最新02安徽医大精品课程生物化学第二章核酸的结构和功能

合集下载

生物化学与分子生物学课件-第二章-核酸的结构与功能

生物化学与分子生物学课件-第二章-核酸的结构与功能

第二章核酸的结构与功能教学要求(一)掌握内容1. 各种碱基、核苷酸、戊糖的结构特点及DNA、RNA化学组成的异同。

2. DNA、RNA一级结构的概念及其连接键。

3. DNA双螺旋结构模型的要点。

4. 掌握核小体的结构特点。

5. tRNA、mRNA、rRNA的结构特点与功能。

6. 溶解温度、增色效应、DNA变性与复性、核酸分子杂交的概念。

(二)熟悉内容1. DNA的超螺旋结构。

(三)了解内容1. DNA在真核生物细胞核内的组装。

2. 其它小分子RNA。

教学内容(一)核酸的化学组成及一级结构1. 核苷酸的结构(1)碱基;(2)戊糖;(3)核苷;(4)核苷酸。

2. 核酸的一级结构(1)概念;(2)DNA、RNA化学组成的异同。

(二)DNA的空间结构与功能1. DNA的二级结构—双螺旋结构模型(1)双螺旋结构的研究背景;(2)双螺旋结构模型特点;(3)双螺旋结构的多样性。

2. DNA的超螺旋结构及其在染色质中的组装(1)DNA超螺旋结构;(2)原核生物DNA的环状超螺旋结构;(3)真核生物DNA在核内的组装。

3. DNA的功能(三)RNA的结构与功能1. mRNA的结构与功能(1)结构特点;(2)mRNA的功能。

2. tRNA的结构与功能(1)tRNA的功能;(2)tRNA的结构特点。

3. rRNA的结构与功能(1)rRNA的主要功能;(2)rRNA的结构特点。

4. 其他小分子RNA及RNA组学(四)核酸的理化性质、变性和复性及其应用1. 核酸的一般理化性质2. DNA的变性(1)概念;(2)DNA的增色效应;(3)解链曲线与Tm值。

3. DNA的复性与分子杂交名词解释1. 单核苷酸(mononucleotide):核苷与磷酸缩合生成的磷酸酯称为单核苷酸。

2. 磷酸二酯键(phosphodiester bonds):单核苷酸中,核苷的戊糖与磷酸的羟基之间形成的磷酸酯键。

3. 不对称比率(dissymmetry ratio):不同生物的碱基组成由很大的差异,这可用不对称比率(A+T)/(G+C)表示。

核酸的结构和功能

核酸的结构和功能

核酸的结构和功能核酸是生命体中非常重要的一类化合物,它们呈现出多种不同的结构和功能,具有广泛的生理活性和重要的医学应用价值。

因此,本文将从核酸的结构和功能两个方面对其进行详细的探讨和分析。

一、核酸的结构核酸是由核苷酸构成的,其中核苷酸是由糖、碱基和磷酸组成的。

糖和碱基是核苷酸的主要结构单元,而磷酸则是连接各个核苷酸单元的桥梁。

糖的选择在DNA和RNA中有所不同,DNA中的糖是脱氧核糖,而RNA中的糖是核糖。

这种区别使得DNA和RNA结构上存在一些差别,比如在酸碱度条件下,DNA更容易形成稳定的结构,背景下我们来详细讨论DNA和RNA的结构特点。

1. DNA的结构DNA是双链结构,由两个聚合物互相结合而成,这些聚合物通过碱基间的氢键相互连接。

DNA的结构是基于鲍尔理论建立的,它是由两个不合位置条,其中的一条旋转了一定的角度,使得这两个链在三维空间中形成一个双螺旋结构。

这种双螺旋结构基本上是由两个不同形式的基对构成,互补的碱基间相互配对,即腺嘌呤和胸腺嘧啶之间存在两个氢键,而鸟嘌呤和胞嘧啶之间则存在三个氢键。

这种氢键结构赋予了DNA一定程度上的稳定性,保证了基因信息的稳定性和传递性。

2. RNA的结构RNA是单链结构,由一个核苷酸链构成,在链上存在一系列氨基酸残基、一个五碳糖和一个碱基,其中的碱基和DNA是相同的。

在RNA中,碱基的选择和排列方式是独立于它的糖和磷酸残基的。

这种构造决定了RNA的结构和功能具有很大的多样性,比如,一些RNA可以形成自身结构,同时也能与其他分子发生特异性的相互作用,这些相互作用可以形成多种不同的RNA-RNA、RNA-蛋白质和RNA-糖等复合物。

二、核酸的功能核酸具有多种复杂的生理和生化功能,其中一些主要功能如下:1. 遗传信息的存储和传递DNA是生物体内最重要的分子之一,它通过氢键和反选配的规则对碱基进行配对来存储和传递生物体的遗传信息。

