艾西教育2014重庆中考总复习(4)函数
D_重庆市2014年中考数学试卷含答案解析
(满分:150 分 时间:120 分钟)
参考答案与试题解析
一、选择题(本大题共 12 小题,每小题 4 分,共 48 分)
1.(4 分)(2014•重庆)某地连续四天每天的平均气温分别是:1℃、﹣1℃、0℃、2℃,
则平均气温中最低的是( )
A.﹣1℃
B.0℃
C.1℃
D.2℃
专题:应用题.
分析:根据正数大于一切负数解答.
解答: 解:∵1℃、﹣1℃、0℃、2℃中气温最低的是﹣1℃,
∴平均气温中最低的是﹣1℃. 故选 A. 点评:本题考查了有理数的大小比较,是基础题,熟记正数大于一切负数是解题的关键.
2.(4 分)(2014•重庆)计算 5x2﹣2x2 的结果是( )
3.(4 分)(2014•重庆)如图,△ABC∽△DEF,相似比为 1:2.若 BC=1,则 EF 的长是( )
A.1
B.2
C.3
D.4
考点:相似三角形的性质. 菁优网版权所有
分析:根据相似三角形对应边的比等于相似比即可求解.
ቤተ መጻሕፍቲ ባይዱ
解答: 解:∵△ABC∽△DEF,相似比为 1:2, ∴ =,
∴EF=2BC=2.
解答: 解:∵矩形 ABCD 的对角线 AC,BD 相交于点 O,
∴OB=OC,
∴∠OBC=∠ACB=30°,
∴∠AOB=∠OBC+∠ACB=30°+30°=60°. 故选 B. 点评:本题考查了矩形的性质,等边对等角的性质以及三角形的一个外角等于与它不相邻
的两个内角的和的性质,熟记各性质是解题的关键.
9.(4 分)(2014•重庆)夏天到了,某小区准备开放游泳池,物业管理处安排一名清洁工
2014年重庆市中考数学《二次函数》第12题选择题(教师版)
2014年中考数学总复习《二次函数》选择题参考答案与试题解析一.选择题(共30小题)3.(2013•重庆)一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是()A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0考点:二次函数的图象;一次函数的图象;反比例函数的图象.专题:压轴题.分析:根据函数图象知,由一次函数图象所在的象限可以确定a、b的符号,且直线与抛物线均经过点A,所以把点A的坐标代入一次函数或二次函数可以求得b=2a,k的符号可以根据双曲线所在的象限进行判定.解答:解:∵根据图示知,一次函数与二次函数的交点A的坐标为(﹣2,0),∴﹣2a+b=0,∴b=2a.∵由图示知,抛物线开口向上,则a>0,∴b>0.∵反比例函数图象经过第一、三象限,∴k>0.A、由图示知,双曲线位于第一、三象限,则k>0∴2a+k>2a,即b<2a+k.故本选项错误;B、∵b=2a,∴a=﹣k,则k<﹣k.∴k<0.这与k>0相矛盾,∴a=b+k不成立.故本选项错误;C、∵a>0,b=2a,∴b>a>0.故本选项错误;D、观察二次函数y=ax2+bx和反比例函数y=(k≠0)图象知,当x=﹣=﹣=﹣1时,y=﹣k>﹣=﹣=﹣a,即k<a,∵a>0,k>0,∴a>k>0.故本选项正确;故选D.点评:本题综合考查了一次函数、二次函数以及反比例函数的图象.解题的关键是会读图,从图中提取有用的信息.1.(2013•遵义)二次函数y=ax2+bx+c(a≠0)的图象如图如图所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.则M,N,P中,值小于0的数有()A.3个B.2个C.1个D.0个考点:二次函数图象与系数的关系.专题:计算题;压轴题.分析:根据图象得到x=﹣2时对应的函数值小于0,得到N=4a﹣2b+c的值小于0,根据对称轴在直线x=﹣1右边,利用对称轴公式列出不等式,根据开口向下得到a小于0,变形即可对于P作出判断,根据a,b,c的符号判断得出a+b﹣c的符号.解答:解:∵图象开口向下,∴a<0,∵对称轴在y轴左侧,∴a,b同号,∴a<0,b<0,∵图象经过y轴正半轴,∴c>0,∴M=a+b﹣c<0当x=﹣2时,y=4a﹣2b+c<0,∴N=4a﹣2b+c<0,∵﹣>﹣1,∴<1,∴b>2a,∴2a﹣b<0,∴P=2a﹣b<0,则M,N,P中,值小于0的数有M,N,P.故选:A.点评:此题主要考查了二次函数图象与系数的关系,根据图象判断出对称轴以及a,b,c的符号是解题关键.2.(2013•淄博)如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A.(,)B.(2,2)C.(,2)D.(2,)考点:二次函数综合题.专题:综合题.分析:首先根据点A在抛物线y=ax2上求得抛物线的解析式和线段OB的长,从而求得点D的坐标,根据点P的纵坐标和点D的纵坐标相等得到点P的坐标即可;解答:解:∵Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,∴4=a×(﹣2)2,解得:a=1∴解析式为y=x2,∵Rt△OAB的顶点A(﹣2,4),∴OB=OD=2,∵Rt△OAB绕点O顺时针旋转90°,得到△OCD,∴CD∥x轴,∴点D和点P的纵坐标均为2,∴令y=2,得2=x2,解得:x=±,∵点P在第一象限,∴点P的坐标为:(,2)故选:C.点评:本题考查了二次函数的综合知识,解题过程中首先求得直线的解析式,然后再求得点D的纵坐标,利用点P的纵坐标与点D的纵坐标相等代入函数的解析式求解即可.6.(2013•义乌市)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③考点:二次函数图象与系数的关系.专题:计算题;压轴题.分析:①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.解答:解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.7.(2013•泰安)对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>1时,y随x的增大而减小,其中正确结论的个数为()A.1B.2C.3D.4考点:二次函数的性质.分析:根据二次函数的性质对各小题分析判断即可得解.解答:解:①∵a=﹣<0,∴抛物线的开口向下,正确;②对称轴为直线x=﹣1,故本小题错误;③顶点坐标为(﹣1,3),正确;④∵x>﹣1时,y随x的增大而减小,∴x>1时,y随x的增大而减小一定正确;综上所述,结论正确的个数是①③④共3个.故选C.点评:本题考查了二次函数的性质,主要利用了抛物线的开口方向、对称轴、顶点坐标,以及二次函数的增减性.8.(2013•深圳)已知二次函数y=a(x﹣1)2﹣c的图象如图所示,则一次函数y=ax+c的大致图象可能是()A.B.C.D.考点:二次函数的图象;一次函数的图象.分析:首先根据二次函数图象得出a,c的值,进而利用一次函数性质得出图象经过的象限.解答:解:根据二次函数开口向上则a>0,根据﹣c是二次函数顶点坐标的纵坐标,得出c>0,故一次函数y=ax+c的大致图象经过一、二、三象限,故选:A.点评:此题主要考查了二次函数的图象以及一次函数的性质,根据已知得出a,c的值是解题关键.4.(2013•张家界)若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.考点:二次函数的图象;正比例函数的图象.专题:压轴题.分析:根据正比例函数图象的性质确定m<0,则二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴.解答:解:∵正比例函数y=mx(m≠0),y随x的增大而减小,∴该正比例函数图象经过第二、四象限,且m<0.∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴.综上所述,符合题意的只有A选项.故选A.点评:本题考查了二次函数图象、正比例函数图象.利用正比例函数的性质,推知m<0是解题的突破口.5.(2013•岳阳)二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是()A.1个B.2个C.3个D .4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:如图,①抛物线开口方向向下,则a<0.故①正确;②∵对称轴x=﹣=1,∴b=﹣2a>0,即b>0.故②错误;③∵抛物线与y轴交于正半轴,∴c>0.故③正确;④∵对称轴x=﹣=1,∴b+2a=0.故④正确;⑤根据图示知,当x=1时,y>0,即a+b+c>0.故⑤错误.综上所述,正确的说法是①③④,共有3个.故选C.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.9.(2013•日照)如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有()A.1个B.2个C.3个D.4个考点:二次函数的性质.专题:压轴题.分析:若y1=y2,记M=y1=y2.首先求得抛物线与直线的交点坐标,利用图象可得当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;然后根据当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;即可求得答案.解答:解:∵当y1=y2时,即﹣x2+4x=2x时,解得:x=0或x=2,∴当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;∴①错误;∵抛物线y1=﹣x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②正确;∵抛物线y1=﹣x2+4x的最大值为4,故M大于4的x值不存在,∴③正确;∵如图:当0<x<2时,y1>y2;当M=2,2x=2,x=1;x>2时,y2>y1;当M=2,﹣x2+4x=2,x1=2+,x2=2﹣(舍去),∴使得M=2的x值是1或2+,∴④错误;故选B.点评:此题主要考查了二次函数与一次函数综合应用.注意掌握函数增减性是解题关键,注意数形结合思想与方程思想的应用.10.(2013•黔西南州)如图所示,二次函数y=ax2+bx+c的图象中,王刚同学观察得出了下面四条信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0,其中错误的有()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.专题:压轴题.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:(1)图象与x轴有2个交点,依据根的判别式可知b2﹣4ac>0,正确;(2)图象与y轴的交点在1的下方,所以c<1,错误;(3)∵对称轴在﹣1的右边,∴﹣>﹣1,又a<0,∴2a﹣b<0,正确;(4)当x=1时,y=a+b+c<0,正确;故错误的有1个.故选:A.点评:本题主要考查二次函数图象与系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.12.(2013•平凉)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0,错误的个数有()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.专题:压轴题.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,利用图象将x=1,﹣1,2代入函数解析式判断y的值,进而对所得结论进行判断.解答:解:①∵由函数图象开口向下可知,a<0,由函数的对称轴x=﹣>﹣1,故<1,∵a<0,∴b>2a,所以2a﹣b<0,①正确;②∵a<0,对称轴在y轴左侧,a,b同号,图象与y轴交于负半轴,则c<0,故abc<0;②正确;③当x=1时,y=a+b+c<0,③正确;④当x=﹣1时,y=a﹣b+c<0,④错误;⑤当x=2时,y=4a+2b+c<0,⑤错误;故错误的有2个.