人教A版数学必修一《对数函数》说课稿课件完美版
人教A版数学必修一第十讲对数与对数函数.pptx
![人教A版数学必修一第十讲对数与对数函数.pptx](https://img.taocdn.com/s3/m/021197f5ccbff121dc36838d.png)
2.指数式与对数式的互化
ab N loga N b (a 0且a 1)
2.指数式与对数式的互化
ab N loga N b (a 0且a 1)
3.重要公式 (1) 负数与零没有对数; (2) loga1=0,logaa=1;
(3) 对数恒等式 aloga N N .
loga an ?
探究:
5. 自然对数 在科学技术中常常使用以无理数
e=2.71828……为底的对数,以e为底 的l对oge N 数叫自然对数,为了简便,N的自 然对数logeN简记作lnN.
6. 底数的取值范围
探究:
5. 自然对数 在科学技术中常常使用以无理数
e=2.71828……为底的对数,以e为底 的l对oge N 数叫自然对数,为了简便,N的自 然对数logeN简记作lnN.
(2) 26 1 64
(4) ( 1 )m 5.73 3
例题与练习 例2 将下列对数式写成指数式
(1) log 1 16 4
2
(3) lg 0.01 2
(2) log2 128 7
总结与复习
1. 对数的定义 logaN=b
其中a∈(0, 1)∪(1, +∞); N∈(0, +∞).
2.指数式与对数式的互化
6. 底数的取值范围(0, 1)∪(1, +∞);
探究:
5. 自然对数 在科学技术中常常使用以无理数
e=2.71828……为底的对数,以e为底 的l对oge N 数叫自然对数,为了简便,N的自 然对数logeN简记作lnN.
6. 底数的取值范围(0, 1)∪(1, +∞); 真数的取值范围
探究:
“积的对数=对数的和”……
②有时逆向运用公式:
对数函数【新教材】人教A版高中数学必修第一册PPT课件
![对数函数【新教材】人教A版高中数学必修第一册PPT课件](https://img.taocdn.com/s3/m/f2e49f16f242336c1fb95e37.png)
➢同底对数值比较大小:若底数未确定,需分类讨论
例2 比较下列各组数中两个值的大小。
(4) log2 3, log0.5 4
(4)方法一log2 3 log2 2 1 log0.5 4 log0.5 0.5 1log2 3 log0.5 4
(4)方法二log2 3 log2 1 0 log0.5 4 log0.5 1 0log2 3 log0.5 4
2
象上,反之亦然。
对数函数【新教材】人教A版高中数学 必修第 一册PP T课件
对数函数【新教材】人教A版高中数学 必修第 一册PP T课件
底数互为倒数的两个指数函 数的图象关于y轴对称
由于y log 1 x log a x
a
底数互为倒数的两个对数函数
和
函数图象对于x轴对称
根据对称性,可以由y log2 x 的图象画出y log 1 x的图象
(3)底数不同,真数不同对数比较大小:
借助中间量“0”( loga 1),或“1”( loga a)
解:(1)根据对数的运算性质
,有PH
lg[H ]
lg[H ]1
lg
1 [H ]
在(0,
)上,随着[
H
]的增大,[H1
]
也减小,相应地lg
[
1 H
]
也减小,即PH值减小
所以,随着[H ]的增大,即PH值减小。即溶液中氢离子的深度越大,溶液的酸性越强
对数函数【新教材】人教A版高中数学 必修第 一册PP T课件
y log 2 x
y log 1 x
2
对比一
0.5 -1 下两个 0.5 1
1
0
表值, 有什么
1
0
人教A版高中数学必修一《对数函数及其性质》课件PPT
![人教A版高中数学必修一《对数函数及其性质》课件PPT](https://img.taocdn.com/s3/m/4edd2dd5915f804d2a16c118.png)
y
log28.5
y log2 x
log23.4
0 1 3.4
8.5 x
•
• 比较下列各组中,两个值的大小: (1)log23.4与 log28.5 (2) log 0.3 1.8与 log 0.3 2.7
考察函数y=log 0.3 x , ∵函数y=log 0.3 x在区间(0,+∞)上是减函数
且1.8<2.7 ∴ log 0.3 1.8> log 0.3 2.7
比较下列各组中,两个值的大小: loga5.1与 loga5.9
注意:若底数不确定,要对底 数进行分类讨论 即0<a<1 和 a > 1
这节课我们学习了什么?
完成学案中的当堂检测
课后作业
1、P74 习题2.2 A组 第7、8题 2、完成学案P45 预习部分。
4
列 表
x … 1 1 1 4… 16 4
y log4 x … -2 -1 0 1 …
y
描2
y log4 x
点1
11
0 164 1 2
3
4
x
-1
连
-2
线
x … 1/16 1/4 1 4 …
列 表
y log4 x … -2 -1
y log 1 x … 4
2
1
0 1… 0 -1 …
y
描
2
y log4 x
在(0,+∞)上是 减函数
当x>1时, y<0 当x=1时, y=0 当0<x<1时,y>0
图 形
补充 性质
y
高中数学人教A版必修一对数函数(共12张PPT)
![高中数学人教A版必修一对数函数(共12张PPT)](https://img.taocdn.com/s3/m/29229f7258fafab069dc025d.png)
求f(1),f(8)
对数的真数 大于0,底 数大于0且 不等于1
探究:对数函数:
y = loga x (a>0,且a≠ 1) 图象与性质
在同一坐标系中画出对数函数
y log2 x和y log1 x 的图象。
作图步骤:
2
①列表, ②描点, ③用平滑曲线连接。
… 1/4 1/2 x 列 y log2 x … -2 -1
思考求下列函数的定义域与值域:
(1) y log 2(x 2 4) (2) y log 1(x
2 2
2x 3)
奇偶性
值分布
当x>1时,y<0; 当0<x<1时,y>0.
