -2x ,得x ≤ ; ∴不等式组的解集为-2<x ≤ .∴不等式组的非负整数解为0,1,2,3,4,这些非负整数解的和为10. 故选A .5.C [解析]解不等式2x +a ≤1 得:x ≤1-2, 不等式有两个正整数解,一定是1和2, 根据题意得:2≤1-2<3,解得:-5<a ≤-3. 故选C .6.A [解析]解不等式1 < 2-1,得x>8,当4m ≤8时,原不等式组无解,∴m ≤2 故选A . 7.C [解析] 设小华答对的题的个数为x 题,则答错或不答的题的个数为(20-x )题,可列不等式10x -5(20-x )>120,解得x>142,即他至少要答对的题的个数为15题.故选C . 8.C [解析]设该店购进甲种商品x 件,则购进乙种商品(50-x )件, 根据题意,得:0 100( 0- 200 10 20( 0- 0解得:20≤x<25,∵x 为整数,∴x=20,21,22,23,24, ∴该店进货方案有5种. 9.a<1 10.x<-311.a ≤-1 [解析]因为x=4是不等式ax -3a -1<0的解,所以4a -3a -1<0,a<1, 因为x=2不是不等式ax -3a -1<0的解, 所以2a -3a -1≥0 所以a ≤-1,所以a ≤-1.12.k ≤-2 [解析] 解2x +9>-6x +1得x>-1.解x -k>1得x>k +1.∵不等式组的解集为x>-1,∴k +1≤-1,解得k ≤-2.13.-2≤m<1 [解析]-2-1 ① 2 - 2- ② 解不等式①得:x>-2, 解不等式②得:x ≤2 ,∴不等式组的解集为-2<x ≤2,∵不等式组只有两个整数解, ∴0≤2 <1,解得:-2≤m<1,故答案为-2≤m<1.14.55 [解析] 设长为8x cm,高为11x cm,由题意可得20+8x +11x ≤11 解得:x ≤ .∴11x ≤ .15.解:(1)化简4(x -1)-12<x 得4x -4-12<x , ∴3x<92,∴x<2,∴原不等式的解集为x<2.(2)解不等式①,得:x<2. 解不等式②,得:x>1.所以,不等式组的解集为:1<x<2. 在数轴上表示如图所示:16.解:解不等式组得-1 -所以不等式组的解集为-3<x<-1, 则满足条件的整数解为-2,把x=-2代入方程2x -4=ax ,得-4-4=-2a ,解得a=4.17.[解析] (1)设参加此次研学活动的老师有x 人,学生有y 人,根据“若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生” 即可得出关于x ,y 的二元一次方程组,解之即可得出结论.(2)利用租车总辆数(至少)=师生人数÷ 结合每辆客车上至少要有2名老师,即可得出租车总辆数为8辆.(3)设租35座客车m 辆,则需租30座的客车(8-m )辆,根据8辆车的座位数不少于师生人数及租车总费用不超过3000元,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m 为正整数即可得出租车方案数.设租车总费用为w 元,根据租车总费用= 00×租用35座客车的数量+ 20×租用30座客车的数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质即可解决最值问题.解:(1)设参加此次研学活动的老师有x 人,学生有y 人, 依题意,得: 1 10 1 - 解得: 1 2答:参加此次研学活动的老师有16人,学生有234人.(2)8 [解析] ∵每辆车上至少要有2名老师,∴客车总数不超过8辆,又要保证所有师生都有车坐,∴客车总数不能小于2 1= 0 (取整为8)辆,综合起来可知租车总辆数为8辆.故答案为:8.(3)设租35座客车m 辆,则需租30座的客车(8-m )辆, 依题意,得: 0(8- 2 1 00 20(8- 000解得:2≤m ≤ 12.∵m 为正整数,∴m=2,3,4,5,∴共有4种租车方案. 设租车总费用为w 元,则w=400m +320(8-m )=80m +2560, ∵80>0,∴w 的值随m 值的增大而增大, ∴当m=2时,w 取得最小值,最小值为2720. ∴学校共有4种租车方案,最少租车费用是2720元. 18.B [解析]由x +2>a 得x>a -2,A .由数轴知x>-3,则a=-1,∴-3x -6<0,解得x>-2,与数轴不符;B .由数轴知x>0,则a=2,∴3x -6<0,解得x<2,与数轴相符合;C .由数轴知x>2,则a=4,∴7x -6<0,解得x<,与数轴不符;D .由数轴知x>-2,则a=0,∴-x -6<0,解得x>-6,与数轴不符;故选B . 19.A [解析] 第一部分:解一元一次不等式组 -2 1( - ①-2 (1- ② 解不等式①,得:x ≤ 解不等式②,得:x> 2 11. 因为有且仅有三个整数解, 所以三个整数解分别为:3,2,1. 所以2 11的范围为0≤2 11<1,解得-2. ≤a<3.第二部分:求分式方程1-2-11-=-3的解,得y=2-a ,根据分式方程的解为正数和分式方程的分母不能为零,得0 1 即 2-0 2- 1解得:a<2且a ≠1. 第三部分:根据第一部分a 的范围和第二部分a 的范围,找出a 的公共范围:-2. ≤a<2且a ≠1所以满足条件的整数a 为-2,-1,0. 它们的和为:-2-1+0=-3. 故选A .。
