数学:第三章圆的有关性质(一)复习教案(北师大版九年级下)

合集下载

九年级数学下册 第三章圆复习教案 北师大版 教案

九年级数学下册 第三章圆复习教案 北师大版 教案

第三章圆【课标要求】(1)认识圆并掌握圆的有关概念和计算①知道圆由圆心与半径确定,了解圆的对称性.②通过图形直观识别圆的弦、弧、圆心角等基本元素.③利用圆的对称性探索弧、弦、圆心角之间的关系,并会进行简单计算和说理.④探索并了解圆周角与圆心角的关系、直径所对圆周角的特征.⑤掌握垂径定理及其推论,并能进行计算和说理.⑥了解三角形外心、三角形外接圆和圆内接三角形的概念.⑦掌握圆内接四边形的性质(2)点与圆的位置关系①能根据点到圆心的距离和半径的大小关系确定点与圆的位置关系.②知道“不在同一直线上的三个点确定一个圆”并会作图.(3)直线与圆的位置关系①能根据圆心到直线的距离和半径的大小关系确定直线与圆的位置关系.②了解切线的概念.③能运用切线的性质进行简单计算和说理.④掌握切线的识别方法.⑤了解三角形内心、三角形内切圆和圆的外切三角形的概念.⑥能过圆上一点画圆的切线并能利用切线长定理进行简单的切线计算.(4)圆与圆的位置关系①了解圆与圆的五种位置关系及相应的数量关系.②能根据两圆的圆心距与两圆的半径之间的数量关系判定两圆的位置关系.③掌握两圆公切线的定义并能进行简单计算(5)圆中的计算问题①掌握弧长的计算公式,由弧长、半径、圆心角中已知两个量求第三个量.②掌握求扇形面积的两个计算公式,并灵活运用.③了解圆锥的高、母线等概念.④结合生活中的实例(模型)了解圆柱、圆锥的侧面展开图.⑤会求圆柱、圆锥的侧面积、全面积,并能结合实际问题加以应用.⑥能综合运用基本图形的面积公式求阴影部分面积.【课时分布】圆的部分在第一轮复习时大约需要8个课时,其中包括单元测试.下表为内容及课时安排(仅供参考).1、知识脉络2、基础知识(1)掌握圆的有关性质和计算①弧、弦、圆心角之间的关系:在同圆或等圆中,如果两条劣弧(优弧)、两条两个圆心角中有一组量对应相等,那么它们所对应的其余各组量也分别对应相等.②垂径定理: 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.弦的垂直平分线经过圆心,并且平分弦所对的两条弧.平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.③在同一圆内,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半.④圆内接四边形的性质:圆的内接四边形对角互补,并且任何一个外角等于它的内对角.(2)点与圆的位置关系①设点与圆心的距离为,圆的半径为,则点在圆外;点在圆上;点在圆内.②过不在同一直线上的三点有且只有一个圆. 一个三角形有且只有一个外接圆.③三角形的外心是三角形三边垂直平分线的交点.三角形的外心到三角形的三个顶点的距离相等.(3)直线与圆的位置关系①设圆心到直线的距离为,圆的半径为,则直线与圆相离;直线与圆相切;直线与圆相交.②切线的性质:与圆只有一个公共点;圆心到切线的距离等于半径;圆的切线垂直于过切点的半径.③切线的识别:如果一条直线与圆只有一个公共点,那么这条直线是圆的切线.到圆心的距离等于半径的直线是圆的切线.经过半径的外端且垂直与这条半径的直线是圆的切线.④三角形的内心是三角形三条内角平分线的交点.三角形的内心到三角形三边的距离相等.⑤切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.⑥切线长定理:从圆外一点引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.(4)圆与圆的位置关系①圆与圆的位置关系有五种:外离、外切、相交、内切、内含.设两圆心的距离为,两圆的半径为,则两圆外离两圆外切两圆相交两圆内切两圆内含②两个圆构成轴对称图形,连心线(经过两圆圆心的直线)是对称轴.由对称性知:两圆相切,连心线经过切点. 两圆相交,连心线垂直平分公共弦.③两圆公切线的定义:和两个圆都相切的直线叫做两圆的公切线.两个圆在公切线同旁时,这样的公切线叫做外公切线.两个圆在公切线两旁时,这样的公切线叫做内公切线.④公切线上两个切点的距离叫做公切线的长.(5)与圆有关的计算①弧长公式:扇形面积公式:(其中为圆心角的度数,为半径)②圆柱的侧面展开图是矩形.圆柱体也可以看成是一个矩形以矩形的一边为轴旋转而形成的几何体.圆柱的侧面积=底面周长×高圆柱的全面积=侧面积+2×底面积③圆锥的侧面展开图是扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.圆锥体可以看成是由一个直角三角形以一条直角边为轴旋转而成的几何体.④圆锥的侧面积=×底面周长×母线;圆锥的全面积=侧面积+底面积3、能力要求例1 如图,AC为⊙O的直径,B、D、E都是⊙O上的点,求∠A+∠B +∠C的度数.【分析】由AC为直径,可以得出它所对的圆周角是直角,所以连结AE,这样将∠CAD(∠A)、∠C放在了△AEC中,而∠B与∠EAD是同弧所对的圆周角相等,这样问题迎刃而解.【解】连结AE∵AC是⊙O的直径∴∠AEC=90O∴∠CAD +∠EAD+∠C =90O∵∴∠B=∠EAD∴∠CAD +∠B+∠C =90O【说明】这里通过将∠B转化为∠EAD,从而使原本没有联系的∠A、∠B、∠C都在△AEC中,又利用“直径对直角”得到它们的和是90O.解题中一方面注意到了隐含条件“同弧所对的圆周角相等”,另一方面也注意到了将“特殊的弦”(直径)转化为“特殊的角”(直角),很好地体现了“转化”的思想方法.