由于这种针对性的选择性,碱基对之间的氢键是典型的尺度互补,这种互补性导致了新链的合成,比如,DNA复制过程中就是通过这种互补性黏连在新的链上的。

核酸的结构和功能

核酸的结构和功能

核酸的结构和功能核酸是生物体内的重要生物大分子之一,其结构和功能对于生物体的正常生理活动具有重要意义。

核酸主要包括核糖核酸(RNA)和脱氧核糖核酸(DNA),它们在细胞中扮演着信息传递、遗传、调控等方面的重要角色。

本文将详细介绍核酸的结构和功能。

一、核酸的结构核酸是由核苷酸单元组成的长链分子。

核苷酸由一个含氮碱基、糖分子和磷酸组成。

核苷酸通过磷酸二酯键连接成链状结构,相邻核苷酸之间的磷酸二酯键被称为链的磷酸骨架。

在DNA中,糖分子是脱氧核糖(deoxyribose),而在RNA中则是核糖(ribose)。

碱基分为嘌呤(鸟嘌呤和胸腺嘧啶)和嘧啶(腺嘌呤、鸟嘌呤和尿嘧啶)两类。

在DNA中,鸟嘌呤和胸腺嘧啶以氢键的方式通过碱基配对相互结合,形成双螺旋结构。

而在RNA中,核糖和碱基之间没有形成稳定的双螺旋结构。

二、核酸的功能1.存储遗传信息:DNA是生物体内存储遗传信息的主要分子。

通过DNA的序列编码了生物体内所有蛋白质的合成信息。

每一个DNA分子都包含了生物体所有的遗传信息,它能够准确地复制自身,并通过遗传信息的传递实现后代群体的生存和繁殖。

2.转录和翻译:DNA的遗传信息通过转录作用被转录成一种中间产物RNA,即RNA的合成过程。

在细胞质中,RNA通过读取DNA上的密码信息并翻译成蛋白质序列,从而实现遗传信息的传递。

这个过程被称为翻译。

3.转运和储存能量:核酸还能承担转运和储存能量的功能。

例如,三磷酸腺苷(ATP)是细胞内的一种重要能量转移分子,在胞吞、细胞呼吸等细胞代谢过程中转运和释放能量。

4. 催化作用:部分RNA分子具有催化作用,被称为酶RNA (ribozyme)。

酶RNA能够在特定条件下催化化学反应,例如:RNA酶能够剪切RNA链,还能参与核酸的合成和修复等生物化学过程。

5.调控基因表达:除了DNA编码蛋白质的功能外,核酸还能调控基因表达过程。

RNA在细胞内扮演着信使RNA、转运RNA和核糖体RNA等不同角色,参与调控基因表达的过程,例如:转录因子通过与一些基因的调控区域结合,将DNA转录为RNA,进而调控该基因的表达。

执业医师最新最全考点解析系列生物化学部分第二节——核酸的结构与功能

执业医师最新最全考点解析系列生物化学部分第二节——核酸的结构与功能

第二单元核酸的结构和功能第一节核酸的基本组成单位——核苷酸核酸是以核苷酸为基本组成单位的生物信息大分子,携带和传递遗传信息。

天然存在的核酸分为脱氧核糖核酸(DNA)和核糖核酸(RNA)两大类。

DNA:90%以上分布于细胞核,其余分布于核外,如线粒体、叶绿体、质粒等。

DNA 携带遗传信息,决定细胞和个体的基因型。

RNA:分布于胞核、胞液。

参与细胞内DNA遗传信息的表达。

某些病毒RNA也可作为遗传信息的载体。

一、核苷酸的分子组成(一)元素组成C、H、O、N、P(9%-l0%)。

(二)分子组成核酸可被酶水解为核苷酸,核苷酸完全水解释放出1:1:1的含氮碱基、戊糖和磷酸。

即核酸的基本组成单位是核苷酸。

而核苷酸是由碱基、戊糖和磷酸连接而成。

1.碱基嘌呤碱(腺嘌呤A,鸟嘌呤G),嘧啶碱(胸腺嘧啶T,胞嘧啶C,尿嘧啶U)。

2.戊糖核糖,脱氧核糖。

二、核酸(DNA和RNA)(一)核苷酸的结构核苷(脱氧核苷)和磷酸以磷酸酯键连接形成核苷酸(脱氧核苷酸)。

1.核糖核苷酸AMP,GMP,UMP,CMP。

2.脱氧核苷酸dAMP,dGMP,dTMP,dCMP。

又根据磷酸基团数目不同,有核苷一磷酸,NMP;核苷二磷酸,NDP;核苷三磷酸,NTP。

(二)多聚核苷酸核酸是有许多核苷酸分子连接而成的。

每个核酸分子的大小或所含的核苷酸数目是不一样的,尽管核酸分子之间存在差异,但核酸分子中各个核苷酸之间的连接方式完全一样,都是通过前一个核苷酸的3’羟基与后一个核黄酸的5’磷酸缩合生成3’,5’-磷酸二酯键而彼此相连。

这样,核酸就具有了方向性,通常以5’-3’方向为正向。

第二节DNA的结构与功能一、DNA碱基组成规律DNA是由四种脱氧核糖核苷酸按一定顺序以磷酸二酯键相连形成的多聚脱氧核苷酸链。

DNA中包含四种碱基,即A、G、C、T。

二、DNA的一级结构定义核酸中核苷酸的排列顺序。

由于核苷酸间的差异主要是碱基不同,所以也称为碱基序列。

核酸分子中的核糖(脱氧核糖)和磷酸基团共同构成其骨架结构。

第二章 核酸的结构与功能(试题及答案)

第二章 核酸的结构与功能(试题及答案)

