06-07(2)线性代数试卷A
线性代数试题线性代数试卷及答案大全(173页大合集)
属于 对应的特征向量为 ,单位化: ,
属于 对应的特征向量为 ,单位化: ,
取 ,则有 。
八、(本题8分)证明:由
得 的特征值 ,
,
故 的最大特征值是 。
试卷2
闭卷考试时间:100分钟
一、填空题(本题15分,每小题3分)
1、若n阶行列式零元素的个数超过n(n-1)个,则行列式为。
三、(本题8分)解:从第一行开始,每行乘 后逐次往下一行加,再按最后一行展开得:
原式= 。
四、(本题12分)解:由 ,得: ,
可逆,故 ;
由于 , 。
五、(本题14分)解:(1)令 , ,
则 线性无关,故 是向量组 的一个极大无关组;
(2)由于4个3维向量 线性相关,
若 线性无关,则 可由 线性表示,与题设矛盾;
A:矩阵A必没有零行
B:矩阵A不一定是阶梯形矩阵
C:矩阵A必有零行
D:矩阵A的非零行中第一个不等于零的元素都是1
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵(A b)的秩都等于3,A是3×4矩阵,则▁▁▁。【A】
A:方程组有无穷多解
B:无法确定方程组是否有解
C:方程组有唯一解
D:方程组无解
试卷1
4、若 阶实方阵 , 为 阶单位矩阵,则( )。
(A) (B)
(C) (D)无法比较 与 的大小
5、设 , , , ,其中 为任意常数,则下列向量组线性相关的为( )。
(A) ( B) (C) (D)
三、(10分)计算 阶行列式 , 的主对角线上的元素都为 ,其余位置元素都为 ,且 。
四、(10分)设3阶矩阵 、 满足关系: ,且 ,求矩阵 。
B:Ax=0的基础解系中的解向量的个数不可能为n-r
《线性代数》模拟试卷(A)卷
厦门大学网络教育2008-2009学年第一学期《线性代数》模拟试卷( A )卷一、单项选择题(每小题3分,共24分).1. 若111221226a a a a =,则121122212020021a a a a --的值为( ). A .12; B. -12; C. 18; D. 0. 2. 设A B 、为同阶方阵,则下面各项正确的是( ).A.若0AB =, 则0A =或0B =;B.若0AB =,则0A =或0B =;C.22()()A B A B A B -=-+;D.若A B 、均可逆,则111()AB A B ---=.3. 若方程组12312302403690x t x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 的基础解系含有两个解向量,则 t =( ). A .2; B .4; C .6; D .8.4. 已知方程组A x b =对应的齐次方程组为0Ax =,则下列命题正确的是( ).A .若0Ax =只有零解,则Ax b =一定有唯一解;B .若0Ax =有非零解,则Ax b =一定有无穷解;C .若Ax b =有无穷解,则0Ax =一定有非零解;D .若Ax b =有无穷解,则0Ax =一定只有零解.5. 设12, u u 是非齐次线性方程组Ax b =的两个解,则以下结论正确的是( ).A .12u u +是Ax b =的解;B .12u u -是Ax b =的解;C .1ku 是Ax b =的解(1k ≠);D .12u u -是0Ax =的解. 6. 设123,,a a a 线性相关,则以下结论正确的是( ).A .12,a a 一定线性相关;B .13,a a 一定线性相关;C .12,a a 一定线性无关;D .存在不全为零的数123,,k k k ,使得1122330k a k a k a ++=.7. 若20000101A x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与200010001B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦相似,则x =( ). A .-1; B .0; C .1; D .2.8. 二次型f(x 1,x 2,x 3)=32232221x x 12x 3x 3x +++是( ).A. 正定的;B. 半正定的;C. 负定的;D. 不定的.二、填空题(每小题4分,共24分)1. 设802020301A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,*A 为A 的伴随矩阵,则*A =_________. 2. 非齐次线性方程组m n A x b ⨯=有唯一解的充分必要条件是_________.3. 设方程组123131232 1 2 53(8)8x x x x x x x a x ++=⎧⎪+=⎨⎪+++=⎩,当a 取__________时,方程组无解.4. 设向量组1(1,3,)a k =-,2(1,0,0)a =,3(1,3,2)a =-线性相关,则k =_________.5. 二次型3231212322213214225),,(x x x x x tx x x x x x x f +-+++=为正定二次型,则t 的取值范围是_____________.6. 3阶方阵A 的特征值分别为1,-2,3,则21()A -的特征值为_________.三、计算题(共38分).1. (10分) 计算行列式 3112513420111533D ---=---.2. (10分) 求123221343A ⎛⎫ ⎪= ⎪ ⎪⎝⎭的逆矩阵1A -.3. (10分)求向量组)11,9,5,8(),2,1,1,3(),10,7,1,1(),1,1,1,2(4321=--=-==αααα的一个极大线性无关组,并将其余向量用此极大线性无关组线性表示.4. (8分)已知111131111A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,求A 的特征值. 四、证明题(每小题7分,共14分).1. 设列矩阵12(,,,)T n X x x x = 满足1T X X =,E 为n 阶单位阵,2T H E XX =-,证明: H 是对称阵,且T HH E =.2. 证明二次型22256444f x y z xy xz =---++是负定的.答案:一.1.A 1211121112111112222122212221212220220(1)22122021a a aa a a a a a a a a a a a a =-=-==--2. B 由矩阵的理论可得选项B3. C 基础解系含有两个解向量3()2()1r A r A ⇒-=⇒=,12312324006369000A t t ⎛⎫⎛⎫ ⎪ ⎪=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,6t =时,()1r A =4. C 当()()r A r A =时,Ax b =有解5. D 1212()2A u u Au Au b b b +=+=+=,因此12u u +不是Ax b =的解, 下面的选项类似讨论6. D 由线性相关的定义可得选项D7. B 相似矩阵具有相同的特征值8.D f 的矩阵是100036063A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,A 的各阶主子式为:1110a =>,103003=>,10003613366270063A ==⋅⋅-⋅=-<,因此f 为不定的 二.1.16 8022016124301A ==-=, 33***416A A A E A AA A ====⇒=2. n A r =)( 由方程组解的理论可得3. 0 方程组无解可得()(,)r A r A b ≠11211121112110120111011153880223001a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥→--→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+--⎣⎦⎣⎦⎣⎦,(,)3r A b =,当0a =时,()2r A =。
