空间几何体及其计算学生讲义版(最新整理)
高中数学---空间几何体讲义
空间几何体1、 多面体的定义:由几个多边形围成的封闭立体叫多面体。
2、 棱柱定义:两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的多面体叫做棱柱。
棱柱的互相平行的两个面叫做棱柱的底面,其余各面叫做棱柱的侧面,相邻的两个侧面的公共边叫做棱柱的侧棱,两个底面间的距离叫做棱柱的高。
基本性质:侧面都是平行四边形;两个底面及平行于底面的截面都是全等的多边形;过不相邻的两条侧棱的截面是平行四边形。
棱柱的分类:侧棱与底面不垂直的的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱。
直棱柱侧面都是矩形;直棱柱侧棱与高相等;正棱柱的侧面都是全等的矩形。
底面是平行四边形的棱柱叫做平行六面体;底面是矩形的直棱柱是长方体。
祖暅原理:夹在两个平行平面间的两个几何体,如果被平行于这两个平面的任何平面所截得的两个截面的面积都相等,那么这两个几何体的体积相等。
侧面积和体积公式:S Cl =侧(C 为垂直于侧棱的直截面的周长,l 为侧棱长),V Sh =(S 为底面面积,h 为高)3、 棱锥(1) 定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
棱锥的这个多边形的面叫做底面,其余各个三角形的面叫做侧面。
相邻的两个侧面的公共边叫做棱锥的侧棱。
各个侧面的公共顶点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高。
(2) 基本性质:如果一个棱锥被平行于底面的一个平面所截,那么侧棱和高被这个平面分成比例线段;截面与底面都是相似多边形;截面面积与底面面积之比,等于顶点到截面与顶点到底面的距离平方之比。
4、 正棱锥(1) 定义:如果一个棱锥的底面是多边形,且顶点在诺面的射影是底面的中心,这个棱锥叫做正棱锥; (2) 基本性质:各侧棱相等,各侧面都是全等的等腰三角形;正棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;正棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。
高中数学大一轮复习讲义之空间几何体及其表面积、体积
将圆柱补全,并将圆柱从点A处水平分成上下两部分. 由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆 柱体积的12, 所以该几何体的体积 V=π×32×4+π×32×6×12=63π.故选 B. 方法二 (估值法)由题意知,21V 圆柱<V 几何体<V , 圆柱 又V圆柱=π×32×10=90π, ∴45π<V几何体<90π. 观察选项可知只有63π符合.故选B.
√
解析 由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图 应选A.
命题点2 直观图
例2 已知等腰梯形ABCD,上底CD=1,腰AD=CB= 2 ,下底AB=3,以下 底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为
2 ___2___.
解析 如图所示,作出等腰梯形ABCD的直观图.
B.锐角三角形
√D.直角三角形
解析 由直观图中,A′C′∥y′轴,B′C′∥x′轴, 还原后AC∥y轴,BC∥x轴. 所以△ABC是直角三角形.故选D.
6.已知某几何体的三视图如图所示,则该几何体的体积为___13_6_π___.
解析 由三视图可知,该几何体是一个圆柱挖去了一个同底等高的圆锥,其体 积为 π×22×2-31π×22×2=136π.