第二章核酸的结构与功能一、名词解释1.核酸 2.核苷 3.核苷酸 4.稀有碱基 5.碱基对 6.DNA的一级结构 7.核酸的变性 8.Tm值 9.DNA的复性 10.核酸的杂交二、填空题11.核酸可分为 ____和____两大类,其中____主要存在于____中,而____主要存在于____。

12.核酸完全水解生成的产物有____、____和____,其中糖基有____、____,碱基有____和____两大类. 13.生物体内的嘌呤碱主要有____和____,嘧啶碱主要有____、____和____。

某些RNA分子中还含有微量的其它碱基,称为____.14.DNA和RNA分子在物质组成上有所不同,主要表现在____和____的不同,DNA分子中存在的是____和____,RNA分子中存在的是____和____。

15.RNA的基本组成单位是____、____、____、____,DNA的基本组成单位是____、____、____、____,它们通过____键相互连接形成多核苷酸链。

16.DNA的二级结构是____结构,其中碱基组成的共同特点是(若按摩尔数计算)____、____、____。

17.测知某一DNA样品中,A=0。

53mol、C=0.25mol、那么T= ____mol,G= ____mol。

18.嘌呤环上的第____位氮原子与戊糖的第____位碳原子相连形成____键,通过这种键相连而成的化合物叫____。

19.嘧啶环上的第____位氮原子与戊糖的第____位碳原子相连形成____键,通过这种键相连而成的化合物叫____.20.体内有两个主要的环核苷酸是____、____,它们的主要生理功用是____。

21.写出下列核苷酸符号的中文名称:ATP____、dCDP____。

22.DNA分子中,两条链通过碱基间的____相连,碱基间的配对原则是____对____、____对____.23.DNA二级结构的重要特点是形成____结构,此结构属于____螺旋,此结构内部是由____通过____相连维持,其纵向结构的维系力是____。

核酸的结构和功能

核酸的结构和功能

核酸的结构和功能核酸是生命体内十分重要的一种生物大分子,它不仅可以储存遗传信息,还可以传递遗传信息和控制遗传信息的表达。

核酸的结构和功能一直是生物学研究中备受关注的重要领域,本文将从核酸的结构和功能两个方面进行探讨。

一、核酸的结构核酸是由核苷酸单元组成的,每个核苷酸单元由一个糖分子、一个碱基和一个磷酸基团组成。

糖分子是五碳糖,对于RNA来说,是核糖,对于DNA来说,是脱氧核糖。

碱基有四种类型,分别为腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶,它们可以自由地组合在一起,形成不同的核苷酸单元。

核苷酸单元通过磷酸基团的连接形成了核酸链。

RNA是单链结构,而DNA是双链结构,其中一条链具有正向朝向,另一条链具有反向朝向。

DNA两条链通过氢键相互串联在一起,即A碱基配对T碱基,C碱基配对G碱基,这种配对方式保证了DNA两条链互补性,且不同的DNA序列具有不同的特异性。

RNA在一些特殊情况下可以形成双链结构,例如siRNA和微小RNA可以通过与靶序列的互补配对来抑制基因表达。

二、核酸的功能核酸的功能主要包括储存遗传信息、传递遗传信息和控制遗传信息的表达。

1. 储存遗传信息DNA作为遗传物质的载体,在细胞分裂和繁殖的过程中,能够确保一定程度的遗传稳定性和连续性。

它能够储存所有生物的遗传信息,并且在细胞复制过程中保持遗传信息的准确复制。

当细胞分裂时,DNA能够在细胞的两个子细胞之间进行遗传信息的传递,从而保证遗传信息的传承。

2. 传递遗传信息RNA作为DNA的转录产物,能够通过核糖体进行翻译,合成蛋白质。

RNA分为mRNA、tRNA和rRNA三类,其中mRNA是将DNA上的遗传信息转录并运送到核糖体的,tRNA是将氨基酸运送到核糖体,rRNA是核糖体的主要构成部分之一。