故选:B.点评:此题主要考查了图象与二次函数系数之间的关系,将x=1,﹣1,2代入函数解析式判断y的值是解题关键.13.(2013•攀枝花)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=与y=bx+c在同一直角坐标系内的大致图象是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.专题:压轴题.分析:根据二次函数的图象得出a,b,c的符号,进而利用一次函数与反比例函数得出图象经过的象限.解答:解:∵二次函数y=ax2+bx+c(a≠0)的图象开口向下,∴a<0,∵对称轴经过x的负半轴,∴a,b同号,图象经过y轴的正半轴,则c>0,∵函数y=,a<0,∴图象经过二、四象限,∵y=bx+c,b<0,c>0,∴图象经过一、二、四象限,故选;B.点评:此题主要考查了二次函数的图象以及一次函数和反比例函数的性质,根据已知得出a,b,c的值是解题关键.14.(2013•南宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()A.图象关于直线x=1对称B.函数y=ax2+bx+c(a≠0)的最小值是﹣4C.﹣1和3是方程ax2+bx+c=0(a≠0)的两个根D.当x<1时,y随x的增大而增大考点:二次函数的性质.分析:根据对称轴及抛物线与x轴交点情况,结合二次函数的性质,即可对所得结论进行判断.解答:解:A、观察图象,可知抛物线的对称轴为直线x=1,则图象关于直线x=1对称,正确,故本选项不符合题意;B、观察图象,可知抛物线的顶点坐标为(1,﹣4),又抛物线开口向上,所以函数y=ax2+bx+c(a≠0)的最小值是﹣4,正确,故本选项不符合题意;C、由图象可知抛物线与x轴的一个交点为(﹣1,0),而对称轴为直线x=1,所以抛物线与x轴的另外一个交点为(3,0),则﹣1和3是方程ax2+bx+c(a≠0)的两个根,正确,故本选项不符合题意;D、由抛物线的对称轴为x=1,所以当x<1时,y随x的增大而减小,错误,故本选项符合题意.故选D.点评:此题考查了二次函数的性质和图象,解题的关键是利用数形结合思想解题.15.(2013•南昌)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,则下列判断正确的是()A.a>0 B.b2﹣4ac≥0 C.x1<x0<x2D.a(x0﹣x1)(x0﹣x2)<0考点:抛物线与x轴的交点.专题:压轴题.分析:根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.解答:解:A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、∵x1<x2,∴△=b2﹣4ac>0,故本选项错误;C、若a>0,则x1<x0<x2,若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;D、若a>0,则x0﹣x1>0,x0﹣x2<0,所以,(x0﹣x1)(x0﹣x2)<0,∴a(x0﹣x1)(x0﹣x2)<0,若a<0,则(x0﹣x1)与(x0﹣x2)同号,∴a(x0﹣x1)(x0﹣x2)<0,综上所述,a(x0﹣x1)(x0﹣x2)<0正确,故本选项正确.故选D.点评:本题考查了二次函数与x轴的交点问题,熟练掌握二次函数图象以及图象上点的坐标特征是解题的关键,C、D选项要注意分情况讨论.11.(2013•齐齐哈尔)已知二次函数y=ax2+bx+c(a≠0)的图象经过点(x1,0)、(2,0),且﹣2<x1<﹣1,与y轴正半轴的交点在(0,2)的下方,则下列结论:①abc<0;②b2>4ac;③2a+b+1<0;④2a+c>0.则其中正确结论的序号是()A.①②B.②③C.①②④D.①②③④考点:二次函数图象与系数的关系.分析:由于抛物线过点(x1,0)、(2,0),且﹣2<x1<﹣1,与y轴正半轴相交,则得到抛物线开口向下,对称轴在y轴右侧,于是可判断a<0,b>0,c>0,所以abc<0;利用抛物线与x轴有两个交点得到b2﹣4ac>0,即b2>4ac;由于x=2时,y=0,即4a+2b+c=0,变形得2a+b+=0,则根据0<c<2得2a+b+1>0;根据根与系数的关系得到2x1=,即x1=,所以﹣2<<﹣1,变形即可得到2a+c>0.解答:解:如图,∵二次函数y=ax2+bx+c(a≠0)的图象经过点(x1,0)、(2,0),且﹣2<x1<﹣1,与y轴正半轴相交,∴a<0,c>0,对称轴在y轴右侧,即x=﹣>0,∴b>0,∴abc<0,所以①正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以②正确;当x=2时,y=0,即4a+2b+c=0,∴2a+b+=0,∵0<c<2,∴2a+b+1>0,所以③错误;∵二次函数y=ax2+bx+c(a≠0)的图象经过点(x1,0)、(2,0),∴方程ax2+bx+c=0(a≠0)的两根为x1,2,∴2x1=,即x1=,而﹣2<x1<﹣1,∴﹣2<<﹣1,∵a<0,∴﹣4a>c>﹣2a,∴2a+c>0,所以④正确.故选C.点评: 本题考查了二次函数的图象与系数的关系:二次函数y=ax 2+bx+c (a ≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y 轴的交点坐标为(0,c );当b 2﹣4ac>0,抛物线与x 轴有两个交点;当b 2﹣4ac=0,抛物线与x 轴有一个交点;当b 2﹣4ac <0,抛物线与x 轴没有交点.16.(2013•牡丹江)抛物线y=ax 2+bx+c (a <0)如图所示,则关于x 的不等式ax 2+bx+c >0的解集是( )A . x <2B . x >﹣3C . ﹣3<x <1D . x <﹣3或x >1考点: 二次函数与不等式(组).分析:根据函数图象,写出x 轴上方部分的x 的取值范围即可. 解答: 解:∵抛物线y=ax 2+bx+c 与x 轴的交点坐标为(﹣3,0)(1,0),∴关于x 的不等式ax 2+bx+c >0的解集是﹣3<x <1. 故选C .点评: 本题考查了二次函数与不等式,利用数形结合的思想求解是此类题目的特点.17.(2013•聊城)二次函数y=ax 2+bx 的图象如图所示,那么一次函数y=ax+b 的图象大致是( )A .B .C .D .考点: 二次函数的图象;一次函数的图象. 专题: 数形结合.分析: 根据二次函数图象的开口方向向下确定出a <0,再根据对称轴确定出b >0,然后根据一次函数图象解答即解答:解:∵二次函数图象开口方向向下,∴a<0,∵对称轴为直线x=﹣>0,∴b>0,∴一次函数y=ax+b的图象经过第二四象限,且与y轴的正半轴相交,C选项图象符合.故选C.点评:本题考查了二次函数的图象,一次函数的图象,根据图形确定出a、b的正负情况是解题的关键.18.(2013•济南)如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣1<x1<0,1<x2<2,下列结论正确的是()D.4ac﹣b2<﹣8aA.a<0 B.a﹣b+c<0 C.﹣考点:二次函数图象与系数的关系;抛物线与x轴的交点.分析:由开口方向,可确定a>0;由当x=﹣1时,y=a﹣b+c>0,可确定B错误;由对称轴在y轴右侧且在直线x=1左侧,可确定x=﹣<1;由二次函数y=ax2+bx+c的图象经过点(0,﹣2),对称轴在y轴右侧,a>0,可得最小值:<﹣2,即可确定D正确.解答:解:A、∵开口向上,∴a>0,故本选项错误;B、∵当x=﹣1时,y=a﹣b+c>0,故本选项错误;C、∵对称轴在y轴右侧且在直线x=1左侧,∴x=﹣<1,故本选项错误;D、∵二次函数y=ax2+bx+c的图象经过点(0,﹣2),对称轴在y轴右侧,a>0,∴最小值:<﹣2,∴4ac﹣b2<﹣8a.故本选项正确.故选D.点评:此题考查了图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.19.(2013•河池)已知二次函数y=﹣x2+3x﹣,当自变量x取m对应的函数值大于0,设自变量分别取A.y1>0,y2>0 B.y1>0,y2<0 C.y1<0,y2>0 D.y1<0,y2<0考点:二次函数图象上点的坐标特征.专题:数形结合.分析:根据二次函数的性质得到二次函数y=﹣x2+3x﹣的图象的对称轴为x=,抛物线与y轴的交点为(0,﹣),则可得到抛物线与x轴两交点之间的距离小于3,所以当x=m时,y>0;当x=m﹣3时,y1<0;当x=m+3时,y2<0.解答:解:如图,∵二次函数y=﹣x2+3x﹣的图象的对称轴为x=﹣=,而抛物线与y轴的交点为(0,﹣),∴抛物线与x轴两交点之间的距离小于3,∵当x=m时,y>0,∴当x=m﹣3时,y1<0;当x=m+3时,y2<0.故选D.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足二次函数的解析式y=ax2+bx+c (a≠0).20.(2013•广安)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>O,②2a+b=O,③b2﹣4ac<O,④4a+2b+c>O其中正确的是()A.①③B.只有②C.②④D.③④考点:二次函数图象与系数的关系.专题:压轴题.分析:由抛物线开口向上,得到a>0,再由对称轴在y轴右侧,得到a与b异号,可得出b<0,又抛物线与y轴交于正半轴,得到c大于0,可得出abc小于0,选项①错误;由抛物线与x轴有2个交点,得到根的判别﹣2b+c小于0,最后由对称轴为直线x=1,利用对称轴公式得到b=﹣2a,得到选项④正确,即可得到正确结论的序号.解答:解:∵抛物线的开口向上,∴a>0,∵﹣>0,∴b<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,①错误;∵对称轴为直线x=1,∴﹣=1,即2a+b=0,②正确,∵抛物线与x轴有2个交点,∴b2﹣4ac>0,③错误;∵对称轴为直线x=1,∴x=2与x=0时的函数值相等,而x=0时对应的函数值为正数,∴4a+2b+c>0,④正确;则其中正确的有②④.故选C.点评:此题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c(a≠0),a的符号由抛物线开口方向决定;b 的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定;抛物线与x轴的交点个数,决定了b2﹣4ac的符号,此外还要注意x=1,﹣1,2及﹣2对应函数值的正负来判断其式子的正确与否.21.(2013•常州)二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x ﹣3 ﹣2 ﹣1 0 1 2 3 4 5y 12 5 0 ﹣3 ﹣4 ﹣3 0 5 12给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.0考点:二次函数的最值;抛物线与x轴的交点.专题:压轴题.分析:根据表格数据求出二次函数的对称轴为直线x=1,然后根据二次函数的性质对各小题分析判断即可得解.解答:解;由表格数据可知,二次函数的对称轴为直线x=1,所以,当x=1时,二次函数y=ax2+bx+c有最小值,最小值为﹣4;故(1)小题错误;根据表格数据,当﹣1<x<3时,y<0,所以,﹣<x<2时,y<0正确,故(2)小题正确;二次函数y=ax2+bx+c的图象与x轴有两个交点,分别为(﹣1,0)(3,0),它们分别在y轴两侧,故(3)小题正确;综上所述,结论正确的是(2)(3)共2个.故选B.点评:本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.22.