北师大版小学数学三年级下册1图形的运动
新北师大版三年级下册数学第二单元《图形的运动》知识点总结(全)
1.轴对称把一个图形沿着一条直线对折后,折痕两侧的图形能够完全重合,这个图形就叫做轴对称图形,折痕所在的直线叫做对称轴。
常见的轴对称图形有:长方形、正方形、圆形、等边三角形。
字母是轴对称图形的有:A、B、C、D、E、H、I、 K、M、O、T、V、U、W、X、Y。
长方形有2条对称轴对称轴,圆有无数条对称轴,等边三角形有3条对称轴,等腰三角形有1条对称轴,等腰梯形有1条对称轴;正n边形有n条对称轴。
(n≥3)①特点:轴对称图形的大小不变,但方向相反;两个对称点到对称轴的距离相等。
②画法:定点数格—找对称点—描图。
一是找出图形上每条线段的端点;二是根据对称轴画出每个端点的对称点;三是依次连接这些对称点,得到轴对称图形的另一半。
2.平移物体(或图形)沿着直线运动的现象叫做平移。
生活中常见的平移现象:拨算盘、升国旗、光盘的出入仓、拉开抽屉、火车、电梯和缆车的运动。
方向(上、下、左、右)①两要素距离②特点:平移前后图形的形状、大小、方向不变,只是位置发生改变。
③画法:定点数格—找对应点—描图。
一是找出图形的一个端点;二是根据平移的方向和距离画出这个端点的对应点;三是根据图形的形状画出平移后的图形。
3.旋转物体(或图形)绕着一个点或一个轴做圆弧或圆周运动的现象叫做旋转。
生活中常见的旋转现象:拧水龙头、汽车方向盘的转动、风车的转动、翻书、风扇叶片、螺旋桨和钟摆的运动。
特点:旋转前后图形的形状、大小不变,但是位置和方向发生改变。
4.设计图案一个简单的图形运用轴对称、平移或旋转的方法,可以设计出一幅美丽的图案。
三年级下册数学教案-图形的运动整理与复习|北师大版
三年级下册数学教案图形的运动整理与复习|北师大版教案:三年级下册数学教案图形的运动整理与复习|北师大版一、教学内容本节课的教学内容主要包括北师大版三年级下册第五单元“图形的运动”中的相关知识点。
具体包括:平移和旋转的定义、特点及实际应用;图形的对称性;图形运动的规律等。
二、教学目标1. 使学生理解平移和旋转的概念,能够识别和判断生活中的平移和旋转现象。
2. 培养学生运用图形运动的知识解决实际问题的能力。
3. 增强学生的空间想象能力和动手操作能力。
三、教学难点与重点1. 教学难点:理解平移和旋转的定义,以及它们在实际中的应用。
2. 教学重点:掌握平移和旋转的性质,能够运用所学知识解决实际问题。
四、教具与学具准备1. 教具:多媒体课件、挂图、学生活动卡片等。
2. 学具:学生活动卡片、练习本、彩笔等。
五、教学过程1. 导入:通过多媒体展示生活中的平移和旋转现象,引导学生思考平移和旋转的定义和特点。
2. 新课导入:介绍平移和旋转的概念,引导学生通过观察和操作,理解平移和旋转的性质。
3. 课堂讲解:讲解平移和旋转的特点,以及它们在实际中的应用。
通过挂图和多媒体课件,让学生更直观地理解平移和旋转。
4. 课堂练习:学生分组进行实践活动,运用平移和旋转的知识解决实际问题。
教师巡回指导,及时纠正学生的错误。
6. 课堂小结:学生分享自己在实践活动中的收获和感悟,对平移和旋转的知识进行巩固。
六、板书设计1. 平移的定义和特点2. 旋转的定义和特点3. 平移和旋转的应用七、作业设计1. 题目:判断下列现象是平移还是旋转,并说明理由。
(1)电梯的上下运动(2)风车的转动(3)汽车的左右移动答案:(1)平移:因为电梯的上下运动是直上直下的,所有点按照同一方向移动了相同的距离。
(2)旋转:因为风车的转动是围绕一个中心点进行的,每个点围绕中心点按照相同的距离移动。
(3)平移:因为汽车的左右移动是直行的,所有点按照同一方向移动了相同的距离。
三年级下册数学期末复习专题讲义(知识点归纳典例讲解同步测试)-2.图形的运动(1)
北师大版三年级下册数学期末复习专题讲义-2.图形的运动【知识点归纳】1.轴对称图形:对折后两边能完全重合的图形是轴对称图形。
2.对称轴:对折后能使两边重合的线叫做对称轴。
3.轴对称图形特点:对称轴是一条直线,对称轴两侧的对应点到对称轴两侧的距离相等,沿对称轴将它对折,左右两边完全重合。
4.轴对称图形有:角、五角星、等腰三角形、等边三角形、等腰梯形、正方形、长方形、圆和正多边形等都是轴对称图形。
轴对称图形至少有一条对称轴。
圆有无数条对称轴,每条圆的直径所在的直线都是圆的对称轴。
正方形有4条对称轴,长方形有2条对称轴。
5.平移:物体或图形,沿着直线运动的现象,叫做平移。
平移不改变图形的形状和大小。
图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。
6.平移特征:图形平移前后的形状和大小无变化,只是位置发生变化。
7.旋转:物体或图形,绕一个点或一个轴转动一个角度的现象叫做旋转。
8.旋转的特征:围绕中心转动。
9.平移和旋转:①相同点:平移和旋转都是物体或图形的位置发生变化,而形状、大小不变。
