(通用版)高考数学二轮复习课时跟踪检测(八)理
通用版高考数学二轮复习课时跟踪检测十一文
=
BD= CD,点 P 在棱 AC 上运动, 设 CP的长度为 x,若△ PBD 的面积为 f(x),则 f(x)的图象大致是 ( )
马鸣风萧萧整理
》》》》》》》》》积一时之跬步 臻千里之遥程《 《《《《《《《《《《《
解析:选 A 如图,作 PQ⊥ BC 于 Q ,作 QR⊥ BD 于 R,连接
则由鳖臑的定义知 PQ∥ AB,QR∥CD,PQ⊥ QR.设 AB= BD= CD= 1,
马鸣风萧萧整理
》》》》》》》》》积一时之跬步 臻千里之遥程《 《《《《《《《《《《《
1
1
由 V M-PAC= VP-AMC,得 3S△ PAC· h=3S△ AMC· PA,即 4 3h= 2× 4,
6 ∴h= 3 ,
6 ∴点 M 到平面 PAN 的距离为 .
3
12.(2018 届高三·湖北七市 (州 )联考 )《九章算术》是我国古代内容
解: (1)证明:∵ DC= BC= 1,AB ∥CD, AB⊥ BC,∴ BC⊥ CD, BD = 2.
在梯形 ABCD 中, AD = 2, AB= 2, ∴AD 2+ BD2= AB2,∴∠ ADB =90°,∴ AD ⊥ BD. 又平面 ADEF ⊥平面 ABCD,ED ⊥ AD , 平面 ADEF ∩平面 ABCD = AD ,ED ? 平面 ADEF , ∴ED ⊥平面 ABCD. ∵BD ? 平面 ABCD ,∴ BD⊥ ED .
33 x- 2 2+ 4,结
合选项知选 A.
二、填空题
7.有一个倒圆锥形容器,它的轴截面是顶角的余弦值为
0.5 的等腰三角形.在容器内放一个
半径为 r 的铁球,并注水,使水面与球正好相切,然后将球取出,则这时容器中水的深度为
通用版高考数学二轮复习课时跟踪检测十文
马鸣风萧萧整理
》》》》》》》》》积一时之跬步 臻千里之遥程《 《《《《《《《《《《《
21
3
π
BC= 2 = EF,FG= 3,∴ GE= 2.∵四边形 ABED 是边长为 2 的菱形, 且∠ ABE= 3,∴ AE =
1 2,∴ AG= 2.
GH GE
如图,过点 G 作 GH ∥ AD 交 DE 于点 H,连接 FH .则 AD = AE ,
EM
=
× 3
× 2
2×
3 ×3
2=
3.
2.(2017·宝鸡质检 )如图, 四边形 PCBM 是直角梯形, ∠ PCB
90°, PM∥ BC,PM= 1,BC= 2,又 AC= 1,∠ ACB= 120°, AB
PC, AM =2.
(1)求证:平面 PAC⊥平面 ABC;
(2)求三棱锥 P-MAC 的体积.
∴
3
1
3
GH= 2,由 CM= 4CF 得 MF= 2= GH.
∵GH ∥AD ∥ MF,∴四边形 GHFM 为平行四边形, ∴GM ∥ FH.
又 GM ? 平面 DEF, FH ? 平面 DEF,∴ GM∥平面 DEF . 1
(2)由 (1)知 GM ∥平面 DEF,连接 GD ,则有 VM -DEF= VG -DEF.又 V G -DEF= VF -DEG = 3FG·S△DEG
Байду номын сангаас= ⊥
接 AN ,
》》》》》》》》》积一时之跬步 臻千里之遥程《 《《《《《《《《《《《
又 PM∥ BC,所以四边形 PMNC 为平行四边形,所以 PC∥ MN 且 PC= MN , 由(1)得 PC⊥平面 ABC,所以 MN ⊥平面 ABC, 在△ ACN 中, AN 2= AC2+ CN2- 2AC· CNcos 120°= 3,即 AN = 3. 又 AM = 2,所以在 Rt△AMN 中, MN = 1,所以 PC= MN = 1. 在平面 ABC 内,过点 A 作 AH⊥ BC 交 BC 的延长线于点 H,则 AH ⊥平面 PMC, 因为 AC= CN= 1,∠ ACB=120°,所以∠ ANC= 30°.
高中数学必修2全册课时同步测试卷及答案
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第一章空间几何体§1.1空间几何体的结构第1课时多面体的结构特征一、基础过关1.下列说法中正确的是() A.棱柱的侧面可以是三角形B.由6个大小一样的正方形所组成的图形是正方体的展开图C.正方体的各条棱长都相等D.棱柱的各条棱长都相等2.棱台不具备的特点是() A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点3. 如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体 D.不能确定4.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是() A.1∶2 B.1∶4 C.2∶1 D.4∶15.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm. 6.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图________(填序号).7.如图所示为长方体ABCD—A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.8. 如图所示的是一个三棱台ABC—A1B1C1,如何用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.二、能力提升9.下图中不可能围成正方体的是()10.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.11.根据下列对于几何体结构特征的描述,说出几何体的名称.(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形;(2)由五个面围成,其中一个面是正方形,其它各面都是有一个公共顶点的全等三角形.三、探究与拓展12.正方体的截面可能是什么形状的图形?答案1.C 2.C 3.A 4.B 5.12 6.①②7.解截面BCFE右侧部分是棱柱,因为它满足棱柱的定义.它是三棱柱BEB′—CFC′,其中△BEB′和△CFC′是底面.EF,B′C′,BC是侧棱,截面BCFE左侧部分也是棱柱.它是四棱柱ABEA′—DCFD′.其中四边形ABEA′和四边形DCFD′是底面.A′D′,EF,BC,AD为侧棱.8.解过A1、B、C三点作一个平面,再过A1、B、C1作一个平面,就把三棱台ABC—A1B1C1分成三部分,形成的三个三棱锥分别是A1—ABC,B—A1B1C1,A1—BCC1.9.D10.①③④⑤11.解(1)该几何体有两个面是互相平行且全等的正六边形,其他各面都是矩形,可满足每相邻两个面的公共边都相互平行,故该几何体是六棱柱.(2)该几何体的其中一个面是四边形,其余各面都是三角形,并且这些三角形有一个公共顶点,因此该几何体是四棱锥.12.解本问题可以有如下各种答案:①截面可以是三角形:等边三角形、等腰三角形、一般三角形;②截面三角形是锐角三角形;③截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;截面为四边形时,这个四边形中至少有一组对边平行;④截面可以是五边形;⑤截面可以是六边形;⑥截面六边形可以是等角(均为120°)的六边形.特别地,可以是正六边形.截面图形举例【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
2018届高考理科数学二轮复习课时跟踪检测试卷及答案(26份)
课时跟踪检测(一)集合、常用逻辑用语1.(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( ) A.{1,-3} B.{1,0}C.{1,3} D.{1,5}解析:选C 因为A∩B={1},所以1∈B,所以1是方程x2-4x+m=0的根,所以1-4+m=0,m =3,方程为x2-4x+3=0,解得x=1或x=3,所以B={1,3}.2.(2017·山东高考)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:选D 由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.(2017·合肥模拟)已知命题q:∀x∈R,x2>0,则( )A.命题綈q:∀x∈R,x2≤0为假命题B.命题綈q:∀x∈R,x2≤0为真命题C.命题綈q:∃x0∈R,x20≤0为假命题D.命题綈q:∃x0∈R,x20≤0为真命题解析:选D 全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x=0时,x2≤0成立,所以綈q为真命题.4.(2018届高三·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c解析:选A 命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a≤b,则a+c≤b+c”,故选A.5.(2017·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A 由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.6.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:选D 因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.7.(2017·唐山模拟)已知集合A={x|x2-5x-6<0},B={x|2x<1},则图中阴影部分表示的集合是( )A .{x |2<x <3}B .{x |-1<x ≤0}C .{x |0≤x <6}D .{x |x <-1}解析:选C 由x 2-5x -6<0,解得-1<x <6,所以A ={x |-1<x <6}.由2x<1,解得x <0,所以B ={x |x <0}.又图中阴影部分表示的集合为(∁U B )∩A ,因为∁U B ={x |x ≥0},所以(∁U B )∩A ={x |0≤x <6}.8.(2018届高三·河北五校联考)已知命题p :∃x 0∈(-∞,0),2x 0<3x0;命题q :∀x ∈⎝⎛⎭⎪⎫0,π2,tan x >sin x ,则下列命题为真命题的是( )A .p ∧qB .p ∨(綈q )C .(綈p )∧qD .p ∧(綈q )解析:选C 根据指数函数的图象与性质知命题p 是假命题,綈p 是真命题;∵x ∈⎝⎛⎭⎪⎫0,π2,且tan x =sin xcos x, ∴0<cos x <1,tan x >sin x , ∴q 为真命题,选C.9.(2017·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 根据祖暅原理,“A ,B 在等高处的截面积恒相等”是“A ,B 的体积相等”的充分不必要条件,即綈q 是綈p 的充分不必要条件,即命题“若綈q ,则綈p ”为真,逆命题为假,故逆否命题“若p ,则q ”为真,否命题“若q ,则p ”为假,即p 是q 的充分不必要条件,选A.10.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },若P ={x |log 2x <1},Q ={x ||x -2|<1},则P -Q =( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}解析:选B 由log 2x <1,得0<x <2, 所以P ={x |0<x <2}. 由|x -2|<1,得1<x <3, 所以Q ={x |1<x <3}.由题意,得P -Q ={x |0<x ≤1}.11.(2018届高三·广西五校联考)命题p :“∃x 0∈R ,使得x 20+mx 0+2m +5<0”,命题q :“关于x 的方程2x-m =0有正实数解”,若“p 或q ”为真,“p 且q ”为假,则实数m 的取值范围是( )A .[1,10]B .(-∞,-2)∪(1,10]C .[-2,10]D .(-∞,-2]∪(0,10]解析:选B 若命题p :“∃x 0∈R ,使得x 20+mx 0+2m +5<0”为真命题,则Δ=m 2-8m -20>0,∴m <-2或m >10;若命题q 为真命题,则关于x 的方程m =2x有正实数解,因为当x >0时,2x>1,所以m >1.因为“p 或q ”为真,“p 且q ”为假,故p 真q 假或p 假q真,所以⎩⎪⎨⎪⎧m <-2或m >10,m ≤1或⎩⎪⎨⎪⎧-2≤m ≤10,m >1,所以m <-2或1<m ≤10.12.(2017·石家庄模拟)下列选项中,说法正确的是( ) A .若a >b >0,则ln a <ln bB .向量a =(1,m )与b =(m,2m -1)(m ∈R)垂直的充要条件是m =1C .命题“∀n ∈N *,3n>(n +2)·2n -1”的否定是“∀n ∈N *,3n ≥(n +2)·2n -1”D .已知函数f (x )在区间[a ,b ]上的图象是连续不断的,则命题“若f (a )·f (b )<0,则f (x )在区间(a ,b )内至少有一个零点”的逆命题为假命题解析:选D A 中,因为函数y =ln x (x >0)是增函数,所以若a >b >0,则ln a >ln b ,故A 错; B 中,若a ⊥b ,则m +m (2m -1)=0, 解得m =0,故B 错;C 中,命题“∀n ∈N *,3n>(n +2)·2n -1”的否定是“∃n 0∈N *,3n 0≤(n 0+2)·2n 0-1”,故C 错;D 中,原命题的逆命题是“若f (x )在区间(a ,b )内至少有一个零点,则f (a )·f (b )<0”,是假命题,如函数f (x )=x 2-2x -3在区间[-2,4]上的图象是连续不断的,且在区间(-2,4)内有两个零点,但f (-2)·f (4)>0,故D 正确.13.(2018届高三·辽宁师大附中调研)若集合A ={x |(a -1)x 2+3x -2=0}有且仅有两个子集,则实数a 的值为________.解析:由题意知,集合A 有且仅有两个子集,则集合A 中只有一个元素.当a -1=0,即a =1时,A =⎩⎨⎧⎭⎬⎫23,满足题意;当a -1≠0,即a ≠1时,要使集合A 中只有一个元素,需Δ=9+8(a -1)=0,解得a =-18.综上可知,实数a 的值为1或-18.答案:1或-1814.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R,B ={x |-1<x <m +1,x ∈R},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析:A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2. 答案:(2,+∞)15.(2017·广东中山一中模拟)已知非空集合A ,B 满足下列四个条件: ①A ∪B ={1,2,3,4,5,6,7}; ②A ∩B =∅;③A 中的元素个数不是A 中的元素; ④B 中的元素个数不是B 中的元素.(1)如果集合A 中只有1个元素,那么A =________; (2)有序集合对(A ,B )的个数是________.解析:(1)若集合A 中只有1个元素,则集合B 中有6个元素,6∉B ,故A ={6}.(2)当集合A 中有1个元素时,A ={6},B ={1,2,3,4,5,7},此时有序集合对(A ,B )有1个; 当集合A 中有2个元素时,5∉B,2∉A ,此时有序集合对(A ,B )有5个; 当集合A 中有3个元素时,4∉B,3∉A ,此时有序集合对(A ,B )有10个; 当集合A 中有4个元素时,3∉B,4∉A ,此时有序集合对(A ,B )有10个; 当集合A 中有5个元素时,2∉B,5∉A ,此时有序集合对(A ,B )有5个;当集合A 中有6个元素时,A ={1,2,3,4,5,7},B ={6},此时有序集合对(A ,B )有1个. 综上可知,有序集合对(A ,B )的个数是1+5+10+10+5+1=32. 答案:(1){6} (2)3216.(2017·张掖模拟)下列说法中不正确的是________.(填序号) ①若a ∈R ,则“1a<1”是“a >1”的必要不充分条件;②“p ∧q 为真命题”是“p ∨q 为真命题”的必要不充分条件; ③若命题p :“∀x ∈R ,sin x +cos x ≤2”,则p 是真命题;④命题“∃x 0∈R ,x 20+2x 0+3<0”的否定是“∀x ∈R ,x 2+2x +3>0”.解析:由1a <1,得a <0或a >1,反之,由a >1,得1a <1,∴“1a<1”是“a >1”的必要不充分条件,故①正确;由p ∧q 为真命题,知p ,q 均为真命题,所以p ∨q 为真命题,反之,由p ∨q 为真命题,得p ,q 至少有一个为真命题,所以p ∧q 不一定为真命题,所以“p ∧q 为真命题”是“p ∨q 为真命题”的充分不必要条件,故②不正确;∵sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤2, ∴命题p 为真命题,③正确;命题“∃x 0∈R ,x 20+2x 0+3<0”的否定是“∀x ∈R ,x 2+2x +3≥0”,故④不正确. 答案:②④课时跟踪检测(二) 平面向量与复数1.(2017·全国卷Ⅲ)复平面内表示复数z =i(-2+i)的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:选C z =i(-2+i)=-2i +i 2=-1-2i ,故复平面内表示复数z =i(-2+i)的点位于第三象限.2.(2017·全国卷Ⅲ)设复数z 满足(1+i)z =2i ,则|z |=( ) A.12 B.22 C. 2 D .2解析:选C 因为z =2i1+i =-+-=i(1-i)=1+i ,所以|z |= 2.3.(2017·沈阳模拟)已知平面向量a =(3,4),b =⎝ ⎛⎭⎪⎫x ,12,若a ∥b ,则实数x 的值为( ) A .-23 B.23 C.38 D .-38解析:选C ∵a ∥b ,∴3×12=4x ,解得x =38.4.(2018届高三·西安摸底)已知非零单位向量a ,b 满足|a +b |=|a -b |,则a 与b -a 的夹角是( )A.π6 B.π3 C.π4 D.3π4解析:选D 由|a +b |=|a -b |可得(a +b )2=(a -b )2,即a ·b =0,而a ·(b -a )=a ·b -a 2=-|a |2<0,即a 与b -a 的夹角为钝角,结合选项知选D.5.(2017·湘中模拟)已知向量a =(x ,3),b =(x ,-3),若(2a +b )⊥b ,则|a |=( ) A .1 B. 2 C. 3 D .2解析:选D 因为(2a +b )⊥b ,所以(2a +b )·b =0,即(3x ,3)·(x ,-3)=3x 2-3=0,解得x =±1,所以a =(±1,3),|a |=2+32=2.6.(2017·广西五校联考)设D 是△ABC 所在平面内一点,AB ―→=2DC ―→,则( ) A .BD ―→=AC ―→-32AB ―→B .BD ―→=32AC ―→-AB ―→C .BD ―→=12AC ―→-AB ―→D .BD ―→=AC ―→-12AB ―→解析:选A BD ―→=BC ―→+CD ―→=BC ―→-DC ―→=AC ―→-AB ―→-12AB ―→=AC ―→-32AB ―→.7.(2018届高三·云南调研)在▱ABCD 中,|AB ―→|=8,|AD ―→|=6,N 为DC 的中点,BM ―→=2MC ―→,则AM ―→·NM ―→=( )A .48B .36C .24D .12解析:选C AM ―→·NM ―→=(AB ―→+BM ―→)·(NC ―→+CM ―→)=⎝ ⎛⎭⎪⎫AB ―→+23 AD ―→ ·⎝ ⎛⎭⎪⎫12 AB ―→-13 AD ―→ =12AB―→2-29AD ―→2=12×82-29×62=24. 8.(2018届高三·广西五校联考)已知a 为实数,若复数z =(a 2-1)+(a +1)i 为纯虚数,则a +i 2 0171-i=( )A .1B .0C .iD .1-i解析:选C 因为z =(a 2-1)+(a +1)i 为纯虚数,所以⎩⎪⎨⎪⎧a 2-1=0,a +1≠0,得a =1,则有1+i 2 0171-i =1+i 1-i=+2+-=i.9.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→ 在BA ―→方向上的投影是( ) A .-3 5 B .