图形的相似教案(教学设计)
图形的相似优秀教案
图形的相似优秀教案【篇一:教案:图形的相似全章教案】【篇二:27.1图形的相似(第1课时)教学设计】课题:27.1图形的相似(第1课时)教学设计一、教学目标知识技能1.通过实例知道相似图形的意义.2.经历观察、猜想和分析过程,知道相似多边形对应角相等,对应边的比相等,反之亦然.过程与方法1.初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。
2.经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性,掌握分析问题和解决问题的一些基本方法。
3.在与他人合作和交流过程中,能较好地理解他人的思考方法和结论。
4.能针对他人所提的问题进行反思,初步形成评价与反思的意识。
情感态度价值观1.积极参与数学活动,对数学有好奇心和求知欲。
2.感受成功的快乐,体验独自克服困难、解决数学问题的过程,有克服困难的勇气,具备学好数学的信心。
3.在运用数学表述和解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的价值。
4.敢于发表自己的想法、勇于质疑,养成认真勤奋、独立思考、合作交流等学习习惯,形成实事求是的科学态度。
二、教学重点和难点1.重点:相似图形和相似多边形的意义.2.难点:探索相似多边形对应角相等,对应边的比相等.三、教学过程(一)创设情境,导入新课师:(出示两张全等的图片)大家看这两个图形,(稍停)这两个图形形状相同,大小也相同,它们叫什么图形?生:(齐答)叫全等图形.师:(出示两张相似的图片)大家看这两个图形,(稍停)这两个图形只是形状相同,它们叫什么图形?(稍停)它们叫相似图形.也可以说,这两个图形相似(板书:相似).师:和全等一样,相似也是两个图形的一种关系.从今天开始我们要学习新的一章,这一章要学的内容就是相似(在“相似”前板书:第二十七章).(二)尝试指导,讲授新课师:相似图形在我们的生活中是很常见的,大家把课本翻到第34页,(稍停)34页上有几个图,左上方是用同一张底片洗出的不同尺寸的照片,它们是相似图形;还有大小不同的两个足球,它们也是相似图形;还有一辆汽车和它的模型,它们也是相似图形.师:看了这些相似图形,哪位同学能给相似图形下一个定义?生:??(让几名同学回答)(师出示下面的板书)形状相同的两个图形叫做相似图形.师:请大家一起把相似图形的概念读两遍.(生读)师:(出示两张全等的图片)全等图形,它们不仅形状相同,而且大小也相同;(出示两张相似的图片)而相似图形,它们只是形状相同,它们的大小可能相同,也可能不相同.师:明确了相似图形的概念,下面请同学们来举几个相似图形的例子,谁先来说?生:??(让几位同学说,如果学生说的题材不够广泛,师可以再举几个例子.譬如,放电影时,屏幕上的画面与胶片上的图形是相似图形;实际的建筑物与它的模型是相似图形;复印机把一个图形放大,放大后的图形和原来图形是相似图形)师:好了,下面请大家做一个练习.(三)试探练习,回授调节1.下列各组图形哪些是相似图形?(1) (2) (3)(4)(5)(6)2.如图,图中是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?(四)尝试指导,讲授新课(师出示下图)c/ac/ab/师:(指准图)这个三角形和这个三角形形状相同,所以它们是相似三角形.从图上看,这两个相似三角形的角有什么关系?生:∠a=∠a′,∠b=∠b′,∠c=∠c′.(生答师板书:∠a=∠a′,∠b=∠b′,∠c=∠c′)师:(指图)这两个相似三角形的边有什么关系?(让生思考一会儿)师:(指准图)ab与a′b′的比是abab(板书:),bc与b′c′的比aⅱbaⅱbbcbccaca是(板书:),ca与c′a′的比是(板书:),这三bⅱcbⅱccⅱacⅱa个比相等吗?生:(齐答)相等.师:为什么相等?(稍停后指准图)△a′b′c′可以看成是△abc缩小得到的,假如ab是a′b′的2倍,那么可以想象,bc也是b′c′的2倍,ca也是c′a′的2倍,所以这三个比相等(在式子中间写上两个等号).师:我们再来看一个例子. d/da/ (师出示下图) a c/cb/师:(指准图)这个四边形和这个四边形形状相同,所以它们是相似四边形.从图上看,这两个相似四边形的角有什么关系?生:∠a=∠a′,∠b=∠b′,∠c=∠c′,∠d=∠d′.(生答师板书:∠a=∠a′,∠b=∠b′,∠c=∠c′,∠d=∠d′)师:(指图)这两个相似四边形的边有什么关系?生:abbccadaabbccada===.(生答师板书:===)aⅱbbⅱccⅱadⅱaaⅱbbⅱccⅱadⅱa师:(指式子)这四个比为什么相等?(稍停后指准图)四边形a′b′c′d′可以看成是四边形abcd放大得到的,假如ab是a′b′的一半,那么可以想象,bc也是b′c′的一半,cd也是c′d′的一半,da也是d′a′的一半,所以这四个比相等.师:从这两个例子,大家想一想,你能得出一个什么结论?(等到有一部分同学举手再叫学生)生:??(多让几名学生发表看法)(师出示下面的板书)相似多边形对应角相等,对应边的比也相等.师:请大家把这个结论一起来读两遍.(生读)师:相似多边形对应角相等,对应边的比也相等.实际上,这个结论反过来也是成立的,反过来怎么说?生:??(让几名学生说)(师出示下面的板书)对应角相等,对应边的比也相等的多边形是相似多边形.师:请大家把反过来的结论一起来读两遍.(生读)师:我们知道,形状相同的多边形是相似多边形.但是,什么样才算形状相同呢?(稍停)从这两个结论我们可以看到,对多边形来说,所谓形状相同,实际上指的就是对应角相等,对应边的比也相等.对应角相等,对应边的比也相等的多边形是相似多边形.所以,现在我们可以给相似多边形下一个更明确的定义.(师出示下面的板书)对应角相等,对应边的比也相等的两个多边形叫做相似多边形. 师:下面我们利用相似多边形的概念来做两个练习.(五)试探练习,回授调节a5 a/3 110bbc c/(1)两个等边三角形一定相似;()(2)两个正方形一定相似;()(3)两个矩形一定相似;()(4)两个菱形一定相似. ()(六)归纳小结,布置作业师:(指准板书)本节课我们学习了相似图形和相似多边形的概念.什么叫做相似图形?形状相同的两个图形叫做相似图形.从这两个结论,我们进一步发现,对多边形来说,所谓形状相同指的就是对应角相等,对应边的比也相等.所以我们又给相似多边形下了一个更明确定义:对应角相等,对应边也相等的两个多边形叫做相似多边形.(作业:p35练习1.p38习题1.4.)教学反思:注意讲课节奏,对学困生要跟踪辅导注意少讲多练,提高课堂效率;注意调动学生的积极性,培养认真细致,勤奋钻研的品质。
人教版数学九年级下册教学设计27.1《图形的相似》
人教版数学九年级下册教学设计27.1《图形的相似》一. 教材分析《图形的相似》是人教版数学九年级下册第27.1节的内容,本节主要让学生理解相似图形的概念,掌握相似图形的性质,以及学会运用相似图形解决实际问题。
教材通过生动的实例和丰富的练习,引导学生探索和发现相似图形的性质,培养学生的观察能力、推理能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了平面几何的基本概念和性质,如点、线、面的关系,角度、三角形的性质等。
但是,对于相似图形的概念和性质,学生可能较为陌生,需要通过实例和练习来逐步理解和掌握。
同时,学生可能对于解决实际问题,尤其是涉及到相似图形的实际问题,感到困难,需要教师的引导和帮助。
三. 教学目标1.了解相似图形的概念,掌握相似图形的性质。
2.学会运用相似图形解决实际问题。
3.培养学生的观察能力、推理能力和解决问题的能力。
四. 教学重难点1.相似图形的概念和性质。
2.运用相似图形解决实际问题。
五. 教学方法1.实例教学:通过生动的实例,引导学生观察和发现相似图形的性质。
2.问题驱动:提出实际问题,引导学生运用相似图形进行解决。
3.分组讨论:学生分组讨论,培养学生的合作能力和解决问题的能力。
4.练习巩固:通过丰富的练习,巩固学生对相似图形的理解和掌握。
六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示实例。
2.练习题:准备相关的练习题,巩固学生的学习效果。
3.实物模型:准备一些实物模型,如相似的三角形、矩形等,帮助学生直观地理解相似图形。
七. 教学过程1.导入(5分钟)利用实物模型或图片,引导学生观察和比较相似的图形,引发学生对相似图形的兴趣。
提问:你们发现这些图形有什么共同的特点?学生回答:形状相同,但大小不同。
教师总结:这就是我们今天要学习的相似图形。
2.呈现(10分钟)展示教学课件,讲解相似图形的概念和性质。
通过实例和图形的变换,引导学生发现相似图形的性质,如对应边的比例关系、对应角的相等关系等。
图形相似教学设计(共6篇)
图形相似教学设计(共6篇)第1篇:图形相似的教学案例三星初中邱清华教学内容:依据新教材(苏科版)八年级下学期《图形的相似》的相关内容而开发生成的适合网络教学的自编教材。
