2015年小升初数学数的整除复习题
小升初数学总复习知识梳理数的整除(附答案)
小升初总复习数与代数第一单元数的认识第2节数的整除知识梳理典例精讲【例1】把自然数A和B分解质因数后分别是A=2×3×11×m,B=2×3×7×m。
A、B两数的最大公因数是78,这两个数的最小公倍数是多少?【分析】这里要明白最大公因数和最小公倍数的意义,A、B两数的最大公因数就是这两个数的全部公有的质因数的积,也就是2×3×m;A、B两数的最小公倍数就是这两个数的全部公有质因数及各自独有质因数的积,也就是2×3×m×11×7.根据两个数的最大公因数是78,求出m的值,本题便迎刃而解。
【解】因为2×3×m=78,所以m=78÷2×3=13,因此2×3×m×11×7=78×11×7=155。
答:这两个数的最小公倍数是155.即时演练1.25和30的最大公因数是(),最小公倍数是()。
2. 把自然数A和B分解质因数后分别是A=2×3×m,B=2×7×m。
A、B两数的最大公因数是22,这两个数的最小公倍数是多少?3.两个数的最小公倍数是150,最大公因数是15.这两个数分别是()和()。
【例2】有一些糖果,如果把6个装一包少1个;如果8个装一包也少一个;如果把5个装一包还是少一个。
这些糖果至少有多少个?【分析】这些糖果,把6个装一包少1个说明糖果的总个数比6的倍数少1个;8个装一包也少一个说明糖果总个数比8的倍数少1个;把5个装一包还是少一个说明糖果的总个数比5的倍数少1个。
所以这些糖果的总个数比5、6、8的公倍数少1,这里求至少有糖果多少个,就是求比5、6、8的最小公倍数少1的数。
【解】5、6、8的最小公倍数是120.120-1=119(个)答:这些糖果至少有119个。
小升初专练-数论问题-数的整除特征通用版(含答案)
小升初专练-数论问题-数的整除特征【知识点归纳】整除是整数问题中一个重要的基本概念.如果整数a除以自然数b,商是整数且余数为0,我们就说a能被b整除,或b能整除a,或b整除a,记作b丨a.此时,b是a的一个因数(约数),a是b 的倍数数的整除特征(1)能被2整除的数的特征:如果一个整数的个位数是偶数,那么它必能被2整除.(2)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么它必能被5整除.(3)能被3(或9)整除的数的特征:如果一个整数的各位数字之和能被3(或9)整除,那么它必能被3(或9)整除.(4)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么它必能被4(或25)整除.(5)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么它必能被8(或125)整除.(6)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除.【经典题型】例1:下列4个数都是六位数,A是大于0小于10的自然数,B是0,一定能同时被2、3、5整除的数是( )A、AAABAAB、ABABABC、ABBABBD、ABBABA 分析:这个六数个位上的数字是0,能被2和5整除,不管A是比10小的哪个自然数,A+A+A的和一定是3的倍数,所以ABABAB一定能被3整除解:B=0,ABABAB能被2和5整除,A+A+A的和一定是3的倍数,ABABAB也一定能被3整除,故选:B.点评:此题主要考查能被2、3、5整除的数的特征:一个数个位上是0或5,这个数就能被5整除;个位是0、2、4、6、8的数能倍2整除;一个数各数位上的数字之和是3的倍数,这个数就能被3整除.【常考题型】例2:有一个四位数3AA1能被9整除,A是().分析:已知四位数3AA1能被9整除,那么它的数字和(3+A+A+1)一定是9的倍数然后再根据题意进一步解答即可.因为A是一个数字,只能是0、1、2、3、…、9中的某一个整数,最大值只能是9.若A=9,那么3+A+A+1=22,22<27,所以3AA1的各位数字和只能是9的1倍或2倍,即9或18.解:根据题意可得:四位数3AA1,它能被9整除,那么它的数字和(3+A+A+1)一定是9的倍数;因为A是一个数字,只能是0、1、2、3、…、9中的某一个整数,最大值只能是9;若A=9,那么3+A+A+1=3+9+9+1=22,22<27,所以,3AA1的各位数字和只能是9的1倍或2倍,即9或18;当3+A+A+1=9时,A=2.5,不合题意;当3+A+A+1=18时,A=7,符合题意;所以,A代表7,这个四位数是3771.答:A是7,故答案为:7.点评:本题主要考查能被9整除数的特征,即一个数能被9整除,那么这个数的数字和一定是9的倍数,然后在进一步解答即可.一.选择题1.下面四个数都是六位数,N是比10小的自然数,S是0,一定能被3和5整除的数是( )A.NNNSNN B.NSNSNS C.NSSNSS D.NSSNSN2.某班有一个小图书馆,共有300多本,从1开始,图书按自然数的顺序编号,即1,2,3…,小光看了这图书馆里都被2,3和8整除的书号,共16本,这个图书馆里至少有( )本图书.A.381B.382C.383D.3843.四位数同时是2、3和5的倍数,第一个里最大能填( )A.9B.8C.7D.64.用0,3,4,5四个数字组成的所有四位数都能被( )整除.A.2B.3C.55.用1~8八个数字组成两个四位数,每个数字只用1次.已知两个四位数都是9的整数倍,则两个四位数的差的最大值为( )A.5286B.4184C.7531D.70656.下列各数中是11的倍数的是( )A.75087B.117208C.632599D.4563517.从1,2,3,4,5这五个数字中选取四个组成一个四位数,使它能同时被3、5、7整除,这个四位数是( )A.1235B.1245C.2415二.填空题8.有一个号码是六位数,前四位是2857,后两位忘记了,但是这个六位数能被11和13整除,那么这个号码是 。
整除练习题及答案
整除练习题及答案整除是数学中的一个基本概念,指的是一个整数除以另一个不是零的整数,得到的商是整数,而没有余数。
以下是一些整除练习题及答案,供同学们练习和参考。
练习题1:判断以下哪些数字可以整除10。
A. 2B. 5C. 3D. 7答案:B. 5解析:10除以5等于2,没有余数,所以5可以整除10。
练习题2:找出100以内能被3整除的所有整数。
答案:3, 6, 9, 12, ..., 99解析:从3开始,每次加3,得到的数都能被3整除。
练习题3:如果一个数能同时被2和3整除,那么这个数能被6整除吗?答案:是的。
解析:如果一个数能同时被2和3整除,那么这个数是6的倍数,因为6是2和3的最小公倍数。
练习题4:找出最小的能被7整除的三位数。
答案:105解析:从100开始,第一个能被7整除的数是105。
练习题5:如果一个整数的个位是偶数,那么这个数能被2整除吗?答案:是的。
解析:任何个位是偶数的整数都能被2整除,因为2的倍数的个位只能是0, 2, 4, 6, 或8。
练习题6:一个数如果能被9整除,那么它也能被3整除吗?答案:是的。
解析:如果一个数能被9整除,那么它也能被3整除,因为9是3的倍数。
练习题7:找出100以内能被11整除的所有整数。
答案:11, 22, 33, ..., 99解析:从11开始,每次加11,得到的数都能被11整除。
练习题8:如果一个数的各位数字之和能被3整除,那么这个数本身能被3整除吗?答案:是的。
解析:如果一个数的各位数字之和能被3整除,那么这个数本身也能被3整除,这是3的整除规则。
练习题9:找出最小的能被13整除的四位数。
答案:104解析:从1000开始,第一个能被13整除的数是104。
练习题10:如果一个数能被4整除,那么它的最后两位数能被4整除吗?答案:是的。
解析:如果一个数能被4整除,那么它的最后两位数也能被4整除,因为4的倍数的最后两位数必须是4, 8, 12, ..., 96, 100。
小升初 第1讲《数的整除》
六年级
7
三个不同质数的倒数和为 n ,则是
多少?
1001
六年级
8
小明和爸爸进行登台阶运动。台阶共有 60级,爸爸每步登3级,小明每步登2级。 问,小明和爸爸都没有登过的台阶有多 少级?