RNA通过转录和翻译过程,将DNA上的遗传信息传递到蛋白质上,控制蛋白质的合成和功能性质。

3. 控制遗传信息的表达DNA序列中含有许多启动子和基因调控元件,它们能够通过结合转录因子调节基因的表达。

核酸的生物化学结构和功能解析

核酸的生物化学结构和功能解析

核酸的生物化学结构和功能解析核酸是构成生物体的重要分子之一,它在细胞内担负着存储和传递遗传信息的重要功能。

本文将深入探讨核酸的生物化学结构和功能,揭示核酸在生命活动中的重要作用。

一、核酸生物化学结构核酸是由核苷酸组成的大分子化合物。

核苷酸是由碱基、糖和磷酸基团组合而成。

碱基分为嘌呤和嘧啶两类,嘌呤包括腺嘌呤(A)和鸟嘌呤(G),嘧啶则包括胸腺嘧啶(T)、尿嘧啶(U)和胞嘧啶(C)。

糖分为核糖(在RNA中)和脱氧核糖(在DNA中)。

磷酸基团连接在糖的3'位和5'位,形成磷酸二酯键,从而将核苷酸链接成链状结构。

核酸的主要类型包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。

DNA是双链结构,由两条互补的核苷酸链缠绕而成,通过碱基配对形成稳定的螺旋结构。

RNA则是单链结构,可以形成类似DNA的二级结构,也可以形成各种不同的三维结构。

二、核酸的功能1. 存储遗传信息DNA是细胞中的遗传物质,它编码了细胞中合成蛋白质所需的遗传信息。

每个生物体细胞核内都包含一段完整的DNA,称为基因组。

基因组中的基因决定了生物的遗传特征,包括形态、功能和行为等。

2. 转录和翻译DNA通过转录过程生成RNA,而RNA通过翻译过程转化为蛋白质。

这一过程被称为中心法则。

在细胞内,DNA通过转录酶酶解,使其中的一条链作为模板,合成相应的RNA分子。

这一过程可以是一次性的(即合成的RNA直接用于蛋白质合成)或经过修饰后再转化为蛋白质。

通过这种机制,细胞可以根据需要合成特定的蛋白质,发挥不同的功能。

3. 调控基因表达RNA具有多种功能,其中包括调控基因表达。

在基因调控过程中,某些RNA分子可以与DNA的调控区结合,阻止或促进基因的转录。

这种调控方式可以调整细胞内基因的表达水平,对细胞功能的稳定和适应具有重要影响。

4. 催化反应核酸具有催化某些生物化学反应的能力。

在细胞中,一类特殊的RNA分子称为酶RNA(ribozyme),它能够催化化学反应,如自身剪切、肽键形成等。

核酸的结构与功能

核酸的结构与功能

核酸的结构与功能
核酸是细胞内携带遗传信息的物质,在生物的遗传、变异和蛋白质的生物合成中具有极其重要的作用。

核酸的结构包括核苷酸、磷酸基骨架和碱基。

核苷酸由一分子磷酸、一分子五碳糖(脱氧核糖或核糖)和一分子含氮碱基组成。

磷酸基骨架连接核苷酸形成线性或环状的核酸分子。

碱基分为嘌呤和嘧啶两类,包括腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)、尿嘧啶(U)等。

核酸的功能主要包括以下几个方面:
1.遗传信息传递与储存:DNA是细胞内遗传信息的主要储存库,而
RNA则将这些信息从DNA中传递到蛋白质的合成过程中。

2.蛋白质合成:RNA在蛋白质合成过程中起着重要的角色。

其中,
转录过程将DNA上的信息转录成RNA分子,而翻译过程则利用RNA 的遗传信息来合成特定的蛋白质。

3.酶的活性调节:某些RNA分子本身具有催化活性,称为核糖酶。

这些核糖酶可以催化特定的生化反应,从而调节细胞内的代谢和信号传递过程。

4.调控基因表达:RNA通过调控基因表达来控制细胞的发育和功能。

其中,小干扰RNA(siRNA)和微小RNA(miRNA)等RNA分子可以与特定的mRNA结合,从而抑制或加强特定基因的转录和翻译过程。

5.病毒的复制与感染:一些病毒利用RNA作为基因材料进行复制和
传播。

例如,HIV等病毒具有RNA基因组,通过感染宿主细胞并复制RNA来使病毒持续存在。

生物化学中的核酸结构和功能

生物化学中的核酸结构和功能

生物化学中的核酸结构和功能核酸是生物体中最具有代表性的分子之一,它们不仅逐步揭示了生命中的复杂机理,而且也在基因工程、医学以及药物研究领域中发挥了关键作用。

本文将从核酸的结构和功能两个方面探讨其重要性。

一、核酸的结构核酸分为DNA和RNA,它们在化学成分上都是由核苷酸组成的,不同的是DNA的糖是脱氧核糖糖(deoxyribonucleic acid)而RNA的糖是核糖糖(ribonucleic acid)。