例2 △ABC中,AC=6,BC=8,∠C=90O,以点C为圆心,CA为半径的圆与AB交于点D,求AD的长.【分析】圆中有关弦的计算问题通常利用垂径定理构造直角三角形求解,所以作CH⊥AB,这只要求出AH的长就能得出AD的长.【解】作CH⊥AB,垂足为H∵∠C=90O,AC=6,BC=8∴AB=10∵∠C=90O,CH⊥AB∴又∵AC=6,AB=10∴AH=∵CH⊥AB∴AD=2AH∴AD答:AD的长为.【说明】解决与弦有关的问题,往往需要构造垂径定理的基本图形——由半径、弦心距、弦的一半构成的直角三角形,它是解决此类问题的关键.定理的应用必须与所对应的基本图形相结合,教师在复习时要特别注重基本图形的掌握.例3 (1)如图,△ABC内接于⊙O,AB为直径,∠CAE=∠B,试说明AE与⊙O相切于点A.(2)在(1)中,若AB为非直径的弦,∠CAE=∠B,AE还与⊙O相切于点A吗?请说明理由.(1) (2)【分析】第(1)小题中,因为AB为直径,只要再说明∠BAE为直角即可.第(2)小题中,AB为非直径的弦,但可以转化为第(1)小题的情形.【解】(1)∵AB是⊙O的直径∴∠C=90O∴∠BAC+∠B=90O又∵∠CAE=∠B∴∠BAC+∠CAE =90O即∠BAE =90O∴AE与⊙O相切于点A.(2)连结AO并延长交⊙O于D,连结CD.∵AD是⊙O的直径∴∠ACD=90O∴∠D+∠CAD=90O又∵∠D=∠B∴∠B+∠CAD=90O又∵∠CAE =∠B∴∠CAE+∠CAD=90O即∠EAD =90O∴AE仍然与⊙O相切于点A.【说明】本题主要考查切线的识别方法.这里可以引导学生依据第(1)小题的特殊情况,大胆提出猜想,渗透“由特殊到一般”的数学思想方法,这对于学生的探索能力培养非常重要.例4 如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5.(1)若,求CD的长.(2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留).【分析】图形中有“直径对直角”,这样就出现了“直角三角形及斜边上的高”的基本图形,求CD的长就转化为求DE的长.第(2)小题求扇形OAC的面积其关键是求∠AOD的度数,从而转化为求∠AOD的大小.【解】(1)∵AB是⊙O的直径,OD=5∴∠ADB=90°,AB=10又∵在Rt△ABD中,∴∵∠ADB=90°,AB⊥CD∴BD2=BE·ABCD= 2DE∵AB=10∴BE=在Rt△EBD中,由勾股定理得∴答:CD的长为.(2)∵AB是⊙O的直径,AB⊥CD∴∴∠BAD=∠CDB,∠AOC=∠AOD∵AO=DO∴∠BAD=∠ADO∴∠CDB=∠ADO设∠ADO=4k,则∠CDB=4k由∠ADO:∠EDO=4:1,则∠EDO=k∵∠ADO+∠EDO+∠EDB=90°∴得k=10°∴∠AOD=180°-(∠OAD+∠ADO)=100°∴∠AOC=∠AOD=100°则答:扇形OAC的面积为【说明】本题涉及到了圆中的重要定理、直角三角形的边角关系、扇形面积公式等知识点的综合,考查了学生对基本图形、基本定理的掌握程度.求DE长的方法很多,可以用射影定理、勾股定理,也可以运用面积关系来求,但都离不开“直角三角形及斜边上的高”这个基本图形.解题中也运用了比例问题中的设k法,同时也渗透了“转化”的思想方法.⊙O中,直径AB的不同侧有定点C和动点P.已知BC:CA=4 : 3,点P在半圆AB上运动(不与A、B两点重合),过点C作CP的垂线,与PB的延长线交于点Q.(l)当点P与点C关于AB对称时,求CQ的长;(2)当点P运动到半圆AB的中点时,求CQ的长;(3) 当点P运动到什么位置时,CQ取到最大值?求此时CQ的长.【分析】当点P与点C关于AB对称时,CP被直径垂直平分,由垂径定理求出CP的长,再由Rt△ACB∽Rt△PCQ,可求得CQ的长.当点P在半圆AB上运动时,虽然P、Q点的位置在变,但△PCQ始终与△ACB相似,点P运动到半圆AB的中点时,∠PCB=45O,作BE⊥PC于点E,CP=PE+EC.由于CP与CQ的比值不变,所以CP取得最大值时CQ也最大.【解】(l)当点P与点C关于AB对称时,CP⊥AB,设垂足为D.∵AB为⊙O的直径,∴∠ACB=900.∴AB=5,AC:CA=4:3∴BC=4,AC=3S Rt△ACB=AC·BC=AB·CD∴∵在Rt△ACB和Rt△PCQ中,∠ACB=∠PCQ=900, ∠CAB=∠CPQ,∴Rt△ACB∽Rt△PCQ∴∴(2)当点P运动到弧AB的中点时,过点B作BE⊥PC于点E(如图).∵P是弧AB的中点,∴又∠CPB=∠CABword∴∠CPB= tan∠CAB =∴从而由(l)得,(3)点P在弧AB上运动时,恒有故PC最大时,CQ取到最大值.当PC过圆心O,即PC取最大值5时,CQ最大值为【说明】本题从点P在半圆AB上运动时的两个特殊位置的计算问题引申到求CQ的最大值,一方面渗透了“由特殊到一般”的思想方法,另一方面运用“运动变化”观点解决问题时,寻求变化中的不变性(题中的Rt△ACB∽Rt△PCQ)往往是解题的关键.【复习建议】①教材对圆的知识要求有了适当的降低,但教学中必须注重指导学生在较复杂的“背景”下分析出隐含的基本图形,或通过添加适当的辅助线,构造或分解基本图形.学会将较复杂问题转化为易解决问题.②对于常见的辅助线的添法,在解题中可以多加引导.③注意圆中一些隐含条件的作用.如:“同弧所对的圆周角相等”;“半径都相等”.④由特殊到一般、转化、方程、分类讨论等思想方法以及运动变化观点的渗透,在圆的综合问题中更能提高学生解决问题能力,在复习时应及时归纳并注重方法的指导.11 / 11。