线性代数期中考试试卷
线性代数期中考试试卷一、选择题(每题2分,共20分)1. 设矩阵A是一个3阶方阵,如果A的行列式值为0,则下列哪个结论是正确的?A) A是可逆的B) A的秩小于3C) A的迹等于0D) A的逆矩阵存在2. 对于向量组的线性相关性,以下哪个说法是错误的?A) 非零向量组线性相关,则至少存在一个向量可以由其他向量线性表示B) 零向量与任何向量线性相关C) 一组向量线性无关,则它们不能表示为其他向量的线性组合D) 两个向量线性无关,它们可以构成一个平面3. 如果一个向量空间的基由n个向量构成,则该向量空间的维数是:A) 0B) nC) 1D) 24. 以下哪个矩阵不是正交矩阵?A) 单位矩阵B) 反射矩阵C) 对称矩阵D) 旋转矩阵5. 线性变换的核是变换的零向量,以下哪个说法是正确的?A) 核是变换的像B) 核是变换的值域C) 核是变换的零空间D) 核是变换的基二、填空题(每空1分,共10分)6. 若矩阵B是矩阵A的转置,则称矩阵B是矩阵A的_________。
7. 向量空间V中,若向量v满足Av=0,其中A是矩阵,则称v是A的_________。
8. 一个向量空间的基的向量个数称为该向量空间的_________。
9. 若矩阵A的秩等于其行数,则称矩阵A是_________的。
10. 线性变换的像空间是变换的_________。
三、解答题(每题15分,共30分)11. 证明如果矩阵A和矩阵B可交换,则它们的迹相等。
12. 给定两个向量v1和v2,证明它们线性无关的充分必要条件是它们构成的矩阵的行列式不为零。
四、应用题(每题15分,共30分)13. 已知矩阵A和向量b,求解线性方程组Ax=b。
14. 给定一个线性变换T: R^3 → R^2,其矩阵表示为T,求T的核和像,并证明核和像的直和等于R^3。
五、附加题(10分)15. 讨论矩阵的特征值和特征向量,并给出一个3阶方阵A的特征值和特征向量的计算方法。
2007线性代数考试试题A
诚信应考,考试作弊将带来严重后果!华南理工大学期末考试《 线性代数-2007》试卷A注意事项:1. 考前请将密封线内填写清楚;2. 所有答案请直接答在试卷上(或答题纸上); 3.考试形式:开(闭)卷;一、单项选择题(每小题2分,共30分)。
1.设矩阵,则下列矩阵运算无意义的是【 】A . BAC B. ABC C . BCA D. CAB2.设n 阶方阵A 满足A 2–E =0,其中E 是n 阶单位矩阵,则必有 【 】A. A=A -1B. A=-EC. A=ED. det(A)=13.设A 为3阶方阵,且行列式det(A)= ,则 【 】A. 14-B. 14C. 1-D. 1 4.设A 为n 阶方阵,且行列式det(A)=0,则在A 的行向量组中 【 】A.必存在一个行向量为零向量B.必存在两个行向量,其对应分量成比例C. 存在一个行向量,它是其它n-1个行向量的线性组合D. 任意一个行向量都是其它n-1个行向量的线性组合5.设向量组321,,a a a 线性无关,则下列向量组中线性无关的是 【 】A .133221,,a a a a a a --- B. 212132,,a a a a - C. 32322,2,a a a a + D. 3121,,a a a a +6.向量组(I): )3(,,1≥m a a m 线性无关的充分必要条件是 【 】A.(I)中任意一个向量都不能由其余m-1个向量线性表出B.(I)中存在一个向量,它不能由其余m-1个向量线性表出C.(I)中任意两个向量线性无关D.存在不全为零的常数0,,,111≠++m m m a k a k k k 使7.设a 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 存在非零解的充分必要条件是【 】A .A 的行向量组线性相关B . A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关8.设i a 、i b 均为非零常数(i =1,2,3),且齐次线性方程组⎩⎨⎧=++=++00332211332211x b x b x b x a x a x a的基础解系含2个解向量,则必有 【 】A.03221= b b a a B.02121≠ b b a a C. 332211b a b ab a == D. 02131= b b a a9.方程组⎪⎩⎪⎨⎧=++=++=++ax x x x x x x x x 32132132123 3 12 12 有解的充分必要的条件是 【 】A. a=-3B. a=-2C. a=3D. a=210. 设η1,η2,η3是齐次线性方程组Ax = 0的一个基础解系,则下列向量组中也为该方程组的一个基础解系的是 【 】A. 可由η1,η2,η3线性表示的向量组B. 与η1,η2,η3等秩的向量组C.η1-η2,η2-η3,η3-η1D. η1,η1+η3,η1+η2+η3 11. 已知非齐次线性方程组的系数行列式为0,则【 】A. 方程组有无穷多解B. 方程组可能无解,也可能有无穷多解C. 方程组有唯一解或无穷多解D. 方程组无解12. n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个 【 】A.互不相同的特征值B.互不相同的特征向量C.线性无关的特征向量D.两两正交的特征向量13. 下列子集能作成向量空间R n 的子空间的是 【 】A. }0|),,,{(2121=a a a a a nB. }0|),,,{(121∑==ni i n a a a a C. 121{(,,,)|1}n a a a a = D. }1|),,,{(121∑==n i inaa a a14. 下列矩阵中为正交矩阵的是【 】A. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1- 1 01 1 00 0 1 B. ⎥⎦⎤⎢⎣⎡1- 22 151C. 1 -10 -1⎡⎤⎢⎥⎣⎦D. 1 00 -1⎡⎤⎢⎥⎣⎦15.若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8020001 a a A 正定,则实数a 的取值范围是 【 】 A .a < 8 B. a >4 C .a <-4 D .-4 <a <4二、填空题(每小题2分,共20分)。
2007-2008-2线性代数期末试卷(A)参考答案
2008年春线性代数期末试卷(A)解答与参考评分标准一、单项选择题(每小题3分,共15分)1.B A ,为n 阶矩阵,满足0=AB ,则必有( C )A. 0A = 或 0B =;B. 0A B +=;C. 0A = 或 0B =;D. 0A B +=.2. 关于矩阵下列说法正确的是( B )A. 若A 可逆,则A 与任何矩阵可交换,;AB BA =B. 若A 可逆,则T A 也可逆;C. 若A 可逆,B 也可逆,则A B ±也可逆;D. 若A 可逆,B 也可逆,则AB 不一定可逆;3. 已知21)(,)(r B R r A R ==,则)(AB R 为( D )A. 12();R AB r r =⨯B. 12();R AB r r =+C. 21();R AB r r ≤-D. 12()min(,);R AB r r ≤。
4. 已知12,,,n ααα 线性无关,则( C )A. 12231,,,n n αααααα-+++ 必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++ 线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++ 线性相关;D. 以上都不对。