例3比较下列各组数中两个值的大小: (1) log 23.4 , log 28.5 (2) log 0.31.8 , log 0.32.7 (3) log a5.1 , log a5.9 ( a>0 , a≠1 ) (4) log 53 , log 35 (5) log 32 , log 20.9
对数函数及其性质
由前面的学习我们知道:如果有一种细胞分裂时, 由1个分裂成2个,2个分裂成4个,··· ,1个这 样的细胞分裂x次会得到多少个细胞?
y2
x
如果知道细胞的个数y,如何确定分裂的次数x呢?
由对数式与指数式的互ຫໍສະໝຸດ 可知:x log2 y上式中可以把y当作函数的自变量吗?
新课讲解: (一)对数函数的定义: 函数 y loga x (a 0且a 1) 叫做对数函数; 其中x是自变量,函数的定义域是(0,+∞).
方 法
当底数相同,利用单调性
当底数不同,寻找中间量(通常为0,1)
人教高中数学必修一A版《对数函数的概念》《对数函数的图象和性质》指数函数与对数函数说课教学课件
![人教高中数学必修一A版《对数函数的概念》《对数函数的图象和性质》指数函数与对数函数说课教学课件](https://img.taocdn.com/s3/m/642888349a6648d7c1c708a1284ac850ac020418.png)
(3)在同一坐标系中,对数函数 y=log2x,y=log5x,y=log 1 x,y=log 1 x 的
2
5
图象如图所示.从图中看,对数函数图象的分布与底数有什么关系?
提示:在直线x=1的右侧,a>1时,a越大,图象越靠近x轴,0<a<1时,a
越小,图象越靠近x轴.
课前篇
自主预习
一
二
三
2.填表
对数函数的图象和性质
数的大小,如图所示.
2.牢记特殊点:对数函数 y=logax(a>0,且 a≠1)的图象经过
(1,0),(a,1),
1
,-1 .
课堂篇
探究学习
探究一
探究二
探究三
探究四
探究五
思想方法
随堂演练
变式训练2作出函数y=
解:先画出函数y=lg x的图象(如图①).
再将该函数图象向右平移1个单位长度得到函数y=lg(x-1)的图象
思想方法
随堂演练
反思感悟 1.对数函数是一个形式定义:
2.对数函数解析式中只有一个参数a,用待定系数法求对数函数
解析式时只须一个条件即可求出.
课堂篇
探究学习
探究一
探究二
探究三
探究四
探究五
思想方法
随堂演练
变式训练1(1)若函数f(x)=log(a+1)x+(a2-2a-8)是对数函数,则a=
(2)点A(8,-3)和B(n,2)在同一个对数函数图象上,则n=
2
是
.
课堂篇
探究学习
探究一
探究二
探究三
探究四
探究五
思想方法
随堂演练
高一人教A版《4.4对数函数》说课课件
![高一人教A版《4.4对数函数》说课课件](https://img.taocdn.com/s3/m/98d628d3f71fb7360b4c2e3f5727a5e9856a2766.png)
设计意图:考察函数定义域,加深对对数
函数的概念的理解,改为填空,节省时间,
点到为止。
环节二
(一)对数函数的概念
2.对数函数与指数函数的关系:
互为反函数
设计意图:对数函数的概念比较抽象,利用已经学
过的知识逐步分析,这样引出对数函数的概念过渡
自然,学生易于接受。因为对数函数是指数函数的
反函数,让学生比较它们的定义域、值域、对应法
log .
小结:既不同底数,也不同真数的对数比大
小的方法:找中间量(常用0、1)
环节三
典型例题,巩固达标
ቤተ መጻሕፍቲ ባይዱ
(三)同真数的对数比大小(小组合作探究)
例3.比较下列各题中两个值的大小:
() log
(2)log .
log
log .
(学生以小组为单位探究解题方法)
对数函数的定义,在概念理解上,用步步设问、课
堂讨论来加深理解。在对数函数图像的画法上,我
借助多媒体,演示作图过程及图像变化的动画过程,
从而使学生直接地接受并提高学生的学习兴趣和积
极性,很好地突破难点和提高教学效率。
说学法
学法指导
对照比较
学习法:
学习对数
函数,处处
与指数函
数相对照
合作探究
式学习法:
学生通过
看待数学知识,形成一个逻
角度分析之前熟悉的指数变化规律,
辑严密的知识体系.
