电磁场点
高二物理电磁场知识点
高二物理电磁场知识点导读:我根据大家的需要整理了一份关于《高二物理电磁场知识点》的内容,具体内容:电磁学是物理学习里的重要内容。
下面是我收集整理的高二物理电磁学知识点以供大家学习。
高二物理电磁学知识点(一)电场1.库仑定律:F=kQ1Q2/r2...电磁学是物理学习里的重要内容。
下面是我收集整理的高二物理电磁学知识点以供大家学习。
高二物理电磁学知识点(一)电场1.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}2.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}5.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}6.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}7.电势与电势差:UAB=A-B,UAB=WAB/q=-EAB/q8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电场力做功与电势能变化EAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)10.电势能:EA=qA{EA:带电体在A点的电势能(J),q:电量(C),A:A 点的电势(V)}11.电势能的变化EAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}13.平行板电容器的电容C=S/4kd(S:两极板正对面积,d:两极板间的垂直距离,:介电常数)常见电容器〔见第二册P111〕14.带电粒子在电场中的加速(Vo=0):W=EK或qU=mVt2/2,Vt=(2qU/m)1/2高二物理电磁学知识点(二)电磁感应1.[感应电动势的大小计算公式](1)E=n/t(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,/t:磁通量的变化率}(2)E=BLV垂(切割磁感线运动){L:有效长度(m)}(3)Em=nBS(交流发电机最大的感应电动势){Em:感应电动势峰值}(4)E=BL2/2(导体一端固定以旋转切割){:角速度(rad/s),V:速度(m/s)}2.磁通量=BS{:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}*4.自感电动势E自=n/t=LI/t{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),I:变化电流,t:所用时间,I/t:自感电流变化率(变化的快慢)}注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106H.(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。
高中物理电磁波电磁场知识点整理
高中物理电磁波电磁场知识点整理高中物理电磁波电磁场知识点汇总整理物理学起始于伽利略和牛顿的年代,它已经成为一门有众多分支的基础科学。
物理学是一门实验科学,也是一门崇尚理性、重视逻辑推理的科学。
下面是店铺整理的高中物理电磁波电磁场知识点汇总整理,欢迎大家分享。
1、麦克斯韦的电磁场理论(1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场。
(2)随时间均匀变化的磁场产生稳定电场。
随时间不均匀变化的磁场产生变化的电场。
随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场。
(3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场。
2、电磁波(1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波。
(2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.00×108m/s。
下面为大家介绍的是2012年高考物理知识点总结电磁感应,希望对大家会有所帮助。
1、电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。
(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。
(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。
产生感应电动势的那部分导体相当于电源。
(2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。
2、磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。
如果面积S与B不垂直,应以B 乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。
初中物理电磁场知识点全汇总
初中物理电磁场知识点全汇总
1. 电磁场的概念:电磁场是由电荷和电流所产生的物理现象,包括电场和磁场两个方面。
电场是由电荷所产生的,磁场是由电流所产生的。
2. 电场的特点:
- 电场具有方向性,从正电荷指向负电荷。
- 电场的强弱与距离的平方成反比,与电荷的大小成正比。
3. 磁场的特点:
- 磁场有两个极性,即南极和北极。
- 磁场的强弱与距离的平方成反比,与电流的大小成正比。
4. 电磁感应:
- 导体在磁场中运动会感应出电动势,这就是电磁感应现象。