中考数学复习分类精品课件:第二单元《方程与不等式》
;
(2)已知 A,B 两件服装的成本共 500 元,鑫洋服装店老板分别以 30% 和 20%的利润率定价后进行销售,该服装店共获利 130 元,问 A,B 两件 服装的成本各是多少元?
解:设 A 服装的成本为 x 元,根据题意,得 30%x+20%(500-x)=130.解得 x=300. 则 500-x=200. 答:A,B 两件服装的成本分别为 300 元,200 元.
的关系;
(2)设:设关键未知数(可设直接或间接未知数);
(3)列:根据题意寻找⑲ 等量关系
列方程(组);
(4)解:解方程(组);
(5)验:检验所解答案是否正确,是否符合题意和实际情况;
(6)答:规范作答,注意单位名称.
2.常见的应用题类型及基本数量关系:
常见类型
基本数量关系
路程=速度×时间
相遇
行
甲走的路程+乙走的路程=两地距离.
(2)面积问题常见图形:
(3)利润问题; (4)握手问题.
7.(1)某药品经过两次降价,每瓶零售价由 100 元降为 81 元.已知两 次降价的百分率都为 x,那么 x 满足的方程是 100(1-x)2=81 ;
(2)某机械厂七月份营业额为 1 000 万元,第三季度总的营业额为 3 990 万元.设该厂八、九月份平均每月的营业额增长率为 x,那么 x 满足的方程 是1 000+1 000(1+x)+1 000(1+x)2=3 990 .
3.解下列方程: (1)2(x+3)=5x; 解:去括号,得 2x+6=5x. 移项,得 2x-5x=-6. 合并同类项,得-3x=-6. 系数化为 1,得 x=2.
(2)x+2 1-2=x4. 解:去分母,得 2(x+1)-8=x. 去括号,得 2x+2-8=x. 移项,得 2x-x=8-2. 合并同类项,得 x=6.
最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编
中考数学方程(组)与不等式(组)复习知识点总结一、方程【知识梳理】1、知识结构方程分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。
(2)含有2个未知数,并且所含未知数的项的次数都是1次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.(4)二元一次方程组的解法有法和法.(5)只含有1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为)0(02a cbx ax。
(6)解一元二次方程的方法有:①直接开平方法;②配方法;③公式法;④因式分解法例:(1)042x(2)0342x x(3)4722x x (4)0232x x(7)一元二次方程的根的判别式:ac b42叫做一元二次方程的根的判别式。
对于一元二次方程)0(02a cbx ax当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根;反之也成立。
(8)一元二次方程的根与系数的关系:如果)0(02acbx ax的两个根是21,x x 那么ab x x 21,ac x x 21(9)一元二次方程)0(02a cbx ax的求根公式:)04(2422ac baacb bx(10)分母中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是将分式方程通过去分母转化为整式方程.◆解分式方程的步骤◆1、去分母,化分式方程为整式方程;◆2、解这个整式方程;◆3、验根。
注意:(1)解分式方程的基本思想是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.(2)因为解分式方程时可能产生增根,所以解分式方程必须检验,检验是解分式方程必要的步骤.二、不等式【知识梳理】1、知识结构解法性质概念不等式2、知识扫描(1) 只含有一个未知数,并且未知数的次数是1,系数不为 0 的不等式,叫做一元一次不等式。
中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用
4.(2021·荆门第 15 题 3 分)关于 x 的不等式组1+32x≥x-1 恰有 2 个
整数解,则 a 的取值范围是 5≤5a≤<a<6. 6
2x≥x-1, ① 5.(2021·武汉第 17 题 8 分)解不等式组4x+10>x+1 ②请按下列步骤 完成解答. (1)解不等式①,得 x≥x≥--11; (2)解不等式②,得 x>x>--33;
3x-2≥1, (2021·通辽)若关于 x 的不等式组2x-a<5 有且只有 2 个整数 解,则 a 的取值范围是-1-<a1<a≤≤11..