(2013•滨州)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③ac>0;④当y<0时,x<﹣1或x>2.其中正确的个数是()A.1B.2C.3D.4考点:二次函数图象与系数的关系.专题:压轴题.分析:根据对称轴为x=1可判断出2a+b=0正确,当x=﹣2时,4a﹣2b+c<0,根据开口方向,以及与y轴交点可得ac<0,再求出A点坐标,可得当y<0时,x<﹣1或x>3.解答:解:∵对称轴为x=1,∴x=﹣=1,∴﹣b=2a,∴①2a+b=0,故此选项正确;∵点B坐标为(﹣1,0),∴当x=﹣2时,4a﹣2b+c<0,故此选项正确;∵图象开口向下,∴a<0,∵图象与y轴交于正半轴上,∴c>0,∴ac<0,故ac>0错误;∵对称轴为x=1,点B坐标为(﹣1,0),∴A点坐标为:(3,0),∴当y<0时,x<﹣1或x>3.,故④错误;故选:B.点评:此题主要考查了二次函数与图象的关系,关键掌握二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;IaI还可以决定开口大小,IaI越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.23.(2013•百色)在反比例函数y=中,当x >0时,y 随x 的增大而增大,则二次函数y=mx 2+mx 的图象大致是图中的( ) A .B .C .D .考点: 二次函数图象与系数的关系;反比例函数的性质.分析: 根据反比例函数图象的性质确定出m <0,则二次函数y=mx 2+mx 的图象开口方向向下,且与y 轴交于负半轴,即可得出答案.解答:解:∵反比例函数y=,中,当x>0时,y 随x 的增大而增大,∴根据反比例函数的性质可得m <0; 该反比例函数图象经过第二、四象限,∴二次函数y=mx 2+mx 的图象开口方向向下,且与y 轴交于负半轴. ∴只有A 选项符合. 故选A .点评: 本题考查了二次函数图象、反比例函数图象.利用反比例函数的性质,推知m <0是解题的关键,体现了数形结合的思想.24.(2013•鞍山)如图所示的抛物线是二次函数y=ax 2+bx+c (a ≠0)的图象,则下列结论: ①abc >0;②b+2a=0;③抛物线与x 轴的另一个交点为(4,0);④a+c >b ;⑤3a+c <0. 其中正确的结论有( )A . 5个B . 4个C . 3个D . 2个考点: 二次函数图象与系数的关系. 专题: 压轴题. 分析:由开口方向、与y 轴交于负半轴以及对称轴的位置,即可确定a ,b ,c 的正负;由对称轴x=﹣=1,可得b+2a=0;由抛物线与x 轴的一个交点为(﹣2,0),对称轴为:x=1,可得抛物线与x 轴的另一个交点为(4,0);当x=﹣1时,y=a ﹣b+c <0;a ﹣b+c <0,b+2a=0,即可得3a+c <0.解答: 解:∵开口向上,∴a >0,∵与y 轴交于负半轴,∵对称轴x=﹣>0,∴b<0,∴abc>0;故①正确;∵对称轴x=﹣=1,∴b+2a=0;故②正确;∵抛物线与x轴的一个交点为(﹣2,0),对称轴为:x=1,∴抛物线与x轴的另一个交点为(4,0);故③正确;∵当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故④错误;∵a﹣b+c<0,b+2a=0,∴3a+c<0;故⑤正确.故选B.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.25.(2013•鄂尔多斯)下列说法中,正确的有()(1)的平方根是±5.(2)五边形的内角和是540°.(3)抛物线y=3x2﹣x+4与x轴无交点.(4)等腰三角形两边长为6cm和4cm,则它的周长是16cm.(5)若⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且O1O2=3,则两圆相交.A.2个B.3个C.4个D.5个考点:圆与圆的位置关系;平方根;解一元二次方程-因式分解法;抛物线与x轴的交点;三角形三边关系;等腰三角形的性质;多边形内角与外角.分析:(1)首先化简,可得=5,继而求得的平方根;(2)根据多边形的内角和公式:(n﹣2)×180°,即可求得答案;(3)根据抛物线与x轴交点的关系,即可求得答案;(4)分别从6cm为腰长,4cm为底边长与6cm为底边长,4cm为腰长去分析求解即可求得答案;(5)由圆与圆的位置关系的性质求解即可求得答案.解答:解:(1)的平方根是±,故错误;(2)五边形的内角和是540°,故正确;(3)∵△=b2﹣4ac=1﹣4×3×4=﹣47<0,∴抛物线y=3x2﹣x+4与x轴无交点;故正确;(4)等腰三角形两边长为6cm和4cm,则它的周长是16cm或14cm,故错误;(5)∵若⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,∴⊙O1与⊙O2的半径分别为:1,3,∴半径和为4,差为2,∴两圆相交,故正确.故选B.点评:此题考查了圆与圆的位置关系、等腰三角形的性质、平方根以及抛物线与一元二次方程的关系.此题难度不大,注意熟记定理是解此题的关键.26.(2013•内江)若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为﹣4 D.抛物线与x轴的交点为(﹣1,0),(3,0)考点:二次函数的性质.分析:A根据二次函数二次项的系数的正负确定抛物线的开口方向.B利用x=﹣可以求出抛物线的对称轴.C利用顶点坐标和抛物线的开口方向确定抛物线的最大值或最小值.D当y=0时求出抛物线与x轴的交点坐标.解答:解:∵抛物线过点(0,﹣3),∴抛物线的解析式为:y=x2﹣2x﹣3.A、抛物线的二次项系数为1>0,抛物线的开口向上,正确.B、根据抛物线的对称轴x=﹣=﹣=1,正确.C、由A知抛物线的开口向上,二次函数有最小值,当x=1时,y的最小值为﹣4,而不是最大值.故本选项错误.D、当y=0时,有x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,抛物线与x轴的交点坐标为(﹣1,0),(3,0).正确.故选C.点评:本题考查的是二次函数的性质,根据a的正负确定抛物线的开口方向,利用顶点坐标公式求出抛物线的对称轴和顶点坐标,确定抛物线的最大值或最小值,当y=0时求出抛物线与x轴的交点坐标.27.(2013•龙岩)若二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列选项正确的是()A.a>0 B.c>0 C.a c>0 D.b c<0考点:二次函数图象与系数的关系.专题:计算题.分析:由抛物线开口向下得到a小于0,再根据对称轴在y轴左侧得到a与b同号得到b大于0,由抛物线与y轴交点在负半轴得到c小于0,即可作出判断.解答:解:根据图象得:a<0,c<0,b<0,则ac>0,bc>0,故选C.点评:此题考查了二次函数图象与系数的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间28.(2013•济宁)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0 B.当﹣1<x<3时,y>0C.c<0 D.当x≥1时,y随x的增大而增大考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:A、抛物线的开口方向向下,则a<0.故本选项错误;B、根据图示知,抛物线的对称轴为x=1,抛物线与x轴的一交点的横坐标是﹣1,则抛物线与x轴的另一交点的横坐标是3,所以当﹣1<x<3时,y>0.故本选项正确;C、根据图示知,该抛物线与y轴交与正半轴,则c>0.故本选项错误;D、根据图示知,当x≥1时,y随x的增大而减小,故本选项错误.故选B.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.29.(2013•哈尔滨)把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是()A.y=(x+2)2+2 B.y=(x+2)2﹣2 C.y=x2+2 D.y=x2﹣2考点:二次函数图象与几何变换.分析:先写出平移前的抛物线的顶点坐标,然后根据向下平移纵坐标减,向右平移横坐标加求出平移后的抛物线的顶点坐标,再利用顶点式解析式写出即可.解答:解:抛物线y=(x+1)2的顶点坐标为(﹣1,0),∵向下平移2个单位,∴纵坐标变为﹣2,∵向右平移1个单位,∴横坐标变为﹣1+1=0,∴平移后的抛物线顶点坐标为(0,﹣2),∴所得到的抛物线是y=x2﹣2.故选D.。
【2014中考必备】重庆中考数学总复习资料
大家好,请大家多多支持我在论坛的发帖更多给力的内容会分享给大家【2014中考必备】重庆中考数学专题复习——压轴题2014重庆中考【2014中考必备】重庆中考初三英语如何短时间攻克2014重庆中考【2014中考必备】中考满分作文33大技巧2014重庆中考【2014中考必备】重庆中考数学总复习资料2014重庆中考【2014中考必备】初中化学方程式分类汇总2014重庆中考2014年重庆中考化学知识点归纳与解题技巧总结2014重庆中考【2014中考必备】46篇中考满分作文大全2014重庆中考2014年中考饮食健康指导手册2014重庆中考【2014中考必备】2013年全国中考化学试卷分类汇编(VIP免费下载)2014重庆中考2014年中考日历有需要的吗?可以直接打印哦2014重庆中考重庆中考签约的几种方式,大家还有要补充的迈?(转)2014重庆中考2014年中考“数学科目”备考策略2014重庆中考2014中考物理的记忆方法2014重庆中考2014中考物理运动和力知识点总结2014重庆中考2014中考物理的学习技巧2014重庆中考2014中考物理压强问题知识点整理2014重庆中考中考营养专家:教你怎样“吃”出好成绩2014重庆中考2014年中考饮食切忌八条不良习惯2014重庆中考中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
2014函数知识点总结【较全】
基本概念1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
3、取值范围:一般的,一个函数的自变量允许取值的范围,叫做这个函数的取值范围。
4、确定函数取值范围的方法:(1)关系式为整式时,函数取值范围为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数取值范围还要和实际情况相符合,使之有意义。
5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
9、正比例函数一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.称y 与x 成正比例。
应用:(1)y 与x 成正比例,可设y=kx(k≠0) (2)y 与x-1成正比例,可设y=k (x-1)(3)y+1与x-1成正比例,可设y+1=k (x-1)(4)已知Q=W+100,W 由两部分的和组成:一部分与x 的平方成正比,另一部分与x 的n 成正比。
中考总复习:函数综合--知识讲解(基础).doc