-322 C .3 5 D.322解析:选 A 依题意得,BA ―→=(-2,-1),CD ―→=(5,5),BA ―→ ·CD ―→=(-2,-1)·(5,5)=-15,|BA ―→|=5,因此向量CD ―→在BA ―→方向上的投影是BA ―→·CD ―→|BA ―→|=-155=-3 5.10.(2018届高三·湖南五校联考)△ABC 是边长为2的等边三角形,向量a ,b 满足AB ―→=2a ,AC ―→=2a +b ,则向量a ,b 的夹角为( )A .30°B .60°C .120°D .150°解析:选C 法一:设向量a ,b 的夹角为θ,BC ―→=AC ―→-AB ―→=2a +b -2a =b ,∴|BC ―→|=|b |=2,|AB ―→|=2|a |=2,∴|a |=1,AC ―→2=(2a +b )2=4a 2+4a ·b +b 2=8+8cos θ=4,∴cos θ=-12,θ=120°.法二:BC ―→=AC ―→-AB ―→=2a +b -2a =b ,则向量a ,b 的夹角为向量AB ―→与BC ―→的夹角,故向量a ,b 的夹角为120°.11.(2017·长春模拟)在△ABC 中,D 为△ABC 所在平面内一点,且AD ―→=13AB ―→+12AC ―→,则S △BCD S △ABD=( )A.16B.13C.12D.23解析:选B 如图,由已知得,点D 在△ABC 中与AB 平行的中位线上,且在靠⎝ ⎛⎭⎪⎫1-12-13S近BC 边的三等分点处,从而有S △ABD =12S △ABC ,S △ACD =13S △ABC ,S △BCD =△ABC=16S △ABC ,所以S △BCD S △ABD =13. 12.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ―→=λAB ―→+μAD ―→,则λ+μ的最大值为( )A .3B .2 2 C. 5 D .2 解析:选A 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为222+12=25,所以圆C :(x -1)2+(y -2)2=45. 因为P 在圆C 上,所以P ⎝ ⎛⎭⎪⎫1+255cos θ,2+255sin θ. 又AB ―→=(1,0),AD ―→=(0,2),AP ―→=λAB ―→+μAD ―→=(λ,2μ), 所以⎩⎪⎨⎪⎧1+255cos θ=λ,2+255sin θ=2μ,λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.13.(2017·成都模拟)若复数z =a i1+i (其中a ∈R ,i 为虚数单位)的虚部为-1,则a =________.解析:因为z =a i1+i=a-+-=a 2+a 2i 的虚部为-1,所以a2=-1,解得a =-2. 答案:-214.(2017·兰州诊断)已知向量OA ―→=(3,1),OB ―→=(-1,3),OC ―→=m OA ―→-n OB ―→(m >0,n >0),若m +n =1,则|OC ―→|的最小值为________.解析:由OA ―→=(3,1),OB ―→=(-1,3),得OC ―→=m OA ―→-n OB ―→=(3m +n ,m -3n ),因为m +n =1(m >0,n >0),所以n =1-m 且0<m <1,所以OC ―→=(1+2m,4m -3),则|OC ―→|=+2m2+m -2=20m 2-20m +10=20⎝ ⎛⎭⎪⎫m -122+5(0<m <1),所以当m =12时,|OC ―→|min = 5.答案: 515.(2018届高三·石家庄调研)非零向量m ,n 的夹角为π3,且满足|n |=λ|m |(λ>0),向量组x 1,x 2,x 3由一个m 和两个n 排列而成,向量组y 1,y 2,y 3由两个m 和一个n 排列而成,若x 1·y 1+x 2·y 2+x 3·y 3所有可能值中的最小值为4m 2,则λ=________.解析:由题意:x 1·y 1+x 2·y 2+x 3·y 3的运算结果有以下两种可能:①m 2+m ·n +n 2=m 2+λ|m ||m |cos π3+λ2m 2=⎝ ⎛⎭⎪⎫λ2+λ2+1m 2;②m ·n +m ·n +m ·n =3λ|m ||m |cos π3=3λ2m 2.又λ2+λ2+1-3λ2=λ2-λ+1=⎝ ⎛⎭⎪⎫λ-122+34>0,所以3λ2m 2=4m 2,即3λ2=4,解得λ=83.答案:8316.如图所示,已知正方形ABCD 的边长为1,点E 从点D 出发,按字母顺序D →A →B →C 沿线段DA ,AB ,BC 运动到点C ,在此过程中DE ―→·CD ―→的取值范围为________.解析:以BC ,BA 所在的直线为x 轴,y 轴,建立平面直角坐标系如图所示,可得A (0,1),B (0,0),C (1,0),D (1,1).当E 在DA 上时,设E (x,1),其中0≤x ≤1,∵DE ―→=(x -1,0),CD ―→=(0,1), ∴DE ―→·CD ―→=0;当E 在AB 上时,设E (0,y ), 其中0≤y ≤1,∵DE ―→=(-1,y -1),CD ―→=(0,1),∴DE ―→·CD ―→=y -1(0≤y ≤1),此时DE ―→·CD ―→的取值范围为[-1,0]; 当E 在BC 上时,设E (x,0),其中0≤x ≤1, ∵DE ―→=(x -1,-1),CD ―→=(0,1),∴DE ―→·CD ―→=-1.综上所述,DE ―→·CD ―→的取值范围为[-1,0]. 答案:[-1,0]课时跟踪检测(三) 不等式1.(2018届高三·湖南四校联考)已知不等式mx 2+nx -1m <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-12或x >2,则m-n =( )A.12 B .-52C.52D .-1解析:选B 由题意得,x =-12和x =2是方程mx 2+nx -1m =0的两根,所以-12+2=-n m 且-12×2=-1m (m <0),解得m =-1,n =32,所以m -n =-52.2.已知直线ax +by =1经过点(1,2),则2a +4b的最小值为( ) A. 2 B .2 2 C .4D .4 2解析:选B ∵直线ax +by =1经过点(1,2),∴a +2b =1,则2a+4b≥22a·22b=22a +2b=22,当且仅当2a =22b,即a =12,b =14时取等号.3.(2017·兰州模拟)设变量x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的最小值是( )A .5B .7C .8D .23解析:选B 作出不等式组所表示的平面区域如图中阴影部分所示,作出直线2x +3y =0,对该直线进行平移,可以发现经过⎩⎪⎨⎪⎧x +y =3,2x -y =3的交点A (2,1)时,目标函数z =2x +3y 取得最小值7.4.(2017·贵阳一模)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112解析:选B 由题意得x +2y =8-x ·2y ≥8-⎝⎛⎭⎪⎫x +2y 22,当且仅当x =2y 时,等号成立,整理得(x+2y )2+4(x +2y )-32≥0,即(x +2y -4)(x +2y +8)≥0,又x +2y >0,所以x +2y ≥4,即x +2y 的最小值为4.5.(2017·云南模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≥1,21-x-2,x <1,则不等式f (x -1)≤0的解集为( )A .{x |0≤x ≤2}B .{x |0≤x ≤3}C .{x |1≤x ≤2}D .{x |1≤x ≤3}解析:选D 由题意,得f (x -1)=⎩⎪⎨⎪⎧2x -2-2,x ≥2,22-x-2,x <2.当x ≥2时,由2x -2-2≤0,解得2≤x ≤3; 当x <2时,由22-x-2≤0,解得1≤x <2.综上所述,不等式f (x -1)≤0的解集为{x |1≤x ≤3}.6.(2017·武汉调研)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-3解析:选B 根据约束条件画出可行域如图①中阴影部分所示.可知可行域为开口向上的V 字型.在顶点A 处z有最小值,联立方程⎩⎪⎨⎪⎧x +y =a ,x -y =-1,得⎩⎪⎨⎪⎧x =a -12,y =a +12,即A ⎝⎛⎭⎪⎫a -12,a +12,则a -12+a ×a +12=7,解得a =3或a =-5. 当a =-5时,如图②,虚线向上移动时z 减小,故z →-∞,没有最小值,故只有a =3满足题意.7.(2017·合肥二模)若关于x 的不等式x 2+ax -2<0在区间[1,4]上有解,则实数a 的取值范围为( )A .(-∞,1)B .(-∞,1]C .(1,+∞)D .[1,+∞)解析:选A 法一:因为x ∈[1,4],则不等式x 2+ax -2<0可化为a <2-x 2x =2x -x ,设f (x )=2x-x ,x ∈[1,4],由题意得只需a <f (x )max ,因为函数f (x )为区间[1,4]上的减函数,所以f (x )max =f (1)=1,故a <1.法二:设g (x )=x 2+ax -2,函数g (x )的图象是开口向上的抛物线,过定点(0,-2),因为g (x )<0在区间[1,4]上有解,所以g (1)<0,解得a <1.8.(2017·太原一模)已知实数x ,y 满足条件⎩⎪⎨⎪⎧3x +y +3≥0,2x -y +2≤0,x +2y -4≤0,则z =x 2+y 2的取值范围为( )A .[1,13]B .[1,4]C.⎣⎢⎡⎦⎥⎤45,13D.⎣⎢⎡⎦⎥⎤45,4解析:选C 画出不等式组表示的平面区域如图中阴影部分所示,由此得z =x 2+y 2的最小值为点O 到直线BC :2x -y +2=0的距离的平方,所以z min =⎝ ⎛⎭⎪⎫252=45,最大值为点O 与点A (-2,3)的距离的平方,所以z max=|OA |2=13,故选C.9.(2017·衡水二模)若关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+a x 1x 2的最小值是( )A.63 B.233 C.433D.263解析:选C ∵关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),∴Δ=16a 2-12a 2=4a2>0,又x 1+x 2=4a ,x 1x 2=3a 2, ∴x 1+x 2+a x 1x 2=4a +a 3a 2=4a +13a ≥24a ·13a =433,当且仅当a =36时取等号. ∴x 1+x 2+a x 1x 2的最小值是433. 10.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,50解析:选B 设黄瓜、韭菜的种植面积分别为x 亩,y 亩,则总利润z =4×0.55x +6×0.3y -1.2x-0.9y =x +0.9y .此时x ,y 满足条件⎩⎪⎨⎪⎧x +y ≤50,1.2x +0.9y ≤54,x ≥0,y ≥0.画出可行域如图,得最优解为A (30,20).故黄瓜和韭菜的种植面积分别为30亩、20亩时,种植总利润最大.11.已知点M 是△ABC 内的一点,且AB ―→·AC ―→=23,∠BAC =π6,若△MBC ,△MCA ,△MAB 的面积分别为23,x ,y ,则4x +yxy的最小值为( )A .16B .18C .20D .27解析:选D 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . ∵AB ―→·AC ―→=23,∠BAC =π6,∴|AB ―→|·|AC ―→|cos π6=23,∴bc =4,∴S △ABC =12bc sin π6=14bc =1.∵△MBC ,△MCA ,△MAB 的面积分别为23,x ,y ,∴23+x +y =1,即x +y =13, ∴4x +yxy=1x +4y =3(x +y )⎝ ⎛⎭⎪⎫1x +4y=3⎝ ⎛⎭⎪⎫1+4+y x+4x y ≥3⎝⎛⎭⎪⎫5+2y x ·4x y =27, 当且仅当y =2x =29时取等号,故4x +yxy的最小值为27.12.(2017·安徽二校联考)当x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y ≤2,y -4≤x ,x -7y ≤2时,-2≤kx -y ≤2恒成立,则实数k 的取值范围是( )A .[-1,1]B .[-2,0]C.⎣⎢⎡⎦⎥⎤-15,35D.⎣⎢⎡⎦⎥⎤-15,0解析:选 D 作出不等式组表示的可行域如图中阴影部分所示,设z =kx -y ,由⎩⎪⎨⎪⎧x +2y =2,y -4=x得⎩⎪⎨⎪⎧ x =-2,y =2,即B (-2,2);由⎩⎪⎨⎪⎧x +2y =2,x -7y =2得⎩⎪⎨⎪⎧x =2,y =0,即C (2,0);由⎩⎪⎨⎪⎧y -4=x ,x -7y =2得⎩⎪⎨⎪⎧x =-5,y =-1,即A (-5,-1).要使不等式-2≤kx -y ≤2恒成立,则⎩⎪⎨⎪⎧-2≤-2k -2≤2,-2≤2k ≤2,-2≤-5k +1≤2,即⎩⎪⎨⎪⎧-2≤k ≤0,-1≤k ≤1,-15≤k ≤35,所以-15≤k ≤0.13.(2018届高三·池州摸底)已知a >b >1,且2log a b +3log b a =7,则a +1b 2-1的最小值为________.解析:令log a b =t ,由a >b >1得0<t <1,2log a b +3log b a =2t +3t =7,得t =12,即log a b =12,a=b 2,所以a +1b 2-1=a -1+1a -1+1≥2a -1a -1+1=3,当且仅当a =2时取等号.故a +1b 2-1的最小值为3. 答案:314.(2017·石家庄模拟)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤4,则z =y -2x +3的最小值为________.解析:作出不等式组表示的可行域如图中阴影部分所示,因为目标函数z =y -2x +3表示区域内的点与点P (-3,2)连线的斜率.由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =-125.答案:-12515.(2017·成都二诊)若关于x 的不等式ax 2-|x |+2a <0的解集为空集,则实数a 的取值范围为________.解析:ax 2-|x |+2a <0⇒a <|x |x 2+2,当x ≠0时,|x |x 2+2≤|x |2x 2×2=24(当且仅当x =±2时取等号),当x =0时,|x |x 2+2=0<24,因此要使关于x 的不等式ax 2-|x |+2a <0的解集为空集,只需a ≥24,即实数a 的取值范围为⎣⎢⎡⎭⎪⎫24,+∞. 答案:⎣⎢⎡⎭⎪⎫24,+∞ 16.(2018届高三·福州调研)不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x -2y +2≤0,x +y -4≤0的解集记作D ,实数x ,y 满足如下两个条件:①∀(x ,y )∈D ,y ≥ax ;②∃(x ,y )∈D ,x -y ≤a . 则实数a 的取值范围为________.解析:由题意知,不等式组所表示的可行域D 如图中阴影部分(△ABC 及其内部)所示,由⎩⎪⎨⎪⎧x -2y +2=0,x +y -4=0,得⎩⎪⎨⎪⎧ x =2,y =2,所以点B 的坐标为(2,2).由⎩⎪⎨⎪⎧2x -y +1=0,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3,所以点C 的坐标为(1,3).因为∀(x ,y )∈D ,y ≥ax , 由图可知,a ≤k OB ,所以a ≤1.由∃(x ,y )∈D ,x -y ≤a ,设z =x -y ,则a ≥z min .当目标函数z =x -y 过点C (1,3)时,z =x -y 取得最小值,此时z min =1-3=-2,所以a ≥-2. 综上可知,实数a 的取值范围为[-2,1]. 答案:[-2,1]课时跟踪检测(四) 函数的图象与性质[A 级——“12+4”保分小题提速练]1.函数f (x )=⎩⎪⎨⎪⎧ax +b ,x ≤0,log c ⎝ ⎛⎭⎪⎫x +19,x >0的图象如图所示,则a +b +c =( )A.43 B.73 C .4D.133解析:选D 将点(0,2)代入y =log c ⎝ ⎛⎭⎪⎫x +19,得2=log c 19,解得c =13.再将点(0,2)和(-1,0)分别代入y =ax +b ,解得a =2,b =2,∴a +b +c =133.2.(2018届高三·武汉调研)已知函数f (x )的部分图象如图所示,则f (x )的解析式可以是( )A .f (x )=2-x22xB .f (x )=cos xx 2C .f (x )=-cos 2xxD .f (x )=cos xx解析:选D A 中,当x →+∞时,f (x )→-∞,与题图不符,故不成立;B 为偶函数,与题图不符,故不成立;C 中,当x >0,x →0时,f (x )<0,与题图不符,故不成立.选D.3.下列函数中,既是奇函数又是减函数的是( ) A .f (x )=x 3,x ∈(-3,3) B .f (x )=tan x C .f (x )=x |x |D .f (x )=ln 2e e --x x解析:选D 选项A 、B 、C 、D 对应的函数都是奇函数,但选项A 、B 、C 对应的函数在其定义域内都不是减函数,故排除A 、B 、C ;对于选项D ,因为f (x )=ln 2e e --x x,所以f (x )=(e -x -e x)ln 2,由于函数g (x )=e -x与函数h (x )=-e x 都是减函数,又ln 2>0,所以函数f (x )=(e -x-e x)ln 2是减函数,故选D.4.函数f (x )= -x 2+9x +10-2x -的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]解析:选D 要使原函数有意义,则⎩⎪⎨⎪⎧-x 2+9x +10≥0,x -1>0,x -1≠1,解得1<x ≤10且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,10]. 5.(2017·全国卷Ⅰ)已知函数f (x )=ln x +ln(2-x ),则( ) A .f (x )在(0,2)单调递增 B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称解析:选 C 由题易知,f (x )=ln x +ln(2-x )的定义域为(0,2),f (x )=ln[x (2-x )]=ln[-(x-1)2+1],由复合函数的单调性知,函数f (x )=ln x +ln(2-x )在(0,1)单调递增,在(1,2)单调递减,所以排除A 、B ;又f ⎝ ⎛⎭⎪⎫12=ln 12+ln ⎝ ⎛⎭⎪⎫2-12=ln 34,f ⎝ ⎛⎭⎪⎫32=ln 32+ln ⎝⎛⎭⎪⎫2-32=ln 34,所以f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32=ln 34,所以排除D.故选C. 6.函数f (x )=x x2的图象大致是( )解析:选 A 由题意知,函数f (x )的定义域为(-∞,0)∪(0,+∞),f (-x )=-πx-x2=x x2=f (x ),∴f (x )为偶函数,排除C 、D ; 当x =1时,f (1)=cos π1=-1<0,排除B ,故选A. 7.(2018届高三·衡阳八中月考)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1) D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:选B 因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称.又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52,即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 8.(2017·甘肃会宁一中摸底)已知函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a的取值范围是( )A.⎣⎢⎡⎭⎪⎫-1,12B.⎝⎛⎭⎪⎫-1,12C .(-∞,-1]D.⎝ ⎛⎭⎪⎫0,12 解析:选A 法一:当x ≥1时,ln x ≥0,要使函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,只需⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.