通过与指数函数的联系更好地理解
对数函数
对数函数的研究内容和方
法既有继承也有发展,借助
性质研究环节不仅研究对数函数
对数函数的研究,可以进一
自身的性质,还增加了同底指对
高中数学人教A版必修1《对数函数及其性质》课件
![高中数学人教A版必修1《对数函数及其性质》课件](https://img.taocdn.com/s3/m/0584f217e009581b6ad9ebc4.png)
探究1:
①在同一坐标系中画出函数
②在同一坐标系中画出函数
y
y
Байду номын сангаас
2
2
1
1
0 1 23 4 -1
xO
-1
-2
-2
和 和
12
的图象。 的图象。
34
x
函数y=f(x)与y=-f(x)的图象关于x轴对称.
y
yy
y
2
2
2
2
1
1
1
1
O 1 2 3 4 O 1x O2 13 42 O3 x14 2 3 x4
x
-1
-1
-1
-1
-2
-2
-2
-2
函数 ylog a x, y log b x, y log c x, y log d x
的图像如图所示,则下列式子中正确的是(
)
y
y logb x
A.0 a b 1 c d
y log a x
B.0 b a 1 d c
x
O
y logd x
C.0 d c 1 b a
细胞分裂
1
1次
2 2次
4
x次
……
反过来,已知细胞个数y,如何求细胞 分裂次数x?
1.对数函数的定义 一般地,我们把函数__y_=_l_o_g_ax_(_a_>_0_,_且__a_≠__1_)叫
做对数函数,其中x是自变量.
想 一 函数的定义域是什么? 想
? (0,+∞)
例1:求下列函数的定义域: (1)y=logax2 ; (2)y=loga(4-x).
通过本节的学习,说出你的收获。
高中数学人教A版 必修第一册 对数函数的概念 课件
![高中数学人教A版 必修第一册 对数函数的概念 课件](https://img.taocdn.com/s3/m/1794682f8f9951e79b89680203d8ce2f01666511.png)
同样地,根据指数与对数的关系,由 = ( >0,且 ≠1)
可以得到 = ( >0,且 ≠1),x也是y的函数.
通常,我们用x表示自变量,表y示函数.
为此,将 = ( >0,且 ≠1)中的字母x和y对调,
写成y= x( >0,且 ≠1).
4.4 对数函数
4.4.1 对数函数的概念
在4.2节中,我们用指数函数模型研究了呈指数增长或衰减变化规律
的问题。对这样的问题,在引入对数后,我们还可以从另外的角度,
对其蕴含的规律作进一步的研究。
在4.2.1的问题2中,我们已经研究了死亡生物体内碳14的含量y随死亡
时间x的变化而衰减的规律。反过来,已知死亡生物体内碳14的含量,
对数函数
定义:一般地,函数y = loga x (a>0,且a≠ 1)叫做
对数函数.
其中 x是自变量,
函数的定义域是 (
0 , +∞)
思考1:为什么对数函数定义域为( 0 , +∞)?
题型一 对数型函数的概念及应用
【例 1】 下列函数是对数函数的为( D )
A.y=log5x+1
B.y=logax2(a>0,且 a≠1)
1
4,
2
.
题型二 对数型函数的定义域
【例4】
求下列函数的定义域:
(1)y=log3 ;
(2)y=loga(4-x);
的定义域为{ x|x≠ 0 }
解:(1)由
0, 所以函数y=log
(3)y= >0得x≠
. (
− ) .
3
(2)由 − >0得x< 4,
所以函数y=loga(4-x) 的定义域为{ x|x< 4}
人教A版数学必修第一册4.4对数函数课件
![人教A版数学必修第一册4.4对数函数课件](https://img.taocdn.com/s3/m/7163068e541810a6f524ccbff121dd36a32dc480.png)
• 当x<x1时,g(x)>f(x);
• 当x1<x<x2时,f(x)>g(x);
• 当x>x2时,g(x)>f(x);
g(x)=0.3x-1
• 当x=x1或x=x2时,f(x)=g(x).
f(x)=lg x
随堂检测
1.思考辨析
(1)函数y=2x比y=2x增长的速度更快些.( × )
同样,函数g(x)的图象在区间(0,+∞)上,递减较慢,
且递减速度越来越慢;函数h(x)的图象递减速度不变.
常见的函数模型及增长特点
归
纳
总
结
1线性函数模型
线性函数模型y=kx+bk>0的增长特点是直线上升,其增长速度不变.
2指数函数模型
指数函数模型y=axa>1的增长特点是随着自变量的增大,函数值增
且直线上升,其增长量固定不变.
通过本节课,
你学会了什么?
2
1
与h(x)=-2x在区间(0,+∞)上的递减
2
情况说法正确的是( C )
A.f(x)递减速度越来越慢,g(x)递减速度越来越快,h(x)递减速度越来越慢
B.f(x)递减速度越来越快,g(x)递减速度越来越慢,h(x)递减速度越来越快
C.f(x)递减速度越来越慢,g(x)递减速度越来越慢,h(x)递减速度不变
结
根据图象判断增长型的指数函数、一次函数时,
通常是视察函数图象上升得快慢,即随着自变
量的增大,图象最“陡”的函数是指数函数.
跟踪训练
2.函数f(x)=lg x,g(x)=0.3x-1的图象如图所示.