六年级
9
狐狸和兔子进行跳跃比赛,狐狸每次
跳都只6跳92 一米次,。兔从子起每点次开跳始61,30 每米隔,他3 12米们设每有秒
六年级
12
第一讲 数的整除
六年级
1
(一)填空:
1.56、28的最大公因数是
是
。
,最小公倍数
2.自然数a除以自然数b,商是8,则a和b的最小公倍数是ຫໍສະໝຸດ 。3.最小合数的倒数是
,最小质数的倒数
是
,最小合数的倒数是最小质数倒数
的
%。
六年级
2
(一)填空:
4.能被3整除余2,被4整除余3的数中最小的一个
数是
。
5.三个连续自然数的和是21,这三个数的最小公
六年级
5
小刚用216元去买一种世博会纪念册, 正好将钱用完,他想如果每本纪念册 能便宜1元钱,那么他就可以多买3本, 钱也正好用完。那么他所买纪念册的 单价是多少元?
六年级
6
花花参加数学竞赛,她说:“我的成绩 和我的年龄以及我的名次乘起来是3916, 满分是100分。你知道花花的年龄、成绩 及名次各是多少吗?
倍数是
。
6.把114分解质因数是
,三个不同质数
的最小公倍数是273,这三个质数分别
是
。
六年级
3
一位采购者买了56瓶洗发液,发票上的 一些数字不慎被墨水玷污了,只看到 □78.2□元(□为墨水玷污了的数字)。 你能帮他算一算每瓶洗发液多少元吗?
数的整除(简单练习题及答案)
1、 将分别写有数字3,7,8的三张卡片排成三位数abc ———,使它是43的倍数,求abc ———。
2、 求被7除,余数是3的最小的三位数。
3、 求被7除,余数是4的最大的四位数。
4、 从1开始,依次写出1234…20032004,这个多位数除以9的余数是多少?5、 一个两位数与109的乘积为四位数,它能被23整除且商是一位数,这个两位数最大等于 。
6、 已知六位数□9786□是99的整数倍,这个六位数除以99的商是 。
7、判断15158能否被7、11或13整除。
8、六位数 能被18整除,则两位数 最大是多少?9、在所有五位数中,各位数字之和等于43,且能够被11整除的数有多少个?其中最大的一个五位数是多少?10、有72名学生共捐款□94.9□元,那么平均每人捐了多少元?11、已知五位数能被8和9整除,则x+y 是多少?12、一个六位数能被99整除,这个六位数最小是多少?13、在□里填上适当的数字,使得七位数□7358□□能分别被9,25和8整除。
14、若四位数能被11整除,那么a 表示哪个数?15、(难度系数:四颗星)如果653整除a b 2347—————————————,则a + b= 。
分析与答案1、(387)方法一、三张卡片可以排成 =6种可能,把这六种可能进行枚举,再一一被43除。
方法二、根据积的个位数字是由两个乘数的个位数字决定的性质。
当c=8时,分别用16、26 与43相乘,计算时可以先做估算,以便快速排除。
如26×43>20×43>800。
【点评】因为这个三位数的可能性只有6种,所以方法一所花的时间不会太长。
而方法二要求有较高的估算能力。
大家可以试试把方法一和方法二进行融合。
2、(101)方法一:找最小的三位数去除以7。
100÷7=14……2,3>2,3-2=1,∴100+1=101方法二:用字母表示N=7k+3,k为自然数。
∵N≥100,∴k≥(100-3)÷7=13 (6)【点评】方法一能够快速定位,但容易忽略题目的条件而出错;方法二是一般法,但要求学生有代数思想。
2015年北京小升初数学真题及答案
2015年北京小升初数学真题及答案一、填空题(每题5分)1.(5分)(2015•北京)++++++++.2.(5分)(2015•北京)小鹏同学在一个正方体盒子的每一个面上都写上一个字,分别是:我、喜、欢、数、学、课,正方体的平面展开图如右图所示,那么在该正方体盒子中,和“我”相对的面所写的字是.3.(5分)(2015•北京)1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有个.4.(5分)(2015•北京)一项机械加工作业,用4台A型机床,5天可以完成;用4台A型机床和2台B型机床3天可以完成;用3台B型机床和9台C型机床,2天可以完成,若3种机床各取一台工作5天后,剩下A、C型机床继续工作,还需要天可以完成作业.二、填空题(每题6分)5.(6分)(2015•北京)2008年1月,我国南方普降大雪,受灾严重.李先生拿出积蓄捐给两个受灾严重的地区,随着事态的发展,李先生决定追加捐赠资金.如果两地捐赠资金分别增加10%和5%,则总捐资额增加8%;如果两地捐赠资金分别增加15%和10%,则总捐资额增加13万元.李先生第一次捐赠了万元.6.(6分)(2015•北京)有5个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这5个数中最小数的最小值为多少?7.(6分)(2015•北京)从1,2,3,…,n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为.8.(6分)(2015•北京)如图边长为10cm的正方形,则阴影表示的四边形面积为平方厘米.9.(6分)(2015•北京)新年联欢会上,共有90人参加了跳舞、合唱、演奏三种节目的演出.如果只参加跳舞的人数三倍于只参加合唱的人数;同时参加三种节目的人比只参加合唱的人少7人;只参加演奏的比同时参加演奏、跳舞但没有参加合唱的人多4人;50人没有参加演奏;10人同时参加了跳舞和合唱但没有参加演奏;40人参加了合唱;那么,同时参加了演奏、合唱但没有参加跳舞的有人.三、填空题(每题6分)10.(6分)(2015•北京)皮皮以每小时3千米的速度登山,走到途中A点,他将速度降为每小时2千米.在接下来的1小时中,他走到山顶,又立即下山,并走到A点上方200米的地方.如果他下山的速度是每小时4千米,下山比上山少用了42分钟.那么,他往返共走了千米.11.(2015•北京)在一个3×3的方格表中填有1,2,3,4,5,6,7,8,9九个数,每格中只填一个数,现将每行中放有最大数的格子染成红色,最小数的格子染成绿色.设M是红格中的最小数,m是绿格中的最大数,则M﹣m可以取到个不同的值.12.(2015•北京)在1,2,3,…,7,8的任意排列中,使得相邻两数互质的排列方式共有种.13.(2015•北京)如果自然数a的各位数字之和等于10,则a称为“和谐数”.将所有的“和谐数”从小到大排成一列,则2008排在第个.14.(2015•北京)由0,0,1,2,3五个数码可以组成许多不同的五位数,所有这些五位数的平均数为.四、填空题(每题10分)15.(2015•北京)一场数学游戏在小聪和小明间展开:黑板上写着自然数2,3,4, (2007)2008,一名裁判现在随意擦去其中的一个数,然后由小聪和小明轮流擦去其中的一个数(即小明先擦去一个数,小聪再擦去一个数,如此下去),若到最后剩下的两个数互质,则判小聪胜;否则判小明胜.问:小聪和小明谁有必胜策略?说明理由.16.(2015•北京)将一张正方形纸片,横着剪4刀,竖着剪6刀,裁成尽可能大的形状大小一样的35张长方形纸片.再把这样的一张长方形纸片裁成尽可能大的面积相等的小正方形纸片.如果小正方形边长为2厘米,那么长方形纸片的面积应为多少平方厘米?说明理由.参考答案与解析一、填空题(每题5分)1.(5分)(2015•北京)++++++++.【考点】分数的巧算.【分析】通过分析式中数据发现:=+,,=+,=+=+,所以可将式中的后四个分数拆分后根据加法结合律进行巧算.【解答】解:++++++++=++++++++++++,=++++++++++++,=(++)+(+)+(++)+(++)+(),=1+1+1+1+1,=5.【点评】在分数的运算中,=.2.(5分)(2015•北京)小鹏同学在一个正方体盒子的每一个面上都写上一个字,分别是:我、喜、欢、数、学、课,正方体的平面展开图如右图所示,那么在该正方体盒子中,和“我”相对的面所写的字是学.【考点】正方体的展开图.【专题】立体图形的认识与计算.【分析】如图,根据正方形展开图的11种特征,属于“1﹣3﹣2”型,折叠成正方体后,“我”与“学”相对,“喜”与“数”相对,“欢”与“课”相对.