- 法拉第电磁感应定律描述了电磁感应的关系,即感应电动势的大小与磁场变化率成正比。
5. 线圈和电磁铁:
- 线圈是由导体绕成的环形结构,通电时能产生磁场。
- 电磁铁是线圈的一种应用,通过通电可以产生强磁场,用于吸引磁性物体。
6. 电磁波:
- 电磁波是一种由变化的电场和磁场所组成的波动现象。
- 电磁波包括无线电波、微波、红外线、可见光、紫外线、X 射线和γ射线。
7. 发电机和电动机:
- 发电机利用电磁感应原理将机械能转化为电能。
- 电动机则利用电能产生的磁场力使机械能转化为运动能。
以上是初中物理电磁场的知识点汇总,包括电磁场的概念、特点,电磁感应、线圈和电磁铁,电磁波,以及发电机和电动机。
对于初中物理学习和理解电磁场有着重要的意义。
物理学中的电磁场理论知识点
物理学中的电磁场理论知识点电磁场理论是物理学中重要的一部分,它描述了电荷体系所产生的电磁场以及电磁场与电荷之间的相互作用。
本文将介绍电磁场的概念、电场和磁场的性质以及麦克斯韦方程组等电磁场的基本知识点。
一、电磁场的概念电磁场是指由电荷或电流体系所产生的电场和磁场的总和。
电场是由电荷引起的一种力场,可使带电粒子受力;磁场则是由电流引起的一种力场,可对磁性物质施加力。
二、电场的性质1. 电场的强度:电场强度定义为单位正电荷所受的电场力,通常用E 表示,其大小与电荷量和距离有关。
2. 电场线:电场线是用来表示电场分布的曲线,其方向与电场强度方向相同。
电场线的密度反映了电场强度的大小。
3. 高斯定律:高斯定律描述了电场与电荷之间的关系,它指出电场通过闭合曲面的通量与闭合曲面内的总电荷成正比。
三、磁场的性质1. 磁感应强度:磁感应强度是磁场的基本物理量,用 B 表示,其大小与电荷量和距离无关。
它描述了磁场对磁性物质产生的作用力。
2. 磁场线:磁场线是用来表示磁场分布的曲线,其方向与磁感应强度的方向相同。
磁场线呈环状,从北极经南极形成闭合曲线。
3. 法拉第电磁感应定律:法拉第电磁感应定律描述了磁场变化引起感应电动势的现象。
它说明了磁场变化对电荷运动的影响。
四、麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程,它由麦克斯韦总结了电场和磁场的性质而得出。
麦克斯韦方程组包括四个方程,分别是:1. 麦克斯韦第一方程(高斯定律):它描述了电场通过闭合曲面的通量与闭合曲面内的总电荷成正比。
2. 麦克斯韦第二方程(法拉第电磁感应定律):它描述了磁场变化引起感应电动势的现象,即电场沿闭合回路的环路积分与磁场变化的速率成正比。
3. 麦克斯韦第三方程(安培环路定律):它描述了环绕闭合回路的磁场强度与通过闭合回路的总电流之间的关系。
4. 麦克斯韦第四方程(法拉第电磁感应定律的推广):它说明了变化的电场可以产生磁场,反之亦然。
电场和磁场之间存在着相互转化的关系。
高三物理电磁场知识点总结
高三物理电磁场知识点总结电磁场是物理学中的一个重要概念,我们身边的电器设备、通信技术、交通工具等都与电磁场息息相关。
在高三物理学习中,电磁场也是一个重要的考察内容。
本文将总结高三物理中涉及的电磁场知识点,帮助同学们更好地掌握这一内容。
1. 电磁感应电磁感应是电磁场的一项基本性质。
当一个导体在磁场中运动或磁场发生变化时,会产生感应电动势。
根据安培-奥姆定律,感应电动势等于导体内的电荷流动速率乘以电荷单位所受的电动势。
2. 洛伦兹力洛伦兹力是磁场对运动电荷所施加的力。
根据洛伦兹力公式,洛伦兹力等于电荷的速度与磁感应强度的乘积,并受到电荷的电量及该速度与磁感应强度之间夹角的影响。
3. 磁感应强度磁感应强度是描述磁场强弱的物理量。
它的单位是特斯拉(T)。
根据电磁感应定律,磁感应强度的大小与电流强度及导线中的匝数有关。
4. 安培力、磁力矩和力矩平衡当导线中有电流通过时,该导线在磁场中将受到安培力的作用,该力作用于导线上各个电荷载流子,导致导线发生位移。
此外,在磁场中的线圈也会发生磁力矩,力矩平衡发生在一个物体受到多个力矩时,所有力矩的和为零的情况下。
5. 切割磁力线引起的感应电动势当磁场中的磁力线被切割时,会引起感应电动势,根据法拉第电磁感应定律可以得知,感应电动势与切割磁力线的速率成正比。
6. 磁感应强度对电流产生的影响磁感应强度对电流产生的影响可以通过洛伦茨力定律来描述。
根据这个定律,当导体中存在电流时,电流元受到的磁场力与磁感应强度成正比。
7. 毕奥-萨伐尔定律毕奥-萨伐尔定律是描述电流元所产生磁场的物理定律。
根据这个定律,电流元所产生的磁感应强度的大小与该电流元的长度、电流强度及距离有关。
8. 磁化强度和磁化电流磁化强度描述了物质被磁化后所呈现的磁化程度。
磁化强度的大小与物质所受的磁场力和该物质的磁场强度之间有关。
磁化电流是产生磁化强度的电流形式,与磁化强度成正比。
9. 磁感应强度在导体内的分布磁感应强度在导体内的分布与导体内部存在的电流有关。
高中物理知识点电磁场问题
高中物理知识点电磁场问题在高中物理中,电磁场是一个重要的知识点。
电磁场是由电荷在空间中产生的作用力而形成的一种理论模型。
它描述了带电粒子周围的电场和磁场的相互作用,是电磁学的基础。
本文将从电磁场的基本概念、磁场的特性、电流产生的磁场、电磁感应和电磁波等方面进行讲解。
一、电磁场的基本概念电磁场是指空间中存在的电场和磁场。
电场是由电荷体系周围存在的一种力场,可以描述电荷体系对周围电荷的作用力。
磁场则是由运动电荷所产生,它的特点是具有方向性和旋转性。
在电磁场中,电荷体系通过它所引发的电场和磁场相互作用。
二、磁场的特性磁场是运动电荷所产生的场,是由电流所产生的磁荷形成的。
磁场具有方向性和旋转性。
磁感线是表示磁场的线,磁场的强度可以通过磁感线密度表示。
在磁场中,磁场的力是与磁场的磁通量密度和电流成正比的,与导线长度成反比的。
三、电流产生的磁场当电流通过通电线圈时,会形成一个磁场,这就是电流产生的磁场。