法二:取a =-1,则函数f (x )的值域为R ,所以a =-1满足题意,排除B 、D ;取a =-2,则函数f (x )的值域为(-∞,-1)∪[0,+∞),所以a =-2不满足题意,排除C ,故选A.9.(2018届高三·辽宁实验中学摸底)已知函数f (x )=(x -a )(x -b )(其中a >b ),若f (x )的图象如图所示,则函数g (x )=a x +b 的图象大致为( )解析:选A 由一元二次方程的解法易得(x -a )(x -b )=0的两根为a ,b ,根据函数零点与方程的根的关系,可得f (x )=(x -a )(x -b )的零点就是a ,b ,即函数f (x )的图象与x 轴交点的横坐标为a ,b .观察f (x )=(x -a )·(x -b )的图象,可得其与x 轴的两个交点分别在区间(-2,-1)与(0,1)上,又由a >b ,可得-2<b <-1,0<a <1.函数g (x )=a x+b ,由0<a <1可知其是减函数,又由-2<b <-1可知其图象与y 轴的交点在x 轴的下方,分析选项可得A 符合这两点,B 、C 、D 均不满足,故选A.10.函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在(-1,3)上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)解析:选C 作出函数f (x )的图象如图所示.当x ∈(-1,0)时,由xf (x )>0得x ∈(-1,0); 当x ∈(0,1)时,由xf (x )>0得x ∈∅; 当x ∈(1,3)时,由xf (x )>0得x ∈(1,3). 故x ∈(-1,0)∪(1,3).11.(2017·安徽六安一中测试)已知函数y =3-|x |3+|x |的定义域为[a ,b ](a ,b ∈Z),值域为[0,1],则满足条件的整数对(a ,b )共有( )A .6个B .7个C .8个D .9个解析:选B 函数y =3-|x |3+|x |=63+|x |-1,易知函数是偶函数,x >0时是减函数,所以函数的图象如图所示,根据图象可知,函数y =3-|x |3+|x |的定义域可能为[-3,0],[-3,1],[-3,2],[-3,3],[-2,3],[-1,3],[0,3],共7种,所以满足条件的整数对(a ,b )共有7个.12.已知函数f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析:选C 作出函数g (x )=1-x 2和函数|f (x )|=|2x-1|的图象如图①所示,得到函数h (x )的图象如图②所示,由图象得函数h (x )有最小值-1,无最大值.13.若函数f (x )=a -12x+1为奇函数,则a =________. 解析:由题意知f (0)=0,即a -12+1=0,解得a =12.答案:1214.已知f (x )=ax 3+bx +1(ab ≠0),若f (2 017)=k ,则f (-2 017)=________.解析:由f (2 017)=k 可得,a ×2 0173+b ×2 017+1=k ,∴2 0173a +2 017b =k -1,∴f (-2 017)=-a ×2 0173-b ×2 017+1=2-k .答案:2-k15.(2017·安徽二校联考)已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x,则f (log 49)=______.解析:因为log 49=log 23>0,又f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-22log 3-=-221log 3-=-13.答案:-1316.已知y =f (x )是偶函数,当x >0时,f (x )=x +4x,且当x ∈[-3,-1]时,n ≤f (x )≤m 恒成立,则m -n 的最小值是________.解析:∵当x ∈[-3,-1]时,n ≤f (x )≤m 恒成立, ∴n ≤f (x )min 且m ≥f (x )max ,∴m -n 的最小值是f (x )max -f (x )min , 由偶函数的图象关于y 轴对称知,当x ∈[-3,-1]时,函数的最值与x ∈[1,3]时的最值相同,又当x >0时,f (x )=x +4x,在[1,2]上递减,在[2,3]上递增,且f (1)>f (3), ∴f (x )max -f (x )min =f (1)-f (2)=5-4=1. 故m -n 的最小值是1. 答案:1[B 级——中档小题强化练]1.函数f (x )=1+ln ⎝ ⎛⎭⎪⎫x 2+2e 的图象大致是( )解析:选D 因为f (0)=ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D. 2.(2018届高三·东北三校联考)已知函数f (x )=ln(|x |+1)+x 2+1,则使得f (x )>f (2x -1)成立的x 的取值范围是 ( )A.⎝ ⎛⎭⎪⎫13,1 B.⎝ ⎛⎭⎪⎫-∞,13∪(1,+∞) C .(1,+∞)D.⎝⎛⎭⎪⎫-∞,13 解析:选A 易知函数f (x )为偶函数,且当x ≥0时,f (x )=ln(x +1)+x 2+1 是增函数, ∴使得f (x )>f (2x -1)成立的x 满足|2x -1|<|x |, 解得13<x <1.3.(2017·潍坊一模)设函数f (x )为偶函数,且∀x ∈R ,f ⎝ ⎛⎭⎪⎫x -32=f ⎝ ⎛⎭⎪⎫x +12,当x ∈[2,3]时,f (x )=x ,则当x ∈[-2,0]时,f (x )=( )A .|x +4|B .|2-x |C .2+|x +1|D .3-|x +1|解析:选D 因为f ⎝ ⎛⎭⎪⎫x -32=f ⎝ ⎛⎭⎪⎫x +12, 所以f (x )=f (x +2),得f (x )的周期为2. 因为当x ∈[2,3]时,f (x )=x , 所以当x ∈[0,1]时,x +2∈[2,3],f (x )=f (x +2)=x +2.又f (x )为偶函数,所以当x ∈[-1,0]时,-x ∈[0,1],f (x )=f (-x )=-x +2,当x ∈[-2,-1]时,x +2∈[0,1],f (x )=f (x +2)=x +4,所以当x ∈[-2,0]时,f (x )=3-|x +1|.4.(2017·安庆二模)如图,已知l 1⊥l 2,圆心在l 1上、半径为1 m 的圆O 沿l 1以1 m/s 的速度匀速竖直向上移动,且在t =0时,圆O 与l 2相切于点A ,圆O 被直线l 2所截得到的两段圆弧中,位于l 2上方的圆弧的长记为x ,令y =cos x ,则y 与时间t (0≤t ≤1,单位:s)的函数y =f (t )的图象大致为( )解析:选B 法一:如图所示,cosx2=设∠MON =α,由弧长公式知x =α,在Rt △AOM 中,|AO |=1-t ,|OA ||OM |=1-t ,∴y =cos x =2cos 2x 2-1=2(t -1)2-1(0≤t ≤1).故其对应的大致图象应为B.法二:由题意可知,当t =1时,圆O 在直线l 2上方的部分为半圆,所对应的弧长为π×1=π,所以cos π=-1,排除A 、D ;当t =12时,如图所示,易知∠BOC =2π3,所以cos 2π3=-12<0,排除C ,故选B.5.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________.解析:因为f (x )是奇函数,且当0≤x ≤1时,f (x )=2x (1-x ),所以当-1≤x <0时,0<-x ≤1,f (-x )=-2x (1+x )=-f (x ),即f (x )=2x (1+x ).又f (x )的周期为2,所以f ⎝ ⎛⎭⎪⎫-52=f ⎝⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12=2×⎝ ⎛⎭⎪⎫-12×12=-12.答案:-126.(2017·张掖模拟)已知定义在R 上的函数f (x ),对任意的实数x ,均有f (x +3)≤f (x )+3,f (x +2)≥f (x )+2且f (1)=2,则f (2 017)的值为________.解析:∵f (x +3)≤f (x )+3,f (x +2)≥f (x )+2, ∴f (x +1)+2≤f (x +3)≤f (x )+3, ∴f (x +1)≤f (x )+1,又f (x )+3+f (x +2)≥f (x +3)+f (x )+2, 即f (x +2)+1≥f (x +3),∴f (x +1)+1≥f (x +2)≥f (x )+2, ∴f (x +1)≥f (x )+1,∴f (x +1)=f (x )+1,利用叠加法,得f (2 017)=2 018.答案:2 018[C 级——压轴小题突破练]1.设m ∈Z ,对于给定的实数x ,若x ∈⎝ ⎛⎦⎥⎤m -12,m +12,则我们就把整数m 叫做距实数x 最近的整数,并把它记为{x },现有关于函数f (x )=x -{x }的四个命题:①f ⎝ ⎛⎭⎪⎫-12=-12;②函数f (x )的值域是⎝ ⎛⎦⎥⎤-12,12;③函数f (x )是奇函数;④函数f (x )是周期函数,其最小正周期为1. 其中,真命题的个数为( ) A .1 B .2 C .3D .4解析:选B ①∵-1-12<-12≤-1+12,∴⎩⎨⎧⎭⎬⎫-12=-1, ∴f ⎝ ⎛⎭⎪⎫-12=-12-⎩⎨⎧⎭⎬⎫-12=-12+1=12, 所以①是假命题;②令x =m +a ,m ∈Z ,a ∈⎝ ⎛⎦⎥⎤-12,12,则f (x )=x -{x }=a ,∴f (x )∈⎝ ⎛⎦⎥⎤-12,12,所以②是真命题; ③∵f ⎝ ⎛⎭⎪⎫12=12-0=12,f ⎝ ⎛⎭⎪⎫-12=12≠-f ⎝ ⎛⎭⎪⎫12, ∴函数f (x )不是奇函数,故③是假命题; ④∵f (x +1)=(x +1)-{x +1}=x -{x }=f (x ), ∴函数f (x )的最小正周期为1,故④是真命题. 综上,真命题的个数为2,故选B.2.如图所示,在△ABC 中,∠B =90°,AB =6 cm ,BC =8 cm ,点P 以 1 cm/s 的速度沿A →B →C 的路径向C 移动,点Q 以2 cm/s 的速度沿B →C →A 的路径向A 移动,当点Q 到达A 点时,P ,Q 两点同时停止移动.记△PCQ 的面积关于移动时间t 的函数为S =f (t ),则f (t )的图象大致为( )解析:选A 当0≤t ≤4时,点P 在AB 上,点Q 在BC 上,此时PB =6-t ,CQ =8-2t ,则S =f (t )=12QC ×BP =12(8-2t )×(6-t )=t 2-10t +24; 当4<t ≤6时,点P 在AB 上,点Q 在CA 上,此时AP =t ,P 到AC 的距离为45t ,CQ =2t -8,则S=f (t )=12QC ×45t =12(2t -8)×45t =45(t 2-4t );当6<t ≤9时,点P 在BC 上,点Q 在CA 上,此时CP =14-t ,QC =2t -8,则S =f (t )=12QC ×CP sin∠ACB =12(2t -8)(14-t )×35=35(t -4)(14-t ).综上,函数f (t )对应的图象是三段抛物线,依据开口方向得图象是A. 3.(2017·河北邯郸一中月考)已知函数f 1(x )=|x -1|,f 2(x )=13x +1,g (x )=f 1x +f 2x2+|f 1x-f 2x2,若a ,b ∈[-1,5],且当x 1,x 2∈[a ,b ]时,g x 1-g x 2x 1-x 2>0恒成立,则b-a 的最大值为________.解析:当f 1(x )≥f 2(x )时,g (x )=f 1x +f 2x2+f 1x -f 2x2=f 1(x );当f 1(x )<f 2(x )时,g (x )=f 1x +f 2x2+f 2x -f 1x2=f 2(x ).综上,g (x )=⎩⎪⎨⎪⎧f 1x ,f 1xf 2x ,f 2x ,f 1x <f 2x ,即g (x )是f 1(x ),f 2(x )两者中的较大者.在同一平面直角坐标系中分别画出函数f 1(x )与f 2(x )的图象,如图所示,则g (x )的图象如图中实线部分所示.由图可知g (x )在[0,+∞)上单调递增,又g (x )在[a ,b ]上单调递增,故a ,b ∈[0,5],所以b -a 的最大值为5.答案:54.(2017·湘中名校联考)定义在R 上的函数f (x )在(-∞,-2)上单调递增,且f (x -2)是偶函数,若对一切实数x ,不等式f (2sin x -2)>f (sin x -1-m )恒成立,则实数m 的取值范围为________.解析:因为f (x -2)是偶函数, 所以函数f (x )的图象关于x =-2对称. 又f (x )在(-∞,-2)上为增函数, 则f (x )在(-2,+∞)上为减函数,所以不等式f (2sin x -2)>f (sin x -1-m )恒成立等价于|2sin x -2+2|<|sin x -1-m +2|, 即|2sin x |<|sin x +1-m |,两边同时平方, 得3sin 2x -2(1-m )sin x -(1-m )2<0, 即(3sin x +1-m )(sin x -1+m )<0,即⎩⎪⎨⎪⎧3sin x +1-m >0,sin x -1+m <0或⎩⎪⎨⎪⎧3sin x +1-m <0,sin x -1+m >0,即⎩⎪⎨⎪⎧3sin x >m -1,sin x <1-m 或⎩⎪⎨⎪⎧3sin x <m -1,sin x >1-m ,即⎩⎪⎨⎪⎧m -1<-3,1-m >1或⎩⎪⎨⎪⎧m -1>3,1-m <-1,即m <-2或m >4,故m 的取值范围为(-∞,-2)∪(4,+∞). 答案:(-∞,-2)∪(4,+∞)课时跟踪检测(五) 基本初等函数、函数与方程[A 级——“12+4”保分小题提速练]1.若f (x )是幂函数,且满足f f=2,则f ⎝ ⎛⎭⎪⎫19=( ) A.12 B.14 C .2D .4解析:选B 设f (x )=x α,由ff=9α3α=3α=2,得α=log 32,∴f ⎝ ⎛⎭⎪⎫19=⎝ ⎛⎭⎪⎫19log 32=14. 2.(2017·云南模拟)设a =60.7,b =log 70.6,c =log 0.60.7,则a ,b ,c 的大小关系为( ) A .c >b >a B .b >c >a C .c >a >bD .a >c >b解析:选D 因为a =60.7>1,b =log 70.6<0,0<c =log 0.60.7<1,所以a >c >b . 3.函数f (x )=|log 2x |+x -2的零点个数为( ) A .1 B .2 C .3D .4解析:选B 函数f (x )=|log 2x |+x -2的零点个数,就是方程|log 2x |+x -2=0的根的个数.令h (x )=|log 2x |,g (x )=2-x ,画出两函数的图象,如图. 由图象得h (x )与g (x )有2个交点,∴方程|log 2x |+x -2=0的解的个数为2.4.(2017·河南适应性测试)函数y =a x-a (a >0,a ≠1)的图象可能是( )解析:选C 由函数y =a x-a (a >0,a ≠1)的图象过点(1,0),得选项A 、B 、D 一定不可能;C 中0<a <1,有可能,故选C.5.已知奇函数y =⎩⎪⎨⎪⎧fx ,x >0,g x ,x <0.若f (x )=a x(a >0,a ≠1)对应的图象如图所示,则g (x )=( )A.⎝ ⎛⎭⎪⎫12-xB .-⎝ ⎛⎭⎪⎫12xC .2-xD .-2x解析:选D 由图象可知,当x >0时,函数f (x )单调递减,则0<a <1,∵f (1)=12,∴a =12,即函数f (x )=⎝ ⎛⎭⎪⎫12x ,当x <0时,-x >0,则f (-x )=⎝ ⎛⎭⎪⎫12-x =-g (x ),即g (x )=-⎝ ⎛⎭⎪⎫12-x =-2x,故g (x )=-2x,x <0,选D.6.已知f (x )=a x和g (x )=b x是指数函数,则“f (2)>g (2)”是“a >b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C 由题可得,a >0,b >0且a ≠1,b ≠1. 充分性:f (2)=a 2,g (2)=b 2, 由f (2)>g (2)知,a 2>b 2,再结合y =x 2在(0,+∞)上单调递增, 可知a >b ,故充分性成立; 必要性:由题可知a >b >0,构造函数h (x )=f x g x =a x b x =⎝ ⎛⎭⎪⎫a b x ,显然ab>1,所以h (x )单调递增,故h (2)=a 2b2>h (0)=1,所以a 2>b 2,故必要性成立.7.函数f (x )=e x+x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析:选C 法一:∵f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,∴f (0)f (1)<0,故函数f (x )=e x+x -2的零点所在的一个区间是(0,1),选C.法二:函数f (x )=e x+x -2的零点,即函数y =e x的图象与y =-x+2的图象的交点的横坐标,作出函数y =e x与直线y =-x +2的图象如图所示,由图可知选C.8.已知函数f (x )=ln x +3x -8的零点x 0∈[a ,b ],且b -a =1,a ,b ∈N *,则a +b =( ) A .0 B .2 C .5D .7解析:选 C ∵f (2)=ln 2+6-8=ln 2-2<0,f (3)=ln 3+9-8=ln 3+1>0,且函数f (x )=ln x +3x -8在(0,+∞)上为单调递增函数,∴x 0∈[2,3],即a =2,b =3,∴a +b =5.9.(2018届高三·湖南四校联考)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,g x ,x <0,若f (x )为奇函数,则g ⎝ ⎛⎭⎪⎫-14的值为( )A .-14B.14 C .-2D .2解析:选D 法一:当x >0时,f (x )=log 2x , ∵f (x )为奇函数,∴当x <0时,f (x )=-log 2(-x ), 即g (x )=-log 2(-x ), ∴g ⎝ ⎛⎭⎪⎫-14=-log 214=2. 法二:g ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫-14=-f ⎝ ⎛⎭⎪⎫14=-log 214=-log 22-2=2.10.(2017·杭州二模)已知直线x =m (m >1)与函数f (x )=log a x (a >0且a ≠1),g (x )=log b x (b >0且b ≠1)的图象及x 轴分别交于A ,B ,C 三点,若AB ―→=2BC ―→,则( )A .b =a 2B .a =b 2C .b =a 3D .a =b 3。
(广东专用)2020高考数学总复习第二章第八节课时跟踪训练理