教材设计意念:根据基础教育课程的具体目标,我们知道学习是学生主动建构知识的过程的建构主义理论,把握好学生的独立探索与教师的引导支持之间的辩证关系。
因此在教学中,我给予了学生充足的时间习参与集体活动,进行多向、充分的探索交流,关注学生学习兴趣的养成,让学生在课堂活动中感悟知识的生成、发展与变化,形成良好的情感、态度和价值观;其次根据初中生的心理特点,他们对游戏活动有着强烈的好奇心,以及对具有挑战性的知识强烈的欲望,再加上他们已有平面图形的有关知识作基础,完全有可能也有能力自己探索相似图形的一些本质特征,因此我利用几何画板软件设计了几个带有竞争意识的游戏活动,使他们在游戏中学到数学知识,在活动中掌握知识,从而在快乐中感受知识的来龙去脉。
教材分析:本节内容选于苏科版教材八年级(下),本章在已学习“全等图形”的基础上,以认识相似图形(即形态相同图形)为核心内容,在本节课的学习过程中,通过几何画板软件,让学生充分感受到相似图形的魅力,通过动手操作画出相似图形,体会相似图形在现实中的应用,进一步增强学生的数学应用意识,通过几个小游戏让学生充分领略到学习的乐趣。
本节课重在学生自己动脑、动手,培养创造精神和探究意识,因而在教学中,教师要热情鼓励学生自主探究和大胆创新,对每一位同学作品给予鼓励和足够的重视。
教学重点:学生自主探索出相似图形的基本特征;利用坐标的变化放大(或缩小)图形。
教学难点:正确地运用相似图形的特征解决生活中实际问题。
教学目标:使学生联系生活实际初步认识相似图形,在观察、操作、比较、交流中,探索并发现相似图形的规律;引导学生经历探索、发现、创造、交流等丰富多彩的数学游戏活动,发展学生的数学能力和审美观,使学生学会从数学的角度认识世界,解释生活、逐步形成“数学地思维”的习惯;以“生活中的数学”为载体,使学生体会相似图形的神奇,养成“学数学、用数学”的意识,培养学生的动手操作能力和创新精神。
《图形的相似》教案
图形的相似(一)一、教学目标1. 理解并掌握两个图形相似的概念.2. 了解成比例线段的概念,会确定线段的比.二、重点、难点1. 重点:相似图形的概念与成比例线段的概念.2. 难点:成比例线段概念.3. 难点的突破方法(1)对于相似图形的概念,可用大量的实例引入,但要注意教材中“把形状相同的图形说成是...相似图形”,只是对相似图形概念的一个描述,不是定义;还要强调:①相似形一定要形状相同,与它的位置、颜色、大小无关(其大小可能一样,也有可能不一样,当形状与大小都一样时,两个图形就是全等形,所以全等形是一种特殊的相似形);②相似形不仅仅指平面图形,也包括立体图形的情况,如飞机和飞机模型也是相似形;③两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形.(2)对于成比例线段:①我们是在学生小学学过数的比,及比例的基本性质等知识的基础上来学习成比例线段的;②两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;③线段的比是一个没有单位的正数;④四条线段a,b,c,d 成比例,记作d c b a =或a:b=c:d ;⑤若四条线段满足dc b a =,则有ad=bc (为利于今后的学习,可适当补充:反之,若四条线段满足ad=bc ,则有dc b a =,或其它七种表达形式). 三、例题的意图本节课的三道例题都是补充的题目,例1是一道判断图形相似的选择题,通过讲解要使学生明确:(1)相似形一定要形状相同,与它的位置、颜色、大小无关;(2)两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形;(3)在识别相似图形时,不要以位置为准,要“形状相同”;例2通过分别采用m 、cm 、mm 三种不同的长度单位,求得的ba 的值相等,使学生明确:两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致;例3是求线段的比的题,要使学生对比例尺有进一步的认识:比例尺=实距图距实际距离图上距离=,而求图上距离与实际距离的比就是求两条线段的比.四、课堂引入1.(1)请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星他们的形状、大小有什么关系?再如下图的两个画面,他们的形状、大小有什么关系.(还可以再举几个例子)(2)教材P36引入.(3)相似图形概念:把形状相同的图形说成是相似图形.(强调:见前面)(4)让学生再举几个相似图形的例子.(5)讲解例1. 2.问题:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB 和CD ,那么这两条线段的长度比是多少?归纳:两条线段的比,就是两条线段长度的比.3.成比例线段:对于四条线段a,b,c,d ,如果其中两条线段的比与另两条线段的比相等,如dc b a =(即ad=bc ),我们就说这四条线段是成比例线段,简称比例线段. 【注意】 (1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;(2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d 成比例,记作d c b a =或a:b=c:d ; (4)若四条线段满足dc b a =,则有ad=bc . 五、例题讲解例1(补充:选择题)如图,下面右边的四个图形中,与左边的图形相似的是( )分析:因为图A 是把图拉长了,而图D 是把图压扁了,因此它们与左图都不相似;图B 是正六边形,与左图的正五边形的边数不同,故图B 与左图也不相似;而图C 是将左图绕正五边形的中心旋转180º后,再按一定比例缩小得到的,因此图C 与左图相似,故此题应选C.例2(补充)一张桌面的长a=1.25m ,宽b=0.75m ,那么长与宽的比是多少?(1)如果a=125cm ,b=75cm ,那么长与宽的比是多少?(2)如果a=1250mm ,b=750mm ,那么长与宽的比是多少? 解:略.(35b a =) 小结:上面分别采用m 、cm 、mm 三种不同的长度单位,求得的b a 的值是相等的,所以说,两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致.例3(补充)已知:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为3.5cm ,求北京到上海的实际距离大约是多少km ?分析:根据比例尺=实际距离图上距离,可求出北京到上海的实际距离. 解: 略答:北京到上海的实际距离大约是1120 km .六、课堂练习1.教材P37的观察.2.下列说法正确的是( )A .小明上幼儿园时的照片和初中毕业时的照片相似.B .商店新买来的一副三角板是相似的.C .所有的课本都是相似的.D .国旗的五角星都是相似的.3.如图,请测量出右图中两个形似的长方形的长和宽,(1)(小)长是_______cm ,宽是_______cm ; (大)长是_______cm ,宽是_______cm ;(2)(小)=长宽 ;(大)=长宽 . (3)你由上述的计算,能得到什么结论吗?(答:相似的长方形的宽与长之比相等)4.在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm ,那么福州与上海之间的实际距离是多少?5.AB 两地的实际距离为2500m ,在一张平面图上的距离是5cm ,那么这张平面地图的比例尺是多少?七、课后练习1.观察下列图形,指出哪些是相似图形:(答:相似图形分别是:(1)和(8);(2)和(6);(3)和(7) )2.教材P37练习1、2.3.教材P40 练习1与习题1 .。
HS华师版 初三九年级数学 上册第一学期秋(教学设计 教案)第23章 图形的相似(全章教案 分课时 含反思)