(2)(2019·湖南省高考冲刺预测卷)如图是一个几何体的
三视图,且正视图、侧视图都是矩形,则该几何体的体
积为
A.12
B.14
C.16
√D.18
解析 由题意可得,该几何体是由一个四棱柱和一个三棱柱组成的几何体,其
中四棱柱的体积V1=1×3×4=12,三棱柱的体积V2=
1 2
×3×1×4=6,该几何体
空间几何体经典讲义
2.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( ).注意:(1)空间几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.(2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.知识点3:空间几何体的直观图3.已知正三角形ABC的边长为a,那么△ABC的平面直观图△A'B'C'的面积为( ).A.34a2 B.38a2 C.68a2 D.616a2注意:直接根据水平放置的平面图形的直观图的斜二测画法规则即可得到平面图形的面积是其直观图面积的22倍,这是一个较常用的重要结论.知识点4:几何体的表面积4.一个空间几何体的三视图如图所示,则该几何体的表面积为( ).A.48 B.32+817 C.48+817 D.80注意:以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.知识点5:几何体的体积5.某几何体的三视图如图所示,它的体积为( )A .B .C .D .注意:以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解.知识点6:空间与平面的转化6.已知在直三棱柱ABCA 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,如图所示,则CP +PA 1的最小值为________.注意:研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.★综合题训练7.已知某几何体的俯视图是如右图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S .12π45π57π81π8.如图,已知某几何体的三视图如下(单位:cm).(1)画出这个几何体的直观图(不要求写画法);(2)求这个几何体的表面积及体积.9.如图,多面体ABFEDC的直观图及三视图如图所示,M,N分别为AF,BC的中点.(1)求证:MN∥平面CDEF;(2)求多面体A—CDEF的体积.。
空间几何体的表面积和体积经典例题(学生讲义)
空间几何体的表面积和体积一.课标要求:了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
二.命题走向近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。
即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。
由于本讲公式多反映在考题上,预测2016年高考有以下特色:(1)用选择、填空题考查本章的基本性质和求积公式;(2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题;三.要点精讲1.多面体的面积和体积公式表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。
2.旋转体的面积和体积公式表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。
四.典例解析题型1:柱体的体积和表面积例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长.例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD=3。
(1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。
图1 图2PAB CDO E 题型2:柱体的表面积、体积综合问题例3.一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是( ) A .23B .32C .6D .6例4.如图,三棱柱ABC —A 1B 1C 1中,若E 、F 分别为AB 、AC 的中点,平面EB 1C 1将三棱柱分成体积为V 1、V 2的两部分,那么V 1∶V 2= ____ _。
高一_数学_下_第一章_空间几何体_讲解
1. 常见公式正方体的表面积S a =62;正方体的体积V a =3;长方体的表面积S ab bc ca =++2();长方体的体积V abc =; 棱柱的体积V Sh =;棱锥的体积V Sh =13; 棱台的体积V S SS S h =++13('');圆柱的表面积S r rh =+222ππ; 圆柱的体积V Sh r h ==π2; 圆锥的侧面积S rl =π; 圆锥的体积V Sh r h ==13132π; 圆台的侧面积S r r l =+π('); 圆台的体积V S SS S h r rr r h =++=++131322('')('')π; 球的表面积S R =42π; 球的体积V R =433π。
2. 割补思想在多面体体积问题中的体现 有时为了计算某些多面体的体积,往往将多面体分割成两个或多个特殊的多面体(如三棱锥),然后使用公式分别计算;有时也将多面体补成特殊的多面体(如正方体、长方体或三棱锥等),然后使用公式分别计算出补成的多面体的体积和补添部分的体积,做差可得要求多面体的体积。