A . 1 B. 2 C. 3/• x —1 = 0 或In x = 0,得x = 1.【答案】A2. (2020东莞质检)为了求函数f(x) = 2x —x2的一个零点,某同学利用计算器,得到自变量x和函数值x 0.6 1.0 1.4 1.8 2.2 2.6 3.0f(x) 1.16 1.00 0.68 0.24 —0.24 —0.70 —1.00则函数f(x)的一个零点所在的区间是()A . (0.6,1.0)B . (1.4,1.8)C . (1.8,2.2) D. (2.6,3.0)【解析】•/ f(1.8) f(2.2) = 0.24 X —0.24) V 0,•••零点在(1.8,2.2)上.【答案】C13.已知a是函数f(x) = 2x —log*的零点,若0 V x0v a,贝U f(x0)的值满足()B . f(x0) > 0D . f(x0)的符号不确定【解析】1••• f(a) = 2a—log ^a =又f(x)在(0, + s上是增函数,•••当0V x0v a 时,f(x0) V f(a) = 0.【答案】 C4 . (2020珠海模拟)函数f(x) = |x—2|—ln x在定义域内的零点个数为()A . 0B . 1C . 2D . 3【解析】由f(x) = |x—2|—ln x = 0,得|x—2|= ln x ,令y= |x —2|与y= ln x(x >0),在同一坐标系内作两函数的图象,有两个交点.• f(x) = |x —2|—ln x在定义域内有两个零点.【答案】C5. 若函数f(x)的零点与g(x) = 4x+ 2x —2的零点之差的绝对值不超过0.25,贝U f(x)可以是( )、选择题1 f(x)x —1 In xx —3的零点个数为课时知能训练【解析】T f(x) = 0,即x—1x—3A . f(x0) = 0C . f(x0) V 0A . f(x) = 4x —1 B. f(x) = (x —1)21C. f(x) = ex—1D. f(x) = ln(x —2)【解析】•/ A、B、C、D四个选项中的零点是确定的:I 3A : x = 4,B: x= 1, C: x= 0, D: x= 2*••• g(x) = 4x + 2x —2 在R 上连续且g(》=2 + 2—2= 2 —3V 0, gg)= 2 + 1 —2= 1> 0. 设g(x) = 4x + 2x —2 的零点为x0,则4< x0 V1,II "11o v xo - 4V4,二|x0—4V 4.1因此函数f(x) = 4x —1的零点x==满足.4【答案】A二、填空题16. ___________________________________________________ “= 4”是函数f(x) = ax2 —x + 1只有一个零点”的________________________________________条件.【解析】当a=-时,△= (一1)2 —4a= 0,4••• f(x) = ax2 —x + 1 只有一个零点,但a= 0时,f(x) = ax2 —x + 1也有一个零点,1•“a 4”是函数f(x)只有一个零点”的充分不必要条件.【答案】充分不必要7. ____________________________________________________________ 若函数f(x) = 2 —|x—1|—m有零点,则实数m的取值范围是____________________________ .1【解析】令f(x) = 0,得m= (?)|x —1|,—1| >P1•0v(2)|x—1| <,1 即卩0 v m< 1.【答案】0 v m<l&设x0 是方程ln x + x= 4 的解,且x0 € (k, k+ 1), k € Z 则k = _________ .【解析】令f(x) = ln x + x —4,且f(x)在(0 ,+8递增,•/f(2) = ln 2 + 2—4<0 , f(3) = ln 3 —1>0.• f(x)在(2,3)内有解,••• k= 2.【答案】2三、解答题19. 若函数f(x) = bx+ 2有一个零点为3,求g(x) = x2 + 5x + b的零点.【解】•/ -是函数f(x)的零点,31 1•• f(?= 0,即§b+ 2= 0,解得 b =— 6.• g(x) = x2 + 5x —6, 由x2 + 5x— 6 = 0,得x = 1 或x=—6,••• g(x)的零点为1和一6.110. 设函数f(x) =(2)|x —1|, g(x) = Iog2x(x >0),试判定函数 $ (x=f(x) —g(x)在(0,2]内零点的个数.【解】(1)当x € (0,1)时,g(x) = Iog2x v 0,1 1f(x) =(2)|x—1|= (2)1 —x > 0,••方程f(x) = g(x)在(0,1)内无实根,•$ (x)= f(x) —g(x)在(0,1)内无零点.1t丄⑵当x € [1,2]时,f(x) = Qx — 1 ,•$ (x)= f(x)—g(x)= g)x —1 —Iog2x在[1,2]上是减函数,且 $ (x的图象连续不间断,1 1又$ (1= 1—0= 1 >0, $ (2)=1 —1 = —2v 0,•$ (1)•$<v°,因此$ (x在(0,2)内有唯一零点,根据(1)、⑵知,$ (x)= f(x) —g(x)在(0,2]内有唯一的零点.11•中央电视台有一档娱乐鉴宝”节目,主持人会给选手在限定时间内猜某一艺术品”的售价机会,如果猜中,就把物品奖励给选手,同时获得一枚商标•某次猜一种艺术品”价格在500〜1 000元之间.选手开始报价:1 000元,主持人回答:高了;紧接着报价900元,高了;700元,低了;800元,低了,880元,高了;850元,低了;851元,恭喜你,你猜中了.表面上看猜价格具有很大的碰运气的成分,实际中,游戏报价过程体现了逼近”的数学思想,你能设计出可行的猜价方案来帮助选手猜价吗?【解】取价格区间[500,1 000]的中点750,如果主持人说低了,就再取[750,1 000]的中点875;否则取另一个区间(500,750)的中点;若遇到小数取整数.照这样的方案,游戏过程猜测价如下:750,875,812,843,859,851,经过6次可猜中价格.。
(通用版)18年高考数学二轮复习课时跟踪检测(七)理
课时跟踪检测(七)1.(2018届高三·广西三市联考)已知数列{a n }的前n 项和为S n ,且S n =2n-1(n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =log 4a n +1,求{b n }的前n 项和T n . 解:(1)当n ≥2时,a n =S n -S n -1=2n -1, 当n =1时,a 1=2-1=1,满足a n =2n -1,∴数列{a n }的通项公式为a n =2n -1(n ∈N *). (2)由(1)得,b n =log 4a n +1=n +12,则b n +1-b n =n +22-n +12=12,又b 1=log 4a 1+1=1,∴数列{b n }是首项为1,公差d =12的等差数列,∴T n =nb 1+n n -2d =n 2+3n4.2.(2017·福州质检)已知等差数列{a n }的各项均为正数,其公差为2,a 2a 4=4a 3+1. (1)求{a n }的通项公式; (2)求a 1+a 3+a 9+…+a 3n .解:(1)依题意知,a n =a 1+2(n -1),a n >0.因为a 2a 4=4a 3+1,所以(a 1+2)(a 1+6)=4(a 1+4)+1, 所以a 21+4a 1-5=0,解得a 1=1或a 1=-5(舍去), 所以a n =2n -1. (2)a 1+a 3+a 9+…+a 3n=(2×1-1)+(2×3-1)+(2×32-1)+…+(2×3n-1) =2×(1+3+32+ (3))-(n +1) =2×1-3n +11-3-(n +1)=3n +1-n -2.3.(2018届高三·广东五校联考)数列{a n }的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式; (2)设b n =a n +1S n S n +1,求数列{b n }的前n 项和T n . 解:(1)∵S n =2a n -a 1,①∴当n ≥2时,S n -1=2a n -1-a 1; ②①-②得,a n =2a n -2a n -1,即a n =2a n -1.由a 1,a 2+1,a 3成等差数列,得2(a 2+1)=a 1+a 3, ∴2(2a 1+1)=a 1+4a 1,解得a 1=2.∴数列{a n }是首项为2,公比为2的等比数列. ∴a n =2n.(2)∵a n =2n,∴S n =2a n -a 1=2n +1-2,S n +1=2n +2-2.∴b n =a n +1S n S n +1=2n +1n +1-n +2-=12⎝ ⎛⎭⎪⎫12n -1-12n +1-1. ∴数列{b n }的前n 项和T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12-1-122-1+⎝ ⎛⎭⎪⎫122-1-123-1+…+⎝ ⎛⎭⎪⎫12n -1-12n +1-1=12⎝ ⎛⎭⎪⎫1-12n +1-1=2n-12-1.4.已知数列{a n }的前n 项和为S n ,若a n =-3S n +4,b n =-log 2a n +1. (1)求数列{a n }的通项公式与数列{b n }的通项公式; (2)令c n =b n2n +1+1nn +,其中n ∈N *,若数列{c n }的前n 项和为T n ,求T n .解:(1)由a 1=-3a 1+4,得a 1=1, 由a n =-3S n +4,知a n +1=-3S n +1+4, 两式相减并化简得a n +1=14a n ,∴a n =⎝ ⎛⎭⎪⎫14n -1,b n =-log 2a n +1=-log 2⎝ ⎛⎭⎪⎫14n =2n .(2)由题意知,c n =n2n +1nn +. 令H n =12+222+323+…+n 2n ,① 则12H n =122+223+…+n -12n +n 2n +1,②①-②得,12H n =12+122+123+…+12n -n 2n +1=1-n +22n +1.∴H n =2-n +22n.又T n -H n =11×2+12×3+…+1n n +=1-12+12-13+…+1n -1n +1=1-1n +1=nn +1,∴T n =H n +(T n -H n )=2-n +22n+nn +1.5.已知数列{a n }满足a 1=1,a n +1=2a n +n +1.(1)是否存在实数p ,q ,使{a n +pn +q }成等比数列?若存在,求出p ,q 的值;若不存在,请说明理由;(2)令b n =a n +2,求数列{b n }的前n 项和T n .解:(1)假设存在实数p ,q ,使数列{a n +pn +q }为等比数列,且其公比为A ,则由题意得,a n +1+p (n +1)+q =A (a n +pn +q ),即a n +1=Aa n +(Ap -p )n +Aq -q -p ,又a n +1=2a n +n +1,∴⎩⎪⎨⎪⎧ A =2,Ap -p =1,Aq -q -p =1,即⎩⎪⎨⎪⎧A =2,p =1,q =2,∴a n +1+(n +1)+2=2(a n +n +2),当n =1时,a 1+1+2=4,∴存在实数p =1,q =2,使数列{a n +pn +q }是首项为4,公比为2的等比数列.(2)由(1)可知a n +n +2=4·2n -1=2n +1,∴a n =2n +1-n -2,n ∈N *.∴b n =a n +2=2n +1-n ,∴T n =(22+23+…+2n +1)-(1+2+…+n )=2n +2-4-n n +2=2n +2-n 2+n +82.。
通用版高考数学二轮复习课时跟踪检测十八文2.doc
课时跟踪检测(十八)1.(2017·石家庄质检)设M ,N ,T 是椭圆x 216+y 212=1上的三个点,M ,N 在直线x =8上的射影分别为M 1,N 1.(1)若直线MN 过原点O ,直线MT ,NT 的斜率分别为k 1,k 2,求证:k 1k 2为定值;(2)若M ,N 不是椭圆长轴的端点,点L 的坐标为(3,0),△M 1N 1L 与△MNL 的面积之比为5∶1,求MN 中点K 的轨迹方程.解:(1)证明:设M (p ,q ),N (-p ,-q ),T (x 0,y 0),则k 1k 2=y 0-qy 0+q x 0-p x 0+p =y 20-q2x 20-p2,又⎩⎪⎨⎪⎧p 216+q 212=1,x 216+y 2012=1,故x 20-p 216+y 20-q212=0,即y 20-q2x 20-p 2=-34,所以k 1k 2=-34,为定值. (2)设直线MN 与x 轴相交于点R (r,0),S △MNL =12|r -3|·|y M -y N |,S △M 1N 1L =12·5·|yM 1-yN 1|.因为S △M 1N 1L =5S △MNL ,所以12·5·|yM 1-yN 1|=5·12|r -3|·|y M -y N |,又|yM 1-yN 1|=|y M -y N |,解得r =4(舍去),或r =2,即直线MN 经过点F (2,0). 设M (x 1,y 1),N (x 2,y 2),K (x 0,y 0),①当MN 垂直于x 轴时,MN 的中点K 即为F (2,0);②当MN 与x 轴不垂直时,设MN 的方程为y =k (x -2),则⎩⎪⎨⎪⎧x 216+y 212=1,y =k x -消去y 得,(3+4k 2)x 2-16k 2x +16k 2-48=0.x 1+x 2=16k 23+4k 2,x 1x 2=16k 2-483+4k2.x 0=8k 23+4k 2,y 0=-6k3+4k2. 消去k ,整理得(x 0-1)2+4y 23=1(y 1≠0).经检验,(2,0)也满足(x 0-1)2+4y 23=1.综上所述,点K 的轨迹方程为(x -1)2+4y23=1(x >0).2.(2017·全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 解:(1)不能出现AC ⊥BC 的情况,理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0,所以x 1x 2=-2. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:由(1)知BC 的中点坐标为⎝ ⎛⎭⎪⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝ ⎛⎭⎪⎫x -x 22. 由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2. 联立⎩⎪⎨⎪⎧x =-m 2,y -12=x 2⎝ ⎛⎭⎪⎫x -x 22,x 22+mx 2-2=0,可得⎩⎪⎨⎪⎧x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫-m 2,-12,半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-⎝ ⎛⎭⎪⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.3.(2017·宁波模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0)经过点P (-2,0)与点(1,1).(1)求椭圆的方程;(2)过P 点作两条互相垂直的直线PA ,PB ,交椭圆于A ,B ,求证:直线AB 经过定点.解:(1)由题意得,⎩⎪⎨⎪⎧4a 2+0b2=1,1a 2+1b 2=1,解得a 2=4,b 2=43,椭圆的方程为x 24+3y24=1.(2)证明:由对称性知,若存在定点,则必在x 轴上, 当k PA =1时,l PA :y =x +2,∴⎩⎪⎨⎪⎧y =x +2,x 2+3y 2=4,∴x 2+3(x 2+4x +4)=4⇒x =-1. 以下验证:定点为(-1,0),由题意知,直线PA ,PB 的斜率均存在,设直线PA 的方程为y =k (x +2),A (x A ,y A ),B (x B ,y B ). 则x 2+3k 2(x 2+4x +4)=4⇒x A =2-6k 21+3k2,y A =4k1+3k2, 同理x B =2k 2-6k 2+3,y B =-4kk 2+3,则y Ax A +1=4k 3-3k 2=y B x B +1,得证. 4.已知椭圆C 的中心在原点,焦点在x 轴上,离心率为22,它的一个焦点恰好与抛物线y 2=4x 的焦点重合.(1)求椭圆C 的方程;(2)设椭圆的上顶点为A ,过点A 作椭圆C 的两条动弦AB ,AC ,若直线AB ,AC 斜率之积为14,直线BC 是否恒过一定点?若经过,求出该定点坐标;若不经过,请说明理由.解:(1)由题意知椭圆的一个焦点为F (1,0),则c =1.由e =c a =22得a =2,∴b =1, ∴椭圆C 的方程为x 22+y 2=1.(2)由(1)知A (0,1),当直线BC 的斜率不存在时, 设BC :x =x 0,设B (x 0,y 0),则C (x 0,-y 0),k AB ·k AC =y 0-1x 0·-y 0-1x 0=1-y 2x 20=12x 20x 20=12≠14,不合题意.故直线BC 的斜率存在.设直线BC 的方程为:y =kx +m (m ≠1),并代入椭圆方程,得:(1+2k 2)x 2+4kmx +2(m 2-1)=0,①由Δ=(4km )2-8(1+2k 2)(m 2-1)>0, 得2k 2-m 2+1>0.②设B (x 1,y 1),C (x 2,y 2),则x 1,x 2是方程①的两根,由根与系数的关系得, x 1+x 2=-4km 1+2k 2,x 1x 2=m 2-1+2k 2, 由k AB ·k AC =y 1-1x 1·y 2-1x 2=14得: 4y 1y 2-4(y 1+y 2)+4=x 1x 2,即(4k 2-1)x 1x 2+4k (m -1)(x 1+x 2)+4(m -1)2=0, 整理得(m -1)(m -3)=0, 又因为m ≠1,所以m =3, 此时直线BC 的方程为y =kx +3. 所以直线BC 恒过一定点(0,3).5.(2017·台州模拟)如图,已知椭圆C :x 24+y 2=1,过点P (1,0)作斜率为k 的直线l ,且直线l 与椭圆C 交于两个不同的点M ,N .(1)设点A (0,2),k =1,求△AMN 的面积;(2)设点B (t,0),记直线BM ,BN 的斜率分别为k 1,k 2.问是否存在实数t ,使得对于任意非零实数k ,(k 1+k 2)·k 为定值?若存在,求出实数t 的值及该定值;若不存在,请说明理由.解:(1)当k =1时,直线l 的方程为y =x -1.由⎩⎪⎨⎪⎧x 24+y 2=1,y =x -1,得x =0或x =85,当x =0时,y =-1, 当x =85时,y =35,不妨设N (0,-1),M ⎝ ⎛⎭⎪⎫85,35.所以|AN |=3.所以S △AMN =12×3×85=125.(2)由题意知,直线MN 的方程为y =k (x -1), 设M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧x 24+y 2=1,y =k x -,得(1+4k 2)x 2-8k 2x +4k 2-4=0.所以x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k 2.由k 1=y 1x 1-t,k 2=y 2x 2-t,得(k 1+k 2)·k =k ⎝ ⎛⎭⎪⎫y 1x 1-t +y 2x 2-t=k 2⎝ ⎛⎭⎪⎫x 1-1x 1-t +x 2-1x 2-t=k 2x 1-tx 2-+x 2-t x 1-x 1-t x 2-t=k 2[2x 1x 2-t +x 1+x 2+2t ]x 1x 2-t x 1+x 2+t 2=k 2t -k2-8t +4t 2+t 2-4. 若2t -8=0,则t =4,(k 1+k 2)·k =0为定值. 若2t -8≠0,则当t 2-4=0, 即t =±2时,(k 1+k 2)·k =2t -84-8t +4t2为定值.所以当t =4时,(k 1+k 2)·k =0; 当t =2时,(k 1+k 2)·k =-1; 当t =-2时,(k 1+k 2)·k =-13.。
通用高考数学二轮复习课时跟踪检测二文
B.(k∈Z)
C.(k∈Z)
D.(k∈Z)
解析:选B 由kπ-<2x-<kπ+(k∈Z)得,-<x<+(k∈Z),所以函数f(x)=tan))的单调递增区间为-,+)) (k∈Z),故选B.
2.函数f(x)=sin(ωx+φ) ))的部分图象如图所示,则函数f(x)的解析式为( )
A.f(x)=sinB.f(x)=sin
11.(20xx届高三·广西三市联考)已知x=是函数f(x)=sin(2x+φ)+cos(2x+φ)(0<φ<π)图象的一条对称轴,将函数f(x)的图象向右平移个单位长度后得到函数g(x)的图象,则函数g(x)在,))上的最小值为( )
A.-2B.-1
C.-D.-
解析:选B f(x)=sin(2x+φ)+cos(2x+φ)=2sin.∵x=是f(x)=2sin图象的一条对称轴,∴2×++φ=kπ+(k∈Z),即φ=+kπ(k∈Z),∵0<φ<π,∴φ=,则f(x)=2sin)),∴g(x)=2sin=-2sin)),则g(x)在上的最小值为g=-1,故选B.
7.(20xx·全国卷Ⅲ)函数f(x)=sin+cos的最大值为( )
A.B.1
C.D.
解析:选A 因为cos=cos=sin,所以f(x)=sin,于是f(x)的最大值为.
8.(20xx·武昌调研)若f(x)=cos 2x+acos+x))在区间上是增函数,则实数a的取值范围为( )
A.[-2,+∞)B.(-2,+∞)
C.f(x)=sinD.f(x)=sin
解析:选A 由题图可知, 函数f(x)的最小正周期为T==×4=π,所以ω=2,即f(x)=sin(2x+φ).又函数f(x)的图象经过点,所以sin+φ))=1,则+φ=2kπ+(k∈Z),解得φ=2kπ+(k∈Z),又|φ|<,所以φ=,即函数f(x)=sin,故选A.