第23章 图形的相似 23.1 成比例线段 1.成比例线段1.知道线段的比的概念,会计算两条线段的比;(重点)2.理解成比例线段的概念;(重点)3.掌握成比例线段的判定方法.(难点)一、情景导入请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?这些例子都是形状相同、大小不同的图形.它们之所以大小不同,是因为它们图上对应的线段的长度不同.二、合作探究探究点一:线段的比 【类型一】 求线段的比已知线段AB =2.5m ,线段CD =400cm ,求线段AB 与CD 的比.解析:要求AB 和CD 的比,只需要根据线段的比的定义计算即可,但注意要将AB 和CD 的单位统一.解:∵AB =2.5m =250cm ,∴AB CD =250400=58. 方法总结:求线段的比时,首先要检查单位是否一致,不一致的应先统一单位,再求比.【类型二】 比例尺在比例尺为1:50 000的地图上,量得甲、乙两地的距离是3cm ,则甲、乙两地的实际距离是 m.解析:根据“比例尺=图上距离实际距离”可求解.设甲、乙两地的实际距离为x cm ,则有1:50 000=3:x ,解得x =150 000. 150 000cm =1500m.故答案为1500.方法总结:理解比例尺的意义,注意实际尺寸的单位要进行恰当的转化.探究点二:成比例线段【类型一】判断线段成比例下列四组线段中,是成比例线段的是()A.3cm,4cm,5cm,6cmB.4cm,8cm,3cm,5cmC.5cm,15cm,2cm,6cmD.8cm,4cm,1cm,3cm解析:将每组数据按从小到大的顺序排列,前两条线段的比和后两条线段的比相等的四条线段成比例.四个选项中,只有C项排列后有25=615.故选C.方法总结:判断四条线段是否成比例的方法:(1)把四条线段按从小到大顺序排好,计算前两条线段的比和后两条线段的比,看是否相等做出判断;(2)把四条线段按从小到大顺序排好,计算前后两个数的积与中间两个数的积,看是否相等作出判断.【类型二】由线段成比例求线段的长已知:四条线段a、b、c、d,其中a=3cm,b=8cm,c=6cm.(1)若a、b、c、d是成比例线段,求线段d的长度;(2)若b、a、c、d是成比例线段,求线段d的长度.解析:紧扣成比例线段的概念,利用比例式构造方程并求解.解:(1)由a、b、c、d是成比例线段,得ab=cd,即38=6d,解得d=16.故线段d的长度为16cm;(2)由b、a、c、d是成比例线段,得ba=cd,即83=6d,解得d=94.故线段d的长度为94cm.方法总结:利用比例线段关系求线段长度的方法:根据线段的关系写出比例式,并把它作为相等关系构造关于要求线段的方程,解方程即可求出线段的长.已知三条线段长分别为1cm,2cm,2cm,请你再给出一条线段,使得它的长与前面三条线段的长能够组成一个比例式.解析:因为本题中没有明确告知是求1,2,2的第四比例项,因此所添加的线段长可能是前三个数的第四比例项,也可能不是前三个数的第四比例项,因此应进行分类讨论.解:若x:1=2:2,则x=22;若1:x=2:2,则x=2;若1:2=x:2,则x =2;若1:2=2:x,则x=2 2.所以所添加的线段的长有三种可能,可以是22cm ,2cm ,或22cm. 方法总结:若使四个数成比例,则应满足其中两个数的比等于另外两个数的比,也可转化为其中两个数的乘积恰好等于另外两个数的乘积.三、板书设计成比例线段⎩⎪⎪⎨⎪⎪⎧线段的比:如果选用同一长度单位量得两条线段AB ,CD 的长度分别是m ,n ,那么 这两条线段的比就是它们长度的比, 即AB :CD =m :n ,或写成AB CD =mn成比例线段:四条线段a ,b ,c ,d ,如果a 与b 的比 等于c 与d 的比,即a b =cd ,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段从丰富的实例入手,引导学生进行观察、发现和概括.在自主探究和合作交流过程中,适时引入新知识,并通过引导学生建立新的数学模型,开拓思维,提升学生认知能力.2.平分线分线段成比例1.了解平行线分线段成比例的基本事实及其推论;(重点)2.会用平行线分线段成比例及其推论解决相关问题.(难点)一、情景导入梯子是我们生活中常见的工具.如图是一个生产过程中不合格的左右不对称的梯子的简图,经测量,AB =BC =CD ,AA 1∥BB 1∥CC 1∥DD 1,那么A 1B 1和B 1C 1相等吗?二、合作探究探究点一:平行线分线段成比例如图,直线l 1∥l 2∥l 3,直线AC 分别交这三条直线于点A ,B ,C ,直线DF 分别交这三条直线于点D ,E ,F ,若AB =3,DE =72,EF =4,求BC 的长.解:∵直线l 1∥l 2∥l 3,且AB =3,DE =72,EF =4,∴根据平行线分线段成比例可得AB BC =DEEF ,即BC =EF DE ·AB =4 72×3=247.方法总结:利用平行线分线段成比例求线段长的方法:先确定图中的平行线,由此联想到线段之间的比例关系,结合待求线段和已知线段写出一个含有它们的比例关系式,构造出方程,解方程求出待求线段长.如图所示,直线l 1∥l 2∥l 3,下列比例式中成立的是( )A.AD DF =CE BCB.AD BE =BC AFC.CE DF =AD BCD.AF DF =BE CE解析:由平分线分线段成比例可知AD DF =BC CE ,故A 选项不成立;由AD BC =AFBE 可知B选项不成立;由CE DF =BCAD可知C 选项不成立;D 选项成立.故选D.方法总结:应用平行线分线段成比例得到的比例式中,四条线段与两条直线的交点位置无关,关键是线段的对应,可简记为:“上下=上下,上全=上全,下全=下全”或“上上=下下=全全”.探究点二:平行线分线段成比例的推论如图所示,在△ABC 中,点D ,E 分别在AB ,AC 边上,DE ∥BC ,若AD :AB =3∶4,AE =6,则AC 等于( )A.3B.4C.6D.8解析:由DE ∥BC 可得AD AB =AE AC ,即34=6AC,∴AC =8.故选D. 易错提醒:在由平行线推出成比例线段的比例式时,要注意它们的相互位置关系,比例式不能写错,要把对应的线段写在对应的位置上.如图,在△ABC 的边AB 上取一点D ,在AC 上取一点E ,使得AD =AE ,直线DE 和BC 的延长线相交于P ,求证:BP CP =BDCE.解析:本题无法直接证明,分析所要求证的等式中,有BP :CP ,又含有BD ,故可考虑过点C 作PD 的平行线CF ,便可以构造出BP CP =BDDF,此时只需证得CE =DF 即可.证明:如图,过点C 作CF ∥PD 交AB 于点F ,则BP CP =BD DF ,AD DF =AE CE. ∵AD =AE ,∴DF =CE ,∴BP CP =BD CE. 方法总结:证明四条线段成比例时,如果图形中有平行线,则可以直接应用平行线分线段成比例的基本事实以及推论得到相关比例式.如果图中没有平行线,则需构造辅助线创造平行条件,再应用平行线分线段成比例的基本事实及其推论得到相关比例式.三、板书设计平行线分线段成比例⎩⎪⎨⎪⎧基本事实:两条直线被一组平行线所截, 所得的对应线段成比例推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例通过教学,培养学生的观察、分析、概括能力,了解特殊与一般的辩证关系.再次锻炼类比的数学思想,能把一个复杂的图形分成几个基本图形,通过应用锻炼识图能力和推理论证能力.在探索过程中,积累数学活动的经验,体验探索结论的方法和过程,发展学生的合情推理能力和有条理的说理表达能力.23.2 相似图形1.了解相似多边形和相似比的概念;2.会根据条件判断两个多边形是否为相似多边形;(重点)3.掌握相似多边形的性质,能根据相似比进行相关的计算.(难点)一、情景导入观察以下三组图形,每一组图形的对应边、对应角有什么关系呢?二、合作探究探究点一:相似多边形的判定下列图形都相似吗?为什么? (1)所有正方形;(2)所有矩形;(3)所有菱形;(4)所有等边三角形;(5)所有等腰三角形;(6)所有等腰梯形;(7)所有等腰直角三角形;(8)所有正五边形.解析:利用定义判断边数相同的多边形是否相似,要从两方面进行判断:(1)对应角相等;(2)对应边成比例,两者缺一不可.解:(1)相似,因为正方形每个角都等于90°,所以对应角相等,而每个正方形的边长都相等,所以对应边成比例;(2)不一定,虽然矩形的每个角都等于90°,对应角相等,但是对应边不一定成比例,如图①;(3)不一定,每个菱形的四条边长都相等,所以两菱形的对应边一定成比例,但是它们的对应角不一定相等,如图②,显然两个菱形的对应角是不相等的;(4)相似,因为每个等边三角形的三条边都相等,所以两个等边三角形的对应边一定成比例,并且对应角都等于60°;(5)不一定,如图③,对应边不成比例,对应角不相等;(6)不一定,如图④,对应边不成比例,对应角不相等; (7)相似,因为等腰直角三角形的三个角分别是45°,45°,90°,所以对应角相等,而且每一个三角形的三边的比都是1:1:2,所以对应边成比例; (8)相似,因为正五边形的各角都等于108°,所以对应角相等,而且正五边形的各边都相等,所以对应边成比例.方法总结:(1)相似多边形的定义也是相似多边形的判定方法,在判定两个多边形相似时,必须同时具备两点:对应角相等,对应边成比例.(2)在说明图形不相似时只需画图举出反例即可.(3)所有边数相等的正多边形都相似.探究点二:相似多边形的性质已知四边形ABCD 与四边形EFGH 相似,试根据图中所给出的数据求出四边形EFGH 和四边形ABCD 的相似比.解:∵四边形ABCD 与四边形EFGH 相似,且∠A =∠E =80°,∠B =∠F =75°, ∴AB 与EF 是对应边.∵EF AB =68=34,∴四边形EFGH 与四边形ABCD 的相似比为34.方法总结:找准相似多边形的对应边是解决此类问题的关键,方法类似于找全等三角形对应边和对应角的方法.探究点三:相似多边形的应用如图所示,在四边形ABCD中,AD∥BC,EF∥BC,EF将四边形ABCD分成两个相似四边形AEFD和EBCF.若AD=3,BC=4,求AE:EB的值.解析:根据相似多边形的对应边成比例,可得到ADEF=EFBC,可以求出EF的长,从而可求AE:EB的值.解:因为四边形AEFD∽四边形EBCF,所以ADEF=EFBC,所以EF2=AD·BC=3×4=12,所以EF=12=2 3.