电流产生的磁场的强度与电流的大小、导线的长度和线圈的匝数有关,可以通过安培定律来描述。
磁场的方向与电流的方向相垂直,在通电线圈中形成环状的磁感线。
四、电磁感应电磁感应是指时间变化的磁场能够诱发通过导体中的电流。
电磁感应是电磁场的一个重要应用,它是产生电动势的基础。
最著名的电磁感应效应是法拉第电磁感应定律,它描述了磁场的变化导致的感应电动势大小与磁场的变化率成正比。
五、电磁波电磁场的重要表现形式是电磁波。
电磁波是指电场与磁场的振荡所产生的波动,是光学、通信和雷达等现代科学技术的基础。
电磁波的特点是可以传播,它的速度是真空中的光速。
综上所述,电磁场是一个重要的物理概念,涉及到电场、磁场、电流产生的磁场、电磁感应和电磁波等方面。
理解电磁场理论是在物理学中学习和研究电磁学、电学等其他知识的基础。
电磁场理论知识点总结
电磁场理论知识点总结1.麦克斯韦方程组:麦克斯韦方程组是电磁场理论的核心方程,它由四个方程组成,分别是高斯定律、法拉第电磁感应定律、安培环路定律和法拉第电磁感应定律的积分形式。
这些方程描述了电场和磁场随空间和时间的变化规律。
2.电场和磁场的相互作用:根据麦克斯韦方程组,电场和磁场相互作用,通过电场的变化会产生磁场,而通过磁场的变化会产生电场。
这种相互作用是电磁波传播的基础。
3.电磁波的传播:根据麦克斯韦方程组的解,电磁波以光速在真空中传播,它是由电场和磁场相互耦合而成的波动现象。
电磁波的传播速度不同于物质中的电磁波传播速度,它是真空中的最大可能速度。
4.电磁感应现象:根据法拉第电磁感应定律,当一个导体中的磁场发生变化时,会在导体中产生感应电流。
这个现象被广泛应用于发电机、变压器等电磁设备中。
5.静电场和静磁场:当电荷和电流都不随时间变化时,产生的电场和磁场称为静电场和静磁场。
在静电场中,电场符合高斯定律;在静磁场中,磁场符合安培环路定律。
静电场和静磁场的研究对于理解电磁场的基本性质和应用具有重要意义。
6.电磁辐射和辐射场:根据麦克斯韦方程组的解,加速的电荷会辐射出电磁波。
这种辐射就是电磁辐射,它是电磁波传播的一种形式。
辐射场是指由电磁辐射产生的电场和磁场。
7.电磁波的频率和波长:电磁波的频率和波长是描述电磁波特性的两个重要参数。
频率指的是电磁波单位时间内振动的次数,单位是赫兹;波长指的是电磁波的一个完整振动周期所对应的空间距离,单位是米。
8.电磁场的能量和动量:根据电磁场的能量密度和动量密度的定义,可以推导出电磁场的能量和动量公式。
电磁场携带能量和动量,可以与物质相互作用,这是实现无线通信、光学传输等现代科技的基础。
9.电磁场的边界条件:电磁场在介质边界上的反射和折射现象可以通过电磁场的边界条件来描述。
边界条件包括麦克斯韦方程组的边界条件和介质的边界条件,它们确定了电磁场在边界上的行为和传播规律。
高三电磁场知识点总结详细
高三电磁场知识点总结详细电磁场是物理学中的一个重要概念,对于高三学生来说,电磁场是必修课程中的一个重点内容。
本文将详细总结高三电磁场的知识点,帮助学生们复习和理解相关知识。
第一部分:电磁场基础知识1. 电磁场的概念- 电磁场是由电荷体系形成的以电场和磁场为基本特征的力场。
2. 静电场与静磁场- 静电场:由静止的电荷所产生的电场。
- 静磁场:由静止的电荷所产生的磁场。
3. 电磁感应定律- 法拉第电磁感应定律:导体中的磁通量变化会产生感应电动势。
- 感应电动势的大小与导体中磁通量变化率成正比。
第二部分:电磁场的基本定律1. 库仑定律- 库仑定律描述了两个点电荷间相互作用力的大小与距离的关系。
- 库仑定律公式:F = k * (q1 * q2) / r^22. 电场的叠加原理- 多个电荷同时存在时,它们产生的电场可以通过叠加原理求和得到。
3. 磁场的基本性质- 磁场是由带电粒子运动或者电流产生的。
- 磁场具有方向性,用磁力线表示。
第三部分:电场与电势1. 电势能- 电荷在电场中具有电势能,电势能与电荷的大小、电势差和电场强度有关。
- 电势能的计算公式:Ep = q * V2. 电位- 电位是指某一点的电势能与单位正电荷之比。
- 电位的计算公式:V = U / q3. 静电平衡- 静电平衡要求电场内的电势能相等,即电荷处于平衡状态。
第四部分:电流与磁场1. 安培环路定理- 安培环路定理描述了电流通过闭合回路所产生的磁场的性质。
- 安培环路定理公式:∮B·dl = μ0 * I2. 磁场的磁感应强度- 磁感应强度描述了磁场中的力场作用强度。
- 磁感应强度的计算公式:B = F / (q * v * sinθ)第五部分:电磁感应与电磁波1. 电磁感应现象- 电磁感应现象是指磁场变化时在导体中感应出电流的现象。
2. 法拉第电磁感应定律- 法拉第电磁感应定律描述了磁通量变化导致感应电动势的产生。
- 法拉第电磁感应定律公式:ε = -ΔΦ / Δt3. 麦克斯韦方程组- 麦克斯韦方程组总结了电场和磁场的关系以及它们对物质的作用。
高三物理电磁场知识点
高三物理电磁场知识点电磁场是物理学中一个重要的概念,它描述了电荷和电流周围空间的物理特性。
在高三物理学习中,电磁场是一个重要的知识点,本文将介绍高三物理电磁场的相关知识。
一、电磁感应1. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的基本规律。
它表明,当闭合回路中的磁通发生变化时,会在闭合回路中诱导出电动势和电流。
公式表示为ε = -dΦ/dt,其中ε为感应电动势,Φ代表磁通量,dt表示时间的微分。
2. 纳日尔定律纳日尔定律是描述磁场中感应电流方向的规律。
根据纳日尔定律,感应电流的方向总是使得产生它的磁场发生变化的方式。
二、电磁波1. 麦克斯韦方程组麦克斯韦方程组是电磁场理论的基本方程组,它由麦克斯韦提出并总结了电磁场的基本规律。