【名校专用】通用版高考数学二轮复习课时跟踪检测二十八理
课时跟踪检测(二十八)1.(2017·云南调研)已知函数f (x )=|x +1|+|m -x |(其中m ∈R). (1)当m =2时,求不等式f (x )≥6的解集;(2)若不等式f (x )≥6对任意实数x 恒成立,求m 的取值范围. 解:(1)当m =2时,f (x )=|x +1|+|2-x |,①当x <-1时,f (x )≥6可化为-x -1+2-x ≥6,解得x ≤-52;②当-1≤x ≤2时,f (x )≥6可化为x +1+2-x ≥6,无实数解; ③当x >2时,f (x )≥6可化为x +1+x -2≥6,解得x ≥72.综上,不等式f (x )≥6的解集为⎩⎨⎧⎭⎬⎫x|x ≤-52或x ≥72.(2)法一:因为|x +1|+|m -x |≥|x +1+m -x |=|m +1|,由题意得|m +1|≥6,即m +1≥6或m +1≤-6,解得m ≥5或m ≤-7,即m 的取值范围是(-∞,-7]∪[5,+∞).法二:①当m <-1时,f (x )=⎩⎪⎨⎪⎧-2x +m -1,x <m ,-m -1,m ≤x ≤-1,2x +1-m ,x >-1,此时,f (x )min =-m -1,由题意知,-m -1≥6, 解得m ≤-7,所以m 的取值范围是m ≤-7.②当m =-1时,f (x )=|x +1|+|-1-x |=2|x +1|, 此时f (x )min =0,不满足题意.③当m >-1时,f (x )=⎩⎪⎨⎪⎧-2x +m -1,x <-1,m +1,-1≤x ≤m ,2x +1-m ,x >m ,此时,f (x )min =m +1,由题意知,m +1≥6,解得m ≥5, 所以m 的取值范围是m ≥5.综上所述,m 的取值范围是(-∞,-7]∪[5,+∞).2.(2017·郑州模拟)已知a >0,b >0,函数f (x )=|x +a |+|x -b |的最小值为4. (1)求a +b 的值; (2)求14a 2+19b 2的最小值.解:(1)因为|x +a |+|x -b |≥|a +b |,所以f (x )≥|a +b |,当且仅当(x +a )(x -b )<0时,等号成立,又a >0,b >0,所以|a +b |=a +b ,所以f (x )的最小值为a +b ,所以a +b =4.(2)由(1)知a +b =4,b =4-a ,14a 2+19b 2=14a 2+19(4-a )2=1336a 2-89a +169=1336⎝ ⎛⎭⎪⎫a -16132+1613,故当且仅当a =1613,b =3613时,14a 2+19b 2取最小值为1613. 3.(2018届高三·湖南五市十校联考)设函数f (x )=|x -1|-2|x +a |. (1)当a =1时,求不等式f (x )>1的解集;(2)若不等式f (x )>0在x ∈[2,3]上恒成立,求a 的取值范围.解:(1)a =1,f (x )>1⇔|x -1|-2|x +1|>1⇔⎩⎪⎨⎪⎧x ≤-1,-x +1+x +或⎩⎪⎨⎪⎧-1<x ≤1,-x +1-x +>1或⎩⎪⎨⎪⎧x >1,x -1-x +⇔-2<x ≤-1或-1<x <-23或x ∈∅⇔-2<x <-23,故不等式f (x )>1的解集为⎝⎛⎭⎪⎫-2,-23. (2)f (x )>0在x ∈[2,3]上恒成立⇔|x -1|-2|x +a |>0在x ∈[2,3]上恒成立⇔|2x +2a |<x -1⇔1-x <2x +2a <x -1⇔1-3x <2a <-x -1在x ∈[2,3]上恒成立⇔(1-3x )max <2a <(-x -1)min ⇔-5<2a <-4⇔-52<a <-2.故a 的取值范围为⎝ ⎛⎭⎪⎫-52,-2.4.(2017·宝鸡质检)已知函数f (x )=|2x -a |+|2x +3|,g (x )=|x -1|+2. (1)解不等式|g (x )|<5;(2)若对任意x 1∈R ,都存在x 2∈R ,使得f (x 1)=g (x 2)成立,求实数a 的取值范围. 解:(1)由||x -1|+2|<5得-5<|x -1|+2<5,所以-7<|x -1|<3,解得-2<x <4,则不等式|g (x )|<5的解集为{x |-2<x <4}. (2)因为对任意x 1∈R ,都存在x 2∈R ,使得f (x 1)=g (x 2)成立,所以{y |y =f (x )}⊆{y |y =g (x )},又f (x )=|2x -a |+|2x +3|≥|(2x -a )-(2x +3)|=|a +3|,g (x )=|x -1|+2≥2,所以|a +3|≥2,解得a ≥-1或a ≤-5, 所以实数a 的取值范围为{a |a ≥-1或a ≤-5}.5.(2018届高三·湘中名校联考)已知函数f (x )=|x -2|+|2x +a |,a ∈R. (1)当a =1时,解不等式f (x )≥5;(2)若存在x 0满足f (x 0)+|x 0-2|<3,求实数a 的取值范围. 解:(1)当a =1时,f (x )=|x -2|+|2x +1|. 由f (x )≥5得|x -2|+|2x +1|≥5.当x ≥2时,不等式等价于x -2+2x +1≥5,解得x ≥2,所以x ≥2;当-12<x <2时,不等式等价于2-x +2x +1≥5,即x ≥2,所以解集为空集;当x ≤-12时,不等式等价于2-x -2x -1≥5,解得x ≤-43,所以x ≤-43.故原不等式的解集为⎩⎨⎧⎭⎬⎫x|x ≤-43或x ≥2.(2)f (x )+|x -2|=2|x -2|+|2x +a |=|2x -4|+|2x +a |≥|2x +a -(2x -4)|=|a +4|,∵原命题等价于(f (x )+|x -2|)min <3,即|a +4|<3,∴-7<a <-1.即实数a 的取值范围为(-7,-1).6.已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3. (1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈⎣⎢⎡⎭⎪⎫-a 2,12时,f (x )≤g (x ),求a 的取值范围. 解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0.设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1.其图象如图所示.从图象可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}.(2)当x ∈⎣⎢⎡⎭⎪⎫-a 2,12时,f (x )=1+a .不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈⎣⎢⎡⎭⎪⎫-a 2,12都成立.故-a 2≥a -2,即a ≤43. 从而a 的取值范围是⎝⎛⎦⎥⎤-1,43. 7.(2017·贵阳检测)已知|x +2|+|6-x |≥k 恒成立. (1)求实数k 的最大值;(2)若实数k 的最大值为n ,正数a ,b 满足85a +b +22a +3b=n .求7a +4b 的最小值. 解:(1)因为|x +2|+|6-x |≥k 恒成立, 设g (x )=|x +2|+|6-x |,则g (x )min ≥k .又|x +2|+|6-x |≥|(x +2)+(6-x )|=8,当且仅当-2≤x ≤6时,g (x )min =8, 所以k ≤8,即实数k 的最大值为8.(2)由(1)知,n =8,所以85a +b +22a +3b =8,即45a +b +12a +3b=4,又a ,b 均为正数,所以7a +4b =14(7a +4b )⎝ ⎛⎭⎪⎫45a +b +12a +3b=14[]a +b +a +3b⎝⎛⎭⎪⎫45a +b +12a +3b =14⎣⎢⎡⎦⎥⎤4+1+a +3b 5a +b +5a +b 2a +3b ≥14×(5+4)=94, 当且仅当a +3b 5a +b =5a +b 2a +3b ,即a =5b =1552时,等号成立,所以7a +4b 的最小值是94. 8.设a ,b ,c ∈R +,且a +b +c =1.求证: (1)2ab +bc +ca +c 22≤12;(2)a 2+c 2b +b 2+a 2c +c 2+b 2a≥2.证明:(1)因为1=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca ≥4ab +2bc +2ca +c 2,当且仅当a =b 时等号成立.所以2ab +bc +ca +c 22=12(4ab +2bc +2ca +c 2)≤12.(2)因为a 2+c 2b ≥2ac b ,b 2+a 2c ≥2ab c ,c 2+b 2a ≥2bca ,所以a 2+c 2b +b 2+a 2c +c 2+b 2a≥⎝⎛⎭⎪⎫ac b +ab c +⎝ ⎛⎭⎪⎫ab c +bc a +⎝ ⎛⎭⎪⎫ac b +bc a =a ⎝⎛⎭⎪⎫c b +bc +b ⎝⎛⎭⎪⎫a c +ca +c ⎝⎛⎭⎪⎫a b +ba ≥2a +2b +2c =2,当且仅当a =b =c =13时等号成立.。
高考数学二轮复习课时跟踪检测八理
课时跟踪检测(八)一、选择题1.已知函数f (n )=⎩⎪⎨⎪⎧为奇数,-为偶数,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( )A .0B .100C .-100D .10 200解析:选B 由题意,a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100,故选B.2.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱B.53钱 C.32钱 D.43钱 解析:选D 设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧2a1+d =3a1+9d ,2a1+d =52,解得⎩⎪⎨⎪⎧a1=43,d =-16,故选D.3.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( )A .192里B .96里C .48里D .24里解析:选B 设等比数列{a n }的首项为a 1,公比为q =12,依题意有a1⎝ ⎛⎭⎪⎫1-1261-12=378,解得a 1=192,则a 2=192×12=96,即第二天走了96里,故选B.4.已知数列{a n }的通项公式为a n =log (n +1)(n +2)(n ∈N *),我们把使乘积a 1·a 2·a 3·…·a n 为整数的n 叫做“优数”,则在(0,2 018]内的所有“优数”的和为( )A .1 024B .2 012C .2 026D .2 036解析:选C a 1·a 2·a 3·…·a n =log 23·log 34·log 45·…·log (n +1)(n +2)=log 2(n +2)=k ,k ∈Z ,令0<n =2k -2≤2 018,则2<2k ≤2 020,1<k ≤10,所有“优数”之和为(22-2)+(23-2)+…+(210-2)=-1-2-18=211-22=2 026.故选C.5.(2018届高三·湖北七市(州)联考)在各项都为正数的数列{a n }中,首项a 1=2,且点(a 2n ,a 2n -1)在直线x -9y =0上,则数列{a n }的前n 项和S n =( )A .3n-1 B.1--2C.1+3n 2 D.3n2+n2解析:选A 由点(a 2n ,a 2n -1)在直线x -9y =0上,得a 2n -9a 2n -1=0,即(a n +3a n -1)(a n-3a n -1)=0,又数列{a n }各项均为正数,∴a n +3a n -1>0,∴a n -3a n -1=0,即anan -1=3,∴数列{a n }是首项a 1=2,公比q =3的等比数列,其前n 项和S n =-1-q=-1-3=3n-1,故选A.6.(2017·贵阳检测)正项等比数列{a n }中,存在两项a m ,a n ,使得 aman =4a 1,且a 6=a 5+2a 4,则1m +4n的最小值是( )A.32 B .2C.73D.256解析:选A 记等比数列{a n }的公比为q ,其中q >0,于是有a 4q 2=a 4q +2a 4,即q 2-q -2=0,(q +1)(q -2)=0(q >0),由此解得q =2.由a m a n =16a 21得a 21×2m +n -2=16a 21,故m+n =6,其中m ,n ∈N *,∴1m +4n =16⎝ ⎛⎭⎪⎫1m +4n (m +n )=5+n m +4m n 6≥5+2n m ×4mn 6=32,当且仅且n m =4m n ,即m =2,n =4时等号成立,∴1m +4n 的最小值为32.。
(通用版)高考数学二轮复习 课时跟踪检测(十)理-人教版高三全册数学试题
课时跟踪检测(十)1.(2018届高三·某某八校联考)如图,AC 是圆O 的直径,点B 在圆O 上,∠BAC =30°,BM ⊥AC ,垂足为M .EA ⊥平面ABC ,CF ∥AE ,AE =3,AC =4,CF =1.(1)证明:BF ⊥EM ;(2)求平面BEF 与平面ABC 所成锐二面角的余弦值. 解:(1)证明:∵EA ⊥平面ABC ,∴BM ⊥EA , 又BM ⊥AC ,AC ∩EA =A ,∴BM ⊥平面ACFE , ∴BM ⊥EM .①在Rt △ABC 中,AC =4,∠BAC =30°,∴AB =23,BC =2, 又BM ⊥AC ,则AM =3,BM =3,CM =1. ∵FM =MC 2+FC 2=2,EM =AE 2+AM 2=32,EF =42+3-12=25,∴FM 2+EM 2=EF 2,∴EM ⊥FM .② 又FM ∩BM =M ,③∴由①②③得EM ⊥平面BMF ,∴EM ⊥BF .(2)如图,以A 为坐标原点,过点A 垂直于AC 的直线为x 轴,AC ,AE 所在的直线分别为y ,z 轴建立空间直角坐标系.由已知条件得A (0,0,0),M (0,3,0),E (0,0,3),B (3,3,0),F (0,4,1),∴BE ―→=(-3,-3,3),BF ―→=(-3,1,1). 设平面BEF 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·BE ―→=0,n ·BF ―→=0,得⎩⎨⎧-3x -3y +3z =0,-3x +y +z =0,令x =3,得y =1,z =2,∴平面BEF 的一个法向量为n =(3,1,2).因为EA ⊥平面ABC ,所以取平面ABC 的一个法向量为AE ―→=(0,0,3). 设平面BEF 与平面ABC 所成的锐二面角为θ,则cos θ=|cos 〈n ,AE ―→〉|=3×0+1×0+2×322×3=22.故平面BEF 与平面ABC 所成的锐二面角的余弦值为22. 2.(2017·某某调研)如图所示,四棱锥P ABCD 中,PA ⊥底面ABCD ,PA =2,∠ABC =90°,AB =3,BC =1,AD =23,∠ACD =60°,E 为CD 的中点.(1)求证:BC ∥平面PAE ;(2)求直线PD 与平面PBC 所成角的正弦值. 解:(1)证明:∵AB =3,BC =1,∠ABC =90°, ∴AC =2,∠BCA =60°.在△ACD 中,∵AD =23,AC =2,∠ACD =60°, ∴由余弦定理可得:AD 2=AC 2+CD 2-2AC ·CD ·cos∠ACD ,∴CD =4,∴AC 2+AD 2=CD 2,∴△ACD 是直角三角形. 又E 为CD 的中点,∴AE =12CD =CE =2,又∠ACD =60°,∴△ACE 是等边三角形, ∴∠CAE =60°=∠BCA ,∴BC ∥AE . 又AE ⊂平面PAE ,BC ⊄平面PAE , ∴BC ∥平面PAE .(2)由(1)可知∠BAE =90°,以点A 为原点,以AB ,AE ,AP 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则P (0,0,2),B (3,0,0),C (3,1,0),D (-3,3,0),∴PB ―→=(3,0,-2),PC ―→=(3,1,-2),PD ―→=(-3,3,-2).设n =(x ,y ,z )为平面PBC 的法向量, 则⎩⎪⎨⎪⎧n ·PB ―→=0,n ·PC ―→=0,即⎩⎨⎧3x -2z =0,3x +y -2z =0,取x =1,则y =0,z =32,n =⎝⎛⎭⎪⎫1,0,32,∴cos 〈n ,PD ―→〉=n ·PD ―→|n |·|PD ―→|=-2374·16=-217,∴直线PD 与平面PBC 所成角的正弦值为217. 3.(2017·武昌调研)如图,在四棱锥S ABCD 中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形,AB =BC =2,CD =SD =1.(1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成角的正弦值.解:(1)证明:以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C xyz ,则D (1,0,0),A (2,2,0),B (0,2,0).设S (x ,y ,z ),显然x >0,y >0,z >0,则AS ―→=(x -2,y -2,z ),BS ―→=(x ,y -2,z ),DS ―→=(x -1,y ,z ).由|AS ―→|=|BS ―→|,得 x -22+y -22+z 2= x 2+y -22+z 2,解得x =1.由|DS ―→|=1,得y 2+z 2=1.① 由|BS ―→|=2,得y 2+z 2-4y +1=0.② 由①②,解得y =12,z =32.∴S ⎝ ⎛⎭⎪⎫1,12,32,AS ―→=⎝ ⎛⎭⎪⎫-1,-32,32,BS ―→=⎝ ⎛⎭⎪⎫1,-32,32,DS ―→=⎝ ⎛⎭⎪⎫0,12,32,∴DS ―→·AS ―→=0,DS ―→·BS ―→=0,∴DS ⊥AS ,DS ⊥BS , 又AS ∩BS =S ,∴SD ⊥平面SAB .(2)设平面SBC 的法向量为n =(x 1,y 1,z 1), 则n ⊥BS ―→,n ⊥CB ―→,∴n ·BS ―→=0,n ·CB ―→=0. 又BS ―→=⎝⎛⎭⎪⎫1,-32,32,CB ―→=(0,2,0),∴⎩⎪⎨⎪⎧x 1-32y 1+32z 1=0,2y 1=0,取z 1=2,得n =(-3,0,2).∵AB ―→=(-2,0,0),∴cos 〈AB ―→,n 〉=AB ―→·n |AB ―→||n |=-2×-32×7=217. 故AB 与平面SBC 所成角的正弦值为217. 4.(2017·某某质检)如图①,在矩形ABCD 中,AB =1,AD =2,点E 为AD 的中点,沿BE 将△ABE 折起至△PBE ,如图②所示,点P 在平面BCDE 上的射影O 落在BE 上.(1)求证:BP ⊥CE ;(2)求二面角B PC D 的余弦值.解:(1)证明:∵点P 在平面BCDE 上的射影O 落在BE 上, ∴PO ⊥平面BCDE ,∴PO ⊥CE ,∵CE =12+12=2,BE =12+12=2,BE 2+CE 2=4=BC 2,∴BE ⊥CE , 又PO ∩BE =O ,∴CE ⊥平面PBE ,∴BP ⊥CE .(2)以O 为坐标原点,以过点O 且平行于DC 的直线为x 轴,过点O 且平行于BC 的直线为y 轴,OP 所在的直线为z 轴,建立如图所示的空间直角坐标系.则B ⎝ ⎛⎭⎪⎫12,-12,0,C ⎝ ⎛⎭⎪⎫12,32,0,D ⎝ ⎛⎭⎪⎫-12,32,0,P ⎝ ⎛⎭⎪⎫0,0,22,∴CD ―→=(-1,0,0),CP ―→=⎝ ⎛⎭⎪⎫-12,-32,22, PB ―→=⎝ ⎛⎭⎪⎫12,-12,-22,BC ―→=(0,2,0).设平面PCD 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·CD ―→=0,n 1·CP ―→=0,即⎩⎪⎨⎪⎧-x 1=0,-12x 1-32y 1+22z 1=0,令z 1=2,可得n 1=⎝ ⎛⎭⎪⎫0,23,2,为平面PCD 的一个法向量.设平面PBC 的法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n 2·PB ―→=0,n 2·BC ―→=0,即⎩⎪⎨⎪⎧12x 2-12y 2-22z 2=0,2y 2=0,令z 2=2,可得n 2=(2,0,2),为平面PBC 的一个法向量.∴cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=3311,由图可知二面角B PC D 为钝角, 故二面角B PC D 的余弦值为-3311.5.如图所示,四棱锥P ABCD 的底面ABCD 为矩形,PA ⊥平面ABCD ,点E 是PD 的中点,点F 是PC 的中点.(1)证明:PB ∥平面AEC ;(2)若底面ABCD 为正方形,探究在什么条件下,二面角C AF D 的大小为60°?解:易知AD ,AB ,AP 两两垂直,建立如图所示的空间直角坐标系A xyz ,设AB =2a ,AD =2b ,AP =2c ,则A (0,0,0),B (2a,0,0),C (2a,2b,0),D (0,2b,0),P (0,0,2c ).连接BD ,交AC 于点O ,连接OE ,则O (a ,b,0),又E 是PD 的中点,所以E (0,b ,c ).(1)证明:因为PB ―→=(2a,0,-2c ),EO ―→=(a,0,-c ),所以PB ―→=2EO ―→,所以PB ―→∥EO ―→,即PB ∥EO .因为PB ⊄平面AEC ,EO ⊂平面AEC ,所以PB ∥平面AEC .(2)因为四边形ABCD 为正方形,所以a =b ,则A (0,0,0),B (2a,0,0),C (2a,2a,0),D (0,2a,0),P (0,0,2c ),E (0,a ,c ),F (a ,a ,c ),因为z 轴⊂平面CAF ,所以设平面CAF 的一个法向量为n =(x,1,0),而AC ―→=(2a,2a,0),所以AC ―→·n =2ax +2a =0,得x =-1,所以n =(-1,1,0).因为y 轴⊂平面DAF , 所以设平面DAF 的一个法向量为m =(1,0,z ),而AF ―→=(a ,a ,c ),所以AF ―→·m =a +cz =0,得z =-a c,所以m =⎝⎛⎭⎪⎫1,0,-a c ∥m ′=(c,0,-a ). cos 60°=|n·m ′||n ||m ′|=c 2a 2+c2=12,得a =c . 故当AP 与正方形ABCD 的边长相等时,二面角C AF D 的大小为60°.。
(通用版)高考数学二轮复习 课时跟踪检测(六)理-人教版高三全册数学试题