3. 等体积法用来解决点到直线的距离构造一个三棱锥。
所求的点到平面的距离为三棱锥的高,设为h ,与之相对应的底面面积可求,此三棱锥的另一组底面面积及高也可求,便可以利用体积相等,得到一个关于h 的方程。
通过解方程就可以计算出点到平面的距离。
【解题方法指导】例1. 已知如图所示,正方体ABCD A B C D -1111中,E 、F 、G 分别为AB 、BB 1、BC 上的点,BE=BG=2,BF=3,AA 1=4。
求三棱锥D 1—EFG 的体积。
D C11H思路:为求三棱锥的体积,我们往往先找一个易于计算的底面,再考虑它上面的高,三棱锥D EFG 1-的四个面中没有一个面与正方体的面重合,进一步分析后发现,△EFG 为等腰三角形,由已知条件可以求出它的三边的长,可进而求出面积,但底面EFG 上的高既不好作也不好算,于是考虑进行等积变形,使△EFG 不变,而将点D 1,在与平面EFG 平行的直线上平移,将D 1平移到一个特殊的位置。
空间几何体知识点
空间几何体知识点一、知识概述《空间几何体知识点》①基本定义:空间几何体呢,说白了就是在空间里由一些面啊或者线啊啥的围成的形状。
像我们常见的正方体、球体、圆柱体之类的都是空间几何体。
正方体有六个正方形的面,每个顶点都连接着三条棱;球体就像个超级圆的球,表面上每一点到球心的距离都相等;圆柱体有两个底面是一样大的圆,侧面是个长方形卷起来的样子。
②重要程度:在几何这个学科里,空间几何体可是基础中的基础。
往后学的好多几何知识都是建立在对空间几何体的认识和理解之上的。
就好比建房子,空间几何体就是那些一块块的砖头,要是砖头都不认识,房子可就没法好好建了。
③前置知识:那在学空间几何体之前呢,得先对平面图形有点基础了解,像长方形、三角形、圆这些。
你想啊,如果连平面的图形都搞不清楚,又怎么能明白由这些平面图形组合或者变形变成的空间几何体呢。
④应用价值:实际应用可不少呢。
在建筑领域,很多建筑的设计形状都是空间几何体的变形或者组合。
像鸟巢体育场,就有点像个扭曲的正方体;还有水立方,有点像个很规则的长方体和一些特殊几何体的组合。
在工业制造上,一些容器的设计也和空间几何体有关,比如装油的圆柱罐子。
二、知识体系①知识图谱:空间几何体在几何学科里就像树根一样,其他很多知识像解析几何、立体几何计算之类的都是从这儿长出去的枝叶。
它往上能和立体几何证明、计算联系起来,往下与平面几何的一些知识也有千丝万缕的关系。
②关联知识:它和角度的知识有关系啊。
比如说正方体的各个面之间的夹角,还有棱之间的夹角等。
跟面积体积计算也联系紧密,要计算空间几何体的体积和表面积就得知道它的形状特点。
和投影知识也有关,从不同方向投影一个空间几何体就会得到不同的平面图形。
③重难点分析:- 掌握难度:说实话,空间想象能力是个难点。
很多同学刚学的时候,在脑海里很难构造出那些几何体的样子。
像那种斜着切正方体得到的截面形状,就很难想象。
- 关键点:得抓住各个几何体的特征,就是那些区别于其他几何体的地方。
空间立体几何讲义
第1讲 空间几何体高考《考试大纲》的要求:① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图.③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (一)例题选讲:例1.四面体ABCD 的外接球球心在CD 上,且CD =2,AB =3,在外接球面上两点A 、B 间的球面距离是( )A .6π B .3πC .32πD .65π例2.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( )A .π2B .π23C .π332D .π21例3.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角是 .例4.如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积.(1)求V (x )的表达式;(2)当x 为何值时,V (x )取得最大值?(3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值。
(二)基础训练:1.下列几何体各自的三视图中,有且仅有两个视图相同的是( )A .①②B .①③C .①④D .②④2.设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度075东经0120,则甲、乙两地球面距离为( )(A(B) 6R π(C)56R π(D) 23R π①正方形 ②圆锥 ③三棱台 ④正四棱锥C3.若一个底面边长为2的正六棱柱的所有顶点都在一个球的面上,则此球的体积为 .4. 已知,,A B C 三点在球心为O ,半径为R 的球面上,AC BC ⊥,且AB R =,那么,A B 两点的球面距离为___________,球心到平面ABC 的距离为________ 5.如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°. (Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD.(三)巩固练习:1.