麦克斯韦方程组包括四个方程:电场高斯定律、电场环路定律、磁场高斯定律和磁场环路定律。
2. 电磁辐射电磁辐射是电磁波的传播方式。
电磁波具有电场和磁场的相互作用,它们垂直传播,并以光速传播。
电磁波可以根据频率分为不同的波段,包括射频、微波、红外线、可见光、紫外线、X射线和γ射线。
三、电磁场的应用1. 电动机和发电机电动机和发电机是利用电磁场相互作用的原理来实现能量转换的设备。
电动机将电能转换为机械能,而发电机则将机械能转换为电能。
2. 电磁炉和感应加热电磁炉和感应加热利用电磁感应的原理来实现加热功能。
通过产生交变磁场来激发物体内部的感应电流,从而产生热量。
3. 电磁波的应用电磁波在通信、雷达、医学诊断等领域有着广泛的应用。
无线通信利用电磁波的传播特性来进行信息传输,而医学诊断则利用电磁波的穿透能力来观察人体内部的结构和组织。
四、电磁场的符号表示和单位1. 电场强度和磁感应强度的符号表示电场强度用E表示,磁感应强度用B表示。
2. 电场强度和磁感应强度的单位电场强度的国际单位是N/C,磁感应强度的国际单位是T(特斯拉)。
五、电磁场的性质1. 电场和磁场的荷质量参量电荷是电磁场相互作用的物理量,它具有电量和质量。
同轴电缆电磁场分布
同轴电缆电磁场分布
同轴电缆电磁场分布
同轴电缆是一种应用广泛的信号传输线路,其特点是内部具有好
的屏蔽性能和较低的电磁辐射。
同轴电缆中的电磁场分布是其工作性
能的重要因素之一。
下面通过几个方面来介绍同轴电缆的电磁场分布。
1.电磁波的传播方式
同轴电缆中的电磁波传播方式为“波导传输”,即电磁波在同轴
电缆中沿着两个导线之间的空气隙中传播,而导线则起到了界面的作用。
因此,同轴电缆的电磁场主要依靠内外导体之间的电场和磁场产生。
2.电磁场的分布特点
同轴电缆的内外导体构成了两个不同的导体环境,导致了电磁场
在同轴电缆中的分布特殊。
具体表现如下:
(1)电场分布
同轴电缆中的电场主要分布在内外导体之间的空气介质中,形成
了沿同轴电缆轴向的电场分布。
由于内、外导体装有电荷,因此沿着
同轴电缆螺旋形状的方向变化,呈现出周期性的分布特点。
(2)磁场分布
同轴电缆中的磁场主要分布在内导体和外导体的边界处。
由于磁
场线在该处不容易穿过金属,因此同轴电缆的磁场分布很弱。
3.电磁场分布对同轴电缆性能的影响
同轴电缆的内外导体构成了一个屏蔽因子,有效地降低了电磁干
扰和辐射。
具体而言,电磁波在同轴电缆中的传输会遭遇到一系列干扰,因此设计合理的电磁场分布可以使得同轴电缆的工作性能有所提高。
总之,同轴电缆中的电磁场分布关乎其信号传输、屏蔽性能等关
键性能指标。
着重研究、优化电磁场分布,将有助于提高同轴电缆的
工作性能和运用范围。
经典电磁场理论的建立
(1) 式中是被感电流的线元,积分沿被感电流回路进行,而矢量A定义为:
(2) 式中A是一个电流的位置函数,纽曼称之为电动力学势。
2、麦克斯韦的电磁场理论
19世纪最伟大的理论物理学家,经典电磁场论的奠基人麦克斯韦, 于1854年在英国剑桥大学毕业。起初,他研究的领域是关于色散理论; 在开尔文勋爵的影响下,麦克斯韦进入了电磁学领域,开始从事电磁场 的理论研究工作;他首先认真地通读了法拉第的三卷论文集《电学的实 验研究》,麦克斯韦继承了法拉第彻底的近距作用思想,坚定了以近距 作用的场观念来研究电磁现象的信念,并大量阅读了开尔文勋爵的工 作,以及高斯(Gauss)、格林(Green)、泊松(Poisson)、斯托克斯 (Stokes)等人的有关论述,领会了类比研究的方法,掌握了当时已有 的数学工具。对于当时已经建立的以安培、纽曼、韦伯为代表的大陆派 超距作用电磁理论,麦克斯韦一方面给予应有的肯定,同时也深刻地洞
察了其中的内在矛盾和困难。从1855年到1865年,麦克斯韦终于建立起 完整的电磁场理论,完成了毕生最重要的贡献。麦克斯韦建立电磁场理 论的工作集中反映在他的三篇著名电磁学论文中,即1855~1856年的 《论法拉第力线》,1861~1862年的《论物理力线》,以及1865年的 《电磁场的动力学理论》。
1846年,韦伯在安培定律的基础上提出了所谓的韦伯电作用定律, 为了建立超距作用的统一电磁理论,韦伯认为,运动电荷之间除了库仑 力外,还存在着由于电荷运动而产生的另一类相互作用力,后人称之为 韦伯力。韦伯根据原始的安培公式,导出两运动电荷与之间的相互作用 力为:
电磁场知识点总结
电磁场知识点总结导论电磁场是物质世界中的一种基本力场,是描述电荷和电流相互作用的力学场。
它由电磁感应力、电场和磁场组成,是电磁学的重要研究对象。
在自然界中,电磁场无处不在,它影响着我们周围的一切物质和能量的运动,包括自然界中的各种现象和人类社会活动中的各种应用,因此深入了解电磁场知识对我们理解世界、应用科学技术都具有重要意义。
静电场静电场是在没有电荷和电流运动的情况下,由电荷产生的电场。
根据库伦定律,电荷之间的相互作用力与它们之间的距离成反比,与它们之间的电荷量成正比。
在静电场中,正电荷和负电荷之间的相互作用力呈现为静电引力和静电斥力。
由于电荷是守恒量,因此静电场中的电荷分布和电场的性质是可以通过电荷守恒定律来推导和分析的。
电场电场是描述电荷之间相互作用的力学场,它的产生是由电荷空间分布所导致的。
电场的作用是对电荷施加力,它遵循叠加原理和叠加定律,即若有多个电荷在同一点产生电场,则它们产生的电场将叠加,而在空间中任意一点的电场强度和方向是由该点电荷所产生的电场以及其他电荷所产生的电场叠加得到的。
在电场中,对于点电荷来说,其电场强度与电荷量成正比,与电荷与观察点的距离成反比;对于均匀分布的带电体系来说,其电场强度与其电荷量和分布形式相关,可以用高斯定律进行求解;对于非均匀分布的电荷,可以通过积分来求解其电场分布。
电场的性质1. 空间叠加性:电场由多个电荷叠加产生,因此电场遵循空间叠加原理。