中考总复习:函数综合—知识讲解(基础)责编:常春芳【考纲要求】1.平面直角坐标系的有关知识平面直角坐标系中各象限和坐标轴上的点的坐标的特征,求点关于坐标轴、坐标原点的对称点的坐标,求线段的长度,几何图形的面积,求某些点的坐标等;2.函数的有关概念求函数自变量的取值范围,求函数值、函数的图象、函数的表示方法;3.函数的图象和性质常见的题目是确定图象的位置,利用函数的图象确定某些字母的取值,利用函数的性质解决某些问题.利用数形结合思想来说明函数值的变化趋势,又能反过来判定函数图象的位置;4.函数的解析式求函数的解析式,求抛物线的顶点坐标、对称轴方程,利用函数的解析式来求某些字母或代数式的值.一次函数、反比例函数和二次函数常与一元一次方程、一元二次方程、三角形的面积、边角关系、圆的切线、圆的有关线段组成综合题.【知识网络】【考点梳理】考点一、平面直角坐标系 1.相关概念(1)平面直角坐标系 (2)象限 (3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标 (1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标 (3)平行于坐标轴的直线上的点的坐标 (4)关于x 轴、y 轴、原点对称的点的坐标 4.距离(1)平面上一点到x 轴、y 轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离 (3)平面上任意两点间的距离 5.坐标方法的简单应用(1)利用坐标表示地理位置 (2)利用坐标表示平移 要点诠释:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y ; (2)点P(x,y)到y 轴的距离等于x ; (3)点P(x,y)到原点的距离等于22y x .考点二、函数及其图象 1.变量与常量 2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象 要点诠释:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.考点三、一次函数1.正比例函数的意义2.一次函数的意义3.正比例函数与一次函数的性质4. 一次函数的图象与二元一次方程组的关系5.利用一次函数解决实际问题 要点诠释:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k ;确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b.解这类问题的一般方法是待定系数法.考点四、反比例函数 1.反比例函数的概念2.反比例函数的图象及性质3.利用反比例函数解决实际问题 要点诠释:反比例函数中反比例系数的几何意义,如下图,过反比例函数)0(≠=k xky 图像上任一点),(y x P 作x 轴、y 轴的垂线PM ,PN ,垂足为M 、N ,则所得的矩形PMON 的面积S=PM ∙PN=xy x y =∙.,y xk=∴||k S k xy ==,.考点五、二次函数 1.二次函数的概念2.二次函数的图象及性质3.二次函数与一元二次方程的关系4.利用二次函数解决实际问题 要点诠释:1、两点间距离公式(当遇到没有思路的问题时,可用此方法拓展思路,以寻求解题方法) 如图:点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则AB 间的距离,即线段AB 的长度为()()221221y y x x -+-.2、函数平移规律:左加右减、上加下减.考点六、函数的应用1.一次函数的实际应用2. 反比例函数的实际应用3. 二次函数的实际应用要点诠释:分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论.在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型.【典型例题】类型一、用函数的概念与性质解题1.已知一次函数y=(3a-2)x+(1-b),求字母a, b的取值范围,使得:(1)y随x的增大而增大;(2)函数图象与y轴的交点在x轴的下方;(3)函数的图象过第一、二、四象限.【思路点拨】(1)y=kx+b (k≠0)的图象,当k>0时,y随x的增大而增大;(2)当b<0时,函数图象与y轴的交点在x轴的下方;(3)当k<0, b>0时时,函数的图象过第一、二、四象限.【答案与解析】解:a、b的取值范围应分别满足:(1)由一次函数y=kx+b(k≠0)的性质可知:当k>0时,函数值y随x的增大而增大,即3a-2>0,∴23a>, 且b取任何实数.(2)函数图象与y 轴的交点为(0,1-b ), ∵ 交点在x 轴的下方,∴ ,即a≠, b >1.(3)函数图象过第一、二、四象限,则必须满足 .【总结升华】下面是y=kx(k≠0), y=kx+b (k≠0)的图象的特点和性质的示意图,如图1,当k >0时,y 随x 的增大而增大;当b >0时,图象过一、二、三象限,当b=0时,是正比例函数,当b <0时,图象过一、三、四象限;当y=x 时,图象过一、三象限,且是它的角平分线.由于常数k 、b 不同,可得到不同的函数,k 决定直线与x 轴夹角的大小,b 决定直线与y 轴交点的位置,由k 定向,由b 定点.同样,如图2,是k <0的各种情况,请你指出它们的图象的特点和性质.举一反三:【变式】作出函数y=x, 2x y x=,2()y x =的图象,它们是不是同一个函数?【答案】 函数2()y x =的自变量x 的取值范围是x≥0;函数2x y x=在x≠0时,就是函数y=x ;而x=0不在函数2x y x=的自变量x 的取值范围之内.由此,作图如下:可见它们不是同一个函数.类型二、函数图象及性质2.已知:(1)m 为何值时,它是一次函数. (2)当它是一次函数时,画出草图,指出它的图象经过哪几个象限?y 是随x 的增大而增大还是减小? (3)当图象不过原点时,求出该图象与坐标轴交点间的距离,及图象与两轴所围成的三角形面积. 【思路点拨】一次函数应满足:一次项(或自变量)的指数为1,系数不为0. 【答案与解析】(1)依题意:,解得m=1或m=4.∴当m=1或m=4时,它是一次函数.(2)当m=4时,函数为y=2x ,是正比例函数,图象过一,三象限, y 随x 的增大而增大.当m=1时,函数为y=-x-3,直线过二,三,四象限,y 随x 的增大而减小.(3)直线y=-x-3不过原点,它与x 轴交点为A(-3,0), 与y 轴交点为B(0,-3),..∴直线y=-x-3与两轴交点间的距离为,与两轴围成的三角形面积为.【总结升华】(1)某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0.(2)判断函数的增减性,关键是确定直线y=kx+b (k ≠0)中k 、b 的符号.(3)直线y=kx+b (k ≠0)与两轴的交点坐标可运用x 轴、y 轴上的点的特征来求,当直线y=kx+b (k ≠0)上的点在x 轴上时,令y=0,则,交点为;当直线y=kx+b (k ≠0)上的点在y 轴上时,令x=0,则y=b ,即交点为(0,b).举一反三:【高清课程名称:函数综合1 高清ID 号: 369111 关联的位置名称(播放点名称):经典例题2】 【变式】已知关于x 的方程2(3)40x m x m --+-=. (1)求证:方程总有两个实数根;(2)若方程有一个根大于4且小于8,求m 的取值范围;(3)设抛物线2(3)4y x m x m =--+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值. 【答案】证明:(1)22224(3)4(4)1025(5)b ac m m m m m ∆=-=---=-+=-≥0,所以方程总有两个实数根.解:(2)由(1)2(5)m ∆=-,根据求根公式可知,方程的两根为:23(5)2m m x -±-= 即11x =,24x m =-,由题意,有448m <-<,即812m <<.(3)易知,抛物线2(3)4y x m x m =--+-与y 轴交点为M (0,4m -),由(2)可知抛物线与x 轴的交点为(1,0)和(4m -,0),它们关于直线y x =-的对称点分别为(0,1-)和(0, 4m -), 由题意,可得14m -=-或44m m -=-,所以3m =或4m =.3.抛物线y=x 2+bx+c 图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x 2﹣2x﹣3,则b 、c 的值为( )A .b=2,c=2B .b=2,c=0C .b=﹣2,c=﹣1D .b=﹣3,c=2 【思路点拨】易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式,展开即可得到b ,c 的值. 【答案】B . 【解析】解:由题意得新抛物线的顶点为(1,﹣4), ∴原抛物线的顶点为(﹣1,﹣1),设原抛物线的解析式为y=(x ﹣h )2+k 代入得:y=(x+1)2﹣1=x 2+2x , ∴b=2,c=0. 故选B .【总结升华】抛物线的平移不改变二次项系数的值;讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.4.若一次函数y=kx+1的图象与反比例函数1y x=的图象没有公共点,则实数k 的取值范围是 . 【思路点拨】因为反比例函数1y x = 的图象在第一、三象限,故一次函数y=kx+1中,k <0,将解方程组 11y kx y x =+⎧⎪⎨=⎪⎩转化成关于x 的一元二次方程,当两函数图象没有公共点时,只需△<0即可.【答案】1-4k <. 【解析】由反比例函数的性质可知,1y x=的图象在第一、三象限, ∴当一次函数y=kx+1与反比例函数图象无交点时,k <0,解方程组11y kx y x =+⎧⎪⎨=⎪⎩,得kx 2+x-1=0, 当两函数图象没有公共点时,△<0,即1+4k <0, 解得1-4k <, ∴两函数图象无公共点时,1-4k <. 故答案为:1-4k <. 【总结升华】本题考查了反比例函数与一次函数的交点问题.关键是转化成关于x 的一元二次方程,再确定k 的取值范围.类型三、函数综合题5.(2015春•姜堰市校级月考)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,对称轴是直线x=﹣,有下列结论:①ab >0;②a+b+c <0;③b+2c <0;其中正确结论的个数是( )A .0B . 1C . 2D .3 【思路点拨】根据开口方向、对称轴、抛物线与y 轴的交点,确定a 、b 、c 的符号,根据对称轴和图象确定y >0或y <0时,x 的范围,确定代数式的符号. 【答案】C . 【解析】解:①∵开口向下,∴a<0,对称轴在y 轴的左侧,b <0,∴①正确; ②当x=1时,y <0,∴a+b+c<0,②正确;③﹣=﹣,2a=3b,x=﹣1时,y>0,a﹣b+c>0,b+2c>0③错误;故选:C.【总结升华】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.举一反三:【变式】二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A. B. C. D.【答案】由抛物线的图象可知,横坐标为1的点,即(1,a+b+c)在第四象限,因此a+b+c<0;∴双曲线的图象在第二、四象限;由于抛物线开口向上,所以a>0;对称轴x=>0,所以b<0;抛物线与x轴有两个交点,故b2﹣4ac>0;∴直线y=bx+b2﹣4ac经过第一、二、四象限.故选D.类型四、函数的应用6.(2015•舟山)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?【思路点拨】(1)把y=420代入y=30x+120,解方程即可求得;(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W 与x的关系式,再根据一次函数的增减性和二次函数的增减性解答;(3)根据(2)得出m+1=13,根据利润等于订购价减去成本价得出提价a与利润w的关系式,再根据题意列出不等式求解即可.