②不同点:平移是物体沿着直线运动,本身的方向不变;旋转是物体绕着一个点或一个轴转动,本身的方向发生改变。
10.汽车行驶,车身在平移,车轮、方向盘在旋转。
【典例讲解】例1.把一张长方形纸对折一次后剪成,展开后的图形不可能是()A.B.C.D.【分析】由于只对折一次,所以对折的折痕就是图形的对称轴,根据轴对称图形的特征选择即可.【解答】解:一张长方形纸对折后剪成,把它展开后可能得到,不可能是,因为没有体现右上角的一道剪口.故选:D.【点评】解答此题的关键是轴对称图形的意义及特征.如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,折痕所在的直线叫做对称轴.例2.把一张纸对折再剪一剪,展开后的图形可能是②.【分析】被剪下的部分上面是三角形的一半,下面是长方形的一半,所以打开后上面是三角形,下面是长方形.它的展开图可能是②.【解答】解:把一张纸对折再剪一剪,展开后的图形可能是②.故答案为:②.【点评】此题考查了轴对称的性质.即对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等.例3.线段不是轴对称图形.×(判断对错)【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这条直线叫做对称轴,这样的图形叫做轴对称图形,据此即可进行解答.【解答】解:线段是轴对称图形,经过它的中点的垂线就是它的对称轴;所以原题说法错误.故答案为:×.【点评】此题主要考查轴对称图形意义的灵活运用.例4.我会做.拿一张长纸条,将它一反一正折叠起来,并画出字母E.用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图.(1)在得到的花边中,相邻的两个图案是什么关系?相间的两个图案可以通过什么得到?(2)观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?【分析】(1)因为是在折叠好的纸上画出字母E,所以相邻两个图案成轴对称,相间的两个图案全等且是可以通过平移得到的;(2)根据轴对称的定义可知三个图案为一组也成轴对称关系.【解答】解:(1)相邻两个图案成轴对称,相间的两个图案全等且是可以通过平移得到的;(2)三个图案为一组也成轴对称关系.【点评】主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.例5.小红将几张正方形纸对折两次后(如图),在不同的位置剪出一个圆孔,每种剪法各对应哪幅图?连一连.【分析】第一种剪法在右上角打孔,左右展开第一道是,再上下展开第二道就是;第二种剪法在右下角打孔,左右展开第一道是再上下展开第二道就是;第三种剪法在左上角打孔,左右展开第一道是,再上下展开第二道就是;第四种剪法在中间打孔,左右展开第一道是,再上下展开第二道就是,据此连线即可.【解答】解:【点评】解答此题的关键是想象出各种剪法的展开图,时间充裕时也可以剪小纸片来观察.【同步测试】一.选择题(共6小题)1.在下面图形中,()不是轴对称图形.A.B.C.2.下列图形中,对称轴条数最少的是()A.圆B.半圆C.等边三角形D.长方形3.如图有()条对称轴.A.1B.2C.3D.44.下列图形对称轴最多的是()A.等边三角形B.半圆C.等腰梯形D.长方形5.下列图形中,一定是轴对称图形的是()A.三角形B.平行四边形C.梯形D.正方形6.一张长方形纸对折后剪成,把它展开后不可能得到的是()A.B.C.二.填空题(共6小题)7.如图共有条对称轴.8.在这些图形中,是轴对称图形的有个,分别是(填序号).9.☆有条对称轴.10.将图形沿着一条直线对折,如果直线两侧的部分能够完全重合,这样的图形叫做,折痕所在的直线叫做它的.11.明明和亮亮合作画一张轴对称图形,明明画出了轴对称图形的左半边(如图),亮亮要沿着虚线画出轴对称图形的右半边,应是数字.12.在A、W、N、S、X、M、Z这些字母中,可以看作轴对称图形.三.判断题(共5小题)13.用两个大小不同的〇组成的图形,一定是轴对称图形.(判断对错)14.这幅照片上的图案是对称的.(判断对错)15.田、子、中这三个汉字都是对称的.(判断对错)16.“H”是轴对称图形.(判断对错)17.该汽车图标是轴对称图形.(判断对错)四.应用题(共4小题)18.下面哪种剪法不会剪出半个人形图案?请在()里画“〇”.再剪一剪,验证一下你的想法是否正确.19.将一张纸对折后剪去两个圆,展开后是哪一个?画“√”.20.拿一张长纸条,将它一反一正折叠起来,并画出字母E.用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图.观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?21.下图中的三角形是从哪张对折后的纸上剪下来的?在()里填上序号.五.操作题(共4小题)22.