湖北省黄冈实验中学2015年中考数学模拟试卷(6月份)(解析版)

合集下载

湖北省黄冈中学2015届高三6月适应性考试理科数学试卷高考资料高考复习资料中考资料

湖北省黄冈中学2015届高三6月适应性考试理科数学试卷高考资料高考复习资料中考资料

绝密★启用前2015年普通高等学校招生全国统一考试黄冈中学适应性考试数学(理工类)本试卷共6页,22题.全卷满分150分.考试用时120分钟.★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑.2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数11z i,(其中i 为虚数单位),则||z ()A .1BC .2D .02.某校在高三第一次模拟考试中约有1000人参加考试,其数学考试成绩近似服从正态分布,即2(100,)(0)X N a a ,试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的110,则此次数学考试成绩在100分到110分之间的人数约为()A .400B .500C .600D .8003.下列判断中正确的是()A .命题“若1a b ,则2212a b”是真命题B .“12a b”是“114a b”的必要不充分条件C .若非空集合,,A B C 满足A B C ,且B 不是A 的子集,则“x C ”是“x A ”的充分不必要条件D .命题“2000,12x R x x ”的否定是“2,12x R x x ”4.已知数列 n a 的首项为11a ,且满足对任意的*n N ,都有12nn n a a 成立,则2015a ()A .201421 B .201521 C .201521 D .2016211C 2C 3C 1B 2B 3B 1P 2P 10P5.公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V )与它的直径(D )的立方成正比”,此即3V kD ,欧几里得未给出k 的值.17世纪日本数学家们对求球的体积的方法还不了解,他们将体积公式3V kD 中的常数k 称为“立圆率”或“玉积率”.类似地,对于等边圆柱(轴截面是正方形的圆柱)、正方体也可利用公式3V kD 求体积(在等边圆柱中,D 表示底面圆的直径;在正方体中,D 表示棱长).假设运用此体积公式求得球(直径为a )、等边圆柱(底面圆的直径为a )、正方体(棱长为a )的“玉积率”分别为1k 、2k 、3k ,那么123::k k k ()A .111::46 B .::264C .2:3:2D .::1646.已知结论:“在ABC 中,各边和它所对角的正弦比相等,即sin sin sin a b cA B C”,若把该结论推广到空间,则有结论:“在三棱锥A BCD 中,侧棱AB 与平面ACD 、平面BCD 所成的角为 、 ,则有()”A .sin sin BC ADB .sin sin AD BCC .sin sin BCD ACDS SD .sin sin ACD BCDS S7.把函数()sin ([0,2])f x x x 的图像向右平移3个单位后得到函数()g x 的图像,则()f x 与()g x 的图像所围成的面积为()A .1BC .D .28.设不等式组2210x y y表示的平面区域为M ,不等式组00x ty 表示的平面区域为N .在M 内随机取一个点,这个点在N 内的概率的最大值为()A .2B .1C .4D .129.如图,三个边长为2的等边三角形有一条边在同一条直线上,边33B C 上有10个不同的点1210,,P P P ,记2(1,2,,10)i i m AB APi,则1210m m m的值为()A .180B.C .45D .10.已知抛物线:C 24y x ,过定点(2,0)作垂直于x 轴的直线交抛物线于点M 、N ,若P 为抛物线C 上不同于M 、N 的任意一点,若直线PM 、PN 的斜率都存在并记为1k 、2k ,则1211||k k ()A .2B .1C.D.二、填空题:本大题共6个小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分.(一)必考题(11—14题)11.二项式52x的展开式中的常数项为.12.如下图,如果执行程序框图,输入正整数5,3n m ,那么输出的p 等于.13.棱锥的三视图如图所示,且三个三角形均为直角三角形,则yx 11 的最小值为.第12题图第13题图14.设定义域为R 的函数2|lg |,0()2,0x x f x x x x ,若关于x 的函数22[()]2()1y f x bf x 有8个不同的零点,则实数b 的取值范围是.(二)选考题(请考生在第15、16两题中任选一题做答,请先在答题卡指定位置将你所选的题目序号所在方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.)21y x主视图俯视图左视图15.(选修4—1:几何证明选讲)如图,在圆O 中,直径AB 与弦CD 垂直,垂足为E ,EF DB ,垂足为F ,若6AB ,1AE ,则DF DB ________.16.(选修4-4:坐标系与参数方程)在直角坐标系xoy 中,曲线1C 的参数方程为sin cos 3y x ,( 为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为24)4sin(.设P 为曲线1C 上的动点,则点P 到2C 上点的距离的最小值为_________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.17.(本题满分12分)已知23sin cos 02f x x x x的最小正周期为T .(Ⅰ)求23f的值;(Ⅱ)在ABC 中,角A B C 、、所对应的边分别为a b c 、、,若有2cos cos a c B b C ,则求角B 的大小以及 f A 的取值范围.18.(本题满分12分)一台仪器每启动一次都随机地出现一个5位的二进制数12345A a a a a a ,其中A 的各位数字中11a ,(2,3,4,5)k a k 出现0的概率为13,(2,3,4,5)k a k 出现1的概率为23,记12345X a a a a a .当启动仪器一次时,(Ⅰ)求3X 的概率;(Ⅱ)求随机变量X 的分布列及X 的数学期望,并指出当X 为何值时,其概率最大.A19.(本题满分12分)如图,三角形ABC 和梯形ACEF 所在的平面互相垂直,AB BC ,//,2AF AC AF CE ,G 是线段BF 上一点,2AB AF BC .(Ⅰ)当GB GF 时,求证://EG 平面ABC ;(Ⅱ)求二面角E BF A 的正弦值;(Ⅲ)是否存在点G 满足BF 平面AEG ?并说明理由.20.(本题满分12分)若数列 n x 满足:111n nd x x (d 为常数,*n N ),则称 n x 为调和数列.已知数列 n a 为调和数列,且11a ,123451111115a a a a a .(Ⅰ)求数列 n a 的通项n a ;(Ⅱ)数列2n n a的前n 项和为n S ,是否存在正整数n ,使得2015n S ?若存在,求出n 的取值集合;若不存在,请说明理由.21.(本题满分13分)已知椭圆2222:1(0)x yC a ba b的左右焦点分别为12,F F,点B为短轴的一个端点,260OF B.(Ⅰ)求椭圆C的方程;(Ⅱ)如图,过右焦点2F,且斜率为(0)k k的直线l与椭圆C相交于,D E两点,A为椭圆的右顶点,直线,AE AD分别交直线3x于点,M N,线段MN的中点为P,记直线2PF的斜率为k .试问k k是否为定值?若为定值,求出该定值;若不为定值,请说明理由.22.(本题满分14分)定义:若()kf xx在[,)k 上为增函数,则称()f x为“k次比增函数”,其中k N,已知()axf x e.(其中 2.71238e )(Ⅰ)若()f x是“1次比增函数”,求实数a的取值范围;(Ⅱ)当12a 时,求函数()()f xg xx在[,1](0)m m m上的最小值;(Ⅲ)求证:72e.。

2015年湖北省黄冈市中考数学试卷(含详细答案)

2015年湖北省黄冈市中考数学试卷(含详细答案)

数学试卷 第1页(共26页) 数学试卷 第2页(共26页)绝密★启用前湖北省黄冈市2015年初中毕业生学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共21分)一、选择题(本大题共7小题,每小题3分,共21分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.9的平方根是( )A .3±B .13±C .3D .3- 2.下列运算结果正确的是( )A .623x x x ÷=B .11()x x-=- C .236()24x x =D .23622a a a -=- 3.如图,该几何体的俯视图是( )AB C D4.下列结论正确的是( )A .2232a b a b -= B .单项式2x -的系数是1-C .有意义的x 的取值范围是2x ->D .若分式211a a -+的值等于0,则1a =±5.如图,a b ∥,12=∠∠,340=∠,则4∠等于( )A .40 B .50 C .60 D .706.如图,在ABC △中,90C =∠,30B =∠,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,3CD =,则BC 的长为( )A .6 B.C .9D.7.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地.已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象是( )ABCD第Ⅱ卷(非选择题 共99分)二、填空题(本大题共7小题,每小题3分,共21分.把答案填写在题中的横线上)8.. 9.分解因式:322x x x -+= .10.若方程2210x x --=的两根分别为12,x x ,则1212x x x x +-的值为 . 11.计算22(1)b aa b a b÷--+的结果是 . 12.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若20CBF =∠,则AED ∠等于 度.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共26页) 数学试卷 第4页(共26页)13.如图所示的扇形是一个圆锥的侧面展开图,若120AOB =∠,弧AB 的长为12πcm ,则该圆锥的侧面积为 2cm .14.在ABC △中,13cm AB =,20cm AC =,BC 边上的高为12cm ,则ABC △的面积为 2cm .三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分5分)解不等式组:232,2112.323x x x x -⎧⎪⎨--⎪⎩①②>≥16.(本小题满分6分)已知,A B 两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问,A B 两件服装的成本各是多少元?17.(本小题满分6分)已知:如图,在四边形ABCD 中,AB CD ∥,,E F 为对角线AC 上两点,且AE CF =,DF BE ∥. 求证:四边形ABCD 为平行四边形.18.(本小题满分7分)在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树形图列举出选手A 获得三位评委评定的各种可能的结果; (2)求选手A 晋级的概率.19.(本小题满分7分)“六一”儿童节前夕,蕲黄县教育局准备给留守儿童赠送一批学习用品,先对浠泉镇浠泉小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并将统计结果绘制成了如图所示的两幅不完整的统计图.请根据上述统计图,解答下列问题:(1)该校有多少个班级?并补全条形统计图;(2)该校平均每班有多少名留守儿童?留守儿童人数的众数是多少?(3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.20.(本小题满分7分)如图,在一次军事演习中,蓝方在一条东西走向的公路上的A 处朝正南方向撤退,红方在公路上的B 处沿南偏西60方向前进实施拦截.红方行驶1000米到达C 处后,因前方无法通行,红方决定调整方向,再朝南偏西45方向前进了相同的距离,刚好在D 处成功拦截蓝方.求拦截点D 处到公路的距离(结果不取近似值).数学试卷 第5页(共26页) 数学试卷 第6页(共26页)21.(本小题满分8分)如图,在ABC △中,AB AC =,以AC 为直径的O 交AB 于点M ,交BC 于点N ,连接AN ,过点C 的切线交AB 的延长线于点P . (1)求证:BCP BAN =∠∠;(2)求证:AM CBMN BP=.22.(本小题满分8分) 如图,反比例函数y kx=的图象经过点4()1,A -,直线 (0)y x b b =-+≠与双曲线y kx=在第二、四象限分别相交于,P Q 两点,与x 轴、y 轴分别相交于,C D 两点. (1)求k 的值;(2)当2b =-时,求OCD △的面积;(3)连接OQ ,是否存在实数b ,使得ODQ OCD S S =△△?若存在,请求出b 的值;若不存在,请说明理由.23.(本小题满分10分)我市某风景区门票价格如图所示.黄冈赤壁旅游公司有甲、乙两个旅行团队,计划在“五一”小黄金周期间到该景点游玩,两团队游客人数之和为120人,乙团队人数不超过50人.设甲团队人数为x 人,如果甲、乙两团队分别购买门票,两团队门票款之和为W 元.(1)求W 关于x 的函数关系式,并写出自变量x 的取值范围;(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可节约多少钱;(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a 元;人数超过100人时,每张门票降价2a 元.在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约3400元,求a 的值.24.(本小题满分14分)如图,在矩形OABC 中,5OA =,4AB =,点D 为边AB 上一点,将BCD △沿直线CD 折叠,使点B 恰好落在OA 边上的点E 处,分别以,OC OA 所在的直线为x 轴,y 轴建立平面直角坐标系. (1)求OE 的长;(2)求经过,,O D C 三点的抛物线的解析式;(3)一动点P 从点C 出发,沿CB 以每秒2个单位长的速度向点B 运动,同时动点Q 从E 点出发,沿EC 以每秒1个单位长度的速度向点C 运动,当点P 到达点B 时,两点同时停止运动.设运动时间为t 秒,当t 为何值时,DP DQ =;(4)若点N 在(2)中的抛物线的对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使得以,,,M N C E 为顶点的四边形是平行四边形?若存在,请求出M 点的坐标;若不存在,请说明理由.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共26页)数学试卷 第8页(共26页)湖北省黄冈市2015年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】2(3)9±=,所以9的平方根是3±,故选A. 【考点】平方根的概念 2.【答案】C【解析】624x x x ÷=,A 错误;111()x x x--==--,B 错误;236(2)4x x =,C 正确;23522 a a a -=-,D 错误;故选C. 【考点】多项式的运算 3.【答案】B【解析】由几何体得其俯视图为一个大正方形的左下角有一个小正方形,故选B. 【考点】几何体的俯视图 4.【答案】B【解析】22232a b a b a b -=,A 错误;单项式2x -的系数为1-,B有意义等价于20x +≥,解得,C 错误;1a =-是方程211a a -+的增根,D 错误。

2015学年湖北省黄冈中考数学年试题答案

2015学年湖北省黄冈中考数学年试题答案
2 【考点】圆内接正六边形的性质 10.【答案】B 【解析】因为 2 是关于 x 的方程 x2 2mx 3m 0 的一个根,所以 22 2 2m 3m 0 ,解得 m=4 ,所以原 方程为 x2 8x 12 0 ,所以方程的另外一个根为 6.当等腰三角形的腰长为 2 时,因为 2 2 4 6 ,所以 此时不能构成三角形;当等腰三角形的腰长为 6 时,此时能构成三角形,此时三角形的周长为 6 6 2 14 。 综上所述,故选 B。 【考点】查方程的根,三角函数的性质
2x 2
解法三:如图 4,过点 E 作 EF BC ,垂足为点 F
8 / 16
EFB EFC 90
1 3 ,A BDC ,△ABE ∽△DCE
AC 为直径 ,ABC 90
BD 平分 ABC ,1 2 45
在 RtBFE 中, sin 2 EF ,BE EF
△ABE ∽△DCE
S△ABE =( AB )2 ( x )2 1
S△DCE DC
2x 2
解法二:如图 3,连接 AD ,设 AB x , 1 3 ,BAC BDC ,△ABE ∽△DCE AC 为直径 ,ABC ADC 90 , BD 平分 ABC ,1 2 45
BE
sin 45
在 RtEFC 中, sin ACB EF ,CE EF
CE
sin 30
△ABE ∽△DCE ,
EF 2
S△ABE S△DCE


BE CE
2



sin 45 EF



sin 30 sin 45
2

AD DC

黄冈2015中考数学试题(解析版)

黄冈2015中考数学试题(解析版)