【答案】解:(1)设李明第n天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x≤9时,p=4.1;当9≤x≤15时,设P=kx+b,把点(9,4.1),(15,4.7)代入得,,解得,∴p=0.1x+3.2,①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w最大=513(元);②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x是整数,∴当x=9时,w最大=714(元);③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,∴当x=﹣=12时,w最大=768(元);综上,当x=12时,w有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,设第13天提价a元,由题意得,w13=(6+a﹣p)(30x+120)=510(a+1.5),∴510(a+1.5)﹣768≥48,解得a=0.1.答:第13天每只粽子至少应提价0.1元.【总结升华】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.举一反三:【高清课程名称: 函数综合1 高清ID 号: 369111 关联的位置名称(播放点名称):经典例题3】【变式】抛物线2y ax bx c =++,a >0,c <0,2360a b c ++=.(1)求证:1023b a +>; (2)抛物线经过点1(,)2P m ,Q (1,)n . ① 判断mn 的符号; ② 抛物线与x 轴的两个交点分别为点A 1(,0)x ,点B 2(,0)x (A 在B 左侧),请说明116x <,2112x <<. 【答案】(1)证明:∵ 2360a b c ++=, ∴12362366b a b c c a a a a++==-=-. ∵ a >0,c <0,∴ 0c a <,0c a->. ∴ 1023b a +>.(2)解:∵ 抛物线经过点P 1(,)2m ,点Q (1,)n , ∴ 11 ,42 .a b c m a b c n ⎧++=⎪⎨⎪++=⎩① ∵ 2360a b c ++=,a >0,c <0,∴ 223a b c +=-,223a b c =--. ∴ 1112111()42424312b c m a b c a a a a +=++=+=+-=-<0. 2(2)33a a n abc a c c c =++=+--+=->0. ∴ 0mn <. ② 由a >0知抛物线2y ax bx c =++开口向上.∵ 0m <,0n >,∴ 点P 1(,)2m 和点Q (1,)n 分别位于x 轴下方和x 轴上方.∵ 点A ,B 的坐标分别为A 1(,0)x ,B 2(,0)x (点A 在点B 左侧), ∴ 由抛物线2y ax bx c =++的示意图可知,对称轴右侧的点B 的横坐标2x 满足2112x <<. ∵ 抛物线的对称轴为直线2b x a =-,由抛物线的对称性可1222x x b a +=-,由(1)知123b a -<, ∴ 12123x x +<. ∴ 12221332x x <-<-,即116x <.。
重庆2014中考数学考前冲刺(4)
DCBADC B A 重庆2014中考数学考前冲刺(4)(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线的2(0)y ax bx c a =++≠顶点坐标为24(,)24b ac b a a--,对称轴公式为2bx a=-。
一、选择题:(本大题12个小题,每小题4分,共48分) 1、5的相反数是( ) A 、15B 、5C 、5±D 、5-2、下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( )3、下列计算正确的是( ) A 、3252a a a +=B 、326(2)4a a =C 、222()a b a b +=+D 、623a a a ÷=4、分式11x+有意义。
则x 的取值范围是( )A 、1x ≠-B 、1x ≥-C 、1x <-D 、1x >-5、下列调查中,适宜采用全面调查(普查)方式的是( ) A 、环境保护部门了解兰州自来水污染情况 B 、了解某种水果的甜度和含水量C 、了解外地游客对我市旅游景点“磁器口”的满意程度D 、了解我班同学的中考体育成绩 6、如图,在Rt ABC ∆中,∠C=90°,1sin 3A =,BC=2,则AB=( ) A、B 、6C 、3D、7、如图,AB 是O 的直径,点C 、D 在O 上,且∠ABC=50°,则∠D 为( ) A 、300 B 、400 C 、500 D 、6008、下列图形是按一定规律排列的.依照此规律,第15个图形中共有★( ) A .30个 B .46个 C .53个 D .37个9、某化肥厂计划在规定臼期内生产化肥100吨,由于采用了,新技术,每天多生产化肥2吨.实际生产150吨与原计划生产100吨的时间相等.设原计划每天生产x 吨化肥,那么适合x 的方程是( ) A 、1001502x x =+ B 、1001502x x=- C 、1001502x x =- D 、1001502x x=+ 10、“2014重庆国际马拉松”比赛在南岸区举行.小明从家开车前往比赛场地参赛.途中发现忘了带参赛证, 立刻以原速原路返回.返家途中遇到给他送证件的妈妈,拿到证件后,小明立即加速向比赛场地赶去.则下列各图中,能反映他离家距离s 与开车时间t 的函数关系的大致图象是( )11、如图,ABCD 中,∠ABD=50°,AF ⊥BC 于F ,AF 交BD 于点E ,点O 是DE 的中点,连接OA 。
2014年中考总复习第一轮:第五讲:函数(-)直角坐标系、一次函数、反比例函数
第9题图第3题图第6题图yx第7题图第10题图第11题图第13题图2014年中考总复习第一轮:第五讲:函数(-)直角坐标系、一次函数、反比例函数一.知识点解析:1.平面直角坐标系:⑴意义:⑵坐标平面内的点与有序实数对之间是一一对应的关系;⑶坐标平面的划分;⑷特殊点的坐标特点:①x 轴上的点;②y 轴上;⑸对称性:①关于x 轴对称;②关于y 轴对称;③关于原点对称;⑹距离公式:(),Pa b 到①x 轴距离为b;②y 轴距离为a2.函数:⑴常量与变量;⑵函数的意义;⑶自变量的取值范围;⑷函数值;⑸函数的表示法;⑹作图像步骤;3.一次函数:⑴定义;正比例函数;⑵图像特征;⑶,k b 符号对图像的影响;⑷待定系数法求解析式;⑸两直线111222:,:l y k x b l y k x b =+=+之间的位置关系:①12k k ≠⇔12,l l 必相交;②1212,k k b b =≠⇔12,l l 平行;③1212,k k b b ==⇔12,l l 重合;④121k k ⋅=-⇔1l 2l ⊥;4.反比例函数:⑴定义;⑵图像特征⑶x y k⋅=⑷应用二.中考中的位置、难度、分值:填空、选择、解答;中等题,6-9分;三.失分原因:⑴题意审偏;⑵特定取值情况欠考虑,尤为与实际问题相结合;⑶计算失误;⑷分情况考虑不全 四.针对性策略:⑴认真审题;⑵在求取值范围时,要注意与实际问题相结合;⑶细心做计算;⑷要有回顾意识:有没有哪种情况还没考虑到。
五.针对性练习:1. 如图.在直角坐标系中,矩形ABC0的边OA 在x 轴上,边0C 在y 轴上,点B 的坐标为 (1,3),将矩形沿对角线AC 翻折,B 点落在D 点的位置,且AD 交y 轴,于点E .那么点D 的坐标为 。
2. 对于直角坐标平面内的任意两点A (x 1,y 1),B (x 2,y 2),定义它们之间的一种“距离”: ||AB||=|x 2-x 1|+|y 2-y 1|.给出下列三个结论: ①若点C 在线段AB 上,则||AC||+||CB||=||AB||;②在△ABC 中,若∠C=90°,则||AC||2+||CB||2=||AB||2;③在△ABC 中,||AC||+||C B||>||AB||.其中正确结论的个数为 。
2014重庆中考数学真题试卷.docx
2014年重庆市初中毕业暨高中招生考试数学试题(含答案全解全析)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-b2a ,4ac-b24a),对称轴为x=-b2a.第Ⅰ卷(选择题,共48分)一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的.1.实数-17的相反数是()A.17B.117C.-17 D.-1172.计算2x6÷x4的结果是()A.x2B.2x2C.2x4D.2x103.在√a中,a的取值范围是()A.a≥0B.a≤0C.a>0D.a<04.五边形的内角和是()A.180°B.360°C.540°D.600°5.2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是-4℃、5℃、6℃、-8℃,当时这四个城市中,气温最低的是()A.北京B.上海C.重庆D.宁夏6.关于x的方程2x-1=1的解是()A.x=4B.x=3C.x=2D.x=17.2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、丙、丁的成绩的方差分别是0.11、0.03、0.05、0.02.则当天这四位运动员“110米跨栏”的训练成绩最稳定的是()A.甲B.乙C.丙D.丁8.如图,直线AB∥CD,直线EF分别交直线AB、CD于点E、F,过点F作FG⊥FE,交直线AB 于点G.若∠1=42°,则∠2的大小是()A.56°B.48°C.46°D.40°9.如图,△ABC的顶点A、B、C均在☉O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°10.2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()11.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律,则第(6)个图形中面积为1的正方形的个数为()A.20B.27C.35D.4012.如图,反比例函数y=-6在第二象限的图象上有两点A、B,它们的横坐标分别为-1、-3,直线xAB与x轴交于点C,则△AOC的面积为()A.8B.10C.12D.24第Ⅱ卷(非选择题,共102分)二、填空题(本大题共6个小题,每小题4分,共24分)13.方程组{x =3,x +y =5的解是 .14.据有关部门统计,截止到2014年5月1日,重庆市私家小轿车已达到563 000辆,将563 000这个数用科学记数法表示为 .15.如图,菱形ABCD 中,∠A=60°,BD=7,则菱形ABCD 的周长为 .16.如图,△OAB 中,OA=OB=4,∠A=30°,AB 与☉O 相切于点C,则图中阴影部分的面积为 .(结果保留π)17.从-1,1,2这三个数字中,随机抽取一个数,记为a.那么,使关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积为14,且使关于x 的不等式组{x +2≤a,1-x ≤2a有解··的概率为 . 18.如图,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,且DE=2CE,连结BE.过点C 作CF ⊥BE,垂足是F,连结OF,则OF 的长为 .三、解答题(本大题共2个小题,每小题7分,共14分)解答时每小题都必须写出必要的演算过程或推理步骤.19.计算:√4+(-3)2-2 0140×|-4|+(16)-1.20.如图,△ABC 中,AD ⊥BC,垂足是D,若BC=14,AD=12,tan ∠BAD=34,求sin C 的值.四、解答题(本大题共4个小题,每小题10分,共40分)解答时每小题都必须写出必要的演算过程或推理步骤.21.先化简,再求值:1x ÷(x 2+1x 2-x -2x -1)+1x+1,其中x 的值为方程2x=5x-1的解.22.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇今年1~5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)该镇今年1~5月新注册小型企业一共有家,请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.23.为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0),则每户平均集资的资金在150元的基础a%,求a的值.上减少了10924.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连结MC,交AD于点N,连结ME.求证:①ME⊥BC;②DE=DN.五、解答题(本大题共2个小题,每小题12分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤.25.如图,抛物线y=-x2-2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点··E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,若点P 在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连结DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2√2DQ,求点F的坐标.26.已知:如图①,在矩形ABCD中,AB=5,AD=20,AE⊥BD,垂足是E.点F是点E关于AB的对3称点,连结AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度),当点F分别平移到线段AB、AD上时,直接写出相应的m的值;(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A'BF',在旋转过程中,设A'F'所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.。