课时跟踪检测(六)A 组——12+4提速练一、选择题1.(2017·某某模拟)在等比数列{a n }中,已知a 3=6,a 3+a 5+a 7=78,则a 5=( ) A .12 B .18 C .24D .30解析:选B ∵a 3+a 5+a 7=a 3(1+q 2+q 4)=6(1+q 2+q 4)=78,解得q 2=3,∴a 5=a 3q 2=6×3=18.故选B.2.(2017·某某模拟)已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( )A .36B .72C .144D .288解析:选B ∵a 8+a 10=2a 9=28,∴a 9=14,∴S 9=9a 1+a 92=72.3.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4.4.设等比数列{}a n 的前n 项和为S n ,若S 1=13a 2-13,S 2=13a 3-13,则公比q =( )A .1B .4C .4或0D .8解析:选B ∵S 1=13a 2-13,S 2=13a 3-13,∴⎩⎪⎨⎪⎧a 1=13a 1q -13,a 1+a 1q =13a 1q 2-13,解得⎩⎪⎨⎪⎧a 1=1,q =4或⎩⎪⎨⎪⎧a 1=-13,q =0(舍去),故所求的公比q =4.5.已知S n 是公差不为0的等差数列{}a n 的前n 项和,且S 1,S 2,S 4成等比数列,则a 2+a 3a 1的值为( )A .4B .6C .8D .10解析:选C 设数列{}a n 的公差为d ,则S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d ,故(2a 1+d )2=a 1(4a 1+6d ),整理得d =2a 1,所以a 2+a 3a 1=2a 1+3d a 1=8a 1a 1=8. 6.(2018届高三·某某十校联考)已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=( )A .72B .88C .92D .98解析:选C 由S n +1=S n +a n +3,得a n +1-a n =3,所以数列{a n }是公差为3的等差数列,S 8=8a 1+a 82=8a 4+a 52=92. 7.已知数列{}a n 满足a n +1=⎩⎪⎨⎪⎧2a n,0≤a n<12,2a n-1,12≤a n<1.若a 1=35,则a 2 018=( )A.15B.25C.35D.45解析:选A 因为a 1=35,根据题意得a 2=15,a 3=25,a 4=45,a 5=35,所以数列{}a n 以4为周期,又2 018=504×4+2,所以a 2 018=a 2=15,故选A.8.若等比数列的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为( )A.32B.94C .1D .2解析:选D 设等比数列的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9,a 1·a 1q ·a 1q 2·a 1q 3=814,化简得a 21q 3=92,则1a 1+1a 1q +1a 1q2+1a 1q 3=a 1+a 1q +a 1q 2+a 1q 3a 21q3=2.9.(2017·某某模拟)已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( ) A.5-12 B.5+12 C.3-52 D.3+52解析:选A 设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q 2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),所以a 3+a 5a 4+a 6=a 3+a 3q2a 4+a 4q 2=a 31+q 2a 41+q 2=1q =25+1=5-12,故选A. 10.(2017·某某模拟)等差数列{a n }中,a na 2n是一个与n 无关的常数,则该常数的可能值的集合为( )A .{1} B.⎩⎨⎧⎭⎬⎫1,12C.⎩⎨⎧⎭⎬⎫12D.⎩⎨⎧⎭⎬⎫0,12,1解析:选B a n a 2n =a 1+n -1d a 1+2n -1d =a 1-d +nd a 1-d +2nd ,若a 1=d ≠0,则a n a 2n =12;若a 1≠0,d =0,则a n a 2n =1.∵a 1-d +nd ≠0,∴a na 2n ≠0,∴该常数的可能值的集合为⎩⎨⎧⎭⎬⎫1,12.11.(2018届高三·某某十校联考)等差数列{a n }的前n 项和为S n ,且a 1<0,若存在自然数m ≥3,使得a m =S m ,则当n >m 时,S n 与a n 的大小关系是( )A .S n <a nB .S n ≤a nC .S n >a nD .大小不能确定解析:选C 若a 1<0,存在自然数m ≥3,使得a m =S m ,则d >0,否则若d ≤0,数列是递减数列或常数列,则恒有S m <a m ,不存在a m =S m .由于a 1<0,d >0,当m ≥3时,有a m =S m ,因此a m >0,S m >0,又S n =S m +a m +1+…+a n ,显然S n >a n .故选C.12.(2017·某某模拟)等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,则当n ∈N *时,S n -1S n的最大值与最小值之和为( )A .-23B .-712C.14D.56解析:选C 依题意得,S n =32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=1-⎝ ⎛⎭⎪⎫-12n.当n 为奇数时,S n =1+12n 随着n的增大而减小,1<S n =1+12n ≤S 1=32,S n -1S n 随着S n 的增大而增大,0<S n -1S n ≤56;当n 为偶数时,S n =1-12n 随着n 的增大而增大,34=S 2≤S n =1-12n <1,S n -1S n 随着S n 的增大而增大,-712≤S n -1S n <0.因此S n -1S n 的最大值与最小值分别为56,-712,其最大值与最小值之和为56+⎝ ⎛⎭⎪⎫-712=14. 二、填空题13.(2017·某某质检)已知数列{a n }中,a 1=2,且a 2n +1a n=4(a n +1-a n )(n ∈N *),则其前9项和S 9=________.解析:由已知,得a 2n +1=4a n a n +1-4a 2n ,即a 2n +1-4a n a n +1+4a 2n =(a n +1-2a n )2=0,所以a n+1=2a n ,又因为a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故S 9=2×1-291-2=210-2=1 022.答案:1 02214.(2017·某某模拟)已知数列{a n }中,a 1=1,S n 为数列{a n }的前n 项和,且当n ≥2时,有2a na n S n -S 2n=1成立,则S 2 017=________.解析:当n ≥2时,由2a n a n S n -S 2n =1,得2(S n -S n -1)=(S n -S n -1)S n -S 2n =-S n S n -1,∴2S n -2S n -1=1,又2S 1=2,∴⎩⎨⎧⎭⎬⎫2S n 是以2为首项,1为公差的等差数列,∴2S n =n +1,故S n =2n +1,则S 2 017=11 009. 答案:11 00915.(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n·⎝ ⎛⎭⎪⎫12-12n n ()=223+22n n n -=227+22n n -.记t =-n 22+7n2=-12(n 2-7n )=-12⎝ ⎛⎭⎪⎫n -722+498,结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. 答案:6416.(2017·某某模拟)设S n 为数列{a n }的前n 项和,已知a 1=2,对任意p ,q ∈N *,都有a p +q =a p +a q ,则f (n )=S n +60n +1(n ∈N *)的最小值为________. 解析:a 1=2,对任意p ,q ∈N *,都有a p +q =a p +a q ,令p =1,q =n ,则有a n +1=a n +a 1=a n +2.故{a n }是等差数列,所以a n =2n ,S n =2×1+n n 2=n 2+n ,f (n )=S n +60n +1=n 2+n +60n +1=n +12-n +1+60n +1=n +1+60n +1-1.当n +1=8,即n =7时,f (7)=8+608-1=292;当n +1=7,即n =6时,f (6)=7+607-1=1027,因为292<1027,则f (n )=S n +60n +1(n ∈N *)的最小值为292.答案:292B 组——能力小题保分练1.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值为( )A .6B .7C .8D .9 解析:选D 不妨设a >b ,由题意得⎩⎪⎨⎪⎧a +b =p >0,ab =q >0,∴a >0,b >0,则a ,-2,b 成等比数列,a ,b ,-2成等差数列,∴⎩⎪⎨⎪⎧ab =-22,a -2=2b ,∴⎩⎪⎨⎪⎧a =4,b =1,∴p =5,q =4,∴p +q =9.2.(2017·某某质检)已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值X 围为( )A.⎝ ⎛⎭⎪⎫13,+∞B.⎣⎢⎡⎭⎪⎫13,+∞C.⎝ ⎛⎭⎪⎫23,+∞D.⎣⎢⎡⎭⎪⎫23,+∞ 解析:选D 依题意得,当n ≥2时,a n =a 1a 2a 3…a n a 1a 2a 3…a n -1=2n22n -12=2n 2-(n -1)2=22n -1,又a 1=21=22×1-1,因此a n =22n -1,1a n =122n -1=12×⎝ ⎛⎭⎪⎫14n -1,即数列⎩⎨⎧⎭⎬⎫1a n 是以12为首项,14为公比的等比数列,等比数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和等于12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝ ⎛⎭⎪⎫1-14n <23,因此实数t 的取值X 围是⎣⎢⎡⎭⎪⎫23,+∞. 3.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k=________.解析:设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧a 1+2d =3,4a 1+6d =10,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n n +12,1S n =2nn +1=2⎝ ⎛⎭⎪⎫1n -1n +1, 因此∑k =1n1S k =2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2n n +1. 答案:2nn +14.(2017·某某模拟)已知数列{a n },{b n },若b 1=0,a n =1nn +1,当n ≥2时,有b n =b n -1+a n -1,则b 2 018=________.解析:由b n =b n -1+a n -1,得b n -b n -1=a n -1,∴b 2-b 1=a 1,b 3-b 2=a 2,…,b n -b n -1=a n -1,∴b 2-b 1+b 3-b 2+…+b n -b n -1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -1×n,即b n -b 1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -1×n =11-12+12-13+…+1n -1-1n=1-1n =n -1n ,∵b 1=0,∴b n =n -1n ,∴b 2 018=2 0172 018.答案:2 0172 0185.(2017·某某质检)已知数列{a n }的前n 项和为S n ,数列{a n }为12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n,…,若S k =14,则a k =________. 解析:因为1n +2n +…+n -1n =1+2+…+n -1n =n 2-12,1n +1+2n +1+…+nn +1=1+2+…+n n +1=n 2,所以数列12,13+23,14+24+34,…,1n +1+2n +1+…+n n +1是首项为12,公差为12的等差数列,所以该数列的前n 项和T n =12+1+32+…+n 2=n 2+n 4.令T n =n 2+n 4=14,解得n =7(n =-8舍去),所以a k =78.答案:786.在数列{a n }和{b n }中,a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n ,a 1=1,b 1=1.设=1a n +1b n,则数列{}的前2 018项和为________.解析:由已知a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n 得a n +1+b n +1=2(a n +b n ),又a 1+b 1=2,所以数列{a n +b n }是首项为2,公比为2的等比数列,即a n +b n =2n,将a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n 相乘并化简,得a n +1b n +1=2a n b n ,即a n +1b n +1a nb n=2.所以数列{a n b n }是首项为1,公比为2的等比数列,所以a n b n =2n -1,因为=1a n +1b n,所以=a n +b na nb n=2n2n -1=2,数列{}的前2 018项和为2×2 018=4 036. 答案:4 036。
(课标通用)高考数学一轮复习课时跟踪检测理(00002)
课时跟踪检测(七十四)[高考基础题型得分练]1.若(1+i)+(2-3i)=a +b i(a ,b ∈R ,i 是虚数单位),则a ,b 的值分别等于( ) A .3,-2 B .3,2 C .3,-3 D .-1,4 答案:A解读:(1+i)+(2-3i)=3-2i =a +b i ,∴a =3,b =-2,故选A.2.[2017·江西南昌一模]已知i 为虚数单位,则复数z =(-1-2i)i 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:D解读:z =(-1-2i)i =2-i ,对应的点Z (2,-1)在第四象限. 3.[2017·贵州遵义联考]复数53+4i 的共轭复数为( )A .3-4iB .3+4iC.35-45iD.35+45i 答案:D 解读:z =53+4i =-+-=35-45i , ∴z =35+45i.4.设z 是复数,则下列命题中的假命题是( ) A .若z 2≥0,则z 是实数 B .若z 2<0,则z 是虚数 C .若z 是虚数,则z 2≥0 D .若z 是纯虚数,则z 2<0 答案:C解读:举反例说明,若z =i ,则z 2=-1<0,故选C.5.[2017·陕西西安质检]已知复数z =1+2i2-i (i 为虚数单位),则z 的虚部为( )A .-1B .0C .1D .i答案:C 解读:∵z =1+2i2-i =++-+=5i5=i , 故虚部为1.6.[2015·广东卷]若复数z =i(3-2i)(i 是虚数单位),则z 等于( ) A .2-3i B .2+3i C .3+2i D .3-2i答案:A解读:因为z =i(3-2i)=2+3i ,所以z =2-3i ,故选A. 7.[2017·陕西八校联考]已知i 是虚数单位,则i2 0151+i =( )A.1-i 2B.1+i2 C.-1-i 2 D.-1+i2答案:C解读:i 2 0151+i =i 4×503+31+i =i 31+i =-i1+i=--+-=-1-i 2.8.[2014·新课标全国卷Ⅰ]设z =11+i +i ,则|z |=( )A.12B.22C.32D .2答案:B解读:∵z =11+i +i =1-i +-+i =1-i 2+i =12+12i ,∴|z |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=22,故选B.9.[2017·陕西质检]设复数z 1和z 2在复平面内的对应点关于坐标原点对称,且z 1=3-2i ,则z 1·z 2=________.答案:-5+12i解读:z 1=3-2i ,由题意知,z 2=-3+2i. ∴z 1·z 2=(3-2i)(-3+2i)=-5+12i.10.[2015·江苏卷]设复数z 满足z 2=3+4i(i 是虚数单位),则z 的模为________. 答案: 5解读:∵z 2=3+4i ,∴|z |2=|3+4i|=5, 即|z |= 5.11.[2017·河北唐山模拟]若复数z 满足z =i(2+z )(i 为虚数单位),则z =________. 答案:-1+i解读:由已知,得z =2i +z i ,∴z (1-i)=2i ,z =2i1-i=+-+=-1+i.12.[2017·云南昆明模拟]设i 是虚数单位,若复数(2+a i)i 的实部与虚部互为相反数,则实数a 的值为________.答案:2解读:(2+a i)i =-a +2i ,其实部与虚部分别为-a,2,故-a +2=0,因此a =2. 13.计算:(1)-1++i 3;(2)+2+-2+i; (3)1-i +2+1+i -2;(4)1-3i 3+2.解:(1)-1++i 3=-3+i -i =-3+-i·i=-1-3i.(2)+2+-2+i=-3+4i +3-3i 2+i =i2+i=-5=15+25i. (3)1-i+2+1+i -2=1-i 2i -1+i2i=-1. (4)1-3i 3+2=3+-3+2=-i 3+i=-3-4=-14-34i.[冲刺名校能力提升练]1.[2017·湖南株洲模拟]复数1+2i2-i的共轭复数是( )A.3i5 B .-3i 5C .iD .-i答案:D解读:∵1+2i2-i =++-+=5i5=i , ∴共轭复数为-i.2.[2017·河南开封模拟]已知复数z =1+a i(a ∈R )(i 是虚数单位),zz =-35+45i ,则a =( )A .2B .-2C .±2D .-12答案:B解读:∵z =1+a i ,∴z =1-a i ,zz =1-a i 1+a i =1-a 2-2a i 1+a 2=-35+45i , ∴⎩⎪⎨⎪⎧1-a 21+a 2=-35,-2a 1+a 2=45,解得a =-2.3.复数z =i-2-2(i 为虚数单位),z 在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:A 解读:因为z =i-2-2=i 4+4i -1=i3+4i =-25=425+325i ,所以z 在复平面内所对应的点⎝⎛⎭⎪⎫425,325在第一象限.4.如图,若向量OZ →对应的复数为z ,则z +4z表示的复数为( )A .1+3iB .-3-iC .3-iD .3+i 答案:D解读:由图可得Z (1,-1),即z =1-i ,所以z +4z =1-i +41-i=1-i ++-+=1-i +4+4i2=1-i +2+2i =3+i.5.设复数z =3+i(i 为虚数单位)在复平面中对应点A ,将OA 绕原点O 逆时针旋转90°得到OB ,则点B 在( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:B解读:因为复数z 对应点的坐标为A (3,1),所以点A 位于第一象限,所以逆时针旋转π2后对应的点B 在第二象限,故选B.6.下面是关于复数z =2-1+i的四个命题:p 1:|z |=2; p 2:z 2=2i ;p 3:z 的共轭复数为1+i ; p 4:z 的虚部为-1.其中的真命题为( ) A .p 2,p 3 B .p 1,p 2 C .p 2,p 4 D .p 3,p 4答案:C解读:∵z =2-1+i =-1-i ,∴|z |=-2+-2=2,∴p 1是假命题;∵z 2=(-1-i)2=2i ,∴p 2是真命题; ∵z =-1+i ,∴p 3是假命题; ∵z 的虚部为-1,∴p 4是真命题.7.复数-1+3i1+2i (i 为虚数单位)的共轭复数为________.答案:1-i解读:因为复数-1+3i 1+2i =-1+-+-=5+5i 5=1+i ,所以其共轭复数z =1-i.8.若3+b i1-i =a +b i(a ,b 为实数,i 为虚数单位),则a +b =________.答案:3 解读:由3+b i1-i =+b +-+=3-b ++b 2=a +b i ,得a =3-b 2,b =3+b2,解得b =3,a =0,所以a +b =3.9.复数z 满足(3-4i)z =5+10i ,则|z |=________. 答案: 5解读:由(3-4i)z =5+10i 知,|3-4i|·|z |=|5+10i|,即5|z |=55,解得|z |=5.10.已知复数z =i +i 2+i 3+…+i2 0141+i ,则复数z 在复平面内对应的点为________.答案:(0,1) 解读:∵i 4n +1+i4n +2+i4n +3+i4n +4=i +i 2+i 3+i 4=0,而 2 013=4×503+1,2 014=4×503+2,∴z =i +i 2+i 3+…+i 2 0141+i =i +i 21+i =-1+i1+i=-1+-+-=2i2=i , 对应的点为(0,1).11.定义运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc .若复数x =1-i 1+i ,y =⎪⎪⎪ 4i2⎪⎪⎪x i x +i ,则y =________.答案:-2 解读:因为x =1-i1+i=-22=-i ,所以y =⎪⎪⎪ 4i2⎪⎪⎪ x i x +i =⎪⎪⎪ 4i2⎪⎪⎪10=-2. 12.复数z 1=3a +5+(10-a 2)i ,z 2=21-a+(2a -5)i ,若z 1+z 2是实数,求实数a 的值.解:z 1+z 2=3a +5+(a 2-10)i +21-a+(2a -5)i =⎝ ⎛⎭⎪⎫3a +5+21-a +[(a 2-10)+(2a -5)]i =a -13a +a -+(a 2+2a -15)i.∵z 1+z 2是实数,∴a 2+2a -15=0,解得a =-5或a =3. ∵a +5≠0,∴a ≠-5,故a =3.。
高考数学课标通用(理科)一轮复习课时跟踪检测:8Word版含解析