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积是( )(A )π3 (B )π33 (C )π6 (D )π92、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A .16πB .20πC .24πD .32π3.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是( ) A.34 B.45 C.35 D.-35 4.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为( )(A )31 (B )33 (C )32 (D)36 5.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为()A .3 B .13π C.23π D .36.已知正四棱锥的体积为12,底面对角线的长为,则侧面与底面所成的二面角等于________7.请您设计一个帐篷。
空间几何体的表面积与体积讲义
空间几何体的表面积与体积讲义一、知识梳理1.多面体的表面积、侧面积 因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式 圆柱 圆锥 圆台侧面展开图侧面积公式 S 圆柱侧=2πrl S 圆锥侧=πrl S 圆台侧=π(r 1+r 2)l3.名称几何体表面积 体积 柱体(棱柱和圆柱)S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥)S 表面积=S 侧+S 底 V =13Sh 台体(棱台和圆台)S 表面积=S 侧+S 上+S 下 V =13(S 上+S 下+S 上S 下)h 球S =4πR 2 V =43πR 3 注意:1(1)一个组合体的体积等于它的各部分体积的和或差.(2)底面面积及高都相等的两个同类几何体的体积相等.2.几个与球有关的切、接常用结论(1)正方体的棱长为a ,球的半径为R ,①若球为正方体的外接球,则2R =3a ;②若球为正方体的内切球,则2R =a ;③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为3∶1. 二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)多面体的表面积等于各个面的面积之和.( )(2)锥体的体积等于底面积与高之积.( )(3)球的体积之比等于半径比的平方.( )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( )(5)长方体既有外接球又有内切球.( )(6)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS .( )题组二:教材改编2.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( )A .1 cmB .2 cmC .3 cm D.32cm 3.[]如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.题组三:易错自纠4.一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+45.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A .12π B.323π C .8π D .4π 6.如图为一个半球挖去一个圆锥后的几何体的三视图,则剩余部分与挖去部分的体积之比为________.二、典型例题题型一:求空间几何体的表面积1.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π2.已知某几何体的三视图如图所示,则该几何体的表面积为( )A.73B.172 C .13 D.17+3102思维升华:空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.题型二:求空间几何体的体积命题点1:以三视图为背景的几何体的体积典例 某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1B.π2+3C.3π2+1 D.3π2+3 命题点2:求简单几何体的体积 典例已知E ,F 分别是棱长为a 的正方体ABCD —A 1B 1C 1D 1的棱AA 1,CC 1的中点,则四棱锥C 1—B 1EDF 的体积为________.思维升华:空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.跟踪训练 (1)已知一个几何体的三视图如图所示,则该几何体的体积为( )A.323B.163C.83D.43 (2)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23B.33C.43D.32题型三:与球有关的切、接问题典例 在封闭的直三棱柱ABC —A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB.9π2 C .6π D.32π3引申探究:1.若将本例中的条件变为“直三棱柱ABC —A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积.2.若将本例中的条件变为“正四棱锥的顶点都在球O 的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积.思维升华:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.