黄冈市2015年初中毕业生学业水平考试数学试题 第Ⅰ卷(选择题共21 分) 一、选择题(下列各题的备选答案中,有且仅有一个答案是正确的,每小题3 分,共21 分)1.(3 分)(2015•黄冈)9 的平方根是( )A.±3B.±31 C.3 D.-3 考点:平方根.分析:根据平方根的含义和求法,可得9 的平方根是: ±9 =±3 ,据此解答即可. 解答:解:9 的平方根是:±9 =±3 .故选:A .点评:此题主要考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个 正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.2.(3 分)(2015•黄冈)下列运算结果正确的是( )A.x 6÷x 2=x 3B.(-x)-1=x1 C. (2x 3)2=4x 6 D.-2a 2·a 3=-2a 6 考点:同底数幂的除法;幂的乘方与积的乘方;单项式乘单项式;负整数指数幂.分析:根据同底数幂的除法、幂的乘方、单项式的乘法计算即可.解答:解:A 、x 6÷x 2=x 4 ,错误;B 、(-x)-1=﹣x1 ,错误; C 、(2x 3)2=4x 6 ,正确;D 、-2a 2·a 3=-2a 5,错误;故选C点评:此题考查同底数幂的除法、幂的乘方、单项式的乘法,关键是根据法则进行计算.3.(3 分)(2015•黄冈)如图所示,该几何体的俯视图是( )考点:简单组合体的三视图.分析:根据从上面看得到的视图是俯视图,可得答案.解答:解:从上面看是一个正方形,在正方形的左下角有一个小正方形.故选:B .点评:本题考查了简单组合体的三视图,从上面看的到的视图是俯视图.4.(3 分)(2015•黄冈)下列结论正确的是( )A.3a 2b-a 2b=2B.单项式-x 2的系数是-1C.使式子2 x 有意义的x 的取值范围是x>-2D.若分式112+-a a 的值等于0,则a=±1 考点:二次根式有意义的条件;合并同类项;单项式;分式的值为零的条件.分析:根据合并同类项,可判断A ;根据单项式的系数是数字因数,可判断B ;根据二次根式的被开方数是非负数,可判断C ;根据分式的分子为零分母不为零,可判断D .解答:解:A 、合并同类项系数相加字母部分不变,故A 错误;B 、单项式-x 2的系数是﹣1,故B 正确;C 、式子2+x 有意义的x 的取值范围是x >﹣2 ,故C 错误;D 、分式112+-a a 的值等于0,则a=1,故D 错误; 故选:B .点评:本题考查了二次根是有意义的条件,二次根式有意义的条件是分式的分子为零分母不为零,二次根式有意义的条件是被开方数是非负数.5.(3 分)(2015•黄冈)如图,a ∥b,∠1=∠2,∠3=40°,则∠4 等于( )A.40°B.50°C.60°D.70°考点:平行线的性质.分析:先根据平行线的性质求出∠1+∠2 的度数,再由∠1=∠2 得出∠2 的度数,进而可得 出结论.解答:解:∵a ∥b ,∠3=40°,∴∠1+∠2=180°﹣40°=140°,∠2= ∠4 .∵∠1=∠2 ,∴∠2= 21 ×140°=70°, ∴∠4= ∠2=70°.故选D .点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.6.(3 分)(2015•黄冈)如图,在△ABC 中,∠C=Rt ∠,∠B=30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD=3,则BC 的长为( )A.6 B 36. C.9 D. 33考点:含30 度角的直角三角形;线段垂直平分线的性质.分析:根据线段垂直平分线上的点到线段两端距离相等可得AD=BD ,可得∠DAE=30°,易 得∠ADC=60°,∠CAD=30°,则AD 为∠BAC 的角平分线,由角平分线的性质得DE=CD=3 ,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE ,得 结果.解答:解:∵DE 是AB 的垂直平分线,∴AD=BD ,∴∠DAE= ∠B=30°,∴∠ADC=60°,∴∠CAD=30°,∴AD 为∠BAC 的角平分线,∵∠C=90°,DE ⊥AB,∴DE=CD=3 ,∵∠B=30°,∴BD=2DE=6 ,∴BC=9 ,故选C.点评:本题主要考查了垂直平分线的性质,角平分线上的点到角的两边距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.7.(3 分)(2015•黄冈)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地.已知甲、乙两地相距180 千米,货车的速度为60 千米/小时,小汽车的速度为90 千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的函数图象是( )考点:函数的图象.分析:根据出发前都距离乙地180 千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180 千米;经过三小时,货车到达乙地距离变为零,而答案.解答:解:由题意得出发前都距离乙地180 千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180 千米,经过三小时,货车到达乙地距离变为零,故C符合题意,故选:C.点评:本题考查了函数图象,理解题意并正确判断辆车与乙地的距离是解题关键.第Ⅱ卷(非选择题共99 分)二、填空题(共7 小题,每小题3 分,共21 分)18-=_______8.(3 分)(2015•黄冈)计算:2考点:二次根式的加减法.菁优网版权所有分析:先将二次根式化为最简,然后合并同类二次根式即可得出答案.18-解答:解:22-=32=22.故答案为:2 2 .点评:本题考查二次根式的减法运算,难度不大,注意先将二次根式化为最简是关键.9.(3 分)(2015•黄冈)分解因式:x 3-2x 2+x=________考点:提公因式法与公式法的综合运用.分析:首先提取公因式x ,进而利用完全平方公式分解因式即可.解答: 解:x 3-2x 2+x=x (x 2 ﹣2x+1 )=x (x ﹣1)2 .故答案为:x (x ﹣1)2 .点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.10.(3 分)(2015•黄冈)若方程x 2-2x-1=0 的两根分别为x 1,x 2,则x 1+x 2-x 1x 2 的值为_________.考点:根与系数的关系.专题:计算题.分析:先根据根与系数的关系得到x 1 +x 2 =2 ,x 1 x 2 = ﹣1,然后利用整体代入的方法计算.解答:解:根据题意得x 1 +x 2 =2 ,x 1 x 2 = ﹣1,所以x 1+x 2-x 1x 2 =2 ﹣(﹣1)=3 .故答案为3 .点评:本题考查了根与系数的关系:若x 1 ,x 2 是一元二次方程ax 2 + bx + c=0 (a ≠0 )的两根时, x 1 +x 2 =ab - ,x 1 x 2 = ac 11.(3 分)(2015•黄冈)计算)1(22b a a b a b +-÷-的结果是_________. 考点:分式的混合运算.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答: 解:原式= 故答案为: .点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.12.(3 分)(2015•黄冈)如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC交于点E,若∠CBF=20°,则∠AED 等于_________度.考点:正方形的性质;全等三角形的判定与性质.菁优网版权所有分析:根据正方形的性质得出∠BAE= ∠DAE ,再利用SAS 证明△ ABE 与△ ADE 全等,再 利用三角形的内角和解答即可.解答:解:∵正方形ABCD ,∴AB=AD ,∠BAE= ∠DAE ,在△ABE 与△ADE 中,,∴△ABE ≌△ADE (SAS ),∴∠AEB= ∠AED ,∠ABE= ∠ADE ,∵∠CBF=20°,∴∠ABE=70°,∴∠AED= ∠AEB=180°﹣45°﹣70°=65°,故答案为:65°点评:此题考查正方形的性质,关键是根据正方形的性质得出∠BAE= ∠DAE ,再利用全等三角形的判定和性质解答.13. (3 分)(2015•黄冈)如图所示的扇形是一个圆锥的侧面展开图, 若∠AOB=120° , 弧AB 的长为12πcm, 则该圆锥的侧面积为_______cm 2.考点:圆锥的计算.分析:首先求得扇形的母线长,然后求得扇形的面积即可.解答:解:设AO=B0=R ,∵∠AOB=120°,弧AB 的长为12πcm ,∴ 180120R =12π, 解得:R=18 , ∴圆锥的侧面积为21lR= 21 ×12π×18=108π, 故答案为:108π.点评:本题考查了圆锥的计算,解题的关键是牢记圆锥的有关计算公式,难度不大.14. (3 分)(2015•黄冈)在△ ABC 中,AB=13cm,AC=20cm,BC 边上的高为12cm,则△ABC 的面积为__________cm2.考点:勾股定理.菁优网版权所有分析:此题分两种情况:∠B 为锐角或∠B 为钝角已知AB 、AC 的值,利用勾股定理即可求 出BC 的长,利用三角形的面积公式得结果.解答:解:当∠B 为锐角时(如图 1),在Rt △ABD 中,BD==5cm , 在Rt △ADC 中,CD==16cm , ∴BC=21 ,∴S △ ABC= =21 ×21×12=126cm ; 当∠B 为钝角时(如图2 ),在Rt △ABD 中,BD==5cm , 在Rt △ADC 中,CD= =16cm ,∴BC=CD ﹣BD=16 ﹣5=11cm ,∴S △ ABC= = 21×11×12=66cm , 故答案为:126 或66 .点评:本题主要考查了勾股定理和三角形的面积公式,画出图形,分类讨论是解答此题的关键.三、解答题(本大题共10 小题,满分共78 分)15.(5分)(2015•黄冈)解不等式组:⎪⎩⎪⎨⎧-≥-->3221312232x x x x 考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:由①得,x <2 ,由②得,x ≥ ﹣2 ,故不等式组的解集为:﹣2≤x <2 .点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(6分)(2015•黄冈)已知A,B 两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130 元,问A,B 两件服装的成本各是多少元?考点:二元一次方程组的应用.分析:设A 服装成本为x 元,B 服装成本y 元,由题意得等量关系:①成本共500 元;②共获利 130 元,根据等量关系列出方程组,再解即可.解答:解:设A 服装成本为x 元,B 服装成本y 元,由题意得:,解得: ,答:A 服装成本为300 元,B 服装成本200 元.点评:此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.17.(6 分)(2015•黄冈)已知:如图,在四边形ABCD 中,AB ∥ CD,E,F 为对角线AC 上两点,且AE=CF ,DF ∥BE.求证:四边形ABCD 为平行四边形.考点:平行四边形的判定;全等三角形的判定与性质.专题:证明题.分析:首先证明△AEB ≌△CFD 可得AB=CD ,再由条件AB ∥CD 可利用一组对边平行且相 等的四边形是平行四边形证明四边形ABCD 为平行四边形.解答:证明:∵AB ∥CD ,∴∠DCA= ∠BAC ,∵DF ∥BE ,∴∠DFA= ∠BEC ,∴∠AEB= ∠DFC ,在△AEB 和△ CFD 中,∴△AEB ≌△CFD (ASA ),∴AB=CD ,∵AB ∥CD ,∴四边形ABCD 为平行四边形.点评:此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.18.(7分)(2015•黄冈)在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“ 通过”(用√表示)或“ 淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树形图列举出选手A 获得三位评委评定的各种可能的结果;(2)求选手A 晋级的概率.考点:列表法与树状图法.分析:(1)利用树状图列举出所有可能即可,注意不重不漏的表示出所有结果;(2 )列举出所有情况,让至少有两位评委给出“通过”的结论的情况数除以总情况数 即为所求的概率.解答:解:(1)画出树状图来说明评委给出A 选手的所有可能结果:;(2 )∵由上可知评委给出A 选手所有可能的结果有8 种.并且它们是等可能的,对 于A 选手,晋级的可能有4 种情况,∴对于A 选手,晋级的概率是:21 . 点评:本题主要考查了树状图法求概率.树状图法可以不重不漏地列举出所有可能发生的情况,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19.(7 分)(2015•黄冈)“ 六一”儿童节前夕,蕲黄县教育局准备给留守儿童赠送一批学习用品,先对浠泉镇浠泉小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6 名,7 名,8 名,10 名,12 名这五种情形,并将统计结果绘制成了如图所示的两幅不完整的统计图.请根据上述统计图,解答下列问题:(1)该校有多少个班级?并补全条形统计图;(2)该校平均每班有多少名留守儿童?留守儿童人数的众数是多少?(3)若该镇所有小学共有60 个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.考点:条形统计图;用样本估计总体;扇形统计图;加权平均数.分析:(1)根据有7 名留守儿童班级有2 个,所占的百分比是 12.5%,即可求得班级的总个数;(2 )利用平均数的计算公式求得每班的留守儿童数,然后根据众数的定义,就是出现次数最多的数确定留守儿童的众数;(3 )利用班级数60 乘以(2 )中求得的平均数即可.解答:解:(1)该校的班级数是:2÷ 12.5%=16 (个).则人数是8 名的班级数是:16 ﹣1 ﹣2 ﹣6 ﹣2=5 (个).; (2 )每班的留守儿童的平均数是: 161(1×6+2×7+5×8+6×10+12×2 )=9 (人),众数是 10 名;(3 )该镇小学生中,共有留守儿童60×9=540 (人).答:该镇小学生中共有留守儿童540 人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(7 分)(2015•黄冈)如图,在一次军事演习中,蓝方在一条东西走向的公路上的A 处朝正南方向撤退,红方在公路上的B 处沿南偏西60°方向前进实施拦截.红方行驶1000米到达C 处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D 处成功拦截蓝方.求拦截点D处到公路的距离(结果不取近似值).考点:解直角三角形的应用-方向角问题.分析:过B 作AB 的垂线,过C 作AB 的平行线,两线交于点E ;过C 作AB 的垂线,过D作AB 的平行线,两线交于点F ,则∠E= ∠F=90°,拦截点D 处到公路的距离DA=BE+CF .解Rt △ BCE ,求出BE=21BC=21×1000=500 米;解Rt △ CDF ,求出 CF=22CD=5002 米,则DA=BE+CF=(500+5002)米. 解答:解:如图,过B 作AB 的垂线,过C 作AB 的平行线,两线交于点E ;过C 作AB 的 垂线,过D 作AB 的平行线,两线交于点F ,则∠E= ∠F=90°,拦截点D 处到公路的 距离DA=BE+CF .在Rt △ BCE 中,∵∠E=90°,∠CBE=60°,∴∠BCE=30°,∴BE=21BC=21×1000=500 米; 在Rt △ CDF 中,∵∠F=90°,∠DCF=45°,CD=AB=1000 米, ∴CF=22 CD=5002 米, ∴DA=BE+CF= (500+5002)米,故拦截点D 处到公路的距离是(500+500 2 )米.点评:本题考查了解直角三角形的应用﹣方向角问题,锐角三角函数的定义,正确理解方向角的定义,进而作出辅助线构造直角三角形是解题的关键.21.( 8分)(2015•黄冈)已知:如图,在△ABC 中,AB=AC ,以AC 为直径的⊙O 交AB 于点M ,交BC 于点N ,连接AN,过点C 的切线交AB 的延长线于点P.(1)求证:∠BCP=∠BAN;(2)求证:BPCB MN AM考点:切线的性质;相似三角形的判定与性质.专题:证明题.分析:(1)由AC 为⊙O 直径,得到∠NAC+ ∠ACN=90°,由AB=AC ,得到∠BAN= ∠CAN , 根据PC 是⊙O 的切线,得到∠ACN+ ∠PCB=90°,于是得到结论.(2 )由等腰三角形的性质得到∠ABC= ∠ACB ,根据圆内接四边形的性质得到∠PBC= ∠AMN ,证出△ BPC ∽△MNA ,即可得到结论.解答:(1)证明:∵AC 为⊙O 直径,∴∠ANC=90°,∴∠NAC+ ∠ACN=90°,∵AB=AC ,∴∠BAN= ∠CAN ,∵PC 是⊙O 的切线,∴∠ACP=90°,∴∠ACN+ ∠PCB=90°,∴∠BCP= ∠CAN ,∴∠BCP= ∠BAN ;(2 )∵AB=AC ,∴∠ABC= ∠ACB ,∵∠PBC+ ∠ABC= ∠AMN+ ∠ACN=180°,∴∠PBC= ∠AMN ,由(1)知∠BCP= ∠BAN ,∴△BPC ∽△MNA ,∴BPCB MN AM . 点评:本题考查了切线的性质,等腰三角形的性质,圆周角定理,相似三角形的判定和性质, 圆内接四边形的性质,解此题的关键是熟练掌握定理.22.(8 分)(2015•黄冈)如图,反比例函数y=x k 的图象经过点A (-1,4),直线y=-x + b(b ≠0) 与双曲线y=xk 在第二、四象限分别相交于P ,Q 两点,与x 轴、y 轴分别相交于C,D 两点.(1)求k 的值;(2)当b=-2 时,求△OCD 的面积;(3)连接OQ ,是否存在实数b,使得S △ODQ=S △OCD ? 若存在,请求出b 的值;若不存在,请说明理由.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)根据反比例函数的图象上点的坐标特征易得k= ﹣4 ;(2 )当b= ﹣2 时,直线解析式为y= ﹣x ﹣2 ,则利用坐标轴上点的坐标特征可求出C (﹣2 ,0 ),D (0,﹣2 ),然后根据三角形面积公式求解;(3 )先表示出C (b ,0 ),根据三角形面积公式,由于S △ ODQ=S △ OCD ,所以点Q 和 点C 到OD 的距离相等,则Q 的横坐标为(﹣b ,0 ),利用直线解析式可得到Q (﹣ b ,2b ),再根据反比例函数的图象上点的坐标特征得到﹣b •2b= ﹣4 ,然后解方程即可 得到满足条件的b 的值.解答: 解:(1)∵反比例函数y= xk 的图象经过点A (﹣1,4 ), ∴k= ﹣1×4= ﹣4 ;(2 )当b= ﹣2 时,直线解析式为y= ﹣x ﹣2 ,∵y=0 时,﹣x ﹣2=0 ,解得x= ﹣2 ,∴C (﹣2 ,0 ),∵当x=0 时,y= ﹣x ﹣2= ﹣2 ,∴D (0,﹣2 ),∴S △ OCD=21×2×2=2 ; (3 )存在.当y=0 时,﹣x+b=0 ,解得x=b ,则C (b ,0 ),∵S △ ODQ=S △ OCD ,∴点Q 和点C 到OD 的距离相等,而Q 点在第四象限,∴Q 的横坐标为﹣b ,当x= ﹣b 时,y= ﹣x+b=2b ,则Q (﹣b ,2b ),∵点Q 在反比例函数y= ﹣x4 的图象上, ∴﹣b •2b= ﹣4 ,解得b= ﹣2 或b=2(舍去),∴b 的值为﹣2 .点评:本题考查了反比例函数与一次函数的交点:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了反比例函数图象上点的坐标特征和三角形面积公式.23.(10 分)(2015•黄冈)我市某风景区门票价格如图所示黄冈赤壁旅游公司有甲、乙两个旅行团队,计划在“五一”小黄金周期间到该景点游玩,两团队游客人数之和为120 人,乙团队人数不超过50 人.设甲团队人数为x 人,如果甲、乙两团队分别购买门票,两团队门票款之和为W 元.(1)求W 关于x 的函数关系式,并写出自变量x 的取值范围;(2)若甲团队人数不超过100 人,请说明甲、乙两团队联合购票比分别购票最多可节约多少钱;(3“) 五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50 人时,门票价格不变;人数超过50 人但不超过100 人时,每张门票降价a 元;人数超过100 人时,每张门票降价2a 元.在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约3400 元,求a 的值.考点:一次函数的应用;一元二次方程的应用;一元一次不等式的应用.分析:(1)根据甲团队人数为x 人,乙团队人数不超过50 人,得到x ≥70,分两种情况:①当70≤x ≤100 时,W=70x+80 (120 ﹣x )= ﹣10x+9600,②当100<x <120 时, W=60x+80 (120 ﹣x )= ﹣20x+9600 ,即可解答;(2 )根据甲团队人数不超过100 人,所以x ≤100,由W= ﹣10x+9600,根据70≤x ≤100, 利用一次函数的性质,当x=70 时,W 最大=8900 (元),两团联合购票需120×60=7200 (元),即可解答;(3 )根据每张门票降价a 元,可得W= (70 ﹣a )x+80 (120 ﹣x )= ﹣(a+10 )x+9600 , 利用一次函数的性质,x=70 时,W 最大= ﹣70a+8900 (元),而两团联合购票需120(60 ﹣2a )=7200 ﹣240a (元),所以﹣70a+8900 ﹣(7200 ﹣240a )=3400,即可解答. 解答:解:(1)∵甲团队人数为x 人,乙团队人数不超过50 人,∴120 ﹣x ≤50,∴x ≥70,①当70≤x ≤100 时,W=70x+80 (120 ﹣x )= ﹣10x+9600,②当100<x <120 时,W=60x+80 (120 ﹣x )= ﹣20x+9600 ,综上所述,W=(2 )∵甲团队人数不超过100 人,∴x≤100,∴W= ﹣10x+9600,∵70≤x≤100,∴x=70 时,W 最大=8900 (元),两团联合购票需120×60=7200 (元),∴最多可节约8900 ﹣7200=1700 (元).(3 )∵x≤100,∴W= (70 ﹣a )x+80 (120 ﹣x )= ﹣(a+10 )x+9600 ,∴x=70 时,W 最大= ﹣70a+8900 (元),两团联合购票需120 (60 ﹣2a )=7200 ﹣240a (元),∵﹣70a+8900 ﹣(7200 ﹣240a )=3400 ,解得:a=10 .点评:本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数解析式,利用一次函数的性质求得最大值.注意确定x 的取值范围.24.(14 分)(2015•黄冈)如图,在矩形OABC 中,OA=5,AB=4,点D 为边AB 上一点,将△BCD 沿直线CD 折叠,使点B 恰好落在OA边上的点E 处,分别以OC,OA 所在的直线为x 轴,y 轴建立平面直角坐标系.(1)求OE 的长;(2)求经过O,D,C 三点的抛物线的解析式;(3)一动点P 从点C 出发,沿CB 以每秒2 个单位长的速度向点B 运动,同时动点Q 从E 点出发,沿EC 以每秒1 个单位长的速度向点C 运动,当点P 到达点B 时,两点同时停止运动.设运动时间为t 秒,当t为何值时,DP=DQ;(4) 若点N 在(2)中的抛物线的对称轴上,点M 在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E 为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)由折叠的性质可求得CE、CO,在Rt△COE 中,由勾股定理可求得OE,设AD=m ,在Rt△ADE 中,由勾股定理可求得m 的值,可求得D 点坐标,结合C、O 两点,利用待定系数法可求得抛物线解析式;(2 )用t 表示出CP 、BP 的长,可证明△DBP ≌△DEQ ,可得到BP=EQ ,可求得t的值;(3 )可设出N 点坐标,分三种情况①EN 为对角线,②EM 为对角线,③EC 为对角线,根据平行四边形的性质可求得对角线的交点横坐标,从而可求得M 点的横坐标,再代入抛物线解析式可求得M 点的坐标.解答:解:(1)∵CE=CB=5,CO=AB=4,∴在Rt△COE 中,OE==3 ,设AD=m ,则DE=BD=4 ﹣m ,∵OE=3,∴AE=5 ﹣3=2,在Rt △ADE 中,由勾股定理可得AD 2 +AE 2 =DE 2 ,即m 2 +22 = (4 ﹣m )2 ,解得m=23 , ∴D (﹣23,﹣5 ), ∵C (﹣4 ,0 ),O (0,0 ),∴设过O 、D 、C 三点的抛物线为y=ax (x+4 ),∴﹣5= ﹣23 a (﹣23+4 ),解得a=34 , ∴抛物线解析式为y=34x (x+4 )= 34x 2 + 316x ; (2 )∵CP=2t ,∴BP=5 ﹣2t ,在Rt △ DBP 和Rt △ DEQ 中,,∴Rt △ DBP ≌Rt △ DEQ (HL ),∴BP=EQ ,∴5 ﹣2t=t ,∴t= 35 ; (3 )∵抛物线的对称为直线x= ﹣2 ,∴设N (﹣2 ,n ),又由题意可知C (﹣4 ,0 ),E (0,﹣3 ),设M (m ,y ),①当EN 为对角线,即四边形ECNM 是平行四边形时,则线段EN 的中点横坐标为= ﹣1,线段CM 中点横坐标为,∵EN ,CM 互相平分,∴ = ﹣1,解得m=2 ,又M 点在抛物线上,∴y=34x 2 + 316x=16 , ∴M (2 ,16);②当EM 为对角线,即四边形ECMN 是平行四边形时,则线段EM 的中点横坐标为,线段CN 中点横坐标为 = ﹣3, ∵EN ,CM 互相平分,∴ = ﹣3,解得m= ﹣6,又∵M 点在抛物线上,∴y= 34× (﹣6 )2 + 316× (﹣6 )=16 , ∴M (﹣6,16);③当CE 为对角线,即四边形EMCN 是平行四边形时,则M 为抛物线的顶点,即M (﹣2 ,﹣316 ). 综上可知,存在满足条件的点M ,其坐标为(2 ,16)或(﹣6,16)或(﹣2 ,﹣316 ). 点评:本题主要考查二次函数的综合应用,涉及待定系数法、全等三角形的判定和性质、折 叠的性质、 平行四边形的性质等知识点.在(1)中求得D 点坐标是解题的关键,在 (2 )中证得全等,得 到关于t 的方程是解题的关键,在(3 )中注意分类讨论思想的应用.本题考查知识点较多,综 合性较强,难度适中.。

2015年湖北省黄冈市中考数学模拟试题及答案

2015年湖北省黄冈市中考数学模拟试题及答案
(1)若-4<m <6.当m=____▲____时,⊙P同时与AC、BC相切;
(2)设⊙P的半径为3,当m=______▲____时,⊙P与直线AC、直线BC中的一条相切。
三、认真答一答:(本题7个小题,共66分)
17、(原创)(本小题满分6分)计算:
18、(原创)(本小题满分8分)(1)解不等式:8-5(x-2)<4(x-1)+13;
23.(改编)(本小题满分12分)
如图,已知直线 交坐标轴于A,B两点,以线段AB为边向上作矩形ABCD,AB:AD=1:2,过点A,D,C的抛物线与直线另一个交点为E.
阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。
对于任意正实数a、b,可作如下变形a+b= = - + = + ,
又∵ ≥0,∴ + ≥0+ ,即 ≥ .
(1)根据上述内容,回答下列问题:在 ≥ (a、b均为正实数)中,若ab为定值p,则a+b≥ ,当且仅当a、b满足▲时,a+b有最小值 .
8、(原创)关于分式 ,有下列说法,错误的有( )个:
(1)当x取1时,这个分式有意义,则a≠3;(2)当x=5时,分式的值一定为零;(3)若这个分式的值为零,则a≠-5;(4)当x取任何值时,这个分式一定有意义,则二次函数y=x2-4x+a与x轴没有交点。
A.0B.1C.2D.3
9、(改编)如图,设三角形ABC为一等腰直角三角形,角ABC为直角,D为AC中点。以B为圆心,AB为半径作一圆弧AFC,以D为中心,AD为半径,作一半圆AGC,作正方形BDCE。月牙形AGCFA的面积与正方形BDCE的面积大小关系( )
14、(改编)在△ABC中,∠A=120°,AB=2,AC=4,则 的值是__▲_______;

2015年湖北省黄冈市中考数学试卷-答案

2015年湖北省黄冈市中考数学试卷-答案

湖北省黄冈市2015年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】2(3)9±=,所以9的平方根是3±,故选A. 【考点】平方根的概念 2.【答案】C【解析】624x x x ÷=,A 错误;111()x x x--==--,B 错误;236(2)4x x =,C 正确;23522 a a a -=-,D 错误;故选C. 【考点】多项式的运算 3.【答案】B【解析】由几何体得其俯视图为一个大正方形的左下角有一个小正方形,故选B. 【考点】几何体的俯视图 4.【答案】B【解析】22232a b a b a b -=,A 错误;单项式2x -的系数为1-,B 有意义等价于20x +≥,解得,C 错误;1a =-是方程211a a -+的增根,D 错误。

综上所述,故选B.【考点】多项式的运算、单项式的概念、解分式方程 5.【答案】D【解析】由a b ∥得1+2=1803=140︒-︒∠∠∠,又因为1=2∠∠,所以1=140=702⨯︒︒∠2,所以4=2∠∠,故选D.【考点】平行线的性质,角平分线的性质 6.【答案】C【解析】因为直线DE 是线段AB 的垂直平分线,所以DA DB =,所以30==︒∠∠DAB DBA ,则30=︒∠DAC ,又因为在Rt ADC △中,3CD =,所以26BD AD CD ===,所以9BC BD CD =+=,故选C.【考点】直角三角形,垂直平分线的性质 7.【答案】C【解析】由题意得当0t =时,货车和小汽车离乙地的距离为180千米,小汽车到达乙地的时间为180=290(小时),加上返回到达甲地的时间为224⨯=(小时),货车到达乙地的时间为180=360(小时),观察图象得只有C 选项符合,故选C. 【考点】一次函数的图象第Ⅱ卷二、填空题8.【答案】=== 【考点】有理数的计算 9.【答案】2(2)x x -【解析】32222(21)(1).x x x x x x x x -+=-+=- 【考点】因式分解 10.【答案】3【解析】因为1x ,2x 对是方程2210x x --=的两根,所以12221x x -+=-=,12111x x -+==-,所以12122(1)3x x x x +-=--=.【考点】方程的根与系数的关系 11.【答案】1a b- 【解析】22221(1)()()b a b a b b b a b a b a b a b a b a b a b b a b+-+÷-=÷=⨯=-+-++--.【考点】分式的化简 12.【答案】65【解析】因为四边形ABCD 为正方形,AC 为对角线,所以45==︒∠∠ACB ACD , BC CD =,又因为CE为公共边,所以()BCE DCE SAS △≌△,所以20==︒∠∠CDE CBE ,则180 70=︒-=︒∠∠ADE CDE ,又因为45=︒∠DAC ,所以18065=︒--=︒∠∠∠AED EAD EDA . 【考点】正方形的性质,全等三三角形的判定与性质 13.【答案】 108π【解析】由题意得扇形的半径 18(cm)120108r =12ππ=,所以圆锥的侧面积等于扇形的面积等于方11812π (cm)2r 108π=⨯⨯=.【考点】扇形的面积公式、弧长公式 14.【答案】66或126【解析】当ABC △为锐角三角形时,因为13AB =,20AC =,BC 边上的高12AD =,则在Rt ADB △和Rt ADC △中,由勾股定理得5BD =,16DC ==,所以 21BC BD DC =+=,则ABC △的面积为1126(cm)2AD BC =;当ABC ∠为钝角三角形时,因为13AB =,20AC =,BC 边上的高12AD =,则在Rt ADB △和Rt ADC △RIOADC 中,由勾股定理得5BD =,16DC =,所以11BC DC BD =-=,则ABC △的面积为方166(cm)2AD BC =。

黄冈2015年中考数学模拟试题(6)

黄冈2015年中考数学模拟试题(6)

EFDB CA DACB黄冈2015年中考数学模拟试题(6)2015。

4.8 一、选择题(每小题3分,共24分)1、设13x =x 的值满足 ( )A 。

1<x <2B. 2<x <3C. 3<x <4 D 。

4<x <52、下列运算正确的是 ( )A. 235(2)8x x -=-B 。

236x x x ⋅=C. 2233a a -= D. 22(34)(34)916a b a b a b -+=- 3、方程2816x x -=-的根的情况是 ( )A 。

只有一个实数根 B. 有两个不相等的实数根C 。

有两个相等的实数根D 。

没有实数根 4、如图,下列条件中能判断直线a ∥b 的是 ( )A .∠1=∠2B .∠1=∠5C .∠1+∠3=180°D .∠3=∠55、下列电视台的台标,是中心对称图形的是 ( )ABCD6、如图,由几个相同的小正方体搭成的一个几何体,它的左视图为 ( )ABCD7、圆锥底面圆的半径为3m ,其侧面展开图是半圆,则圆锥母线长为 ( ) A .3cmB .6cmC .9cmD .12cm8、如图,正方形ABCD 中,AB =8cm ,对角线AC ,BD 相交于点O ,点E , F 分别从B ,C 两点同时出发,以1cm/s 的速度沿BC ,CD 运动,到点C , D 时停止运动.设运动时间为t (s ),△OEF 的面积为S (cm 2),则S (cm 2) 与t (s )的函数关系可用图象表示为( )二、填空题(每小题3分,共21分)9、据《经济日报》报道,黄冈市2013年累计接待游客1362万人次,旅游总收入达75亿元. 同比增幅双双超过30%,其中数据1362万用科学记数法表示为 . 10、在实数范围内分解因式 318x x -= 。