2. 叠加原理:叠加原理指出在相同空间中的不同电荷所产生的电场可以进行叠加求和。
3. 电场强度:电场强度是描述电场的物理量,它表示单位正电荷在电场中所受到的力。
4. 电场线:电场线是描述电场方向和强度分布的线,它遵循的规则是电场线与电场方向平行,电场线的密度与电场强度成正比。
5. 高斯定律:高斯定律是描述由带电体系所产生的电场的性质的定律,它可以用来计算均匀分布的电荷所产生的电场。
6. 电场势能:电场势能是电荷在电场中由于位置变化而产生的势能,它与电荷的电压和距离的平方成正比。
高中物理麦克斯韦电磁场理论知识点
高中物理麦克斯韦电磁场理论知识点高中物理麦克斯韦电磁场理论学问点麦克斯韦电磁场理论学问点的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场.麦克斯韦进一步将电场和磁场的全部规律综合起来,建立了完整的电磁场理论体系.这个电磁场理论体系的核心就是麦克斯韦方程组,麦克斯韦方程组是由四个微分方程构成,:(1)描述了电场的性质.在一般状况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献,(2)描述了磁场的性质.磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献.(3)描述了变化的磁场激发电场的规律。
(4)描述了变化的电场激发磁场的规律,麦克斯韦方程都是用微积分表述的,详细推导的话要用到微积分,高中没学很难理解,我给你把涉及到的方程写出来,并做个解释,你要是还不明白的话也不用焦急,等上了高校学了微积分就都能看懂了: 1、安培环路定理,就是磁场强度沿任意回路的环量等于环路所包围电流的代数和.2、法拉第电磁感应定律,即电磁场相互转化,电场强度的弦度等于磁感应强度对时间的负偏导.3、磁通连续性定理,即磁力线永久是闭合的,磁场没有标量的源,麦克斯韦表述是:对磁感应强度求散度为零.4、高斯定理,穿过任意闭合面的电位移通量,等于该闭合面内部的总电荷量.麦克斯韦:电位移的散度等于电荷密度,高中物理电磁波学问点1. 振荡电流和振荡电路大小和方向都做周期性变化的电流叫振荡电流,能产生振荡电流的电路叫振荡电路,LC电路是最简洁的振荡电路。
2. 电磁振荡及周期、频率(1)电磁振荡的产生(2)振荡原理:利用电容器的充放电和线圈的自感作用产生振荡电流,形成电场能与磁场能的相互转化。
(3)振荡过程:电容器放电时,电容器所带电量和电场能均削减,直到零,电路中电流和磁场均增大,直到最大值。
(完整版)工程电磁场基本知识点
第一章矢量剖析与场论1 源点是指。
2 场点是指。
3 距离矢量是,表示其方向的单位矢量用表示。
4 标量场的等值面方程表示为,矢量线方程可表示成坐标形式,也可表示成矢量形式。
5 梯度是研究标量场的工具,梯度的模表示,梯度的方向表示。
6 方导游数与梯度的关系为。
7 梯度在直角坐标系中的表示为u 。
8 矢量 A 在曲面 S 上的通量表示为。
9 散度的物理含义是。
10 散度在直角坐标系中的表示为 A 。
11 高斯散度定理。
12 矢量 A 沿一闭合路径l的环量表示为。
13 旋度的物理含义是。
14 旋度在直角坐标系中的表示为 A 。
15 矢量场 A 在一点沿e l方向的环量面密度与该点处的旋度之间的关系为。
16 斯托克斯定理。
17 柱坐标系中沿三坐标方向 e r , e , e z的线元分别为,,。
18 柱坐标系中沿三坐标方向 e r , e , e 的线元分别为,,。
19 1 ' 1 12 e R12 e 'RR R R R20 1 'g 1 0 ( R 0)g '4 ( R) ( R 0)R R第二章静电场1 点电荷 q 在空间产生的电场强度计算公式为。
2 点电荷 q 在空间产生的电位计算公式为。
3 已知空间电位散布,则空间电场强度 E= 。
4 已知空间电场强度散布 E,电位参照点取在无量远处,则空间一点P 处的电位P = 。
5 一球面半径为 R,球心在座标原点处,电量Q 平均散布在球面上,则点R,R,R处的电位等于。
2 2 26 处于静电均衡状态的导体,导体表面电场强度的方向沿。
7 处于静电均衡状态的导体,导体内部电场强度等于。
8 处于静电均衡状态的导体,其内部电位和外面电位关系为。
9 处于静电均衡状态的导体,其内部电荷体密度为。
10 处于静电均衡状态的导体,电荷散布在导体的。
11 无穷长直导线,电荷线密度为,则空间电场 E= 。
12 无穷大导电平面,电荷面密度为,则空间电场 E= 。
电磁场db 名词解释-概述说明以及解释
电磁场db 名词解释-概述说明以及解释1.引言1.1 概述:电磁场是物理学中重要的概念,它描述了电荷和电流在空间中产生的电场和磁场的相互作用。
电磁场在现代科学技术中有着广泛的应用,涉及到电磁波、电磁辐射、电磁感应等多个领域。
在电磁场理论中,单位“dB”(分贝)是一个常用的描述电磁场强度的指标,它对于衡量电磁场的强度和变化具有重要的意义。
本文将重点介绍电磁场中的dB概念,阐述其含义和应用,以帮助读者更好地理解电磁场的特性和作用。
同时,我们将探讨电磁场中dB的重要性,并展望未来在电磁场研究领域的发展方向。
通过深入探讨电磁场db 的相关知识,我们希望读者能够对电磁场理论有更深入的认识,从而为相关领域的研究和实践提供更加全面和有效的支持。
1.2 文章结构文章结构部分的内容如下:文章结构:本文主要分为引言、正文和结论三个部分。
在引言部分中,将概述电磁场db的概念和重要性,说明文章的结构和目的。
在正文部分,将详细介绍电磁场的概念,磁场与电场的关系以及dB的含义与应用。
在结论部分,将总结电磁场db的重要性,并提出未来研究方向和结论。
整个文章结构清晰,逻辑性强,有助于读者全面了解电磁场db的知识。
1.3 目的本文的目的在于解释电磁场db的含义及其在实际应用中的重要性。