5. 实二次型()2322212132132,,x tx x x x x x x f +++=,当=t ( B )时,其秩为2 A. 0; B. 1;C. 2;D. 3. 二、填空题(每小题3分,共15分)6.设A 为矩阵,B 为44⨯矩阵,且A =1,2=B ,则=A B 87.设矩阵112212433A -⎛⎫ ⎪=--- ⎪ ⎪⎝⎭,则()1A -*=112212433-⎛⎫ ⎪--- ⎪ ⎪⎝⎭8.矩阵1213001224181200A -⎛⎫ ⎪ ⎪= ⎪- ⎪⎝⎭的秩= 39.若21,αα线性无关,而321,,ααα线性相关,则向量组3213,2,ααα的最大无关组为212,αα10.设A 为实对称矩阵,T )3,1,1(1=α与T a ),5,4(2=α分别属于A 的相异特征值为12λλ,的特征向量,则=a -3三、计算题(每小题10分,共50分)11. 计算行列式2151130602121476D ---=-- 解: 07513751313062120212771207712D ----==----- ……………………………………..… .(5分) 3533301072772---=--=----…………… ………………………… ………..(8分) =27……………………………………………………………………….(10分)12.解矩阵方程X B AX +=,其中⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--=021531201,201301012B A 。
线性代数2007答案
重庆大学线性代数(Ⅱ)课程试卷2006~2007学年 第2学期一、 填空题(3分/每小题,共30分) ⒈517924的逆序数为 7 ;⒉ A 为3阶方阵,且A =-2,A =123A A A ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,则312123A A A A -= 6 ;⒊若向量⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4321α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=t 876β相互正交,则t =__-11______;⒋ A 为3阶方阵,且A =2,则()=+-*122A A 16729;5.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--330204212的秩为 2 ;6.齐次线性方程021=+++n x x x 的基础解系的向量个数是 N-1 ;7. A 为4阶方阵,B 为7阶方阵,且2,3A B ==-则=BO OA -6 ;8. 已知123,,ααα 线性无关,则133221,,αααααα+++线性 无关 ;9.非齐次线性方程组m n A x β⨯=有解的充分必要条件为)()(β A R A R =;10.当λ为 大于5 取值范围时, 二次型2332223121213216242),,(x x x x x x x x x x x x f λ+++++= 为正定.二、 简答题(4分/每小题,共8分)⒈若n 阶方阵A 有O A =2,问是否O A =成立?为什么?不成立(2分),可取多个反例(2分) ⒉,A B 为n 阶方阵且相似,问,A B 是否等价?为什么?成立(2分),因为,A B 为n 阶方阵且相似,则存在C ,使得B AC C =-1,而C 可逆,则可表示初等方阵的乘积,于是,A B 等价(2分)。
三、 计算题(一)(8分/每小题,共24分)1. 计算四阶行列式.5021*********321---=D 解504173012107222.1730012107022204321.5021011321014321=-------=-------=---=D有过程但结果错误得一半的分数。
(完整版)线性代数试卷及答案详解
《线性代数A 》试题(A 卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数考试时间:学号:姓名:3的一组标准正交基,=___________《线性代数A》参考答案(A卷)一、单项选择题(每小题3分,共30分)二、填空题(每小题3分,共18分)1、 256;2、 132465798⎛⎫ ⎪--- ⎪ ⎪⎝⎭; 3、112211221122000⎛⎫⎪- ⎪ ⎪-⎝⎭; 4、; 5、 4; 6、 2 。
三. 解:因为矩阵A 的行列式不为零,则A 可逆,因此1X A B -=.为了求1A B -,可利用下列初等行变换的方法:231211201012010*******121011411033110331023211027210027810027801141010144010144001103001103001103---⎛⎫⎛⎫⎛⎫⎪⎪⎪-−−→-−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫⎪⎪⎪−−→--−−→-−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭―――――(6分)所以1278144103X A B -⎛⎫ ⎪==-- ⎪ ⎪⎝⎭.―――――(8分)四.解:对向量组12345,,,,ααααα作如下的初等行变换可得:1234511143111431132102262(,,,,)21355011313156702262ααααα--⎛⎫⎛⎫⎪ ⎪----- ⎪ ⎪=→ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭111431212011310113100000000000000000000--⎛⎫⎛⎫⎪⎪---- ⎪ ⎪→→⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭――――(5分)从而12345,,,,ααααα的一个极大线性无关组为12,αα,故秩12345{,,,,}ααααα=2(8分)且3122ααα=-,4123ααα=+,5122ααα=--――――(10分) 五.解:对方程组的增广矩阵进行如下初等行变换:221121121121110113011311101112002421120113400(2)(1)42p p p p p p p p p p p p p p p p p p p p p ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪−−→--−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--+--+⎝⎭⎝⎭⎝⎭-⎛⎫ ⎪−−→------- ⎪ ⎪-+-+⎝⎭(分)(1) 当10,(2)(1)0,p p p -≠-+-≠且时即1,2,p p ≠≠-且时系数矩阵与增广矩阵的秩均为3,此时方程组有唯一解.――――(5分) (2) 当1,p =时系数矩阵的秩为1,增广矩阵的秩为2,此时方程组无解.――――(6分)(3) 当2,p =-时此时方程组有无穷多组解. 方程组的增广矩阵进行初等行变换可化为1122112211221211033301112111033300001011011180000------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-−−→-−−→-- ⎪ ⎪ ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭--⎛⎫⎪−−→------ ⎪ ⎪⎝⎭(分)故原方程组与下列方程组同解:132311x x x x -=-⎧⎨-=-⎩ 令30,x =可得上述非齐次线性方程组的一个特解0(1,1,0)Tξ=--;它对应的齐次线性方程组13230x x x x -=⎧⎨-=⎩的基础解系含有一个元素,令31,x =可得1(1,1,1)T ξ=为该齐次线性方程组的一个解,它构成该齐次线性方程组的基础解系.此时原方程组的通解为001101,,.k k k k ξξ+这里为任意常数――――(12分)六.解:(1)由于A的特征多项式2124||222(3)(6)421I A λλλλλλ----=-+-=+----故A 的特征值为13λ=-(二重特征值),36λ=。
线性代数考试(A)参考答案及评释学习资料