11、如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF=AC ,那么∠ABC 的大小是 。

湖北省黄冈市初升高初中数学提前录取模拟试题(六)(含解析)【含解析】

湖北省黄冈市初升高初中数学提前录取模拟试题(六)(含解析)【含解析】

2015年湖北省黄冈中学提前录取数学模拟试卷(6)一.填空题1.+= .2.(x2﹣x﹣2)6=a12x12+a11x11+a10x10+…+a1x+a0,则a12+a10+a8+a6+a4+a2= .3.如果函数y=b的图象与函数y=x2﹣3|x﹣1|﹣4x﹣3的图象恰有三个交点,则b的可能值是.4.已知x为实数,则的最大值是.5.关于x的方程有实根,则a的取值范围是.6.已知f(x)=﹣,则f(x)的最大值是.7.如图所示,动点C在⊙O的弦AB上运动,AB=,连接OC,CD⊥OC交⊙O于点D.则CD的最大值为.8.如图所示,已知P是正方形ABCD外一点,且PA=3,PB=4,则PC的最大值是.二.选择题9.记A=,再记[A]表示不超过A的最大整数,则[A]()A.2010 B.2011 C.2012 D.201310.已知二次函数y=ax2+bx+c的x与y的部分对应值如下表:且方程ax2+bx+c=0的两根分别为x1,x2(x1<x2),下面说法错误的是()A.x=﹣2,y=5 B.1<x2<2C.当x1<x<x2时,y>0 D.当x=时,y有最小值11.如图,从1×2的矩形ABCD的较短边AD上找一点E,过这点剪下两个正方形,它们的边长分别是AE、DE,当剪下的两个正方形的面积之和最小时,点E应选在()A.AD的中点B.AE:ED=(﹣1):2 C.AE:ED=:1 D.AE:ED=(﹣1):212.如图,在圆心角为直角的扇形OAB中,分别以OA、OB为直径作两个半圆,向直角扇形OAB内随机取一点,则该点刚好来自阴影部分的概率是()A.1﹣B.C.D.13.已知某几何体的三视图如图所示,则该几何体的体积为()A. B.3πC.D.6π14.如图,以半圆的一条弦AN为对称轴将弧AN折叠过来和直径MN交于B点,如果MB:BN=2:3,且MN=10,则弦AN的长为()A.B.C.D.15.两列数如下:7,10,13,16,19,22,25,28,31,…7,11,15,19,23,27,31,35,39,…第1个相同的数是7,第10个相同的数是()A.115 B.127 C.139 D.15116.如图,△AOB和△ACD均为正三角形,且顶点B、D均在双曲线(x>0)上,则图中S△OBP=()A.B.C.D.4三.解答题17.如图,已知锐角△ABC的面积为1,正方形DEFG是△ABC的一个内接正方形,DG∥BC,求正方形DEFG面积的最大值.18.在黄州服装批发市场,某种品牌的时装当季节将来临时,价格呈上升趋势,设这种时装开始时定价为20元,并且每周(7天)涨价2元,从第6周开始保持30元的价格平稳销售;从第12周开始,当季节即将过去时,平均每周减价2元,直到第16周周末,该服装不再销售.(1)试建立销售价y与周次x之间的函数关系式;(2)若这种时装每件进价Z与周次x次之间的关系为Z=﹣0.125(x﹣8)2+12.1≤x≤16,且x为整数,试问该服装第几周出售时,每件销售利润最大?最大利润为多少?19.已知x1、x2是关于x的一元二次方程x2+(3a﹣1)x+2a2﹣1=0的两个实数根,使得(3x1﹣x2)(x1﹣3x2)=﹣80成立,求其实数a的可能值.20.如图,已知点P是⊙O外一点,PS,PT是⊙O的两条切线,过点P作⊙O的割线PAB,交⊙O于A、B两点,并交ST于点C.求证:.21.如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,DB ⊥DC,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.(1)求经过B、E、C三点的抛物线的解析式;(2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件的点P 的坐标;若不存在,请说明理由;(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.2015年湖北省黄冈中学提前录取数学模拟试卷(6)参考答案与试题解析一.填空题1.+= 2﹣.【考点】分母有理化.【分析】先根据二次根式的性质开方,再分母有理化,即可得出答案.【解答】解:原式=+=+=+=﹣+2﹣=2﹣,故答案为:2﹣.【点评】本题考查了分母有理化和二次根式的性质的应用,注意:n+m的有理化因式是n﹣m.2.(x2﹣x﹣2)6=a12x12+a11x11+a10x10+…+a1x+a0,则a12+a10+a8+a6+a4+a2= ﹣32 .【考点】代数式求值.【专题】计算题.【分析】先把x=0代入等式可计算出a0=64,再分别把x=1和﹣1代入等式可得到a12+a11+a10+…+a2+a1+a0=64,a12﹣a11+a10+…+a2﹣a1+a0=0,然后把两式相加即可得到2a12+2a10+2a8+2a6+2a4+2a2+2a0=64,再把a0=64代入计算即可.【解答】解:把x=0代入得a0=(﹣2)6=64,把x=1代入得a12+a11+a10+…+a2+a1+a0=(1﹣1﹣2)2=64,把x=﹣1代入得a12﹣a11+a10+…+a2﹣a1+a0=(1+1﹣2)2=0,所以2a12+2a10+2a8+2a6+2a4+2a2+2a0=64,所以a12+a10+a8+a6+a4+a2=(64﹣2×64)=﹣32.故答案为﹣32.【点评】本题考查了代数式求值:先把代数式根据已知条件进行变形,然后利用整体思想进行计算.3.如果函数y=b的图象与函数y=x2﹣3|x﹣1|﹣4x﹣3的图象恰有三个交点,则b的可能值是﹣6、﹣.【考点】二次函数的性质.【专题】计算题;压轴题.【分析】按x≥1和x<1分别去绝对值,得到分段函数,确定两函数图象的交点坐标,顶点坐标,结合分段函数的自变量取值范围求出符合条件的b的值.【解答】解:当x≥1时,函数y=x2﹣3|x﹣1|﹣4x﹣3=x2﹣7x,图象的一个端点为(1,﹣6),顶点坐标为(,﹣),当x<1时,函数y=x2﹣3|x﹣1|﹣4x﹣3=x2﹣x﹣6,顶点坐标为(,﹣),∴当b=﹣6或b=﹣时,两图象恰有三个交点.故本题答案为:﹣6,﹣.【点评】本题考查了分段的两个二次函数的性质,根据绝对值里式子的符号分类,得到两个二次函数是解题的关键.4.已知x为实数,则的最大值是2.【考点】二次函数的最值.【分析】设y=+,然后把等式两边平方,再根据二次函数的最值问题求出y2的最大值,开方即可得解.【解答】解:设y=+,则y2=8﹣x+2+x﹣2=2+6,∴当x=5时,y2有最大值,为12,∴y的最大值是=2,即+的最大值是2.故答案为:2.【点评】本题考查了二次函数的最值问题,利用二次函数的最值问题求出所求代数式的平方的最大值是解题的关键.5.关于x的方程有实根,则a的取值范围是﹣3<a≤2 .【考点】分式方程的解.【专题】计算题.【分析】设y=,方程变形后,根据方程有实根,得到根的判别式大于等于0,列出关于a的不等式,求出不等式的解集即可得到a的范围.【解答】解:设y=,方程变形为y2﹣6y+2﹣a=0,抛物线对称轴为y=3,开口向上.∵方程有实根,∴△=b2﹣4ac=36﹣4(2﹣a)=28+4a≥0,解得:a≥﹣7,又y=的取值范围为0≤y<1即方程在0≤y<1.所以有f(0)=2﹣a≥0,f(1)=﹣3﹣a<0,解得﹣3<a≤2故答案为:﹣3<a≤2【点评】此题考查了分式方程的解,以及根与系数的关系,利用了整体代换的思想,是一道基本题型.6.已知f(x)=﹣,则f(x)的最大值是.【考点】无理函数的最值.【分析】f(x)的最大值可以看作x轴上的点到点(3,3),(1,2)的最大距离,即两点之间的距离.【解答】解:如图:f(x)=﹣,可以看作x轴上的点到点(3,3),(1,2)的最大距离,最大距离为两点之间的距离,即: =.故答案为:.【点评】本题主要考查了无理函数的最值,解题的关键是运用数形结合的思想.7.如图所示,动点C在⊙O的弦AB上运动,AB=,连接OC,CD⊥OC交⊙O于点D.则CD的最大值为.【考点】垂径定理;勾股定理.【分析】作OH⊥AB,延长DC交⊙O于E,如图,根据垂径定理得到AH=BH=AB=,CD=CE,再利用相交弦定理得CD•CE=BC•AC,易得CD=,当CH最小时,CD最大,C点运动到H点时,CH最小,所以CD的最大值为.【解答】解:作OH⊥AB,延长DC交⊙O于E,如图,∴AH=BH=AB=,∵CD⊥OC,∴CD=CE,∵CD•CE=BC•AC,∴CD2=(BH﹣CH)(AH+CH)=(﹣CH)(+CH)=3﹣CH2,∴CD=,∴当CH最小时,CD最大,而C点运动到H点时,CH最小,此时CD=,即CD的最大值为.故答案为.【点评】本题考查了垂径定理:垂直于弦的直径平分弦,且平分弦所对的弧.也考查了勾股定理.8.如图所示,已知P是正方形ABCD外一点,且PA=3,PB=4,则PC的最大值是3+4.【考点】全等三角形的判定与性质;正方形的性质.【分析】过点B作BE⊥BP使点E在正方形ABCD的外部,且BE=PB,连接AE、PE、PC,然后求出PE= PB,再求出∠ABE=∠CB P,然后利用“边角边”证明△ABE和△CBP全等,根据全等三角形对应边相等可得AE=PC,再根据两点之间线段最短可知点A、P、E三点共线时AE最大,也就是PC最大.【解答】解:如图,过点B作BE⊥BP,且BE=PB,连接AE、PE、PC,则PE=PB=4,∵∠ABE=∠ABP+90°,∠CBP=∠ABP+90°,∴∠ABE=∠CBP,在△ABE和△CBP中,,∴△ABE≌△CBP(SAS),∴AE=PC,由两点之间线段最短可知,点A、P、E三点共线时AE最大,此时AE=AP+PE=3+4,所以,PC的最大值是3+4.故答案为:3+4.【点评】本题考查了全等三角形的判定与性质,正方形的性质,解题的关键是能巧妙利用三角形全等的知识,构造全等三角形,把求PC的长转化成求AE的长.二.选择题9.记A=,再记[A]表示不超过A的最大整数,则[A]()A.2010 B.2011 C.2012 D.2013【考点】取整函数.【分析】先通分得到1++=,再把分子变形得到完全平方公式,所以=,变形得:1+﹣,则A=1+﹣+1+﹣+1+﹣+…+1+﹣,计算得到2013,然后根据[x]表示不超过x的最大整数求解.【解答】解:∵1++====,∴==1+﹣,∴A=1+﹣+1+﹣+1+﹣+…+1+﹣=2013,∴[A]=[2013]=2013.故选:D.【点评】此题主要考查了取整计算,利用完全平方公式以及分式的加减运算法则将原式变形得出=1+﹣是解题关键.10.已知二次函数y=ax2+bx+c的x与y的部分对应值如下表:且方程ax2+bx+c=0的两根分别为x1,x2(x1<x2),下面说法错误的是()A.x=﹣2,y=5 B.1<x2<2C.当x1<x<x2时,y>0 D.当x=时,y有最小值【考点】抛物线与x轴的交点.【分析】分别结合图表中数据得出二次函数对称轴以及图象与x轴的交点范围和自变量x与y的对应情况,进而得出答案.【解答】解:A、利用图表中x=0,1时对应y的值相等,x=﹣1,2时对应y的值相等,∴x=﹣2,5时对应y的值相等,∴x=﹣2,y=5,故此选项正确,不合题意;B、∵方程ax2+bx+c=0的两根分别为x1,x2(x1<x2),且x=1时y=﹣1,x=2时,y=1,∴1<x2<2,故此选项正确,不合题意;C、由题意,结合点的坐标,如图所示,可得出二次函数图象向上,∴当x1<x<x2时,y<0,故此选项错误,符合题意;D、∵利用图表中x=0,1时对应y的值相等,∴当x=时,y有最小值,故此选项正确,不合题意.故选:C.【点评】此题主要考查了抛物线与x轴的交点以及利用图象上点的坐标得出函数的性质,利用数形结合得出是解题关键.11.如图,从1×2的矩形ABCD的较短边AD上找一点E,过这点剪下两个正方形,它们的边长分别是AE、DE,当剪下的两个正方形的面积之和最小时,点E应选在()A.AD的中点B.AE:ED=(﹣1):2 C.AE:ED=:1 D.AE:ED=(﹣1):2【考点】二次函数的最值.【分析】设AE=x.则DE=1﹣x.剪下的两个正方形的面积之和为y,所以由正方形的面积公式得到y=AE2+DE2=2(x﹣)2+.当x=时,y取最小值.即点E是AD的中点.、【解答】解:设AE=x.则DE=1﹣x.剪下的两个正方形的面积之和为y,则y=AE2+DE2=x2+(1﹣x)2=2(x﹣)2+.当x=时,y取最小值.即点E是AD的中点.故选A.【点评】本题考查了二次函数的最值.此题是利用配方法求得二次函数的最值的.12.如图,在圆心角为直角的扇形OAB中,分别以OA、OB为直径作两个半圆,向直角扇形OAB内随机取一点,则该点刚好来自阴影部分的概率是()A.1﹣B.C.D.【考点】几何概率;扇形面积的计算.【分析】设OA的中点是D,则∠CDO=90°,这样就可以求出弧OC与弦OC围成的弓形的面积,从而可求出两个圆的弧OC围成的阴影部分的面积,用扇形OAB的面积减去两个半圆的面积,加上两个弧OC围成的面积的2倍就是阴影部分的面积,最后根据几何概型的概率公式解之即可.【解答】解:设OA的中点是D,则∠CDO=90°,半径为rS扇形OAB=πr2S半圆OAC=π()2=πr2S△ODC=××=r2S弧OC=S半圆OAC﹣S△ODC=πr2﹣r2两个圆的弧OC围成的阴影部分的面积为πr2﹣r2图中阴影部分的面积为πr2﹣2×πr2+2(πr2﹣r2)=πr2﹣r2∴该点刚好来自阴影部分的概率是:1﹣.故选:A.【点评】本题主要考查了几何概型,解题的关键是求阴影部分的面积,不规则图形的面积可以转化为几个不规则的图形的面积的和或差的计算,属于中档题.13.已知某几何体的三视图如图所示,则该几何体的体积为()A. B.3πC.D.6π【考点】由三视图判断几何体.【分析】通过三视图判断几何体的特征,利用三视图的数据,求出几何体的体积即可.【解答】解:由三视图可知几何体是圆柱底面半径为1高为6的圆柱,被截的一部分,如图所求几何体的体积为:×π×12×6=3π.故选B.【点评】本题考查三视图与几何体的关系,正确判断几何体的特征是解题的关键,考查计算能力.14.如图,以半圆的一条弦AN为对称轴将弧AN折叠过来和直径MN交于B点,如果MB:BN=2:3,且MN=10,则弦AN的长为()A. B. C. D.【考点】翻折变换(折叠问题);勾股定理.【专题】计算题.【分析】作MN关于直线AN的对称线段M′N,交半圆于B',连接AM、AM′,构造全等三角形,然后利用勾股定理、割线定理解答.【解答】解:如图,作MN关于直线AN的对称线段M′N,交半圆于B',连接AM、AM′,可得M、A、M′三点共线,MA=M′A,MB=M′B′=4,M′N=MN=10.而M′A•M′M=M′B′•M′N,即M′A•2M′A=4×10=40.则M′A2=20,又∵M′A2=M′N2﹣AN2,∴20=100﹣AN2,∴AN=4.故选B.【点评】此题将翻折变换、勾股定理、割线定理相结合,考查了同学们的综合应用能力,要善于观察图形特点,然后做出解答.15.两列数如下:7,10,13,16,19,22,25,28,31,…7,11,15,19,23,27,31,35,39,…第1个相同的数是7,第10个相同的数是()A.115 B.127 C.139 D.151【考点】规律型:数字的变化类.【分析】根据两组数的变化规律写出两组数的通式,从而得到它们的相同数列中两个相邻的数的差值,再结合第一个相同的数写出通式,然后把序数10代入进行计算即可得解.【解答】解:第一组数7,10,13,16,19,22,25,28,31,…第m个数为:3m+4,第二组数7,11,15,19,23,27,31,35,39,…第n个数为:4n+3,∵3与4的最小公倍数为12,∴这两组数中相同的数组成的数列中两个相邻的数的差值为12,∵第一个相同的数为7,∴相同的数的组成的数列的通式为12a﹣5,第10个相同的数是:12×10﹣5=120﹣5=115.故选:A.【点评】此题主要考查了数字变化规律,确定出相同数的差值,从而得出相同数的通式是解题的关键.16.如图,△AOB和△ACD均为正三角形,且顶点B、D均在双曲线(x>0)上,则图中S△OBP=()A. B. C. D.4【考点】反比例函数综合题.【分析】先根据△AOB和△ACD均为正三角形可知∠AOB=∠CAD=60°,故可得出AD∥OB,所以S△ABP=S,故S△OBP=S△AOB,过点B作BE⊥OA于点E,由反比例函数系数k的几何意义即可得出结论.△AOP【解答】解:∵△AOB和△ACD均为正三角形,∴∠AOB=∠CAD=60°,∴AD∥OB,∴S△ABP=S△AOP,∴S△OBP=S△AOB,过点B作BE⊥OA于点E,则S△OBE=S△ABE=S△AOB,∵点B在反比例函数y=的图象上,∴S△OBE=×4=2,∴S△OBP=S△AOB=2S△OBE=4.故选D.【点评】本题考查的是反比例函数综合题,涉及到等边三角形的性质及反比例函数系数k的几何意义等知识,难度适中.三.解答题17.如图,已知锐角△ABC的面积为1,正方形DEFG是△ABC的一个内接正方形,DG∥BC,求正方形DEFG面积的最大值.【考点】相似三角形的判定与性质;二次函数的最值;正方形的性质.【分析】过点A作AN⊥BC交DG于点M,交BC于点N,设AN=h,DE=x=MN=DG,根据DG∥BC,再由△ADG∽△ABC即可求出x的表达式,再代入求出三角形的面积即可.【解答】解:∵过点A作AN⊥BC交DG于点M,交BC于点N,设AN=h,DE=x=MN=DG,∴BC•h=1,∵DG∥BC,∴△ADG∽△ABC,故=,即=,∴x=,设正方形的面积为S,则S=x2=()2=()2=[]2≤()2=.∴正方形DEFG最大面积=.【点评】本题考查的是相似三角形的判定与性质,根据题意构造出直角三角形是解答此题的关键.18.在黄州服装批发市场,某种品牌的时装当季节将来临时,价格呈上升趋势,设这种时装开始时定价为20元,并且每周(7天)涨价2元,从第6周开始保持30元的价格平稳销售;从第12周开始,当季节即将过去时,平均每周减价2元,直到第16周周末,该服装不再销售.(1)试建立销售价y与周次x之间的函数关系式;(2)若这种时装每件进价Z与周次x次之间的关系为Z=﹣0.125(x﹣8)2+12.1≤x≤16,且x为整数,试问该服装第几周出售时,每件销售利润最大?最大利润为多少?【考点】二次函数的应用.【专题】压轴题.【分析】由于y与x之间的函数关系式为分段函数,则W与x之间的函数关系式亦为分段函数.分情况解答.【解答】解:(1)依题意得,可建立的函数关系式为:∴y=;即y=.4分(2)设利润为W,则W=售价﹣进价故W=,化简得W=①当W=时,∵当x≥0,函数W随着x增大而增大,∵1≤x<6∴当x=5时,W有最大值,最大值=17.125②当W=时,∵W=,当x≥8时,函数W随x增大而增大,∴在x=11时,函数有最大值为19③当W=时,∵W=,∵12≤x≤16,当x≤16时,函数W随x增大而减小,∴在x=12时,函数有最大值为18综上所述,当x=11时,函数有最大值为19.【点评】本题考查的是二次函数的运用,由于计算量大,考生在做这些题的时候要耐心细心.难度中上.此题是分段函数,题目所涉及的内容在求解过程中,要注意分段函数问题先分段解决,最后再整理、归纳得出最终结论,另外还要考虑结果是否满足各段的要求,这是解此类综合应用题目的特点.19.已知x1、x2是关于x的一元二次方程x2+(3a﹣1)x+2a2﹣1=0的两个实数根,使得(3x1﹣x2)(x1﹣3x2)=﹣80成立,求其实数a的可能值.【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】由于x1、x2是关于x的一元二次方程x2+(3a﹣1)x+2a2﹣1=0的两个实数根,利用根与系数的关系可以得到x1+x2=﹣(3a﹣1),x1•x2=2a2﹣1,然后把(3x1﹣x2)(x1﹣3x2)乘开,接着整体代入前面等式的值即可得到关于a的方程,解方程即可求解.【解答】解:∵x1、x2是关于x的一元二次方程x2+(3a﹣1)x+2a2﹣1=0的两个实数根,a=1,b=(3a ﹣1),c=2a2﹣1,∴x1+x2=﹣(3a﹣1),x1•x2=2a2﹣1,而(3x1﹣x2)(x1﹣3x2)=﹣80,∴3x12﹣10x1x2+3x22=﹣80,3(x1+x2)2﹣16x1x2=﹣80,∴3[﹣(3a﹣1)]2﹣16(2a2﹣1)=﹣80,∴5a2+18a﹣99=0,∴a=3或﹣,当a=3时,方程x2+(3a﹣1)x+2a2﹣1=0的△<0,∴不合题意,舍去∴a=﹣.【点评】本题综合考查了根的判别式和根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.20.如图,已知点P是⊙O外一点,PS,PT是⊙O的两条切线,过点P作⊙O的割线PAB,交⊙O于A、B两点,并交ST于点C.求证:.【考点】切割线定理;勾股定理;相交弦定理.【专题】证明题.【分析】根据C、E、O、D四点共圆,根据切割线定理可得:PC•PE=PD•PO,并且可以证得Rt△SPD∽Rt△OPS,即可证得PS2=PD•PO,再根据切割线定理即可求解.【解答】证明:连PO交ST于点D,则PO⊥ST;连SO,作OE⊥PB于E,则E为AB中点,于是因为C、E、O、D四点共圆,所以PC•PE=PD•PO又因为Rt△SPD∽Rt△OPS所以即PS2=PD•PO而由切割线定理知PS2=PA•PB所以即【点评】本题主要考查了切割线定理以及三角形相似的证明,注意对比例式的变形是解题关键.21.如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,DB ⊥DC,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.(1)求经过B、E、C三点的抛物线的解析式;(2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件的点P 的坐标;若不存在,请说明理由;(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)在Rt△ODC中,根据射影定理即可求出OB的长,由此可得到B点的坐标,进而可用待定系数法求出抛物线的解析式;(2)易知△AOD是等腰Rt△,若以P、Q、M为顶点的三角形与△AOD相似,那么△PQM也必须是等腰Rt△;由于∠QPM≠90°,因此本题分两种情况:①PQ为斜边,M为直角顶点;②PM为斜边,Q为直角顶点;首先求出直线AD的解析式,进而可得到M点的坐标;设出P点横坐标,然后根据抛物线和直线AD 的解析式表示出P、Q的纵坐标,即可得到PQ的长;在①中,PQ的长为M、P横坐标差的绝对值的2倍;在②中,PQ的长正好等于M、P横坐标差的绝对值,由此可求出符合条件的P点坐标;(3)①若四边形PQNM是菱形,首先必须满足四边形PMNQ是平行四边形,此时MN与PQ相等,由此可得到P点坐标,然后再判断PQ是否与PM相等即可;②由于当NQ∥PM时,四边形PMNQ是平行四边形,因此本题只需考虑MN∥PQ这一种情况;若四边形PMNQ是等腰梯形且MN、PQ为上下底,那么根据等腰梯形的对称性可知:Q、P的纵坐标的和应该等于N、M的纵坐标的和,据此可求出P、Q的坐标,然后再判断QN与PM是否平行即可.【解答】解:(1)在Rt△BDC中,OD⊥BC,由射影定理,得:OD2=OB•OC;则OB==1;∴B(﹣1,0);∴B(﹣1,0),C(4,0),E(0,4);设抛物线的解析式为:y=a(x+1)(x﹣4)(a≠0),则有:a(0+1)(0﹣4)=4,a=﹣1;∴y=﹣(x+1)(x﹣4)=﹣x2+3x+4;(2)因为A(﹣2,0),D(0,2);所以直线AD:y=x+2;联立,解得或,则F(1﹣,3﹣),G(1+,3+);设P点坐标为(x,x+2)(1﹣<x<1+),则Q(x,﹣x2+3x+4);∴PQ=﹣x2+3x+4﹣x﹣2=﹣x2+2x+2;易知M(,),若以P、Q、M为顶点的三角形与△AOD相似,则△PQM为等腰直角三角形;①以M为直角顶点,PQ为斜边;PQ=2|x M﹣x P|,即:﹣x2+2x+2=2(﹣x),解得x=2﹣,x=2+(不合题意舍去)∴P(2﹣,4﹣);②以Q为直角顶点,PM为斜边;PQ=|x M﹣x Q|,即:﹣x2+2x+2=﹣x,解得x=,x=(不合题意舍去)∴P(,)故存在符合条件的P点,且P点坐标为(2﹣,4﹣)或(,);(3)易知N(,),M(,);设P点坐标为(m,m+2),则Q(m,﹣m2+3m+4);(1﹣<m<1+)∴PQ=﹣m2+2m+2,NM=;①若四边形PMNQ是菱形,则首先四边形PMNQ是平行四边形,有:MN=PQ,即:﹣m2+2m+2=,解得m=,m=(舍去);当m=时,P(,),Q(,)此时PM=≠MN,故四边形PMNQ不可能是菱形;②由于当NQ∥PM时,四边形PMNQ是平行四边形,所以若四边形PMNQ是等腰梯形,只有一种情况:PQ∥MN;依题意,则有:(y N﹣y Q)=(y P﹣y M),即(y N+y M)=(y P+y Q),即+=﹣m2+3m+4+m+2,解得m=,m=(舍去);当m=时,P(,),Q(,),此时NQ与MP不相等,∴四边形PMNQ可以是等腰梯形,且P点坐标为(,).【点评】此题是二次函数的综合题,考查的知识点有:直角三角形的性质,二次函数的确定,等腰三角形、菱形、等腰梯形的判定和性质等,同时还考查了分类讨论的数学思想;要特别注意的是在判定梯形的过程中,不要遗漏证明另一组对边不平行的条件.。

2015黄冈市中考数学模拟试题(2)

2015黄冈市中考数学模拟试题(2)

函数单元训练题一、 选择题(每小题3分,共24分) 1.函数y =中的自变量x 的取值范围是( )2. 如图,将△ABC 绕点C (0,1)旋转180°得到△A ′B ′C ,设点A 的坐标为(a ,b ),则点A ′的坐标为( ) (﹣a ,﹣b )3. 已知线段CD 是由线段AB 平移得到的,点A (﹣1,4)的对应点为C (4,7),则点B (﹣4,﹣1)的对应点D 的坐标为( )4. 如图,矩形ABCD 中,AB =3,BC =4,动点P 从A 点出发,按A →B →C 的方向在AB 和BC 上移动,记PA =x ,点D 到直线PA 的距离为y ,则y 关于x 的函数图象大致是( )A .B .C .D .5. 已知二次函数y =ax 2+bx +c (a ,b ,c 是常数,且a ≠0)的图象如图所示,则一次函数y =cx +与反比例函数y =在同一坐标系内的大致图象是( )A .B .C .D .6. 如图,函数y =2x 和y =ax +4的图象相交于点A (m ,3),则不等式2x ≥ax+4的解集为()≤7. 若反比例函数y =(k ≠0)的图象经过点P (﹣2,3),则该函数的图象的点是( )8. 二次函数y =ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a +c <2b ;③3b +2c <0;④m (am +b )+b <a (m ≠﹣1), 其中正确结论的个数是( ) A . 4个B . 3个C . 2个D . 1个二、填空题(每小题3分,共21分)9. 抛物线y =x 2﹣2x +3的顶点坐标是 .10. 已知当x 1=a ,x 2=b ,x 3=c 时,二次函数y =x 2+mx 对应的函数值分别为y 1,y 2,y 3,若正整数a ,b ,c 恰好是一个三角形的三边长,且当a <b <c 时,都有y 1<y 2<y 3,则实数m 的取值范围是 .11. 已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如表:则当y <5时,x 的取值范围是 .12. 如图,平行于x 轴的直线AC 分别交抛物线y 1=x 2(x ≥0)与y 2=(x ≥0)于B 、C 两点,过点C 作y 轴的平行线交y 1于点D ,直线DE ∥AC ,交y 2于点E ,则= _______.13. 如图,Rt △AOB 的一条直角边OB 在x 轴上,双曲线y=经过斜边OA 的中点C ,与另一直角边交于点D .若S △OCD =9,则S △OBD 的值为 . 14. 如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C ,则k 的值为 .15. 如图,OABC 是平行四边形,对角线OB 在轴正半轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线y =和y =的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论: ①=; ②阴影部分面积是(k 1+k 2);③当∠AOC =90°时,|k 1|=|k 2|; ④若OABC 是菱形,则两双曲线既关于x 轴对称,也关于y 轴对称.其中正确的结论是 (把所有正确的结论的序号都填上). 三、解答题(本大题共10小题,满分共75分)16. (11分)如图,直线y =﹣x +8与x 轴交于A 点,与y 轴交于B 点,动点P 从A 点出发,以每秒2个单位的速度沿AO 方向向点O 匀速运动,同时动点Q 从B 点出发,以每秒1个单位的速度沿BA 方向向点A 匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ ,设运动时间为t (s )(0<t ≤3). (1)写出A ,B 两点的坐标;(2)设△AQP 的面积为S ,试求出S 与t 之间的函数关系式;并求出当t 为何值时,△AQP 的面积最大?(3)当t 为何值时,以点A ,P ,Q 为顶点的三角形与△ABO 相似,并直接写出此时点Q 的坐标.17.(6分)(2014•黄冈)已知,如图,AB=AC ,BD=CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,求证:DE=DF .18. (7分)如图双曲线y =(x >0)经过△OAB 的顶点A 和OB 的中点C ,AB ∥x 轴,点A 的坐标为(2,3)(1)确定k 的值; (2)若点D (3,m )在双曲线上,求直线AD 的解析式;(3)计算△OAB 的面积.19. (6分)如图,AB 是⊙O 的直径,点F ,C 是⊙O 上两点,且==,连接AC ,AF ,过点C 作CD ⊥AF交AF 延长线于点D ,垂足为D . (1)求证:CD 是⊙O 的切线; (2)若CD =2,求⊙O 的半径.20.(7分)为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题: (1)本次抽样测试的学生人数是 ; (2)图1中∠α的度数是 ,并把图2条形统计图补充完整;(3)该县九年级有学生3500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为 .(4)测试老师想从4位同学(分别记为E 、F 、G 、H ,其中E 为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.21. (7分)如图,一艘海轮在A 点时测得灯塔C 在它的北偏东42°方向上,它沿正东方向航行80海里后到达B 处,此时灯塔C 在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C 的最短距离(结果精确到0.1); (2)求海轮在B 处时与灯塔C 的距离(结果保留整数).(参考数据:sin 55°≈0.819,cos 55°≈0.574,tan 55°≈1.428,tan 42°≈0.900,tan 35°≈0.700,tan 48°≈1.111)22. (9分) 如图,点A 、B 分别在x ,y 轴上,点D 在第一象限内,DC ⊥x 轴于点C ,AO =CD =2,AB =DA =,反比例函数y=(k >0)的图象过CD 的中点E . (1)求证:△AOB ≌△DCA ; (2)求k 的值; (3)△BFG 和△DCA 关于某点成中心对称,其中点F 在y 轴上,是判断点G 是否在反比例函数的图象上,并说明理由.23.(9分) 我市英山县某茶厂种植“春蕊牌”绿茶,由历年来市场销售行情知道,从每年的3月25日起的180天内,绿茶市场销售单价y(元)与上市时间t(天)的关系可以近似地用如图①中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z(元)与上市时间t(天)的关系可以近似地用如图②的抛物线表示.图26.3-11①图26.3-11-②(1)直接写出图①中表示的市场销售单价y(元)与上市时间t(天)(t>0)的函数关系式;(2)求出图②中表示的种植成本单价z(元)与上市时间t(天)(t>0)的函数关系式;(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大?(说明:市场销售单价和种植成本单价的单位:元/500克.)24.(13分)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,A C.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为.(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?。