2014重庆中考数学b卷试题及答案
2014重庆中考数学b卷试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^2 + bxC. y = ax^2 + cD. y = ax + b答案:A2. 计算下列哪个选项的结果是正数?A. (-2) × (-3)B. (-2) × 3C. 2 × (-3)D. (-2) × (-2)答案:A3. 已知一个等腰三角形的两边长分别为3和5,那么第三边的长度是多少?A. 3B. 5C. 6D. 8答案:B4. 以下哪个选项是实数?A. √4B. √(-1)C. √16D. √(-4)答案:C5. 一个数的平方根是2,那么这个数是?A. 4B. -4C. 2D. -2答案:A6. 以下哪个选项是不等式?A. 3x + 4 = 7B. 2x - 5 > 0C. 6x - 8 = 0D. 5x + 3答案:B7. 计算下列哪个选项的结果是0?A. 3 × 0B. 0 × (-2)C. 0 + 5D. 0 - 3答案:A8. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A9. 计算下列哪个选项的结果是-1?A. 1 - 2B. 2 - 3C. 3 - 4D. 4 - 5答案:A10. 以下哪个选项是多项式?A. 3x^2 + 5x + 1B. 3x^2C. 5xD. 1答案:A二、填空题(每题4分,共20分)1. 一个数的绝对值是5,那么这个数可以是______。
答案:±52. 一个角的补角是120°,那么这个角是______。
答案:60°3. 一个数的立方根是3,那么这个数是______。
答案:274. 一个数的平方是9,那么这个数是______。
答案:±35. 一个数的倒数是1/2,那么这个数是______。
中考总复习:函数综合--知识讲解(基础)
中考总复习:函数综合—知识讲解(基础)【考纲要求】1.平面直角坐标系的有关知识平面直角坐标系中各象限和坐标轴上的点的坐标的特征,求点关于坐标轴、坐标原点的对称点的坐标,求线段的长度,几何图形的面积,求某些点的坐标等;2.函数的有关概念求函数自变量的取值范围,求函数值、函数的图象、函数的表示方法;3.函数的图象和性质常见的题目是确定图象的位置,利用函数的图象确定某些字母的取值,利用函数的性质解决某些问题.利用数形结合思想来说明函数值的变化趋势,又能反过来判定函数图象的位置;4.函数的解析式求函数的解析式,求抛物线的顶点坐标、对称轴方程,利用函数的解析式来求某些字母或代数式的值.一次函数、反比例函数和二次函数常与一元一次方程、一元二次方程、三角形的面积、边角关系、圆的切线、圆的有关线段组成综合题.【知识网络】【考点梳理】考点一、平面直角坐标系1.相关概念(1)平面直角坐标系(2)象限(3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标(1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标(3)平行于坐标轴的直线上的点的坐标(4)关于x 轴、y 轴、原点对称的点的坐标4.距离(1)平面上一点到x 轴、y 轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离(3)平面上任意两点间的距离5.坐标方法的简单应用(1)利用坐标表示地理位置(2)利用坐标表示平移要点诠释:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y ;(2)点P(x,y)到y 轴的距离等于x ;(3)点P(x,y)到原点的距离等于22y x .考点二、函数及其图象1.变量与常量2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象要点诠释:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.考点三、一次函数1.正比例函数的意义2.一次函数的意义3.正比例函数与一次函数的性质4. 一次函数的图象与二元一次方程组的关系5.利用一次函数解决实际问题要点诠释:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k ;确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b.解这类问题的一般方法是待定系数法.考点四、反比例函数1.反比例函数的概念2.反比例函数的图象及性质3.利用反比例函数解决实际问题要点诠释:反比例函数中反比例系数的几何意义,如下图,过反比例函数)0(≠=k xk y 图像上任一点),(y x P 作x 轴、y 轴的垂线PM ,PN ,垂足为M 、N ,则所得的矩形PMON 的面积S=PM ∙PN=xy x y =∙. ,y xk = ∴||k S k xy ==,.考点五、二次函数1.二次函数的概念2.二次函数的图象及性质3.二次函数与一元二次方程的关系4.利用二次函数解决实际问题要点诠释:1、两点间距离公式(当遇到没有思路的问题时,可用此方法拓展思路,以寻求解题方法)如图:点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则AB 间的距离,即线段AB 的长度为()()221221y y x x -+-.2、函数平移规律:左加右减、上加下减.考点六、函数的应用1.一次函数的实际应用2. 反比例函数的实际应用3. 二次函数的实际应用要点诠释:分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论.在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型.【典型例题】类型一、用函数的概念与性质解题1.已知一次函数y=(3a-2)x+(1-b),求字母a, b的取值范围,使得:(1)y随x的增大而增大;(2)函数图象与y轴的交点在x轴的下方;(3)函数的图象过第一、二、四象限.【思路点拨】(1)y=kx+b (k≠0)的图象,当k>0时,y随x的增大而增大;(2)当b<0时,函数图象与y轴的交点在x轴的下方;(3)当k<0, b>0时时,函数的图象过第一、二、四象限.【答案与解析】解:a、b的取值范围应分别满足:(1)由一次函数y=kx+b(k≠0)的性质可知:当k>0时,函数值y随x的增大而增大,即3a-2>0,∴23a>, 且b取任何实数.(2)函数图象与y 轴的交点为(0,1-b ),∵ 交点在x 轴的下方,∴ ,即a≠, b >1.(3)函数图象过第一、二、四象限,则必须满足 .【总结升华】下面是y=kx(k≠0), y=kx+b (k≠0)的图象的特点和性质的示意图,如图1,当k >0时,y 随x 的增大而增大;当b >0时,图象过一、二、三象限,当b=0时,是正比例函数,当b <0时,图象过一、三、四象限;当y=x 时,图象过一、三象限,且是它的角平分线.由于常数k 、b 不同,可得到不同的函数,k 决定直线与x 轴夹角的大小,b 决定直线与y 轴交点的位置,由k 定向,由b 定点.同样,如图2,是k <0的各种情况,请你指出它们的图象的特点和性质.举一反三: 【变式】作出函数y=x, 2x y x=,2()y x =的图象,它们是不是同一个函数? 【答案】 函数2()y x =的自变量x 的取值范围是x≥0;函数2x y x =在x≠0时,就是函数y=x ;而x=0不在函数2x y x=的自变量x 的取值范围之内. 由此,作图如下:可见它们不是同一个函数.类型二、函数图象及性质2.已知:(1)m 为何值时,它是一次函数.(2)当它是一次函数时,画出草图,指出它的图象经过哪几个象限?y 是随x 的增大而增大还是减小?(3)当图象不过原点时,求出该图象与坐标轴交点间的距离,及图象与两轴所围成的三角形面积.【思路点拨】一次函数应满足:一次项(或自变量)的指数为1,系数不为0.【答案与解析】(1)依题意:,解得m=1或m=4.∴当m=1或m=4时,它是一次函数.(2)当m=4时,函数为y=2x ,是正比例函数,图象过一,三象限,y 随x 的增大而增大. 当m=1时,函数为y=-x-3,直线过二,三,四象限,y 随x 的增大而减小.(3)直线y=-x-3不过原点,它与x 轴交点为A(-3,0),与y 轴交点为B(0,-3),..∴直线y=-x-3与两轴交点间的距离为,与两轴围成的三角形面积为. 【总结升华】(1)某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0.(2)判断函数的增减性,关键是确定直线y=kx+b (k ≠0)中k 、b 的符号.(3)直线y=kx+b (k ≠0)与两轴的交点坐标可运用x 轴、y 轴上的点的特征来求,当直线y=kx+b (k ≠0)上的点在x 轴上时,令y=0,则,交点为;当直线y=kx+b (k ≠0)上的点在y 轴上时,令x=0,则y=b ,即交点为(0,b).举一反三:【高清课程名称:函数综合1 高清ID 号: 关联的位置名称(播放点名称):经典例题2】【变式】已知关于x 的方程2(3)40x m x m --+-=.(1)求证:方程总有两个实数根;(2)若方程有一个根大于4且小于8,求m 的取值范围;(3)设抛物线2(3)4y x m x m =--+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.【答案】证明:(1)22224(3)4(4)1025(5)b ac m m m m m ∆=-=---=-+=-≥0,所以方程总有两个实数根.解:(2)由(1)2(5)m ∆=-,根据求根公式可知,方程的两根为:23(5)2m m x -±-= 即11x =,24x m =-, 由题意,有448m <-<,即812m <<.(3)易知,抛物线2(3)4y x m x m =--+-与y 轴交点为M (0,4m -),由(2)可知抛物线与x 轴的交点为(1,0)和(4m -,0),它们关于直线y x =-的对称点分别为(0,1-)和(0, 4m -), 由题意,可得14m -=-或44m m -=-,所以3m =或4m =.3.