连一连,下面的图案分别是从哪张对折后的纸上剪下来的?23.画出如图的所有对称轴.(有几条就画几条)24.下面图形中,是轴对称图形的画“√”.25.要求:添加一个正方形,形成一个轴对称图形,并给出3种方案,画出对称轴.六.解答题(共3小题)26.认真想一想,在轴对称图形右边的里画“√”.27.请你用三种不同的方法分别图中添画一个小正方形,使它成为一个轴对称图形.28.下面的图形各有几条对称轴?画一画、数一数、填一填.参考答案与试题解析一.选择题(共6小题)1.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:在下面图形中,不是轴对称图形;故选:C.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,由此即可确定这个图形的对称轴的条数及位置.【解答】解:圆有无数条对称轴,半圆有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,所以半圆的对称轴的条数最少;故选:B.【点评】此题考查了利用轴对称图形的定义判断轴对称图形的对称轴条数及位置的灵活应用.3.【分析】依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,从而找出它们的对称轴.【解答】解:有2条对称轴.故选:B.【点评】此题主要考查如何确定轴对称图形的对称轴条数及位置.4.【分析】根据轴对称图形的定义:一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,这条直线就是它的一条对称轴,据此分别确定出选项中各个图形中对称轴的条数,然后选择即可.【解答】解:等边三角形有3条对称轴,半圆有1条对称轴,等腰梯形有1条对称轴,长方形有2条对称轴;故选:A.【点评】本题主要考查了图形的对称性,对于常见图形的对称性的理解是解决本题的关键.5.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.【解答】解:根据轴对称图形的意义可知:三角形,平行四边形、梯形不一定是轴对称图形,只有正方形一定是轴对称图形;故选:D.【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.6.【分析】由于只对折一次,所以对折的折痕就是图形的对称轴,根据轴对称图形的特征,可知以不同的对称轴对称出来的图形也不同,但不可能没有右上角的一道剪口所形成的图形,据此选择即可.【解答】解:一张长方形纸对折后剪成,把它展开后可能得到:、、不可能是:.故选:B.【点评】解答此题的关键是轴对称图形的意义及特征.如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,折痕所在的直线叫做对称轴.二.填空题(共6小题)7.【分析】根据轴对称图形的定义:一个图形沿一条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,据此即可解答.【解答】解:如图共有4条对称轴.故答案为:4.【点评】此题主要考查如何确定轴对称图形的对称轴条数及位置.8.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:在这些图形中,是轴对称图形的有4个,分别是①③④⑤;故答案为:4,①③④⑤.【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.9.【分析】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是它的对称轴,据此解答即可.【解答】解:☆有5条对称轴;故答案为:5.【点评】此题考查了轴对称图形的定义,要求学生能够正确找出轴对称图形的对称轴.10.【分析】依据轴对称图形的定义即可作答.【解答】解:将图形沿着一条直线对折,如果直线两侧的部分能够完全重合,这样的图形叫做轴对称图形,折痕所在的直线叫做它的对称轴.故答案为:轴对称图形、对称轴.【点评】此题主要考查轴对称图形的定义.11.【分析】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,称这两个图形为轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点,依次即可求解.【解答】解:亮亮要沿着虚线画出轴对称图形的右半边,应是数字2019.故答案为:2019.【点评】考查了轴对称,性质:(1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.12.【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,据此即可进行解答.【解答】解:在A、W、N、S、X、M、Z这些字母中,A、X、W、M可以看作轴对称图形;故答案为:A、X、W、M.