北师大版数学九年级下册第三章圆回顾与思考教学设计

北师大版数学九年级下册第三章圆回顾与思考教学设计
4.组织课堂讨论,让学生在交流中碰撞思维火花,提高学生的逻辑思维和表达能力。
(三)情感态度与价值观
1.激发学生对圆的兴趣,培养学生对几何学的热爱,使学生在学习过程中感受到数学的乐趣。
2.培养学生严谨、认真的学习态度,让学生明白数学是一门精确的科学,需要一丝不苟地对待。
3.通过圆的性质和公式的学习,使学生认识到自然界中普遍存在的规律性,增强学生对自然界的敬畏之心。
4.布置课后作业,要求学生在课后进一步巩固所学知识,并预习下一节课内容。
五、作业布置
1.请学生完成课本第三章圆的相关练习题,重点巩固圆的性质、周长和面积的计算方法,以及圆与其他几何图形的位置关系。
-练习题包括基本概念题、性质应用题、综合应用题等,旨在帮助学生全面掌握圆的知识。
2.结合生活实例,让学生设计一道与圆相关的实际问题,并运用所学知识进行解答。
2.提问:“我们已经学过哪些关于圆的知识?”让学生回顾已学过的圆的基本概念和性质。
3.引出本节课的学习目标,强调圆的相关知识在实际生活中的重要性,激发学生的学习兴趣。
(二)讲授新知
1.教师通过几何画板或实物模型,直观演示圆的性质,如半径、直径、周长、面积等。
2.讲解圆的周长和面积的计算公式,以及如何运用这些公式解决实际问题。
2.难点:
-圆的切线、割线、弦的性质及其应用。
-圆与圆、圆与直线、圆与多边形的位置关系问题。
-综合应用题的解题思路和方法。
(二)教学设想
1.采用启发式教学法,引导学生主动探究圆的性质和公式。
-通过提出问题,让学生在实践中发现圆的性质,如“如何判断两个圆的位置关系?”、“圆的切线有哪些性质?”等。
-引导学生从特殊到一般,归纳总结圆的周长和面积计算方法。

北师大版九年级数学下第三章圆:3.1圆、优秀教学案例

北师大版九年级数学下第三章圆:3.1圆、优秀教学案例
(二)过程与方法
在过程与方法方面,本节课的主要目标是培养学生的数学思维能力和解决问题的能力。首先,学生需要通过观察和实验来探索圆的性质。他们将通过观察圆的形状和特点,发现圆的性质和规律,并能够用数学语言进行描述和表达。
其次,学生需要通过实践和探究来应用圆的知识。他们将通过解决实际问题,如计算圆的周长、面积等,将所学知识应用到实际情境中。学生还将通过小组讨论和合作交流,共同解决问题,培养他们的团队合作能力和解决问题的能力。
此外,学生还需要通过思考和反思来深化对圆的理解。他们将通过解决不同类型的数学问题,培养他们的逻辑思维和批判性思维能力。学生将能够运用所学的数学知识和方法,解决综合性问题和复杂性问题。
(三)情感态度与价值观
在情感态度与价值观方面,本节课的主要目标是培养学生的学习兴趣和自信心。首先,学生将能够体验到数学的乐趣和意义,培养对数学的积极态度和兴趣。通过观察和探索圆的性质,学生将发现数学的奥秘和美丽,增强他们对数学的热爱和兴趣。
三、教学策略
(一)情景创设
在教学过程中,我注重情景创设,让学生在实际情境中学习和理解圆的知识。首先,我会利用多媒体课件和实物模型展示圆的实际应用场景,如自行车轮子、地球等,让学生直观地感受圆的存在和重要性。
其次,我会设计一些实际问题,让学生在解决问题的过程中学习和应用圆的知识。例如,我可以设计一个关于圆形花园的问题,让学生计算花园的周长和面积,并解决与圆形相关的实际问题。
(三)小组合作
在教学过程中,我注重小组合作,让学生在团队合作中学习和应用圆的知识。首先,我会将学生分成小组,并分配给他们一些实际问题或任务。学生需要通过合作和交流,共同解决问题并完成任务。
其次,我会组织学生进行小组讨论和分享。每个小组需要就问题或任务进行讨论和分析,并与其他小组分享自己的观点和解决方案。通过这些小组合作,学生将能够培养团队合作能力和沟通能力,同时也能从他人的经验和见解中学习和成长。

北师版九年级下册第三章 圆的教学设计

北师版九年级下册第三章 圆的教学设计

教学设计及学案第三章圆第一节圆【教学目标】知识与技能目标:了解圆在生活中的广泛运用;理解圆的概念;会利用点到圆心的距离和圆的半径之间的数量关系判定点和圆的位置关系.过程与方法目标:在探索实例的过程中,经历圆的概念的形成过程,理解圆的概念;探索点与圆的位置关系,感受观察、分析、归纳、抽象概括等获得知识的重要方法.情感态度与价值观:在探索交流实践中享受“用数学”的快乐、体验“圆的完美”、激发质疑的欲望.【教学重点】经历圆的概念的形成过程,发展学生发现问题、提出问题、分析问题、解决问题的能力. 【教学难点】探索实例形成圆的概念,数形理解点与圆的位置关系.【前置作业】体育课上,4个同学站在不同位置投圈,去套取同一件奖品,请你设计方案使得游戏公平.画出你的方案并在图中用点表示出4个同学和奖品的位置.活动设计意图:在常见游戏中体味“数学有用”,建构实际问题与数学知识之间的思维桥梁,使学生再一次在不知不觉中进入知识的发生过程中,初步从集合的角度感知圆是“到定点的距离等于定长的点的集合”。

【教学过程】一.课前引入用“羊皮圈地”的故事(微课)引入圆的课题,引发学生思考生活中常见的圆。

二.新授1、用微课讲解有关圆的概念,讲解后让学生自主完成导学稿,最后在小组合作探究并完成纠错。

小组合作后小组将答案上传,最后老师和同学们一起点评巩固知识点。

(1)、圆的定义:平面上到的距离等于的所有点组成的图形叫做圆。

其中,定点称为,定长称为。

以点O为圆心的圆记作,读作“”。

确定一个圆需要两个要素,一是,二是;确定其位置,确定其大小。

思考:①以3cm为半径可以画______个圆,以点O为圆心可以画______个圆,_________只能画一个圆。

②我们所学的圆,就是我们日常所说的圆周。

( 2)、圆的有关概念弦:连结圆上任意两点的____________ 叫做弦。

图中的弦有____________直径:____________.半径:____________弧:圆上任意两点间的____________ 叫做弧。

北师大版数学九年级下册3.1《圆》教学设计

北师大版数学九年级下册3.1《圆》教学设计

北师大版数学九年级下册3.1《圆》教学设计一. 教材分析北师大版数学九年级下册3.1《圆》是本册教材中的重要内容,主要介绍了圆的定义、圆的性质、圆的方程等基础知识。