线性代数考试(A)参考答案及评释华南农业大学期末考试试卷(A 卷)2005学年第一学期 考试科目:线性代数 考试类型:闭卷 考试时间:120分钟学号 姓名 年级专业这是题文 这是参考答案 填空题.(每小题3分,共30分)1.若行列式D 各行元素之和等于0,则该行列式等于0. 各行加到第一行上去, 则第一行全为零P98奇数阶实反对称阵的行列式为零P64定理2.7非齐次线性方程组有解的充要条件 41141222222n n n --**⎛⎫===⋅= ⎪⎝⎭A A A重要关系*=AA A E ( P34定理1.9); 1n -*=A A(p44题1.18)5.设()()1,1,5,3,9,2,3,5,TTαβ=--=---则α与β的距离为9.()8,3,2,29-===αβ由正交矩阵的定义T =A A E 立即得到1T -=A A 且1T ===A A A A E若λ是A 的特征值, 则1λ是1-A 的特征值, 因为()110x x x x λλ-=≠⇒=A A x . 参考P87定理4.4: ()ϕA 的特征值是()ϕλ.8.如果()222123123121323,,2246f x x x x x tx x x x x x x =+++++是正定的,则t 的取值范围是5t >.11212323t ⎛⎫⎪= ⎪ ⎪⎝⎭A 1231121110,10,123501223t t ∆=>∆==>∆==-> p100定理5.6由2=AA 推出()()22-+=-A E A E EEnglish!二、单选题(每题3分,共15分)1.n 元齐次线性方程组0,AX =秩()(),R A r r n =<则有基础解系且基础解系 含( D )个解向量.(A )n (B )r (C )r n - (D )n r - P62 line 5: 基础解系含n r -个解向量2. 设四阶方阵A 的秩为2,则其伴随矩阵A *的秩为( D )(A )1 (B )2 (C )3 (D )0.A的余子式(3阶子式)全为零.*A是零矩阵.3. 设A是n阶方阵,满足2A E=,则( B )(A)A的行列式为1 (B),-+不同时可逆.A E A E=(D)A的特征值全是1 (C)A的伴随矩阵*A A2000或.A E A E A E A E A E=⇒+-=⇒+=-=4. 设n阶方阵,,A B C满足ABC E=,其中E是n阶单位阵,则必有( C )(A)ACB E== (D) BAC E= (C) BCA E= (B) CBA E()()A E.p7性质1.2, p35定理1.10=⇒=A BC E BC或者141231234142332,3,4333411111111111111110000111111000101111101111100010000010001001000100010000101001000000i r r i c c c c r r r r r r r r x x x x x x x x x x x xxxxx x x x x-=+++-+-↔↔-------+---==----+-----====.2.给定向量组()()121,1,1,1,1,1,1,1,TTαα==--()32,1,2,1Tα=, ()41,1,1,1,Tα=--求1234,,,αααα的一个最大无关组和向量组的秩.()213141434212341121112111110212,,,112100021111021011211121021202120002000200020000r r r r r r r r r r A αααα---+-⎛⎫⎛⎫⎪ ⎪----- ⎪ ⎪==−−−→ ⎪⎪--⎪ ⎪---⎝⎭⎝⎭⎛⎫⎛⎫⎪ ⎪------⎪ ⎪−−−→−−−→ ⎪ ⎪--⎪ ⎪⎝⎭⎝⎭可见()1234,,,3R αααα=,124,,ααα是一个最大无关组。
全校各专业《线性代数》课程试卷及答案A卷
全校各专业《线性代数》课程试卷及答案A 卷试卷 A 考试方式 闭卷 考试时间(120分钟)一、选择题(本题共4小题,每小题4分,满分16分。
每小题给出的四个选项中,只有一项符合题目要求) 1、设A ,B 为n 阶方阵,满足等式0=AB,则必有( ) (A)0=A 或0=B ; (B)0=+B A ; (C )0=A 或0=B ; (D)0=+B A 。
2、A 和B 均为n 阶矩阵,且222()2A B A AB B +=++,则必有( ) (A) A E =; (B)B E =; (C ) A B =. (D) AB BA =。
3、设A 为n m ⨯矩阵,齐次方程组0=Ax 仅有零解的充要条件是( )(A) A 的列向量线性无关; (B) A 的列向量线性相关; (C ) A 的行向量线性无关; (D) A 的行向量线性相关. 4、 n 阶矩阵A 为奇异矩阵的充要条件是( ) (A) A 的秩小于n ; (B) 0A ≠;(C) A 的特征值都等于零; (D) A 的特征值都不等于零; 二、填空题(本题共4小题,每题4分,满分16分)5、若4阶矩阵A 的行列式5A =-,A *是A 的伴随矩阵,则*A = 。
6、A 为n n ⨯阶矩阵,且220A A E --=,则1(2)A E -+= 。
7、已知方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-+43121232121321x x x a a 无解,则a = 。
8、二次型2221231231213(,,)2322f x x x x x tx x x x x =++++是正定的,则t 的取值范围是 。
三、计算题(本题共2小题,每题8分,满分16分)9、计算行列式1111111111111111x x D y y+-=+-10、计算n 阶行列式121212333n n n n x x x x x x D x x x ++=+四、证明题(本题共2小题,每小题8分,满分16分。
完整版)线性代数试卷及答案
完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。
(下面的r(A),r(B)分别表示矩阵A,B的秩)。
A) r(A)。
r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。
A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。
3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。
(B) B的每个行向量都是齐次线性方程组AX=O的解。
(C) BA=O。
(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。
5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。
11;(C) -1;(D)。
(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。
A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。
1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。
(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。
XXXX大学《线性代数》模拟试卷答案(A卷)
RAb RA 2 4,故原方程组有无穷多个解.………………………6 分
导出组的基础解系为
ξ1
112
;
0
0
1
1
ξ2
2 0
,原方程组的一个 特解为
η
2 0
0
0
1
0
所以,原方程组的通解可表示为:
x t1ξ1 t2ξ2 η,其中t1和t2为任意常数. ………………………………12 分
第 1 页共 4 页
2 111
2.
求 n阶行列式
Dn
1
2
1
1.
1 112
1 1 1 1
解:
1 Dn [2 (n 1)]
2
1
1 ……………………………………6 分
1 1 1 2
1 1 1 1
n
1
0
21
0
0
0 0 0 21
(n 1) 1n n 1 ……………………………………………12 分
2 2
.