【点评】此题主要考查轴对称图形的意义.三.判断题(共5小题)13.【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这条直线叫做对称轴,这样的图形叫做轴对称图形,据此即可进行解答.【解答】解:用两个大小不同的〇组成的图形,一定是轴对称图形,因为经过它们的圆心的直线就是它们的对称轴;所以原题说法正确.故答案为:√.【点评】此题主要考查轴对称图形意义的灵活运用.14.【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这条直线叫做对称轴,这样的图形叫做轴对称图形,据此即可进行解答.【解答】解:这幅照片上的图案不是对称的,因为对折后两部分不能完全重合,所以原题说法错误.故答案为:×.【点评】此题主要考查轴对称图形意义的灵活运用.15.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:“田、中”,都是对称的,“子”不是对称的,所以本题说法错误;故答案为:×.【点评】掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.16.【分析】轴对称图形的概念:如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:“H”沿着对称轴对折两边的图形能够完全重合,所以“H”是轴对称图形,所以原题说法正确;故答案为:√.【点评】此题主要考查轴对称图形的定义.17.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,据此即可解答.【解答】解:该汽车图标是轴对称图形,有3条对称轴,故原题说法正确;故答案为:√.【点评】本题主要考查了轴对称图形的对称轴条数,比较简单.四.应用题(共4小题)18.【分析】根据轴对称图形的定义可知,折痕就是展开后相邻的两个图形的对称轴,据此判断即可.【解答】解:折痕就是展开后相邻的两个图形的对称轴,第一种剪法会剪出整个人形图案,第二种剪法会剪出半个人形图案.故答案为:【点评】本题主要考查学生的动手能力及空间想象能力,正确理解对称轴的定义是解题的关键.19.【分析】由于该图是把一张纸对折后剪出的,剪出的图形是轴对称图形,折痕就是剪成的图形的对称轴,据此解答.【解答】解:将一张纸对折后剪去两个圆(如图),展开后是,【点评】本题考查了轴对称图形,对称轴左边的图形要与该图的左边部分相吻合.20.【分析】根据轴对称图形的定义可知,左起和右起的三个图案各为一组,这两组图案成轴对称.【解答】解:左起和右起的三个图案各为一组,这两组图案成轴对称关系.【点评】主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.21.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.因为①的对称轴在折痕,所以如果按①剪下来,得到的是等腰三角形,符合要求.【解答】解:根据轴对称图形可知,图中的三角形是①对折后的纸上剪下来的.故答案为:①.【点评】本题考查了轴对称图形的意义.解题的关键是掌握轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.五.操作题(共4小题)22.【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这条直线叫做对称轴,这样的图形叫做轴对称图形,据此即可进行解答.【解答】解:根据分析可得,【点评】此题主要考查轴对称图形意义的灵活运用.23.【分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的对称轴.根据轴对称图形的定义,找出并画出轴对称图形的对称轴即可.【解答】解:如图所示,即为所要画的对称轴;【点评】此题考查了根据轴对称图形定义画出轴对称图形的对称轴的方法.24.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.【解答】解:根据轴对称图形的意义可知:【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.25.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,从而可以画出轴对称图形.【解答】解:根据分析可得,【点评】解答此题的主要依据是:轴对称图形的概念及特征.六.解答题(共3小题)26.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:【点评】掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.27.【分析】依据轴对称图形的含义,即在平面内,如果一个图形沿一条直线对折,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可完成作图.【解答】解:如图所示,即为所要求的画图:【点评】解答此题的主要依据是:轴对称图形的意义及特征.28.【分析】依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,据此即可进行解答.【解答】解:【点评】此题主要考查轴对称图形的意义及其对称轴的条数.。