通过深入探讨电磁场的概念、磁场与电场的关系以及dB的含义与应用,我们将帮助读者更好地理解电磁场的基本原理和特性。
同时,也希望能够引起读者对电磁场的深入研究和未来发展方向的思考,为电磁场领域的进一步探索和应用奠定基础。
通过本文的阐述,读者可以更全面地了解电磁场db,并认识到其在各个领域中的重要性和应用前景。
2.正文2.1 电磁场概念电磁场是由电场和磁场所组成的物理场,是描述电荷以及电荷之间作用的理论框架。
电磁场是经典电动力学的基本概念之一,也是物质世界中最基本的力之一。
在电磁场中,电场是由电荷产生的力场,它描述了电荷在空间中受力的情况。
电场是通过电场线来描述的,它们代表了电场的方向以及强度。
稳恒电磁场知识点
1 I
I2
逆串:
两绕行方向不一致
L L1 L2 2M
1 I
I2
电感的并联(考虑互感)
共头共尾
并联顺接
L L1L2 M 2 L1 L2 2M
1 I
I2
并联逆接
L L1L2 M 2 L1 L2 +2M
1 I
I2
电场能和磁场能
静电场
稳恒磁场
C
We
1 2
CU 2
Wm
1 2
LI2
L
通过平板电容器得 出下述结论
常见的电感:螺线圈,螺绕环,同轴电缆
BI
R1 I
R2
N 2S
L l
I
L N 2V
L 0 ln R2
2
求电感:设I,解磁通,求电感(与I无关)
R1
电感的串并联(不考虑互感)
串联: L Li
并联:
1 L
1 Li
电感的串联(考虑互感) 首尾相接,留一头一尾
顺串:
两绕行方向一致
L L1 L2 2M
rˆ
纵向场:场和受力均沿矢径方向
Fm I0dl0 dB,
dB
0 4
Idl rˆ r2
横向场:磁场两个垂直(矢径和生场电流元)
受力两个垂直(磁场和受力电流元)
通量定理和环量定理
D E 高斯通量定理
H B 安培环路定理
E dS 1
S
ε0
qin
介质 D dS S
q0,in
B dl L
E 2 r0
E B 0I
2 r
带电圆环轴向
Rx E 20 r3
q R 40r 20r
圆电流轴向
电磁场符号表
符号表A ------矢量磁位 h------基片厚度 a-------半径/场幅度 H------磁场强度 B-------电纳 I------电流强度 b-------法化电纳 I ------单位并失 C-------电容 j-------虚部 0C ---空气微带单位长度电容 J-------电流密度 d C -----全介质充填微带单 k -------传播常数 位长度电容 0k -------空气传播常数 m C ---微带线单位长度电容 d k -------介质传播常数 d-------直径 m k -------微带线传播常数 dB------分贝 z y x k k k ,,----波数 E-------电场强度 l --------探针长度 t E -------切向电场 L-电感/微带片长度/线性算子 TM TE εε,---法化模(谱) d L -------单位长度电感 f--------频率,函数符号 M--------磁流密度 f(ϕθ,)----方向图 m,n------模数 F(ϕθ,)----法化方向图 n -------折射率 g------法化电导/函数符号 N--------奈贝 G------电导 y x N N ,----辐射矢量 GHz----千兆赫 P--------功率 G (r r '/)----格林函数 in P -------入射功率r P -------辐射功率 Y -------导纳t P -------发射功率 TM TE Y Y ,----波导纳c P -------金属损耗 Z -------阻抗d P -------介质损耗 0Z ------自由空间波阻抗,Q--------品质因数 空气微带特性阻抗 r--------场点矢径 d Z --全介质充填微带特性阻抗r '-------源点矢径 m Z ----微带线特性阻抗rˆ-------单位矢量 α-----k 的实部(相移常数) R -------电阻 β------k 的虚部(衰减常数) 0R -------单位长度电阻 c β-----导体衰减常数s R -------表面电阻 d β-----介质衰减常数S -------面积 Γ-----反射系数t --------导体带厚度 Γ-----反射系数的模 δtan -----损耗角正切 δ------趋肤深度 0υ-------空气中光速 )(r r '-δ---脉冲函数d υ-------介质中光速 ε------介电常数/黎曼函数V -------电压/体积 0ε------空气介电常数W -------微带片宽度/场能 )(0r r d j εεεε'-=--介质介电常数e W -------等效宽度 r ε------相对介电常数E W ------电场能量 e ε-----有效相对介电常数H W ------磁场能量 η-----效率z y xˆ,ˆ,ˆ----单位矢量 λ-----波长/变量c λ------截止波长 σ-------电导率g λ------导波长 ν-----特征模序号m λ------微带线波长 nm χ----)(x J n 的第m 个零点 μ-------导磁系数 φψ,-----函数 ξ-------变量 mn ψ-----标量特征模 ρ----电阻率/电荷密度/ ω-------角频率 柱坐标 mn ω------特征频率 M ρ------磁荷密度。
大学物理易考知识点电磁场的基本规律
大学物理易考知识点电磁场的基本规律大学物理易考知识点:电磁场的基本规律电磁场是电荷和电流所产生的物理现象,在电磁学中起着至关重要的作用。
了解电磁场的基本规律不仅可以帮助我们解决实际问题,还可以为日常生活中的电器使用提供指导。