因为四边形AEFD∽四边形EBCF,所以AE:EB=AD:EF=3:23=3:2.方法总结:若两个多边形相似,则它们对应的边成比例,根据此特性,可列等式或比例式求解.在AB=20m,AD=30m的矩形花坛ABCD的四周建筑小路.(1)如果四周的小路的宽均相等,如图①,那么小路四周所围成的矩形A′B′C′D′和矩形ABCD相似吗?请说明理由;(2)如果对应着的两条小路的宽均相等,如图②,试问小路的宽x与y的比值是多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根据两矩形的对应边是否成比例来判断两矩形是否相似;(2)根据矩形相似的条件列出等量关系式,从而求出x与y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假设两个矩形相似,不妨设小路宽为x m,则30+2x30=20+2x20,解得x=0.∵由题意可知,小路宽不可能为0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)当x与y的比值为3:2时,小路四周所围成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,则30+2x30=20+2y20,所以xy=32.∴当x 与y 的比值为3:2时,小路四周所围成的矩形A ′B ′C ′D ′和矩形ABCD 相似. 方法总结:因为矩形的四个角均是直角,所以在有关矩形相似的问题中,只需看对应边是否成比例,若成比例,则相似,否则不相似.三、板书设计相似多边形⎩⎪⎨⎪⎧相似多边形:各角分别相等、各边成比例的两个多边形相似比:相似多边形对应边的比性质:相似多边形的对应角相等,对 应边成比例判定:各角分别相等,各边成比例, 二者缺一不可在探索相似多边形本质特征的过程中,让学生运用“观察-比较-猜想”分析问题,进一步发展学生观察、分析、判断、归纳、类比、反思、交流等方面的能力,提高数学思维水平,体会反例的作用,培养与他人交流、合作的意识和品质.23.3 相似三角形 1.相似三角形1.了解相似三角形的有关概念;(重点)2.掌握利用平行线法判定三角形相似;(重点)3.应用平行线法判定三角形相似来解决问题.(难点)一、情境导入如图,在△ABC 中,D 为边AB 上任一点,作DE ∥BC ,交边AC 于E ,用刻度尺和量角器量一量,判断△ADE 与△ABC 是否相似.二、合作探究探究点一:相似三角形的有关概念如图所示,已知△OAC ∽△OBD ,且OA =4,AC =2,OB =2,∠C =∠D ,求: (1)△OAC 和△OBD 的相似比; (2)BD 的长.解析:(1)由△OAC ∽△OBD 及∠C =∠D ,可找到两个三角形的对应边,即可求出相似比;(2)根据相似三角形对应边成比例,可求出BD 的长.解:(1)∵△OAC ∽△OBD ,∠C =∠D ,∴线段OA 与线段OB 是对应边,则△OAC 与△OBD 的相似比为OA OB =42=21;(2)∵△OAC ∽△OBD ,∴AC BD =OAOB ,∴BD =AC ·OB OA =2×24=1.方法总结:相似三角形的定义既是相似三角形的性质,也是相似三角形的判定方法.探究点二:相似三角形的引理【类型一】 利用相似三角形的引理判定三角形相似如图,在▱ABCD 中,E 为AB 延长线上的一点,AB =3BE ,DE 与BC 相交于点F ,请找出图中所有的相似三角形,并求出相应的相似比.解析:由平行四边形的性质可得:BC ∥AD ,AB ∥CD ,进而可得△EFB ∽△EDA ,△EFB ∽△DFC ,再进一步求解即可.解:∵四边形ABCD 是平行四边形,∴BC ∥AD ,AB ∥CD ,∴△EFB ∽△EDA ,△EFB ∽△DFC ,∴△DFC ∽△EDA ,∵AB =3BE ,∴相似比分别为1∶4,1∶3,3∶4.方法总结:求相似比不仅要找准对应边,还需要注意两个三角形的先后顺序.【类型二】 利用相似三角形的引理求线段的长如图,已知AB ∥EF ∥CD ,AD 与BC 相交于点O . (1)如果CE =3,EB =9,DF =2,求AD 的长;(2)如果BO ∶OE ∶EC =2∶4∶3,AB =3,求CD 的长.解析:(1)根据平行线分线段成比例可求得AF =6,则AD =AF +FD =8;(2)根据平行线AB ∥CD 分线段成比例知BO ∶OE =AB ∶EF ,结合已知条件求得EF =6;同理由EF ∥CD 推知EF 与CD 之间的数量关系,从而求得CD =10.5.解:(1)∵CE =3,EB =9,∴BC =CE +EB =12.∵AB ∥EF ,∴FO AF =EO EB ,则FO EO =AFEB .又∵EF ∥CD ,∴FO FD =EO EC ,则FO EO =FD EC ,∴AF EB =FD EC ,即AF 9=23,∴AF =6,∴AD =AF +FD =6+2=8,即AD 的长是8;(2)∵AB ∥CD ,∴BO ∶OE =AB ∶EF .又∵BO ∶OE =2∶4,AB =3,∴EF =6.∵EF ∥CD ,∴OE OC =EF CD .又∵OE ∶EC =4∶3,∴OE OC =47,∴EF CD =47,∴CD =74EF =10.5,即CD 的长是10.5.方法总结:运用平行线分线段成比例的基本事实的推论一定要找准对应线段,以防解答错误.三、板书设计1.相似三角形的定义及有关概念; 2.相似三角形的引理.本节课宜采用探究式教学,教师在教学中是学生学习的组织者、引导者、合作者和共同研究者.鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新.上课时教师只在关键处点拨,在不足时补充.教师与学生平等地交流,创设民主、和谐的学习氛围2.相似三角形的判定第1课时利用两角判定两个三角形相似1.理解“两角分别相等的两个三角形相似”的含义,能分清条件和结论,并能用文字、图形和符号语言表示;(重点)2.会运用“两角分别相等的两个三角形相似”判定两个三角形相似,并解决简单的问题.(难点)一、情景导入如图,从放大镜里看到的三角尺和原来的三角尺相似吗?二、合作探究探究点一:两角分别相等的两个三角形相似在△ABC和△A′B′C′中,∠A=∠A′=80°,∠B=70°,∠C′=30°,这两个三角形相似吗?请说明理由.解:△ABC∽△A′B′C′.理由:由三角形的内角和是180°,得∠C=180°-∠A-∠B=180°-80°-70°=30°,所以∠A=∠A′,∠C=∠C′.故△ABC∽△A′B′C′(两角分别相等的两个三角形相似).方法总结:两个三角形已有一对角相等,故只要看是否还有一对角相等即可.一般地,在解题过程中要特别注意“公共角”“对顶角”“同角(或等角)的余角”等隐含条件.探究点二:两角分别相等的两个三角形相似的应用已知:如图,△ABC的高AD、BE相交于点F,求证:AFBF=EFDF.解析:要证明AFBF=EFFD,可以考虑比例式中四条线段所在的三角形是否相似,即考虑△AFE与△BFD是否相似,利用两个角对应相等的三角形相似可以证明这个结论.证明:∵BE ⊥AC ,AD ⊥BC , ∴∠AEF =∠BDF =90°. 又∵∠AFE =∠BFD , ∴△AFE ∽△BFD ,∴AF BF =EFDF.方法总结:证明比例式,可构造相似三角形,只要证明这两个三角形相似,就可根据相似三角形的对应边成比例得到相关比例式.如图所示,已知DE ∥BC ,DF ∥AC ,AD =4cm ,BD =8cm ,DE =5cm ,求线段BF 的长.解:方法一:因为DE ∥BC ,所以∠ADE =∠B ,∠AED =∠C ,所以△ADE ∽△ABC , 所以AD AB =DE BC ,即44+8=5BC,所以BC =15cm.又因为DF ∥AC , 所以四边形DFCE 是平行四边形, 所以FC =DE =5cm ,所以BF =BC -FC =15-5=10(cm ). 方法二:因为DE ∥BC ,所以∠ADE =∠B . 又因为DF ∥AC ,所以∠A =∠BDF , 所以△ADE ∽△DBF , 所以AD DB =DE BF ,即48=5BF,所以BF =10cm.方法总结:求线段的长,常通过找三角形相似得到成比例线段而求得,因此选择哪两个三角形就成了解题的关键,这就需要通过已知的线段和所求的线段分析得到.三、板书设计相似三角形的判定定理1:两角分别相等的两个三角形相似.感受相似三角形与相似多边形、相似三角形与全等三角形的区别与联系,体验事物间特殊与一般的关系.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力,培养学生的观察、动手探究、归纳总结的能力.第2课时利用两边及夹角和三边判定两个三角形相似1.掌握相似三角形的判定定理2和判定定理3;(重点)2.能熟练运用相似三角形的判定定理2和判定定理3.(难点)一、情景导入画△ABC与△A′B′C′,使∠A=∠A′,ABA′B′和ACA′C′都等于给定的值k.设法比较∠B与∠B′的大小(或∠C与∠C′的大小),△ABC与△A′B′C′相似吗?