核苷酸是由五碳糖、碱基和磷酸基组成的。

其中碱基分为嘌呤和嘧啶两类,嘌呤有腺嘌呤(A)和鸟嘌呤(G),嘧啶有胸腺嘧啶(T)和胞嘧啶(C)。

DNA的结构是双螺旋结构,这也是Watson和Crick通过对X 射线晶体学的实验建立的模型。

这个结构是由两条互补的链组成的,两条链通过碱基的键合连接着,形成一个细长的旋曲结构。

而RNA的结构则没有DNA那么复杂,其中的碱基序列单链折叠成不同的结构体,例如tRNA、rRNA等。

这种单链结构使得RNA 在一些领域中也具有非常独特的功能。

二、核酸的功能核酸在细胞中有很多重要的功能,其中最为显著的就是携带生命的基因信息。

DNA是所有生物体的重要遗传信息数据储存物质,其序列决定了物种的生长、发育和生存。

人类DNA的基因组由约30亿个不同的碱基组成,其中只有一小部分负责蛋白质编码,其余则可能与常见的疾病、短暂起效的压力反应以及更长期的环境早期节律有关。

RNA则在生物学过程中具有多种的功能,例如:1.转录作用,tRNA和rRNA将DNA序列中的信息转录成蛋白质。

2.miRNA和siRNA制造,控制基因表达和killing错配的RNA分子。

3.telomeraseRNA,在DNA末端形成保护端(T/D)。

4. RNA丝,催化酶,帮助调节基因转录的过程。

5.纤维素RNA,凝聚编码序列中需求蜕变的基因。

在生物学的开发和应用方面,核酸发挥着重要的作用,并取得了很多的成就。

例如,我们可以利用DNA合成基因、制造蛋白质,或者通过基因检测和基因工程来开发药物。

核酸的结构与功能

核酸的结构与功能

核酸的结构与功能核酸是生物体内重要的生物大分子之一,它不仅参与到遗传信息的传递和转录过程中,还在细胞生理活动中发挥着重要的功能。

本文将重点介绍核酸的结构和功能。

一、核酸的结构核酸主要由核苷酸组成,而核苷酸又由糖基、碱基和磷酸残基构成。

1. 糖基:核酸中的糖基有两种,即脱氧核糖和核糖。

脱氧核糖是构成DNA的糖基,而核糖则是RNA的糖基。

2. 碱基:碱基是核苷酸的重要组成部分,它可分为两类,嘌呤和嘧啶。

嘌呤包括腺嘌呤(A)和鸟嘌呤(G),而嘧啶则包括胸腺嘧啶(T)、胞嘧啶(C)和尿嘧啶(U)。

3. 磷酸残基:磷酸残基是核苷酸的磷酸部分,通过醣苷酸的骨架连接在一起,形成了核酸的链状结构。

二、核酸的功能1. 遗传信息的传递:核酸承载着生物体的遗传信息,其中DNA是生物体遗传信息的主要媒介。

DNA分子通过编码自身的碱基序列,传递给下一代,从而实现了生物遗传的连续性。

2. 转录过程中的模板:DNA作为模板参与到转录过程中,转录酶根据DNA的碱基序列合成RNA,这个过程被称为转录。

RNA承载着从DNA传递过来的信息,进一步参与到蛋白质的合成中。

3. 蛋白质的合成:核酸在蛋白质的合成过程中发挥着重要的功能。

由DNA转录形成的RNA分子将遗传信息带到细胞质中的核糖体,核糖体根据RNA的信息合成特定的氨基酸序列,最终形成特定的蛋白质。

4. 能量传递:核酸有能量转移的功能。

在细胞生理活动中,ATP(腺苷三磷酸)作为一种常见的核苷酸,通过释放相应的磷酸,将化学能转化为细胞内能量。

5. 调节基因表达:核酸还通过一系列的调控机制来调节基因的表达。

例如,RNA干扰技术能够通过干扰特定基因的转录过程,实现对基因表达的调控。

结语:通过对核酸的结构与功能进行了解,我们深刻认识到核酸在生物体内的重要性。

作为遗传信息的承载者和调控蛋白质合成的关键参与者,核酸在维持生物体的正常功能和生理过程中起着不可忽视的作用。

进一步研究核酸的结构和功能有助于揭示生命活动的本质,并为生物技术领域的发展提供新的思路和路径。

生物化学讲义第二章核酸化学

生物化学讲义第二章核酸化学

核酸的结构与功能【目的和要求】1. 熟悉核酸的种类、分布和主要的生物学功能。

2.掌握核酸的化学组成、核苷酸的连接方式。

3.归纳区分两类核酸在化学组分上的异同点。

4.说出DNA二级结构的模型及其主要特点。

5.简述RNA分子组成和结构的特点。

6.简述三种RNA结构特点和主要功能。

7.了解核酸重要的理化特性及其在医学上的应用。

8.能说出生物体内重要的单核苷酸及其生化功能。

【本章重难点】1.核酸的种类、分布和生物学功能。

2.核酸的化学组成。

3.DNA和RNA的分子结构与功能。

4.核酸的变性、复性及杂交。

5.生物体内重要的单核苷酸。

学习内容第一节核酸的化学组成第二节 DNA的分子结构第三节 RNA的分子结构第四节核酸的理化性质第一节核酸的化学组成一、核酸(nucleic acid)的分类、分布与生物学功能分类分布生物学功能核糖核酸(RNA)细胞质参与蛋白质的生物合成5 % 蛋白质合成的直接模板tRNA 15 % 活化与转运AArRNA 80 % 充当装配机,提供场所脱氧核糖核酸(DNA ) 核内、染色质遗传的物质基础** 基因 —— DNA 分子中的功能片段(决定遗传特性的碱基序列)。

二、核酸的分子组成1.核酸的元素组成:C.H.O.N.和P ;代表元素P ,平均含量9~10%。

2.核酸的基本组成单位:核苷酸(nucleotide )1)核苷酸的组成戊糖、碱基:核苷、核苷酸:核苷酸链:3/,5/-磷酸二酯键;3/-羟基端,5/-磷酸基端水解 水解 磷酸 戊糖(戊糖、脱氧戊糖)核酸 核苷酸核苷 嘧啶(C.T.U )碱基嘌呤(A.G)2)核苷酸的结构与命名3)核苷酸的功用3.两类核酸在分子组成上的异同点第二节 DNA 的分子结构一、DNA 的一级结构组成DNA 分子的基本单位是四种脱氧核苷酸:dAMP 、dCMP 、dGMP 和dTMP1.DNA 的碱基组成规律:Chargaff 规则:①同一生物不同组织的DNA 样品,其碱基成分含量相同。

核酸的结构和功能

核酸的结构和功能

第二章 核酸的结构和功能内容提要核酸是以核苷酸为基本组成单位的线性多聚生物信息分子。

分为DNA 和RNA 两大类。

其化学组成见下表:碱基与戊糖通过糖苷键相连,形成核苷。

核苷的磷酸酯为核苷酸。

根据核苷酸分子的戊糖种类不同,核苷酸分为核糖核苷酸与脱氧核糖核苷酸,前者是RNA 的基本组成单位,后者为DNA 的基本组成单位,核酸分子中核苷酸以3’,5’-磷酸二酯键相连,形成多核苷酸链,是核酸的基本结构。