三年级下册数学教案-图形的运动整理与复习|北师大版
三年级下册数学教案:图形的运动整理与复习北师大版教学目标1. 知识与技能:使学生能够识别并分类平面图形(如三角形、四边形、圆形等)的常见运动(如平移、旋转、翻转)。
2. 过程与方法:通过观察、操作和讨论,学生将能够理解图形运动的基本性质和特点。
3. 情感态度与价值观:培养学生对数学的兴趣和好奇心,鼓励他们探索和创造,增强他们的空间想象能力和逻辑思维能力。
教学内容1. 图形的平移:介绍平移的概念,让学生通过实际操作(如移动小卡片)来理解平移。
2. 图形的旋转:介绍旋转的概念,让学生通过实际操作(如旋转风车)来理解旋转。
3. 图形的翻转:介绍翻转的概念,让学生通过实际操作(如折叠纸)来理解翻转。
教学重点与难点1. 重点:使学生掌握图形运动的基本概念和性质。
2. 难点:帮助学生理解图形运动中的变化和不变性,尤其是翻转时图形的变化。
教具与学具准备1. 教具:图形卡片、模型、多媒体课件。
2. 学具:彩纸、剪刀、胶水、小卡片。
教学过程1. 导入:通过展示一些图形运动的实例,激发学生的兴趣,引入本课的主题。
3. 操作与实践:让学生通过实际操作(如移动、旋转、翻转图形)来加深对图形运动的理解。
板书设计使用图表和图解来展示图形运动的概念和性质。
用不同的颜色来区分不同的图形运动。
作业设计1. 基本练习:让学生完成一些图形运动的练习题,巩固他们对图形运动的理解。
2. 拓展练习:让学生尝试创造自己的图形运动,并解释其特点和性质。
课后反思教师应反思教学过程中的有效性和学生的参与度。
通过本课的学习,学生将能够更好地理解和掌握图形运动的基本概念和性质,为他们今后的数学学习打下坚实的基础。
教学重点与难点在上述教案中,教学重点与难点是需要重点关注的细节。
这是因为,教学重点与难点直接关系到学生对课程内容理解和掌握的程度,是教学过程中的关键环节。
教学重点的补充和说明教学重点是使学生掌握图形运动的基本概念和性质。
为了达到这个目标,教师需要采取多种教学方法,如直观演示、动手操作、讨论交流等,以帮助学生形成对图形运动的正确理解。
第二章《图形的运动》第三课:平移与旋转 期末学业考复习 三年级数学下册(解析版)北师大版
北师大版三年级下册重难点题型同步训练第二章《图形的运动》第三课:平移与旋转一、单选题1.(2020模拟三上·武城期末)图形平移后得到的图形是()。
A. B. C. D.【答案】 C【解析】【解答】图形平移后得到的图形是。
故答案分为:C。
【分析】注意平移不改变图形的形状和大小,平移后的图形与原图形上对应点连接的线段平行(或在同一条直线上)且相等。
2.(2020模拟三上·宁津期中)下面图案中,()是通过下图平移得到的。
A. B. C.【答案】 A【解析】【解答】解:平移不改变图形的形状和方向,所以A的图案是通过已知图形平移得到的。
故答案为:A。
【分析】平移不改变图形的形状和方向。
3.下图中,甲、乙两图的周长相比,结果是()。
A. 甲长B. 乙长C. 一样长【答案】 C【解析】【解答】根据图形可以看出,甲乙两图的周长一样长。
故答案为:C。
【分析】利用平移法,把甲图的线段向上,向右平移,刚好是一个长方形,和乙图一样。
4.(2020模拟三下·龙华期末)地球自转的运动现象是()。
A. 旋转B. 平移C. 对称【答案】 A【解析】【解答】解:地球自转的运动现象是旋转。
故答案为:A。
【分析】旋转是物体绕着一个中心点做圆周运动;平移是物体沿着一条直线运动。
5.下面是做平移运动的是()。
A. B. C.【答案】 C【解析】【解答】拉抽屉做的是平移运动,风车和轮子是旋转运动。
故答案为:C。
【分析】旋转就是指在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。
旋转改变的是图形的方向,不改变图形的形状和大小;平移就是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动。
平移不改变图形的形状和大小,改变的是图形的位置,平移可以不是水平的。
6.(2020模拟三下·龙华期中)轴对称、旋转、平移这三种图形变换的共同点是()。
A. 都是沿一定方向移动了一定的距离B. 都不改变图形的形状和大小C. 对应线段互相平行【答案】 B【解析】【解答】解:轴对称、旋转、平移这三种图形变换的共同点是都不改变图形的形状和大小。
北师大版小学数学三年级下册期末总复习-图形与几何(讲解+练习试题+点拨+答案)