【解答】解:如图,折叠成正方体后,“我”与“学”相对,“喜”与“数”相对,“欢”与“课”相对.故答案为:学.【点评】正方体展开图分四种类型,11种特征,每种特征折叠成正方体后哪些面相对是有规律的,可自己总线并记住,能快速解答此类题.3.(5分)(2015•北京)1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有228 个.【考点】数的整除特征.【专题】整除性问题.【分析】1到2008这2008个自然数中,3和5的倍数有个,3和7的倍数有个,5和7的倍数有个,3、5和7的倍数有个.所以,恰好是3、5、7中两个数的倍数共有133﹣19+95﹣19+57﹣19=228个.【解答】解:根据题干分析可得:1到2008这2008个自然数中,3和5的倍数有个,3和7的倍数有个,5和7的倍数有个,3、5和7的倍数有个.所以恰好是3、5、7中两个数的倍数共有133﹣19+95﹣19+57﹣19=228(个)答:恰好是3、5、7中两个数的倍数的数共有 228个.故答案为:228.【点评】此题主要考查整除的意义,及根据整除的意义和数的整除的特征解决有关的问题.4.(5分)(2015•北京)一项机械加工作业,用4台A型机床,5天可以完成;用4台A型机床和2台B型机床3天可以完成;用3台B型机床和9台C型机床,2天可以完成,若3种机床各取一台工作5天后,剩下A、C型机床继续工作,还需要 3 天可以完成作业.【考点】工程问题;二元一次方程组的求解.【专题】工程问题.【分析】把这项任务看作单位“1”,根据工作量÷工作时间=工作效率,分别求出A、B、C 三种机床每台每天的工作效率,再求出3种机床各取一台工作5天后,剩下的工作量,然后用剩下的工作量除以A、C两种机床的工作效率和即可.据此解答.【解答】解::设A型机床每天能完成x,B型机床每天完成y,C型机床每天完成z,则根据题目条件有以下等式:则,若3种机床各取一台工作5天后完成:()×5==,剩下A、C型机床继续工作,还需要的天数是:(1)===3(天);答:还需要3天完成任务.故答案为:3.【点评】此题考查的目的是理解掌握三元一次方程的解法,以及工作量、工作效率、工作时间三种之间关系的灵活运用.二、填空题(每题6分)5.(6分)(2015•北京)2008年1月,我国南方普降大雪,受灾严重.李先生拿出积蓄捐给两个受灾严重的地区,随着事态的发展,李先生决定追加捐赠资金.如果两地捐赠资金分别增加10%和5%,则总捐资额增加8%;如果两地捐赠资金分别增加15%和10%,则总捐资额增加13万元.李先生第一次捐赠了100 万元.【考点】百分数的实际应用.【专题】分数百分数应用题.【分析】两地捐赠资金分别增加10%和5%,则总捐资额增加8%,如果再在这个基础上两地增加第一次捐资的5%,那么两地捐赠资金分别增加到15%和10%,总量增加到8%+5%=13%,所以第一次李先生捐资13÷13%=100万.【解答】解:10%﹣5%=5%15%﹣10%=5%13÷(8%+5%)=13÷13%=100(万元)答:第一次捐了100万元.故答案为:100.【点评】首先根据已知条件求出已知数量占单位“1”的分率是完成本题的关键.6.(6分)(2015•北京)有5个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这5个数中最小数的最小值为多少?【考点】最大与最小.【专题】传统应用题专题.【分析】设中间数是a,则它们的和为5a,中间三数的和为3a.因为5a是平方数,所以平方数的尾数一定是5或者0;再由中间三数为立方数,所以a﹣1+a+a+1=3a,所以立方数一定是3的倍数.中间的数至少是1125,那么这五个数中最小数的最小值为1123.【解答】解:设设中间数是a,五个数分别是a﹣2,a﹣1,a,a+1,a+2;明显可以得到a﹣2+a﹣1+a+a+1+a+2=5a,由于5a是平方数,所以平方数的尾数一定是5或者0,再由3a是立方数,所以a﹣1+a+a+1=3a,所以立方数一定是3的倍数.所以这个数a一定是32×53=1125,所以最小数是1125﹣2=1123.答:这5个数中最小数的最小值为1123.【点评】考查平方数和立方数的知识点,同时涉及到数量较少的连续自然数问题,设未知数的时候有技巧:一般是设中间的数,这样前后的数关于中间的数是对称的.7.(6分)(2015•北京)从1,2,3,…,n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为108 .【考点】最大与最小.【专题】竞赛专题.【分析】被13除的同余序列当中,如余1的同余序列,1、14、27、40、53、66…,中只要取到两个相邻的,这两个数的差为13,如果没有两个相邻的数,则没有两个数的差为13,不同的同余序列当中不可能有两个数的差为13,对于任意一条长度为x的序列,都最多能取个数,即从第1个数起隔1个取1个基于以上,n个数分成13个序列,每条序列的长度为或,两个长度差为1的序列,能够被取得的数的个数也不会超过1,所以能使57个数任意两个数都不等于13,则这57个数被分配在13条序列中,当n取最小值时在每条序列被分配的数的个数差不会超过1,那么13个序列有8个分配了4个数,5个分配了5个数,这13个序列8个长度为8,5个长度为9,那么n=8×8+9×5=109,所以要使57个数必有两个数的差为13,那么n 的最大值为108.【解答】解:基于以上分析,n个数分成13个序列,每条序列的长度为或,两个长度差为1的序列,能够被取得的数的个数也不会超过1,所以能使57个数任意两个数都不等于13,则这57个数被分配在13条序列中,当n取最小值时在每条序列被分配的数的个数差不会超过1,那么13个序列有8个分配了4个数,5个分配了5个数,这13个序列8个长度为8,5个长度为9,那么n=8×8+9×5=109,所以要使57个数必有两个数的差为13,那么n的最大值为108.故答案为:108.【点评】差一定的情况下,我们就可以用一个数来确定另一个数,只要一个数大另一个随之大,只要一个小另一个随之小.8.(6分)(2015•北京)如图边长为10cm的正方形,则阴影表示的四边形面积为48 平方厘米.【考点】长方形、正方形的面积.【专题】平面图形的认识与计算.【分析】图中阴影部分的面积是正方形的面积减去4个空白三角形的面积,据此解答.【解答】解:如图所示,设左上角小长方形的长为a,右下角小长方形的长为b,四个空白三角形的面积是:[(10﹣b)(10﹣a)+(6﹣a)b+(a+4)(b+1)+(9﹣b)a]÷2=[100﹣10a﹣10b+ab+6b﹣ab+ab+a+4b+4+9a﹣ab]÷2=104÷2=52(平方厘米)阴影部分的面积是10×10﹣52=100﹣52=48(平方厘米)答:阴影部分的面积是48平方厘米.故答案为:48.【点评】本题的关键是设出未知数,分别求出四个空白三角形的面积的和,进而求出阴影部分的面积.9.(6分)(2015•北京)新年联欢会上,共有90人参加了跳舞、合唱、演奏三种节目的演出.如果只参加跳舞的人数三倍于只参加合唱的人数;同时参加三种节目的人比只参加合唱的人少7人;只参加演奏的比同时参加演奏、跳舞但没有参加合唱的人多4人;50人没有参加演奏;10人同时参加了跳舞和合唱但没有参加演奏;40人参加了合唱;那么,同时参加了演奏、合唱但没有参加跳舞的有17 人.【考点】容斥原理.【专题】传统应用题专题.【分析】用韦恩图可以清晰的呈现各个集合之间的数量关系:设只参加合唱的有x人,那么只参加跳舞的人数为3x,由50人没有参加演奏,10人同时参加了跳舞和合唱但没有参加演奏,得到只参加合唱的和只参加跳舞的人数和为50﹣10=40,所以只参加合唱的有10人,那么只参加跳舞的人数为30人,又由“同时参加三种节目的人比只参加合唱的人少7人”,得到同时参加三项的有3人,所以参加了合唱的人中同时参加了演奏、合唱但没有参加跳舞的有:40﹣10﹣10﹣3=17人.