课时追踪检测 (八)[ 高考基础题型得分练 ]1.[2017 ·湖南长沙模拟 ]以下函数中,知足“ f(x +y)=f(x)f(y)”的单一递加函数是 ()A .f(x)=x1 C .f(x)= 2答案: D12B .f(x)=x 3xD .f(x)=3x分析: 依据各选项知,选项 C ,D 中的指数函数知足 f(x +y)=f(x)f(y).又 f(x)=3x 是增函数,因此 D 正确.2 .函数 f(x) =- x的定义域是 ()1 2A .(-∞, 0]B .[0,+∞ )C .(-∞, 0)D .(-∞,+∞ )答案: A分析: 要使 f(x)存心义须知足1-2x ≥0,即 2x≤1,解得 x ≤0..设 =2.5,c = 1 2.532,b =2.5,则 a ,b ,c 的大小关系是 ()a2A .a>c>bB .c>a>bC .b>a>cD .a>b>c答案: D分析: a>1, b =1,0<c<1,因此 a>b>c.4.已知 f(x)=3x -b(2≤x ≤4,b 为常数 )的图象经过点 (2,1),则 f(x)的值域为 ()A .[9,81]B .[3,9]C .[1,9]D .[1,+∞ )答案: C分析: 由 f(x)过定点 (2,1)可知 b =2,因为 f(x)=3x -2在 [2,4] 上是增函数,因此 f(x)min =f(2)=1,f(x)max =f(4)=9.故 f(x)的值域为 [1,9] .xax5.函数 y = |x| (0<a <1)的图象的大概形状是 ()A BCD答案: Dxa x,x>0,分析:函数的定义域为 { x|x ≠0} ,因此 y = xa|x|=x当-a ,x<0,x >0 时,函数是指数函数,其底数 0<a <1,因此函数递减;当 x <0时,函数图象与指数函数y =a x(x <0)的图象对于 x 轴对称,函数递增.应选 D.6.[2017 ·吉林长春模拟 ]函数 y =4x +2x +1+1 的值域为 ()A .(0,+∞ )B .(1,+∞ )C .[1,+∞ )D .(-∞,+∞ )答案: B分析: 令 2x = ,则函数 = x +x +1+1 可化为 y = 2++=t y 4 2t 2t 1 (t+1)2(t >0).∵函数y =(t +1)2 在(0,+ ∞)上递加,∴y >1.∴所求值域为(1,+ ∞).应选 B.7.若函数 f(x)=a|2x -4|(a >0,且 a ≠1),知足 f(1)=19,则 f(x)的单调递减区间是 ()A .(-∞, 2]B .[2,+∞ )C .[-2,+∞ )D .(-∞,- 2]答案: B11 1 1分析: 由 f(1)=9,得 a 2=9,解得 a =3或 a =- 3(舍去 ),即 f(x) 1 |2x4|= 3-.因为 y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递加,因此 f(x)在(-∞,2]上递加,在 [2,+ ∞)上递减,应选 B.8.函数 y =a x -b(a >0 且 a ≠1)的图象经过第二、三、四象限,则 a b 的取值范围为 ()A .(1,+∞ )B.(0,+∞ )C.(0,1)D.没法确立答案: C分析:函数经过第二、三、四象限,因此函数单一递减且图象与y轴的交点在负半轴上.0<a<1,而当 x=0 时, y=a0-b=1-b,由题意得1-b<0,0<a<1,解得因此 a b∈(0,1).b>1,710-20 370.5-239.化简 29+0.1+ 227-3π+48=________.答案: 100251164 -23723分析:原式=9+0.12+27-3+485937=3+100+16-3+48=100.10. [2017 ·福建四地六校联考]y=2·a|x-1|-1(a>0,a≠1)过定点________.答案: (1,1)分析:依据指数函数的性质,令|x-1|=0,可得 x=1,此时 y=1,因此函数恒过定点 (1,1).11.已知函数 f(x)=a-x(a>0,且 a≠1),且 f(-2)>f(-3),则 a 的取值范围是 ________.答案: (0,1)分析:因为 f(x)=a-x=1x,且 f(-2)>f(-3),因此函数f(x)在 a定义域上单一递加,1因此a>1,解得 0<a<1.12.若函数 f(x)=a x(a>0,且 a≠1)在[ -1,2]上的最大值为 4,最小值为 m,且函数 g(x)=(1-4m) x在[0,+∞ )上是增函数,则 a=________.答案:14211分析:若 a>1,有 a=4,a-=m,此时 a=2,m=2,此时 g(x)=-x为减函数,不合题意.若 0<a<1,有 a-1=4,a2=m,故 a=14,m=161,查验知切合题意.[ 冲刺名校能力提高练 ]1.已知函数 f(x)=|2x-1|,a<b<c 且 f(a)>f(c)>f(b),则以下结论中,必定建立的是 ()A.a<0,b<0,c<0B.a<0,b≥0,c>0C.2-a<2cD.2a+2c<2答案: D分析:作出函数 f(x)=|2x-1|的图象如图中实线所示.∵a <b <c ,且 f(a)>f(c)>f(b),联合图象知 a <0,0<c <1,∴0<2a <1,1<2c<2,∴f(a)=|2a -1|=1-2a<1,∴f(c)=|2c -1|=2c -1,又 f(a)>f(c),即 1-2a >2c -1,∴2a +2c <2,应选 D..当 ∈ -∞,- 时,不等式 2 x x恒建立,则2 1](m -m) ·4-2<0x (实数 m 的取值范围是 ()A .(-2,1)B .(-4,3)C .(-1,2)D .(-3,4)答案: C分析: 原不等式变形为m2-m <1x ,21 x∵函数y = 2 在 (-∞,- 1]上是减函数,1 x11∴2 ≥ 2 - =2,当 x∈(-∞,- 1]时, m2-m<1x恒建立等价于 m2-m<2,解2得- 1<m<2.3.若存在负实数使得方程12x-a=x-1建立,则实数a 的取值范围是()A .(2,+∞ ) C.(0,2)B.(0,+∞ ) D.(0,1)答案:C分析:在同一坐标系内分别作出函数y=1和 y=2x-a 的图象,x-1则由图知,当 a∈(0,2)时切合要求.4.若函数 f(x)=a x-x-a(a>0,且 a≠1)有两个零点,则实数 a 的取值范围是 ________.答案: (1,+∞ )分析: 令 a x -x -a =0,即 a x =x +a ,若 0<a<1,明显 y =a x 与 y=x +a 的图象只有一个公共点;若 a>1,y =a x 与 y =x +a 的图象如下图,有两个公共点.5.已知函数 f(x)= 2a ·4x -2x -1.(1)当 a =1 时,求函数 f(x)在 x ∈[-3,0]的值域;(2)若对于 x 的方程 f(x)=0 有解,求 a 的取值范围.解: (1)当 a =1 时,f(x)=2·4x -2x -1=2(2x )2-2x -1,令 t =2x,x ∈[-3,0],则 t ∈ 18,1 .故 y =2t2-t -1=2 t -14 2-98,t ∈ 18,1 ,故值域为 -98,0 .(2)对于 x 的方程 2a(2x )2-2x -1=0 有解,等价于方程2am 2- m- 1=0 在(0,+∞ )上有解.记 g(m)=2am 2-m- 1,当 a =0 时,解为 m =- 1<0,不建立.1当 a<0 时,张口向下,对称轴 m =4a <0,过点(0,-1),不建立.1当 a>0 时,张口向上,对称轴 m =4a >0,过点 (0,-1),必有一个根为正,因此 a>0.综上所述, a 的取值范围是 (0,+∞ ).。
(课标通用)高考数学一轮复习 课时跟踪检测2 理-人教版高三全册数学试题
课时跟踪检测(二)[高考基础题型得分练]1.命题“若一个数是负数,则它的平方是正数”的逆命题是( )A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”答案:B解析:依题意,得原命题的逆命题为:若一个数的平方是正数,则它是负数.2.[2017·某某荣成六中高三月考]已知复数z=(a2-4)+(a+2)i(a∈R),则“a=2”是“z为纯虚数”的( )A.充分不必要条件B.必要不充分条件C.既不充分也不必要条件D.充要条件答案:D解析:当a=2时,z=4i为纯虚数;当z为纯虚数时,a2-4=0,a+2≠0⇒a=2,所以“a=2”是“z为纯虚数”的充要条件,故选D.3.给出命题:“若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限”.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是( )A.3 B.2C.1 D.0答案:C解析:原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y=f(x)的图象不过第四象限,则函数y=f(x)是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.4.下列结论错误的是( )A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”B.“x=4”是“x2-3x-4=0”的充分条件C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”答案:C解析:C项命题的逆命题为“若方程x2+x-m=0有实根,则m>0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0,所以不是真命题,故选C.5.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4 B .a ≤4 C .a ≥5 D .a ≤5答案:C解析:命题“∀x ∈[1,2],x 2-a ≤0”为真命题的充要条件是a ≥4,故其充分不必要条件是集合[4,+∞)的真子集.故选C.6.设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案:C解析:由Venn 图易知充分性成立.反之,A ∩B =∅时,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.7.[2017·某某某某模拟]已知函数f (x )=x 2-2ax +b ,则“1<a <2”是“f (1)<f (3)”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:A解析:函数f (x )=x 2-2ax +b ,所以f (1)=1-2a +b ,f (3)=9-6a +b,1<a <2,所以1-2a <9-6a ,即f (1)<f (3);反过来,当f (1)<f (3)时,得1-2a +b <9-6a +b ,解得a <2,不能得到1<a <2,所以“1<a <2”是“f (1)<f (3)”的充分不必要条件.故选A.8.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-2x+a ,x ≤0有且只有一个零点的充分不必要条件是( )A .a <0B .0<a <12C .12<a <1 D .a ≤0或a >1答案:A解析:因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x+a (x ≤0)没有零点⇔函数y =2x (x ≤0)与直线y =a 无公共点.由数形结合,可得a ≤0或a >1.观察选项,根据集合间的关系得{a |a <0}为{a |a ≤0或a >1}的真子集,故选A. 9.命题“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中,真命题的个数是________.答案:2解析:其中原命题和逆否命题为真命题,逆命题和否命题为假命题.10.给定两个命题p ,q ,若綈p 是q 的必要不充分条件,则p 是綈q 的________条件.答案:充分不必要解析:若綈p 是q 的必要不充分条件,则q ⇒綈p 但綈p ⇒/ q ,其逆否命题为p ⇒綈q 但綈q ⇒/ p ,所以p 是綈q 的充分不必要条件.11.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值X 围是________.答案:[0,2]解析:由已知易得{x |x 2-2x -3>0}为{x |x <m -1或x >m +1}的真子集, 又{x |x 2-2x -3>0}={x |x <-1或x >3},∴⎩⎪⎨⎪⎧-1≤m -1,m +1<3或⎩⎪⎨⎪⎧-1<m -1,m +1≤3,∴0≤m ≤2.12.下列命题: ①若ac 2>bc 2,则a >b ;②若sin α=sin β,则α=β;③“实数a =0”是“直线x -2ay =1和直线2x -2ay =1平行”的充要条件; ④若f (x )=log 2x ,则f (|x |)是偶函数. 其中正确命题的序号是________. 答案:①③④解析:对于①,ac 2>bc 2,c 2>0,∴a >b 正确;对于②,sin 30°=sin 150°⇒/ 30°=150°,∴②错误;对于③,l 1∥l 2⇔A 1B 2=A 2B 1,即-2a =-4a ⇒a =0且A 1C 2≠A 2C 1,所以③正确;④显然正确.[冲刺名校能力提升练]1.已知a ,b ,c ∈R ,命题“如果a +b +c =3,则a 2+b 2+c 2≥3”的否命题是( ) A .如果a +b +c ≠3,则a 2+b 2+c 2<3 B .如果a +b +c =3,则a 2+b 2+c 2<3 C .如果a +b +c ≠3,则a 2+b 2+c 2≥3 D .如果a 2+b 2+c 2≥3,则a +b +c =3 答案:A解析:“a +b +c =3”的否定是“a +b +c ≠3”,“a 2+b 2+c 2≥3”的否定是“a 2+b 2+c 2<3”,故根据否命题的定义知选A.2.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( ) A .①和② B .②和③ C .③和④ D .②和④答案:D解析:只有一个平面内的两条相交直线与另一个平面都平行时,这两个平面才相互平行,所以①为假命题;②符合两个平面相互垂直的判定定理,所以②为真命题;垂直于同一直线的两条直线可能平行,也可能相交或异面,所以③为假命题;根据两个平面垂直的性质定理易知④为真命题.3.在斜三角形ABC 中,命题甲:A =π6,命题乙:cos B ≠12,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:A解析:因为△ABC 为斜三角形,所以若A =π6,则B ≠π3且B ≠π2,所以cos B ≠12且cosB ≠0;反之,若cos B ≠12,则B ≠π3,不妨取B =π6,A =π4,C =7π12,满足△ABC 为斜三角形,故选A.4.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值X 围是________.答案:(2,+∞)解析:A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R ={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A 为B 的真子集,∴m +1>3,即m >2.5.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y =x 2-32x +1,x ∈⎣⎢⎡⎦⎥⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,某某数m 的取值X 围.解:y =x 2-32x +1=⎝ ⎛⎭⎪⎫x -342+716,∵x ∈⎣⎢⎡⎦⎥⎤34,2,∴716≤y ≤2,∴A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2, ∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件, ∴A ⊆B ,∴1-m 2≤716,解得m ≥34或m ≤-34,故实数m 的取值X 围是⎝ ⎛⎦⎥⎤-∞,-34∪⎣⎢⎡⎭⎪⎫34,+∞.6.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,某某数a 的取值X 围.解:∵綈p 是綈q 的必要不充分条件,∴綈q ⇒綈p ,且綈p ⇒/ 綈q 等价于p ⇒q ,且q ⇒/ p .记p :A ={x ||4x -3|≤1}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤1, q :B ={x |x 2-(2a +1)x +a (a +1)≤0|={x |a ≤x ≤a +1},则A B ,从而⎩⎪⎨⎪⎧a +1≥1,a ≤12,且两个等号不同时成立,解得0≤a ≤12.故所某某数a 的取值X 围是⎣⎢⎡⎦⎥⎤0,12.。
(通用版)2018年高考数学二轮复习 课时跟踪检测(二十四)理
课时跟踪检测(二十四)A 组——12+4提速练一、选择题1.设f (x )=x ln x ,f ′(x 0)=2,则x 0=( ) A .e 2B .e C.ln 22D .ln 2解析:选B ∵f ′(x )=1+ln x ,∴f ′(x 0)=1+ln x 0=2,∴x 0=e ,故选B. 2.函数f (x )=e xcos x 的图象在点(0,f (0))处的切线方程是( ) A .x +y +1=0 B .x +y -1=0 C .x -y +1=0D .x -y -1=0解析:选C 依题意,f (0)=e 0cos 0=1,因为f ′(x )=e xcos x -e xsin x ,所以f ′(0)=1,所以切线方程为y -1=x -0,即x -y +1=0,故选C.3.已知直线y =kx +1与曲线y =x 3+mx +n 相切于点A (1,3),则n =( ) A .-1B .1C .3D .4解析:选C 对于y =x 3+mx +n ,y ′=3x 2+m ,而直线y =kx +1与曲线y =x 3+mx +n 相切于点A (1,3),则有⎩⎪⎨⎪⎧3+m =k ,k +1=3,1+m +n =3,可解得n =3.4.若下列图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图象,则f (1)=( )A.13B .-13 C.73 D .-53解析:选A 由题意知,f ′(x )=x 2+2ax +a 2-1,∵a ≠0,∴其图象为最右侧的一个.由f ′(0)=a 2-1=0,得a =±1.由导函数f ′(x )的图象可知,a <0,故a =-1,∴f (x )=13x 3-x 2+1,f (1)=13-1+1=13.5.已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( )A.⎝ ⎛⎭⎪⎫0,12和(1,+∞) B .(0,1)和(2,+∞)C.⎝ ⎛⎭⎪⎫0,12和(2,+∞) D .(1,2)解析:选C 函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞),令f ′(x )=2x -5+2x=2x 2-5x +2x=x -x -x>0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,12和(2,+∞).6.已知函数f (x )=x 3+bx 2+cx +d 的图象如图所示,则函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为( )A.⎣⎢⎡⎭⎪⎫12,+∞ B .[3,+∞) C .[-2,3]D .(-∞,-2)解析:选D 因为f (x )=x 3+bx 2+cx +d ,所以f ′(x )=3x 2+2bx +c ,由图可知f ′(-2)=f ′(3)=0,所以⎩⎪⎨⎪⎧12-4b +c =0,27+6b +c =0,解得⎩⎪⎨⎪⎧b =-32,c =-18.令g (x )=x 2+23bx +c 3,则g (x )=x 2-x -6,g ′(x )=2x -1,由g (x )=x 2-x -6>0,解得x <-2或x >3.当x <12时,g ′(x )<0,所以g (x )=x 2-x -6在(-∞,-2)上为减函数,所以函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为(-∞,-2).7.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于点(1,0),则f (x )的极大值、极小值分别为( )A .-427,0B .0,-427C.427,0 D .0,427解析:选C 由题意知,f ′(x )=3x 2-2px -q ,由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x ,由f ′(x )=3x 2-4x +1=0,得x =13或x =1,易得当x =13时,f (x )取极大值427,当x =1时,f (x )取极小值0.8.已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)·f (x 2-1)的解集是( )A .(0,1)B .(1,+∞)C .(1,2)D .(2,+∞)解析:选D 因为f (x )+xf ′(x )<0,所以[xf (x )]′<0,故xf (x )在(0,+∞)上为单调递减函数,又(x +1)f (x +1)>(x 2-1)·f (x 2-1),所以0<x +1<x 2-1,解得x >2.9.已知函数f (x )的定义域为R ,f ′(x )为其导函数,函数y =f ′(x )的图象如图所示,且f (-2)=1,f (3)=1,则不等式f (x 2-6)>1的解集为( )A .(-3,-2)∪(2,3)B .(-2,2)C .(2,3)D .(-∞,-2)∪(2,+∞)解析:选A 由y =f ′(x )的图象知,f (x )在(-∞,0]上单调递增,在(0,+∞)上单调递减,又f (-2)=1,f (3)=1,∴f (x 2-6)>1可化为-2<x 2-6<3,解得2<x <3或-3<x <-2.10.设函数f (x )=13x -ln x (x >0),则f (x )( )A .在区间⎝ ⎛⎭⎪⎫1e ,1,(1,e)上均有零点B .在区间⎝ ⎛⎭⎪⎫1e ,1,(1,e)上均无零点 C .在区间⎝ ⎛⎭⎪⎫1e ,1上有零点,在区间(1,e)上无零点 D .在区间⎝ ⎛⎭⎪⎫1e ,1上无零点,在区间(1,e)上有零点 解析:选D 因为f ′(x )=13-1x ,所以当x ∈(0,3)时,f ′(x )<0,f (x )单调递减,而0<1e <1<e<3,又f ⎝ ⎛⎭⎪⎫1e =13e +1>0,f (1)=13>0,f (e)=e 3-1<0,所以f (x )在区间⎝ ⎛⎭⎪⎫1e ,1上无零点,在区间(1,e)上有零点.11.