本节课的内容是学生对圆的基本认识,为后续学习圆的运算、圆与圆的位置关系等知识打下基础。

教材通过丰富的图片和实例,激发学生的学习兴趣,引导学生主动探究圆的特征,从而培养学生的空间想象能力和抽象思维能力。

二. 学情分析九年级的学生已经掌握了初中阶段的基础数学知识,对图形的认识有了初步的了解。

但是,对于圆的概念和性质,部分学生可能还比较模糊。

因此,在教学过程中,教师需要关注学生的认知水平,针对学生的实际情况进行针对性的教学。

同时,由于圆的知识在实际生活中的应用非常广泛,学生对圆的兴趣和认知程度也会影响他们的学习效果。

三. 教学目标1.知识与技能:让学生掌握圆的定义、性质和方程,能够运用圆的知识解决实际问题。

2.过程与方法:通过观察、操作、探究等方法,培养学生的空间想象能力和抽象思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的重要性。

四. 教学重难点1.重点:圆的定义、性质和方程。

2.难点:圆的性质的理解和应用。

五. 教学方法1.情境教学法:通过丰富的图片和实例,激发学生的学习兴趣,引导学生主动探究圆的特征。

2.问题驱动法:教师提出问题,引导学生思考,培养学生解决问题的能力。

3.合作学习法:学生分组讨论,共同完成任务,培养学生的团队合作精神。

六. 教学准备1.教具:圆的模型、图片、PPT等。

2.学具:学生分组准备,每组一份圆的模型、图纸等。

七. 教学过程1.导入(5分钟)教师通过展示生活中的圆形物体,如硬币、轮子等,引导学生关注圆的特征。

然后提出问题:“你们对圆有什么认识?圆有哪些性质?”让学生回忆和思考圆的基本知识。

2.呈现(10分钟)教师通过PPT展示圆的定义和性质,引导学生观察和理解圆的特征。

北师大版九年级数学下册第三章圆单元优秀教学案例

北师大版九年级数学下册第三章圆单元优秀教学案例
首先,我以生活实际为例,让学生感受圆在生活中的广泛应用,激发他们的学习兴趣。例如,在讲解圆的性质时,我让学生观察自行车轮胎、圆形桌面等生活中的圆形状,引导他们发现圆的均匀分布特点,从而更好地理解圆的性质。
其次,我注重培养学生的动手操作能力。在讲解圆的周长和面积公式时,我让学生自己动手测量和计算圆的周长和面积,从而加深他们对公式的理解和记忆。同时,通过小组合作探究,让学生在实践中掌握圆的方程求解方法。
3.小组合作探究:我鼓励学生进行小组合作,共同解决与圆相关的数学问题。在这种合作探究的过程中,学生能够培养合作意识和团队精神,提高沟通能力和团队协作能力。
4.跨学科融合:我将数学与其它学科相结合,如利用美术学科中的图案设计,让学生在欣赏美的同时,更好地理解数学知识。这种跨学科的融合,不仅能够提高学生的综合素质,还能够激发他们的学习兴趣。
2.设计有趣的数学问题,如圆形迷宫、圆形拼图等,激发学生的学习兴趣;
3.结合生活实际,如自行车车轮的周长如何计算、圆形的桌面面积等,让学生明白圆的知识在生活中的应用;
4.利用多媒体课件,如圆的动态演示、圆的性质实验等,增强学生的直观感受。
(二)问题导向
1.提出引导性问题,如“圆是如何定义的?”,“圆的周长和面积公式是如何得出的?”等,引导学生思考和探索;
2.培养学生的自主学习能力,使他们养成良好的学习习惯;
3.培养学生的问题解决能力,使他们能够将数学知识应用到实际生活中;
4.培养学生的创新精神,使他们能够勇于探索和创造;
5.培养学生团队合作意识,使他们能够更好地与他人合作共同进步。
三、教学策略
(一)情景创设
1.利用实物模型,如自行车轮胎、圆形桌面等,让学生直观地感受圆的形状和特点;
2.强调作业的完成要求和时间,提醒学生合理安排时间,养成良好的学习习惯;

北师大版九年级数学下册第三章圆圆的基本性质复习课教案

北师大版九年级数学下册第三章圆圆的基本性质复习课教案

1 / 3ABCD OE例1图圆的基本性质复习课教案考纲要求:1.理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念。

2.探索圆周角、弧、弦之间的关系,了解并证明圆周角定理及其推论,圆周角的度数等于它所对弧上的圆心角度数的一半,直径所对的圆周角是直角,90°的圆周角所对的弦是直径,圆内接四边形的对角互补。

教学重点:掌握圆的基本性质 教学难点:圆的基本性质的应用教学过程:一、引入师:大家请看老师黑板上所画的图形圆。

这是我们这节课要复习的主要内容,请大家回顾,什么是圆?生:平面内到定点的距离等于定长的所有点组成的图形。

师:根据定义,确定圆必须有几个条件? 生:圆心和半径。

师:和圆有关的两种角是圆心角和圆周角,请同学们回顾它们的定义。

生:顶点在圆心的角是圆心角。

顶点在圆上、两边和圆相交的角是圆周角。

师:今天,老师带来了一个圆形纸片,但圆心找不到了,你们能通过折纸的方法帮老师找到这个圆的圆心吗?生:对折两次,两条折痕的交点就是圆心。

师:非常好,这两条折痕其实是圆的什么?对折后能完全重合,说明圆具有什么性质? 生:折痕是直径,说明圆具有轴对称性。

师:圆是一个轴对称图形,从它的轴对称性我们可以得到垂径定理及其逆定理。

下面,我们回顾一下垂径定理及其逆定理的内容。

生:垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

师:刚才,我们通过折纸的方法找到了圆的两条直径,如图,两条直径AB 与CD 的交点O 就是圆心。

那么,图中⌒AD 与⌒BC 、⌒AC 与⌒BD 相等吗? 为什么?生:相等。

因为它们所对的圆心角相等。

师:在一个圆中,只要圆心角相等,它们所对的弧一定相等,这是因为圆具有旋转不变性。

这种旋转不变性,使得圆的三种基本量圆心角、弧、弦之间具有特殊的关系。

接下来我们就来复习这些内容。

二、知识回顾1.圆心角定理及其推论。

北师大版数学九年级下册3.1《圆》教案

北师大版数学九年级下册3.1《圆》教案

北师大版数学九年级下册3.1《圆》教案一. 教材分析《圆》这一节主要介绍了圆的定义、圆的性质、以及圆的方程。

这是九年级学生继学习直线、三角形、四边形之后,首次接触到的平面几何中的基本图形。

通过学习圆的相关知识,为学生以后学习圆锥、圆柱等立体几何图形打下基础。

此节内容在教材中的地位和作用非常重要。

二. 学情分析九年级的学生已经具备了一定的几何知识,对平面几何图形有了一定的认识。

但是,圆作为一个新的几何图形,其特殊的性质和方程的求解对于学生来说是一个挑战。

因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握圆的相关知识。

三. 教学目标1.让学生了解圆的定义和性质,能够运用圆的性质解决一些简单的问题。

2.让学生掌握圆的方程的求解方法,能够运用圆的方程解决一些实际问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.圆的性质的理解和运用。