跟踪训练如图所示,在平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一个球面上,则该球的体积为( )A.3π2 B .3π C.2π3 D .2π四、反馈练习1.某几何体的三视图如图所示,则该几何体的表面积为( )A .6π+1B.(24+2)π4+1C.(23+2)π4+12D.(23+2)π4+1 2.某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .303.已知A ,B ,C 三点都在以O 为球心的球面上,OA ,OB ,OC 两两垂直,三棱锥O —ABC 的体积为43,则球O 的表面积为( )A.16π3B .16π C.32π3 D .32π4.如图所示,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .24πB .30πC .42πD .60π5.如图,网格纸上小正方形的边长为1,粗线是一个棱锥的三视图,则此棱锥的表面积为( )A .6+42+2 3B .8+42C .6+6 2D .6+22+436.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P —ABC 为鳖臑,P A ⊥平面ABC ,P A =AB =2,AC =4,三棱锥P —ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π7.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.8.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.9.如图所示,在直角梯形ABCD 中,AD ⊥DC ,AD ∥BC ,BC =2CD =2AD =2,若将该直角梯形绕BC 边旋转一周,则所得的几何体的表面积为______.10.如图所示,一个底面半径为R 的圆柱形量杯中装有适量的水.若放入一个半径为r 的实心铁球,水面高度恰好升高r ,则R r =________.11.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积为63,求该三棱锥的侧面积. 12如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,AB =2,EB = 3.(1)求证:DE ⊥平面ACD ;(2)设AC =x ,V (x )表示三棱锥B -ACE 的体积,求函数V (x )的解析式及最大值.2=4-x 2,即x =2时取等号,∴当x =2时,体积有最大值33. 13.如图,四棱锥P —ABCD 的底面ABCD 为平行四边形,NB =2PN ,则三棱锥N —P AC 与三棱锥D —P AC 的体积比为( )A .1∶2B .1∶8C .1∶6D .1∶314.在三棱锥P —ABC 中,P A ⊥平面ABC 且P A =2,△ABC 是边长为3的等边三角形,则该三棱锥外接球的表面积为( )A.4π3B .4πC .8πD .20π15.已知三棱锥O —ABC 的顶点A ,B ,C 都在半径为2的球面上,O 是球心,∠AOB =120°,当△AOC 与△BOC 的面积之和最大时,三棱锥O —ABC 的体积为( )A.32B.233C.23D.13 16.如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体P —BCD 的体积的最大值是________.。
第6章立体几何(学生版)--培优辅导讲义
第6章立体几何第一节多面体与球的组合体问题纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.一、球与柱体的组合体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.1、球与正方体如图1所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2a OJ r ==;二是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则22GO R a ==;三是球为正方体的外接球,截面图为长方形11ACA C 和其外接圆,则132A O R '==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.例1棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为()A.2B.1C.12+【强化训练】将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为()A.π2B.π4C.π6D.π162、球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为,,,a b c 其体对角线为l .当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径222.22l a b c R ++==例2在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间部分的体积为()A.10π3 B.4π C.8π3 D.7π3【强化训练】已知正四棱柱的底边和侧棱长均为32,则该正四棱锥的外接球的表面积为.3、球与正棱柱球与一般的正棱柱的组合体,常以外接形态居多.