本文将介绍电磁场的基本规律,包括库仑定律、电场的叠加原理、高斯定律、法拉第电磁感应定律以及安培环路定理等。
一、库仑定律库仑定律是描述电荷之间相互作用的规律。
根据库仑定律,两个电荷之间的相互作用力与它们的电荷量成正比,与它们之间的距离的平方成反比。
具体表达式为:\[F = k\frac{{|q_1q_2|}}{{r^2}}\]其中,\[F\]代表电荷之间的相互作用力,\[q_1\]和\[q_2\]分别代表两个电荷的电荷量,\[r\]代表两个电荷之间的距离,\[k\]为比例常数。
二、电场的叠加原理电场是由电荷产生的一种物理场。
电场可以用来描述在电荷存在的情况下,其他电荷所受到的力的情况。
如果有多个电荷同时存在,它们所产生的电场的叠加效应可以通过电场的叠加原理来描述。
根据电场的叠加原理,电场叠加后的总电场强度等于各个电场强度的矢量和。
这一原理可以用公式表示为:\[E = E_1 + E_2 + E_3 + ... + E_n\]其中,\[E_1\],\[E_2\],\[E_3\]等分别代表各个电荷所产生的电场强度,\[E\]代表叠加后的总电场强度。
三、高斯定律高斯定律是描述电场的分布与电荷之间的关系的定律。
根据高斯定律,电场通过一个闭合曲面的通量与该闭合曲面内的电荷量成正比,与电荷分布无关。
具体表达式为:\[Φ = \frac{Q}{{ε_0}}\]其中,\[Φ\]代表电场通过闭合曲面的通量,\[Q\]代表闭合曲面内的电荷量,\[ε_0\]为真空中的介电常数。
四、法拉第电磁感应定律法拉第电磁感应定律描述了磁场的变化所产生的感应电动势。
根据法拉第电磁感应定律,感应电动势的大小与磁场变化率成正比。
高二物理电磁场知识点全
高二物理电磁场知识点一、磁场磁极和磁极之间的相互作用是通过磁场发生的。
电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。
磁极和电流之间的相互作用也是通过磁场发生的。
电流和电流之间的相互作用也是通过磁场产生的。
磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。
二、磁现象的电本质1.罗兰实验正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。
2.安培分子电流假说法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。
安培是最早揭示磁现象的电本质的。
一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。
3.磁现象的电本质运动的电荷(电流)产生磁场,磁场对运动电荷(电流)有磁场力的作用,所有的磁现象都可以归结为运动电荷(电流)通过磁场而发生相互作用。
三、磁场的方向规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就是那一点的磁场方向。
四、磁感线1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方向都跟该点磁场方向一致。
2.磁感线的特点:(1)在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极。
(2)磁感线是闭合曲线。
(3)磁感线不相交。
(4)磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强。
3.几种典型磁场的磁感线:(1)条形磁铁。
(2)通电直导线。
①安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向;②其磁感线是内密外疏的同心圆。
电磁场定点连续观测在地震预测研究中的应用
电磁场定点连续观测在地震预测研究中的应用田山;汤吉;王建国;徐学恭;崔晓峰;张明东;曹井泉【期刊名称】《地震地质》【年(卷),期】2009(031)003【摘要】文中利用"十·五"期间静海地震台布设的秒采样大地电磁网(N-MT)仪器系统和FHDZ-M15地磁组合系统的同步观测数据,实现了固定台站大地电磁测深(MT)观测.采用Robust技术对静海地震台2008年1-6月记录的天然电磁场观测数据进行了MT处理,得到了张量阻抗资料.经过对周期为6~600s范同的18个相同周期的视电阻率及阻抗相位随时间的变化进行分析,其中有多个周期的视电阻率及阻抗相位的时序曲线在2008年3月11日卢龙ML4.2地震前出现异常变化.研究使用的资料周期对应深度为5~50km,属华北地震震源深度范围,其结果反映了震源区地层地震前后震源深度的电性变化.MT方法比现行的地电观测方法具有更直接反映震源区地层的电性变化和更深的勘探深度的优势.【总页数】8页(P551-558)【作者】田山;汤吉;王建国;徐学恭;崔晓峰;张明东;曹井泉【作者单位】天津市地震局,天津,300201;中国地震局地质研究所,北京,100029;天津市地震局,天津,300201;天津市地震局,天津,300201;天津市地震局,天津,300201;天津市地震局,天津,300201;天津市地震局,天津,300201【正文语种】中文【中图分类】P631.3+25【相关文献】1.地震地电场前兆观测方法创新及应用——深井(钢管)电极地震地电场前兆观测方法及地震预测预报实践 [J], 李桂清;李红梅2.胜利油田地震观测井选布原则及在地震前兆预测中的应用 [J], 杨占宝3.云南地区定点形变观测异常特征与地震预测研究 [J], 李智蓉;付虹;高华宴4.应力连续观测与今后的地震预报研究:钻孔应力连续观测仪开发研究展望 [J], 石井紘;彭岩(译);朱传镇(校)5.基于定点形变观测的地震预测方法研究 [J], 张燕因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.8 在圆柱坐标中,一点的位置由2(4,,3)3π定出,求该点在:(1)直角坐标中的坐标;(2)球坐标中的坐标。