湖北省黄冈中学2015年九年级第三次模拟考试数学试题含答案

湖北省黄冈中学2015年九年级第三次模拟考试数学试题含答案

湖北省黄冈中学2015年九年级第三次模拟考试数学试题分数:120分时间:120分钟第Ⅰ卷选择题一、选择题(共7小题,每小题3分,满分21分)1、-2的倒数是()A.2 B.-2C.0 D.2、下列运算正确的是()A. B.C.x6÷x3=x2D.(x3)2=x53、如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50° B.55°C.60° D.65°4、下列左图所示的立体图形的主视图是()5、把二次函数y=ax2+bx+c的图像向左平移4个单位或向右平移1个单位后都会经过原点,则二次函数图像的对称轴与x轴的交点是()A.(-2.5,0) B.(2.5,0)C.(-1.5,0) D.(1.5,0)6、设a,b是方程x2+x-2010=0的两个实数根,则a2+2a+b的值为()A.2007 B.2008C.2009 D.20107、如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1,以A1B、BA为邻边作□ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作□A1B1A2C2;…;按此作法继续下去,则C n的坐标是()A. B.C.D.第Ⅱ卷非选择题二、填空题(共7小题,每小题3分,满分21分)8、分解因式:2ab2-8a=__________.9、函数中自变量的取值范围是__________;10、如图,⊙O的直径CD垂直于弦AB,∠AOC=40°,则∠CDB的度数为__________.11、如图,在菱形ABCD中,∠BAD=60°,点E、F分别是AB、AD的中点,若S4,则S五边形EBCDF=_____________.△AEF=12、已知关于x的方程的解是正数,则m的取值范围为____________.13、圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为____________.14、如图,在平面直角坐标系中,0为坐标原点,点A的坐标为(-4,0),直线BC经过点B(-4,3),C(0,3),将四边形OABC绕点O按顺时针方向旋转α度(0<α≤l80°)得到四边形OA′B′C′,此时直线OA′、直线B′C′,分别与直线BC相交于P,Q.在四边形OABC旋转过程中,若,则点P 的坐标为__________.三、解答题(共10小题,满分78分)15、(5分)解不等式组:.并在数轴上表示出不等式组的解集.16、(本小题满分6分)黄州商场新进一种服装,每套服装售价100元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价和比原来提高了2%,这套服装原来裤子和上衣的单价分别是多少?17、(本小题满分7分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,BE=DF.(1)求证:AE=AF;(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.18、(本小题满分7分)如图,直线y1=2x-1与反比例函数的图象交于A,B两点,与x轴交于C点,已知点A的坐标为(-1,m).(1)求反比例函数的解析式;(2)根据函数图象可知,当y1>y2时,则x的取值范围是__________.(3)若P是x轴上一点,且满足△PAC的面积是6,求点P的坐标.19、(本小题满分7分)小明在春节期间去给爷爷、奶奶和外公、外婆拜年,小明从家里去爷爷家有A1、A2、A3三条路线可走,从爷爷家去外公家有B1、B2、B3、B4四条路线可走,如果小明随机选择一条从家里出发先到爷爷家给爷爷、奶奶拜年,然后再从爷爷家去外公家给外公、外婆拜年.(1)画树状图分析小明所有可能选择的路线.(2)若小明恰好选到经过路线B3的概率是多少?20、(本小题满分8分)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.21、(本小题满分9分)某小区共有5000个家庭,为了了解辖区居民的住房情况,居民委员会随机调查了本辖区内一定数量的家庭的住房面积,并将调查的资料绘制成直方图和扇形图.(m~n中含右端点,不含左端点)请你根据以上不完整的直方图和扇形图提供的信息,解答下列问题:(1)这次共调查了多少个家庭的住房面积?扇形图中的a、b的值分别是多少?(2)补全频数分布直方图;(3)被调查的家庭中,在未来5年内,计划购买第二套住房的家庭统计如下表:根据这次调查,估计本小区在未来的5年内,共有多少个家庭计划购买第二套住房?22、(本小题满分7分)如图,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4m.(1)求∠CAE的度数?(2)这棵大树折断前的高度?(结果精确到个位,参考数据:).23、(本小题满分10分)2015年年初,南方草莓进入采摘旺季,某公司经营销售草莓的业务,以3万元/吨的价格向农户收购后,分拣成甲、乙两类,甲类草莓包装后直接销售,乙类草莓深加工后再销售.甲类草莓的包装成本为1万元/吨,当甲类草莓的销售量x<8吨时,它的平均销售价格为y(万元/吨)且y=-x+14,当甲类草莓的销售量x≥8吨时,它的平均销售价格为6万元/吨;乙类草莓深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系为s=12+3t,平均销售价格为9万元/吨.(1)某次该公司收购了20吨的草莓,其中甲类草莓有x吨,经营这批草莓所获得的毛利润为w万元;①求w与x之间的函数关系;②若该公司获得了30万元的毛利润,求用于销售甲类的草莓有多少吨?(2)在某次收购中,该公司准备投入100万元资金(注:投入资金=收购费用+包装费用+深加工费用),请你设计一种经营方案,使该公司获得最大的毛利润,并求出最大的毛利润.24、(本小题满分12分)已知抛物线y=ax2+bx+c交x轴于点A(-1,0)、B(5,0),交y轴于点C(0,5),点D是该抛物线上一点,且点D的横坐标为4,连BD,点P是线段AB上一动点(不与点A重合),过P作PQ⊥AB交射线AD于点Q,以PQ为一边在PQ的右侧作正方形PQMN.设点P的坐标为(t,0).(1)求抛物线解析式;(2)若点Q在线段AD上时,延长PQ与抛物线交于点G,求t为何值时,线段QG最长.(3)在AB上是否存在点P,使△OCM为等腰三角形?若存在,求正方形PQMN 的边长;若不存在,请说明理由;(4)设正方形PQMN与△ABD重叠部分面积为s,求s与t 的函数关系式.答案与解析:1、D2、B3、C ∵l1∥l2,∴∠2=∠4,又∵∠1=∠5,∠3+∠4+∠5=180°,∴∠3=180°-55°-65°=60°.4、A5、D 解:依题意可得抛物线与x轴交点分别为(4,0),(-1,0),且对称轴与x轴交点为两交点的中点,,∴选D.6、C 解:依题意,a2+a-2010=0,a+b=-1,∴a2+2a+b=a2+a+(a+b)=2010+(-1)=2009.7、C 解:依题意,在Rt△AOB中,∵∠AOB=60°,AO=1,,又∵平行四边形ABA1C1中,A1C1=AB,,在直角三角形A1A=3,A1O=4. 同理依次可推理得A2O=16=42,,A3O=43,,……,∴A n O=4n,.8、2a(b+2)(b-2)9、x≥3且x≠6解:依题意,可得x≥3且x2-36≠0,∴x≥3且x≠6.10、20°解:∵CO⊥AB,,∴∠AOC=2∠CDB,∴∠CDB=20°.11、28解:连接BD,∵E,F分别是AB,AD的中点,且EF∥BD.∴△ABD∽△AEF,∴S△ABD=4S△AEF=16,又∵在菱形ABCD中,∠BAD=60°,∴S△ABD=S△BCD,∴S五边形EBCDF=S△ABD+S△BCD-S△AEF=28.12、m>-6且m≠-413、300π解:设底面圆半径为r,圆锥母线长为l,则πr2=100π,∴r=10.又,n=120°,,∴l=30,∴S扇形=S圆锥侧面积=πrl=300π.14、15、解:由(1)可得:x≥3,由(2)可得:x>5,所以x>5.16、解:设裤子单价是x元,上衣原来的单价是y元,依题意得:解得:答:这套服装原来裤子的单价为20元,上衣的单价分别是80元.17、证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°.∵AE=AF,∴Rt△ABE≌Rt△ADF.∴BE=DF.(2)四边形AEMF是菱形.∵四边形ABCD是正方形,∴∠BCA=∠DCA=45°,BC=DC.∵BE=DF,∴BC-BE=DC-DF,即CE=CF.∴OE=OF.∵OM=OA,∴四边形AEMF是平行四边形.∵AE=AF,∴平行四边形AEMF是菱形.18、解:(1)∵点 A(-1,m)在直线y=2x-1上,∴m=2×(-1)-1=-3,∴点A的坐标为(-1,-3).∵点A在函数的图象上,∴ k=-1×(-3)=3,∴反比例函数的解析式为.(2)或-1<x<0.(3)∵直线y=2x-1与x轴交于C点,∴当y=0时,,即C点的坐标为.设点P的坐标为(x,0),则.∵△PAC的面积是6,A(-1,-3),,解得,∴点P的坐标为.19、(1)解:所以小明选择的路线有12种.(2)由(1)知道从小明家到外公家共有12条路线,经过B3的路线有3条.∴小明恰好选到经过路线B3的概率是:.20、(1)证明:连接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,∴DC是⊙O的切线.(2)解:连接CD,∵∠AED=90°,DE=6,AE=3,.∵AC是⊙O的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE...则AC=15(cm).∴⊙O的半径是7.5cm.21、(1)这次共调查了500户家庭,扇形图中a=20%,b=24%.(2)根据题意得:500×14.8%=74,500×24%=120.补全频数分布直方图如下.(3)所调查的500户家庭中计划未来5年内买房的有:由此可以预测该小区在未来五年计划购买第二套住房的家庭有.22、解:(1)延长BA交EF于点G.在Rt△AGE中,∠E=23°,∴∠GAE=67°.又∵∠BAC=38°,∴∠CAE=180°-∠BAC-∠GAE=75°.∴(2)过点A作AH⊥CD,垂足为H.在△ADH中,∠ADC=60°,AD=4,,∴DH=2.,.在Rt△ACH中,∠C=180°-75°-60°=45°,.答:这棵大树折断前高约10米.23、解:(1)①当0≤x<8时,w甲=x(-x+14)-x=-x2+13x;w乙=9(20-x)-[12+3(20-x)]=108-6x∴w=w甲+w乙-3×20=(-x2+13x)+(108-6x)-60=-x2+7x+48;当x≥8时,w甲=6x-x=5x;w乙=9(20-x)-[12+3(20-x)]=108-6x∴w=w甲+w乙-3×20=(5x)+(108-6x)-60=-x+48.∴w关于x的函数关系式为:②当0<x<8时,-x2+7x+48=30,解得x1=9,x2=-2,均不合题意;当x≥8时,-x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的甲类草莓有18吨.(2)设投入资金后,甲类分到收购的草莓为x吨,乙类为y吨,总投入资金为 3(x+y)+x+12+3y=100,即2x+3y=44.当x<8时总利润为x=4时取到最大值48.当x≥8时,总利润为为常数.故方案为收购16吨,甲类分配4吨,乙类分配12吨,总收益为48万元.24、解:(1)C点坐标为(0,5),则c=5.代入点A(-1,0),B(5,0)到y=ax2+bx+5中,得方程组,解得a=-1, b=4抛物线解析式为y=-x2+4x+5.(2)当x=4时,y=-42+4×4+5=5,∴D(4,5).由A(-1,0),D(4,5)得直线AD的解析式为:y=x+1,设P(t,0).∴Q(t,t+1),G(t,-t2+4t+5),∵点Q在线段AD上.,当时,QG最长为.(3)∵直线AD的解析式为:y=x+1,且P(t,0).∴Q(t,t+1),M(2t+1,t+1)当MC=MO时:,∴边长为.当OC=OM时:(2t+1)2+(t+1)2=52,解得∴边长为.当CO=CM时:(2t+1)2+(4-t)2=52,解得.∴边长为,或.(4)当时,正方形的边长为(t+1),故其面积为:s=(t+1)2;当时:;当2≤t≤4时:;当4≤t≤5时:.。