(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;
高中数学必修1 人教A版必修一2.2《对数函数》说课稿
![高中数学必修1 人教A版必修一2.2《对数函数》说课稿](https://img.taocdn.com/s3/m/52e5be312af90242a995e50d.png)
人教A版必修一2.2《对数函数》说课稿尊敬的各位专家、评委:上午好!我叫郑永锋,来自安庆师范学院。
今天我说课的课题是人教A版必修1第二章第二节《对数函数》。
我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。
一、教材分析地位和作用本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。
而对数函数作为这一阶段的重要的基本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用。
“对数函数”这节教材,是在没有学习反函数的基础上研究的指数函数和对数函数的自变量和因变量之间的关系。
同时对数函数作为常用数学模型在解决社会生活中的实例有着广泛的应用,本节课的学习为学生进一步学习,参加生产和实际生活提供必要的基础知识。
二、目标分析(一)、教学目标根据《对数函数》在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下的教学目标:1、知识与技能(1)、进一步体会函数是描述变量之间的依赖关系的重要数学模型;(2)、理解对数函数的概念、掌握对数函数的图像和性质;(3)、由实际问题出发,培养学生探索知识和抽象概括知识等方面的能力。
2、过程与方法引导学生观察,探寻变量和变量的对应关系,通过归纳、抽象、概括,自主建构对数函数的概念;体验结合旧知识探索新知识,研究新问题的快乐。
3、情感态度与价值观通过对对数函数函数图像和性质的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。
在民主、和谐的教学气氛中,促进师生的情感交流。
(二)教学重点、难点及关键1、重点:对数函数的概念、图像和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,学习新知识。
2、难点:底数a对对数函数的图像和性质的影响。
对数函数的概念PPT课件(高一数学人教A版必修一册)
![对数函数的概念PPT课件(高一数学人教A版必修一册)](https://img.taocdn.com/s3/m/12c24b5c78563c1ec5da50e2524de518964bd381.png)
(D) ③④
判断函数是否为对数函数的依据是什么?
高中数学
新知特征
y log a x.
判断一个函数是否是对数函数,要以下关注三点:
1. 对数符号前面的系数为1;
2. 对数的底数是不等于1的正常数;
3. 对数的真数仅有自变量x.
高中数学
学以致用
例1
给出下列函数:
① y log 2 (3x 2);
5730
( ∈ 0, +∞ )
= log 5730 1
2
y
任意 y 0,1
1
唯一 x 0,
0
高中数学
x
新知形成
=
1
2
1
5730
( ∈ 0, +∞ )
= log 5730 1
2
任意 y 0,1
y
1
0 , 0
0
0
高中数学
唯一 x 0,
= log 5730 1
= log
= log
2
2
对数函数
新知特征
对数函数的概念:
一般地,函数 y log a x (a 0, 且 a 1) 叫做对数函数,
其中 x 是自变量,定义域是 0, .
注意:1.对数函数的定义是形式定义,注意函数特征;
的数据增长应选取合适的函数模型来刻画其变化规律.
高中数学
A
布置作业
1. 教科书 第131页练习第2题;
2. 课后练习.
高中数学
② y 2 log 0.3 x;
③ y log x1 x;
④ y lg x;
对数函数的概念课件-高一上学期数学人教A版(2019)必修第一册
![对数函数的概念课件-高一上学期数学人教A版(2019)必修第一册](https://img.taocdn.com/s3/m/e73fae16bf23482fb4daa58da0116c175e0e1e62.png)
2 [由 a2+a-5=1 得 a=-3 或 a=2.又 a>0 且 a≠1,所以 a=2.]
题型 2 对数函数的定义域
例1 求下列函数定义域
(1) y log3 x2;
(2) y loga 4 xa 0,且a 1.
[解] (1)要使函数 f(x)有意义,则 log1x+1>0,即 log1x>-1,
2
2
解得 0<x<2,即函数 f(x)的定义域为(0,2).
(2)函数式若有意义,需满足x2+-1x>≥00,, 2-x≠0
即xx<>2-,1,
解得-1<x<2,故函数的定义域为(-1,2).
(3)由题意得- 2x-4x+ 1>80>,0, 2x-1≠1,
【解析】(1)因为 x2>0,即x ≠ 0,所以函数 y = log3x 的定义域是
{x|x≠0}.
(2)因为4-x>0,即x < 4,所以函数 y = loga (4-x)的定义域是 {x|x<4}.
典例解析
例 2 求下列函数的定义域. (1)f(x)= log11x+1;
2
(2)f(x)= 21-x+ln(x+1); (3)f(x)=log(2x-1)(-4x+8).
根据指数与对数的关系,由y
((
1
1
) 5730
) x,( x
0)得到:
2
x log 5730 y,(0 y 1) 1 2
这是函数吗?
函数的概念是什么?
问题探究
根据指数与对数的关系,由y
人教高中数学必修一A版《对数的概念》指数函数与对数函数说课教学课件
![人教高中数学必修一A版《对数的概念》指数函数与对数函数说课教学课件](https://img.taocdn.com/s3/m/6d2cfc782bf90242a8956bec0975f46527d3a729.png)
4.3.1 对数的概念
-1-
首页
课标阐释
1.理解对数的概念,掌握对数的
基本性质.
2.掌握指数式与对数式的互化,
能应用对数的定义和性质解方
程.
3.理解常用对数和自然对数的
定义形式以及在科学实践中的
应用.
4.了解对数的发展历史,了解数
学文化.
思维脉络
课前篇
自主预习
一
二
三
一、对数的概念
提示:符号“ln”是一种对数符号,它是用来计算以“e”为底的对数的.
(3)ln M=n用指数式如何表示?
提示:en=M.