2.圆的方程的求解方法和应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过思考和讨论来理解和掌握圆的相关知识。

2.采用实例教学法,通过具体的实例来引导学生理解和运用圆的性质和方程。

3.采用分组合作学习的方式,让学生在合作中思考,在思考中学习。

六. 教学准备1.准备相关的教学PPT,包括圆的定义、性质、方程等内容。

2.准备一些实际的例子,用于引导学生理解和运用圆的相关知识。

3.准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一些实际生活中的例子,如自行车轮子、地球等,引导学生对圆有一个直观的认识,激发学生的学习兴趣。

2.呈现(10分钟)介绍圆的定义和性质,让学生理解圆的基本特征,并通过PPT展示一些相关的定理和推论。

3.操练(10分钟)让学生分组讨论,每组选择一个实际的例子,运用所学的圆的性质来解决问题。

教师巡回指导,解答学生的疑问。

4.巩固(5分钟)让学生独立完成一些练习题,巩固对圆的性质的理解和运用。

5.拓展(5分钟)介绍圆的方程的求解方法,让学生了解如何通过圆的方程来解决实际问题。

九年级数学下册第三章圆圆教案新版北师大版

九年级数学下册第三章圆圆教案新版北师大版

3.1圆一、教学目标1.知道圆的有关定义及表示方法.2.掌握点和圆的位置关系.3.会根据要求画出图形.二、课时安排1课时三、教学重点点和圆的位置关系.四、教学难点点和圆的位置关系.五、教学过程(一)导入新课生活中关于圆的图形展示,引导学生认识圆并谈谈对圆的理解:(二)讲授新课活动1:小组合作观察车轮,你发现了什么?车轮为什么做成圆形?车轮做成三角形、正方形可以吗?探究1: (1)如图,A ,B 表示车轮边缘上的两点,点O 表示车轮的轴心,A ,O 之间的距离与B ,O 之间的距离有什么关系?(2)C 表示车轮边缘上的任意一点,要使车轮能够平稳地滚动,C ,O 之间的距离与A ,O 之间的距离应满足什么关系?明确:车轮边缘上任意两点到轴心的距离都相等, 任意一点到轴心的距离是一个定值. 圆上的点到圆心的距离是一个定值. 探究2:投圈游戏一些学生正在做投圈游戏,他们呈“一”字排开,这样的队形对每个人公平吗?你认为他们应当排成什么样的队形?为了使投圈游戏公平,现在有一条3米长的绳子, 你准备怎么办?定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点称为圆心,定长称为半径.注意:1.从圆的定义可知:圆是指圆周而不是圆面.2.确定圆的要素是:圆心、半径.圆心确定圆的位置,半径确定圆的大小,确定一个圆,两者缺一不可.以点O为圆心的圆记作:⊙O,读作:“圆O”.探究3:圆的有关性质战国时期的《墨经》一书中记载:“圜,一中同长也”.古代的圜(huán)即圆,这句话是圆的定义,它的意思是:圆是从中心到周界各点有相同长度的图形.提问:如果一个点到圆心距离小于半径, 那么这个点在哪里呢?大于圆的半径呢?反过来呢?试根据圆的定义填空:1.圆上各点到________________的距离都等于___________________.2.到定点的距离等于定长的点都在_________.探究4:点与圆的位置关系如图,设⊙O的半径为r,A点在圆内,B点在圆上,C点在圆外,那么OA<r, OB=r,OC>r.结论:点的位置可以确定该点到圆心的距离与半径的关系,反过来,已知点到圆心的距离与半径的关系也可以确定该点与圆的位置关系.1.画图:已知Rt△ABC,AB<BC,∠B=90°,试以点B为圆心,BA为半径画圆.2.根据图形回答下列问题:(1)看图想一想,Rt△ABC的各个顶点与⊙B在位置上有什么关系?答:点A在圆上.点B在圆内.点C在圆外(2)在以上三种关系中,点到圆心的距离与圆的半径在数量上有什么关系?活动2:探究归纳点在圆外,这个点到圆心的距离大于半径.点在圆上,这个点到圆心的距离等于半径.点在圆内,这个点到圆心的距离小于半径.(三)重难点精讲例1.已知⊙O的半径r=2cm,当OP 时,点P在⊙O上;当OA=1cm时,点A在;当OB=4cm时,点B在 .答案:=2cm; ⊙O内; ⊙O外例2.已知:如图,矩形ABCD的对角线相交于点O,试猜想:矩形的四个顶点能在同一个圆上吗?答:在矩形ABCD中,有OA=OB=OC=OD,四个顶点在同一个圆上,故矩形四个顶点能在同一个圆上.(四)归纳小结通过本课时的学习,需要我们掌握:1.从运动和集合的观点理解圆的定义.2.点与圆的位置关系.3.证明几个点在同一个圆上的方法.(五)随堂检测1.矩形ABCD中,AB=8,,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD 为半径的圆,那么下列判断正确的是()A.点B,C均在圆P外B.点B在圆P外、点C在圆P内C.点B在圆P内、点C在圆P外D.点B,C均在圆P内2.如图,王大爷家屋后有一块长12m,宽8m的矩形空地,他在以BC为直径的半圆内种菜,他家养的一只羊平时拴在A处,为了不让羊吃到菜,拴羊的绳子可以选用()A.3mB.5mC.7mD.9m3.已知三角形的三边长分别为3,4,5,则它的边与半径为1的圆的公共点个数所有可能的情况是________.(写出符合的一种情况即可)【答案】1. 【解析】选C.由题意知,PB=6,PA=2,PD=7, PC=9,所以点B在圆P内、点C在圆P外.2. 答案:A3. 【解析】∵圆心的位置不确定,∴交点个数共有5种情况即0、1、2、3、4.故答案为0或1或2或3、4.答案:2(符合答案即可)六.板书设计3.1圆1.判断点与圆的位置关系的方法:设⊙O的半径为r,则点P与⊙O的位置关系有(1)点P在⊙O上 OP=r(2)点P在⊙O内 OP<r(3)点P在⊙O外 OP>r2.要证明几个点在同一个圆上,只要证明这几个点到同一个定点的距离相等.。