北师大版数学三年级下册总复习(2)图形与几何1.对称、平移和旋转【例1】看镜子写时间。
解答:镜子里的钟表对应的实际时间应该是:点拨:根据竖直方向的镜面对称的特点,上下位置不变,左右位置发生对换。
所以,镜子里的钟表竖直方向的指针跟实物钟表相同,左右方向的指针跟实物钟表方向相反。
【例2】按要求作图。
(1)分别画出图形A 向右平移8格、再向下平移3格得到的图形。
(2)根据对称轴mn 画出图A 的对称图形。
(3)画出图A 绕O 点顺时针旋转90°后的图形。
解答:点拨:要想顺利解决这些问题,我们必须能够分辨什么是平移,什么是旋转,什么是对称,还需要掌握图形平移、旋转、对称的方法。
平移是物体或图形沿直线移动,旋转是物体或图形绕一个点或一条轴转动,对称是物体或图形两对的两边的各部分,在大小、形状和排列上具有一一对应的关系。
无论是平移、旋转还是对称,运动前后的图形只是位置发生了变化,其大小和形状没有变(对称图形和原图是相反的)。
2.面积【例1】在( )里填上合适的面积单位。
(1)数学作业本的面积约是4( )。
(2)我国的陆地面积大约是960万( )。
(3)学校小操场的面积大约是400( )。
(4)我的手表表盘的面积约是( )。
(5)北京的中华世纪坛占地面积大约是4.5( )。
解答:(1)平方分米 (2)平方千米 (3)平方米 (4)平方厘米 (5)公顷点拨:常用的面积单位有厘米2、分米2、米2,常用的土地面积单位有公顷、千米2。
解答上面的这类问题时,要想清楚一个单位面积的大小,用我们熟悉的面的面积去估测、对比、相象,从而作出正确的判断。
【例2】计算下面图形的面积和周长。
解答:面积: 周长:4×4=16(平方米) 4×4=16(米)4-1-1=2(米) 2×3=6(米)2×3=6(平方米) 16+6=22(米)16-6=10(平方米)答:这个图形的面积是10平方米。
新北师大版数学三年级下册单元测试2.图形的运动(含答案)
北师大版数学三年级下册单元测试2.图形的运动(含答案)一、单选题1.下面的轴对称图形是从哪张纸上剪下来的?( )A. B. C.2.轴对称图形是()A. B. C.3.图①绕点O()变为图②。
A. 顺时针旋转90°B. 逆时针旋转180°C. 逆时针旋转90°二、判断题4.汉字“中”是轴对称图形。
5.旋转改变了图形的大小和形状。
6.拉抽屉时抽屉的运动是平移。
7.判断对错.左图是六边形,每条边都相等,它有三条对称轴.三、填空题8.画一画(1)这个图形有________条对称轴(2)这个图形有________条对称轴9.在方格纸上平移图形的方法平移图形时,把这个图形的各个顶点按指定的方向和格子数平移到新位置,先描出各点,再把各点按原图顺序连接起来,便是按要求平移后得到的新图形。
把小房子向________平移________格得到左侧的小房子;把小房子向________平移________格得到下面的小房子。
10.时针的运动是________现象,打针时针管的推动是________现象。
11.写出时针从12旋转到下面各个位置所经过的时间。
(12小时制)________时 ________时 ________时四、解答题12.按照图中的规律画一画13.按照图中的规律画一画五、综合题14.将答案填在下面的空格内(1)要让圆O1移到圆O2的位置,要把圆O1先向________平移________格,再向________平移________格;或者把圆O1先向________平移________格,再向________平移________格.(2)圆的位置与________有关.六、应用题15.请用简洁的话描述①到②的运动轨迹以及①到③的运动轨迹参考答案一、单选题1.【答案】C【解析】【解答】解:根据图形的特征可知,这个图形是从C图纸上剪下来的。
故答案为:C【分析】一张纸对折后沿着对折线剪,剪下后展开就能得到一个轴对称图形,由此根据图形的特征确定是哪张纸剪下的即可。
三年级下册数学单元测试-2.图形的运动 北师大版(含解析)
三年级下册数学单元测试-2.图形的运动一、单选题1.下列图形中,只有一条对称轴的是( )。
A. 长方形B. 正方形C. 圆D. 半圆2.时针从3:00到9:00是围绕钟面中心旋转了( )。
A. 360°B. 90°C. 180°D. 6 0°3.下面()的运动是平移。
A. 公园里的旋转木马B. 跳绳C. 抬水4.下面图形中,对称轴最多的是( )。
A. B. C.二、判断题5.正方形有4条对称轴,平行四边形没有对称轴。
()6.判断,正确的填“正确”,错误的填“错误”.图形只能通过对称变换得到.7.判断题.所有的平行四边形都是轴对称图形.8.判断对错.找出下面图形的变化规律,然后根据这个规律在最后一个图的空格里画上相关的图形.三、填空题9.下面的图案是轴对称图形的填“T”,不是的填“F”.________________________10.小张是货运公司的一名卡车司机,他一般都将自己的卡车停在B停车场。