3 3
0
作正交变换 x py 把原二次型化为标准型 f 3 y12 3 y32 .……………12 分
四.证明题(共 1 小题,共 10 分)
已知向量组, , 线性无关,证明向量组 , , 2 3 也线 性无关.
证:令 k1 k2( ) k3 2 3 0
1 2
3 0
0
2 1 1 3 2 3 3 3
1
2 2
可得特征值: 1 3, 2 0, 3 3 .……………………………………6 分
对于特征值
1
3
,由 A
3E x
0 得其特征向量为1
线性代数A卷试卷+答案
线性代数A卷试卷+答案-CAL-FENGHAI.-(YICAI)-Company One1《线性代数》期末考试题A 题一、 填空题 (将正确答案填在题中横线上。
每小题2分,共10分) 1、设1D =3512, 2D =345510200,则D =12DD OO=_____________。
2、四阶方阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。
3、三阶方阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。
4、若n 阶方阵A 满足关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。
5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。
二、单项选择题 (每小题仅有一个正确答案,将正确答案的番号填入下表内,1、若方程13213602214x x xx -+-=---成立,则x 是(A )-2或3; (B )-3或2; (C )-2或-3; (D )3或2; 2、设A 、B 均为n 阶方阵,则下列正确的公式为(A )()332233A B+3AB +B A B A +=+; (B )()()22A B A+B =A B --; (C )()()2A E=A E A+E --; (D )()222AB =A B 3、设A 为可逆n 阶方阵,则()**A =(A )A E ; (B )A ;(C )n A A ; (D )2n A A -;4、下列矩阵中哪一个是初等矩阵(A )100002⎛⎫ ⎪⎝⎭; (B )100010011⎛⎫⎪⎪ ⎪⎝⎭; (C )011101001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (D )010002100⎛⎫⎪- ⎪ ⎪⎝⎭;5、下列命题正确的是(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++=,则1,α2α,,m α 线性无关;(B )向量组1,α2α,,m α 若其中有一个向量可由向量组线性表示,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α 的一个部分组线性相关,则原向量组本身线性相关;(D )向量组1,α2α,,m α线性相关,则每一个向量都可由其余向量线性表示。
线性代数试卷及答案 卷A
河南工业大学成教学院课程 线性代数 试卷专业班级: 卷A姓 名: 学 号:注:(1)不得在密封线以下书写班级、姓名。
(2)必须在密封线以下答题,不得另外加纸。
………………………………………密 封 线 ………………………………………………………一 .单项选择题(每题3分)1.若 111221226a a a a =,则 121122212020021a a a a -- 的值为( A )(A )12 (B) –12 (C) 18 (D) 02.设A 、B 都是n 阶矩阵,且AB=0,则下列一定成立的是( C )(A )A=0或B=0 (B) A 、B 都不可逆(C )A 、B 中至少有一个不可逆 (D )A+B=03. 若齐次线性方程组1231231230020kx x x x kx x x x x ++=⎧⎪+-=⎨⎪-+=⎩仅有零解,则( B )(A) 4k =或1K =- (B) K= 4-或K=1(C) 4K ≠且1K ≠- (D) 4K ≠-且1k ≠4. A 、B 均为n 阶可逆矩阵,则AB 的伴随矩阵()*AB =( D )(A) A B ** (B) 11||AB A B -- (C) 11B A -- (D) B A **5.设n 元齐次线性方程组0AX =的系数矩阵的秩为r ,则0AX =有非零解的充分必要条件是(D )(A )r n = (B ) r n ≥ (C ) r n > (D )r n <二 .填空题(每题3分)1.行列式 12342345_______32005000= 1602.若n n ⨯阶矩阵A 的行列式|A|=3,A *是A 的伴随矩阵,则A *__3^n-1____3. A 为n n ⨯阶矩阵,且2320A A E -+=,则1A -=______4. n1100⎡⎤=⎢⎥⎣⎦___1__(n 为正整数)5. 设1101A -⎡⎤=⎢⎥⎣⎦, 则1(2A)________=-三.计算题(共63分)1. 计算行列式12n12n 12nb a a a a b a a a a b a +++(12分)解:r2-r1、r3=r1、...ri-r1、...rn-r1D=|b+a1 a2 a3 ....................... an|-b b 0 0-b 0 b 0.............................-b 0 0 .......................... bc1+c2+c3+...+cj+...+cn=|b+a1+a2+...+an a2 ............... an|0 b ................. 0 ......................................0 0 .................... b=(b+Σai)*[b^(n-1)]=b^n+[b^(n-1)]*(a1+a2+...+an)2.3411231100250013A⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦, 求1A-(12分)3 41 12 5解:令B= ,C= ,D= ,则原矩阵可以写为分块2 3 -1 1 1 3B C B ^-1 -B ^-1CD^-1 矩阵的形式A= ,它的逆矩阵易得为A^-1=0 D 0 D ^-1而利用伴随矩阵与逆矩阵的关系可以直接得到3 -4 3 -4B^-1=1/ B B *=1×=-2 3 -2 32 -53 -5D^-1=1/ D D *=1×=-1 3 -1 2-15 38计算可得-B^-1CD^-1=11 -283 -4 -22 37-2 3 16 -27所以A^-1= 0 0 3 -50 0 -1 23.求解齐次线性方程组1234123412342202220430x x x xx x x xx x x x+++=⎧⎪+--=⎨⎪---=⎩.(15分)解:基础解系为:1 2 2 1 2 2 1 0 -2 -5/32 1 -2 -2 -3 -6 -4 1 2 4/3 1 -1 -4 -3 0 0 0 0 0 0通解为:X12k1+5/3k2 2 5/3X=k1ξ1+ k2ξ2= X2 = -2k1-4/3k2 =k1 -2 +k2 -4/3X3 k1 1 0X4 k2 0 14.设211210111A-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,311342B⎡⎤-=⎢⎥⎣⎦求解矩阵方程XA B=(12分)解:5. 计算矩阵3112322140511135524aA⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦的秩为3,求a (12分)解:r4-r2,r1-r3,r2-2r30 1 1 a-1 -20 2 1 -1 -61 0 1 1 50 1 2 4 0r1-r4,r2-2r40 0 -1 a-5 -20 0 -3 -9 -61 0 1 1 50 1 2 4 0r3*(-1/3), r1+r20 0 0 a-2 00 0 1 3 21 0 1 1 50 1 2 4 0交换行1 0 1 1 50 1 2 4 00 0 1 3 20 0 0 a-2 0因为 r(A)=3, 所以 a = 2.四.证明题(7分)设32=,证明5A E+可逆,并求1A E+(7分)A E-(5)解:(A+5E)【1/127(A^2-5A+25E)】=1/127(A+5E)(A^2-5A+25E)=1/127(A^3+5A^2-5A^2-25A+25A+125E)=1/127(A^3+125E)由于A^3=2E,所以1/127(A^3+125E)=1/127(127E)=E,所以(A+5E)可逆,且(A+5E)^-1=1/127(A^2-5A+25E)。