9年级数学 北师大 版下册 教案 第3章《 圆》

9年级数学 北师大 版下册 教案 第3章《 圆》

教学设计圆一、教材分析圆是(北师版)《数学》九年级下册第三章第一节内容,本章主要研究圆的性质及与圆有的关的应用;本节课要求经历形成圆的概念的过程,经历探索点与圆位置关系的过程,理解圆的概念,理解点与圆的位置关系。

一堂数学课,既要让学生获得具体的数学知识,又要让学生在获得知识的过程中,提高数学思维能力,掌握一些数学的分析方法,从而形成一定的数学素养.经历形成圆的概念的过程有两个目标,一是得到圆的概念,这是基础目标;二是经历由生活现象揭示其数学本质的过程,培养抽象思维,这是能力目标.经历探索点与圆位置关系的过程,初步体会定性分析与定量分析之间的关系.二、教学目标1.经历圆的形成过程,理解圆的相关概念及它们之间的关系;2.经历定性描述点与圆的位置关系,定量刻画点与圆的位置关系的过程,发展学生几何直观和逻辑推理能力;3.运用点与圆的位置关系的性质解决问题,发展学生数学建模能力。

三、教学重、难点教学重点:理解圆的概念,理解点与圆的位置关系。

教学难点:用集合的观点研究圆的概念。

四、教学过程环节一、回顾旧知,引出概念问题:(1)小明等四位同学正在做投圈游戏,他们呈“一”字型排开,这样的队形对每个人公平吗?你认为他们应当排成什么样的队形?相信这个问题难不倒大家,这个游戏不公平,他们应该以目标物为圆心站成一个圆形,说起圆,大家并不陌生,对于圆的知识你知道哪些?(2)请同学们仔细回忆初中几何学习的历程,想一想我们已经学习了哪些平面几何对象,又是如何研究的.【学生回忆,教师有条理地板书(如图1)】(3)之前我们研究的都是直线形图形,遵循了从简单到复杂、从一般到特殊的研究思路,从今天起,我们将开启曲线图形的学习之旅,从最简单的曲线图形——圆展开研究. 请同学们展望一下:在本章中将要研究哪些内容以及如何研究呢?根据几何研究的基本套路,学生猜测将研究圆的定义、性质、判定,圆的有关计算,以及圆与其他图形.【设计意图】上述过程借助学生的最近发展区,创设情境引入概念;从已有知识出发,通过回忆旧知,寻找新知的生长点;通过对旧知研究内容的梳理,为新知建构找到方向.其中第(3)小问从生活素材中抽象并判断圆,引发认知冲突,从而明确本课的学习任务,让学生感受到进一步研究的必要性.环节二、动手操作,生成概念探究活动1:探究活动一,请用圆规在草稿纸上,画一个圆.画圆时,需要注意什么?“固定点”“固定长”通过刚才的画图,你能用自己的语言描述出圆的定义吗?(学生抽象、概括及用语言表达,教师给出圆的符号表示)【设计意图】学生经历了画圆的过程,切身体会到了圆是怎么产生的.这种通过直观感知,用运动的观点(可类比“角”的生成)进行抽象概括的方法,自然能建构起圆的描述性定义.同时,在师生的补充中不断完善概念,强调“在平面内”及“圆”指的是“圆周”,并根据圆的定义,纠正了学生的认知偏差.追问:通过画圆的过程思考一下,要想确定一个圆,需要知道哪些条件.【设计意图】此处的追问为了顺势引出同心圆、等圆的概念,教给学生发现新结论的研究方法.探究活动2:阅读理解(识圆一,了解圆的有关概念)。

北师大版九年级数学下册:3.1《圆》教案

北师大版九年级数学下册:3.1《圆》教案

北师大版九年级数学下册:3.1《圆》教案一. 教材分析北师大版九年级数学下册3.1《圆》是学生在学习了直线、射线、线段的基础上,进一步对圆的概念、性质和圆与其他几何图形的关系进行探讨。

本节课的内容包括圆的定义、圆的半径和直径、圆的周长和面积等,这些都是基础知识,对于学生来说比较抽象,需要通过实例和操作来理解和掌握。

二. 学情分析九年级的学生已经具备了一定的几何基础,对直线、射线、线段等概念有一定的了解。

但是,圆的概念比较抽象,学生可能难以理解。

因此,在教学过程中,需要通过实例和操作来帮助学生理解和掌握圆的概念。

同时,学生对于实际操作和图形观察比较感兴趣,可以利用这一点来提高学生的学习兴趣。

三. 教学目标1.知识与技能:理解圆的定义,掌握圆的半径和直径的性质,会计算圆的周长和面积。

2.过程与方法:通过实例和操作,培养学生的观察能力和思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。

四. 教学重难点1.圆的定义和性质。

2.圆的周长和面积的计算。

五. 教学方法采用问题驱动法、实例教学法、合作学习法等,通过引导学生观察、思考、讨论,激发学生的学习兴趣,培养学生的观察能力、思维能力和创新能力。

六. 教学准备1.准备相关的实例和图片,用于引导学生观察和理解圆的概念。

2.准备圆的模型或图片,用于讲解圆的性质。

3.准备圆的周长和面积的计算公式,用于讲解和练习。

七. 教学过程1.导入(5分钟)通过展示生活中的圆形物体,如硬币、车轮等,引导学生观察和思考:什么是圆?圆有哪些特点?2.呈现(10分钟)讲解圆的定义和性质,引导学生理解圆的概念。