多核苷酸链中碱基的排列顺序为核酸的一级结构。

多核苷酸链的两端分别称为3’-末端与5’-末端。

DNA 的二级结构即双螺旋结构的特点:⑴两条链走向相反,反向平行,为右手螺旋结构;⑵脱氧核糖和磷酸在双螺旋外侧,碱基在内侧;⑶两链通过氢键相连,必须A 与T 、G 与C 配对形成氢键,称为碱基互补规律。

⑷大(深)沟,小(浅)沟。

⑸螺旋一周包含10个bp ,碱基平面间的距离为0.34nm ,螺旋为3.4nm ,螺旋直径2nm ;⑹疏水作用。

氢键及碱基平面间的疏水性堆积力维持其稳定性。

DNA 的基本功能是作为遗传信息的载体,并作为基因复制转录的模板。

mRNA 分子中有密码,是蛋白质合成的直接模板。

真核生物的mRNA 一级结构特点:5’-末端“帽”,3’-末端“尾”。

tRNA 在蛋白质合成中作为转运氨基酸的载体,其一级结构特点:含有较多的稀有碱基;3’-CCA -OH ,二级结构为三叶草形结构。

rRNA 与蛋白质结合构成核蛋白体,作为蛋白质合成的“装配机”。

细胞的不同部位还存在着许多其他种类小分子RNA ,统称为非mRNA 小RNA (snmRNAs ),对细胞中snmRNA 种类、结构和功能的研究称为RNA 组学。

具有催化作用的某些小RNA 称为核酶。

碱基、核苷、核苷酸及核酸在260nm 处有最大吸收峰。

加热可使DNA 双链间氢键断裂,变为单链称为DNA 变性。

DNA 变性时,OD 260增高。

OD 260达到最大值的50%时的相应温度为DNA解链温度(Tm )。

生化第二章核酸的结构和功能

生化第二章核酸的结构和功能

第二章核酸的结构与功能本章重点核酸前言:1.真核生物DNA存在于细胞核和线粒体内,携带遗传信息,并通过复制的方式将遗传信息进行传代;真核生物RNA存在于细胞质、细胞核和线粒体内。

2.在某些病毒中,RNA也可以作为遗传信息的载体。

一、核酸的化学组成以及一级结构(一)、核苷酸是构成核酸的基本组成单位1.DNA的基本组成单位是脱氧核苷酸,而RNA的基本组成单位是核糖核苷酸。

2.核苷酸中的碱基成分:含氮的杂环化合物。

①DNA中的碱基:A\T\C\G。

②RNA中的碱基:S\U\C\G。

★这五种碱基的酮基或氨基受所处环境的pH是影响可以形成酮-烯醇互变异构体或氨基-亚2.核糖①β-D-核糖:C-2’原子上有一个羟基。

②β-D-脱氧核糖:C-2’原子上没有羟基☆脱氧核糖的化学稳定性比核糖好,这使DNA成为了遗传信息的载体。

3.核苷①核苷②脱氧核苷③核糖的C-1’原子和嘌呤的N-9原子或者嘧啶的N-1原子通过缩合反应形成了β-N-糖苷键。

在天然条件下,由于空间位阻效应,核糖和碱基处在反式构象上。

3.核苷酸的结构与命名①核苷或脱氧核苷C-5’原子上的羟基可以与磷酸反应,脱水后形成磷酸键,生成核苷酸或脱氧核苷酸。

②根据连接的磷酸基团的数目不同,核苷酸可分为核苷一磷酸(NMP)、核苷二磷酸(NDP)、核苷三磷酸(NTP)。

③生物体内游离存在的多是5’核苷酸★细胞内一些参与物质代谢的酶分子的辅酶结构中都含有腺苷酸,如辅酶Ⅰ(NAD+),它们是生物氧化体系的重要成分,在传递质子或电子的过程中具有重要的作用。

(二)、DNA是脱氧核糖核苷酸通过3’,5’-磷酸二酯键连接形成的大分子1.脱氧核糖核苷三磷酸C-3’原子的羟基能够与另一个脱氧核糖核苷三磷酸的α-磷酸基团缩合,形成了一个含有3’,5’-磷酸二酯键的脱氧核苷酸分子。