解 (1)在直角坐标系中 4c o s (23)2x π==-、4sin(23)23y π==、3z = 故该点的直角坐标为(2,23,3)-。
(2)在球坐标系中 22435r =+=、1tan (43)53.1θ-== 、23120φπ== 故该点的球坐标为(5,53.1,120)
1.24 利用直角坐标,证明
()f f f ∇=∇+∇A A A 解 在直角坐标中
(
)()y x z x y z A A A f f f f f f A A A x y z x y z ∂∂∂∂∂∂∇+∇=+++++=∂∂∂∂∂∂A A ()()()y x z x y z A A A f f f f
A f A f A x x y y z z ∂∂∂∂∂∂+++++=∂∂∂∂∂∂ ()()()()x y z fA fA fA f x y z ∂
∂∂++=∇∂∂∂A
.17 证1明:(1)3∇=R ;(2)∇⨯=R 0;(3)()∇=A R A 。
其中x y z x y z =++R e e e ,A 为一常矢量。
解 (1)3x
y z x y z ∂∂∂∇=+
+=∂∂∂R (2) x y
z x y
z x
y y ∂∂
∂∇⨯==∂∂∂e e e R 0 (3)设x x y y z z A A A =++A e e e ,则x y z A x A y A z =++A R ,故
()()()x x y z y x y z A x A y A z A x A y A z x y ∂∂∇=++++++∂∂A R e e
()z x y z A x A y A z z ∂++=∂e x x y y z z A A A ++=e e e A
1.26 利用直角坐标,证明
()f f f ∇⨯=∇⨯+∇⨯G G G 解 在直角坐标中
[()()()]y y x x z z x y z G G G G G G f f y
z z x x y ∂∂∂∂∂∂∇⨯=-+-+-∂∂∂∂∂∂G e e e f ∇⨯=G [()()()]x z y y x z z y
x f
f f f f f G G G G G G y z z x x y ∂∂∂∂∂∂-+-+-∂∂∂∂∂∂e e e 所以
f f ∇⨯+∇⨯=G G [()()]y z x z
y G G f f G f G f y y z z ∂∂∂∂+-++∂∂∂∂e [()()]x z y x
z G G f f G f G f z z x x ∂∂∂∂+-++∂∂∂∂e [()()]y x z y
x G G f f G f G f x x y y ∂∂∂∂+-+=∂∂∂∂e ()()
[]y z x fG fG y z ∂∂-+∂∂e ()()
[]x z y fG fG z x ∂∂-+∂∂e
()()
[]y x z fG fG x y ∂∂-=∂∂e ()f ∇⨯G
2.4 电荷Q 均匀分布在一个半径为a 的导体球面上,当导体球以匀角速度ω绕通过球心的z 旋转,试计算导体球球表面上的面电流密度。
解 以球心为坐标原点,转轴(一直径)为z 轴。
设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为
sin a φωθ=⨯=v r e ω
球面的上电荷面密度为
24Q
a
σπ= 故 2sin sin 44S Q Q a a a φ
φ
ωσωθθππ===J v e e 2.8 -点电荷q1=q 位于p1(,0,0)a -点处,另-点电荷q2=2q -位于p2(,0,0)a 处,空间有没有电场强度0=E 的点?
解 电荷q +在(,,)x y z 处产生的电场为
1222320()4[()]
x y z x a y z q x a y z πε+++=+++e e e E 电荷2q -在(,,)x y z 处产生的电场为
2222320()24[()]
x y z x a y z q x a y z πε-++=--++e e e E (,,)x y z 处的电场则为12=+E E E 。
令0=E ,则有
22232()[()]x y z x a y z
x a y z +++=+++e e e 222322[()][()]x y z x a y z x a y z -++-++e e e
由上式两端对应分量相等,可得到
2223222232()[()]2()[()]x a x a y z x a x a y z +-++=-+++ ①
2223222232[()]2[()]y x a y z y x a y z -++=+++ ② 2223222232[()]2[()]z x a y z z x a y z -++=+++ ③ 当0y ≠或0z ≠时,将式②或式③代入式①,得0a =。
所以,当0y ≠或0z ≠时无解;
当0y =且0z =时,由式①,有
33()()2()()x a x a x a x a +-=-+
解得
(322)x a =-±
但322x a a =-+不合题意,故仅在(322,0,0)a a --处电场强度0=E 。
2.14 两平行无限长直线电流1I 和2I ,相距为d ,求每根导线单位长度受到的安培力m F 。
解 无限长直线电流1I 产生的磁场为 0112I r φ
μπ=B e 直线电流2
I 每单位长度受到的安培力为 10121221120
d 2m z I I I z d μπ=⨯=-⎰F
e B e 式中12e 是由电流1I 指向电流2I 的单位矢量。
同理可得,直线电流1I 每单位长度受到的安培力为
0122112122m m I I d μπ=-=F F e。