现在A工地24、上有货物需要小张去运输。
假如你是工地上的员工,请你告诉小张行驶路线。
路线指导:卡车先向________平移________格,再向________平移________格,就可以到达工地。
11.要画出某一图形平移后的图形,必须知道________和________12.下面的图形各有几条对称轴:________ ________ ________四、解答题13.下面的英文字母哪些是轴对称图形?14.如图,小车经过平移到了新的位置,你发现缺少什么了吗?请补上.15.请画出三角形AOB绕O点顺时针旋转90°后的图形.五、综合题16.移一移,说一说。
(1)上图中从①到②是从左向右平移了________格。
(2)上图中从③到④是从________向________平移了________格。
(3)上图中从⑤到⑥是从________ 向________平移了________格;再从________向________ 平移了________格。
北师大版数学三年级下册第二单元《图形的运动》单元测试卷
北师大版数学三年级下册第二单元《图形的运动》单元测试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.下面物体运动属于旋转的是()。
A.推拉门B.风车C.升国旗2.火车在铁轨上运动,车轮的运动是()。
A.旋转B.平移C.轴对称D.既平移又旋转3.下面的现象中,()不是平移。
A.吊车上物体的上下移动B.手表上秒针的走动C.伸缩门的移动4.下列图形,不是轴对称图形的是()。
A.B.C.5.通过平移可以得到的图案是()。
A.B.C.6.将一张纸对折后剪去一个五角星和一个圆,然后展开,得到的是()。
A.B.C.D.7.这幅图是由图经过()得到的。
A.轴对称B.平移C.旋转D.都不是二、填空题8.火车在笔直的铁轨上行驶,车厢的运动是( )。
拧水龙头是( )。
(填“平移”或“旋转”)9.滚动的滑轮属于( )现象,汽车在笔直的公路上行驶属于( )现象。
10.前进中的火车,车轮运动是( )现象,车身运动是( )现象。
11.一幅轴对称图形沿对称轴对折后A点与B点重合,如果A点到对称轴的距离是4厘米,那么B点到对称轴的距离是________厘米。
12.A、C、D、N这四个字母中( )是轴对称图形。
三、判断题13.连接对称点的线段与对称轴垂直.( )14.任意一条直径所在的直线都是圆的对称轴。
( )15.圆和平行四边形都是轴对称图形。
( )16.774+227的和是一个轴对称图形,它有两条对称轴。
( )17.任何一片树叶都是轴对称图形。
( )四、解答题18.用一张正方形纸,怎样只剪一刀,得到一个十字形?照下图的样子做一做,做好后说说制作的过程.19.体育课上,体育老师喊口令”向左转”“向右转”“向后转”。
完成这些口令的动作时我们一共在原地转了多少度?20.(1)小猴子先向下走4格,再向左走6格,它能吃到桃子吗?如果能,请你把小猴子的行走过程在方格中画出来;如果不能,请你帮小猴子设计一个正确的行走方案。
《图形的旋转(一)》教案(公开课获奖)北师大版小学数学教学设计
第三单元图形的运动第1课时图形的旋转(一)教学目标:1、通过观察实例,了解一个简单图形经过旋转制作复杂图形的过程。
2、借助实例及操作活动,掌握在方格纸上将简单图形旋转的方法。
3、通过观察、合作讨论及小组交流认识体会图形平移或旋转的变化过程,培养合作、概括能力。
教学流程一、引入新课1、创设情境,打开风扇让学生观察其转动;演示体操里面的体转运动等提问学生:身体在做什么运动等,提炼出“旋转”一词。
由此引申到图形的若发生旋转会产生什么样的新图形?板书:图形的旋转2、多媒体演示美丽图案(一幅香港特别行政区区旗-紫荆花),让学生思考这些美丽的图案怎么设计的?激发学生探究兴趣3、小组前后桌讨论,点明其中许多图案是由简单的图形经过旋转得来的。
二、探索新课1、(多媒体展示图案)小组展开讨论,这个美丽的图案可以怎么设计出来?2、多媒体展示其旋转过程3、每一次旋转过程都提问其旋转的角度,位置方,向(补充顺时针逆时针的方向)4、提问从图形A-B-C-D,过程,你发现了什么?5、根据学生回答板书:大小不变点O(中心点)不变顺时针旋转90度。
6、提问:如果图形A是逆时针旋转90度?你能自己画出来吗?给时间让学生动手画图,教师巡视,展示部分学生成果引导学生思考刚才图形旋转过程,有哪几方面变化哪几方面不变(中心点旋转方向旋转角度)三、课堂巩固1、多媒体展示说一说1、2小题。
2、提问学生,让其说说旋转中心点,方向角度(注意学生回答方向相反,及时指出其旋转角度)3、多媒体展示课本试一试。
4、前后桌讨论并在纸上画出方块的旋转巡视并反馈结果让学生说说图形A如何通过旋转得到图形B。
5、让学生动手实践第2小题,在方格纸上画出图形绕O点按一定方向旋转得到新的图形并在展示台展示。