湖北省武汉市2015届中考数学模拟试卷(6月份)含答案解析

湖北省武汉市2015届中考数学模拟试卷(6月份)含答案解析

2015年湖北省武汉市中考数学模拟试卷(6月份)一、选择题(共10小题,每小题3分,共30分)1.在3.5,﹣0.5,0,4这四个数中,绝对值最小的一个数是()A.3.5B.﹣0.5C.0 D.42.函数y= 中自变量x 的取值范围为()A.x≥0 B.x≥﹣2 C.x≥2 D.x≤﹣23.取1张红桃,2 张黑桃扑克牌,洗匀后,从这3 张牌中任取1 张牌恰好是黑桃的概率是(A.B.C.D.14.小明在参加区运动会前刻苦进行100米跑训练,老师对他10次的训练成绩进行统计分析,判断)他的成绩是否稳定,则老师需要知道他这10次成绩的(A.众数B.方差C.平均数D.频数)85.下列各式运算结果为x 的是()4 4 4 4 C.x ÷x216 D.x +x44A.x •x B.(x )6.如图,△DEF 与△A B C 是位似图形,点O 是位似中心,D、E、F 分别是O A、O B、O C 的中点,则△DEF 与△A B C 的面积比是()A.1:6 B.1:5 C.1:4 D.1:27.下面图形中,不能折成无盖的正方体盒子的是()A.B.C.D.8.下面的条形统计图描述了某车间工人日加工零件的情况,则下列说法正确的是()A.这些工人日加工零件数的众数是9,中位数是6B.这些工人日加工零件数的众数是6,中位数是6C.这些工人日加工零件数的众数是9,中位数是5.5D.这些工人日加工零件数的众数是6,中位数是5.59.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是()A.2012 B.2013 C.2014 D.201510.图1是用钢丝制作的一个几何探究工具,其中△A B C 内接于⊙G,A B 是⊙G 的直径,A B=6,A C=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A 在射线O X 上由点O 开始向右滑动,点B 在射线O Y 上也随之向点O 滑动(如图3),当点B 滑动至与点O 重合时运动结束.在整个运动过程中,点C 运动的路程是()A.4 B.6 C.4 ﹣2D.10﹣4二.填空题(共6小题,每题3分,共18分)11.计算:﹣2﹣(﹣3)= .312.因式分解:2x﹣8x= .13.太阳半径约为696 000千米,数字696 000用科学记数法表示为.14.假定甲、乙两人在一次赛跑中,路程S与时间T的关系在平面直角坐标系中所示,如图,请结合图形和数据回答问题:甲到达终点时,乙离终点还有米.15.如图,已知:直线y=﹣x+1与坐标轴交于A,B两点,矩形A B C D对称中心为M,双曲线y=(x>0)正好经过C,M两点,则k=.16.如图,在△AB C中,A B=A C=10,点D是边B C上一动点(不与B、C重合),∠AD E=∠B=α,D E交A C于点E,且cosα=,则线段CE的最大值为.三.解答题(共72分)17.已知:一次函数y=kx+b中,当自变量x=3时,函数值y=5;当x=﹣4时,y=﹣9.(1)求这个一次函数解析式;(2)解关于x的不等式kx+b≤7的解集.18.如图,点B、E、F、C在一条直线上,A B=D E=10,A C=DF,B E=CF=CE.(1)求证:A B∥DE;(2)求E G的长.19.四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)随机抽取一张卡片,求恰好抽到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则如图所示.你认为这个游戏公平吗?请说明理由.20.如图,在正方形网络中,△AB C的三个顶点都在格点上,点A、B、C的坐标分别为(﹣2,4)、(﹣2,0)、(﹣4,1),将△A B C绕原点O旋转180度得到△A B C.结合所给的平面直角坐标系111解答下列问题:(1)画出△A B C;111(2)画出一个△A B C,使它分别与△A B C,△A B C轴对轴(其中点A,B,C与点A,B,22211122C对应);2(3)在(2)的条件下,若过点B的直线平分四边形A C C A的面积,请直接写出该直线的函数解22析式.21.如图,以A B为直径的⊙O交∠B A D的角平分线于C,过C作CD⊥A D于D,交A B的延长线于E.(1)求证:C D为⊙O的切线.(2)若=,求cos∠D A B.22.某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=﹣2x+80(1≤x≤30,且x为整数);又知前20天的销售价格Q(元/件)与销售时间x(天)之间有如下关系:Q=x+30(1≤x≤20,且x为整数),后10天的销11售价格Q(元/件)与销售时间x(天)之间有如下关系:Q=45(21≤x≤30,且x为整数).22(1)试写出该商店前20天的日销售利润R(元)和后10天的日销售利润R(元)分别与销售时12间x(天)之间的函数关系式;(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润.注:销售利润=销售收入﹣购进成本.23.在△A B C中,∠A C B=90°.经过点B的直线(l l不与直线A B重合)与直线B C的夹角等于∠A B C,分别过点C、点A作直线l的垂线,垂足分别为点D、点E.(1)若∠A B C=45°,C D=1(如图),则AE的长为;(2)写出线段AE、C D之间的数量关系,并加以证明;(3)若直线CE、A B交于点F,,C D=4,求B D的长.224.如图1,抛物线y=a(x﹣1)+4与x轴交于A、B两点,与y轴交于点C,M为抛物线的顶点,直线M D⊥x轴于点D,E是线段DM上一点,DE=1,且∠D BE=∠BM D.(1)求抛物线的解析式;(2)P是抛物线上一点,且△PBE是以BE为一条直角边的直角三角形,请求出所有符合条件的P点的坐标;(3)如图2,N为线段M D上一个动点,以N为等腰三角形顶角顶点,N A为腰构造等腰△N A G,且G点落在直线C M上,若在直线C M上满足条件的G点有且只有一个时,求点N的坐标.2015年湖北省武汉市中考数学模拟试卷(6月份)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.在3.5,﹣0.5,0,4这四个数中,绝对值最小的一个数是(A.3.5B.﹣0.5C.0D.4【考点】有理数大小比较;绝对值.)【分析】首先根据绝对值的含义和求法,求出每个数的绝对值各是多少;然后根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,判断出绝对值最小的一个数是多少即可.【解答】解:|3.5|=3.5,|﹣0.5|=0.5,|0|=0,|4|=4,因为0<0.5<3.5<4,所以在3.5,﹣0.5,0,4这四个数中,绝对值最小的一个数是0.故选:C.【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了绝对值的含义和求法,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.函数y=中自变量x的取值范围为(C.x≥2D.x≤﹣2)A.x≥0B.x≥﹣2【考点】函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于或等于0即可列不等式求解.【解答】解:根据题意得:x﹣2≥0,∴x≥2,故选:C.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.取1张红桃,2张黑桃扑克牌,洗匀后,从这3张牌中任取1张牌恰好是黑桃的概率是()A.B.C.D.1【考点】概率公式.【专题】计算题.【分析】直接根据概率公式求解.【解答】解:从这3张牌中任取1张牌恰好是黑桃的概率=.故选C.【点评】本题考查了概率公式:随机事件A 的概率P(A)=事件A 可能出现的结果数除以所有可能出现的结果数.4.小明在参加区运动会前刻苦进行100米跑训练,老师对他10次的训练成绩进行统计分析,判断他的成绩是否稳定,则老师需要知道他这10次成绩的(A.众数B.方差C.平均数D.频数【考点】统计量的选择.)【专题】应用题.【分析】根据众数、平均数、频数、方差的概念分析.【解答】解:众数、平均数是反映一组数据的集中趋势,而频数是数据出现的次数,只有方差是反映数据的波动大小的.故为了判断成绩是否稳定,需要知道的是方差.故选B.【点评】此题考查统计学的相关知识.注意:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.85.下列各式运算结果为x 的是()4 4 4 4 16C.x ÷x2D.x +x44A.x •x B.(x )【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;合并同类项法则,对各选项计算后利用排除法求解.4 4 8【解答】解:A、x•x =x,故选项A 正确;4 4 16B、(x )=x,故选项B 错误;16 2 14C、x ÷x =x,故选项C 错误;4 4 4D、x +x =2x,故选项D 错误;故选A.【点评】本题考查同底数幂乘法法则,幂的乘方法则为,同底数幂除法法则,合并同类项法则,熟练掌握运算法则是解题的关键.6.如图,△DEF 与△A B C 是位似图形,点O 是位似中心,D、E、F 分别是O A、O B、O C 的中点,则△DEF 与△A B C 的面积比是()A.1:6 B.1:5 C.1:4 D.1:2【考点】位似变换.【专题】计算题.【分析】根据两三角形为位似图形,且点O 是位似中心,D、E、F 分别是O A、O B、O C 的中点,求出两三角形的位似比,根据面积之比等于位似比的平方即可求出面积之比.【解答】解:∵△DEF 与△A B C 是位似图形,点O 是位似中心,D、E、F 分别是OA、O B、O C 的中点,∴两图形的位似之比为1:2,则△DEF与△A B C的面积比是1:4.故选C.【点评】此题考查了位似变换,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.7.下面图形中,不能折成无盖的正方体盒子的是()A.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及正方体的展开图解题.B.C.D.【解答】解:A、折叠后缺少一个侧面,故不能折叠成无盖的正方体盒子;B、C、D都可以折叠成一个无盖的正方体盒子.故选A.【点评】本题考查了展开图折叠成几何体.只要有“田”字格的展开图都不是正方体的表面展开图.8.下面的条形统计图描述了某车间工人日加工零件的情况,则下列说法正确的是()A.这些工人日加工零件数的众数是9,中位数是6B.这些工人日加工零件数的众数是6,中位数是6C.这些工人日加工零件数的众数是9,中位数是5.5D.这些工人日加工零件数的众数是6,中位数是5.5【考点】条形统计图;中位数;众数.【专题】图表型.【分析】众数就是出现次数最多的数,中位数是大小处于中间位置的数,根据众数和中位数的概念求得即可.【解答】解:在3到8这几个数中,6出现的次数最多,是9次,因而众数是6;中位数是大小处于中间位置的数,共有38个数,中间位置的是第19个,与第20个的平均数,这两个分别是5和6,因而中位数是这两个数的平均数是5.5;这些工人日加工零件数的众数是6,中位数是5.5.故选D.【点评】本题主要考查了众数与中位数的概念和从统计图中获取信息的能力.9.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是()A.2012 B.2013 C.2014 D.2015【考点】规律型:图形的变化类.【分析】该纸链是5 的倍数,剩下部分有12个,12=5×2+2,所以中间截去的是3+5n,从选项中数减3 为5的倍数即得到答案.【解答】解:由题意,可知中间截去的是5n+3(n 为正整数),由5n+3=2013,解得n=402,其余选项求出的n 不为正整数,则选项B 正确.故选B.【点评】本题考查了图形的变化规律,从整体是5 个不同颜色环的整数倍数,截去部分去3 后为5 的倍数,从而得到答案.10.图1是用钢丝制作的一个几何探究工具,其中△A B C 内接于⊙G,A B 是⊙G 的直径,A B=6,A C=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A 在射线O X 上由点O 开始向右滑动,点B 在射线O Y 上也随之向点O 滑动(如图3),当点B 滑动至与点O 重合时运动结束.在整个运动过程中,点C 运动的路程是()A.4 B.6 C.4 ﹣2D.10﹣4【考点】三角形的外接圆与外心;勾股定理;圆周角定理;弧长的计算.【专题】压轴题;动点型.【分析】由于在运动过程中,原点O 始终在⊙G 上,则弧A C 的长保持不变,弧A C 所对应的圆周角∠A O C 保持不变,等于∠X O C,故点C 在与x轴夹角为∠A B C 的射线上运动.顶点C 的运动轨迹应是一条线段,且点C 移动到图中C 位置最远,然后又慢慢移动到C 结束,点C 经过的路程应2 3是线段C C +C C .1 2 2 3【解答】解:如图3,连接O G.∵∠A O B 是直角,G 为A B 中点,∴G O= AB=半径,∴原点O 始终在⊙G 上.∵∠A C B=90°,AB=6,A C=2,∴B C=4 .连接O C.则∠A O C=∠A B C,∴tan∠A O C= =,∴点C在与x轴夹角为∠A O C的射线上运动.如图4,C C=O C﹣O C=6﹣2=4;1221如图5,C C=O C﹣O C=6﹣4;2323∴总路径为:C C+C C=4+6﹣4=10﹣4.1223故选:D.【点评】主要考查了函数和几何图形的综合运用.解题的关键是会灵活的运用函数图象的性质和交点的意义求出相应的线段的长度或表示线段的长度,再结合具体图形的性质求解.二.填空题(共6小题,每题3分,共18分)11.计算:﹣2﹣(﹣3)=1.【考点】有理数的减法.【分析】根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:﹣2﹣(﹣3),=﹣2+3,=1.故答案为:1.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.312.因式分解:2x﹣8x=2x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.22【分析】先提公因式2x,分解成2x(x﹣4),而x﹣4可利用平方差公式分解.32【解答】解:2x﹣8x=2x(x﹣4)=2x(x+2)(x﹣2).故答案为:2x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.513.太阳半径约为696 000千米,数字696 000用科学记数法表示为6.96×10.【考点】科学记数法—表示较大的数.【专题】应用题.n【分析】科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数.本题中696 000有6位整数,n=6﹣1=5.5【解答】解:696000=6.96×10.n【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.假定甲、乙两人在一次赛跑中,路程S 与时间T 的关系在平面直角坐标系中所示,如图,请结合图形和数据回答问题:甲到达终点时,乙离终点还有4米.【考点】一次函数的应用.【分析】根据图象可知乙到达终点时,横坐标t=12.5秒,纵坐标s=100,所以乙的速度为:100÷12.5=8 (米/秒),甲到达终点时,乙离终点还有:100﹣12×8=4(米).【解答】解:∵乙到达终点时,横坐标t=12.5秒,纵坐标s=100,∴乙的速度为:100÷12.5=8(米/秒),甲到达终点时,乙离终点还有:100﹣12×8=4(米),故答案为:4.【点评】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.15.如图,已知:直线y=﹣x+1 与坐标轴交于A,B 两点,矩形A B C D 对称中心为M,双曲线y= (x>0)正好经过C,M 两点,则k= 4.【考点】反比例函数综合题.【分析】根据一次函数的解析式y=﹣x+1得到A(3,0),B(0,1),求得O A=3,O B=1,过C 作CE⊥y轴于E,由四边形A B C D是矩形,得到∠C B A=90°,推出△BCE∽△A B O,得到比例式=,设O C=x,则B E=3x,C(x,3x+1),由于矩形AB C D对称中心为M,得到M(x+,),)(),解得x=1,求得C(1,根据反比例函数图象上点的坐标特征列方程x(3x+1)=(x+4),即可得到结果.【解答】解:在y=﹣x+1中,令x=0,得y=1,令y=0,x=3,∴A(3,0),B(0,1),∴O A=3,O B=1,过C作CE⊥y轴于E,∵四边形A B C D是矩形,∴∠CB A=90°,∴∠CBE+∠O B A=∠O B A+∠B A O=90°,∴∠CBE=∠B A O,∵∠BE C=∠A O B=90°,∴△B CE∽△A B O,∴=,设O C=x,则BE=3x,∴C(x,3x+1),∵矩形A B C D对称中心为M,∴M(x+,),∵双曲线y=(x>0)正好经过C,M两点,∴x(3x+1)=(x+)(),解得:x=1,∴C(1,4),∴k=1×4=4,故答案为:4.【点评】本题考查了矩形的性质,求直线与坐标轴的交点,相似三角形的判定和性质,反比例函数图象上点的坐标特征,作出辅助线构造相似三角形是解题的关键.16.如图,在△AB C中,A B=A C=10,点D是边B C上一动点(不与B、C重合),∠AD E=∠B=α,D E交A C于点E,且cosα=,则线段CE的最大值为6.4.【考点】相似三角形的判定与性质.【专题】计算题.【分析】作A G⊥B C于G,如图,根据等腰三角形的性质得B G=C G,再利用余弦的定义计算出B G=8,2则BC=2B G=16,设B D=x,则C D=16﹣x,证明△A B D∽△D C E,利用相似比可表示出CE=﹣x+x,然后利用二次函数的性质求CE的最大值.【解答】解:作A G⊥B C于G,如图,∵A B=A C,∴B G=C G,∵∠A D E=∠B=α,∴cosB=cosα==,∴B G=×10=8,∴BC=2B G=16,设B D=x,则C D=16﹣x,∵∠A D C=∠B+∠B A D,即α+∠C D E=∠B+∠B A D,∴∠C D E=∠B A D,而∠B=∠C,∴△A B D∽△D C E,∴=,即=,2∴CE=﹣x+x2=﹣(x﹣8)+6.4,当x=8时,CE最大,最大值为6.4.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.也考查了二次函数的性质.三.解答题(共72分)17.已知:一次函数y=kx+b中,当自变量x=3时,函数值y=5;当x=﹣4时,y=﹣9.(1)求这个一次函数解析式;(2)解关于x的不等式kx+b≤7的解集.【考点】待定系数法求一次函数解析式;一次函数与一元一次不等式.【专题】计算题.【分析】(1)把两组对应值分别代入y=kx+b得到关于k、b的方法组,然后解方程组求出k和b,从而可确定一次函数解析式;(2)解一元一次不等式2x﹣1≤7即可.【解答】解:(1)根据题意得,解得,所以一次函数解析式为y=2x﹣1;(2)解2x﹣1≤7得x≤4.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.18.如图,点B、E、F、C在一条直线上,A B=D E=10,A C=DF,B E=CF=CE.(1)求证:A B∥DE;(2)求E G的长.【考点】全等三角形的判定与性质.【专题】计算题.【分析】(1)由B E=CF,利用等式的性质得到BC=EF,利用SSS得到三角形A B C与三角形DEF 全等,利用全等三角形对应角相等得到一对内错角相等,利用内错角相等两直线平行即可得证;(2)由BE=CE得到E为B C中点,再由GE与A B平行,利用平行线等分线段定理得到G为A C中点,即GE为中位线,利用中位线定理得到A B=2E G,即可求出E G的长.【解答】解:(1)∵BE=CF,∴BE+E C=CF+E C,即BC=EF,在△A B C和△DEF中,,∴△A B C≌△DEF(SSS),∴∠B=∠DEF,∴A B∥D E;(2)∵GE∥A B,E为B C中点,∴G为A C中点,即GE为△A B C中位线,∴E G=A B=5.【点评】此题考查了全等三角形的判定与性质,以及平行线的判定,熟练掌握全等三角形的判定与性质是解本题的关键.19.四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)随机抽取一张卡片,求恰好抽到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则如图所示.你认为这个游戏公平吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)根据概率公式即可求解;(2)利用列表法,求得小贝胜与小晶胜的概率,比较即可游戏是否公平.【解答】解:(1)P(抽到数字2)==.(2)公平.列表:2236223(2,2)(2,2)(2,3)(2,6)(2,2)(2,2)(2,3)(2,6)(3,2)(3,2)(3,3)(3,6)6(6,2)(6,2)(6,3)(6,6)由上表可以看出,可能出现的结果共有16种,它们出现的可能性相同,所有的结果中,满足两位数不超过30的结果有8种.所以P(小贝胜)=,P(小晶胜)=.所以游戏公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.20.如图,在正方形网络中,△AB C的三个顶点都在格点上,点A、B、C的坐标分别为(﹣2,4)、(﹣2,0)、(﹣4,1),将△A B C绕原点O旋转180度得到△A B C.结合所给的平面直角坐标系111解答下列问题:(1)画出△A B C;111(2)画出一个△A B C,使它分别与△A B C,△A B C轴对轴(其中点A,B,C与点A,B,22211122C对应);2(3)在(2)的条件下,若过点B的直线平分四边形A C C A的面积,请直接写出该直线的函数解22析式.【考点】作图-旋转变换;作图-轴对称变换.【分析】(1)首先由旋转的性质求得对应点的坐标,然后画出图形即可;(2)由轴对称图形的性质找出对应点的坐标,然后画出图形即可;(3)分别画出三角形关于x轴对称和关于y轴对称的图形,然后再找出过点B平分四边形面积的直线,最后求得解析式即可.【解答】解:(1)如图1所示:(2)如图1所示:直线解解析式为y=0;如图2所示:经过点B和(0,2.5)的直线平分四边形A C C A的面积,22设直线的解析式为y=kx+b,将(﹣2,0)和(0,2.5)代入得:,解得:直线的解析式为y=.综上所述:直线的解析式为y=0或y=.【点评】本题主要考查的是旋转变换、轴对称变换以及求一次函数的表达式,掌握旋转、轴对称的性质是解题的关键.21.如图,以A B为直径的⊙O交∠B A D的角平分线于C,过C作CD⊥A D于D,交A B的延长线于E.(1)求证:C D为⊙O的切线.(2)若=,求cos∠D A B.【考点】切线的判定;角平分线的性质;勾股定理;解直角三角形.【专题】几何综合题.【分析】(1)连接O C,推出∠DA C=∠C A B,∠O A C=∠O C A,求出∠D A C=∠O C A,得出O C∥A D,推出O C⊥D C,根据切线的判定判断即可;(2)连接BC,可证明△A C D∽△A B C,得出比例式,求出BC,求出圆的直径A B,再根据勾股定理得出CE,即可求出答案.【解答】(1)证明:连接O C,∵A C平分∠D A B,∴∠D A C=∠C A B,∵O C=O A,∴∠O A C=∠O C A,∴∠D A C=∠O C A,∴O C∥A D,∵A D⊥C D,∴O C⊥C D,∵O C为⊙O半径,∴C D是⊙O的切线;(2)解:连接BC,∵A B为直径,∴∠A C B=90°,∵A C平分∠B A D,∴∠C A D=∠C A B,∵=,∴令C D=3,A D=4,得A C=5,∴=,=,∴BC=,由勾股定理得A B=,∴O C=,∵O C∥A D,∴=,∴=,解得AE=,∴cos∠D A B===.【点评】本题考查了切线的判定以及角平分线的定义、勾股定理和解直角三角形,是中学阶段的重点内容.22.某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=﹣2x+80(1≤x≤30,且x为整数);又知前20天的销售价格Q(元/件)与销售时间x(天)之间有如下关系:Q=x+30(1≤x≤20,且x为整数),后10天的销11售价格Q(元/件)与销售时间x(天)之间有如下关系:Q=45(21≤x≤30,且x为整数).22(1)试写出该商店前20天的日销售利润R(元)和后10天的日销售利润R(元)分别与销售时12间x(天)之间的函数关系式;(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润.注:销售利润=销售收入﹣购进成本.【考点】二次函数的应用.【专题】应用题;压轴题.【分析】(1)运用营销问题中的基本等量关系:销售利润=日销售量×一件销售利润.一件销售利润=一件的销售价﹣一件的进价,建立函数关系式;(2)分析函数关系式的类别及自变量取值范围求最大值;其中R是二次函数,R是一次函数.12【解答】解:(1)根据题意,得R=P(Q﹣20)=(﹣2x+80)[(x+30)﹣20],112=﹣x+20x+800(1≤x≤20,且x为整数),R=P(Q﹣20)=(﹣2x+80)(45﹣20),22=﹣50x+2000(21≤x≤30,且x为整数);(2)在1≤x≤20,且x为整数时,2∵R=﹣(x﹣10)+900,1∴当x=10时,R的最大值为900,1在21≤x≤30,且x为整数时,∵R=﹣50x+2000,﹣50<0,R随x的增大而减小,22∴当x=21时,R的最大值为950,2∵950>900,∴当x=21即在第21天时,日销售利润最大,最大值为950元.【点评】本题需要反复读懂题意,根据营销问题中的基本等量关系建立函数关系式,根据时间段列出分段函数,再结合自变量取值范围分别求出两个函数的最大值,并进行比较,得出结论.23.在△A B C中,∠A C B=90°.经过点B的直线(l l不与直线A B重合)与直线B C的夹角等于∠A B C,分别过点C、点A作直线l的垂线,垂足分别为点D、点E.(1)若∠A B C=45°,C D=1(如图),则AE的长为2;(2)写出线段AE、C D之间的数量关系,并加以证明;(3)若直线CE、A B交于点F,,C D=4,求B D的长.【考点】相似形综合题.【分析】(1)首先在直角三角形CD B中利用C D求得BC,然后在直角三角形A B C中求得AE即可;(2)根据上题得到的结论猜想两条线段之间具有二倍关系,证得△G C D∽△G A E后即可证明猜想正确.(3)分当点F在线段A B上时和点F在线段B A的延长线上时利用△A G H∽△AE B求得线段B D的长即可.【解答】(1)解:∵∠A B C=45°,∴∠CB D=45°,∵C D=1,∴BC=,∵∠A C B=90°,∠A B C=45°,A E=2.(2)线段AE、CD之间的数量关系为AE=2C D.证明:如图1,延长A C与直线l交于点G.依题意,可得∠1=∠2.∵∠A C B=90°,∴∠3=∠4.∴B A=B G.∴C A=C G.…∵AE⊥l,C D⊥l,∴C D∥A E.∴△G C D∽△G A E.∴.∴AE=2C D.(3)解:当点F在线段A B上时,如图2,过点C作C G∥l交A B于点H,交AE于点G.∴∠2=∠H C B.∵∠1=∠2,∴∠1=∠H C B.∴C H=B H.∵∠A C B=90°,∴∠3+∠1=∠H C B+∠4=90°.∴∠3=∠4.∴C H=A H=B H.∵C G∥l,∴△FC H∽△FEB.∴.设C H=5x,BE=6x,则A B=10x.∴在△AE B中,∠AE B=90°,AE=8x.由(2)得,AE=2C D.∵C D=4,∴AE=8.∴x=1.∴A B=10,BE=6,C H=5.∵C G∥l,∴△A G H∽△AEB.∴.∴H G=3.…∴C G=C H+H G=8.∵C G∥l,C D∥A E,∴四边形C D E G为平行四边形.∴DE=C G=8.∴B D=D E﹣BE=2.…当点F在线段B A的延长线上时,如图3,同理可得C H=5,G H=3,BE=6.∴DE=C G=C H﹣H G=2.∴B D=D E+BE=8.∴B D=2或8.【点评】本题考查了相似形综合知识,题目中还涉及到了相似三角形的判定与性质及解直角三角形的知识,难度较大,此类题目应重点掌握.224.如图1,抛物线y=a(x﹣1)+4与x轴交于A、B两点,与y轴交于点C,M为抛物线的顶点,直线M D⊥x轴于点D,E是线段DM上一点,DE=1,且∠D BE=∠BM D.(1)求抛物线的解析式;(2)P是抛物线上一点,且△PBE是以BE为一条直角边的直角三角形,请求出所有符合条件的P 点的坐标;(3)如图2,N为线段M D上一个动点,以N为等腰三角形顶角顶点,N A为腰构造等腰△N A G,且G点落在直线C M上,若在直线C M上满足条件的G点有且只有一个时,求点N的坐标.【考点】二次函数综合题;待定系数法求一次函数解析式;勾股定理;相似三角形的判定与性质.【专题】综合题.【分析】(1)由∠D BE=∠B M D可得△B D E∽△M D B,然后根据相似三角形的性质可求出D B,从而得到点B的坐标,然后把点B的坐标代入抛物线的解析式,就可解决问题;(2)可分点E和点B为直角顶点两种情况进行讨论:①点E为直角顶点,作EF⊥E B交x轴于点F,交抛物线于点P、P,如图1,易证△FDE∽△E D B,根据相似三角形的性质可求出DF的值,12从而可求出点F的坐标,然后用待定系数法求出直线EF的解析式,再求出直线EF与抛物线的交点,就可解决问题;②点B为直角顶点,先求出BP的解析式,再求出直线BP与抛物线的交点,就可33解决问题;(3)作N G⊥M C于G,作C H⊥M D于H,如图2.设N(1,n),易得N G=M N=(4﹣n),2222N A=2+n=4+n,由题可得N G=N A,由此即可得到关于n的方程,解这个方程就可解决问题.【解答】解:(1)由题可知:M(1,4),则有O D=1,D M=4.∵∠D BE=∠B M D,∠B D E=∠M D B,∴△B D E∽△M D B,∴=,∵DE=1,D M=4,∴=,解得:D B=2,∴O B=O D+D B=3,∴B(3,0).2把点B(3,0)代入y=a(x﹣1)+4,得2a(3﹣1)+4=0,解得:a=﹣1.22∴抛物线的解析式为y=﹣(x﹣1)+4=﹣x+2x+3;(2)①当∠PEB=90°时,作EF⊥EB交x轴于点F,交抛物线于点P、P,如图1,12则有∠FEB=∠FED+∠D E B=90°.∵∠FE D+∠EF D=90°,∴∠EF D=∠DE B.∵∠FDE=∠E D B=90°,∴△FDE∽△E D B,∴=,∴=,解得:DF=,∴OF=O D﹣DF=1﹣=,∴F(,0).设直线EF的解析式为y=kx+b,。

湖北省黄冈实验中学2015年中考数学模拟试卷(6月份)(解析版)

湖北省黄冈实验中学2015年中考数学模拟试卷(6月份)(解析版)