2.脱氧核苷酸分子保留着C-5’原子的磷酸基团和C-3’原子的羟基。

3.多聚体核苷酸链的5’-端是磷酸基团,3’-端是羟基。

核酸的结构与生物学功能

核酸的结构与生物学功能

核酸的结构与生物学功能引言核酸是生物体中重要的大分子,包括DNA(脱氧核酸)和RNA(核糖核酸)。

它们在细胞中起着关键的生物学功能。

本文将探讨核酸的结构和其在生物体中的功能。

1. 核酸的结构1.1 DNA的结构DNA是由两条互补链缠绕在一起形成的双螺旋结构。

每条链由磷酸基团、脱氧核糖和碱基组成。

磷酸基团通过磷酸二酯键连接核糖,而核糖与碱基通过酯键连接。

DNA的螺旋结构具有一定的稳定性,碱基之间形成了氢键。

其中,腺嘌呤(A)和胸腺嘧啶(T)之间形成两个氢键,而鸟嘌呤(G)和胞嘧啶(C)之间形成三个氢键。

这种碱基之间的氢键结构赋予了DNA某种选择性配对能力。

1.2 RNA的结构RNA与DNA的结构相似,但有一些关键区别。

RNA是由单个链构成的,而非双链。

此外,RNA中的核糖酮基核苷酸(ribose nucleotides)含有核糖(ribose)而不是DNA中的脱氧核糖。

RNA的碱基与DNA类似,包括腺嘌呤(A)、尿嘧啶(U)、胸腺嘧啶(T)和鸟嘌呤(G)。

然而,RNA中没有胞嘧啶,而是含有一种与之相似的鸟嘌呤衍生物——尿嘧啶。

2. 核酸的生物学功能2.1 DNA的功能DNA是遗传信息的载体,主要存在于细胞核中。

它存储了细胞的遗传信息,包括基因的顺序和结构。

DNA的主要功能是指导细胞的生物合成过程,以及通过遗传方式传递信息。

2.2 RNA的功能RNA在细胞内具有多种重要的功能。

其中的一个主要功能是转录基因。

这意味着RNA将DNA 中的基因信息转录成为RNA分子,进而参与到蛋白质的合成中。

此外,RNA还可以具有催化性质,即具备酶的功能。

这些酶被称为核酸酶。

相比蛋白质酶,核酸酶的特殊之处在于其能够以RNA的形式与RNA底物特异性结合。

RNA还参与到细胞内的调控机制中,例如通过RNA干扰(RNA interference)控制基因表达。

这种机制使得RNA能够在基因组中起到更为复杂的调控作用。

3. 核酸与疾病核酸的结构和功能异常可能与多种疾病的发生和发展有关。

第2章核酸的结构与功能ppt课件教学内容

第2章核酸的结构与功能ppt课件教学内容
5’pApCpUpUpGpApApCpC3’ RNA
简化为: 5’pACTTGAACG3’ DNA
5’pACUUGAACG3’RNA
简写式的5`-末端均含有一个磷酸残基(与糖基 的C-5`位上的羟基相连),3`-末端含有一个 自由羟基(与糖基的C-3`位相连),若5`端 不写P,则表示5`-末端为自由羟基。
层层堆积的芳香族碱基上的电子云交错形成了碱基 堆积力,使DNA双螺旋结构内部形成疏水核心而 不存在游离的水分子,有利于互补碱基间形成氢键;
双螺旋外侧带负电荷的磷酸基团同带正电荷的阳离子 之间形成的离子键可减少双链间的静电斥力,因而 对DNA双螺旋结构也有一定的稳定作用。
(4)DNA双螺旋构象的多态性
DNA:主要存在于细胞核(真核细胞,98%以 上),是染色质的主要成分;原核生物DNA 主要存在于类核(nucleoid)中;
在核外也存在有少量DNA,如线粒体DNA、 叶绿体DNA以及细菌的质粒(plasmid,细 菌染色体外能够进行自我复制的遗传单位)。
RNA的种类与分布
RNA主要存在于细胞质中。 mRNA 约占细胞总RNA的5%,在蛋白质合成
稀有核苷酸:核酸中的稀有核苷酸是碱基或戊 糖被修饰后形成的。
核酸中的稀有核苷酸常以其核苷的形式表示。 常见的为甲基化修饰以“m”(methy-)表 示,修饰基团在碱基上的写在碱基符号的左 方,修饰基团在戊糖上的写在碱基符号的右 方,修饰基团个数写在其右下角,修饰位置 写在右上角。
2’-O-甲基腺 苷
①1949-1951年Chatgaff应用紫外分光光度法和 纸层析等技术,对不同来源的DNA进行碱基 定量分析,得出组成DNA四种碱基的比例关 系。
不同来源DNA碱基组成的比例关系
DNA来源 A 大肠杆菌 25.4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NN N
C H 2O
N
OH OOHH OOHOHH
cAMP
ADANPTAPDA+ MP OOHOHHOOHOHH
O P O OH O HNADP+
N N
5´端
C
3. 核苷酸的连接
核苷酸之间以
3’,5’-磷酸二酯
A
键连接形成多核苷
酸链,即核酸。
G
3´端
5′端
二、核酸的一级结构
C
定义:
核酸中核苷酸的排
RNA通常以单链形 式存在,但也可形 成局部的双螺旋结 构。
RNA分子的种类较 多,分子大小变化 较大,功能多样化。
RNA的种类、分布、功能
细胞核和胞液 线粒体