【解答】解:只参加合唱的和只参加跳舞的人数和为:50﹣10=40(人),所以只参加合唱的有10人,那么只参加跳舞的人数为30人,所以参加了合唱的人中同时参加了演奏、合唱但没有参加跳舞的有:40﹣10﹣10﹣3=17(人),答:同时参加了演奏、合唱但没有参加跳舞的有17人.故答案为:17.【点评】解答此题关键是明确参加合唱的和只参加跳舞的人数和为40人.三、填空题(每题6分)10.(6分)(2015•北京)皮皮以每小时3千米的速度登山,走到途中A点,他将速度降为每小时2千米.在接下来的1小时中,他走到山顶,又立即下山,并走到A点上方200米的地方.如果他下山的速度是每小时4千米,下山比上山少用了42分钟.那么,他往返共走了11.2 千米.【考点】简单的行程问题.【专题】综合行程问题.【分析】首先关注“在接下来的1小时中”,这一小时中,下山比上山少200米,设上山时间为x小时,则下山的时间为1﹣x小时;然后根据下山比上山少200米,可得2x﹣4(1﹣x)=0.2,解得x=0.7小时,即42分钟,这42分钟,行程1.4公里;最后根据“下山比上山少用了42分钟”,可得以每小时4千米的速度下山的时间和以每小时3千米的速度登山时间相等,所以下山距离与A点以下路程之比为3:4,所以A点以上距离是下山距离的,所以往返一共走了千米,据此解答即可.【解答】解:设速度降为每小时2千米后的1小时中,上山时间为x小时,下山为1﹣x小时,所以2x﹣4(1﹣x)=0.2,6x﹣4=0.26x﹣4+4=0.2+46x=4.26x÷6=4.2÷6x=0.70.7小时=42分钟,因为“下山比上山少用了42分钟”,所以以每小时4千米的速度下山的时间和以每小时3千米的速度登山时间相等,所以下山距离与A点以下路程之比为3:4,所以A点以上距离是下山距离的,所以往返一共走了:0.7×2÷×2=1.4=5.6×2=11.2(千米)答:他往返共走了11.2千米.故答案为:11.2.【点评】(1)此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握,解答此题的关键是判断出:以每小时4千米的速度下山的时间和以每小时3千米的速度登山的时间相等.(2)此题还考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.11.(2015•北京)在一个3×3的方格表中填有1,2,3,4,5,6,7,8,9九个数,每格中只填一个数,现将每行中放有最大数的格子染成红色,最小数的格子染成绿色.设M是红格中的最小数,m是绿格中的最大数,则M﹣m可以取到8 个不同的值.【考点】染色问题;排列组合.【专题】传统应用题专题.【分析】共有三行,三个红色方格中所填的数都是它们所在行中最大的数,因此它们不可能是1和2.又因为M是红格中的最小数,所以它们不可能是8和9,即M不可能是1、2、8、9.同理,m也不可能是1、2、8、9.这样M与m都介于3与7之间.因此M﹣m的差就介于3﹣7与7﹣3之间(包括﹣4与4).据此解答即可.【解答】解:三个红色方格中所填的数都是它们所在行中最大的数,因此它们不可能是1和2.又因为M是红格中的最小数,所以它们不可能是8和9,即M不可能是1、2、8、9.同理,m也不可能是1、2、8、9.这样M与m都介于3与7之间.因此M﹣m的差就介于3﹣7与7﹣3之间(包括﹣4与4).因此,考虑正负可以取到:﹣4、﹣3、﹣2、﹣1、1、2、3、4.所以,共有8种不同的值.答:M﹣m可以取到8个不同的值.故答案为:8.【点评】本题通过3×3的方格表考查了规律型:数字的变化,解题的关键是先得出M与m 可能的取值范围,再以此求出M﹣m可能的取值.12.(2015•北京)在1,2,3,…,7,8的任意排列中,使得相邻两数互质的排列方式共有1728 种.【考点】排列组合.【专题】传统应用题专题.【分析】这8个数之间如果有公因数,那么无非是2或3.8个数中的4个偶数一定不能相邻,对于这类多个元素不相邻的排列问题,考虑使用“插入法”,即首先忽略偶数的存在,对奇数进行排列,然后将偶数插入,但在偶数插入时,还要考虑3和6相邻的情况.奇数的排列一共有4!=24种,对任意一种排列4个数形成5个空位,将6插入,可以有符合条件的3个位置可以插,再在剩下的四个位置中插入2、4、8,一共有4×3×2=24种,一共有24×3×24=1728种.【解答】解:这8个数之间如果有公因数,那么无非是2或3.8个数中的4个偶数一定不能相邻,考虑使用“插入法”,即首先忽略偶数的存在,对奇数进行排列,然后将偶数插入,但在偶数插入时,还要考虑3和6相邻的情况.奇数的排列一共有:4!=24(种),对任意一种排列4个数形成5个空位,将6插入,可以有符合条件的3个位置可以插,再在剩下的四个位置中插入2、4、8,一共有4×3×2=24(种),综上所述,一共有:24×3×24=1728(种).答:使得相邻两数互质的排列方式共有 1728种.故答案为:1728.【点评】本题考查了排列组合知识的综合应用,关键是确定用“插入法”,分情况讨论.13.(2015•北京)如果自然数a的各位数字之和等于10,则a称为“和谐数”.将所有的“和谐数”从小到大排成一列,则2008排在第119 个.【考点】数字问题.【专题】传统应用题专题.【分析】本题根据自然数的排列规律及数位知识进行分析即可.一位数的和谐数个数为0,二位数的和谐数有:19、28、…91,共9个.三位数的和谐数有:(以1开头,以0、1、2…9作十位的,分别有且仅有一个和谐数,共10个)以1开头的有109、118、127、136、…、190,共10个.同理,以2开头的9个:208,217,…271.…以9开头的2个.则三位数和谐数共有:10+9+8+…+2=54个.四位和谐数:同理,以1为千位:分别讨论,对以0、1…9为百位的有10+9+8…+1=55个.综上共9+54+55=118个.2008是2开头的第一个,因此是第119个.【解答】解:一位数的和谐数个数为0,三位数和谐数共有:10+9+8+…+2=54个.1000至2000,和谐数共有10+9+8…+1=55个.综上共9+54+55=118个.2008是2开头的第一个,因此是第119个.故答案为:119.【点评】完成本此类题目要注意根据自然数的排列规律及数位知识找出其内有联系及规律,然后解答.14.(2015•北京)由0,0,1,2,3五个数码可以组成许多不同的五位数,所有这些五位数的平均数为21111 .【考点】平均数问题.【专题】平均数问题.【分析】以1为开头的5位数,后4位数一共有4×3=12种方法,其中在每一位上,2和3各出现3次,所以1为开头的5位数的和为10000×12+(2+3)×3333=136665,同样的,以2为开头的5位数的和为20000×12+(1+3)×3333=253332,以3为开头的5位数的和为30000×12+(2+1)×3333=369999,它们的和为759996,进而求出平均数.【解答】解:以1为开头的5位数,后4位数一共有4×3=12种方法,其中在每一位上,2和3各出现3次,所以1为开头的5位数的和为10000×12+(2+3)×3333=136665,同样的,以2为开头的5位数的和为20000×12+(1+3)×3333=253332,以3为开头的5位数的和为30000×12+(2+1)×3333=369999,(136665+253332+369999)÷(4×3×3)=759996÷36=21111.答:所有这些五位数的平均数为 21111;故答案为:21111.【点评】此题属于平均数问题,明确以1为开头的5位数,后4位数一共有4×3=12种方法,是解答此题的关键.四、填空题(每题10分)15.(2015•北京)一场数学游戏在小聪和小明间展开:黑板上写着自然数2,3,4, (2007)2008,一名裁判现在随意擦去其中的一个数,然后由小聪和小明轮流擦去其中的一个数(即小明先擦去一个数,小聪再擦去一个数,如此下去),若到最后剩下的两个数互质,则判小聪胜;否则判小明胜.问:小聪和小明谁有必胜策略?说明理由.【考点】最佳对策问题.【专题】数学游戏与最好的对策问题.