2015年XX省黄冈实验中学中考数学模拟试卷(6月份)一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共21分)1.9的平方根为()A.3 B.﹣3 C.±3 D.2.下列计算正确的是()A.x2+x3=2x5B.m8÷m2=m4C.(m﹣n)2=m2﹣n2D.(x2)3=x63.函数y=中自变量x的取值X围是()A.x≥1 B.x≥1且x≠±2 C.x≠±2 D.x≥1且x≠24.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()A.B.C.D.5.点A在双曲线上,AB⊥x轴于B,且△AOB的面积为3,则k=()A.3 B.6 C.±3 D.±66.一个圆锥的侧面展开图是半径为的半圆,则该圆锥的底面半径是()A.1 B.C.D.7.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为()A.8 B.16 C.24 D.32二、填空题(共7小题,每小题3分,共21分)8.分解因式:ab2﹣4ab+4a=.9.不等式组的解集为.10.如图所示,AB∥CD,∠D=27°,∠E=36°,则∠ABE的度数是.11.化简÷=.12.已知2﹣是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是.13.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则(1)OA的长为,(2)点C的坐标为.14.如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q以1cm/s的速度从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为.三、解答题(本大题共10小题,满分共78分)15.解方程组.16.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?17.如图是我市某校八年级学生为贫困山区学生捐款情况抽样调查的条形图和扇形统计图.(1)求本次抽样的学生有多少人;(2)在扇形统计图中,求该样本中捐款15元的人数所占的圆心角度数;(3)若该校八年级学生有800人,据此样本求八年级捐款总数.18.已知:如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,以AD为斜边在△ABC外作等腰直角三角形AED,连结BE、EC.试猜想线段BE和EC的数量关系与位置关系,并证明你的猜想.19.有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字﹣1,﹣2和﹣3.小强从A布袋中随机取出一个小球,记录其标有的数字为a,再从B布袋中随机取出一个小球,记录其标有的数字为b,这样就确定点Q的一个坐标为(a,b).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x﹣3上的概率.20.平行四边形ABCD在平面直角坐标系中的位置如图所示,其中A(﹣6,0),B(4,0),C (5,3),反比例函数y=的图象经过点C.(1)求此反比例函数的解析式;(2)将平行四边形ABCD沿x轴翻折得到平行四边形AD′C′B,请你通过计算说明点D′在双曲线上;(3)请你画出△AD′C,并求出它的面积.21.如图,AB是⊙O的直径.半径OD垂直弦AC于点E.F是BA延长线上一点,∠CDB=∠BFD.(1)判断DF与⊙O的位置关系,并证明;(2)若AB=10,AC=8,求DF的长.22.如图,两建筑物的水平距离BC是30m,从A点测得D点的俯角α是35°,测得C点的俯角β为43°,求这两座建筑物的高度.(结果保留整数)23.在黄冈建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到35元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:y=(年获利=年销售收入﹣生产成本﹣投资成本)(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以与第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的X围.24.如图,已知抛物线y=x2﹣2x+m交x轴于A,B两点(A在B的左边),交y轴于C点,且OB=OC,连接BC,(1)直接写出m的值和B,C两点的坐标;(2)P点在直线BC下方的抛物线上,△BCP的面积为S,求S最大时,P的坐标;(3)抛物线的对称轴交抛物线于D点,交x轴于E点,在抛物线上是否存在点M,过M点作MN ⊥BD于N点,使△DMN与△BDE相似?若存在,请求出M点的坐标;若不存在,请说明理由.2015年XX省黄冈实验中学中考数学模拟试卷(6月份)参考答案与试题解析一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共21分)1.9的平方根为()A.3 B.﹣3 C.±3 D.【考点】平方根.【专题】计算题.【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.【解答】解:9的平方根有:=±3.故选C.【点评】此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.2.下列计算正确的是()A.x2+x3=2x5B.m8÷m2=m4C.(m﹣n)2=m2﹣n2D.(x2)3=x6【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【专题】计算题;实数.【分析】A、原式不能合并,错误;B、原式利用同底数幂的除法法则计算得到结果,即可作出判断;C、原式利用完全平方公式化简得到结果,即可作出判断;D、原式利用幂的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、原式不能合并,错误;B、原式=m6,错误;C、原式=m2﹣2mn+n2,错误;D、原式=x6,正确,故选D【点评】此题考查了同底数幂的除法,合并同类项,幂的乘方与积的乘方,以与完全平方公式,熟练掌握公式与法则是解本题的关键.3.函数y=中自变量x的取值X围是()A.x≥1 B.x≥1且x≠±2 C.x≠±2 D.x≥1且x≠2【考点】函数自变量的取值X围.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:由题意得,x﹣1≥0且x2﹣4≠0,解得x≥1且x≠±2,所以,x≥1且x≠2.故选D.【点评】本题考查了函数自变量的X围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.4.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】俯视图是从上向下看得到的视图,结合选项即可作出判断.【解答】解:所给图形的俯视图是B选项所给的图形.故选B.【点评】本题考查了简单组合体的三视图,属于基础题,关键掌握俯视图是从上向下看得到的视图.5.点A在双曲线上,AB⊥x轴于B,且△AOB的面积为3,则k=()A.3 B.6 C.±3 D.±6【考点】反比例函数系数k的几何意义.【专题】计算题.【分析】根据反比例函数的比例系数k的几何意义得到|k|=3,然后去绝对值即可得到k的值.【解答】解:根据题意得S△AOB=|k|,所以|k|=3,解得k=±6.故选D.【点评】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.6.一个圆锥的侧面展开图是半径为的半圆,则该圆锥的底面半径是()A.1 B.C.D.【考点】圆锥的计算.【分析】用到的等量关系为:圆锥的弧长=底面周长.【解答】解:设底面半径为R,则底面周长=2Rπ,半圆的弧长=×2π×=2πR,∴R=.故选C.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为()A.8 B.16 C.24 D.32【考点】等边三角形的性质.【专题】规律型.【分析】根据等腰三角形的性质以与平行线的性质得出A1B1∥A2B2∥A3B3,以与A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2得出答案.【解答】解:如图所示:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=2,∴A2B1=2,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2=32;故选:D.【点评】本题考查的是等边三角形的性质以与等腰三角形的性质,根据已知得出规律A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2是解题关键.二、填空题(共7小题,每小题3分,共21分)8.分解因式:ab2﹣4ab+4a=a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.9.不等式组的解集为x<1.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<1,由②得,x≤2,故此不等式组的解集为:x<1.故答案为:x<1.【点评】本题考查的是解一元一次不等式组,解一元一次不等式组应遵循的原则“同大取较大,同小取较小,小大大小中间找,大大小小解不了”.10.如图所示,AB∥CD,∠D=27°,∠E=36°,则∠ABE的度数是63°.【考点】平行线的性质.【分析】先根据三角形外角性质得∠BFD=∠E+∠D=63°,然后根据平行线的性质得到∠ABE=∠BFD=63°.【解答】解:如图,∵∠BFD=∠E+∠D,而∠D=27°,∠E=36°,∴∠BFD=36°+27°=63°,∵AB∥CD,∴∠ABE=∠BFD=63°.故答案为:63°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.11.化简÷=1.【考点】分式的乘除法.【分析】首先将分式的分子与分母分解因式,进而利用分式乘除运算法则求出即可.【解答】解:原式=×=1.故答案为:1.【点评】此题主要考查了分式的乘除运算,正确分解因式是解题关键.12.已知2﹣是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是.【考点】根与系数的关系.【分析】由于已知方程的一根2﹣,并且一次项系数也已知,根据两根之和公式可以求出方程的另一根.【解答】解:设方程的另一根为x1,由x1+2﹣=4,得x1=2+.【点评】根据方程中各系数的已知情况,合理选择根与系数的关系式是解决此类题目的关键.13.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则(1)OA的长为2,(2)点C的坐标为(﹣,1).【考点】正方形的性质;坐标与图形性质.【分析】(1)利用勾股定理直接计算即可求出OA的长;(2)过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.【解答】解:(1)∵点A的坐标为(1,),∴OA==2,故答案为:2;(2)如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故答案为(﹣,1).【点评】本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.14.如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q以1cm/s的速度从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为3﹣,.【考点】相似三角形的判定与性质;勾股定理;圆周角定理.【专题】动点型.【分析】应分两种情况进行讨论:①当PQ⊥AC时,△APQ为直角三角形,根据△APQ∽△ABC,可将时间t求出;②当PQ⊥AB时,△APQ为直角三角形,根据△APQ∽△ACB,可将时间t求出.【解答】解:∵AB是直径,∴∠C=90°,又∵BC=2cm,∠ABC=60°,∴AB=2BC=4,AC=2,则AP=(4﹣2t)cm,AQ=t,∵当点P到达点A时,点Q也随之停止运动,∴0<t≤2,①如图1,当PQ⊥AC时,PQ∥BC,则△APQ∽△ABC,∴,∴,解得t=3﹣,②如图2,当PQ⊥AB时,△APQ∽△ACB,则,故,解得t=,故答案为:3﹣,.【点评】本题考查了圆周角定理、相似三角形的性质、直角三角形的性质等知识的综合应用能力.在求时间t时应分情况进行讨论,防止漏解.三、解答题(本大题共10小题,满分共78分)15.解方程组.【考点】解二元一次方程组.【分析】方程组整理后,利用代入消元法求出解即可.【解答】解:方程组整理得:,由②得:x=5y﹣3③,把③代入①得:25y﹣15﹣11y=﹣1,即y=1,把y=1代入③得:x=2,则方程组的解为【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.16.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?【考点】分式方程的应用.【专题】应用题.【分析】设原来每天制作x件,根据原来用的时间﹣现在用的时间=10,列出方程,求出x的值,再进行检验即可.【解答】解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.【点评】此题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键,本题的等量关系是原来用的时间﹣现在用的时间=10.17.如图是我市某校八年级学生为贫困山区学生捐款情况抽样调查的条形图和扇形统计图.(1)求本次抽样的学生有多少人;(2)在扇形统计图中,求该样本中捐款15元的人数所占的圆心角度数;(3)若该校八年级学生有800人,据此样本求八年级捐款总数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用捐款5元的人数除以它所占的百分比即可解答;(2)用样本容量分别减去捐款5元的人数和捐款10元的人数得到捐款15元的人数,于是可计算出捐款15元的人数的百分比,然后用360°乘以这个百分比即可得到捐款15元的人数所占的圆心角的度数;(3)先样本的平均数,根据样本估计总体,用800乘以这个平均数可估计出九年级学生捐款总数.【解答】解:(1)15÷30%=50(人),答:本次抽样的学生有50人;(2)捐款15元的人数=50﹣15﹣25=10(人),360°×=72°,答:该样本中捐款15元的人数所占的圆心角度数为72°;(3)据此信息可估计该校六年级学生每人捐款为:(5×15+10×25+15×10)÷(15+25+10)=720÷50=9.5(元)9.5×800=7600(元).答:八年级捐款总数为7600元.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了样本估计总体和扇形统计图.18.已知:如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,以AD为斜边在△ABC外作等腰直角三角形AED,连结BE、EC.试猜想线段BE和EC的数量关系与位置关系,并证明你的猜想.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】求出AB=DC,∠EAB=∠EDC,根据SAS证△EAB≌△EDC推出∠AEB=∠DEC,EB=EC 即可.【解答】BE=EC,BE⊥EC.证明:∵AC=2AB,点D是AC的中点,∴AB=AD=CD,∵∠EAD=∠EDA=45°,∴∠EAB=∠EDC=135°,∵在△EAB和△EDC中,,∴△EAB≌△EDC(SAS),∴∠AEB=∠DEC,EB=EC,∴∠BEC=∠AED=90°,∴BE=EC,BE⊥EC.【点评】本题考查了等腰直角三角形,全等三角形的性质和判定的应用,关键是推出△EAB≌△EDC.19.有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字﹣1,﹣2和﹣3.小强从A布袋中随机取出一个小球,记录其标有的数字为a,再从B布袋中随机取出一个小球,记录其标有的数字为b,这样就确定点Q的一个坐标为(a,b).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x﹣3上的概率.【考点】列表法与树状图法;一次函数图象上点的坐标特征.【分析】(1)首先根据题意画树状图,根据树状图可以求得点Q的所有可能坐标;(2)根据(1)中的树状图,求得点Q落在直线y=x﹣3上的情况,根据概率公式即可求得答案.【解答】解:(1)画树状图得:∴点Q的坐标有(1,﹣1),(1,﹣2),(1,﹣3),(2,﹣1),(2,﹣2),(2,﹣3);(2)∵点Q落在直线y=x﹣3上的有(1,﹣2),(2,﹣1),∴“点Q落在直线y=x﹣3上”记为事件A,∴P(A)==,即点Q落在直线y=x﹣3上的概率为.【点评】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.20.平行四边形ABCD在平面直角坐标系中的位置如图所示,其中A(﹣6,0),B(4,0),C (5,3),反比例函数y=的图象经过点C.(1)求此反比例函数的解析式;(2)将平行四边形ABCD沿x轴翻折得到平行四边形AD′C′B,请你通过计算说明点D′在双曲线上;(3)请你画出△AD′C,并求出它的面积.【考点】反比例函数综合题.【专题】综合题.【分析】(1)根据反比例函数图象点的坐标特征把C点坐标代入y=,求出k的值即可确定反比例函数解析式;(2)先计算出AB=10,再根据平行四边形的性质得CD=10,则可确定D点坐标为(﹣5,3),然后根据关于x轴对称的点的坐标特征得D′的坐标为(﹣5,﹣3)再根据反比例函数图象点的坐标特征判断点D′在双曲线上;(3)由于点C坐标为(5,3),D′的坐标为(﹣5,﹣3),则点C和点D′关于原点中心对称,根据中心对称的性质得点D′、O、C共线,且OC=OD′,然后利用S△AD′C=S△AD′O+S△AOC=2S△AOC进行计算.【解答】解:(1)∵C(5,3)在反比例函数y=的图象上,∴=3,∴k=15,∴反比例函数解析式为y=;(2)∵A(﹣6,0),B(4,0),∴AB=10,∵四边形ABCD为平行四边形,∴CD=10,而C点坐标为(5,3),∴D点坐标为(﹣5,3),∵平行四边形ABCD和平行四边形AD′C′B关于x轴对称,∴D′的坐标为(﹣5,﹣3),∵﹣5×(﹣3)=15,∴点D′在双曲线y=上;(3)如图,∵点C坐标为(5,3),D′的坐标为(﹣5,﹣3),∴点C和点D′关于原点中心对称,∴点D′、O、C共线,且OC=OD′,∴S△AD′C=S△AD′O+S△AOC=2S△AOC=2××6×3=18.【点评】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、平行四边形的性质和轴对称、中心对称的性质;会运用图形与坐标的关系计算线段的长和三角形面积公式.21.如图,AB是⊙O的直径.半径OD垂直弦AC于点E.F是BA延长线上一点,∠CDB=∠BFD.(1)判断DF与⊙O的位置关系,并证明;(2)若AB=10,AC=8,求DF的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)利用圆周角定理以与平行线的判定得出∠FDO=90°,进而得出答案;(2)利用垂径定理得出AE的长,再利用相似三角形的判定与性质得出FD的长.【解答】解:(1)DF与⊙O相切.∵∠CDB=∠CAB,又∵∠CDB=∠BFD,∴∠CAB=∠BFD.∴AC∥DF.∵半径OD垂直于弦AC于点E,∴OD⊥DF.∴DF与⊙O相切.(2)∵半径OD垂直于弦AC于点E,AC=8,∴.∵AB是⊙O的直径,∴.在Rt△AEO中,.∵AC∥DF,∴△OAE∽△OFD.∴.∴.∴.【点评】此题主要考查了相似三角形的判定与性质以与切线的判定等知识,得出△OAE∽△OFD是解题关键.22.如图,两建筑物的水平距离BC是30m,从A点测得D点的俯角α是35°,测得C点的俯角β为43°,求这两座建筑物的高度.(结果保留整数)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先分析图形:根据题意构造直角三角形;本题涉与两个直角三角形,应利用其公共边构造关系式,进而可求出答案.【解答】解:过点D作DE⊥AB,则四边形BCDE为矩形,在Rt△ADE中,∠ADE=35°,DE=30,∴AE=DEtan∠ADE=30×tan35°≈30×0.7≈21;在Rt△ABC中,∠ACB=43°,CB=30,∴AB=BCtanβ=30×tan43°≈30×0.93≈28;则DC=AB﹣AE=28﹣21=7.∴AB=28m,DC=7m.即两座建筑物的高度分别为28m,7m.【点评】本题考查解直角三角形的应用,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般.23.在黄冈建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到35元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:y=(年获利=年销售收入﹣生产成本﹣投资成本)(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以与第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的X围.【考点】二次函数的应用.【分析】(1)因为25<28<30,所以把x=28代入y=40﹣x即可求出该产品的年销售量为多少万件;(2)由(1)中y于x的函数关系式和根据年获利=年销售收入﹣生产成本﹣投资成本,得到w和x 的二次函数关系,再有x的取值X围不同分别讨论即可知道该公司是盈利还是亏损,若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)由题目的条件得到w和x在自变量x的不同取值X围的函数关系式,再分别当w≥67.5,求出对应x的X围,结合y于x的关系中的x取值X围即可确定此时销售单价的X围.【解答】解:(1)∵25<28<30,y=,∴把x=28代入y=40﹣x得,∴y=12(万件),答:当销售单价定为28元时,该产品的年销售量为12万件;(2)①当25≤x≤30时,W=(40﹣x)(x﹣20)﹣25﹣100=﹣x2+60x﹣925=﹣(x﹣30)2﹣25,故当x=30时,W最大为﹣25,即公司最少亏损25万;②当30<x≤35时,W=(25﹣0.5x)(x﹣20)﹣25﹣100=﹣x2+35x﹣625=﹣(x﹣35)2﹣12.5故当x=35时,W最大为﹣12.5,即公司最少亏损12.5万;对比①,②得,投资的第一年,公司亏损,最少亏损是12.5万;答:投资的第一年,公司亏损,最少亏损是12.5万;(3)①当25≤x≤30时,W=(40﹣x)(x﹣20﹣1)﹣12.5﹣10=﹣x2+61x﹣862.5,令W=67.5,则﹣x2+61x﹣862.5=67.5,化简得:x2﹣61x+930=0,解得:x1=31;x2=30,此时,当两年的总盈利不低于67.5万元,x=30;②当30<x≤35时,W=(25﹣0.5x)(x﹣20﹣1)﹣12.5﹣10=﹣0.5x2+35.5x﹣547.5,令W=67.5,则﹣0.5x2+35.5x﹣547.5=67.5,化简得:x2﹣71x+1230=0,解得:x1=30;x2=41,此时,当两年的总盈利不低于67.5万元,30<x≤35,答:到第二年年底,两年的总盈利不低于67.5万元,此时销售单价的X围是30≤x≤35.【点评】本题主要考查二次函数在实际中应用,最大销售利润的问题常利函数的增减性来解答,我们首先要弄懂题意,确定变量,建立函数模型解答,其中要注意应该在自变量的取值X围内求最大值.24.如图,已知抛物线y=x2﹣2x+m交x轴于A,B两点(A在B的左边),交y轴于C点,且OB=OC,连接BC,(1)直接写出m的值和B,C两点的坐标;(2)P点在直线BC下方的抛物线上,△BCP的面积为S,求S最大时,P的坐标;(3)抛物线的对称轴交抛物线于D点,交x轴于E点,在抛物线上是否存在点M,过M点作MN ⊥BD于N点,使△DMN与△BDE相似?若存在,请求出M点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)利用OB=OC进而表示出B点坐标,进而求出即可;(2)首先求出BC的解析式,进而利用配方法求出抛物线的顶点坐标得出答案;(3)分别利用①若M在对称轴左边的抛物线上,②若M在对称轴右边的抛物线上,求出M点坐标即可.【解答】解:(1)∵抛物线y=x2﹣2x+m交x轴于A,B两点(A在B的左边),交y轴于C点,且OB=OC,∴CO=﹣m,BO=﹣m,则B点坐标为:(﹣m,0),将B点坐标代入y=x2﹣2x+m得:0=m2+2m+m,解得:m1=﹣3,m2=0(不合题意舍去),则B(3,0),C(0,﹣3);(2)抛物线y=x2﹣2x﹣3,设直线BC的解析式为y=kx+b,由解得:,∴直线BC的解析式为y=x﹣3,设P(x,y),则S=×3[(x﹣3)﹣(x2﹣2x﹣3)]=﹣x2+x,=﹣(x﹣)2+,∴y=()2﹣2×﹣3=﹣,∴P的坐标为(,﹣);(3)存在.D(1,﹣4),①如图,若M在对称轴左边的抛物线上,记为M1,M1N1⊥BD于N1,当△M1DN1∽△DBE时,∠M1DN1=∠DBE延长DM1交x轴于G点,则DG=BG,设G点坐标为(x,0),BG=x+3由勾股定理得DG==,∴x+3=,解得,x=2,∴G点坐标为(﹣2,0),可得直线DG的解析式为:y=﹣x﹣,由解得,,∴M1的坐标为:(﹣,﹣);②如图,若M在对称轴右边的抛物线上,记为M2,M2N2⊥BD于N2,当BH⊥x轴于点B,BH=DH,设BH=x,则DH=x,故(4﹣x)2+22=x2,解得:x=,则H(3,﹣),可得直线DH的解析式为:y=x﹣,故,解得:,可得M2的坐标为(,﹣),综上所述:M点的坐标为:(﹣,﹣)或(,﹣).【点评】此题主要考查了二次函数综合以与相似三角形的判定与性质等知识,利用分类讨论的思想得出M点坐标是解题关键.。

黄冈市2015届初三年级摸底考试数学试题

黄冈市2015届初三年级摸底考试数学试题

第5题图 第6题图黄冈市2015届初三年级摸底考试数学试题试卷总分:120分 考试时间:120分钟第Ⅰ卷(选择题 共21分)一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填入下面表格内。

本大题共7小题,每小题3分,共21分.) 1.-20151的倒数为 A.-2015 B. -20151 C.2015 D. 201512.下列运算正确的是A .b a b a +=+--)(B .a a a =-2333 C .(x 6)2=x 8D.323211=⎪⎭⎫⎝⎛÷- 3.在函数y =中,自变量x 的取值范围是 A.1x ≠ B. 1x >- C. x ≥1 D.1x >4.不等式组⎪⎩⎪⎨⎧-<--+≥+-xx x x 8)1(311323的整数解是A .-2,-1,0B .-1,0,1C .0,1,2D .1,2,35.几个棱长为1的正方体组成几何体的三视图如图,则这个几何体的体积是A .5B .6C .7D .86.二次函数y =ax 2+bx +c(a≠0)的图象如图,给出下列结论:①b 2-4ac>0; ②2a +b<0; ③4a -2b +c =0; ④a ∶b ∶c =-1∶2∶3.其中正确的是A .①②B .②③C .③④D .①④ 7.等腰△ABC中,∠A=30°,AB=4 ,则AB 边上的高CD 的长是 A .2或32或33 B .2或34或33 C .2或32或332 D. 2或34或332第Ⅱ卷(非选择题 共99分)二、填空题(共7个小题,每小题3分)AD F E第17题图第11题图8.化简-5.0-=___________.9.分解因式:3-12t + 12t 2 = .10. 已知0113=+++b a ,则_______20152=--b a .11.如图,直线BD∥EF,AE 与BD 交于点C ,若∠ABC=30°,∠BAC=75°,则∠CEF 为____.12、若方程2x +8x-4=0的两根为1x 、2x 则21+21= 14. 上一点(不与端点重合),如果∠MNP =∠MNQ.有以下结论:①∠1=∠2 ,②∠MPN+∠MQN=180°,③∠MQN=∠PMN ,④PM=QM,⑤MN 2=PN ·QN.其中正确的是___________.三、解答题(本大题共10小题,共78分.)15.(5分) 先化简,在求值:3-x 2x -4÷(5x -2-x -2),其中x=3-3.16.(本小题满分6分)某中心城市有一楼盘,开发商准备以每平方米7000元的价格出售.由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.(1)求平均每次下调的百分比;(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力.请问房产销售经理的方案对购房者是否更优惠?为什么?17.(本小题满分6分)如图△ABC 中,D 、E 分别是AB 、AC 的中点,BE =2DE ,延长DE 到点F ,使得EF =BE ,连接CF . 求证:四边形BCFE 是菱形.CBA 45°60°N M 第20题图A O D C19.(本小题满分7分)在复习《反比例函数》一课时,同桌的小峰和小轩有一个问题观点不一致: 情境:随机同时掷两枚质地均匀的骰子(骰子六个面上的点数分别代表1,2,3,4,5,6).第一枚骰子上的点数作为点P (m ,n )的横坐标,第二枚骰子上的点数作为点P (m ,n )的纵坐标 小峰认为:点P (m ,n )在反比例函数y=x 8图象上的概率一定大于在反比例函数y=x 6图象上的概率;小轩认为:点P (m ,n )在反比例函数y=x 8和y=x6图象上的概率相同. 问题:(1)试用列表或画树状图的方法,列举出所有点P (m ,n )的情形;(2)分别求出点P (m ,n )在两个反比例函数的图象上的概率,并说明谁的观点正确.20.(本小题满分7分)如图,AB 是⊙O 的直径,BC 为⊙O 切线, 切点为B ,OC 平行于弦AD ,OA =2. (1)求证:CD 是⊙O 的切线;(2)若AD +OC =9,求CD 的长.(结果保留根号)21.(本小题满分9分) 教育局为了解本县一中学1200名学生每学期参加社会实践活动的时间,随,中位数是;参加社会实践活动时间不少于9天的大约有多少人?22.(本小题满分7分)钓鱼岛自古就是中国的领土.某日,中国一艘海监船从A 点沿正北方向巡航,其航线距钓鱼岛(设M ,N 为该岛的东 西两端点)最近距离为14km (即MC=14km ).在A 点测得岛屿的西 端点M 在点A 的东北方向;航行4km 后到达B 点,测得岛屿的东端 点N 在点B 的北偏东60°方向,(其中N ,M ,C 在同一条直线上),第24题图求钓鱼岛东西两端点MN 之间的距离(结果保留根号).23.(本小题满分10分)“低碳生活”作为一种健康、环保、安全的生活方式,受到越来越多人的关注.某公司生产的健身自行车在市场上受到普遍欢迎,在国内市场和国外市场畅销,生产的产品可以全部售出,在国内市场每辆的利润y 1(元)与销量x (万辆)的关系如图所示;在国外市场每辆的利润y 2 (元)与销量x (万量)的关系为:y 2=⎩⎨⎧≤≤≤≤+-)104(240)60(36020x x x .(1)求国内市场的销售总利润1z (万元)关于销售量x (万辆)的函数关系式,并指出自变量的取值范围. (2)该公司的年生产能力为10万辆,请帮助该公司确定 国内、国外市场的销量各为多少时,公司的年利润最大?24.(本小题满分14分)如图,抛物线y=ax 2-2ax+c(a≠0)与y 轴交于点C (0,4),与x 轴交于点A 、B ,点A 坐标为(4,0). (1)求该抛物线的解析式;(2)抛物线的顶点为N ,在x 轴上找一点K ,使CK+KN 最小,并求出点K 的坐标; (3)点Q 是线段AB 上的动点,过点Q 作QE ∥AC ,交BC 于点E ,连接CQ.当△CQE 的面积最大时,求点Q 的坐标;(4)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.400黄冈教育网2015年中考模拟试题数学D 卷 参考答案1.A 2.D 3.B 4.B 5.A 6.D 7.C 8.-0.5 9. 3(1-2t)2 10. 98 11. 105° 12.29 13.x 1=10,x 2=11 14.①③⑤ 15.原式=)321x ( …………3分 原式=63…………5分 16.(1)设平均每次下调的百分比为x ,则有7000(1-x)2=5670,(1-x)2=0.81,∵1-x>0, ∴1-x =0.9, x =0.1=10%.答:平均每次下调10%.………………3分(2)先下调5%,再下调15%,这样最后单价为7000元×(1-5%)×(1-15%)=5652.5元,∵5652.5<5670,∴ 销售经理的方案对购房者更优惠一些.…………6分17.∵D 、E 是AB 、AC 的中点,∴DE ∥BC ,BC=2DE. ………………………………2分 又BE=2DE ,EF=BE ,∴BC=BE=EF ,EF ∥BC ,∴四边形BCFE 为平行四边形,…4分 又BE=EF ,∴四边形BCFE 是菱形………………………………………………………6分18. (1)∵当x >1时,y 1>y 2;当0<x <1时,y 1<y 2,∴点A 的横坐标为1,代入反比例函数解析式,=y ,解得y=6,∴点A 的坐标为(1,6),又∵点A 在一次函数图象上,∴1+m=6,解得m=5,∴一次函数的解析式为y 1=x+5;……3分(2)∵第一象限内点C 到y 轴的距离为3,∴点C 的横坐标为3,∴y==2,∴点C 的坐标为(3,2)过点C 作CD ∥x 轴交直线AB 于D 则点D 的纵坐标为2,∴x+5=2,解得x=-3,∴点D 的坐标为(-3,2),∴CD=3-(-3)=3+3=6,点A 到CD 的距离为6-2=4,联立,解得(舍去),,∴点B 的坐标为(-6,-1),∴点B 到CD 的距离为2-(-1)=2+1=3, S △ABC =S △ACD +S △BCD =×6×4+×6×3=12+9=21.……7分 19.(1)列表得:画树状图:……3分(2)∴一共有36种可能的结果,且每种结果的出现可能性相同,点(1,8),(8,1),(2,4),(4,2)在反比例函数y=x 8的图象上,点(1,6),(2,3),(3,2),(6,1)在反比例函数y=x6的图象上,∴点P (m ,n )在两个反比例函数的图象上的概率都为:364=91,∴小轩的观点正确.……………………7分20.证明:(1)连结OD ,∵AD ∥OC,∠1=∠2,∠A=∠3;∵OA=OD,∴∠A=∠1,∴∠2=∠3,再证△ODC ≌△OBC ,得∠ODC =∠OBC=90°, CD 是⊙O 的切线;……3分(2)连结BD , ∵AB 为⊙O 的直径,∴∠ADB =90°,∵∠OBC =90°,∴∠ADB =∠OBC又∠A =∠3,∴△ADB ∽△OBC , ∴OCABOB AD =,AD ·OC=OB ·AB=2×4=8; 又AD +OC =9,∵OC >OD ,∴OC =8,AD=1,OD=2,∴CD =15246422=-=-OD OC ……7分21. (1)9天,9天;……2分(2)18,0.28,作图略……5分;(3)(11+8+6+4+2)120050⨯÷=744(人)…………9分22.解:在Rt △ACM 中,tan ∠CAM= tan 45°=ACCM=1,∴AC=CM=14, …………………3分 ∴BC=AC-AB=14-4=10,在Rt △BCN 中,tan ∠CBN = tan60°=BCCN=3.∴CN =3BC=103.∴MN =103-14.答:钓鱼岛东西两端点MN 之间的距离为(103-14)km.…………7分23.(1)y 1=⎩⎨⎧≤≤+-≤≤)104(52030)40(400x x x 则Z 1=xy=⎩⎨⎧≤≤+-≤≤)104(52030)40(4002x x x x x ……4分 (2)该公司在国外市场的利润Z 2=xy=⎩⎨⎧≤≤≤≤+-)106(240)60(360202x x x x x该公司的年生产能力为10万辆,在国内市场销售t 万辆时,在国外市场销售(10-t )万辆,则Z 1=⎩⎨⎧≤≤+-≤≤)104(52030)40(4002t t t t t , Z 2=⎩⎨⎧≤-≤-≤-≤-+--)10106)(10(240)6100)(10(360)10(202t t t t t =⎩⎨⎧≤≤+-≤≤++-)40(2400240)104(160040202x x t t t …8分设该公司每年的总利润为w (万元),则W=Z 1+Z 2=⎩⎨⎧≤≤++-≤≤+)104(160056050)40(24001602t t t t t =⎪⎩⎪⎨⎧≤≤+--≤≤+)104(3168)528(50)40(24001602t t t t ∙例3图321OD A第20题图当0≤t≤4时,w 随t 的增大而增大,当t =4时,w 取最大值,此时w =3040.当4≤t≤10时,当t =285时,w 取最大值,此时w =3168.综合得:当t =285时,w 的最大值为3168.此时,国内的销量为285万辆,国外市场销量为225万辆,总利润为3168万元.……10分 24.(1)y=-4212++x x ;…………………………………………………………3分 (2)抛物线顶点为N(1,29),作点C 关于x 轴的对称点C ′(0,-4),求得直线C ′K 为 y=4217-x ,∴点K 的坐标为(0178,);………………………………………………6分 (3)设点Q(m,0),过点E 作EG ⊥x 轴于点G,由-4212++x x =0,得x 1=-2,x 2=4,∴点B 的坐标为(-2,0),AB=6,BQ=m+2,又∵QE ∥AC,∴△BQE ≌△BAC,∴,BABQ CO EG =即624+=m EG ,EG=342+m ; ∴S △CQE =S △CBQ -S △EBQ = BQ EG CO ⋅-)(21=383231)3424)(2(212++-=+-+m m m m =3)1(312+--m . 又∵-2≤m≤4,∴当m=1时,S △CQE 有最大值3,此时Q (1,0).…………10分(4)存在.在△ODF 中,(ⅰ)若DO=DF ,∵A (4,0),D (2,0),∴AD=OD=DF=2.又在Rt △AOC 中,OA=OC=4,∴∠OAC=45°.∴∠DFA=∠OAC=45°.∴∠ADF=90°.此时,点F 的坐标为(2,2). 由-4212++x x =2,得x 1=1+5,x 2=1-5. 此时,点P 的坐标为:P 1(1+5,2)或P 2(1-5,2). (ⅱ)若FO=FD ,过点F 作FM ⊥x 轴于点M.由等腰三角形的性质得:OM=21OD=1,∴AM=3. ∴在等腰直角△AMF 中,MF=AM=3.∴F (1,3).由-4212++x x =3,得x 1=1+3,x 2=1-3.此时,点P 的坐标为:P 3(1+3,3)或P 4(1-3,3).(ⅲ)若OD=OF ,∵OA=OC=4,且∠AOC=90°.∴AC=42.∴点O 到AC 的距离为22.而OF=OD=2<22,与OF≥22矛盾.∴以AC 上不存在点使得OF=OD=2.此时,不存在这样的直线l ,使得△ODF 是等腰三角形.综上所述,存在这样的直线l ,使得△ODF 是等腰三角形.所求点P 的坐标为:(1+5,2)或(1-5,2)或(1+3,3)或(1-3,3)………………14分第24题图 M F 第24题。