2.填空
常用对数 以 10 为底数,记作 lg N
自然对数 以 e 为底数,记作 ln N,其中 e=2.718 28…
3.做一做
(1)lg 105=
答案:(1)5 (2)1
;(2)ln e=
课堂篇
探究学习
探究一
探究二
探究三
思维辨析
随堂演练
变式训练1将下列指数式与对数式互化:
1
(1)2 =4; (2)102=100; (3)ea=16;
1 1
(4)log64 =- ; (5)logxy=z(x>0,且 x≠1,y>0).
4 3
1
解:(1)log24=-2. (2)log10100=2,即 lg 100=2.
范围为a>0,且a≠1;由于在指数式中ax=N,而ax>0,所以N>0.
4.对数式与指数式的互化
(1)在指数式和对数式中都含有a,x,N这三个量,那么这三个量在
两个式子中各有什么异同点?
提示:
高中数学人教A版必修1课件:2.2.2对数函数及其性质(共15张ppt)
![高中数学人教A版必修1课件:2.2.2对数函数及其性质(共15张ppt)](https://img.taocdn.com/s3/m/ad8a68334b7302768e9951e79b89680203d86bed.png)
练习1. 比较下列各组数中的两个值的大小:
(1)lg3 lg8 ;
(2)log0.41.2 log0.42.5;
变式若(3)㏒1.2 m<㏒1.2 n,则m n. (4)㏒0.2 m<㏒0.2 n,则m n.
例 比较对数值大小
2. 底、真数都不同的两个对数比较大小 ⑴ log 67 , log 7 6 ; ⑵ log 3π , log 2 0.8 .
a 1
0 a 1
y
y
图
y loga x
(1,0)
像
o (1,0)
xo
x
y loga x
定义域 性值 域 质 单调性
奇偶性 过定点
(0,)
(0,)
R 在(0,)上递增
R 在(0,)上递减
非奇非偶
非奇非偶
(1,0), 即x=1时,y=0
单调性的应用
例 比较对数值大小
1. 同底的两个对数比较
⑴ log 23.4 , log 28.5 ⑵ log 0.31.8 , log 0.32.7 ⑶ log a5.1 , log a5.9 ( a>0 , a≠1 ) 解:(3)当a>1时,函数y=log ax在(0,+∞)上是增函数, log a5.1<log a5.9 当0<a<1时,函数y=log ax在(0,+∞)上是减函数, log a5.1>log a5.9
对数函数,定义域是 (0,+ ,
例如:函数 y loga (a 1)x 是对数函数,
则a=
.
概念辨析
例1 下列函数是对数函数的是( 1,5,7,8 )
① y log4 x ③ y log4 x
高中数学 《对数函数-对数函数及其性质》说课稿3 新人教A版必修1
![高中数学 《对数函数-对数函数及其性质》说课稿3 新人教A版必修1](https://img.taocdn.com/s3/m/cddf257084868762cbaed59a.png)
2.2.2 对数函数及其性质(3)从容说课在比较系统地学习对数函数的定义、图象和性质的基础上,利用对数函数的图象和性质研究一些含有对数式的、形式上比较复杂的函数的图象和性质,因此,培养学生综合运用数学知识分析问题、解决问题的能力.本课的重点为对数性质的综合运用.在教学过程中突出重点的过程同时也是进一步深化对基本初等函数的概念和性质的理解和认识的过程.学生已经比较系统地研究了利用指数函数的性质来解决比较复杂的函数性质的问题,有了这样的认知经历,为本课的学习作了方法上的准备,因此在本课的教学中,可以先组织学生回顾函数的通性以及有关指数型函数的图象的变化规律以及与指数式有关的复合函数的奇偶性、单调性的讨论方法和步骤,为学生运用类比法学习本节内容作好方法上的准备.对数函数的性质是函数通性的具体化,在研究有关对数函数的性质应用时,要紧紧抓住函数的性质,由一般到特殊来研究具体复合函数的有关性质.在有关对数函数性质的研究中,要注意对数的真数和底数的限制条件这一与其他函数不同的特征.求函数的单调区间,一般情况可分两步进行,一是求函数的定义域;二是利用复合函数的性质判断函数的单调区间.但若是证明函数的单调性,则必须根据单调性的定义进行证明.三维目标一、知识与技能1.掌握对数函数的单调性及其判定.2.能根据对数函数的图象,画出含有对数式的函数的图象,并研究它们的有关性质.二、过程与方法1.熟练利用对数函数的性质进行演算,通过交流,使学生学会共同学习.2.综合提高指数、对数的演算能力.3.渗透运用定义、数形结合、分类讨论等数学思想.三、情感态度与价值观1.用联系的观点分析、解决问题.2.认识事物之间的相互转化.3.加深对对数函数和指数函数的性质的理解,深化学生对函数图象变化规律的理解,培养学生数学交流能力.教学重点对数函数的特性以及函数的通性在解决有关问题中的灵活应用.教学难点单调性和奇偶性的判断和证明.教具准备投影仪及作业讲义.教学过程一、创设情景,引入新课1.复习函数及反函数的定义域、值域、图象之间的关系.2.指数式与对数式比较.3.画出函数y=2x与函数y=log2x的图象.二、讲解新课在指数函数y=2x中,x为自变量(x∈R),y是x的函数(y∈(0,+∞)),而且它是R上的单调递增函数.可以发现,过y轴正半轴上任意一点作x轴的平行线,与y=2x的图象有且只有一个交点.