【思路点拨】先求出不等式组的解集(用含字母 a 的代数式表示),再根 据不等式组有且只有 2 个整数解,可推出 a 的取值范围.
解含参不等式(组)的 8 个“母题”: (1)若不等式 ax>a 的解集是 x>1,则 a>0; (2)若不等式 x>a 的解集是 x>2,则 a=2;
第四节 一元一次不等式(组) 及其应用
命题点 1:一元一次不等式组的解法及解集表示(近 3 年考查 18 次)
x-1<-3, 1.(2020·黄石第 6 题 3 分)不等式组2x+9≥3 的解集是
(
C)
A.-3≤x<3
B.x≥-2
C.-3≤x<-2
D.x≤-3
x-4≤2(x-1),
某中学以体育为突破口,准备从体育用品商场一次性购买若干个足球和 篮球,用于学校球类比赛活动,每个足球的价格都相同,每个篮球的价 格也相同,已知篮球的单价比足球单价的 2 倍少 30 元,用 1 200 元购买 足球的数量是用 900 元购买篮球数量的 2 倍.
(1)足球和篮球的单价各是多少元? (2)根据学校实际情况,需一次性购买足球和篮球共 200 个,但要求足球 和篮球的总费用不超过 15 500 元,学校最多可以购买多少个篮球?
中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用
重难点 2:一元一次不等式的应用 在某次篮球联赛初赛阶段,每队共有 10 场比赛,每场比赛都要分出
胜负,每队胜一场得 2 分,负一场得 1 分,积分超过 15 分才能获得参加 决赛资格. (1)已知甲队在初赛阶段的积分为 18 分,求甲队初赛阶段胜、负各多少 场; (2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少 场?
4.对于带有单位的应用题,设未知数和答时要带单位. 评分说明: (1)正确地设未知数并列出方程或方程组得 2 分; (2)方程或方程组解答正确得 1 分,解答的具体过程不是得分点,可以省 略;
(3)写出“答”得 1 分; (4)正确地设未知数并列出不等式得 2 分; (5)解不等式的过程不是得分点,可以省略,正确地写出不等式的解得 1 分; (6)正确地写出“答”得 1 分.
(1)【教你审题】设甲队初赛阶段胜 x 场,负 y 场.
原题信息
整理后的信息
在某次篮球联赛初赛阶段,每队共 x+y=10
有 10 场比赛
每队胜一场得 2 分,负一场得 1 分, 2x+y=18
甲队在初赛阶段的积分为 18 分
解:设甲队初赛阶段胜 x 场,负 y 场,由题意得,
x+y=10, 2x+y=18,(2 分)
积分超过 15 分才能获得参加决赛 2a+(10-a)>15
资格,乙队要获得参加决赛资格
解:设乙队初赛阶段胜 a 场,则负(10-a)场,由题意得, 2a+(10-a)>15,(6 分) 解得 a>5.(7 分) 答:乙队在初赛阶段至少要胜 6 场.(8 分)
1.设未知数时,表示不等关系的文字如“至少”等不能出现,即应给出 肯定的未知数的设法. 2.对于不等式的应用,应注意一些关键词语,从而建立不等式模型,例 如“不少于≥”“不超过≤”“至少≥”“最多≤”“不高于≤”等. 3.不等式的应用还需要验根,题目中用字母表示的量要符合实际意义, 如人数是正整数,时间不能为负数等.