湖北省黄冈市2015届中考模拟考试数学试题(E卷)及答案

湖北省黄冈市2015届中考模拟考试数学试题(E卷)及答案

第10题图第14题图湖北省黄冈市2015年中考模拟试题数学E 卷试卷总分:120分 考试时间:120分钟一、选择题(每题3分,共21分)1.16的算术平方根是( ) A .4 B .±4 C .±2 D .2 2.下列运算正确的是( )A .x 2²x 3= x 6B2=C .(-2)0=0D .1122-=3.下列图形既是轴对称图形,又是中心对称图形的是( ) 4.已知二次函数21(3)52y x =-++,则此图象的顶点坐标为( ) A .(3,5) B .(-3,—5) C .(-3,5) D .(3,—5)5.左边图形的主视图是( ) 6.下列一元二次方程两实数根的和为—4的是( ) A .2240x x +-=B .2440x x -+=C .24100x x ++= D .2450x x +-=7.两直角△如图放置,∠AOB=∠ABC=90°,OA=OB=3,点C 到OA 、OB 的距离分别为4,1.将△OAB 沿射线OA 方向移m 个单位(0<m <3),得到新△O 1A 1B 1与△ABC 重叠部分的面积记为S ,则能表示S 与m 的函数关系如图象是( )A. B. C. D.二、填空题(每题3分,共21分)8.32-的相反数是 .9.函数11x y x +=-的自变量x 的取范围为 . 10.如图,把一块含45°的直角三角形的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2= . 11.分解因式:9m 2-24m+16= .12.如图CD 是⊙O 的直径,弦AB ⊥CD ,垂足为E ,连BC ,若AB=,∠BCD=20°30′,则⊙O 的半径为 cm .A B C D1 2 3 1 2 3 1 2 3 1 2 398 32s32s 32s 32s 98 98 9813.用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥无底帽子,则这个帽子的高度为cm .14.如图一个半圆形零件,直径紧贴地面,现需要将零件按如图所示方式,向前作无滑动滚动,使圆心O 再次落在地面上止,已知半圆直径为64cm ,则圆心O 所经过的路线与地面转成的面积是 .三、解答题15.(5分)先化简,再求值:20537x x x -<⎧⎨+≤+⎩,并将解集在数轴上表示出来.16.(5分)李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分,他骑自行车的平均速度是250米/分,步行的平均速度是80米/分,他家离学校的距离是2900米,求他骑车和步行的时间分别是多少? 17.(7分)如图,已知四边形ABCD 的对角线AC ,BD 交于点O ,BE ⊥AC 于点E ,DF ⊥AC 于点F ,点O 既是AC 的中点,又是EF 的中点.(1)求证:△BOE ≌△DOF ;(2)若OA=12BD ,则四边形ABCD 是什么特殊四边形?说明理由.18.(8分)某校九年级学生参加初中毕业英语口语,听力考试,从中随机抽取了部分学生的考试成绩,进行统计后分为A 、B 、C 、D 四个等级,并绘制成如下的统计图.请你结合图中信息,解答下列问题:(1)请将条形统计图补充完整;(2)D 级所占的百分比是 ; (3)A 级所在的扇形的圆心角度数是;(4)该校有九年级学生850名,请你估计全年级A 级和B 级学生人数共约 人.19.(8分)如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,地D 作PF ∥AC 交⊙O于F ,交AB 于点E ,且∠BPF=∠ADC.(1)判断直线BP 和⊙O 的位置关系,并说明你的理由;(2)当⊙O AC=2,BE=1时,求BP 的长.20.(8分)在一个不透明的袋里装有分别标有数字1、2、3、4四个小球,除数字不同之外,小球没有任何区别,每次实验先搅拌均匀。

湖北省黄冈中学中考数学一模试卷(含解析)

湖北省黄冈中学中考数学一模试卷(含解析)