二、合作探究探究点一:两边成比例且夹角相等的两个三角形相似如图,已知点D是△ABC的边AC上的一点,根据下列条件,可以得到△ABC∽△BDC的是()A.AB·CD=BD·BCB.AC·CB=CA·CDC.BC2=AC·DCD.BD2=CD·DA解析:有两边对应成比例,并不能说明两个三角形相似,若再知道成比例的两边的夹角相等,则这两个三角形才相似.本题中,∠C是△ABC和△BDC的公共角,关键是找出∠C的两边对应成比例,即CDCB=CBAC或BC2=AC·DC.故选C.方法总结:判定两个三角形相似时,应根据条件适当选择方法,如本题已知有一个公共角,而它的两条夹边都能成比例,则应选择判定定理2加以判断.探究点二:三边成比例的两个三角形相似已知△ABC的三边长分别为1,2,5,△DEF的三边长分别为10,2,2,试判断△ABC与△DEF是否相似.解析:因为已知两个三角形的三边长,所以可以考虑根据三边之间的比例关系来判定两个三角形是否相似.解:因为12=22=510, 所以△ABC 与△DEF 相似.方法总结:已知两个三角形三边的大小,要判断它们是否相似,关键是通过计算来说明三边是否对应成比例.在相似三角形中,最短(长)边与最短(长)边是对应边,所以在判定两个三角形的三边是否成比例时,应先确定边的大小,以便找准对应关系.探究点三:相似三角形的判定定理2及判定定理3的应用如图甲,小正方形的边长均为1,则乙图中的三角形(阴影部分)与△ABC 相似的是哪一个图形?解析:图中的三角形均为格点三角形,可根据勾股定理求出各边的长,然后根据三角形三边是否对应成比例来判断乙图中的三角形与△ABC 是否相似.解:由甲图可知AC =12+12=2,BC =2,AB =12+33=10. 同理,图①中,三角形的三边长分别为1,5,22; 同理,图②中,三角形的三边长分别为1,2,5; 同理,图③中,三角形的三边长分别为2,5,3; 同理,图④中,三角形的三边长分别为2,5,13.∵21=22=105=2, ∴图②中的三角形与△ABC 相似.方法总结:(1)各个图形中的三角形均为格点三角形,可以根据勾股定理求出各边的长,然后根据三角形三边的长度是否成比例来判断两个三角形是否相似;(2)判断三边是否成比例,可以将三角形的三边长按大小顺序排列,然后分别计算他们对应边的比,最后由比值是否相等来确定两个三角形是否相似.如图所示,零件的外径为a ,要求它的厚度x ,需求出内孔的直径AB ,但不能直接量出AB ,现用一个交叉长钳(AC 和BD 相等)去量,若OA :OC =OB :OD =n ,且量得CD =b ,求厚度x .解析:欲求厚度x ,而x =a -AB2,根据题意较易推出△AOB ∽△COD ,利用相似三角形的对应边成比例,列出关于AB 的比例式,解之即可.解:因为OA :OC =OB :OD ,∠AOB =∠COD ,所以△AOB ∽△COD , 故AB CD =OAOC=n ,可得AB =bn ,所以x =a -bn2.方法总结:当条件中有两边对应成比例时,通常考虑相似三角形的判定定理2,并注意利用图形的隐含条件,如公共角、对顶角.如图,在△ABC 中,AB =8cm ,BC =16cm ,点P 从点A 开始沿AB 向点B 以1cm/s的速度移动,点Q 从点B 开始沿BC 向点C 以2cm/s 的速度移动.如果点P ,Q 同时出发,经过多长时间后△PBQ 与△ABC 相似?解析:要证明△PBQ 与△ABC 相似,很显然∠B 为公共角,因此可运用两边对应成比例且夹角相等来得到相似,可根据对应边成比例列方程求解,同时要注意分类讨论.解:设经过t s 后,△PBQ 与△ABC 相似.(1)当BP BA =BQBC 时,△PBQ ∽△ABC . 此时8-t 8=2t 16,解得t =4.即经过4s 后△PBQ 与△ABC 相似; (2)当BP BC =BQBA 时,△PBQ ∽△CBA .此时8-t 16=2t 8,解得t =1.6.即经过1.6s 后△PBQ 与△ABC 相似.综上可知,点P ,Q 同时出发,经过1.6s 或4s 后△PBQ 与△ABC 相似.易错提醒:在点运动的情况下寻找相似的条件,随着点的位置的变化,△PBQ 的形状也会发生变化,因此既要考虑△PBQ ∽△ABC 的情况,还要考虑△PBQ ∽△CBA 的情况.三、板书设计相似三角形的判定定理2:两边成比例且夹角相等的两个三角形相似. 相似三角形的判定定理3:三边成比例的两个三角形相似.从学生已学的知识入手,通过设置问题,引导学生进行计算、推理和归纳,提高分析问题和解决问题的能力.感受两个三角形相似的判定定理2与全等三角形判定定理(SAS )、两个三角形相似的判定定理3与全等三角形判定定理(SSS )的区别与联系,体会事物间一般到特殊、特殊到一般的关系.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力,培养学生与他人交流、合作的意识和品质.3.相似三角形的性质1.理解相似三角形的性质;(重点)2.会利用相似三角形的性质解决简单的问题.(难点)一、情境导入 两个三角形相似,除了对应边成比例、对应角相等之外,还可以得到许多有用的结论.例如,在图中,△ABC 和△A ′B ′C ′是两个相似三角形,相似比为k ,其中AD 、A ′D ′分别为BC 、B ′C ′边上的高,那么AD 、A ′D ′之间有什么关系?二、合作探究探究点一: 相似三角形的性质【类型一】 利用相似比求三角形的周长和面积如图所示,平行四边形ABCD 中,E 是BC 边上一点,且BE =EC ,BD 、AE 相交于F 点.(1)求△BEF 与△AFD 的周长之比; (2)若S △BEF =6cm 2,求S △AFD .解析:利用相似三角形的对应边的比可以得到周长和面积之比,然后再进一步求解. 解:(1)∵在平行四边形ABCD 中,AD ∥BC ,且AD =BC ,∴△BEF ∽△AFD .又∵BE =12BC ,∴BE AD =BF DF =EF AF =12,∴△BEF 与△AFD 的周长之比为BE +BF +EF AD +DF +AF =12; (2)由(1)可知△BEF ∽△DAF ,且相似比为12,∴S △BEF S △AFD =(12)2,∴S △AFD =4S △BEF =4×6=24cm 2.方法总结:理解相似三角形的周长比等于相似比,面积比等于相似比的平方是解决问题的关键.【类型二】 利用相似三角形的周长或面积比求相似比若△ABC ∽△A ′B ′C ′,其面积比为1∶2,则△ABC 与△A ′B ′C ′的相似比为( )A .1∶2 B.2∶2 C .1∶4 D.2∶1解析:∵△ABC∽△A′B′C′,其面积比为1∶2,∴△ABC与△A′B′C′的相似比为1∶2=2∶2.故选B.方法总结:解决问题的关键是掌握相似三角形的面积比等于相似比的平方.【类型三】利用相似三角形的性质和判定进行计算如图所示,在锐角三角形ABC中,AD,CE分别为BC,AB边上的高,△ABC和△BDE的面积分别为18和8,DE=3,求AC边上的高.解析:求AC边上的高,先将高线作出,由△ABC的面积为18,求出AC的长,即可求出AC边上的高.解:过点B作BF⊥AC,垂足为点F.∵AD⊥BC, CE⊥AB,∴Rt△ADB∽Rt△CEB,∴BDBE=ABCB,即BDAB=BECB,且∠ABC=∠DBE,∴△EBD∽△CBA, ∴S△BEDS△BCA=(DEAC)2=818.又∵DE=3,∴AC=4.5.∵S△ABC=12AC·BF=18, ∴BF=8.方法总结:解决此类问题,可利用相似三角形周长的比等于相似比、面积比等于相似比的平方来解答.【类型四】利用相似三角形线段的比等于相似比解决问题如图所示,PN∥BC,AD⊥BC交PN于E,交BC于D.(1)若AP∶PB=1∶2,S△ABC=18,求S△APN;(2)若S△APN∶S四边形PBCN=1∶2,求AEAD的值.解析:(1)由相似三角形面积比等于对应边的平方比即可求解;(2)由△APN与四边形PBCN的面积比可得△APN与△ABC的面积比,进而可得其对应边的比.解:(1)因为PN∥BC,所以∠APN=∠B,∠ANP=∠C,△APN∽△ABC,所以S△APNS△ABC=(APAB)2.因为AP∶PB=1∶2,所以AP∶AB=1∶3.又因为S△ABC=18,所以S△APNS△ABC=(13)2=19,所以S△APN=2;(2)因为PN∥BC,所以∠APE=∠B,∠AEP=∠ADB,所以△APE∽△ABD,所以APAB=AEAD,S△APNS△ABC=(APAB)2=(AEAD)2.因为S△APN∶S四边形PBCN=1∶2,所以S△APNS△ABC=13=(AEAD)2,所以AEAD=13=33.方法总结:利用相似三角形对应线段的比等于相似比可以推出相似三角形面积的比等于相似比的平方.【类型五】利用相似三角形的性质解决动点问题如图,已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P点在AC上(与A、C 不重合),Q点在BC上.(1)当△PQC的面积是四边形P ABQ面积的13时,求CP的长;(2)当△PQC的周长与四边形P ABQ的周长相等时,求CP的长.