核蛋白体RNA rRNA
mt rRNA 核蛋白体组分
信使RNA
mRNA
mt mRNA 蛋白质合成模板
转运RNA
tRNA
mt tRNA 转运氨基酸
核内不均一RNA HnRNA
成熟mRNA的前体
核内小RNA
SnRNA
参与hnRNA的剪接、转运
核仁小RNA
SnoRNA
rRNA的加工、修饰
胞浆小RNA scRNA/7SL-RNA
蛋白质内质网定位合成 的信号识别体的组分
一 、信使RNA(messenger RNA)
意义:有规律 压缩体积,减 少占用的空间
三、DNA的功能
DNA 的 基 本 功 能 是 以 基 因 的 形 式 荷 载 遗传信息,并作为基因复制和转录的模板。 它是生命遗传的物质基础,也是个体生命活 动的信息基础。
基因从结构上定义,是指DNA分子中的 特定区段,其中的核苷酸排列顺序决定了基 因的功能。
02安徽医大精品课程生 物化学第二章核酸的结
构和功能
核 酸(nucleic acid)
是以核苷酸为基本组成单位的生物大 分子,携带和传递遗传信息。
DNA中含有的碱基是:A T C G RNA中含有的碱基是:A U C G 紫外吸收的特性(共轭双键) 吸收波长:260nm 用于定量测定
N
核苷:AR, GR, UR, CR
1
H O CH 2 O N
O

脱氧核苷:dAR, dGR, dTR, dCR O H O H
核苷:戊糖与含氮碱基脱水缩合而生成
糖苷键
C-N 键
N9
N1
β1’
β1’
假尿嘧啶(Ψ)核苷 的糖苷键不是C-N键, 而是C-C键
2. 核苷酸(ribonucleotide)的结构与命名
列顺序。
A
由于核苷酸间的差
异主要是碱基不同,所
以也称为碱基序列。
G
3′端
书写方法 AGT GCT
5 P P P P P P OH 3
5 pApCpTpGpCpT-OH 3 5 A C T G C T 3
核酸具有方向性,一端称为5’-端,另一端称为3’-端
第二节
DNA的空间结构与功能
Dimensional Structure and Function of DNA
核苷(脱氧核苷)和磷酸以磷酸酯键
连接形成核苷酸(脱氧核苷酸)。
NN HH 22
NN Oቤተ መጻሕፍቲ ባይዱ
核苷酸:
H O P H OO CCHH 22 OO NN OO OH
AMP, GMP, UMP, CMP
脱氧核苷酸: dAMP, dGMP, dTMP, dCMP
OOHH OO HH
核苷酸的结构与命名
体内重要的游离核苷酸及其衍生物
真核生物染色体由DNA和蛋 白质构成,其基本单位是 核小 体(nucleosome)。
核小体的组成 DNA:约200bp 组蛋白:H1 H2A,H2B H3 H4
真核生物中的核小体结构:
DNA 双螺旋形成 超螺旋结构,再与 核内的蛋白质结合, 形成核小体的结构
DNA 缠绕八聚体 1.75圈,然后与 H1连接,形成串 珠状结构
氢键:垂直螺旋轴居 双螺旋内側,与对側 碱基形成氢键配对
碱基互补配对 : A = T; G C
A
T
C
G
碱基互补配对是半保留复制的基础
DNA
( 三 ) 双 螺 旋 结 构 的 多 样 性
二、DNA的超螺旋结构及其在染色质中的组装
(一)DNA的超螺旋结构
超螺旋结构: ——DNA双螺旋链再 盘绕即形成超螺旋结构。
正超螺旋(positive supercoil)
盘绕方向与DNA双 螺旋方同相同
负超螺旋(negative supercoil)
盘绕方向与DNA双 螺旋方向相反
意义 DNA超螺旋结构整体或局部的拓扑学
变化及其调控对于DNA复制和RNA转录 过程具有关键作用。
(三)DNA在真核生物细胞核内的组装
基因(gene): DNA分子中具有特定生 物学功能的片段 基因组(genome):一个生物体的全部 DNA序列称。 基因组的大小与生物的复杂性有关,如病 毒SV40的基因组大小为5.1×103bp,大 肠杆菌为5.7×106bp,人为3×109bp。
第三节 RNA的结构与功能
Structure and Function of RNA
戊糖
H O CH 2
O H H O CH 2
OH
5´ O
O


3´ 2´
OH OH
核糖(ribose) (构成RNA)
OH
脱氧核糖(deoxyribose) (构成DNA)
一、核苷酸的结构
1. 核苷(ribonucleoside)的形成
碱基和核糖(脱氧核糖)通过糖
NH2
苷键连接形成核苷(脱氧核苷)。
DNA分子是反向平行的互 补双链结构;
骨架:-脱氧核糖-磷酸碱基:“挂”在主链骨架上
DNA分子为右手螺旋结构 螺 旋 直 径 为 2nm,形成大
沟及小沟。 相邻碱基平面距离0.34nm
,螺旋一圈螺距3.4nm,一 圈10对碱基 维系键:疏水作用力,氢键
碱基堆积力:碱基平 面之间的疏水作用力
多磷酸核苷酸:NMP,NDP,NTP
环化核苷酸: cAMP,cGMP
含核苷酸的生物活性物质:
NAD+、NADP+、CoA-SH、FAD 等都含有 AMP
NH2
NNHHN22H2
N
NN N
O OO OOO HO PHOO PPH OOO PPP OOO CCHCH2H2OO2O NNN
NN N O
一、 DNA的二级结构 ——双螺旋结构
(一)DNA双螺旋结构的研究背景
碱基组成分析 Chargaff 规则:[A] = [T]
[G] [C] 碱基的理化数据分析 A-T、G-C以氢键配对较合理
DNA纤维的X-线衍射图谱分析
(二) DNA双螺旋结构模型要点
(Watson, Crick, 1953)
相关文档
最新文档