另一方面,根据指数与对数的关系,由指数式y=2x可得到对数式x=log2y.这样,对于任意一个y∈(0,+∞),通过式子x=log2y,x 在R中都有唯一确定的值和它对应.也就是说,可以把y作为自变量,x作为y的函数,这时我们就说x=log2y(y∈(0,+∞))是函数y=2x(x∈R)的反函数.在函数x=log2y中,y是自变量,x是函数.但习惯上,我们通常用x表示自变量,y表示函数.为此,我们常对调函数x=log2y中的字母x、y,把它写成y=log2x.这样,对数函数y=log2x(x∈(0,+∞))是指数函数y=2x(x∈R)的反函数.由上述讨论可知,对数函数y=log2x(x∈(0,+∞))是指数函数y=2x(x∈R)的反函数;同时,指数函数y=2x(x∈R)也是对数函数y=log2x(x∈(0,+∞))的反函数.因此,指数函数y=2x (x∈R)与对数函数y=log2x(x∈(0,+∞))互为反函数.请你仿照上述过程,说明对数函数y=log a x(a>0,且a≠1)和指数函数y =a x (a >0,且a ≠1)互为反函数.练习:求下列函数的反函数:(1)y =0.2-x +1;(2)y =log a (4-x );(3)y =21010x x --.例题讲解【例1】 已知函数y =log a (1-a x )(a >0,a ≠1).(1)求函数的定义域与值域;(2)求函数的单调区间;(3)证明函数图象关于y =x 对称.分析:有关于对数函数的定义域要注意真数大于0;函数的值域取决于1-a x 的范围,可应用换元法,令t =1-a x 以减小思维难度;运用复合函数单调性的判定法求单调区间;函数图象关于y =x 对称等价于原函数的反函数就是自身,本题要注意对字母参数a 的范围讨论.解:(1)1-a x >0,即a x <1,∴a >1时,定义域为(-∞,0);0<a <1时,定义域为(0,+∞).令t =1-a x ,则0<t <1,而y =log a (1-a x )=log a t .∴a >1时,值域为(-∞,0);0<a <1时,值域为(0,+∞).(2)∵a >1时,t =1-a x 在(-∞,0)上单调递减,y =log a t 关于t 单调递增,∴y =log a (1-a x )在(-∞,0)上单调递减.∵0<a <1时,t =1-a x 在(0,+∞)上单调递增,而y =log a t 关于t 单调递减,∴y =log a (1-a x )在(0,+∞)上单调递减.(3)∵y =log a (1-a x ),∴a y =1-a x .∴a x =1-a y ,x =log a (1-a y ).∴反函数为y =log a (1-a x ),即原函数的反函数就是自身. ∴函数图象关于y =x 对称.【例2】 设a >0,a ≠1,f (x )=log a (x +12-x )(x ≥1),求f (x )的反函数f -1(x ).分析:要利用对数式与指数式的互化关系,按求反函数的有关方法、步骤进行求解.解:∵y =log a (x +12-x ),∴x +12-x =ay , x -a y =-12-x ,(x -a y )2=x 2-1, x 2-2xa y +a 2y =x 2-1,2xa y =a 2y +1.∴x =y y a a 212+.∴反函数为y =x x a a 212+=21(a x +a -x ). 在原函数中,∵x ≥1,而x 和12-x 在[1,+∞)上都单调递增,∴x +12-x ≥1. ∴a >1时,y ≥0,0<a <1时,y ≤0.故所求函数的反函数为当a >1时,f -1(x )=21(a x +a -x)(x ≥0),当0<a <1时,f -1(x )=21(a x +a -x)(x ≤0). 【例3】 已知函数f (x )=(21)x(x >0)和定义在R 上的奇函数g (x ).当x >0时,g (x )=f (x ),试求g (x )的反函数.分析:分段函数的反函数应注意分类讨论.由于f (x )为奇函数,故应考虑x >0,x <0,x =0三种情况.解:∵g (x )是R 上的奇函数,∴g (-0)=-g (0),g (0)=0.设x <0,则-x >0,∴g (-x )=(21)-x. ∴g (x )=-g (-x )=-(21)-x =-2x. ∴g (x )=⎪⎪⎪⎩⎪⎪⎪⎨⎧<-=>.0,2,0,0,0,)21(x x x x x 当x >0时,由y =(21)x 得0<y <1且x =log 21y , ∴g -1(x )=log 21x (0<x <1);当x =0时,由y =0,得g -1(x )=0(x =0);当x <0时,由y =-2x ,得-1<y <0,且x =log 2(-y ), ∴g -1(x )=log 2(-x )(-1<x <0).综上,g (x )的反函数为g -1(x )=⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--=<<.01),(log ,0,0,10,log 221x x x x x 【例4】 解下列方程:(1)log 3(3-x )+log 0.25(3+x )=log 4(1-x )+log 0.25(2x +1);(2)log 2[log 3(log 9x )]=2log 4[log 9(log 3x )].