解析:(1)由于PQ∥AB,故△PQC∽△ABC,当△PQC的面积是四边形P ABQ面积的13时,△CPQ与△CAB的面积比为1∶4,根据相似三角形的面积比等于相似比的平方,可求出CP 的长;(2)由于△PQC∽△ABC,根据相似三角形的性质,可用CP表示出PQ和CQ的长,进而可表示出AP、BQ的长.根据△CPQ和四边形P ABQ的周长相等,可将相关的各边相加,即可求出CP的长.解:(1)∵PQ∥AB,∴△PQC∽△ABC,∵S△PQC=13S四边形P ABQ,∴S△PQC∶S△ABC=1∶4,∵14=12,∴CP=12CA=2;(2)∵△PQC∽△ABC,∴CPCA=CQCB=PQAB,∴CP4=CQ3,∴CQ=34CP.同理可知PQ=54CP,∴C△PCQ=CP+PQ+CQ=CP+54CP+34CP=3CP,C四边形P ABQ=P A+AB+BQ+PQ=(4-CP)+AB+(3-CQ)+PQ=4-CP+5+3-34CP+54CP=12-12CP,∴12-12CP=3CP,∴72CP=12,∴CP=247.方法总结:由相似三角形得出线段的比例关系,再根据线段的比例关系解决面积、线段的问题是解题的关键.三、板书设计1.相似三角形的对应角相等,对应边的比相等;2.相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比;3.相似三角形的面积的比等于相似比的平方.本节教学过程中,学生们都主动地参与了课堂活动,积极地交流探讨,发现的问题较多:。
初中数学《图形的相似》教案3 (1)
《图形的相似》教案3第二课时★新课标要求一、知识与技能1.知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等.2.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算.二、过程与方法1.经历测量长度和角度,发现相似多边形对应角相等,对应边的比相等的性质的过程.2.经历对日常生活中与相似有关的图形进行观察、分析、欣赏以及动手操作、画图等过程.三、情感、态度与价值观发展审美能力,增强对图形相似性质的理解,通过利用相似形知识解决生活实际问题,使学生体验数学来源于生活,服务于生活.★教学重点相似多边形的主要特征与识别.★教学难点运用相似多边形的特征进行相关的计算.★教学方法归纳、类比、反思、交流.★教学过程一、引入新课教师活动:前面我们结合生活中的实例学习了物体的相似、三维图形的相似、包括平面图形的相似.我们来进一步学习相似多边形的特征.二、进行新课1.正多边形相似的特征.如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等.结论:(1)相似多边形的特征:相似多边形的对应角相等,对应边的比相等.反之,如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似.(2)相似比:相似多边形对应边的比称为相似比.问题:相似比为1时,相似的两个图形有什么关系?结论:相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形.2.例题例1(补充)下列说法正确的是()A.所有的平行四边形都相似B.所有的矩形都相似C.所有的菱形都相似D.所有的正方形都相似分析:A中平行四边形各角不一定对应相等,因此所有的平行四边形不一定都相似,故A错;B中矩形虽然各角都相等,但是各对应边的比不一定相等,因此所有的矩形不一定都相似,故B错;C中菱形虽然各对应边的比相等,但是各角不一定对应相等,因此所有的菱形不一定都相似,故C也错;D中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似,故D说法正确,因此此题应选D.例2课本对应例题.例3知四边形ABCD与四边形A1B1C1D1相似,且A1B1:B1C1:C1D1:D1A1=7:8:11:14,若四边形ABCD的周长为40,求四边形ABCD的各边的长.分析:因为两个四边形相似,因此可根据相似多边形的对应边的比相等来解题.解:∵四边形ABCD与四边形A1B1C1D1相似,∴AB:BC:CD:DA= A1B1:B1C1:C1D1:D1A1.∵A1B1:B1C1:C1D1:D1A1=7:8:11:14,∴AB:BC:CD:DA= 7:8:11:14.设AB =7m ,则BC =8m ,CD =11m ,DA =14m .∵四边形ABCD 的周长为40,∴7m +8m +11m +14m =40.∴m =1.∴AB =7,则BC =8,CD =11,DA =14.学生活动:学生先自己解答,再在小组内合作交流,最后在进行全班性的问答或交流. 教师活动:巡视全班,及时发现学生中存在的问题,对学生们的问题作出指导.三、课堂练习四、课堂总结、点评1.相似多边形的特征:相似多边形的对应角相等,对应边的比相等.2.相似多边形的识别:如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似.3.相似比:相似多边形的对应边的比称为相似比.相似比为1时,相似的两个图形全等.4.对于四条线段a 、b 、c 、d ,如果其中的两条线段的比(即它们的长度的比)与另两条线段的比相等,即如果(即ad=bc ),我们就说这四条线段是成比例线段,简称比例线段.a cb d。
第4章图形的相似(教案)
1.相似图形的定义与性质
-相似图形的判定方法
-相似图形的对应角相等,对应边成比例
-相似多边形的性质及其应用
2.位似图形
-位似图形的定义与判定
-位似图形的坐标表示
-位似变换的性质及其应用
3.相似多边形的面积比与周长比
-相似多边形面积比的求法
-相似多边形周长比的求法
1.讨论主题:学生将围绕“相似图形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
1.培养学生的几何直观与空间想象能力,通过相似图形的学习,使学生能够观察、分析并构建几何图形,形成对几何图形特征的深刻理解。
2.提升学生的逻辑推理能力,使学生能够运用相似图形的性质与判定方法,进行严谨的几何证明与问题求解。
3.增强学生的数学建模能力,通过解决实际问题,让学生学会将现实问题抽象为数学模型,运用相似性原理进行求解。
-举例:判断两个三角形是否相似,需证明它们的对应角相等,对应边成比例。
-相似图形的性质:包括对应角相等、对应边成比例等,这些性质是解决相似图形问题的重要依据。
-举例:在相似三角形中,周长的比等于相似比,面积的比等于相似比的平方。
-位似图形及其坐标表示:位似图形是相似图形的特殊情况,掌握其坐标表示有助于解决实际问题。
2.在提问技巧上,我应该设计更多开放性和启发性的问题,引导学生深入思考和探索。
3.需要关注每个学生的学习情况,提供个性化的辅导,帮助他们克服难点。
图形的相似全章自制简易教案
图形的相似全章自制简易教案一、教学目标:知识与技能:1. 理解相似图形的概念,识别相似图形。
2. 学会用比例尺表示图形间的相似关系。
3. 掌握相似图形的性质,能够运用相似性质解决实际问题。
过程与方法:1. 通过观察、操作、思考、交流等活动,培养学生的空间观念和几何思维能力。
2. 学会利用图形相似解决实际问题,提高学生的解决问题的能力。
情感态度价值观:1. 激发学生对数学的兴趣,培养学生的创新精神和团队合作意识。
2. 让学生体验到数学与生活的紧密联系,增强学生应用数学的意识。
二、教学内容:第一课时:相似图形的概念1. 通过观察、操作,让学生初步理解相似图形的概念。
2. 学会用比例尺表示图形间的相似关系。
第二课时:相似图形的性质1. 探索相似图形的性质,了解相似图形的对应边成比例、对应角相等。
2. 学会运用相似性质解决实际问题。
第三课时:相似图形的应用1. 利用相似图形的性质解决实际问题,如计算图形面积、长度等。
2. 培养学生的应用能力和解决问题的能力。
三、教学策略:1. 采用情境教学法,引导学生从实际问题中发现数学问题,培养学生的应用意识。
2. 运用操作教学法,让学生通过观察、操作、思考、交流等活动,掌握相似图形的性质。
3. 采用问题驱动法,激发学生的思考,培养学生解决问题的能力。
四、教学评价:1. 课堂问答:通过提问了解学生对相似图形概念、性质的理解程度。
2. 作业批改:检查学生运用相似性质解决问题的能力。
3. 小组讨论:评价学生在团队合作中的表现,以及创新精神和解决问题能力。
五、教学资源:1. 教学课件:制作课件,展示相似图形的概念、性质和应用。
2. 练习题:设计相关练习题,巩固学生对相似图形的理解和应用。
3. 教学素材:准备一些实际问题,供学生解决。
教学进度安排:1. 第一课时:相似图形的概念2. 第二课时:相似图形的性质3. 第三课时:相似图形的应用六、教学内容:第四课时:相似图形的绘制1. 学习如何根据已知图形绘制出相似图形。
图形的相似教案(教学设计)
图形的相似【教学目标】知识与技能:1.理解并掌握两个图形相似的概念、理解相似形的特征,掌握相似形的识别方法。
2.掌握相似多边形的特征,会根据相似多边形的特征识别两个多边形是否相似,并能运用相似多边形的性质进行相关计算。