【分析】(1)小聪采用如下策略:先擦去2008,然后将剩下的2006个自然数分为1003组,(2,3)(4,5),…(2006,2007),小明擦去哪个组的一个数,小聪接着就擦去同一组的另个数,这样最后剩下的两个数是相邻的两个数,而相邻的两个数是互质的,所以小聪必胜;(2)小明必胜的策略:①当小聪始终擦去偶数时,小明留下一对不互质的奇数,例如,3和9,而擦去其余的奇数;②当小聪从某一步开始擦去奇数时,乙可以跟着擦去奇数,这样最后给乙留下的三个数有两种情况,一种是剩下一个偶数和两个奇数3和9,此时乙擦掉那个偶数,另一种是至少两个偶数,此时已留下两个偶数就可以了.【解答】解:(1)小聪采用如下策略:先擦去2008,然后将剩下的2004个自然数分为1002组,(2,3)(4,5),…(2006,2007),小明擦去哪个组的一个数,小聪接着就擦去同一组的另个数,这样最后剩下的两个数是相邻的两个数,而相邻的两个数是互质的,所以小聪必胜;(2)小明必胜的策略:①当小聪始终擦去偶数时,小明留下一对不互质的奇数,例如,3和9,而擦去其余的奇数;②当小聪从某一步开始擦去奇数时,小明可以跟着擦去奇数,这样最后给小明留下的三个数有两种情况,一种是剩下一个偶数和两个奇数3和9,此时小明擦掉那个偶数,另一种是至少两个偶数,此时小明留下两个偶数就可以了.【点评】解答本题的关键是(1)小聪先擦掉2008,保证最后剩下的是两个数为相邻的数即可;(2)是看小聪如何擦,小明再灵活采取措施,保证剩下的两个数不是互质数.16.(2015•北京)将一张正方形纸片,横着剪4刀,竖着剪6刀,裁成尽可能大的形状大小一样的35张长方形纸片.再把这样的一张长方形纸片裁成尽可能大的面积相等的小正方形纸片.如果小正方形边长为2厘米,那么长方形纸片的面积应为多少平方厘米?说明理由.【考点】图形划分.【专题】平面图形的认识与计算.【分析】大正方形纸片被横着剪四刀,坚着剪六刀,所以横着裁成5份,坚着裁成7份,所以裁成的长方形纸片的长宽比为7:5,把这样的一张长方形纸片裁成尽可能大的面积相等的小正方形纸块,则正方形纸块的边长应该为长、宽的公约数,而5,7的公约数是1,所以长方形纸片的宽是小正方形纸块的边长的5倍,2×5=10厘米,所以长方形纸片的宽是10厘米,依此可求大正方形纸片的边长,再根据正方形的面积公式:s=a2,即可求出大正方形纸片的面积.【解答】解:根据题意可知:裁成的长方形纸片的长宽比为7:5,则正方形纸块的边长应该为长、宽的公约数,而5,7的公约数是1,所以长方形纸片的宽是小正方形纸块的边长的5倍,则长方形纸片的宽为:2×5=10(厘米),大正方形纸片的边长为:10×7=70(厘米),大正方形纸片的面积:70×70=4900(平方厘米).答:大正方形纸片的面积应是4900平方厘米.【点评】考查了通过操作实验探索规律,本题关键是理解长方形纸片的宽=小正方形纸块的边长×5.。
【小升初】小学数学《数的整除专题课》含答案
4.数的整除知识要点梳理一、整除意义整数a除以整数b(b≠O),如果除得的商是整数而余数为零,我们就说a能被b整除;或者说b能整除a。
整除的条件:1.除数、被除数都是整数。
2.被除数除以除数,商是整数而且余数为零。
二、因数和倍数1.如果a×b=c(且a、b、c均为非0自然数),那么我们说。
就是a与b的倍数,a与b就是。
的因数,因数和倍数是相互依存的。
我们只在自然数(零除外)范围内研究倍数和因数。
2.一个数因数的个数是有限的,其中最小的因数是1,最大的因数是它本身;一个数倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
3.求一个数因数的方法:利用积与因数的关系一对一对找,找出哪两个数的乘积等于这个数,那么这两个数就是这个数的因数。
如16=1×16=2×8 =4×4,那么16的因数就有1、2、4、8、16,计算时一定不要忘了1和这个数本身都是它的因数,注意按照一定的顺序以防遗漏。
4.求一个数倍数的方法:这个数本身分别乘以1、2、3、4、5…(即正整数)得到的积就是这个数的倍数。
三、常见数的倍数的特征2的倍数的特征:数的个位是0,2,4,6,8。
5的倍数的特征:数的个位是0,5。
3的倍数的特征:数的各个数位上数字的和是3的倍数,这个数就是3的倍数。
9的倍数特征:数的各个数位上数字的和是9的倍数。
4或25倍数的特征:数的末两位数是4或25的倍数。
8或125的倍数特征:数的末三位数是8或125的倍数。
7、11、13倍数特征:数的末三位数与末三位以前的数字所组成的数之差(大减小)是7、11或13的倍数。
11倍数特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除。
四、质数、合数、分解质因数1.若一个数的因数只有1和它本身,这个数就是质数,也叫素数。
最小的质数是2,也是质数中唯一的偶数。
2.若一个数的因数除了1和它本身外还有其他的因数,这个数就是合数。
小升初数学专题1:数与代数(2)数的整除、因数、倍数、合数、质数、奇数、偶数-附答案
小升初数学专题一:数与代数数的整除、因数、倍数、合数、质数、奇数、偶数一、选择题(共5题;共10分)1.(2分)在□里填一个数字,使25□是3的倍数,共有()种填法。
A.1B.2C.3D.42.(2分)自然数(0除外)按因数的个数分,可以分为()。
A.质数和合数B.奇数和偶数C.质数、合数D.质数、合数和13.(2分)8572至少加上()就能同时被2、5、3整除.A.2 B.3 C.5 D.84.(2分)一个两位数是由3个不同的质数相乘得到的,它的因数共有()个.A.8B.6C.5D.35.(2分)下面式子中是分解质因数的是()A.17=17×1B.28=4×7C.49=7×7D.35=1×5×7二、判断题(共7题;共14分)6.(2分)因为9=1.5×6,所以9是1.5和6的倍数,1.5和6是9的因数。
7.(2分)既是质数又是偶数的数只有2.(判断对错)8.(2分)判断对错.相邻的两个自然数(0除外),它们的最大公因数都是1.9.(2分)判断对错.如果两个数互质,那么这两个数一定都是质数.10.(2分)一个数的倍数一定比它的因数大。
11.(2分)判断对错能被9整除的数,一定能被3整除.12.(2分)判断对错.45能被9整除,所以45也能被9除尽.三、填空题(共11题;共39分)13.(4分)在1~20这些自然数中,奇数有________个,合数有________个,既是质数又是偶数的数有________,既是奇数又是合数的数有________.小升初数学专题14.(8分)如果72÷8=9,那么,________是________的因数,________也是________的因数;________是________的倍数,________也是________的倍数。
15.(8分)在4、9、36这三个数中________是________和________的倍数,________和________是________的因数;36的因数一共有________个,它的倍数有________个。
三亚市小学数学小升初衔接培优训练二:数的整除
三亚市小学数学小升初衔接培优训练二:数的整除姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、填空题 (共6题;共27分)1. (3分)两根长15厘米和18厘米的小棒截成同样长的小段,且没有剩余,每段最长________厘米,一共可以截成________段.2. (6分) 16和42的最大公因数是________,最小公倍数是________.3. (6分) (2015六下·武城期中) 能同时被称2、3和5整除的最小的三位数是________,把它分解质因数是________.4. (6分)写出能整除12的数:________,________,________,________,________,________.(从小到大依次写出)5. (3分)在1,2,…,1997这1997个数中,选出一些数,使得这些数中的每两个数的和都能被22整除,那么,这样的数最多能选出________个。