下面以正三棱柱为例,介绍本类题目的解法构造直角三角形法.设正三棱柱111ABC A B C -的高为,h 底面边长为a ,如图2所示,D 和1D 分别为上下底面的中心.根据几何体的特点,球心必落在高1DD 的中点O ,3,,,23h OD AO R AD a ===借助直角三角形AOD 的勾股定理,可求223()()23h R a =+.例3正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最________值,为_______.【强化训练】直三棱柱111ABC A B C -的六个顶点都在球O 的球面上,若1AB BC ==,0120ABC ∠=,123AA =,则球O 的表面积为()A.4πB.8πC.16πD.24π二、球与锥体的组合体规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.2.1球与正四面体正四面体作为一个规则的几何体,它既存在外接球,也存在内切球,并且两心合一,利用这点可顺利解决球的半径与正四面体的棱长的关系.如图4,设正四面体S ABC -的棱长为a ,内切球半径为r ,外接球的半径为R ,取AB 的中点为D ,E 为S 在底面的射影,连接,,CD SD SE 为正四面体的高.在截面三角形SDC ,作一个与边SD 和DC 相切,圆心在高SE 上的圆,即为内切球的截面.因为正四面体本身的对称性可知,外接球和内切球的球心同为O .此时,,CO OS R OE r ===,23,,33SE a CE a ==则有2222233a R r a R r CE +=-=,=解得:66,.412R a r ==这个解法是通过利用两心合一的思路,建立含有两个球的半径的等量关系进行求解.同时我们可以发现,球心O 为正四面体高的四等分点.如果我们牢记这些数量关系,可为解题带来极大的方便.例4将半径都为1的四个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为() A.3263+ B.2+263 C.4+263 D.43263+2.2球与三条侧棱互相垂直的三棱锥球与三条侧棱互相垂直的三棱锥组合问题,主要是体现在球为三棱锥的外接球.解决的基本方法是补形法,即把三棱锥补形成正方体或者长方体.常见两种形式:一是三棱锥的三条侧棱互相垂直并且相等,则可以补形为一个正方体,它的外接球的球心就是三棱锥的外接球的球心.如图5,三棱锥111A AB D -的外接球的球心和正方体1111ABCD A B C D -的外接球的球心重合.设1AA a =,则32R a =.二是如果三棱锥的三条侧棱互相垂直并且不相等,则可以补形为一个长方体,它的外接球的球心就是三棱锥的外接球的球心.2222244a b c l R ++==(l 为长方体的体对角线长).例5在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱3SA =,则正三棱锥S ABC -外接球的表面积是________.【强化训练】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A.12πB.43πC.3πD.123π2.3球与正棱锥球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.例6在三棱锥P-ABC 中,PA=PB=PC=3,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为()A.π B.3πC.π4D.34π【强化训练】已知正三棱锥ABC P -,点P,A,B,C 都在半径为3的球面上,若PA,PB,PC 两两互相垂直,则球心到截面ABC 的距离为____________.2.4球与特殊的棱锥球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利,OA OS OB OC ===用截面法、补形法等进行求解.例如,四个面都是直角三角形的三棱锥,可利用直角三角形斜边中点几何特征,巧定球心位置.如图8,三棱锥S ABC -,满足,,SA ABC AB BC ⊥⊥面取SC 的中点为O ,由直角三角形的性质可得:所以O 点为三棱锥S ABC -的外接球的球心,则2SC R =.例7矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积是()A.π12125 B.π9125 C.π6125 D.π3125例8三棱锥A BCD -中,2,AB CD ====5AC AD BD BC ==则三棱锥A BCD -的外接球的半径是_______.三、球与球的组合体对个多个小球结合在一起,组合成复杂的几何体问题,要求有丰富的空间想象能力,解决本类问题需掌握恰当的处理手段,如准确确定各个小球的球心的位置关系,或者巧借截面图等方法,将空间问题转化平面问题求解.例9在半径为R 的球内放入大小相等的4个小球,则小球半径r 的最大值为()A.(2-1)R B .(6-2)R C.14R D.13R 四、球与几何体的各条棱相切球与几何体的各条棱相切问题,关键要抓住棱与球相切的几何性质,达到明确球心的位置为目的,然后通过构造直角三角形进行转换和求解.如与正四面体各棱都相切的球的半径为相对棱的一半:24r a '=.例10把一个皮球放入如图10所示的由8根长均为20cm 的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径为()3B.10cm 2cm D.30cm 五、与三视图相结合的组合体问题本类问题一般首先给出三视图,然后考查其直观图的相关的组合体问题.解答的一般思路是根据三视图还原几何体,根据几何体的特征选择以上介绍的方法进行求解.例11某几何体的三视图如图所示,则该几何体的外接球的球面面积为()A.5πB.12πC.20πD.8π【强化训练】若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为()A.163π B.193π C.1912π D.43π第二节立体几何中折叠问题立体几何中的折叠问题主要包含两大问题:平面图形的折叠与几何体的表面展开。