过程与方法:观察生活中的形状相同的图形,初步认识理解相似图形的概念,在此基础上理解相似图形的特征,进一步掌握相似图形的识别方法,并通过归纳、类比、反思、交流,提高数学思维水平。
情感、态度与价值观:培养学生的观察力,激发学生的探究的兴趣和欲望,并进行美育渗透。
【教学重点】理解并掌握两个图形相似的概念及特征。
【教学难点】1.理解相似形的特征,掌握识别相似图形的方法。
2.能运用相似多边形的特征进行相关的计算。
【教学流程】一、情境引入问题1:图中的两个图形有什么关系?什么样的图形是全等形?追问:如果把其中的一个放大镜缩小,它们还全等吗?引出课题:这节课来探究这类问题。
二、探究归纳(一)相似图形出示一组图形。
定义:形状相同的图形叫做相似图形。
问题2:相似图形在我们的生活中是很常见的,你能再举出一些相似图形的例子吗?如:放电影时,银幕上的画面与胶片上的画面是相似图形;复印机把一个图形放大,放大后的图形与原来的图形是相似图形。
问题3:国旗上的大五角星与小五角星是相似图形吗?四颗小五角星呢?全等图形是相似图形,相似图形不一定是全等图形,即全等图形是特殊的相似。
问题4:观察这四组相似图形,其中一个图形可以看作由另一个图形怎样变换得到?每对图形中的两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到的。
思考:一个女孩儿从平面镜和哈哈镜里看到的自己的形象,这些镜中的形象相似吗?平面镜中看到的图像,和自己是一样的,它们相似;哈哈镜中看到的图像,有的被“压扁”了,有的被“拉长”了,它们不相似。
(二)相似多边形问题5:四边形ABCD 与四边形是两个大小不同的四边形。
(1)它们相似吗?(2)图中有相等的角吗?(3)成立吗?1111A B C D 11111111AB BC CD DA A B B C C D D A ===,,,(对应角相等)(对应边成比例)问题6:什么是线段的比?什么是成比例的线段?对于四条线段a ,b ,c ,d ,如果其中两条线段的比(即它们长度的比)与另两条线段的比相等,如(即),我们就说这四条线段成比例。
人教版九年级数学下册: 27.1《图形的相似》教学设计4
人教版九年级数学下册: 27.1《图形的相似》教学设计4一. 教材分析《图形的相似》是人教版九年级数学下册第27.1节的内容,本节课主要让学生了解相似图形的概念,掌握相似图形的性质,并会运用相似图形解决一些实际问题。
通过本节课的学习,学生能够进一步理解图形的变换,提高解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的图形认知能力,对图形的变换有一定的了解。
但是,对于相似图形的概念和性质,学生可能还比较陌生。
因此,在教学过程中,教师需要引导学生从实际问题中抽象出相似图形的概念,并通过大量的例子让学生理解和掌握相似图形的性质。
三. 教学目标1.了解相似图形的概念,掌握相似图形的性质。
2.能够运用相似图形解决一些实际问题。
3.提高学生的抽象思维能力和解决问题的能力。
四. 教学重难点1.相似图形的概念和性质。
2.运用相似图形解决实际问题。
五. 教学方法1.情境教学法:通过实际问题引导学生抽象出相似图形的概念。
2.例题教学法:通过大量的例子让学生理解和掌握相似图形的性质。
3.问题解决法:让学生在解决实际问题的过程中运用相似图形,提高解决问题的能力。
六. 教学准备1.教学课件:制作课件,展示相似图形的概念和性质。
2.例题:准备一些典型的例题,让学生理解和掌握相似图形的性质。
3.练习题:准备一些练习题,巩固学生对相似图形的理解和掌握。
七. 教学过程1.导入(5分钟)通过一个实际问题引入相似图形的概念,例如:“有两幅相似的画,一幅画的长是8cm,宽是6cm,另一幅画的长是10cm,宽是7cm,请问这两幅画的面积是否相等?为什么?”引导学生思考和讨论,引出相似图形的概念。
2.呈现(10分钟)呈现相似图形的性质,如:相似图形的对应边成比例,对应角相等。
通过具体的图形和例子让学生理解和掌握这些性质。
3.操练(10分钟)让学生分组进行练习,运用相似图形的性质解决一些实际问题。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生独立完成一些练习题,巩固对相似图形的理解和掌握。
湘教版九年级数学上册第3章图形的相似3.5相似三角形的应用教学设计
湘教版九年级数学上册第3章图形的相似3.5相似三角形的应用教学设计一. 教材分析湘教版九年级数学上册第3章图形的相似3.5相似三角形的应用,主要让学生掌握相似三角形的性质,并能够运用相似三角形解决实际问题。
本节课的内容是在学生已经掌握了相似三角形的定义和性质的基础上进行学习的,通过本节课的学习,让学生能够运用相似三角形的性质解决一些实际问题,提高他们的数学应用能力。
二. 学情分析九年级的学生已经掌握了相似三角形的定义和性质,对于本节课的内容,他们需要进一步的理解和运用。
学生在学习过程中,需要老师通过一些实际问题,引导学生运用相似三角形的性质进行解决,从而提高他们的数学应用能力。
三. 教学目标1.知识与技能:掌握相似三角形的性质,能够运用相似三角形解决实际问题。
2.过程与方法:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们的自信心。
四. 教学重难点1.重点:掌握相似三角形的性质,能够运用相似三角形解决实际问题。
2.难点:如何引导学生运用相似三角形的性质解决实际问题。
五. 教学方法1.引导法:老师通过提出问题,引导学生思考,从而让学生掌握相似三角形的性质。
2.实例法:老师通过给出一些实际问题,让学生运用相似三角形的性质进行解决,从而提高学生的数学应用能力。
六. 教学准备1.教学课件:制作相关的教学课件,帮助学生更好的理解和掌握相似三角形的性质。
2.实际问题:准备一些实际问题,用于引导学生运用相似三角形的性质进行解决。
七. 教学过程1.导入(5分钟)老师通过提问学生相似三角形的性质,引导学生复习旧知识,为新课的学习做好铺垫。
2.呈现(10分钟)老师通过课件展示相似三角形的性质,让学生直观的了解相似三角形的性质。
3.操练(15分钟)老师给出一些实际问题,让学生运用相似三角形的性质进行解决,引导学生运用所学知识。
4.巩固(10分钟)老师通过一些练习题,让学生巩固所学知识,检查学生对相似三角形性质的掌握情况。
人教版数学九年级下册27.1《图形的相似》教学设计
人教版数学九年级下册27.1《图形的相似》教学设计一. 教材分析人教版数学九年级下册第27.1节《图形的相似》是整个初中数学的重要内容,也是九年级数学的重点和难点。
本节内容主要介绍了相似图形的概念、性质和判定方法,以及相似图形的应用。
通过本节的学习,学生能够理解相似图形的概念,掌握相似图形的性质和判定方法,并能运用相似图形解决实际问题。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的性质和判定方法有一定的了解。
但是,对于相似图形的概念和性质,以及如何运用相似图形解决实际问题,学生可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出相似图形的概念,并通过大量的练习,使学生能够熟练掌握相似图形的性质和判定方法。
三. 教学目标1.了解相似图形的概念,掌握相似图形的性质和判定方法。
2.能够运用相似图形解决实际问题。
3.培养学生的抽象思维能力和解决问题的能力。
四. 教学重难点1.相似图形的概念和性质。
2.相似图形的判定方法。
3.相似图形的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出相似图形的概念。
2.通过大量的练习,使学生能够熟练掌握相似图形的性质和判定方法。
3.采用小组合作的学习方式,让学生在合作中思考,在思考中合作。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备一些实际的例子,用于引导学生从实际问题中抽象出相似图形的概念。
3.准备一些练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)通过展示一些实际的例子,让学生观察并思考:这些图形有什么共同的特点?引导学生从实际问题中抽象出相似图形的概念。
2.呈现(10分钟)介绍相似图形的定义、性质和判定方法。
通过PPT和教材,详细解释相似图形的概念,以及相似图形的性质和判定方法。
3.操练(10分钟)让学生通过练习题,运用相似图形的性质和判定方法,解决实际问题。
教师可以设置一些难度不同的练习题,让学生根据自己的能力选择相应的题目。
初中几何相似图形教案
初中几何相似图形教案教学目标:1. 理解相似图形的概念,能够识别和判断相似图形。
2. 掌握相似图形的性质和判定方法。
3. 能够运用相似图形解决实际问题。
教学重点:1. 相似图形的概念和性质。
2. 相似图形的判定方法。
教学难点:1. 理解和运用相似图形的性质。
2. 灵活运用相似图形解决实际问题。
教学准备:1. 教学课件或黑板。
2. 相关图形资料和练习题。
教学过程:一、导入(5分钟)1. 引导学生观察一些生活中的实例,如大小不同的衣服、鞋子等,让学生注意到这些物品虽然大小不同,但是形状相同。