安徽地区中考数学复习第二单元方程组与不等式组第10课时一元一次不等式的应用教案
第二单元方程(组)与不等式(组)第10课时一元一次不等式的应用教学目标【考试目标】1.能够根据具体问题中的数量关系,列出一元一次不等式解决简单的问题.2.能根据具体问题的实际意义,检验结果是否合理.【教学重点】学会列不等式解应用题的方法步骤.教学过程一、体系图引入,引发思考二、引入真题,深化理解【例1】(2016年钦州)某水果商行计划购进A 、B 两种水果共200箱,这两种水果的进价、售价如下表所示:(1)若该商行进货款为1万元,则两种水果各购进多少箱?(2)若商行规定A 种水果进货箱数不低于B 种水果进货箱数的13,应该怎样进货才能使这批水果售完后商行获利最多?此时利润为多少?解:(1)设A 种水果进货箱数为x ,则B 种水果进货(200-x )箱,根据题意可得,60x +40(200-x )=10000.解得x =100,200-x =100.∴A 种水果进货100箱,B 种水果进货也为100箱.(2)设A 种水果进货a 箱,B 种水果进货(200-a )箱,售完这些水果的利润为b 则b =a (70-60)+(200-a )(55-40)=-5a +3000.∵-5<0,∴b 随着a 增大而减小, ,解得a ≥50,当a =50时b 最大,此时b =2750, 即进货A 种水果50箱B 种水果150箱时,获取利润最大,此时利润为2750元.【考点】此题考查了一元一次方程以及一元一次不等式的应用,根据已知条件设未知数,列出方程式解决此类问题的关键.【例2】(2016年繁昌县一模)甲在集市上先买了3只羊,平均每只a 元,稍后又买了两只,平均每只羊b 元,后来他以每只 元的价格把羊全卖给了乙,结果发现赔了钱,赔钱的原因是 (A )A .a >b B.a =b C .a <b D.与a 、b 大小无关.【解析】解决该问题的关键是根据数量关系列出不等式,因为赔钱,所以买入的价格大于卖出的价格,即 ,解得a >b ,故选择A.【考点】本题考查了一元一次不等式的应用,根据已知条件列出方程是解决此题的关键.三、师生互动,总结知识先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:同步导练()12003a a ≥-2a b +3252>a b a b ++⋅教学反思同学们对本节的内容理解很到位,要多加保持.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二单元方程(组)与不等式(组)
第10课时一元一次不等式的应用
教学目标
【考试目标】
1.能够根据具体问题中的数量关系,列出一元一次不等式解决简单的问题.
2.能根据具体问题的实际意义,检验结果是否合理.
【教学重点】
学会列不等式解应用题的方法步骤.
教学过程
一、体系图引入,引发思考
二、引入真题,深化理解
【例1】(2016年钦州)某水果商行计划购进A、B两种水果共200箱,这两种水果的进价、售价如下表所示:
(1)若该商行进货款为1万元,则两种水果各购进多少箱?
(2)若商行规定A种水果进货箱数不低于B种水果进货箱数的1
3,应该怎样进货才能使这
批水果售完后商行获利最多?此时利润为多少?
解:(1)设A种水果进货箱数为x,则B种水果进货(200-x)箱,
箱,B种水果进货也为100箱.
(2)设A种水果进货a箱,B种水果进货(200-a)箱,售完这些水果的利润为b则b=a(70-60)+(200-a)(55-40)=-5a+3000.∵-5<0,∴b随着a增大而减小,
,解得a≥50,当a=50时b最大,此时b=2750,
即进货A种水果50箱B种水果150箱时,获取利润最大,此时利润为2750元.
【考点】此题考查了一元一次方程以及一元一次不等式的应用,根据已知条件设未知数,列出方程式解决此类问题的关键.
【例2】(2016年繁昌县一模)甲在集市上先买了3只羊,平均每只a元,稍后又买了两只,平均每只羊b元,后来他以每只元的价格把羊全卖给了乙,结果发现赔了钱,赔钱的原因是(A)
A.a>b
B.a=b
C.a<b
D.与a、b大小无关.
【解析】解决该问题的关键是根据数量关系列出不等式,因为赔钱,所以买入的价格大于卖出的价格,即,解得a>b,故选择A.
【考点】本题考查了一元一次不等式的应用,根据已知条件列出方程是解决此题的关键. 三、师生互动,总结知识
先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.
课后作业
布置作业:同步导练
教学反思
同学们对本节的内容理解很到位,要多加保持.。