分析:通过简单变形,化成同底的对数,再按照解法类型应用同底法解题,要注意在变形过程中方程的同解性以及方程式中变量的取值范围.解:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=+-->+>->+>-).12(log )1(log )3(log )3(log ,012,01,03,034443x x x x x x x x ∴⎪⎪⎩⎪⎪⎨⎧+-=+-<<-121log 33log 12144x x x x x ⇒⎪⎩⎪⎨⎧=-<<-071212x x x ⇒⎪⎩⎪⎨⎧==<<-.70,121x x x 经检验x =0是原方程的解.(2)∵原方程log 2[log 3(log 9x )]=log 2[log 9(log 3x )], ∴log 3(log 9x )=log 9(log 3x ).∴log 3(log 9x )=21log 3(log 3x )=log 3x 3log .∴log 9x =x 3log . ∴2log 3x =x3log . ∴log 3x =0或log 3x =4.∴x =1或x =81.∴经检验x =1不合题意,舍去.∴原方程的解为x =81.【例5】 探究函数y =log 3(x +2)的图象与函数y =log 3x 的图象间的关系.分析:函数的图象实际上是一系列点的集合,因此研究函数或y=log3(x+2)的图象与函数y=log3x的图象间的关系可以转化为研究两个函数图象上对应点的坐标之间的关系.请同学们回顾一下,在前面学习中是如何探究函数y=2x与y=2x+2的图象之间的关系的?要研究两函数图象上对应点坐标之间的关系,必须先确定对应点的一个坐标,讨论另外一个坐标之间的关系,进而讨论两函数图象之间的关系.在函数y=log3x与y=log3(x+2)的图象上,当函数自变量的值均为x=m时,分别对应的函数值是什么?y=log3m和y=log3(m+2).你能一下子看出它们之间的关系吗?如能,能否根据这一关系由函数y=log3x的图象得到函数y=log3(x+2)的图象呢?既然当函数的自变量的值相等时,我们无法通过讨论它们图象上点的横坐标来研究它们图象间的关系,那么我们来看看下面问题:在函数y=log3x与y=log3(x+2)的图象上,当函数值均为n时,对应的自变量的值分别是什么?由n=log3x1和n=log3(x2+2)可得x1=3n,x2=3n-2,据此你能得到两函数图象上的点之间有什么关系吗?由此可知,函数y=log3(x+2)中x=a-2对应的y值与函数y=log3x中x=a对应的值相等,所以将对数函数y=log3x的图象向左平移2个单位长度,就得到函数y=log3(x+2)的图象.(1)由函数y=f(x)的图象得到函数y=f(x+a)的图象的变化规律为:当a>0时,只需将函数y=f(x)的图象向左平移a个单位就可得到函数y=f(x+a)的图象;当a<0时,只需将函数y=f(x)的图象向右平移|a|个单位就可得到函数y=f(x+a)的图象.(2)由函数y=f(x)的图象得到函数y=f(x)+b的图象的变化规律为:当b>0时,只需将函数y=f(x)的图象向上平移b个单位就可得到函数y=f(x)+b的图象;当b<0时,只需将函数y=f(x)的图象向下平移|b|个单位就可得到函数y=f(x)+b的图象.如何由函数y=f(x)的图象得到函数y=f(x+a)+b的图象呢?由函数y=f(x)的图象得到函数y=f(x+a)+b的图象的变化规律为:画出函数y=f(x)的图象,先将函数y=f(x)的图象向左(当a>0时)或向右(当a<0时)平移|a|个单位,可得到函数y=f(x+a)的图象,再将函数y=f(x+a)的图象向上(当b>0时)或向下(当b<0时)平移|b|个单位就可得到函数y=f(x+a)+b的图象.这样我们就可以很方便地将函数y=f(x)的图象进行平移得到与函数y=f(x)有关的函数图象.那么你能很方便地由函数y=f (x)的图象得到函数y=f(|x|)的图象吗?三、课堂小结对数函数是进入高中后涉及的第一个具体函数,有关性质须牢固掌握.指数函数与对数函数互为反函数,其图象关于直线y=x对称.求对数函数的定义域、值域、单调区间、反函数及奇偶性的判定都依赖于定义法、数形结合及函数本身的性质.应熟练掌握对数函数的相关性质.四、布置作业课本第88页习题2.2B组第1、4、5题.板书设计2.2.2 对数函数及其性质(3)1.函数与反函数的图象关系2.指数式、对数式3.复合函数的单调性和奇偶性的判断一、例题解析与学生训练二、课堂小结与布置作业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计意图
从定义域求解入手, 及时加深对概念的理 解和掌握,为下一环 节教学做好准备。
教材分析 学生分析 教学目标及重难点 教学设计 资源整合 评价与反思
教学过程设计
2.启发诱导,自主探索
动脑筋 画对数函数y=log2x 和 y 的lo图g1象x
7
2
6
5
4
3
2
1
演演示示
12
10
8
6
4
2
1
教材分析 学生分析 教学目标及重难点 教学设计 资源整合 评价与反思
教学过程设计
1.创设情景,导入新课
引言:随着经济的快速发展,数字与数学已进入普通市民日常生活,如存贷款
问题,股票等.