6. (3分)计算11335×55779,三个同学给出三个不同的答案分别为632254965、632244965、632234965其中有一个是正确的,则正确的是________ .二、单选题 (共5题;共15分)7. (3分)一筐苹果,2个一拿,3个一拿,4个一拿,5个一拿都正好拿完而没有余数,这筐苹果最少应有()。
A . 30个B . 90个C . 60个8. (3分)(2010·安徽) 两个自然数都是两位数,它们的最大公约数是6,最小公倍数是90,这两个自然数的和是().A . 48B . 60C . 96D . 1209. (3分)下面除法算式中,整除的是()A . 16÷5=3 (1)B . 4÷8=0.5C . 144÷12=12D . 10÷0.4=2510. (3分)一筐苹果,2个2个地拿,3个3个地拿,4个4个地拿,5个5个地拿都正好拿完没有余数,这筐苹果最少应有()个.A . 120B . 90C . 60D . 3011. (3分)下面算式中,能整除的算式是()A . 180÷60B . 391÷2C . 481÷23D . 499÷50三、综合题 (共9题;共58分)12. (5分)已知四个连续自然数,从小到大依次能被4,9,25,49整除.写出这样的最小的一组自然数.13. (5分)有一类数,每一个数都能被11整除,并且各位数字之和是20.问这类数中,最小的数是多少?14. (5分)根据要求把下列各算式分别填入方框内:42÷5;63÷21;13÷4;17÷(﹣4);28÷7;57÷915. (5分)五年级有108人,五年级有96人,把两个年级的学生平均分成人数相等的小队,每个小队最多是多少人?16. (5分)如图,7个小朋友围成一圈依次报数,小强报1,小兵报2,小丽报3…照这样谁最先报到7的倍数?其他小朋友有可能报出7的倍数吗?17. (5分)三根钢管分别长18dm,27dm,36dm,把它们截成相等的小月,每月最长多少分米?18. (8分) 4路、7路、12路起点站都在同一个地点。
小升初数学数的整除复习题
2015年小升初数学数的整除复习题一、填空题1、a与b是互质数,它们的最大公约数是( ),它们的最小公倍数是( )。
2、把171分解质因数是( )。
二、判断(对的打“√”,错的打“×”)1、任何自然数都有两个约数。
( )2、互质的两个数没有公约数。
( )3、一个自然数不是奇数就是偶数。
( )4、因为21÷7=3,所以21是倍数,7是约数。
( )5、有公约数1的两个数,叫做互质数。
( )6、因为8和13的公约数只有1,所以8和13是互质数。
( )7、所有偶数的公约数是2。
( )三、选择(将正确答案的序号填在括号里)1、下面各组数,一定不能成为互质数的一组是( )(1)质数与合数 (2)奇数与偶数(3)质数与质数 (4)偶数与偶数2、两个奇数的和( )(1)是奇数 (2)是偶数 (3)可能是奇数,也可能是偶数3、如果a、b都是自然数,并且a÷b=4,那么数a和数b的最大公约数是( )。
(1)4 (2)a (3)b4、一个正方形的边长是一个奇数,这个正方形的周长一定是( )(1)质数 (2)奇数 (3)偶数5、已知a能整除23,那么a是( )(1)46 (2)23 (3)1或236、如果用a表示自然数,那么偶数可以表示为( )(1)a+2 (2)2a (3)a-1 (4)2a-1能力素质提高1、甲、乙两数的最大公约数是3,最小公倍数是30,已知甲数是6,乙数是( )。
2、一个数被6、7、8除都余1,这个数最小是( )。
3、有9、7、2、1、0五个数字,用其中的四个数字,组成能同时被2、3、5整除的最小的四位数是( )。
4、某公共汽车始发站,1路车每5分钟发车一次,2路车每10分钟发车一次,3路车每12分钟发车一次。
这三路汽车同时发车后,至少再经过( )分钟又同时发车?渗透拓展创新1、五1班同学上体育课,排成3行少1人,排成4行多3人,排成5行少1人,排成6行多5人。
问上体育课的同学最少多少名?2、小红在操场周围种树,开始时每隔3米种一棵,种到9棵后,发现树苗不够,于是决定重种,改为每隔4米一棵,这时重种时,不必再拔掉的树有多少棵?。
数学小升初衔接培优训练二:数的整除
数学小升初衔接培优训练二:数的整除填空题有一张长48厘米,宽36厘米的长方形纸,如果要裁成若干同样大小的正方形而无剩余,裁成的小正方形的边长最大是厘米.【答案】12【解析】解:把48和36分解质因数:48=2×2×2×2×3,36=2×2×3×3,48和36的最大公因数是2×2×3=12;答:裁成的小正方形的边长最大是12厘米;故答案为:12.根据题意可知,求剪出的小正方形的边长最大是几厘米.也就是求48和36的最大公因数,先把这两个数分解质因数,它们公有质因数的乘积就是它们的最大公因数.由此解答.填空题A=2×3×5,B=3×5×7,A和B的最大公因数是,最小公倍数是.【答案】15;210【解析】解:A=2×3×5,B=3×5×7,A和B的最大公因数是:3×5=15;A和B的最小公倍数是:3×5×2×7=210.故答案为:15,210.求两个数的最大公因数和最小公倍数,首先把这两个数分解质因数,公有质因数的乘积就是这两个数的最大公因数;最小公倍数是公有质数与各自独有质因数的连乘积;因此解答.填空题如果a÷b=10,(a、b都是非0自然数),则a和b的最大公约数是,最小公倍数是A.aB.bC.10D.1.【答案】B;A【解析】解:a÷b=10,(a、b都是非0自然数),据此可知ab 是倍数关系,a为较大数,b为较小数,所以a和b的最大公约数是b,最小公倍数是a;故选:B,A.如果a÷b=10,(a、b都是非0自然数),据此可知a、b是倍数关系,根据倍数关系的两个数的最大公约数是较小数,最小公倍数是较大数,即可解答.解答本题关键是由a÷b=10,(a、b都是非0自然数),知ab是倍数关系,然后根据被关系的最大公因数和最小公倍数的求法解答.填空题一个五位数8□35△,如果这个数能同时被2、3、5整除,那么□代表的数字是,△代表的数字是.【答案】2或5或8;0【解析】解:8+3+5=16;三角形代表的数字在个位数,必须是0;□代表的数字可以是2或5或8,才能被3整除;故答案为:2或5或8,0.能同时被2、3、5整除的数,必须具备:被2、5整除个位上的数只能是0,各个数位上的数的和能够被3整除;现在8+3+5=16,代表的数字可以是2或5或8,符合条件.此题属于考查能同时被2、3、5整除的数的特征,记住特征,灵活解答.填空题有一个四位数3AA1能被9整除,A是.【答案】7【解析】解:根据题意可得:四位数3AA1,它能被9整除,那么它的数字和(3+A+A+1)一定是9的倍数;因为A是一个数字,只能是0、1、2、3、…、9中的某一个整数,最大值只能是9;若A=9,那么3+A+A+1=3+9+9+1=22,22<27,所以,3AA1的各位数字和只能是9的1倍或2倍,即9或18;当3+A+A+1=9时,A=2.5,不合题意;当3+A+A+1=18时,A=7,符合题意;所以,A代表7,这个四位数是3771.答:A是7,故答案为:7.已知四位数3AA1能被9整除,那么它的数字和(3+A+A+1)一定是9的倍数然后再根据题意进一步解答即可.因为A是一个数字,只能是0、1、2、3、…、9中的某一个整数,最大值只能是9.若A=9,那么3+A+A+1=22,22<27,所以3AA1的各位数字和只能是9的1倍或2倍,即9或18.填空题有三个连续的自然数,其中最小的能被3整除,中间的能被5整除,最大的能被7整除,请写出一组符合条件的数.(答案不唯一)【答案】159,160,161【解析】解:这三个连续整数在100?200之间,故其百位数字确定为1.由于中间数能被5整除,故其末位数为0或5,所以,最小数的百位数字为1,个位数字为9或4;若最小数的个位数字为9,由其能被3整除,故其十位数字为2、5、8;若最小数的个位数字围,由其能被三整除,其十位数字为1,4,7;从而,最小数只可能是129,159,189,114,144,174中的某几个数130,160,190,115,145,175已能被5整除,故只须从131,161,191,116,146,176中筛选出能被7整除的数,即:上述六数中只有161=7×23满足要求;所以所求连续三数为159,160,161;故答案为:159,160,161.