抛物线y=x 2+bx+c 图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x 2﹣2x ﹣3,则b 、c 的值为( )A .b=2,c=2B .b=2,c=0C .b=﹣2,c=﹣1D .b=﹣3,c=2【思路点拨】易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式,展开即可得到b ,c 的值.【答案】B .【解析】解:由题意得新抛物线的顶点为(1,﹣4),∴原抛物线的顶点为(﹣1,﹣1),设原抛物线的解析式为y=(x ﹣h )2+k 代入得:y=(x+1)2﹣1=x 2+2x ,∴b=2,c=0.故选B .【总结升华】抛物线的平移不改变二次项系数的值;讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可. 4.若一次函数y=kx+1的图象与反比例函数1y x=的图象没有公共点,则实数k 的取值范围是 . 【思路点拨】 因为反比例函数1y x = 的图象在第一、三象限,故一次函数y=kx+1中,k <0,将解方程组 11y kx y x =+⎧⎪⎨=⎪⎩转化成关于x 的一元二次方程,当两函数图象没有公共点时,只需△<0即可.【答案】1-4k <. 【解析】由反比例函数的性质可知,1y x =的图象在第一、三象限, ∴当一次函数y=kx+1与反比例函数图象无交点时,k <0,解方程组11y kx y x =+⎧⎪⎨=⎪⎩,得kx 2+x-1=0, 当两函数图象没有公共点时,△<0,即1+4k <0,解得1-4k <, ∴两函数图象无公共点时,1-4k <. 故答案为:1-4k <. 【总结升华】 本题考查了反比例函数与一次函数的交点问题.关键是转化成关于x 的一元二次方程,再确定k 的取值范围.类型三、函数综合题5.(2015春•姜堰市校级月考)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,对称轴是直线x=﹣,有下列结论:①ab >0;②a+b+c <0;③b+2c <0;其中正确结论的个数是( )A .0B . 1C . 2D .3【思路点拨】根据开口方向、对称轴、抛物线与y 轴的交点,确定a 、b 、c 的符号,根据对称轴和图象确定y >0或y <0时,x 的范围,确定代数式的符号.【答案】C .【解析】解:①∵开口向下,∴a<0,对称轴在y 轴的左侧,b <0,∴①正确;②当x=1时,y <0,∴a+b+c<0,②正确;③﹣=﹣,2a=3b,x=﹣1时,y>0,a﹣b+c>0,b+2c>0③错误;故选:C.【总结升华】本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.举一反三:【变式】二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A. B. C. D.【答案】由抛物线的图象可知,横坐标为1的点,即(1,a+b+c)在第四象限,因此a+b+c<0;∴双曲线的图象在第二、四象限;由于抛物线开口向上,所以a>0;对称轴x=>0,所以b<0;抛物线与x轴有两个交点,故b2﹣4ac>0;∴直线y=bx+b2﹣4ac经过第一、二、四象限.故选D.类型四、函数的应用6.(2015•舟山)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足下列关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价﹣成本)(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?【思路点拨】(1)把y=420代入y=30x+120,解方程即可求得;(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W 与x的关系式,再根据一次函数的增减性和二次函数的增减性解答;(3)根据(2)得出m+1=13,根据利润等于订购价减去成本价得出提价a与利润w的关系式,再根据题意列出不等式求解即可.【答案】解:(1)设李明第n天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x≤9时,p=4.1;当9≤x≤15时,设P=kx+b,把点(9,4.1),(15,4.7)代入得,,解得,∴p=0.1x+3.2,①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w最大=513(元);②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x是整数,∴当x=9时,w最大=714(元);③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,∴当x=﹣=12时,w最大=768(元);综上,当x=12时,w有最大值,最大值为768.(3)由(2)可知m=12,m+1=13,设第13天提价a元,由题意得,w13=(6+a﹣p)(30x+120)=510(a+1.5),∴510(a+1.5)﹣768≥48,解得a=0.1.答:第13天每只粽子至少应提价0.1元.【总结升华】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.举一反三:【高清课程名称: 函数综合1 高清ID 号: 关联的位置名称(播放点名称):经典例题3】【变式】抛物线2y ax bx c =++,a >0,c <0,2360a b c ++=.(1)求证:1023b a +>; (2)抛物线经过点1(,)2P m ,Q (1,)n . ① 判断mn 的符号; ② 抛物线与x 轴的两个交点分别为点A 1(,0)x ,点B 2(,0)x (A 在B 左侧),请说明116x <,2112x <<. 【答案】(1)证明:∵ 2360a b c ++=, ∴12362366b a b c c a a a a++==-=-. ∵ a >0,c <0,∴ 0c a <,0c a->. ∴ 1023b a +>.(2)解:∵ 抛物线经过点P 1(,)2m ,点Q (1,)n , ∴ 11 ,42 .a b c m a b c n ⎧++=⎪⎨⎪++=⎩① ∵ 2360a b c ++=,a >0,c <0,∴ 223a b c +=-,223a b c =--. ∴ 1112111()42424312b c m a b c a a a a +=++=+=+-=-<0. 2(2)33a a n abc a c c c =++=+--+=->0. ∴ 0mn <. ② 由a >0知抛物线2y ax bx c =++开口向上.∵ 0m <,0n >,∴ 点P 1(,)2m 和点Q (1,)n 分别位于x 轴下方和x 轴上方.∵ 点A ,B 的坐标分别为A 1(,0)x ,B 2(,0)x (点A 在点B 左侧), ∴ 由抛物线2y ax bx c =++的示意图可知,对称轴右侧的点B 的横坐标2x 满足2112x <<. ∵ 抛物线的对称轴为直线2b x a =-,由抛物线的对称性可1222x x b a +=-,由(1)知123b a -<, ∴ 12123x x +<. ∴ 12221332x x <-<-,即116x <.。
《函数总复习》教案中考版北师大doc初中数学
《函数总复习》教案中考版北师大doc初中数学一、内容综述:四种常见函数的图象和性质总结图象专门点性质一次函数与x轴交点与y轴交点〔0,b〕(1)当k>0时,y随x的增大而增大;(2)当k<0时,y随x的增大而减小.正比例函数与x、y轴交点是原点(0,0)。
(1)当k>0时,y随x的增大而增大,且直线通过第一、三象限;(2)当k<0时,y随x的增大而减小,且直线通过第二、四象限反比例函数与坐标轴没有交点,但与坐标轴无限靠近。
(1)当k>0时,双曲线通过第一、三象限,在每个象限内,y随x的增大而减小;(2) 当k<0时,双曲线通过第二、四象限,在每个象限内,y随x的增大而增大。
二次函数与x轴交点或,其中是方程的解,与y轴交点,顶点坐标是(-,)。
(1)当a>0时,抛物线开口向上,并向上无限延伸;对称轴是直线x=-, y最小值=。
(2)当a<0时,抛物线开口向下,并向下无限延伸;对称轴是直线x=-, y最大值=本卷须知总结:1.关于点的坐标的求法:方法有两种,一种是直截了当利用定义,结合几何直观图形,先求出有关垂线段的长,再依照该点的位置,明确其纵、横坐标的符号,并注意线段与坐标的转化,线段转换为坐标看象限加符号,坐标转换为线段加绝对值;另一种是依照该点纵、横坐标满足的条件确定,例如直线y=2x和y=-x-3的交点坐标,只需解方程组就能够了。
2.对解析式中常数的认识:一次函数y=kx+b (k≠0)、二次函数y=ax2+bx+c(a≠0)及其它形式、反比例函数y=(k≠0),不同常数对图像位置的阻碍各不相同,它们所起的作用,一样是按其正、零、负三种情形来考虑的,一定要建立起图像位置和常数的对应关系。
3.关于二次函数解析式,除了把握一样式即:y=ax2+bx+c((a≠0)之外,还应把握〝顶点式〞y=a(x-h)2+k及〝两根式〞y=a(x-x1)(x-x2),〔其中x1,x2即为图象与x轴两个交点的横坐标〕。
2014年重庆中考数学分类汇编-数据的分析
2014年重庆中考数学分类汇编-数据的分析DA 、22B 、24C 、26D 、2815、在2014年重庆市初中毕业生体能测试中,某校初三有7名同学的体能测试成绩(单位:分)如下:50,48,47,50,48,49,48。
这组数据的众数是 。
17、在一个不透明的盒子里装有4个分别标有数字1,2,3,4的小球,它们除数字不同 其余完全相同,搅匀后从盒子里随机取出1个小球,将该小球上的数字作为a 的值,则使关于x 的不等式组212x a x a >-⎧⎨≤+⎩只有一个整数解的概率为 。
22、重庆市某餐饮文化公司准备承办“重庆火锅美食文化节”。
为了解市发对火锅的喜爱程度,该公司设计了一个调查问卷,将喜爱程度分为A (非常喜欢)、B (喜欢)、C (不太喜欢)、D (很不喜欢)四种类型,并派业务员进行市场调查。
其中一个业务员小丽在解放碑步行街对市民进行了随机调查,并根据调查结果制成了如下两幅不完整的统计图。
请结合统计图所给信息解答上列问题:(1)在扇形统计图中C所占的百分比是;小丽本次抽样调查的为数共有人;请将折线统计图补充完整;(2)为了解少数市民很不喜欢吃火锅的原因,小丽决定在上述调查结果中从“很不喜欢”吃火锅的市民里随机选出两位进行电话回访,请你用列表法或画树状图的方法,求所选出的两位市民恰好都是男性的概率。