2. 提问学生:你们能想到一些类似的实例吗?这些实例有什么共同的特点?二、新课讲解(15分钟)1. 引入相似图形的概念:如果两个图形的形状相同,但是大小不同,那么这两个图形叫做相似图形。
2. 讲解相似图形的性质:a. 相似图形的对应边成比例。
b. 相似图形的对应角相等。
3. 讲解相似图形的判定方法:a. 如果两个图形的对应边成比例,对应角相等,那么这两个图形相似。
b. 如果两个三角形的三组对应边成比例,那么这两个三角形相似。
三、练习与讨论(15分钟)1. 让学生分组进行练习,找出一些相似图形,并验证它们的相似性。
2. 邀请几组学生分享他们的练习结果,并解释他们是怎样判断相似图形的。
四、应用与拓展(15分钟)1. 给出一些实际问题,让学生运用相似图形来解决。
例如,一个矩形的长是10cm,宽是5cm,问如果将这个矩形扩大2倍,它的面积会增加多少?2. 让学生思考相似图形在实际生活中的应用,如设计、建筑等领域。
五、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结相似图形的概念和性质。
2. 提问学生:你们认为相似图形在数学和生活中有什么重要性?教学评价:1. 课后作业:布置一些有关相似图形的练习题,让学生巩固所学知识。
2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习效果。
以上是一篇关于初中几何相似图形的教案,希望能够帮助到您。
相似的教学设计
相似的教学设计相似的教学设计第一篇一、教学目标1.经受两个三角形相似的探究过程,进一步进展学生的探究、沟通能力。
2.把握“两角对应相等,两个三角形相似〞的判定方法。
3.能够运用三角形相似的条件解决简洁的问题。
二、重点、难点1.重点:三角形相似的判定方法12.难点:三角形相似的判定方法1的运用。
三、课堂引入1.复习提问:〔1〕我们已学习过哪些判定三角形相似的方法?〔2〕△ABC中,点D在AB上,假如AC2=ADAB,那么△ACD与△ABC 相似吗?说说你的理由。
〔3〕△ABC中,点D在AB上,假如△ACD=△B,那么△ACD与△ABC 相似吗?——引出课题。
〔4〕教材P48的探究3。
四、例题讲解例1〔教材P48例2〕。
分析:要证PA*PB=PC*PD,需要证PA/PD=PC/PB,则需要证明这四条线段所在的两个三角形相似。
由于所给的条件是圆中的两条相交弦,故需要先作辅助线构造三角形,然后利用圆的性质“同弧上的圆周角相等〞得到两组角对应相等,再由三角形相似的判定方法3,可得两三角形相似。
证明:略〔见教材〕。
例2〔补充〕已知:如图,矩形ABCD中,E为BC上一点,DF△AE于F,若AB=4,AD=5,AE=6,求DF的长。
分析:要求的是线段DF的长,观看图形,我们发觉AB、AD、AE和DF这四条线段分别在△ABE和△AFD中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF的长。
由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似〞的判定方法来证明这两个三角形相似。
五、课堂练习以下说法是否正确,并说明理由。
〔1〕有一个锐角相等的两直角三角形是相似三角形;〔2〕有一个角相等的两等腰三角形是相似三角形。
六、作业1、已知:如图,△ABC的高AD、BE交于点F。
求证:AF/BF=EF/FD。
2、已知:如图,BE是△ABC的外接圆O的直径,CD是△ABC的高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的相似教案(教学
设计)
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
图形的相似
【教学目标】
知识与技能:
1.理解并掌握两个图形相似的概念、理解相似形的特征,掌握相似形的识别方法。
2.掌握相似多边形的特征,会根据相似多边形的特征识别两个多边形是否相似,并能运用相似多边形的性质进行相关计算。
过程与方法:
观察生活中的形状相同的图形,初步认识理解相似图形的概念,在此基础上理解相似图形的特征,进一步掌握相似图形的识别方法,并通过归纳、类比、反思、交流,提高数学思维水平。
情感、态度与价值观:
培养学生的观察力,激发学生的探究的兴趣和欲望,并进行美育渗透。
【教学重点】
理解并掌握两个图形相似的概念及特征。
【教学难点】
1.理解相似形的特征,掌握识别相似图形的方法。
2.能运用相似多边形的特征进行相关的计算。
【教学流程】
一、情境引入
问题1:图中的两个图形有什么关系什么样的图形是全等形
追问:如果把其中的一个放大镜缩小,它们还全等吗?
引出课题:这节课来探究这类问题。
二、探究归纳
(一)相似图形
出示一组图形。
定义:形状相同的图形叫做相似图形。
问题2:相似图形在我们的生活中是很常见的,你能再举出一些相似图形的例子吗?
如:放电影时,银幕上的画面与胶片上的画面是相似图形;复印机把一个图形放大,放大后的图形与原来的图形是相似图形。
问题3:国旗上的大五角星与小五角星是相似图形吗四颗小五角星呢
全等图形是相似图形,相似图形不一定是全等图形,即全等图形是特殊的相似。
问题4:观察这四组相似图形,其中一个图形可以看作由另一个图形怎样变换得到
每对图形中的两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到的。
思考:一个女孩儿从平面镜和哈哈镜里看到的自己的形象,这些镜中的形象相似吗?
平面镜中看到的图像,和自己是一样的,它们相似;
哈哈镜中看到的图像,有的被“压扁”了,有的被“拉长”了,它们不相似。
(二)相似多边形
A B C D是两个大小不同的四边形。
问题5:四边形ABCD与四边形
1111
(1)它们相似吗?
(2)图中有相等的角吗?
(3)11111111AB BC CD DA A B B C C D D A ===
成立吗?
1A A ∠=∠,1B B ∠=∠,1
C C ∠=∠,1
D D ∠=∠(对应角相等)
11111111AB BC CD DA A B B C C D D A ===(对应边成比例) 问题6:什么是线段的比什么是成比例的线段
对于四条线段a ,b ,c ,d ,如果其中两条线段的比(即它们长度的比)与另两条线段的比相等,如
a c
b d =(即ad b
c =),我们就说这四条线段成比例。
相似多边形定义:两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形。
相似多边形对应边的比叫做相似比。
问题7:想一想:如果两个多边形相似,那么它们的角有什么关系它们的边呢反过来又有什么关系呢
相似多边形的性质:相似多边形的对应角相等,对应边成比例。
相似多边形的判定方法:如果两个多边形的对应角相等,对应边成比例,那么这两个多边形相似。
追问1:两个大小不同的正方形相似吗为什么
追问2:两个正五边形相似吗?正n 边形呢?
追问3:两个矩形相似吗两个五边形呢
(三)例题指引
例:如图,四边形ABCD 与EFGH 相似,求角a 的大小和EH 的长度x 。
解:∵四边形ABCD 与EFGH 相似,
∴它们的对应角相等,
∴a =∠C =83°,∠A =∠E =118°,
∴在四边形ABCD 中,b =360°-(78°+83°+118°)=81°,
∵四边形ABCD 与EFGH 相似,
∴它们的对应边成比例, ∴EH EF AD AB =,即242118
x =。
解得x=28。
三、应用提高
1.如图,从放大镜里看到的三角尺和原来的三角尺相似吗?
第1题图
2.如图,图形(a )-(f )中,哪些与图形(1)或(2)相似?
第2题图
3.下列说法中,正确的是( )。
A .正方形与矩形的形状一定相同
B .两个直角三角形的形状一定相同
C .形状相同的两个图形的面积一定相等
D.两个等腰直角三角形的形状一定相同
4.在比例尺为1:10000000的地图上,量得甲、乙两地的距离是30cm,求两地的实际距离。
5.如图所示的两个三角形相似吗为什么
第5题图
6.如图所示的两个五边形相似,求a,b,c,d的值。
第6题图
四、体验收获
说一说你的收获。
1.什么是相似图形它有什么特征?
2.全等图形与相似图形的关系?
3.相似多边形定义及性质?
4.相似比指的是什么?
五、拓展提升
1.如果两个多边形仅有角分别相等,它们相似吗如果仅有边成比例呢若不一定相似,请举出反例。
2.如图,将一张矩形纸片沿较长边的中点对折,如果得到的两个矩形都和原来的矩形相似,那么原来矩形的长宽比是多少将这张纸再如此对折下去,得到的矩形都相似吗
六、课内检测
1.两地的实际距离是2000m,在地图上量得这两地的距离为2cm,这幅地图的比例尺是多少?
2.如图,△ABC与△DEF相似。
求x,y的值。
第2题图
第3题图
3.如图,矩形草坪长30m,宽20m。
沿草坪四周有1m宽的环形小路,小路内外边缘形成的两个矩形相似吗?说出你的理由。
选做题:如图,把图中的△ABC放大到原来的2倍。
(要求:放大后的顶点在格点上)。