三个自然数的百位数字都是1,由于中间的数能被5整除,故中间数的个位数字只能是0或5,从而最小的数的末位数字只能是9或4(即10?1=9,5?1=4);下一步可利用被3整除的数的特征确定其十位数字,最后再用牧举法确定这3个连续整数即可.选择题用大小相等的长方形纸,每张长12厘米,宽8厘米.要拼成一个正方形,最少需要这种长方形纸()A.4张B.6张C.8张【答案】B【解析】解:(24÷12)×(24÷8),=2×3,=6(张);答:需要6张.故选:B.12和8的最小公倍数是24,所以拼成后正方形边长是24厘米,需要小长方形的长的个数是24÷12,需要小长方形宽的个数是24÷8.需要这种纸的张数就是(24÷12)×(24÷8).据此解答.选择题甲每3天去少年宫一次,乙每4天去一次,丙每6天去一次,如果6月1日甲、乙、丙同时去少年宫,则下次同去少年宫应是()A.6月12日B.6月13日C.6月24日D.6月25日【答案】B【解析】解:把4、6分解质因数:4=2×2;6=2×3;~4、6的最小公倍数是:2×2×3=12;他们再过12天同去少年宫;1+12=13(日),即6月13日.故选:B.根据题意,是求3、4、6的最小公倍数,就是求4、6的最小公倍数,首先把这两个数分解质因数,它们的公有质因数和各自独有质因数的乘积就是它们的最小公倍数,然后进行推算日期即可.此题属于求最小公倍数问题,求3个数的最小公倍数,利用分解质因数的方法,它们的公有质因数和各自独有质因数的乘积就是它们的最小公倍数.选择题下列各组数中,第二个数能被第一个数整除的是()A.2.5和5B.4和10C.0.4和1.2D.5和25【答案】D【解析】解:A、2.5和5;2.5是小数,只能说5能被2.5除尽;B、4和10;10÷4=2…2,有余数,10不能被4整除;C、0.4和1.2;0.4,1.2都是小数,只能说1.2能被0.4除尽;D、5和25;25÷5=5,25能被5整除;故选:D.除就是指:若整数“a”除以大于0的整数“b”,商为整数,且余数为零,我们就说a能被b整除;整除都是对于整数而言的.选择题车库里面有8间车房,顺序编号为1,2,3,4,5,6,7,8.这车房里所停的8辆汽车的车号均为三位数且恰好是8个连续整数.已知每辆车的车房号都能被自己的车号整除,车号尾数是3的汽车车号为()A.853B.843C.863【答案】B【解析】解:1,2,3,4,5,6,7,8的最小公倍数是840,因为840加上1~8中的某个数后必能被这个数整除,所以8辆汽车的车号依次为841~848.故车号尾数是3的汽车车号是843.答:尾数是3的汽车车号是843.故选:B.1,2,3,4,5,6,7,8的最小公倍数是840,840加上1~8中的某个数后必能被这个数整除,所以8辆汽车的车号依次为841~848.据此即可解答问题.选择题有5张卡片上面的数字分别是0,4,5,6,7,从中抽出3张组成所有三位数中能被4整除的有()A.11B.12C.10D.15【答案】D【解析】解:能被4整除,那么最后两位数能被4整除(因为100的倍数都能被4整除),这样,最后两位只能是:04,40,56,60,64、76六种.当最后两位数为04时:百位在5,6,7选一个,三种;当最后两位数40时:百位在5,6,7选一个,三种;当最后两位数56时:百位在4,7选一个,两种;当最后两位数为60时:百位在4,5,7选一个,三种(因为百位数不为0);当最后两位数为64时:百位在5,7选一个,两种(因为百位数不为0);当最后两位数76时:百位在5,4选一个,两种;所以共有3+3+2+3+2+2=15种.故选:D.利用被4整除的特征:当一个数的末两位能被4整除,这个数就能被4整除,由此特征分类讨论即可解决问题.解答题四位数A752是24的倍数,A最大是几?【答案】解:24=3×2×2×2,A752应该能被3整除.四位数A752是24的倍数,A+7+5+2=14+A能被3整除.那A只可能是:7、4、1,因为A在千位上,所以A最大是7.【解析】24分解成:3×2×2×2 因此:A752应该能被3整除.也就是A+7+5+2=14+A能被3整除.那A只可能是:7、4、1 所以,试算一下可得,A最大为7.解答题若“AB59A”能被198整除,求(A+B)的和.【答案】解:A+B+5+9+A=2A+B+5=9(A+5+A)?(B+9)=2A?B?4=0解得A=2 B=0那么A+B=2+0=2【解析】198=2×9×11,要是能被9整除,则A+B+5+9+A 是9的倍数,2A+B+5 是9的倍数;能被11整除,那么(A+5+A)?(B+9)=2A?B?4 是11的倍数解答题食品店买来85个面包,如果每2个装一袋,能正好装完吗?如果每5个装一袋,能正好装完吗?为什么?【答案】解:85个面包,如果每2个装一袋,不能正好装完,因为85的个位上是5,所以85不能被2整除;如果每5个装一袋,能正好装完,因为85的个位上是5,所以85能被5整除;答:如果每2个装一袋,不能正好装完;如果每5个装一袋,能正好装完.【解析】能被2整除的数的特征:个位上是0、2、4、6、8的数;能被5整除的数的特征:个位上是0或5的数;再根据能被2、5整除的数的特征进行判断能否正好装完.此题考查能被2、5整除的数的特征及其运用.解答题小红和妈妈在中心广场锻炼,妈妈跑一圈用6分钟,小红跑一圈用8分钟.她们同时从起点出发,他们几分钟后可以在起点第一次相遇?【答案】解:6=2×3,8=2×2×2,所以6和8的最小公倍数是:2×3×2×2=24(分钟),答:他们24分钟后可以在起点第一次相遇【解析】妈妈回到起点用的时间是6分钟的整数倍,小红回到原地是8分钟的整数倍,则第一次同时回到起点就是6和8的最小公倍数分钟,因此得解.解答题如图,7个小朋友围成一圈依次报数,小强报1,小兵报2,小丽报3…照这样谁最先报到7的倍数?其他小朋友有可能报出7的倍数吗?【答案】解:小红最先报到7的倍数.因为只有7个小朋友,像这样一直进行下去,只有小红能报到7的倍数,其他小朋友报的数不可能是7的倍数.【解析】一共是7个小朋友,根据报数方法,可知小红最先报到7的倍数.由题意可知7个数字一循环,依此即可作出判断.解答题两根钢筋分别长为24米和18米,现把它截成同样长的小段,且无剩余,每段最长可截成多少米?一共可截成多少段?【答案】解:24=2×2×2×318=2×3×324和18的最大公因数是2×3=624÷6=418÷6=34+3=7(段).答:每段最长可截成6米,一共可截成7段【解析】根据题意,可计算出18与24的最大公约数,即是每根小段的最长,然后再用18除以最大公约数加上24除以最大公约数的商,即是一共截成的段数,列式解答即可得到答案.解答此题的关键是利用求最大公约数的方法计算出每小段的长度,然后再计算每根钢筋可以截成的段数,再相加即可.解答题老师买回一些学习用品(数量相同).老师付给营业员100元,找回28元,请问找回的钱对不对,你是怎么判断出来的?【答案】解:花了:100?28=72(元),因为学习用品的数量都相同,所以花的钱数应是10+5+3=18的倍数,72是18的4倍,即买回的一些学习用品的数量都是4,所以,找回的钱对.答:找回的钱对.【解析】根据题意可知,花了100?28=72元,因为学习用品的数量都相同,所以花的钱数应是10+5+3=18的倍数,所以判断72是否是18的倍数即可.本题主要考查求一个数的倍数是方法.找出花的钱数是否是18的倍数是解答本题的关键.解答题有7袋米,它们的重量分别是12、15、17、20、22、24、26公斤.甲先取走一袋,剩下的由乙、丙、丁取走.已知乙和丙取走的重量恰好一样多,而且都是丁取走重量的2倍.那么甲先取走的那一袋的重量是多少公斤?【答案】解:由于剩下的由乙、丙、丁三人买走,乙和丙买走的重量恰好相等,都是丁的2倍,即乙,丙,丁三人买走的重量比为2:2:1,所以,甲买走一袋后剩下的重量应是2+2+1=5的倍数.