(完整版)线性代数试题套卷及答案
(线性代数) ( A 卷)专业年级: 学号: 姓名:一、单项选择题(本大题共5小题,每小题5分,共25分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设n m A ⨯为实矩阵,则线性方程组0=Ax 只有零解是矩阵)(A A T为正定矩阵的(A) 充分条件; (B) 必要条件; (C) 充要条件; (D) 无关条件。
2.已知32121,,,,αααββ为四维列向量组,且行列式 4,,,1321-==βαααA ,1,,,2321-==βαααB ,则行列式 =+B A(A) 40; (B) 16-; (C) 3-; (D) 40-。
3.设向量组s ααα,,,21)2(≥s 线性无关,且可由向量组s βββ,,, 21线 性表示,则以下结论中不能成立的是(A) 向量组s βββ,,,21线性无关; (B) 对任一个j α,向量组s j ββα,,,2线性相关; (C) 存在一个j α,向量组s j ββα,,,2线性无关; (D) 向量组s ααα,,,21与向量组s βββ,,, 21等价。
4.对于n 元齐次线性方程组0=Ax ,以下命题中,正确的是(A) 若A 的列向量组线性无关,则0=Ax 有非零解; (B) 若A 的行向量组线性无关,则0=Ax 有非零解; (C) 若A 的列向量组线性相关,则0=Ax 有非零解; (D) 若A 的行向量组线性相关,则0=Ax 有非零解。
5.设A 为n 阶非奇异矩阵)2(>n ,*A 为A 的伴随矩阵,则√√(A) A A A 11||)(-*-=; (B) A A A ||)(1=*-;(C) 111||)(--*-=A A A ; (D) 11||)(-*-=A A A 。
二、填空题(本大题共5小题,每小题5分,共25分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6. 列向量⎪⎪⎪⎭⎫ ⎝⎛-=111α 是矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的对应特征值λ的一个特征向量. 则λ= ,a = ,b = 。
线性代数A模拟卷
.
1
1
,
1
1 1 0
x1 2x2 1x3 1 3. 设ξ 1=(2,0,-1)T, ξ 2=(1,0,0)T为线性方程组 2x1 x2 2x3 2
ax1 bx2 cx3 5
的两个解向量,则方程的通解为
.
4. 向量组α 1=(1,2,-3)T, α 2=(-2,1, 0)T, α 3=(0,5,-6)T,线性
(2 )x1 2x2 2x3 1 2x1 (5 )x2 4x3 2
2x1 4x2 (5 )x3 1
六、(18分)设二次型f=2x12+3x22+3x32+4x2x3. 1.写出f的矩阵; 2.求A的特征值与特征向量; 3.用正交变换X=QY将f化为标准形,并写出正交矩阵Q.
(B) α 1一定不可由α 2,α 3,…,α s线性表示;
(C) 其中至少有一个向量可由其余s-1个向量线性表示.
5.n阶方阵A与对角阵相似,则(
).
(A)A有n个不同的特征值;(B) A有n个相同的特征值;(C) A有n
个线性无关的特征向量.
三、(14分)设n维向+2ααT,其中E 为n阶单位矩阵,求AB,A-1,B-1,并写出A-1与B-1的具体形式.
5.设α 1=(1,-2,5)T, α 2=(-2,4,-10)T,则(
).
(A)(α 1,α 2)=-60;(B) α 1 与α 2正交;(C) α 1,α 2线性相关.
三、(10分)求非齐次线性方程组
4
2x1 x1
2
x2 x2
x3 x4 2x3 x
1 4 2
2006―2007学年第二学期电信专业(本科) 《线性代数》课程期末试卷 (A)
莆田学院2006 — 2007 学年第 二 学期期末试卷(A ) 考生 信 息 栏 _________院、系______ 专业 ______班级姓名______学号______装订线学历层次: 年) 考试用时:二、选择题(每题3分,共12分)1.设,A B 均为n n ⨯矩阵,则必有( )A . AB A B +=+; B . AB BA =;C . AB BA =;D .()111A B A B ---+=+.2.设,A B 都是可逆矩阵,则矩阵0A C B ⎛⎫ ⎪⎝⎭的逆矩阵为( )A . 1110A CB ---⎛⎫⎪⎝⎭; B . 1110B C A ---⎛⎫⎪⎝⎭;C . 11110A A CB B ----⎛⎫ ⎪-⎝⎭; D .11110A B CA B ----⎛⎫⎪-⎝⎭.3.设n 维向量组12345,,,,ααααα的秩为3,且满足135230,ααα+-= 242,αα=则向量组的一个极大无关组为( )A . 125,,ααα;B . 124,,ααα;C . 245,,ααα;D . 135,,ααα.4.已知123,,ηηη是非齐次线性方程组Ax b =的三个解向量,下列( )仍是方程组Ax b =的解.A . 12ηη+;B . 2323ηη-;C .12322ηηη+-; D .1232ηηη+-.三、计算题(共59分)1.(12分)计算行列式1243113301152351D ----=--.2.(14分)已知矩阵101020,101A ⎛⎫ ⎪= ⎪ ⎪⎝⎭若,AB A B =-求矩阵B .3.(15分)设四元非齐次线性方程组的系数矩阵的秩为3,已知123,,ηηη是它的三个解向量,且1232132,4354ηηη⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,求该方程组的通解.4.(18分)设向量组12(2,1,4,3),(1,1,6,6),T T αα==--3(1,2,2,9),T α=---45(1,1,2,7),(2,4,4,9)T T αα=-=(1)判定向量组的线性相关性,说明理由;(2)求向量组的一个最大无关组,并把其余向量用最大无关组线性表示.四、证明题(共14分)1. (6分)设矩阵A 的秩为r ,证明:存在一个秩为n r -的矩阵B ,使得0AB =.2. (8分) 设1121212,,,r r βαβααβααα==+=++,且向量组12,,,r ααα线性无关,证明:向量组12,,,r βββ也线性无关.。
线性代数A卷