展示圆的半径和直径的性质,让学生通过观察和操作,理解半径和直径的关系。

3.操练(10分钟)让学生分组合作,用圆规和直尺画圆,测量圆的半径和直径,计算圆的周长和面积。

通过实际操作,让学生加深对圆的概念的理解。

4.巩固(10分钟)出示一些有关圆的练习题,让学生独立完成,检查学生对圆的概念和计算方法的掌握情况。

九年级数学下册 第三章 圆复习教案 (新版)北师大版

九年级数学下册 第三章 圆复习教案 (新版)北师大版
——————————新学期新成绩新目标新方向——————————

课程标准描述
考试大纲描述
教材内容 分析
圆的整章复习
学生分析
学生通过对本章知识的学习,对基本知识的理解达到一定的水平,希望通过本节课的复习,能够更进一步加深印象。
学习目标
理解圆的各种定理,及补充定理,掌握几种圆相关的位置关系。
重点
定理的运用
例18:已知扇形的半径为5厘米,圆心角所对的弧长为4 ,则此扇形的面积是。
例19:如图,AB是⊙O的切线,切点为A,OA=1,∠AOB= ,
求图中阴影部分 的面积。
检测课堂效果
教学反思
ቤተ መጻሕፍቲ ባይዱ教学后完成
难点
定理的运用
教学过程
教师 活动
学生活动
设计意图(备注)

教师用问题导入,引入新课题,明确目标
(1)圆是到 定点的距离定长的点的集合;圆的内部可以看作是到圆心的距离
半径的点的集合;圆的外部可以看作是到圆心的距离半径的点的集合
(2)点和圆的位置关系:若⊙O的半径为r,点P到圆心O的距离为d, 那么:
点P在圆dr点P在圆dr点P在圆 dr
例1:如图已知矩形ABCD的边AB=3厘米,AD=4厘米,以点A为圆心,
学生思考,了解学习目标
导入新课

教师出示导学提纲,提出学生自学的明确要求,做好巡视检查,做好小组评价
根据导学提纲阅读教材,完成导学提纲的问题
跟踪训练: 例1:如图已知矩形ABCD的边AB=3厘米,AD=4厘米,以点A为圆心,
4厘米为半径作圆A,则点B、C、D与圆A的位置关系分别为点B在圆A ,
为200mm,则油槽截面的直径为。

2019北师大版九年级数学下第三章圆全章复习教学设计

2019北师大版九年级数学下第三章圆全章复习教学设计

2019北师大版九年级数学下第三章圆全章复习教学设计一、教学目标1.理解圆的相关概念,包括半径、直径、圆心等。

2.掌握计算圆的周长和面积的方法。

3.掌握如何绘制圆。

二、教学内容本次教学将围绕九年级数学下册的第三章圆展开复习。

具体内容包括:1.圆的基本概念及性质。

2.计算圆的周长和面积的方法。

3.圆的绘制方法。

三、教学步骤第一步:复习圆的概念1.让学生回顾圆的基本定义和相关术语的含义:圆心、半径、直径等。

2.提供一些具体的实例,让学生用自己的语言解释圆的含义。

第二步:复习计算圆的周长和面积的方法1.介绍计算圆的周长和面积的公式,并强调公式的运用方法。

2.给学生提供一些实际问题,让他们运用公式进行计算。

第三步:复习圆的绘制方法1.调用投影仪或者黑板进行实时展示,教学如何用指南针和直尺绘制圆。

2.给学生一些练习题,让他们亲自动手绘制圆。

第四步:巩固练习1.给学生一些巩固练习题,包括计算圆的周长和面积的题目,以及绘制圆的题目。

2.让学生独立完成这些练习题,并互相交流答案和解题思路。

第五步:总结复习内容1.和学生一起回顾整节课的内容,强调重要的概念和计算方法。

2.解答学生提出的问题,帮助他们消除疑惑。

四、教学评价1.通过观察学生在课堂上的表现,评价他们对圆的概念的理解程度。

2.通过检查学生完成的练习题,评价他们在计算圆的周长和面积方面的能力。

3.对学生的圆的绘制情况进行评价,看是否能正确并精确地绘制出圆形。

五、教学反思本次复习教学设计在保持简洁明了的同时,覆盖了圆的基本概念、计算方法和绘制方法。

通过练习题的设置,学生在复习的同时也得到了巩固和提高。

在今后的教学中,可以进一步丰富教学资源,增加互动性,激发学生的学习兴趣。

同时,也可以根据学生的实际情况进行个性化的教学辅导,以提高教学效果。

北师大版九年级数学下册:3.1圆教案

北师大版九年级数学下册:3.1圆教案
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对圆的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我们探讨了圆的相关知识,从圆的基本概念到方程,再到圆与直线、圆与圆的位置关系,以及圆在实际生活中的应用。回顾整个教学过程,我认为有几个地方值得反思。
3.圆的几何作图:以给定半径画圆,已知圆上两点或三点画圆。
4.圆与直线、圆与圆的位置关系:相交、相切、相离,以及判定方法。
5.弧、弦、圆心角、圆周角的概念及其关系。
6.圆的内接四边形的性质及其应用。
二、核心素养目标
1.培养学生运用数学语言表达现实世界中与圆相关的问题,提高数学建模素养。
2.通过圆的基本性质和方程的学习,发展学生的逻辑推理和空间想象能力,增强几何直观。
北师大版九年级数学下册:3.1圆教案
一、教学内容
北师大版九年级数学下册:3.1圆
本节课主要围绕以下内容展开:
1.圆的定义及其基本性质:半径、直径、圆周率等概念,圆的对称性。
2.圆的方程:圆的标准方程(x-a)² + (y-b)² = r²,一般式方程x² + y² + Dx + Ey + F = 0。