6.(2013重庆市B)为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是3.5、10.9,则下列说法正确的是()A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐11.(2013重庆市B)下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1棵棋子,第②个图形一共有6棵棋子,第③个图形一共有16棵棋子,…,则第⑥个图形中棋子的颗数为()A.51 B.70 C.76 D.8115.(2013重庆市B)某届青年歌手大奖赛上,七位评委为甲选手打出的分数分别是:96.5,97.1,97.5,98.1,98.1,98.3,98.5.则这组数据的众数是.17.(2013重庆市B)在平面直角坐标系中,作△OAB,其中三个顶点分别是O(0,0),B(1,1),A(x,y)(﹣2≤x≤2,﹣2≤y≤2,x,y 均为整数),则所作△OAB为直角三角形的概率是.22.(2013重庆市B)为了贯彻落实国家关于增强青少年体质的计划,重庆市全面实施了义务教育学段中小学学生“饮用奶计划”的营养工程.某牛奶供应商似提供A(原味)、B(草莓味)、C(核桃味)、D(菠萝味)、E(香橙味)等五种口味的学生奶供学生选择(所有学生奶盒形状、大小相同),为了了解对学生奶口味的喜好情况,某初级中学九年级(1)班张老师对全班同学进行了调查统计,制成了如下两幅不完整的统计图:(1)该班五种口味的学生奶喜好人数组成一组统计数据,直接写出这组数据的平均数,并将折线统计图补充完整;(2)在进行调查统计的第二天,张老师为班上每位同学发放一盒学生奶,喜好B味的小明和喜好C味的小刚等四位同学最后领取,剩余的学生奶放在同一纸箱里,分别有B味2盒,C味和D味各1盒,张老师从该纸箱里随机取出两盒学生奶.请你用列表法或画树状图的方法,求出这两盒牛奶恰好同时是小明和小刚喜好的学生奶的概率.7.某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后由甲乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲乙两人成绩的稳定性相同D.无法确定谁的成绩更稳定10.下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2cm2,第(2)个图形的面积为8cm2,第(3)个图形的面积为18cm2……,则(10)第个图形的面积为()A.196 cm2 B.200 cm2 C.216 cm2D.256 cm215.某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:则这10名学生周末利用网络进行学习的平均时间是小时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)计算部分(二)概率与统计(三)图形与证明(四)函数第一章函数的图象第一节函数的图象性质第二节根据图象解不等式第二章函数的坐标与解析式第一节函数的解析式以及坐标第二节直角坐标系中求不规则图形的面积第三章动点与函数的关系第一节直角坐标系中动点表示长度第二节动点中的最值第三节特殊三角形的求证(五)应用题(六)动点(七)基础训练50套(八)10,16题专题(九)中考真题集合第一章函数的图象第一节函数的图象性质(艾西教育内部资料,请勿用于一切商业用途)一、一次函数和二次函数的图象性质名称图象解析式取值象限正比例函数过原点的直线y=kx(k≠0)K >0 一三K< 0 二四一次函数直线y=kx+b(k≠0)K>0 b>0一二三b<0 一三四K<0b>0 一二四b<0 二三四反比例函数双曲线ky= x(k≠0)K >0一三K< 0 二四二、二次函数的象性质二次函数中判断A,B,C;a+b+c;a-b+c;b2-4ac;a决定抛物线的开口方向:a>0 开口向上;a<0 开口向下c决定抛物线与y轴交点(0,c)的位置:c>0 图象与y轴交点在y轴正半轴;c=0 图象过原点;c<0图象与y轴交点在y轴负半轴。
a,b决定抛物线对称轴的位置: 对称轴是直线x = -b/2a (左同右异)对称轴在y轴左侧;a,b同号对称轴是y轴;b=0对称轴在y轴右侧:a,b异号a+b+c看抛物线与X=1这条直线的交点b2-4ac看函数于X轴的交点个数b,C/b,a/a,C的加减看顶点(4ac-b2)/4a;(-b)/2a;或b2-4ac交点个数课堂练习1、在同一直角坐标系中,二次函数y=ax2+bx+c与一次函数y=ax+c的大致图象可能是()5、(2011重庆中考).已知抛物线2(0)ya x b x c a =++≠在平面直角坐标系中的位置如图所示,则下列结论中, 正确的是( )A 、a>0B 、b<0C 、c<0D 、a+b+c>0第二节根据图象解不等式(艾西教育内部资料,请勿用于一切商业用途)一、两个一次函数的比较写出当y1<y2,y1=y2,y1>y2时X的取值步骤:1、确定交点坐标(a,b)2、看X<A,X=A,X>A,两直线的位置,上方时大二、一次函数和反比例函数的比较步骤:1、确定交点坐标(a,b)(d,c)(注意交点的个数情况,例题为2个交点的)2、因为X≠0,所以在考虑时要分为四个部分两直线的位置,上方时大课堂练习1、如图写出以下Y1大于等于Y2时X的取值范围。
2、如图,写出一次函数的函数值大于等于反比例函数时X的取值范围。
第二章函数的坐标与解析式;相交图形面积第一节函数的解析式以及坐标(艾西教育内部资料,请勿用于一切商业用途)列解析式的方法(3种)☻1、通过具体坐标,代入解析式2、根据图象来判断解析式3、通过实际问题来列解析式(应用题)求解析式具体步骤:1、在图形题里,先判断为的什么函数2、在标准式里,除自变量和因变量外,有几个不同的字母,需要几个完整的坐标3、代入坐标,解方程。
得出的值再对应代回原解析式解析式、图象、函数名称名称图象解析式坐标正比例函数过原点的直线y=kx(k≠0) 1一次函数直线y=kx+b(k≠0) 2反比例函数双曲线ky= x(k≠0)1二次函数y=ax2+bx+c(a ≠0) 3抛物线求坐标的方法:1、通过解析式①知道坐标的一半,用一个完整解析式,注意:2次函数中Y的值会对应2个X的值,所以要考虑象限②求交点坐标(没有任何关于坐标的信息):两个完整解析式★两个一次函数Y=K1X+B1(K1≠0);Y=K2X+B2(K2≠0),K1≠K2时有交点★一次函数Y=KX+B(K≠0);和反比例Y=K/X(K≠0)K/X=KX+B变成一元二次方程后用∆判断交点个数★一次函数和二次函数的焦点同上2、告之某图形面积,通过面积求长度注意:长度为正数,转化成坐标时要考虑象限和位置例1:如图三角形BDE 为4,B (-1,2)E (1,0)求D 的坐标?例2 、如图Rt ∆ABO 的顶点A 是双曲线xk y =与直线)1(+--=k x y 在第二象限的交点,AB ⊥x 轴于B 且S ∆ABO=23,求这两个函数的解析式?3、用三角函数,或比值来求坐标注意:①用三角函数时,先找直角三角形。
②比值并不表示具体数值,③用象限具体坐标正负第二节直角坐标系中求不规则图形的面积(艾西教育内部资料,请勿用于一切商业用途)具体步骤:1、把不规则图形,变成我们学过的规则图形三角形=1/2x底×高平行四边形=底×高梯形=1/2x(上底+下底)×高(注:需要的量最好是垂直或平行,X轴/Y轴)2、求出该图形各个顶点坐标,再计算例1:如图求三角形ACD的面积例2:如图B是抛物线的顶点坐标,求不规则图形ADCB的面积课堂练习2、如图,直线L1过点A (0,4),点D (4,0)直线L2:Y=1/2X+1与X 轴交于点C ,直线L1,L2相交于点B(1) 求直线L1的解析式和点B 的坐标 (2) 求三角形ABC 的面积3、如图,已知一次函数y k x b =+的图象经过点A (0,1)和点(,3),0B a aa -<,且与反比例函数3y x=-的图象交于B C 、两点.(1)求a 的值和一次函数的解析式; (2)连结,O BO C ,求O B C ∆的面积; (3)根据图象,直接写出当x 为何值时,使得一次函数的值小于反比例函数的值 .4、如图,Rt ∆ABO 的顶点A 是双曲线xky =与直线)1(+--=k x y 在第二象限的交点,AB ⊥x 轴于B 且S ∆ABO=23(1)求这两个函数的解析式(2)A ,C 的坐标分别为(-,3)和(3,1)求∆AOC 的面积。
5、如图,已知点A (4,m),B (-1,n)在反比例函数xy 8的图象上,直线AB 与x轴交于点C ,(1)求n 值(2)如果点D 在x 轴上,且DA =DC ,求点D 的坐标.第三章动点与函数的关系第一节直角坐标系中动点表示长度(艾西教育内部资料,请勿用于一切商业用途)注意:根据函数表示动点,转化成长度时要考虑象限例:写出下列个动点到X轴和Y轴的距离,及P1E,P2E,PE的长度(黄色线段的长度),第二节 动点中的最值(艾西教育内部资料,请勿用于一切商业用途)一、三角形线段最短/二次函数线段最短或最长例1;P 为直线L 上一动点,画出三角形ABC 周长最小时P 的位置。
/AP+PB 最短的位置。
具体步骤:(两点之间直线最短) 1、做点A 关于直线L 的对称点A 12、连接A 1B 。
A 1B 与直线L 的交点就是使三角形ABC 周长最小时P 的位置例2:已知抛物线Y=1/a (x-2)(x+3)(a>0)与X 轴交于点B ,C 与Y 轴交于点E ,且B 在点C 的左侧。
⑴若抛物线过点M (-2,-2)求实数a 的值 ⑵在⑴的条件下,解答下列问题 ①求出ΔBCE 的面积②在抛物线对称轴上找一点H ,使CH+EH 的值最小,直接写出H 的坐标。
二.动点围成的图形面积最大1、 二次函数的最大值与最小值y=ax 2+bx+c (a ≠0)二次函数抛物线a>0开口向上Y 有最小值(顶点坐标) a< 0开口向下Y 有最大值(顶点坐标)第三节特殊三角形的求证(艾西教育内部资料,请勿用于一切商业用途)一、等腰三角形(要考虑三种边等的情况)用边求证的常规步骤在动点没有规定具体位置的情况下,要考虑动点出现的多种情况1、辅助线:如果该动点不在X轴或Y轴上是,做该动点为顶点是该三角形垂直与X轴或Y轴上的高。
(那边可以形成相似三角形就做往那边的高)2、求出要求相等的一边的长,先用勾股定理再找相似三角形(用比值求,要X轴和Y轴上的两个比值3、再求出要求相等的另一边的长,先用勾股定理再找相似三角形4、用逆定理:假如两边相等。
列等式计算出该未知数5、把未知数带入解该动点的坐标,的出的数是否符合该段的取值范围6、符合该段的取值范围,根据具体象限的取值写出坐标设未知数,(有且只能有一个未知数,用勾股定理或相似三角形与该未知数的关系,详见教材动点求值)例:(2009中考,前略)如图P为直线BC上一动点,求出三角形APC为等腰三角形时P的坐标。
二、直角三角形(要考虑三个角分别为直角的情况)例:如图,在平面直角坐标系中,直线交x轴于点P,交y轴于点A,抛物线的图象过点E(-1,0),并与直线相交于A、B两点.求抛物线的解析式(关系式);过点A作AC⊥AB交x轴于点C,求点C的坐标;除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M的坐标,若不存在请说明理由.解:如右图1,因为一次函数交轴于点所以,,即,.又,一次函数交轴于点,所以,,,即,由、.是抛物线的图象上的点,,所以,抛物线的解析式是:如右图,、∴在中,∴点的坐标:设除点外,在坐标轴上还存在点,使得是直角三角形,.在中,若.那么是以为直径的圆与坐标轴的交点,.若交点在轴上(如右图2),设.则有图1图2,,此时. 若交点在上(如图3),设, 此时过作垂直于于点,则有△AOM ∽△AOM, 于是,,此时,或在中, 若,(如图4)设,同样过作垂直于点,则在中,有此时,综上所述,除点外,在坐标轴上还存在点,使得是直角三角形,满足条件的点的坐标是: 、或、或、或,共四个点图3图4中考练习题1、(2011北海)如图,抛物线y=ax2+bx+4与x轴交于A(-2,0)、B(4、0)两点,与y轴交于C点.(1)求抛物线的解析式;(2)T是抛物线对称轴上的一点,且△ATC是以AC为底的等腰三角形,求点T的坐标;(3)M、Q两点分别从A、B点以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到原点时,点Q立刻掉头并以每秒1.5个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,过点M的直线l⊥x轴交AC或BC于点P.求点M的运动时间t与△APQ面积S的函数关系式,并求出S的最大值.2、如图,已知抛物线Y=ax2+bx-3与直线y=x交于A,B两点,且A,B两点的横坐标分别为-1和3。
⑴求出此抛物线的解析式和过B点的反比例函数解析式⑵在第四象限的抛物线上有一动点M,连接OM、BM。
求ΔBOM的最大面积,并求出此时M点的坐标⑶在⑵中ΔBOM是最大面积的情况下,过点B的反比例函数图象上,是否存在一点P,使ΔBOP的面积与ΔBOM的面积相等?若存在,请求出P点坐标,若不存在,请说明理由。
已知二次函数图象顶点坐标为(1,0),直线Y=X+m与该二次函数图象交于点A,B两点,其中A点的坐标为(3,4)B点在Y轴上(1)求m的值及这个二次函数关系式(2)P为线段AB上的一个动点(点P不与A,B重合)过P做X轴的垂线与这个二次函数的图象交于点E,设线段PE 的长为h,点P的横坐标为x,求h与x之间的函数关系式。