中国农业大学2014~2015学年秋季学期线性代数(B )课程考试试题(A 卷)()注;本试卷共八页、八道大题一、 填空题(本题满分15分,共有5道小题,每道小题3分,请将合适的答案填在每题的空中)1.设A 为3阶方阵,A 的第2行的元素分别为2,3,1-,其对应的余子式为3,2,3,则||A = .2. 设矩阵1234(,,,)αααα=A ,秩()3R =A ,且234,--=αααβ12βαα=-+3α4α-,则方程组β=Ax 的通解为 .3. 设向量组1234(1,2,1),(2,3,1),(,3,1),(2,,3)ααααT T T T x y ====的秩为2,则x = .y = .4.若2λ=为可逆矩阵A 的特征值,则1212A -⎛⎫⎪⎝⎭的一个特征值为 .5.已知3阶矩阵A 与向量x 满足323A x Ax A x =-,且向量组2,,x Ax A x 线性无关,令2(x,2Ax x,A x),AP PB P =+=,则3阶方阵=B .二、 选择题(本题满分15分,共有5道小题,每道小题3分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内) 1.设n 阶矩阵A ,B ,满足0AB =,,则下列结论不正确的是【 】(A) 0A =或是0B =; (B) 0A =或是0B =;(C) ()()n R A R B +≤; (D) A 不可逆或是B 不可逆.考生诚信承诺1. 本人清楚学校关于考试管理、考场规则、考试作弊处理的规定,并严格遵照执行. 2. 本人承诺在考试过程中没有作弊行为,所做试卷的内容真实可信.学院: 班级: 学号: 姓名:2.设111213212223313233⎛⎫ ⎪= ⎪⎪⎝⎭a a a A a a a aa a ,212223111213312132223323222⎛⎫ ⎪= ⎪ ⎪+++⎝⎭a a a B a a a a a a a a a ,1100010201⎛⎫⎪= ⎪⎪⎝⎭P , 2100010021⎛⎫ ⎪= ⎪ ⎪⎝⎭P ,3010100001⎛⎫⎪= ⎪⎪⎝⎭P ,则=B 【 】 (A) 13P P A ; (B) 23P P A ; (C) 32AP P ; (D) 13AP P .3.设123,,ααα是齐次线性方程组AX =0的基础解系,则下面不是基础解系的是【 】(A) 122331,,+++αααααα; (B) 122331,,---αααααα; (C) 122331,,------αααααα; (D) 1233,3,3ααα.4.若二次型123(,,)f x x x 2221121322332426=+++++x x x x x ax x x x ,为正定二次型,则【 】.(A) 1a >; (B) 32a >; (C) 1a <; (D) 32a <.5.矩阵1111⎛⎫ ⎪ ⎪ ⎪⎝⎭a a b a a 与20000000⎛⎫⎪ ⎪⎪⎝⎭b 相似的充分必要条件为【 】 (A) 0,a b =为任意常数; (B) =0a , b=2;(C) 2,a b =为任意常数; (D) =2a , b=0. 三、(本题满分14分,每题7分)计算下列各题1. 设A 是4阶方阵,*A 为A 的伴随矩阵,12A =,求1(3)2*A A --.2. 计算n阶行列式1231231231231111 D.++++ =LLLM M M O MLnn n nna a a aa a a aa a a aa a a a学院: 班级: 学号: 姓名:四、(本题满分8分)设4阶方阵A 和B ,满足126ABA AB E -=+,若1200130000020010A ⎛⎫⎪⎪= ⎪⎪-⎝⎭求B .五、(本题满分20分)1.设向量组A :123453112151342,,,,2011315334-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪⎪ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ααααα, (1)求向量组A 的秩;(2)求向量组A 的极大线性无关组;2. 设有向量组12312:1,1,24510a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭--===αααA ,及向量11b β⎛⎫ ⎪= ⎪ ⎪-⎝⎭,问,a b 为何值时 (1) 向量β不能由123,,ααα线性表示;(2) 向量β能由123,,ααα线性表示,且表示式惟一;(3) 向量β能由123,,ααα线性表示,且表示式不惟一,并求一般表示式.学院: 班级: 学号: 姓名:六、(本题满分10分)设三阶实对称矩阵A 的特征值为1,2,3; A 的属于特征值1,2的特征向量为 T T )1,2,1(,)1,1,1(21--=--=αα,(1) 求A 的属于特征值3的特征向量.(2) 求方阵A .七、(本题满分12 分)二次型22221234123412(x ,x ,x ,x )x x x x 2x x f a =++++,经正交变换后可变为标准形22223423y y y ++, (1)求 a 的值; (2) 求出该正交变换.学院: 班级: 学号: 姓名:八、(本题满分6分)设12λλ,为方阵A 的两个不同特征值,12,αα为A 的相应于1λ的两个线性无关的特征向量,34,αα为A 的相应于2λ的两个线性无关的特征向量, 证明:向量组1234,,,αααα线性无关。
工大线性代数期末试卷及参考答案(A)
学院: 专业:班级:姓名: 学号:,,s α线性表示,则下列结论中正确的 2,,s k k 使等式s s k α+成立。
存在一组全为零的数12,,,,s k k k 使等式11s s k α+成立; 2,,,s k k 使等式1s s k k βαα=+成立; 的线性表达式唯一。
的特征值为1,1,2,-则矩阵2A E ++的特征值为1,3,7; C. 1,1,2-; 1,0,3-.二、填空题(每小题3分,共15分)6.设(,1,2)ij A i j = 为行列式2131D =中元素ij a 的代数余子式, 则11122122A A A A =7.设4阶方阵520021000012011A ⎛⎫⎪ ⎪= ⎪- ⎪⎝⎭,则1A -=8.设线性方程组1231231232202020x x x x x x x x x λ-+=⎧⎪-+=⎨⎪+-=⎩有非零解,则λ=9.已知向量组123(3,2,0,1),(3,0,,0),(1,2,4,1)ααλα===--的秩为2,则λ=10.设n 阶方阵A 的特征值为12,,,n λλλ,则kA (k 为常数)的特征值为三、计算n 阶行列式(本题14分)11. 211112111112n D =四、证明题(每小题8分,共16分)12.已知对于n 阶方阵A ,存在自然数k ,使得0k A =,试证明矩阵E A -可逆,并写出其逆矩阵的表达式。
13. 设向量组12:,,,L A ααα和向量组12:,,,,S B βββ的秩分别为p 和q ,试证明:若A 可由B 线性表示,则p q ≤。
五、解矩阵方程(14分)14.设412221311A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,132231B -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,求X 使AX B =.六、解答题(每小题10分,共20分)15. 设11,11A ⎛⎫= ⎪-⎝⎭121101B ⎛⎫= ⎪--⎝⎭, 求AB .16. 设()12340,4,2,(1,1,0),(2,4,3),(1,1,1)αααα===-=-,求该向量组的秩和一个最大无关组,并将其余向量表示成最大无关组的线性组合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
区
写
, 则 果 负
安徽工业大学线性代数期末考试试卷( 安徽工业大学线性代数期末考试试卷(A 卷) 线性代数期末考试试卷
�
T T T T T T
. .