(2017·成都模拟)已知曲线C 1:y 2=tx (y >0,t >0)在点M ⎝ ⎛⎭⎪⎫4t,2处的切线与曲线C 2:y =ex +1-1也相切,则t ln 4e2t的值为( )A .4e 2B .8eC .2D .8解析:选D 由y =tx ,得y ′=12t ·x -12,则曲线C 1在x =4t 时的切线斜率为k =t4,所以切线方程为y -2=t 4⎝ ⎛⎭⎪⎫x -4t ,即y =t 4x +1.设切线与曲线y =e x +1-1的切点为(x 0,y 0).由y =e x +1-1,得y ′=e x +1,则由e x 0+1=t 4,得切点⎝ ⎛⎭⎪⎫ln t4-1,t 4-1,故切线方程又可表示为y -t 4+1=t 4⎝ ⎛⎭⎪⎫x -ln t 4+1,即y =t 4x +t 4ln 4t +t 2-1,所以由题意,得t 4ln 4t +t2-1=1,即t ⎝ ⎛⎭⎪⎫ln 4t +2=8,整理得t ln 4e 2t =8,故选D.12.(2018届高三·湘中名校联考)已知函数g (x )=a -x 2⎝ ⎛⎭⎪⎫1e≤x ≤e,e 为自然对数的底数与h (x )=2ln x 的图象上存在关于x 轴对称的点,则实数a 的取值范围是( )A .[1,e 2-2]B.⎣⎢⎡⎦⎥⎤1,1e 2+2C.⎣⎢⎡⎦⎥⎤1e 2+2,e 2-2D.[)e 2-2,+∞解析:选A 由题意,知方程x 2-a =2ln x ,即-a =2ln x -x 2在⎣⎢⎡⎦⎥⎤1e ,e 上有解.设f (x )=2ln x -x 2,则f ′(x )=2x-2x =-x +x -x.易知x ∈⎣⎢⎡⎭⎪⎫1e ,1时f ′(x )>0,x ∈[1,e]时f ′(x )<0,所以函数f (x )在⎣⎢⎡⎭⎪⎫1e ,1上单调递增,在[1,e]上单调递减,所以f (x )极大值=f (1)=-1,又f (e)=2-e 2,f ⎝ ⎛⎭⎪⎫1e =-2-1e 2,f (e)<f ⎝ ⎛⎭⎪⎫1e ,所以方程-a =2ln x -x 2在⎣⎢⎡⎦⎥⎤1e,e 上有解等价于2-e 2≤-a ≤-1,所以a 的取值范围为[1,e 2-2],故选A.二、填空题 13.设f (x )=⎩⎨⎧1-x 2,x ∈[-1,,x 2-1,x ∈[1,2],则21-⎰f (x )d x 的值为________.解析:21-⎰f (x )d x =11-⎰1-x 2d x +21⎰1(x 2-1)d x =12π×12+⎝ ⎛⎭⎪⎫13x 3-x |21=π2+43.答案:π2+4314.(2017·山东高考)若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中所有具有M 性质的函数的序号为________.①f (x )=2-x;②f (x )=3-x;③f (x )=x 3; ④f (x )=x 2+2.解析:设g (x )=e xf (x ),对于①,g (x )=e x ·2-x, 则g ′(x )=(e x·2-x)′=e x·2-x(1-ln 2)>0,所以函数g (x )在(-∞,+∞)上为增函数,故①符合要求;对于②,g (x )=e x ·3-x,则g ′(x )=(e x ·3-x )′=e x ·3-x(1-ln 3)<0,所以函数g (x )在(-∞,+∞)上为减函数,故②不符合要求; 对于③,g (x )=e x ·x 3,则g ′(x )=(e x ·x 3)′=e x ·(x 3+3x 2),显然函数g (x )在(-∞,+∞)上不单调,故③不符合要求; 对于④,g (x )=e x ·(x 2+2),则g ′(x )=[e x·(x 2+2)]′=e x ·(x 2+2x +2)=e x ·[(x +1)2+1]>0, 所以函数g (x )在(-∞,+∞)上为增函数,故④符合要求. 综上,具有M 性质的函数的序号为①④. 答案:①④15.已知函数f (x )=e x-mx +1的图象为曲线C ,若曲线C 存在与直线y =e x 垂直的切线,则实数m 的取值范围是________.解析:函数f (x )的导数f ′(x )=e x-m ,即切线斜率k =e x-m ,若曲线C 存在与直线y =e x 垂直的切线,则满足(e x -m )e =-1,即e x -m =-1e 有解,即m =e x +1e 有解,∵e x+1e >1e ,∴m >1e. 答案:⎝ ⎛⎭⎪⎫1e ,+∞16.(2017·兰州模拟)已知函数f (x )=e x+m ln x (m ∈R ,e 为自然对数的底数),若对任意正数x 1,x 2,当x 1>x 2时都有f (x 1)-f (x 2)>x 1-x 2成立,则实数m 的取值范围是________.解析:函数f (x )的定义域为(0,+∞).依题意得,对于任意的正数x 1,x 2,当x 1>x 2时,都有f (x 1)-x 1>f (x 2)-x 2,因此函数g (x )=f (x )-x 在区间(0,+∞)上是增函数,于是当x >0时,g ′(x )=f ′(x )-1=e x+mx-1≥0,即x (e x -1)≥-m 恒成立.记h (x )=x (ex-1),x >0,则有h ′(x )=(x +1)e x-1>(0+1)e 0-1=0(x >0),h (x )在区间(0,+∞)上是增函数,h (x )的值域是(0,+∞),因此-m ≤0,m ≥0.故所求实数m 的取值范围是[0,+∞).答案:[0,+∞)B 组——能力小题保分练1.(2017·陕西质检)设函数f (x )=x sin x 在x =x 0处取得极值,则(1+x 20)(1+cos 2x 0)的值为( )A .1B .-1C .-2D .2解析:选D f ′(x )=sin x +x cos x ,令f ′(x )=0得tan x =-x ,所以tan 2x 0=x 20,故(1+x 20)(1+cos 2x 0)=(1+tan 2x 0)·2cos 2x 0=2cos 2x 0+2sin 2x 0=2,故选D.2.(2017·开封模拟)过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有( ) A .3条 B .2条 C .1条D .0条解析:选A 由题意得,f ′(x )=3x 2-3,设切点为(x 0,x 30-3x 0),那么切线的斜率为k =3x 20-3,则切线方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0),将点A (2,1)代入可得关于x 0的一元三次方程2x 30-6x 20+7=0.令y =2x 30-6x 20+7,则y ′=6x 20-12x 0.由y ′=0得x 0=0或x 0=2.当x 0=0时,y =7>0;x 0=2时,y =-1<0.所以方程2x 30-6x 20+7=0有3个解.故过点A (2,1)作曲线f (x )=x 3-3x 的切线最多有3条,故选A.3.(2017·惠州调研)已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝ ⎛⎭⎪⎫ln 1x <2f (1)的解集为( )A .(e ,+∞)B .(0,e)C .⎝ ⎛⎭⎪⎫0,1e ∪(1,e)D .⎝ ⎛⎭⎪⎫1e ,e 解析:选D f (x )=x sin x +cos x +x 2,因为f (-x )=f (x ),所以f (x )是偶函数,所以 f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=f (ln x ),所以f (ln x )+f ⎝⎛⎭⎪⎫ln 1x <2f (1)可变形为f (lnx )<f (1).f ′(x )=x cos x +2x =x (2+cos x ),因为2+cos x >0,所以f (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以f (ln x )<f (1)等价于|ln x |<1,即-1<ln x <1,所以1e<x <e.故选D.4.设函数f (x )=3sin πx m.若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)解析:选C 由正弦型函数的图象可知:f (x )的极值点x 0满足f (x 0)=±3,则πx 0m =π2+k π(k ∈Z),从而得x 0=⎝ ⎛⎭⎪⎫k +12m (k ∈Z).所以不等式x 20+[f (x 0)]2<m 2即为⎝ ⎛⎭⎪⎫k +122m 2+3<m 2,变形得m 2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3,其中k ∈Z.由题意,存在整数k 使得不等式m 2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3成立.当k ≠-1且k ≠0时,必有⎝ ⎛⎭⎪⎫k +122>1,此时不等式显然不能成立,故k =-1或k =0,此时,不等式即为34m 2>3,解得m <-2或m >2.5.若对任意的a ∈⎣⎢⎡⎭⎪⎫12,+∞,函数f (x )=12x 2-ax -2b 与g (x )=2a ln(x -2)的图象均有交点,则实数b 的取值范围是( )A.⎣⎢⎡⎭⎪⎫1516+12ln 2,+∞B.⎣⎢⎡⎭⎪⎫158+ln 2,+∞C.⎝ ⎛⎭⎪⎫12,1516+12ln 2D.⎝⎛⎭⎪⎫1516+12ln 2,+∞解析:选A 依题意,原问题等价于对任意的a ∈⎣⎢⎡⎭⎪⎫12,+∞,关于x 的方程12x 2-ax -2a ln(x -2)=2b 有解.设h (x )=12x 2-ax -2a ln(x -2),则h ′(x )=x -a -2ax -2=x x -a -x -2,所以h (x )在(2,a +2)上单调递减,在(a +2,+∞)上单调递增,当x →2时h (x )→+∞,当x →+∞时,h (x )→+∞,h (a +2)=-12a 2-2a ln a +2,记p (a )=-12a 2-2a ln a +2,则h (x )的值域为[p (a ),+∞),故2b ∈[p (a ),+∞)对任意的a ∈⎣⎢⎡⎭⎪⎫12,+∞恒成立,即2b ≥p (a )max ,而p ′(a )=-a -2ln a -2≤-12+2ln 2-2<0,故p (a )单调递减,所以p (a )≤p ⎝ ⎛⎭⎪⎫12=158+ln 2,所以b ≥1516+12ln 2,故选A.6.(2017·合肥质检)已知函数f (x )=x ln x -a e x(e 为自然对数的底数)有两个极值点,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,1eB .(0,e) C.⎝ ⎛⎭⎪⎫1e ,e D .(-∞,e)解析:选A 由题意知,f ′(x )=1+ln x -a e x,令f ′(x )=0,得a =1+ln x ex,函数f (x )有两个极值点,则需f ′(x )=0有两个实数根,等价于a =1+ln xex有两个实数根,等价于直线y =a 与y =1+ln xex的图象有两个交点. 令g (x )=1+ln xe x ,则g ′(x )=1x -1-ln x ex,令h (x )=1x-1-ln x ,得h (x )在(0,+∞)上为减函数,且h (1)=0,所以当x ∈(0,1)时,h (x )>0,故g ′(x )>0,g (x )为增函数, 当x ∈(1,+∞)时,h (x )<0,故g ′(x )<0,g (x )为减函数, 所以g (x )max =g (1)=1e ,又当x →+∞时,g (x )→0,所以g (x )的图象如图所示,故0<a <1e.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(八)一、选择题1.已知函数f (n )=⎩⎪⎨⎪⎧n2n 为奇数,-n2n 为偶数,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( )A .0B .100C .-100D .10 200解析:选 B 由题意,a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100,故选B.2.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱B.53钱 C.32钱 D.43钱 解析:选D 设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧2a1+d =3a1+9d ,2a1+d =52,解得⎩⎪⎨⎪⎧a1=43,d =-16,故选D.3.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( )A .192里B .96里C .48里D .24里解析:选 B 设等比数列{a n }的首项为a 1,公比为q =12,依题意有a1⎝ ⎛⎭⎪⎫1-1261-12=378,解得a 1=192,则a 2=192×12=96,即第二天走了96里,故选B.4.已知数列{a n }的通项公式为a n =log (n +1)(n +2)(n ∈N *),我们把使乘积a 1·a 2·a 3·…·a n 为整数的n 叫做“优数”,则在(0,2 018]内的所有“优数”的和为( )A .1 024B .2 012C .2 026D .2 036解析:选C a 1·a 2·a 3·…·a n =log 23·log 34·log 45·…·log (n +1)(n +2)=log 2(n +2)=k ,k ∈Z ,令0<n =2k-2≤2 018,则2<2k≤2 020,1<k ≤10,所有“优数”之和为(22-2)+(23-2)+…+(210-2)=221-291-2-18=211-22=2 026.故选C.5.(2018届高三·湖北七市(州)联考)在各项都为正数的数列{a n }中,首项a 1=2,且点(a 2n ,a 2n -1)在直线x -9y =0上,则数列{a n }的前n 项和S n =( )A .3n-1 B.1--3n 2C.1+3n 2 D.3n2+n2解析:选A 由点(a 2n ,a 2n -1)在直线x -9y =0上,得a 2n -9a 2n -1=0,即(a n +3a n -1)(a n -3a n -1)=0,又数列{a n }各项均为正数,∴a n +3a n -1>0,∴a n -3a n -1=0,即anan -1=3,∴数列{a n }是首项a 1=2,公比q =3的等比数列,其前n 项和S n =a11-qn 1-q=21-3n 1-3=3n-1,故选A.6.(2017·贵阳检测)正项等比数列{a n }中,存在两项a m ,a n ,使得 aman =4a 1,且a 6=a 5+2a 4,则1m +4n的最小值是( )A.32 B .2C.73D.256解析:选A 记等比数列{a n }的公比为q ,其中q >0,于是有a 4q 2=a 4q +2a 4,即q 2-q -2=0,(q +1)(q -2)=0(q >0),由此解得q =2.由a m a n =16a 21得a 21×2m +n -2=16a 21,故m+n =6,其中m ,n ∈N *,∴1m +4n =16⎝ ⎛⎭⎪⎫1m +4n (m +n )=5+n m +4m n 6≥5+2n m ×4mn 6=32,当且仅且n m =4m n ,即m =2,n =4时等号成立,∴1m +4n 的最小值为32. 二、填空题7.对于数列{a n },定义H n =a1+2a2+…+2n -1ann为{a n }的“优值”,现在已知某数列{a n }的“优值”H n =2n +1,记数列{a n -kn }的前n 项和为S n ,若S n ≤S 5对任意的n ∈N *恒成立,则实数k 的取值范围为________.解析:由H n =2n +1,得n ·2n +1=a 1+2a 2+…+2n -1a n ,① (n -1)·2n=a 1+2a 2+…+2n -2a n -1,②①-②,得2n -1a n =n ·2n +1-(n -1)·2n ,所以a n =2n +2,a n -kn =(2-k )n +2,又S n ≤S 5对任意的n ∈N *恒成立,所以⎩⎪⎨⎪⎧a5≥0,a6≤0,即⎩⎪⎨⎪⎧52-k +2≥0,62-k +2≤0,解得73≤k ≤125.答案:⎣⎢⎡⎦⎥⎤73,1258.(2017·安阳检测)在数列{a n }中,a 1+a22+a33+…+an n=2n -1(n ∈N *),且a 1=1,若存在n ∈N *使得a n ≤n (n +1)λ成立,则实数λ的最小值为________.解析:依题意得,数列⎩⎨⎧⎭⎬⎫an n 的前n 项和为2n -1,当n ≥2时,an n=(2n -1)-(2n -1-1)=2n -1,且a11=21-1=1=21-1,因此an n =2n -1(n ∈N *),an n n +1=2n -1n +1.记b n =2n -1n +1,则b n >0,bn +1bn =2n +1n +2=n +2+n n +2>n +2n +2=1,即b n +1>b n ,数列{b n }是递增数列,数列{b n }的最小项是b 1=12.依题意得,存在n ∈N *使得λ≥an n n +1=b n 成立,即有λ≥b 1=12,λ的最小值是12. 答案:129.(2018届高三·湖北七市(州)联考)数列{a n }满足a n +1+(-1)na n =n +1,则{a n }前40项的和为________.解析:由a n +1+(-1)na n =n +1,可依次列出n 取不同值时数列项之间的关系: 当n =1时,a 2-a 1=2, ① 当n =2时,a 3+a 2=3, ② 当n =3时,a 4-a 3=4, ③ 当n =4时,a 5+a 4=5,④由②-①得a 3+a 1=1,由③+②得a 4+a 2=7, 当n =5时,a 6-a 5=6,⑤当n =6时,a 7+a 6=7, ⑥ 当n =7时,a 8-a 7=8, ⑦ 当n =8时,a 9+a 8=9,⑧由⑥-⑤得a 7+a 5=1,由⑦+⑥得a 8+a 6=15, 类似可得a 11+a 9=1,…,a 39+a 37=1,a 12+a 10=23,…,即{a 4k +2+a 4k +4}(k ∈N)构成一个首项为7,公差为8的等差数列,∴S 40=(a 1+a 3+a 5+a 7+…+a 37+a 39)+(a 2+a 4+a 6+a 8+…+a 38+a 40)=1×10+7×10+10×10-12×8=440.答案:440 三、解答题10.(2017·武昌调研)设等差数列{a n }的前n 项和为S n ,已知a 1=9,a 2为整数,且S n ≤S 5.(1)求{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1anan +1的前n 项和为T n ,求证:T n ≤49. 解:(1)由a 1=9,a 2为整数可知,等差数列{a n }的公差d 为整数. 又S n ≤S 5,∴a 5≥0,a 6≤0, 于是9+4d ≥0,9+5d ≤0, 解得-94≤d ≤-95.∵d 为整数,∴d =-2.故{a n }的通项公式为a n =11-2n . (2)证明:由(1),得1anan +1=111-2n9-2n =12⎝ ⎛⎭⎪⎫19-2n -111-2n ,∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫17-19+⎝ ⎛⎭⎪⎫15-17+…+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫19-2n -111-2n =12⎝ ⎛⎭⎪⎫19-2n -19.令b n =19-2n ,由函数f (x )=19-2x 的图象关于点(4.5,0)对称及其单调性,知0<b 1<b 2<b 3<b 4,b 5<b 6<b 7<…<0,∴b n ≤b 4=1.∴T n ≤12×⎝ ⎛⎭⎪⎫1-19=49.11.(2017·临川模拟)若数列{b n }对于任意的n ∈N *,都有b n +2-b n =d (常数),则称数列{b n }是公差为d的准等差数列.如数列c n ,若c n =⎩⎪⎨⎪⎧4n -1,n 为奇数,4n +9,n 为偶数,则数列{c n }是公差为8的准等差数列.设数列{a n }满足a 1=a ,对于n ∈N *,都有a n +a n +1=2n .(1)求证:{a n }是准等差数列; (2)求{a n }的通项公式及前20项和S 20. 解:(1)证明:∵a n +a n +1=2n (n ∈N *),① ∴a n +1+a n +2=2(n +1)(n ∈N *),②②-①,得a n +2-a n =2(n ∈N *). ∴{a n }是公差为2的准等差数列.(2)∵a 1=a ,a n +a n +1=2n (n ∈N *),∴a 1+a 2=2×1,即a 2=2-a .∴由(1)得a 1,a 3,a 5,…是以a 为首项,2为公差的等差数列;a 2,a 4,a 6…是以2-a 为首项,2为公差的等差数列.当n 为偶数时,a n =2-a +⎝ ⎛⎭⎪⎫n 2-1×2=n -a ; 当n 为奇数时,a n =a +⎝⎛⎭⎪⎫n +12-1×2=n +a -1.∴a n =⎩⎪⎨⎪⎧n +a -1,n 为奇数,n -a ,n 为偶数.S 20=a 1+a 2+a 3+a 4+…+a 19+a 20=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)=2×1+2×3+…+2×19=2×1+19×102=200.12.已知函数f (x )定义在(-1,1)上,f ⎝ ⎛⎭⎪⎫12=1,满足f (x )-f (y )=f ⎝ ⎛⎭⎪⎫x -y 1-xy ,且x 1=12, x n +1=2xn1+x2n. (1)证明:f (x )为定义在(-1,1)上的奇函数; (2)求f (x n )的表达式;(3)是否存在自然数m ,使得对任意的n ∈N *,有1f x1+1f x2+…+1f xn<m -84恒成立?若存在,求出m 的最小值;若不存在,请说明理由. 解:(1)证明:∵x ,y ∈(-1,1),f (x )-f (y )=f ⎝ ⎛⎭⎪⎫x -y 1-xy , ∴当x =y =0时,可得f (0)=0. 当x =0时,f (0)-f (y )=f ⎝ ⎛⎭⎪⎫0-y 1-0·y =f (-y ),∴f (-y )=-f (y ),∴f (x )是(-1,1)上的奇函数.(2)∵f (x n +1)=f ⎝ ⎛⎭⎪⎫2xn 1+x2n =f ⎝ ⎛⎭⎪⎫xn --xn 1-xn·-xn =f (x n )-f (-x n )=2f (x n ),∴fxn +1f xn=2,又f (x 1)=f ⎝ ⎛⎭⎪⎫12=1, ∴{f (x n )}是以1为首项,2为公比的等比数列,其通项公式为f (x n )=2n -1(n ∈N *).(3)假设存在自然数m 使得原不等式恒成立, 即1f x1+1f x2+…+1f xn =1+12+122+…+12n -1=2-12n -1<m -84对任意的n ∈N *恒成立.即m >16-82n 对任意的n ∈N *恒成立,∴m ≥16,故存在自然数m 使得对任意的n ∈N *,有1f x1+1f x2+…+1f xn <m -84恒成立,且m 的最小值为16.。