而总重量为:12+15+17+20+22+24+26=136千克,从136中减去一个数后和得数能被5整除,则这个这个数的个位数字一定是1或者6,这7袋大米的重量中只有26的个位是6,所以,甲买走的那一袋大米的重量是26千克.答:甲买走的那一袋大米的重量是26千克.【解析】因为乙和丙买走的重量一样多,且都是丁的2倍,所以乙丙丁三人买走的重量是丁的5倍;而7袋大米的总重量是12+15+17+20+22+24+26=136千克,从136千克里减去5的倍数,剩下的就是甲买走的重量.反过来说,从136千克里减去甲买走的那一袋大米的重量,剩下的重量一定是5的倍数,要使136减去一个数后和得数能被5整除,这个数的个位数字一定是1或者6,而这7袋大米的重量中只有26的个位是6,因此甲买走的那一袋大米的重量是26千克解答题一个房间的长是3.6米,宽是2.4米.现在要在这个房间铺上相同的方砖.(1)每块方砖的边长最大是多少分米?(2)这间房间一共需要多少块这样的方砖?【答案】(1)解:3.6米=36分米,2.4米=24分米,36=2×2×3×3,24=2×2×2×3,36和24的最大公约数是2×2×3=12,答:每块方砖的边长最大是12分米(2)解:(36×24)÷(12×12)=864÷144=6(块)答:这间房间一共需要6块这样的方砖【解析】(1)3.6米=36分米,2.4米=24分米,要求每块方砖的边长最大是多少分米,就是求36和24的最大公约数;(2)要求这间房间一共需要多少块这样的方砖,用房间的面积除以每块方砖的面积即可.解答此题的关键是运用求最小公倍数的方法求出每块方砖边长,进而解决问题.。
小学数学小升初衔接培优训练二:数的整除
小学数学小升初衔接培优训练二:数的整除姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、填空题 (共6题;共27分)1. (3分)小明给一个分数约分时,约了两次2,一次3,得,原来这个分数的分子与分母最大公约数是,最小公倍数是.2. (6分)把一张长40厘米、宽30厘米的长方体纸裁成同样大的正方形。
如果要求纸没有剩余,裁处的正方形的边长最大是厘米。
3. (6分) 24的全部因数有,18的全部因数有;24和18公因数有,24和18最大公因数是.4. (6分) 365的17倍是,185是5的倍。
5. (3分)有一个整数,用它去除70,110,160所得的3个余数的和是50,那么这个整数是.6. (3分)有0,1,2,4,7五个数字,从中选出四个数字组成一个四位数,把其中能被3整除的四位数从小到大排列起来是.二、单选题 (共5题;共15分)7. (3分) A,N两只青蛙进行跳跃比赛,A每次跳10厘米,B每次跳15厘米,它们每秒都只跳1次,且一起从起点开始,在比赛途中,每隔12厘米有一个陷阱,当它们中的一只掉进陷阱时,另一只距离它最近的陷阱有()厘米.A . 2B . 4C . 6D . 88. (3分)(2013·成都) 某砖长24厘米,宽12厘米,高5厘米,用这样的砖堆成一个正方体用砖的块数可以为()A . 40B . 120C . 1200D . 24009. (3分)下面说法正确的是()A . 3和5都是互质数B . 两个质数的积一定是合数C . 假分数的倒数一定小于1D . 1.5能被0.3整除10. (3分)从1到2000共2000个整数里,是3的倍数但不是5的倍数的数有()个.A . 532B . 533C . 53411. (3分) (2019五下·京山期末) 把从1到200这200个自然数中既不是3的倍数,又不是5的倍数的数从小到大排成一排,那么第100个数是()A . 188B . 187C . 184D . 182三、综合题 (共9题;共58分)12. (5分)已知四个连续自然数,从小到大依次能被4,9,25,49整除.写出这样的最小的一组自然数.13. (5分)如果能整除,那么自然数n的最小值是多少?14. (5分)根据要求把下列各算式分别填入方框内:42÷5;63÷21;13÷4;17÷(﹣4);28÷7;57÷915. (5分)少先队员排队做操,无论每列是5人还是6人,都能排成一个长方形队伍且没有剩余。
六年级下册数学小升初专题讲练:数的整除进阶试卷
数论问题能力进阶——数的整除进阶整除:①一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;…②一个数各位数字之和能被3整除,这个数就能被3整除;一个数各位数字之和能被9整除,这个数就能被9整除;③如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除;④如果一个整数的末三位与末三位以前的数字组成的数之差能被7,11或13整除,那么这个数能被7,11或13整除;⑤部分特殊数的分解:111=3×37;1001=7×11×13;11111=41×271;10001=73×137;10101=3×7×13×37;1995=3×5×7×19;1998=2×3×3×3×37;2007=3×3×223;2008=2×2×2×251;经典精讲例1六位数3ABABA是6的倍数,这样的六位数有多少个?例2已知四位数abcd是11的倍数,且有b+c=a,bc为完全平方数,求此四位数。
例32,…,9这是个数字组成能被11整除的最大十位数是多少?例4能被11整除,且各位数字的和为14,并小于1000的正整数有( )个。
在1,2,…,2001这2001个数中选出一些数,使得取出的这些数中任意两个数的和都能被26整除,这样的数最多能选出( )个。
七位数4_____75xy中末两位数是多少时,它有两个不同的七位数4_____75xy能被99整除?测试题1.一个五位数2x3y6是72的倍数,且两位数y6是9的倍数,则xy=( )。
A.46B.43C.50D.422.一个六位数568abc,能分别被3,4,5整除,这个六位数最小是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年小升初数学数的整除复习题
一、填空题
1、a与b是互质数,它们的最大公约数是( ),它们的最小公倍数是( )。
2、把171分解质因数是( )。
二、判断(对的打“√”,错的打“×”)
1、任何自然数都有两个约数。
( )
2、互质的两个数没有公约数。
( )
3、一个自然数不是奇数就是偶数。
( )
4、因为21÷7=3,所以21是倍数,7是约数。
( )
5、有公约数1的两个数,叫做互质数。
( )
6、因为8和13的公约数只有1,所以8和13是互质数。
( )
7、所有偶数的公约数是2。
( )
三、选择(将正确答案的序号填在括号里)
1、下面各组数,一定不能成为互质数的一组是( )
(1)质数与合数 (2)奇数与偶数
(3)质数与质数 (4)偶数与偶数
2、两个奇数的和( )
(1)是奇数 (2)是偶数 (3)可能是奇数,也可能是偶数
3、如果a、b都是自然数,并且a÷b=4,那么数a和数b的最大公约数是( )。
(1)4 (2)a (3)b
4、一个正方形的边长是一个奇数,这个正方形的周长一定是( )
(1)质数 (2)奇数 (3)偶数
5、已知a能整除23,那么a是( )
(1)46 (2)23 (3)1或23
6、如果用a表示自然数,那么偶数可以表示为( )
(1)a+2 (2)2a (3)a-1 (4)2a-1
能力素质提高
1、甲、乙两数的最大公约数是3,最小公倍数是30,已知甲数是6,乙数是( )。
2、一个数被6、7、8除都余1,这个数最小是( )。
3、有9、7、2、1、0五个数字,用其中的四个数字,组成能同时被2、3、5整除的最小的四位数是( )。
4、某公共汽车始发站,1路车每5分钟发车一次,2路车每10分钟发车一次,3路车每12分钟发车一次。
这三路汽车同时发车后,至少再经过( )分钟又同时发车?
渗透拓展创新
1、五1班同学上体育课,排成3行少1人,排成4行多3人,排成5行少1
人,排成6行多5人。
问上体育课的同学最少多少名?
2、小红在操场周围种树,开始时每隔3米种一棵,种到9棵后,发现树苗不够,于是决定重种,改为每隔4米一棵,这时重种时,不必再拔掉的树有多少棵?。