九年级数学下册 第三章 圆教案1 (新版)北师大版

九年级数学下册 第三章 圆教案1 (新版)北师大版

圆一、教学目标逐渐形成“圆的基本概念与定理”、“与圆有关的位置关系”、“与圆有关的计算”的知识网络体系;二、教学重点和难点重点:逐渐形成“圆的基本概念与定理”、“与圆有关的位置关系”、“与圆有关的计算”的知识网络体系难点:在解决具体问题的过程中,构建圆的知识体系,内化数学思想方法,特别是辅助线添加和转化思想等难点问题三、教学过程(一)知识梳理1.圆的定义:到_____的距离等于______的点的集合,定点叫_____,定长叫_____2. 圆的对称性圆是对称图形,都是它的对称轴;圆又是对称图形, _ ____是它的对称中心.3.垂径定理: ____________的直径____________,并且平分____________________垂径逆定理:_____________________的直径垂____________,并且___________________ 推论:圆的两条平行弦所夹的弧______________4. 等对等定理:在同圆或等圆中,相等的圆心角所对的___相等,所对的___相等,所对的_____相等推论:在同圆或等圆中,如果_________、_________、_________或_________中有一组量相等那么它们所对应的其余各组量都相等5.圆周角定理________________________________________________________推论1 ________________________________________________________推论2 ________________________________________________________推论3 ________________________________________________________推论4 ________________________________________________________6.与圆有关的位置关系(1)点与圆的位置关系①_________ ⇔d _ r;②_________ ⇔d _ r③_________ ⇔d _ r;(2)直线与圆的位置关系①_________ ⇔d _ r;②_________ ⇔d _ r③_________ ⇔d _ r;7.定理:_____________的三个点确定一个圆8.切线的性质定理符号语言:∵l是⊙O的切线,切点为A,OA是⊙O的直径,∴OA⊥l9.切线的判定定理____________________________________________ 符号语言∵OA是⊙O的半径, l⊥OA于A,∴l是⊙O的切线.Pl·Ol A10.切线长定理 从圆外一点引圆的两条切线,它们的切线长______, 圆心和这一点的连线_______两条切线的夹角符号语言:∵PA 、PB 分别切⊙O 于A 、B ,∴PA=PB 11. 圆的内接四边形性质定理:圆的内接四边形______________________12.圆的外切四边形性质定理:圆的外切四边形__________________13.三角形外接圆的圆心是__________________的交点,它到________________的距离相等;三角形内切圆的圆心是__________________的交点,它到________________的距离相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的有关性质(一)
知识点回顾:
知识点一:圆的定义,掌握点与圆的位置关系 1. 圆上各点到圆心的距离都等于___________.
2. 圆是___________对称图形,任何一条直径所在的直线都是它的___________;圆又是___________对称图形,___________是它的对称中心.
例1:(2009太原市)如图,在Rt ABC △中,C ∠=90°,AB =10,若以点C 为圆心,
CB 长为半径的圆恰好经过AB 的中点D ,则AC 的长等于( )
A .53
B .5
C .52
D .6 同步测试:
1.如图,在□ABCD 中,∠BAD 为钝角,且AE ⊥BC ,AF ⊥CD . (1)求证:A 、E 、C 、F 四点共圆;
(2)设线段BD 与(1)中的圆交于M 、N .求证:BM=ND .
知识点二:弦、弧、半圆、优弧、同心圆、等圆、等弧、圆心角、圆周角等与圆有关的概念
1.在同圆或等圆中,相等的弧叫做___________
2. 同弧或等弧所对的圆周角___________,都等于它所对的圆心角的___________
3. 直径所对的圆周角是___________,90°所对的弦是___________.
例2:如图3,⊙O 是等腰三角形ABC 的外接圆,AB AC =,45A ∠=,BD 为⊙O 的直径,22BD =,连结CD ,则D ∠=___________,BC =___________.
图3 图4 图5
同步测试:
1.如图4,四边形ABCD 内接于⊙O ,∠ADC =90°,B 是弧AC 的中点,AD =20,CD =15,
求BD 的长.
知识点三:圆心角、弧、弦、弦心距之间的关系 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两个圆周角中有一组量___________,那么它们所对应的其余各组量都分别___________.
例3.如图5,⊙O 中两条不平行弦AB 和CD 的中点M ,N.且AB =CD , 求证:∠AMN =∠CNM
同步测试:
1.下列命题中, ①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③
的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同弧所对
的圆周角相等。

正确的是( )
A .①②③
B .③④⑤
C .①②⑤
D .②④⑤
知识点四:垂径定理
垂直于弦的直径平分___________,并且平分___________;平分弦(不是直径)的___________垂直于弦,并且平分___________.
例4:如图6,AB 是⊙O 的弦,OD ⊥AB 于D 交⊙O 于E ,则下列说法错误的是 ( ) A .AD=BD
B .∠ACB=∠AOE
C .
D .OD=DE
同步测试:
1.如图7,AB O 是⊙的直径,303cm CD AB E CDB O ⊥∠=于点,°,⊙的半径为,
则弦CD 的长为( ) A .
3
cm 2
B .3cm
C .23cm
D .9cm
知识点五:确定圆的条件
三角形的三个顶点确定一个圆,这个圆叫做三角形的___________、这个圆的圆心叫做三
角形的___________、这个三角形是圆的___________.
例5.如图8,在平面直角坐标系中,已知一圆弧过小正方形网格的格点A B C
,,,已知
A点的坐标是(35)
-,,则该圆弧所在圆的圆心坐标是___________.
图6 图7 图8
随堂检测
1.如图9,A、D是⊙O上的两个点,BC是直径,若∠D = 35°,则∠OAC的度数是()
A.35° B.55° C.65° D.70°
图9 图10 图11
2.如图10,弦CD垂直于⊙O的直径AB,垂足为H,且CD=22,BD=3,则AB的长
为()
A.2 B.3 C.4 D.5
3.如图11,已知⊙O的两条弦AC,BD相交于点E,∠A=70o,∠c=50o,那么sin∠AEB的
值为( )
A.
2
1 B.
3
3 C.
2
2 D.
2
3
4.如图:在△ABC中,C
∠=90°,AC=8,AB=10,点P在AC
上,AP=2,若⊙O的圆心在线段BP上,⊙O与AB,AC都
相切,则⊙O的半径是( )
A.1 B.
5
4
C.
12
7
D.
9
4
5.如图12,有一圆形展厅,在其圆形边缘上的点A处安装了一台监视器,它的监控角度
是65.为了监控整个展厅,最少需在圆形边缘上共安装
...这样的监视器___________台.
图12 图13 图14
6.如图13,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那
么BD=_________.
7.如图15,AB为⊙O的直径,弦CD⊥AB,E为上一点,若∠CEA=28,则∠ABD=
°.
8.问题探究(1)请在图①的正方形ABCD内,画出使∠APB=90°的一个
..点P,并说明理
由.(2)请在图②的正方形ABCD内(含边),画出使∠APB=60°的所有
..的点P,并说明理由.
问题解决
如图③,现有一块矩形钢板ABCD,AB=4,BC=3,工人师傅想用它裁出两块全等的、面
积最大的△APB和△CP’D钢板,且∠APB=∠CP’D=60°,请你在图③中画出符合要求的点
P和P’,并求出△APB的面积(结果保留根号).
O
A
C。

相关文档
最新文档