四、课堂小结、布置作业1、让学生说说本节课学到了什么知识?2、让学生制作一幅由简单图形旋转得到的新图形。
3、课本练习五。
本资源的设计初衷,是为全体学生的共同提高。
作为教师要充分保护好孩子的自信心,只有孩子们有了自信,才有可能持续保持对某些事物的兴趣和热情。
第二章《图形的运动》第三课:平移与旋转 期末学业考复习 三年级数学下册(解析版)北师大版
北师大版三年级下册重难点题型同步训练第二章《图形的运动》第三课:平移与旋转一、单选题1.(2020模拟三上·武城期末)图形平移后得到的图形是()。
A. B. C. D.【答案】 C【解析】【解答】图形平移后得到的图形是。
故答案分为:C。
【分析】注意平移不改变图形的形状和大小,平移后的图形与原图形上对应点连接的线段平行(或在同一条直线上)且相等。
2.(2020模拟三上·宁津期中)下面图案中,()是通过下图平移得到的。
A. B. C.【答案】 A【解析】【解答】解:平移不改变图形的形状和方向,所以A的图案是通过已知图形平移得到的。
故答案为:A。
【分析】平移不改变图形的形状和方向。
3.下图中,甲、乙两图的周长相比,结果是()。
A. 甲长B. 乙长C. 一样长【答案】 C【解析】【解答】根据图形可以看出,甲乙两图的周长一样长。
故答案为:C。
【分析】利用平移法,把甲图的线段向上,向右平移,刚好是一个长方形,和乙图一样。
4.(2020模拟三下·龙华期末)地球自转的运动现象是()。
A. 旋转B. 平移C. 对称【答案】 A【解析】【解答】解:地球自转的运动现象是旋转。
故答案为:A。
【分析】旋转是物体绕着一个中心点做圆周运动;平移是物体沿着一条直线运动。
5.下面是做平移运动的是()。
A. B. C.【答案】 C【解析】【解答】拉抽屉做的是平移运动,风车和轮子是旋转运动。
故答案为:C。
【分析】旋转就是指在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。
旋转改变的是图形的方向,不改变图形的形状和大小;平移就是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动。
平移不改变图形的形状和大小,改变的是图形的位置,平移可以不是水平的。
6.(2020模拟三下·龙华期中)轴对称、旋转、平移这三种图形变换的共同点是()。
A. 都是沿一定方向移动了一定的距离B. 都不改变图形的形状和大小C. 对应线段互相平行【答案】 B【解析】【解答】解:轴对称、旋转、平移这三种图形变换的共同点是都不改变图形的形状和大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这节课有什么收获?
(板书课题)
学生观察。
学生动手折纸。
各人取出一张纸,对折,并画上图案(参照课文)。
学生动手操作、观察。说说折纸后自己的发现。
用剪刀剪下图形,再打开。
让学生自己试一试。
学生独立完成
汇报交流
判断并分析。
学生独立完成,全班交流
自由发言
同桌交流
5
分钟
15
分钟
12
分钟
3分钟
作业
设计
教材第24页第4、5题5分钟
展示民间剪纸艺术。(出示课本上剪纸图)
1、认识对称轴。
(1)告诉学生,刚才对折时出现的折痕,是这幅图的对称轴。对称有什么功能呢?
(2)把图形沿着对称轴对折,发现对称轴左右两边的图形完全重合。
3、猜一猜,剪一剪。(课本23页的下半页部分)
4、看一看,说一说。
考察学生是否体会对称图形的特征,并根据特征把图形分为对称图形和非对称图形两类。出示图形
板书设计
轴对称(一)
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是 轴对称图形。折痕所在的这条直线叫做对称轴。
教学反思
课文第23页“在生活中你见过哪些图形是对称的?”
1、课本第24页“练一练”的第1、2和3题
2、课本第24页“练一练”的第4题。
3、判断:
(1)下面的数字,哪些是轴对称图形,它们各有几条对称轴?09
(2)下面的字母,哪些是轴对称图形,它们各有几条对称轴?ABCDEFGH
(3)像这样写法的汉字,哪些是轴对称图形?口工用中日
北师大版小学数学三年级下册第二单元 图形的运动
学科
数学(第册)
备课
教师
授课时间
第周月日
教学内容
轴 对 称 (一)
教学目标
1、让学生观察、欣赏民间艺术的剪纸作品,以及服饰、工艺品与建筑等图案,感知显示世界中普遍存在的对称现象。
2、通过“折一折,剪一剪”“猜一猜,剪一剪”“画一画”和图形分类等操作活动,使学生体会对称图形的特征,能在方格纸上画出简单图形的轴对称图形
教学重难点
认识对称现象,绘制对称图形。
教学方法与手段
投影仪 剪刀 彩纸
教学准备
数学课件
教
学
过
程
教学内容
教揭示课题
二、认识对称图形
三、课堂活动
四、总结
1、教师动手操作,学生认真观察。引导学生观察自己所带的纸,告诉学生:这些都是平面图形。
(1)教师取一张白纸、对折。
(2)在白纸的一边画上一个图案。(如图1)