创设情景:复利是计算利息的一种方式,现假设有本金1万元,每期利息是2.25%,本
利和为y。
❖ 问题一:本利和y随存期x变化的函数关系式为———— ❖ 问题二:根据对数定义,这个函数写成对数的形式是———— ❖ 问题三:若要本利和翻一番,至少要存 期,翻两番呢? ❖ 问题四:存期x是否也是本利和y的函数?解析式是———— ❖ 问题五:用y表示函数,x表示自变量,这个函数的解析式是————
教师分析讲解
学生观察形如y=log1.025x的函 数
师生共同归纳
定义:设a>0且a≠1,形如y=logax的函数叫对数函数,其
定义域为(0,+ ∞ )
教材分析 学生分析 教学目标及重难点 教学设计 资源整合 评价与反思
教学过程设计
1.创设情景,导入新课
展示学习目标
识记对数函数的概念、图象和性质;
y
x
o
1
对数函数
学情分析
教学目标及重难点
教材分析
对数函数
评价与反思
资源整合
教学设计
教材分析 学生分析 教学目标及重难点 教学设计 资源整合 评价与反思
一、教材分析
❖ 教材说明
❖ 地位和作用
❖ 特点
教材分析 学生分析 教学目标及重难点 教学设计 资源整合 评价与反思
二、学生分析
❖ 专业培养目标分析 ❖ 知识基础和认知能力分析 ❖ቤተ መጻሕፍቲ ባይዱ层次分析
2
4
6
8
2
3
4
教师提问
学生口答 教师借助几
何画板做图
设计意图 复习“描点法”做图 借助几何画板体会数形
结合的数学思想 ,感受 数学图形的对称美
教材分析 学生分析 教学目标及重难点 教学设计 资源整合 评价与反思
教学过程设计
y
y=log2x
2.启发诱导,自主探索
混层协作
学生分组开放讨论图象特征
教材分析 学生分析 教学目标及重难点 教学设计 资源整合 评价与反思
教学过程设计
3.巩固新知反馈回授
形成性问题二:观察下列函数的图象
(1)ylog3x;
(2)ylog5x;
2
2
(3)ylog2x;
(4)ylog2x.
3
5
(1)指出它们的定义域;
(2)指出它们的值域;
(3)指出它们的单调性
教师提问 C层学生回答
C层 会求简单对数函数的定义域; 能运用对数函数单调性比较简单对数的大小;
理解对数函数的概念;掌握对数函数的图象、性质;
B层 会求较复杂对数函数的定义域;
能运用对数函数单调性比较较复杂对数的大小;.
掌握对数函数的概念、图象和性质; A层 会求复杂对数函数的定义域;
能运用对数函数单调性比较复杂对数的大小; 能运用对数函数的定义和性质解决实际问题。
力.
❖ 情感目标
体验数学活动的探索性和创造性;在数学活动中养成积极主动,勇于探索,不断创新的学 习习惯和品质 .
教材分析 学生分析 教学目标及重难点 教学设计 资源整合 评价与反思
三、教学目标及重难点—教学重难点
▪重点:
对数函数的图象和性质
由具体到抽象、由特殊到 一般,进行类比分析
▪难点:
(1)求对数函数的定义域 (2)对数函数性质的归纳及应用
数学学科
A
学生
B
学生
C
学生
0
混层协作式编组
纵向动态:每一个学生都可以 升层、降层
教材分析 学生分析 教学目标及重难点 教学设计 资源整合 评价与反思
三、教学目标及重难点—教学目标
❖ 知识与能力目标
C层
理解对数函数的概念、图象和性质,会求简单对数函数的定义域; 能运用对数函数单调性比较简单对数的大小; 培养学生观察、分析问题的能力.
每组派代表回答(A、B、C层均可, A层、B层、C层成绩系数分别为0.8、
1、1.2,计入小组总成绩)
老师引导、师生共同归纳总结
01
x
y log1 x
2
突出重点突破难点
a 1
0a1
定义域 ___(__0_,_+__∞_)_______
值 域__(__-_∞_,__+_∞_)________
图象过点__(__0_,__1_)__ 即当 x_ _ 1_ _时 , y_ _ 0_ _ _ 在R上是增 函数 在R上是减 函数
教材分析 学生分析 教学目标及重难点 教学设计 资源整合 评价与反思
四、教学设计—教学过程设计
创设情景,导入新课 启发诱导,自主探索 巩固新知,反馈回授
归纳小结,深化目标
理性认识
感性认识
深化目标 反馈回授 自主探索 导入新课
❖捷克教育家夸美纽斯说: “一切知识都是从感官开始的。”
学生认知
应用 掌握 归纳 认知 感知
教材分析 学生分析 教学目标及重难点 教学设计 资源整合 评价与反思
教学过程设计
1.创设情景,导入新课
教师讲解并板书 (1)、(2)小题
形成性问题一:
求下列函数的定义域:
(1)ylo1.g 8(x1);
(3)ylo7gx;
4
(2)ylog1 ; 32x
(4)ylo0.g2(x1)2.
学生模仿完成 (3)、(4)小题
教材分析 学生分析 教学目标及重难点 教学设计 资源整合 评价与反思
教学过程设计
3.巩固新知反馈回授
B层
理解对数函数的概念;掌握其图象、性质,会求较复杂对数函数的定义域; 能运用对数函数单调性比较较复杂对数的大小; 培养学生应用类比方法探索数学问题的素养.
A层
掌握对数函数的概念、图象和性质,会求复杂对数函数的定义域; 能运用对数函数单调性比较较复杂对数的大小; 培养学生运用类比方法探索数学问题的素养,提高学生分析问题、解决问题的能
对比分析
突破教学难 点
训练、研究、总结
教材分析 学生分析 教学目标及重难点 教学设计 资源整合 评价与反思
四、教学设计—教法与学法
1. 教法:分层次目标教学法(主)
启发发现法、直观教学法、电化教学法(辅)
2. 学法:探究式学习法(主)
小组讨论法、对照比较法(辅)
叶圣陶:“教是为了不需要教。” 掌握获取知识的策略 更重要,让学生 “学会学习”