. ) 2, 8 分)设 3 阶方阵 A 和 B 满足 AB + I = A 2 + B ,若 I 为单位阵, , ( 阶方阵 为单位阵,
| x1 + x 2 + + x n = 1} | x 1 + x 2 + + x n = 0} | x i 为整数 } | x 1 + x 2 + + x n = 2}
1 1 2 3,设 A 是 4×3 的矩阵,且 R( A) = 2 ,而 B = 0 7 0 ,则 R( AB ) = , × 的矩阵, 1 0 3
4,设 α 1 = (1, 1, 1 + t ) , α 2 = (1,1 + t , 1) , α 3 = (1 + t , 1, 1) ,若 R 3 中任 , 线性表示, 何一个向量都可由 {α 1 , α 2 , α 3 } 线性表示, t 满足条件 则 5,若二阶方阵 A 的特征值为 2,4,则 2( A I )特征值为 , 选择题( 4=20 二,选择题(5×4=20 分) 1 2 3 4 5 成绩 题号 答案 1,下列向量集合中哪个是向量空间( ,下列向量集合中哪个是向量空间( (A) V = {α = [ x1 , x 2 , x n ]
任课教师
专业名称
学生姓名
学号
安徽工业大学 期末考试试卷( 安徽工业大学线性代数期末考试试卷(A 卷)
卷编号 A0506010930 题号 得分 阅卷人 一,填空题(5×4=20 分) 填空题( 1,设 A*, A 1 分别为 n 阶方阵 A 的伴随矩阵和逆矩阵,则 A * A 1 = , 的伴随矩阵和逆矩阵, 2,设三阶矩阵 A = (α , 则 A+ B = 一 二 1 2 考试时间: 考试时间:2007 年 07 月 27 日 14:30—16:30 : : 三 3 4 5 6 7 总分
)
个不相同的特征向量; (C) A 有 n 个不相同的特征向量; ) (D) A 的任一特征值的重数与其线性无关特征向量的个数相同 ) 的任一特征值的重数与其线性无关特征向量的个数相同. 三,计算与证明题(60 分) 计算与证明题 与证明 1, 8 分)已知 4 阶行列式 , (
4, 10 分)已知向量组 , (
6, 10 分)对于线性方程组 , (10 (
1, 3 3, 1, 15 α 1 = [1,1,]T , α 2 = [1, 5, 1]T , α 3 = [3,10, ]T , 6, 3, 3 α 4 = [2, 10, 2]T , α 5 = [1, 3,]T , 求向量组的秩和一个极大线性无
)
(B) V = {α = [ x1 , x 2 , x n ]
(C) V = {α = [ x1 , x 2 , x n ] (D) V = {α = [ x1 , x 2 , x n ]
T
1 0 1 A = 0 2 0 , 1 0 1
求 B.
2,设 n 阶方阵 A, B , A ≠ 0且AB = 0, 则 ( , (A) B=0 (C) ΒΑ = 0 3,设 A, B 为 n 阶方阵,则( , 阶方阵, (B)
D=
1 1 2 1 1 1 1 1 0 1 1 2 2 3 1 4
,
γ 1 γ 2 ) , B = (β γ 1 γ 2 ) ,且 A = 1 , B = 3 ,
Aij 为行列式 D 中元素 a ij 的代数余子式,求: 的代数余子式,
(2 (1) A41 + A42 + A43 + A44 ; 2) A41 + 2 A42 + 3 A43 + 4 A44 . (
β1 + β 2
2
(B) k1α 1 + k 2 (α 1 α 2 ) + )
β1 β 2
2
1 2 2 3, 8 分) A = 4 t 3 , B 为 3 阶非零矩阵, AB = 0, 求 t 的值. 阶非零矩阵, 的值. , ( 设 且 3 1 1
(C)k 1α 1 + k 2α 2 + )
关组, 其它的向量用极大无关组线性表示. 关组,且其它的向量用极大无关组线性表示. 用极大无关组线性表示
λ x1 + x 2 + x 3 = λ 3 x 1 + λ x 2 + x 3 = 2 , x + x + λ x = 2 2 3 1
取何值时,方程组无解,有唯一解和有无穷多组解, 讨论 λ 取何值时,方程组无解,有唯一解和有无穷多组解,在方程组有无穷多 组解时,试由其导出组的基础解系表示全部解. 组解时,试由其导出组的基础解系表示全部解.
β1 β2
2
(D)k 1 (α 1 α 2 ) + k 2 (α 2 α 1 ) + )
β1 + β 2
2
5 A 有 n 个不全相同的特征值; )
T 个全不相同的特征值; (B) A 有 n 个全不相同的特征值; )
是(
5, 8 分)设 3 阶矩阵 A 的特征值分别为 1,0,1 ,对应的特征向量依次为 , (
x1 = [1,2,2]T , x 2 = [2,2,1]T , x 3 = [2,1,2]T , 求 A .
7, 分) , (8 ( 阶方阵,证明: 设 A 是 n 阶方阵,证明:
* 1 1 * 为可逆矩阵, (1) 若 A 为可逆矩阵,则 ( A ) = ( A ) ; ) * n 1 (2) | A | = | A | . )
(Α + Β )2 = Α 2 + Β 2
(D) Β = 0或 Α = 0 )
(A) A 或 B 可逆,必有 AB 可逆 ; (B) A 或 B 不可逆,必有 AB 不可逆 可逆, 不可逆, (C) A 或 B 可逆,必有 A + B 可逆;(D) A 或 B 不可逆,必有 A + B 不可逆 可逆, 可逆; 不可逆, 4,已知 β 1 , β 2 是非齐次线性方程组 Ax=b 的两个不同的解, α 1 , α 2 是其导 , 的两个不同的解, 的一个基础解系, 为任意常数, 出组 Ax=0 的一个基础解系,k1,k2 为任意常数,则方程组 Ax=b 的通解可 表成( 表成( ) (A) k1α 1 + k 2 (α 1 + α 2 ) + )