2015年湖北省黄冈中学中考数学一模试卷一、选择题(共8小题,每小题3分,共24分)1.在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为()A.2.7×105B.2.7×106C.2.7×107D.2.7×1082.计算的结果是()A.2 B.﹣2 C.﹣4 D.43.一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为()A. cm B. cm C.3cm D. cm4.如图是由5个大小相同的正方体组成的几何体,从正面所看到的平面图形是()A.B.C.D.5.使代数式有意义的x的取值范围是()A.x≥0 B.C.x≥0且 D.一切实数6.如图,在▱ABCD中,∠A=70°,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB 所在的直线上),折痕为MN,则∠AMF等于()A.70° B.40° C.30° D.20°7.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为()A.50 B.64 C.68 D.728.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△CMN的面积为y,则y关于x的函数图象大致形状是()A.B.C.D.二、填空题(共7小题,每小题3分,共21分)9.分解因式:5x3﹣10x2y+5xy2= .10.若一个多边形的每一个外角都等于40°,则这个多边形的边数是.11.已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为.12.如果不等式组的解集是0≤x<1,那么(a+b)2015的值为.13.开口向下的抛物线y=(m2﹣2)x2+2mx+1的对称轴是直线x=﹣1,则m= .14.若,则实数a的值为.15.在等腰三角形ABC中,∠A=30°,AB=18,则AB边上的高CD的长是.三、解答题(本大题共10小题,共75分)16.计算:4sin60°﹣(π﹣1)0﹣(﹣)﹣3+(﹣1)2.17.“六一”儿童节前,某玩具商店根据市场调查,用2 500元购进一批儿童玩具,上市后很快脱销,接着又用4 500元购进第二批,所购数量是第一批数量的1.5倍,但每套进价多了10元.求第二批玩具每套的进价是多少元?18.已知:如图,四边形ABCD的对角线AC、BD交于点O,BE⊥AC于E,DF⊥AC于F,点O既是AC 的中点,又是EF的中点.(1)求证:△BOE≌△DOF;(2)若OA=BD,则四边形ABCD是什么特殊四边形?说明理由.19.四张扑克牌的牌面如图1,将扑克牌洗匀后,如图2背面朝上放置在桌面上,小明和小亮设计了A、B两种游戏方案:方案A:随机抽一张扑克牌,牌面数字为5时小明获胜;否则小亮获胜.方案B:随机同时抽取两张扑克牌,两张牌面数字之和为偶数时,小明获胜;否则小亮获胜.请你帮小亮选择其中一种方案,使他获胜的可能性较大,并说明理由.20.如图,⊙O中,点C为的中点,∠ACB=120°,OC的延长线与AD交于点D,且∠D=∠B.(1)求证:AD与⊙O相切;(2)若点C到弦AB的距离为2,求弦AB的长.21.某校240名学生参加植树活动,要求每人植树4~7棵,活动结束后抽查了20名学生每人的植树量,并分为四类:A类4棵、B类5棵、C类6棵、D类7棵,将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:(1)补全条形图;(2)写出这20名学生每人植树量的众数和中位数;(3)估计这240名学生共植树多少棵?22.已知:反比例函数y=(k≠0)的图象经过点B(1,1)(1)求该反比例函数解析式;(2)连接OB,再把点A(2,0)与点B连接,将△OAB绕点O按顺时针方向旋转135°得到△OA′B′,写出A′B′的中点P的坐标,试判断点P是否在此双曲线上,并说明理由;(3)如图,若该反比例函数图象上有一点F(2m,m﹣)(其中m>0),在射线OF上任取一点E,设E点的纵坐标为n,过F点作FM⊥x轴于点M,连接EM,使△OEM的面积是,求n的值.23.如图,我边防哨所A测得一走私船在A的西北方向B处由南向北正以每小时10海里的速度逃跑,我缉私艇迅速朝A的西偏北60°的方向出发拦截,2小时后终于在B地正北方向M处拦截住,试求缉私船的速度.(结果保留根号)24.某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果以13元/千克的价格销售,那么每天可获取利润750元.小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)(x>8)之间存在一次函数关系.(1)求y(千克)与x(元)(x>8)的函数关系式;(2)当销售单价为何值时,该超市销售这种水果每天获取的利润达到600元?[利润=销售量×(销售单价﹣进价)](3)一段时间后,发现这种水果每天的销售量均不低于225千克.则此时该超市销售这种水果每天获取的最大利润是多少?25.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(4,0),与y轴交于C(0,﹣4)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POP′C′,那么是否存在点P,使四边形POP′C′为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.2015年湖北省黄冈中学中考数学一模试卷参考答案与试题解析一、选择题(共8小题,每小题3分,共24分)1.在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为()A.2.7×105B.2.7×106C.2.7×107D.2.7×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将27 000 000用科学记数法表示为2.7×107.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.计算的结果是()A.2 B.﹣2 C.﹣4 D.4【考点】二次根式的性质与化简.【专题】计算题.【分析】根据=|a|得到原式=﹣|﹣2|,然后利用绝对值的意义去绝对值即可.【解答】解:原式=﹣|﹣2|=﹣2.故选B.【点评】本题考查了二次根式的性质与化简: =|a|.也考查了绝对值的意义.3.一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为()A. cm B. cm C.3cm D. cm【考点】弧长的计算.【分析】利用弧长公式和圆的周长公式求解.【解答】解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr=,r=cm.故选:A.【点评】圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.4.如图是由5个大小相同的正方体组成的几何体,从正面所看到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.【解答】解:从正面看,主视图有三列,正方体的数量分别是2、1、1.故选A.【点评】本题考查了三种视图中的主视图,比较简单.5.使代数式有意义的x的取值范围是()A.x≥0 B.C.x≥0且 D.一切实数【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据分式有意义的条件可得2x﹣1≠0,根据二次根式有意义的条件可得x≥0,解出结果即可.【解答】解:由题意得:2x﹣1≠0,x≥0,解得:x≥0,且x≠,故选:C.【点评】此题主要考查了分式有意义的条件,二次根式有意义的条件,二次根式中的被开方数是非负数;分式有意义的条件是分母不等于零.6.如图,在▱ABCD中,∠A=70°,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB 所在的直线上),折痕为MN,则∠AMF等于()A.70° B.40° C.30° D.20°【考点】平行四边形的性质.【分析】根据折叠的性质得出AM=MD=MF,得出∠MFA=∠A=70°,再由三角形内角和定理即可求出∠AMF.【解答】解:根据题意得:AM=MD=MF,∴∠MFA=∠A=70°,∴∠AMF=180°﹣70°﹣70°=40°;故选:B.【点评】本题考查了平行四边形的性质、折叠的性质、等腰三角形的性质以及三角形内角和定理;根据折叠的性质得出等腰三角形是解决问题的关键.7.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为()A.50 B.64 C.68 D.72【考点】规律型:图形的变化类.【分析】先根据题意求找出其中的规律,即可求出第⑥个图形中五角星的个数.【解答】解:第①个图形一共有2个五角星,第②个图形一共有:2+(3×2)=8个五角星,第③个图形一共有8+(5×2)=18个五角星,…第n个图形一共有:1×2+3×2+5×2+7×2+…+2(2n﹣1)=2[1+3+5+…+(2n﹣1)],=[1+(2n﹣1)]×n=2n2,则第(6)个图形一共有:2×62=72个五角星;故选:D.【点评】本题考查了图形变化规律的问题,把五角星分成三部分进行考虑,并找出第n个图形五角星的个数的表达式是解题的关键.8.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△CMN的面积为y,则y关于x的函数图象大致形状是()A.B.C.D.【考点】动点问题的函数图象.【分析】△CMN的面积=CP×MN,通过题干已知条件,用x分别表示出CP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2.【解答】解:(1)当0<x≤1时,如图1,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴,即,∴MN=x,∴y=CP×MN=(0<x≤1),∵﹣<0,∴函数图象开口向下;(2)当1<x<2,如图2,同理证得,△CDB∽△CNM,,即,∴MN=2﹣x,∴y=CP×MN=(2﹣x)×(2﹣x)=,∵>0,∴函数图象开口向上;综上,答案A的图象大致符合;故选:A.【点评】本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.二、填空题(共7小题,每小题3分,共21分)9.分解因式:5x3﹣10x2y+5xy2= 5x(x﹣y)2.【考点】提公因式法与公式法的综合运用.【专题】常规题型.【分析】先提取公因式5x,再对余下的多项式利用完全平方公式继续分解.【解答】解:5x3﹣10x2y+5xy2,=5x(x2﹣2xy+y2),=5x(x﹣y)2.故答案为:5x(x﹣y)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.若一个多边形的每一个外角都等于40°,则这个多边形的边数是9 .【考点】多边形内角与外角.【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:360÷40=9,即这个多边形的边数是9.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.11.已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为 6 .【考点】代数式求值.【专题】计算题.【分析】将x=1代入2ax2+bx=3得2a+b=3,然后将x=2代入ax2+bx得4a+2b=2(2a+b),之后整体代入即可.【解答】解:将x=1代入2ax2+bx=3得2a+b=3,将x=2代入ax2+bx得4a+2b=2(2a+b),∵2a+b=3,∴原式=2×3=6.故答案为:6.【点评】本题考查了代数式求值,利用整体思想是解题的关键.12.如果不等式组的解集是0≤x<1,那么(a+b)2015的值为 1 .【考点】解一元一次不等式组.【分析】首先用a和b表示出不等式的解集,然后根据题意求出a和b的值,进而求出(a+b)2015的值.【解答】解:∵不等式组,∴解①得:x≥1﹣,解②得:x<,又∵不等式组的解集为:0≤x<1,∴,解得a=2,b=﹣1,∴(a+b)2015=1,故答案为1.【点评】本题主要考查了解一元一次不等式组的知识,解题的关键是用a和b表示出不等式得解集,此题难度不大.13.开口向下的抛物线y=(m2﹣2)x2+2mx+1的对称轴是直线x=﹣1,则m= ﹣1 .【考点】二次函数的性质.【分析】直接利用二次函数对称轴公式求出m的值,再利用其开口方向得出符合题意的m的值.【解答】解:∵开口向下的抛物线y=(m2﹣2)x2+2mx+1的对称轴是直线x=﹣1,∴m2﹣2<0,x=﹣=﹣=﹣1,解得:m1=﹣1,m2=2,当m=2时,m2﹣2>0,故m=﹣1.故答案为:﹣1.【点评】此题主要考查了二次函数的性质,根据题意得出二次函数对称轴公式m的值是解题关键.14.若,则实数a的值为 1 .【考点】二次根式的性质与化简;含绝对值符号的一元一次方程.【专题】计算题.【分析】先根据二次根式的性质化简==|a﹣3|,则|a﹣3|=4﹣2a,再根据绝对值的意义得到a﹣3=4﹣2a或a﹣3=﹣(4﹣2a),解得a=或a=1,由于4﹣2a≥0,即可得到a=1.【解答】解:∵ ==|a﹣3|,∴|a﹣3|=4﹣2a,∴a﹣3=4﹣2a或a﹣3=﹣(4﹣2a),∴a=或a=1,∵4﹣2a≥0,∴a=1.故答案为1.【点评】本题考查了二次根式的性质与化简:≥0(a≥0);=|a|.也考查了含绝对值符合的一元一次方程.15.在等腰三角形ABC中,∠A=30°,AB=18,则AB边上的高CD的长是9或9或3.【考点】含30度角的直角三角形;等腰三角形的性质.【专题】分类讨论.【分析】对等腰三角形的角进行讨论,分成三种情况,利用三角函数即可求解.【解答】解:当∠A是顶角时,如图1.AB=AC=18,作CD⊥AB,则在直角△ACD中,CD=AC•sinA=18sin30°=9;当∠A是底角,AB是腰时,如图2,AB=BC=18,在直角△ACD中,∠ACD=90°﹣∠A=90°﹣30°=60°,则∠BCD=∠ACD﹣∠ACB=60°﹣30°=30°,在直角△BCD中,CD=BC•cos∠BCD=18×=9;当∠C是顶角定点时,如图3,AD=AB=×18=9,在直角△ACD中,CD=AD•tan∠A=9×=3.故答案是:9或9或3.【点评】本题考查了等腰三角形的性质以及三角函数的应用,正确对三角形进行讨论是关键.三、解答题(本大题共10小题,共75分)16.计算:4sin60°﹣(π﹣1)0﹣(﹣)﹣3+(﹣1)2.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及特殊角的三角函数值、零指数幂、负整数指数幂、完全平方公式、二次根式化简5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:4sin60°﹣(π﹣1)0﹣(﹣)﹣3+(﹣1)2=4×﹣1+8+3﹣2+1=2﹣1+8+3﹣2+1=11.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握特殊角的三角函数值、零指数幂、负整数指数幂、完全平方公式、二次根式等考点的运算.17.“六一”儿童节前,某玩具商店根据市场调查,用2 500元购进一批儿童玩具,上市后很快脱销,接着又用4 500元购进第二批,所购数量是第一批数量的1.5倍,但每套进价多了10元.求第二批玩具每套的进价是多少元?【考点】分式方程的应用.【分析】设第一批玩具每套的进价是x元,则第二批玩具每套的进价是(x+10)元,根据“所购数量是第一批数量的1.5倍”得到等量关系:第二批进的件数=第一批进的件数×1.5,据此列出方程,求解即可.【解答】解:设第一批玩具每套的进价是x元,则×1.5=,解得:x=50.经检验:x=50是原方程的解,则第二批玩具每套的进价是x+10=60(元).答:第二批玩具每套的进价为60元.【点评】本题考查分式方程的应用,分析题意,抓住关键描述语,找到合适的等量关系,列出方程是解决问题的关键.18.已知:如图,四边形ABCD的对角线AC、BD交于点O,BE⊥AC于E,DF⊥AC于F,点O既是AC 的中点,又是EF的中点.(1)求证:△BOE≌△DOF;(2)若OA=BD,则四边形ABCD是什么特殊四边形?说明理由.【考点】矩形的判定;全等三角形的判定与性质.【分析】(1)首先根据垂直可得∠BEO=∠DFO=90°,再由点O是EF的中点可得OE=OF,再加上对顶角∠DOF=∠BOE,可利用ASA证明△BOE≌△DOF;(2)首先根据△BOE≌△DOF可得DO=BO,再加上条件AO=CO可得四边形ABCD是平行四边形,再证明DB=AC,可根据对角线相等的平行四边形是矩形证出结论.【解答】(1)证明:∵BE⊥AC.DF⊥AC,∴∠BEO=∠DFO=90°,∵点O是EF的中点,∴OE=OF,又∵∠DOF=∠BOE,∴△BOE≌△DOF(ASA);(2)解:四边形ABCD是矩形.理由如下:∵△BOE≌△DOF,∴OB=OD,又∵OA=OC,∴四边形ABCD是平行四边形,∵OA=BD,OA=AC,∴BD=AC,∴▱ABCD是矩形.【点评】此题主要考查了全等三角形的判定与性质,以及矩形的判定,关键是熟练掌握矩形的判定定理:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”).19.四张扑克牌的牌面如图1,将扑克牌洗匀后,如图2背面朝上放置在桌面上,小明和小亮设计了A、B两种游戏方案:方案A:随机抽一张扑克牌,牌面数字为5时小明获胜;否则小亮获胜.方案B:随机同时抽取两张扑克牌,两张牌面数字之和为偶数时,小明获胜;否则小亮获胜.请你帮小亮选择其中一种方案,使他获胜的可能性较大,并说明理由.【考点】列表法与树状图法.【分析】由四张扑克牌的牌面是5的有2种情况,不是5的也有2种情况,可求得方案A中,小亮获胜的概率;首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小亮获胜的情况,再利用概率公式即可求得答案;比较其大小,即可求得答案.【解答】解:小亮选择B方案,使他获胜的可能性较大.理由如下:方案A:∵四张扑克牌的牌面是5的有2种情况,不是5的也有2种情况,∴P(小亮获胜)==;方案B:画树状图得:∵共有12种等可能的结果,两张牌面数字之和为偶数的有4种情况,不是偶数的有8种情况,∴P(小亮获胜)==;∴小亮选择B方案,使他获胜的可能性较大.【点评】此题主要考查了游戏公平性,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合于两步或两步以上的完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.如图,⊙O中,点C为的中点,∠ACB=120°,OC的延长线与AD交于点D,且∠D=∠B.(1)求证:AD与⊙O相切;(2)若点C到弦AB的距离为2,求弦AB的长.【考点】切线的判定;解直角三角形.【专题】证明题.【分析】(1)连接OA,由=,得CA=CB,根据题意可得出∠O=60°,从而得出∠OAD=90°,则AD与⊙O相切;(2)设OC交AB于点E,由题意得OC⊥AB,求得CE=2,Rt△BCE中,由三角函数得BE=2,即可得出AB的长.【解答】(1)证明:如图,连接OA,∵=,∴CA=CB,又∵∠ACB=120°,∴∠B=30°,∴∠O=2∠B=60°,∵∠D=∠B=30°,∴∠OAD=180°﹣(∠O+∠D)=90°,∴AD与⊙O相切;(2)解:设OC交AB于点E,由题意得OC⊥AB,∴CE=2,在Rt△BCE中,BE==2×=2.∴AB=2BE=4.【点评】本题考查了切线的判定和解直角三角形,是中学阶段的中点,要熟练掌握.21.某校240名学生参加植树活动,要求每人植树4~7棵,活动结束后抽查了20名学生每人的植树量,并分为四类:A类4棵、B类5棵、C类6棵、D类7棵,将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:(1)补全条形图;(2)写出这20名学生每人植树量的众数和中位数;(3)估计这240名学生共植树多少棵?【考点】条形统计图;用样本估计总体;中位数;众数.【专题】图表型.【分析】(1)根据抽查人数减去A、B、C类人数,求出D类的人数,然后补全统计图即可;(2)根据众数的定义解答,根据中位数的定义,找出第10人和第11人植树的平均棵树,然后解答即可;(3)求出20人植树的平均棵树,然后乘以总人数240计算即可得解.【解答】解:(1)D类的人数为:20﹣4﹣8﹣6=20﹣18=2人,补全统计图如图所示:;(2)由图可知,植树5棵的人数最多,是8人,所以,众数为5,按照植树的棵树从少到多排列,第10人与第11人都是植5棵数,所以,中位数是5;(3)==5.3(棵),240×5.3=1272(棵).答:估计这240名学生共植树1272棵.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.已知:反比例函数y=(k≠0)的图象经过点B(1,1)(1)求该反比例函数解析式;(2)连接OB,再把点A(2,0)与点B连接,将△OAB绕点O按顺时针方向旋转135°得到△OA′B′,写出A′B′的中点P的坐标,试判断点P是否在此双曲线上,并说明理由;(3)如图,若该反比例函数图象上有一点F(2m,m﹣)(其中m>0),在射线OF上任取一点E,设E点的纵坐标为n,过F点作FM⊥x轴于点M,连接EM,使△OEM的面积是,求n的值.【考点】反比例函数综合题.【分析】(1)把B(1,1)代入y=即可得到结论;(2)根据旋转的性质得到∠AOA′=135°,OA′=OA,根据三角函数的定义得到A′(﹣,﹣),B′(0,﹣),于是得到结论;(3)把F(2m,m﹣)代入y=,得到m1=1,m2=﹣.根据S△OEM=,求得n=.【解答】解:(1)∵B(1,1)在y=的图象上,∴k=xy=1×1=1,∴y=.(2)如图1,∵A(2,0),B(1,1),∴OA=2,OB=,∵将△OAB绕点O按顺时针方向旋转135°得到△OA′B′,∴∠AOA′=135°,OA′=OA,∴A′(﹣,﹣),B′(0,﹣),∴A′B′的中点为P(﹣,﹣),∵(﹣)×(﹣)=1,∴P在双曲线上;(3)如图2,∵F(2m,m﹣)在反比例函数y=图象上,∴m1=1,m2=﹣.又∵m=1,∴F(2,).∵FM⊥x轴,∴m(2,0),∴M(2,0),∴OM=2.∵S△OEM=,∴OM•n=,即×2n=,∴n=.【点评】本题考查了用待定系数法求反比例函数的解析式,旋转的性质,三角形面积的计算,锐角三角函数,得出A′(﹣,﹣),B′(0,﹣)是解题的关键.23.如图,我边防哨所A测得一走私船在A的西北方向B处由南向北正以每小时10海里的速度逃跑,我缉私艇迅速朝A的西偏北60°的方向出发拦截,2小时后终于在B地正北方向M处拦截住,试求缉私船的速度.(结果保留根号)【考点】解直角三角形的应用-方向角问题.【分析】延长MB交正西方向于C,根据题意先求出MB的值和AC=BC,设AC=BC=x,在Rt△ACM中,根据∠ACM=90°,得出tan∠MAC=,求出x的值,再根据MA=2AC,求出MA,最后根据缉私船的速度V=,即可得出答案.【解答】解:延长MB交正西方向于C,由题意可知:MB=2×10=20(海里),∠MAC=60°,∠1=45°,则AC=BC.设AC=BC=x﹒在Rt△ACM中,∵∠ACM=90°,∴tan∠MAC=,即=,∴x=10(+1),即AC=10+10.又∵MA=2AC,∴MA=20+20,∴缉私船的速度为V==10+10(海里/时).【点评】此题考查的知识点是解直角三角形的应用,关键是根据题意作出辅助线,构造两直角三角形,运用三角函数求解.24.某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果以13元/千克的价格销售,那么每天可获取利润750元.小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)(x>8)之间存在一次函数关系.(1)求y(千克)与x(元)(x>8)的函数关系式;(2)当销售单价为何值时,该超市销售这种水果每天获取的利润达到600元?[利润=销售量×(销售单价﹣进价)](3)一段时间后,发现这种水果每天的销售量均不低于225千克.则此时该超市销售这种水果每天获取的最大利润是多少?【考点】二次函数的应用.【分析】(1)先求出销售单价为13元/千克时的销售量,再利用待定系数法即可解决问题.(2)列出方程即可解决问题.(3)构建二次函数,利用二次函数的性质解决问题.【解答】(1)解:当销售单价为13元/千克时,销售量为:(千克).设y与x的函数关系式为:y=kx+b(k≠0),把(10,300),(13,150)分别代入得:,解得,∴y与x的函数关系是:y=﹣50x+800(x>8).(2)由题意:(﹣50x+800)(x﹣8)=600,解得x=14或10.销售单价为每千克10元或14元时,每天获取利润600元.(3)设每天水果的利润为w元,则W=(﹣50x+800)(x﹣8)=﹣50(x﹣12)2+800,∴当8<x≤12时,w随x的增大而增大.又∵水果每天的销售量均不低于225千克,∴﹣50x+800≥225,∴x≤11.5.∴当x=11.5时,W最大值=﹣50×11.52+1200×11.5=787.5(元).答:该超市销售这种水果每天获取的最大利润是787.5元.【点评】本题考查二次函数的应用、待定系数法等知识,解题的关键是构建二次函数,利用二次函数性质解决实际问题,属于中考常考题型.25.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(4,0),与y轴交于C(0,﹣4)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POP′C′,那么是否存在点P,使四边形POP′C′为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.【考点】二次函数综合题.【分析】(1)将B、C的坐标代入抛物线的解析式中即可求得待定系数的值;(2)由于菱形的对角线互相垂直平分,若四边形POP′C为菱形,那么P点必在OC的垂直平分线上,据此可求出P点的纵坐标,代入抛物线的解析式中即可求出P点的坐标;(3)由于△ABC的面积为定值,当四边形ABPC的面积最大时,△BPC的面积最大;过P作y轴的平行线,交直线BC于Q,交x轴于F,易求得直线BC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得△BPC的面积,由此可得到关于四边形ACPB的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC的最大面积及对应的P点坐标.【解答】解:(1)将B、C两点的坐标代入得解得:所以二次函数的表达式为:y=x2﹣3x﹣4;(2)存在点P,使四边形POP′C为菱形;设P点坐标为(x,x2﹣3x﹣4),PP′交CO于E若四边形PO P′C是菱形,则有PC=PO;如图1,连接PP′,则PE⊥CO于E,∵C(0,﹣4),∴CO=4,又∵OE=EC,∴OE=EC=2∴y=﹣2;∴x2﹣3x﹣4=﹣2,解得:x1=,x2=(不合题意,舍去),∴P点的坐标为(,﹣2);(3)如图2,过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2﹣3x﹣4),设直线BC的解析式为:y=kx+d,则,解得:,∴直线BC的解析式为:y=x﹣4,则Q点的坐标为(x,x﹣4);当0=x2﹣3x﹣4,解得:x1=﹣1,x2=4,∴AO=1,AB=5,S四边形ABPC=S△ABC+S△BPQ+S△CPQ,=AB•OC+QP•BF+QP•OF,=×5×4+(4﹣x)[x﹣4﹣(x2﹣3x﹣4)]+ x[x﹣4﹣(x2﹣3x﹣4)],。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年湖北省黄冈实验中学中考数学模拟试卷(6月份)一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共21分)1.9的平方根为()A.3 B.﹣3 C.±3 D.2.下列计算正确的是()A.x2+x3=2x5B.m8÷m2=m4C.(m﹣n)2=m2﹣n2D.(x2)3=x63.函数y=中自变量x的取值范围是()A.x≥1 B.x≥1且x≠±2 C.x≠±2 D.x≥1且x≠24.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()A.B.C.D.5.点A在双曲线上,AB⊥x轴于B,且△AOB的面积为3,则k=()A.3 B.6 C.±3 D.±66.一个圆锥的侧面展开图是半径为的半圆,则该圆锥的底面半径是()A.1 B.C.D.7.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为()A.8 B.16 C.24 D.32二、填空题(共7小题,每小题3分,共21分)8.分解因式:ab2﹣4ab+4a=.9.不等式组的解集为.10.如图所示,AB∥CD,∠D=27°,∠E=36°,则∠ABE的度数是.11.化简÷=.12.已知2﹣是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是.13.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则(1)OA的长为,(2)点C的坐标为.14.如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q以1cm/s的速度从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为.三、解答题(本大题共10小题,满分共78分)15.解方程组.16.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?17.如图是我市某校八年级学生为贫困山区学生捐款情况抽样调查的条形图和扇形统计图.(1)求本次抽样的学生有多少人;(2)在扇形统计图中,求该样本中捐款15元的人数所占的圆心角度数;(3)若该校八年级学生有800人,据此样本求八年级捐款总数.18.已知:如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,以AD为斜边在△ABC外作等腰直角三角形AED,连结BE、EC.试猜想线段BE和EC的数量关系及位置关系,并证明你的猜想.19.有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字﹣1,﹣2和﹣3.小强从A布袋中随机取出一个小球,记录其标有的数字为a,再从B布袋中随机取出一个小球,记录其标有的数字为b,这样就确定点Q的一个坐标为(a,b).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x﹣3上的概率.20.平行四边形ABCD在平面直角坐标系中的位置如图所示,其中A(﹣6,0),B(4,0),C(5,3),反比例函数y=的图象经过点C.(1)求此反比例函数的解析式;(2)将平行四边形ABCD沿x轴翻折得到平行四边形AD′C′B,请你通过计算说明点D′在双曲线上;(3)请你画出△AD′C,并求出它的面积.21.如图,AB是⊙O的直径.半径OD垂直弦AC于点E.F是BA延长线上一点,∠CDB=∠BFD.(1)判断DF与⊙O的位置关系,并证明;(2)若AB=10,AC=8,求DF的长.22.如图,两建筑物的水平距离BC是30m,从A点测得D点的俯角α是35°,测得C点的俯角β为43°,求这两座建筑物的高度.(结果保留整数)23.在黄冈建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到35元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:y=(年获利=年销售收入﹣生产成本﹣投资成本)(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.24.如图,已知抛物线y=x2﹣2x+m交x轴于A,B两点(A在B的左边),交y轴于C点,且OB=OC,连接BC,(1)直接写出m的值和B,C两点的坐标;(2)P点在直线BC下方的抛物线上,△BCP的面积为S,求S最大时,P的坐标;(3)抛物线的对称轴交抛物线于D点,交x轴于E点,在抛物线上是否存在点M,过M点作MN ⊥BD于N点,使△DMN与△BDE相似?若存在,请求出M点的坐标;若不存在,请说明理由.2015年湖北省黄冈实验中学中考数学模拟试卷(6月份)参考答案与试题解析一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共21分)1.9的平方根为()A.3 B.﹣3 C.±3 D.【考点】平方根.【专题】计算题.【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.【解答】解:9的平方根有:=±3.故选C.【点评】此题考查了平方根的知识,属于基础题,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.2.下列计算正确的是()A.x2+x3=2x5B.m8÷m2=m4C.(m﹣n)2=m2﹣n2D.(x2)3=x6【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【专题】计算题;实数.【分析】A、原式不能合并,错误;B、原式利用同底数幂的除法法则计算得到结果,即可作出判断;C、原式利用完全平方公式化简得到结果,即可作出判断;D、原式利用幂的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、原式不能合并,错误;B、原式=m6,错误;C、原式=m2﹣2mn+n2,错误;D、原式=x6,正确,故选D【点评】此题考查了同底数幂的除法,合并同类项,幂的乘方与积的乘方,以及完全平方公式,熟练掌握公式及法则是解本题的关键.3.函数y=中自变量x的取值范围是()A.x≥1 B.x≥1且x≠±2 C.x≠±2 D.x≥1且x≠2【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:由题意得,x﹣1≥0且x2﹣4≠0,解得x≥1且x≠±2,所以,x≥1且x≠2.故选D.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.4.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】俯视图是从上向下看得到的视图,结合选项即可作出判断.【解答】解:所给图形的俯视图是B选项所给的图形.故选B.【点评】本题考查了简单组合体的三视图,属于基础题,关键掌握俯视图是从上向下看得到的视图.5.点A在双曲线上,AB⊥x轴于B,且△AOB的面积为3,则k=()A.3 B.6 C.±3 D.±6【考点】反比例函数系数k的几何意义.【专题】计算题.【分析】根据反比例函数的比例系数k的几何意义得到|k|=3,然后去绝对值即可得到k的值.【解答】解:根据题意得S△AOB=|k|,所以|k|=3,解得k=±6.故选D.【点评】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.6.一个圆锥的侧面展开图是半径为的半圆,则该圆锥的底面半径是()A.1 B.C.D.【考点】圆锥的计算.【分析】用到的等量关系为:圆锥的弧长=底面周长.【解答】解:设底面半径为R,则底面周长=2Rπ,半圆的弧长=×2π×=2πR,∴R=.故选C.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为()A.8 B.16 C.24 D.32【考点】等边三角形的性质.【专题】规律型.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2得出答案.【解答】解:如图所示:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=2,∴A2B1=2,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2=32;故选:D.【点评】本题考查的是等边三角形的性质以及等腰三角形的性质,根据已知得出规律A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2是解题关键.二、填空题(共7小题,每小题3分,共21分)8.分解因式:ab2﹣4ab+4a=a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.9.不等式组的解集为x<1.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<1,由②得,x≤2,故此不等式组的解集为:x<1.故答案为:x<1.【点评】本题考查的是解一元一次不等式组,解一元一次不等式组应遵循的原则“同大取较大,同小取较小,小大大小中间找,大大小小解不了”.10.如图所示,AB∥CD,∠D=27°,∠E=36°,则∠ABE的度数是63°.【考点】平行线的性质.【分析】先根据三角形外角性质得∠BFD=∠E+∠D=63°,然后根据平行线的性质得到∠ABE=∠BFD=63°.【解答】解:如图,∵∠BFD=∠E+∠D,而∠D=27°,∠E=36°,∴∠BFD=36°+27°=63°,∵AB∥CD,∴∠ABE=∠BFD=63°.故答案为:63°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.11.化简÷=1.【考点】分式的乘除法.【分析】首先将分式的分子与分母分解因式,进而利用分式乘除运算法则求出即可.【解答】解:原式=×=1.故答案为:1.【点评】此题主要考查了分式的乘除运算,正确分解因式是解题关键.12.已知2﹣是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是.【考点】根与系数的关系.【分析】由于已知方程的一根2﹣,并且一次项系数也已知,根据两根之和公式可以求出方程的另一根.【解答】解:设方程的另一根为x1,由x1+2﹣=4,得x1=2+.【点评】根据方程中各系数的已知情况,合理选择根与系数的关系式是解决此类题目的关键.13.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则(1)OA的长为2,(2)点C的坐标为(﹣,1).【考点】正方形的性质;坐标与图形性质.【分析】(1)利用勾股定理直接计算即可求出OA的长;(2)过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.【解答】解:(1)∵点A的坐标为(1,),∴OA==2,故答案为:2;(2)如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故答案为(﹣,1).【点评】本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.14.如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q以1cm/s的速度从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为3﹣,.【考点】相似三角形的判定与性质;勾股定理;圆周角定理.【专题】动点型.【分析】应分两种情况进行讨论:①当PQ⊥AC时,△APQ为直角三角形,根据△APQ∽△ABC,可将时间t求出;②当PQ⊥AB时,△APQ为直角三角形,根据△APQ∽△ACB,可将时间t求出.【解答】解:∵AB是直径,∴∠C=90°,又∵BC=2cm,∠ABC=60°,∴AB=2BC=4,AC=2,则AP=(4﹣2t)cm,AQ=t,∵当点P到达点A时,点Q也随之停止运动,∴0<t≤2,①如图1,当PQ⊥AC时,PQ∥BC,则△APQ∽△ABC,∴,∴,解得t=3﹣,②如图2,当PQ⊥AB时,△APQ∽△ACB,则,故,解得t=,故答案为:3﹣,.【点评】本题考查了圆周角定理、相似三角形的性质、直角三角形的性质等知识的综合应用能力.在求时间t时应分情况进行讨论,防止漏解.三、解答题(本大题共10小题,满分共78分)15.解方程组.【考点】解二元一次方程组.【分析】方程组整理后,利用代入消元法求出解即可.【解答】解:方程组整理得:,由②得:x=5y﹣3③,把③代入①得:25y﹣15﹣11y=﹣1,即y=1,把y=1代入③得:x=2,则方程组的解为【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.16.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?【考点】分式方程的应用.【专题】应用题.【分析】设原来每天制作x件,根据原来用的时间﹣现在用的时间=10,列出方程,求出x的值,再进行检验即可.【解答】解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.【点评】此题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键,本题的等量关系是原来用的时间﹣现在用的时间=10.17.如图是我市某校八年级学生为贫困山区学生捐款情况抽样调查的条形图和扇形统计图.(1)求本次抽样的学生有多少人;(2)在扇形统计图中,求该样本中捐款15元的人数所占的圆心角度数;(3)若该校八年级学生有800人,据此样本求八年级捐款总数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用捐款5元的人数除以它所占的百分比即可解答;(2)用样本容量分别减去捐款5元的人数和捐款10元的人数得到捐款15元的人数,于是可计算出捐款15元的人数的百分比,然后用360°乘以这个百分比即可得到捐款15元的人数所占的圆心角的度数;(3)先样本的平均数,根据样本估计总体,用800乘以这个平均数可估计出九年级学生捐款总数.【解答】解:(1)15÷30%=50(人),答:本次抽样的学生有50人;(2)捐款15元的人数=50﹣15﹣25=10(人),360°×=72°,答:该样本中捐款15元的人数所占的圆心角度数为72°;(3)据此信息可估计该校六年级学生每人捐款为:(5×15+10×25+15×10)÷(15+25+10)=720÷50=9.5(元)9.5×800=7600(元).答:八年级捐款总数为7600元.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了样本估计总体和扇形统计图.18.已知:如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,以AD为斜边在△ABC外作等腰直角三角形AED,连结BE、EC.试猜想线段BE和EC的数量关系及位置关系,并证明你的猜想.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】求出AB=DC,∠EAB=∠EDC,根据SAS证△EAB≌△EDC推出∠AEB=∠DEC,EB=EC 即可.【解答】BE=EC,BE⊥EC.证明:∵AC=2AB,点D是AC的中点,∴AB=AD=CD,∵∠EAD=∠EDA=45°,∴∠EAB=∠EDC=135°,∵在△EAB和△EDC中,,∴△EAB≌△EDC(SAS),∴∠AEB=∠DEC,EB=EC,∴∠BEC=∠AED=90°,∴BE=EC,BE⊥EC.【点评】本题考查了等腰直角三角形,全等三角形的性质和判定的应用,关键是推出△EAB≌△EDC.19.有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字﹣1,﹣2和﹣3.小强从A布袋中随机取出一个小球,记录其标有的数字为a,再从B布袋中随机取出一个小球,记录其标有的数字为b,这样就确定点Q的一个坐标为(a,b).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x﹣3上的概率.【考点】列表法与树状图法;一次函数图象上点的坐标特征.【分析】(1)首先根据题意画树状图,根据树状图可以求得点Q的所有可能坐标;(2)根据(1)中的树状图,求得点Q落在直线y=x﹣3上的情况,根据概率公式即可求得答案.【解答】解:(1)画树状图得:∴点Q的坐标有(1,﹣1),(1,﹣2),(1,﹣3),(2,﹣1),(2,﹣2),(2,﹣3);(2)∵点Q落在直线y=x﹣3上的有(1,﹣2),(2,﹣1),∴“点Q落在直线y=x﹣3上”记为事件A,∴P(A)==,即点Q落在直线y=x﹣3上的概率为.【点评】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.20.平行四边形ABCD在平面直角坐标系中的位置如图所示,其中A(﹣6,0),B(4,0),C(5,3),反比例函数y=的图象经过点C.(1)求此反比例函数的解析式;(2)将平行四边形ABCD沿x轴翻折得到平行四边形AD′C′B,请你通过计算说明点D′在双曲线上;(3)请你画出△AD′C,并求出它的面积.【考点】反比例函数综合题.【专题】综合题.【分析】(1)根据反比例函数图象点的坐标特征把C点坐标代入y=,求出k的值即可确定反比例函数解析式;(2)先计算出AB=10,再根据平行四边形的性质得CD=10,则可确定D点坐标为(﹣5,3),然后根据关于x轴对称的点的坐标特征得D′的坐标为(﹣5,﹣3)再根据反比例函数图象点的坐标特征判断点D′在双曲线上;(3)由于点C坐标为(5,3),D′的坐标为(﹣5,﹣3),则点C和点D′关于原点中心对称,根据中心对称的性质得点D′、O、C共线,且OC=OD′,然后利用S△AD′C=S△AD′O+S△AOC=2S△AOC进行计算.【解答】解:(1)∵C(5,3)在反比例函数y=的图象上,∴=3,∴k=15,∴反比例函数解析式为y=;(2)∵A(﹣6,0),B(4,0),∴AB=10,∵四边形ABCD为平行四边形,∴CD=10,而C点坐标为(5,3),∴D点坐标为(﹣5,3),∵平行四边形ABCD和平行四边形AD′C′B关于x轴对称,∴D′的坐标为(﹣5,﹣3),∵﹣5×(﹣3)=15,∴点D′在双曲线y=上;(3)如图,∵点C坐标为(5,3),D′的坐标为(﹣5,﹣3),∴点C和点D′关于原点中心对称,∴点D′、O、C共线,且OC=OD′,∴S△AD′C=S△AD′O+S△AOC=2S△AOC=2××6×3=18.【点评】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、平行四边形的性质和轴对称、中心对称的性质;会运用图形与坐标的关系计算线段的长和三角形面积公式.21.如图,AB是⊙O的直径.半径OD垂直弦AC于点E.F是BA延长线上一点,∠CDB=∠BFD.(1)判断DF与⊙O的位置关系,并证明;(2)若AB=10,AC=8,求DF的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)利用圆周角定理以及平行线的判定得出∠FDO=90°,进而得出答案;(2)利用垂径定理得出AE的长,再利用相似三角形的判定与性质得出FD的长.【解答】解:(1)DF与⊙O相切.∵∠CDB=∠CAB,又∵∠CDB=∠BFD,∴∠CAB=∠BFD.∴AC∥DF.∵半径OD垂直于弦AC于点E,∴OD⊥DF.∴DF与⊙O相切.(2)∵半径OD垂直于弦AC于点E,AC=8,∴.∵AB是⊙O的直径,∴.在Rt△AEO中,.∵AC∥DF,∴△OAE∽△OFD.∴.∴.∴.【点评】此题主要考查了相似三角形的判定与性质以及切线的判定等知识,得出△OAE∽△OFD是解题关键.22.如图,两建筑物的水平距离BC是30m,从A点测得D点的俯角α是35°,测得C点的俯角β为43°,求这两座建筑物的高度.(结果保留整数)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案.【解答】解:过点D作DE⊥AB,则四边形BCDE为矩形,在Rt△ADE中,∠ADE=35°,DE=30,∴AE=DEtan∠ADE=30×tan35°≈30×0.7≈21;在Rt△ABC中,∠ACB=43°,CB=30,∴AB=BCtanβ=30×tan43°≈30×0.93≈28;则DC=AB﹣AE=28﹣21=7.∴AB=28m,DC=7m.即两座建筑物的高度分别为28m,7m.【点评】本题考查解直角三角形的应用,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般.23.在黄冈建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到35元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:y=(年获利=年销售收入﹣生产成本﹣投资成本)(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.【考点】二次函数的应用.【分析】(1)因为25<28<30,所以把x=28代入y=40﹣x即可求出该产品的年销售量为多少万件;(2)由(1)中y于x的函数关系式和根据年获利=年销售收入﹣生产成本﹣投资成本,得到w和x 的二次函数关系,再有x的取值范围不同分别讨论即可知道该公司是盈利还是亏损,若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)由题目的条件得到w和x在自变量x的不同取值范围的函数关系式,再分别当w≥67.5,求出对应x的范围,结合y于x的关系中的x取值范围即可确定此时销售单价的范围.【解答】解:(1)∵25<28<30,y=,∴把x=28代入y=40﹣x得,∴y=12(万件),答:当销售单价定为28元时,该产品的年销售量为12万件;(2)①当25≤x≤30时,W=(40﹣x)(x﹣20)﹣25﹣100=﹣x2+60x﹣925=﹣(x﹣30)2﹣25,故当x=30时,W最大为﹣25,即公司最少亏损25万;②当30<x≤35时,W=(25﹣0.5x)(x﹣20)﹣25﹣100=﹣x2+35x﹣625=﹣(x﹣35)2﹣12.5故当x=35时,W最大为﹣12.5,即公司最少亏损12.5万;对比①,②得,投资的第一年,公司亏损,最少亏损是12.5万;答:投资的第一年,公司亏损,最少亏损是12.5万;(3)①当25≤x≤30时,W=(40﹣x)(x﹣20﹣1)﹣12.5﹣10=﹣x2+61x﹣862.5,令W=67.5,则﹣x2+61x﹣862.5=67.5,化简得:x2﹣61x+930=0,解得:x1=31;x2=30,此时,当两年的总盈利不低于67.5万元,x=30;②当30<x≤35时,W=(25﹣0.5x)(x﹣20﹣1)﹣12.5﹣10=﹣0.5x2+35.5x﹣547.5,令W=67.5,则﹣0.5x2+35.5x﹣547.5=67.5,化简得:x2﹣71x+1230=0,解得:x1=30;x2=41,此时,当两年的总盈利不低于67.5万元,30<x≤35,答:到第二年年底,两年的总盈利不低于67.5万元,此时销售单价的范围是30≤x≤35.【点评】本题主要考查二次函数在实际中应用,最大销售利润的问题常利函数的增减性来解答,我们首先要弄懂题意,确定变量,建立函数模型解答,其中要注意应该在自变量的取值范围内求最大值.24.如图,已知抛物线y=x2﹣2x+m交x轴于A,B两点(A在B的左边),交y轴于C点,且OB=OC,连接BC,(1)直接写出m的值和B,C两点的坐标;(2)P点在直线BC下方的抛物线上,△BCP的面积为S,求S最大时,P的坐标;(3)抛物线的对称轴交抛物线于D点,交x轴于E点,在抛物线上是否存在点M,过M点作MN ⊥BD于N点,使△DMN与△BDE相似?若存在,请求出M点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)利用OB=OC进而表示出B点坐标,进而求出即可;(2)首先求出BC的解析式,进而利用配方法求出抛物线的顶点坐标得出答案;(3)分别利用①若M在对称轴左边的抛物线上,②若M在对称轴右边的抛物线上,求出M点坐标即可.【解答】解:(1)∵抛物线y=x2﹣2x+m交x轴于A,B两点(A在B的左边),交y轴于C点,且OB=OC,∴CO=﹣m,BO=﹣m,则B点坐标为:(﹣m,0),将B点坐标代入y=x2﹣2x+m得:0=m2+2m+m,解得:m 1=﹣3,m 2=0(不合题意舍去),则B (3,0),C (0,﹣3);(2)抛物线y=x 2﹣2x ﹣3,设直线BC 的解析式为y=kx +b ,由解得:,∴直线BC 的解析式为y=x ﹣3,设P (x ,y ),则S=×3[(x ﹣3)﹣(x 2﹣2x ﹣3)]=﹣x 2+x ,=﹣(x ﹣)2+,∴y=()2﹣2×﹣3=﹣,∴P 的坐标为(,﹣);(3)存在.D (1,﹣4), ①如图,若M 在对称轴左边的抛物线上,记为M 1,M 1N 1⊥BD 于N 1,当△M 1DN 1∽△DBE 时,∠M 1DN 1=∠DBE延长DM 1交x 轴于G 点,则DG=BG ,设G 点坐标为(x ,0),BG=x +3由勾股定理得DG==,∴x +3=, 解得,x=2,∴G 点坐标为(﹣2,0),可得直线DG 的解析式为:y=﹣x ﹣,由解得,,∴M1的坐标为:(﹣,﹣);②如图,若M在对称轴右边的抛物线上,记为M2,M2N2⊥BD于N2,当BH⊥x轴于点B,BH=DH,设BH=x,则DH=x,故(4﹣x)2+22=x2,解得:x=,则H(3,﹣),可得直线DH的解析式为:y=x﹣,故,解得:,可得M2的坐标为(,﹣),综上所述:M点的坐标为:(﹣,﹣)或(,﹣).【点评】此题主要考查了二次函数综合以及相似三角形的判定与性质等知识,利用分类讨论的思想得出M点坐标是解题关键.。

相关文档
最新文档