空间几何体 - 简单 - 讲义
空间几何体知识讲解一、构成空间几何体的基本元素1.几何体的概念概念:只考虑形状与大小,不考虑其它因素的空间部分叫做一个几何体,比如长方体,球体等.2.构成几何体的基本元素:点、线、面(1)几何中的点不考虑大小,一般用大写英文字母A B C L ,,来命名;(2)几何中的线不考虑粗细,分直线(段)与曲线(段);其中直线是无限延伸的,一般 用一个小写字母a b l L ,,或用直线上两个点AB PQ L ,表示; 一条直线把平面分成两个部分.(3)几何中的面不考虑厚薄,分平面(部分)和曲面(部分);DCBAα其中平面是一个无限延展的,平滑,且无厚度的面,通常用一个平行四边形表示,并把它想象成无限延展的;平面一般用希腊字母αβγL ,,来命名,或者用表示它的平面四边形的顶点或对角顶点的字母来命名,如右图中,称平面α,平面ABCD 或平面AC ; 一个平面将空间分成两个部分.3.用运动的观点理解空间基本图形间的关系理解:在几何中,可以把线看成点运动的轨迹,点动成线;把面看成线运动的轨迹,线动成面;把几何体看成面运动的轨迹(经过的空间部分),面动成体.二、多面体的结构特征1.多面体1)多面体的定义由若干个平面多边形所围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点,连结不在同一个面上的两个顶点 的线段叫做多面体的对角线. 2)多面体的分类按凹凸性分类:把一个多面体的任意一个面延展成平面,如果其余的各面都在这个平面的同一侧,则这样的多面体就叫做凸多面体.否则就叫做凹多面体.按面数分类:一个多面体至少有四个面.多面体按照它的面数分别叫做四面体、五面体、六面体等等. 3)简单多面体定义:表面经过连续变形可以变成球体的多面体叫做简单多面体;欧拉公式:简单多面体的顶点数V 、面数F 和棱数E 有关系2V F E +-=. 4)正多面体定义:每个面都有相同边数的正多边形,每个顶点都有相同棱数的凸多面体,叫做正多面体; 正多面体只有正四面体、正六面体、正八面体、正十二面体、正二十面体这5种;经过正多面体上各面的中心且垂直于所在面的垂线相交于一点,这点叫做正多面体的中心,且这点到各顶点的距离相等,到各面的距离也相等.2.棱柱1)棱柱的定义由一个平面多边形沿某一确定方向平移形成的空间几何体叫做棱柱.平移起止位置的两个面叫做棱柱的底面,多边形的边平移所形成的面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;过不相邻的两条侧棱所形成的面叫做棱柱的对角面;与底面垂直的直线与两个底面的交点部分的线段或距离称为棱柱的高.下图中的棱柱,两个底面分别是面ABCD ,A B C D '''',侧面有ABBA'',DCC D ''等四个,侧棱为AA BB CC DD '''',,,,对角面为面ACC A BDD B '''',,A H '为棱柱的高.D C BAHA 'D 'B 'C'2)棱柱的性质:棱柱的两个底面是全等的多边形,对应边互相平行,侧面都是平行四边形,侧棱平行且相等. 3)棱柱的分类按底面分类:底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……; 按侧棱是否与底面垂直分类:侧棱与底面不垂直的棱柱叫斜棱柱,侧棱与底面垂直的棱柱叫直棱柱;底面是正多边形的直棱柱叫正棱柱; 4)棱柱的记法①用表示两底面的对应顶点的字母表示棱柱; ②用棱柱的对角线端点的两个字母表示棱柱.例如:上面的棱柱是斜四棱柱,记成棱柱''''ABCD A B C D 或棱柱'AC 等. 5)特殊的四棱柱:平行六面体四棱柱底面是平行四边形侧棱与 底面垂直正四棱柱底面是平行四边形直平行六面体底面为 正方形直四棱柱侧棱与 底面垂直底面为 长方形长方体底面是正方形侧面也为 正方形正方体棱长都相等的长方体3.棱锥1)棱锥的定义当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.它有一个面是多边形,其余各面都是有一个公共顶点的三角形.棱锥中有公共顶点的各三角形叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;多边形叫做棱锥的底面;相邻侧面的公共边叫做棱锥的侧棱;棱锥中过不相邻的两条侧棱的截面叫做棱锥的对角面;过顶点且与底面垂直相交的直线在顶点与交点间的线段或距离叫做棱锥的高. 2)棱锥的分类底面是三角形、四边形、五边形……的棱锥分别叫做三棱锥、四棱锥、五棱锥……;底面是正多边形,顶点与底面中心的连线垂直于底面的棱锥叫正棱锥.正棱锥的各个侧面都是全等的等腰三角形,它们底边上的高都相等,称为正棱锥的斜高.对角面SACE高侧棱侧面底面ABCDEHSDCBA3)棱锥的记法用顶点和底面各顶点的字母表示或者用表示顶点和底面的一条对角线端点的字母表示.如上图的五棱锥记为棱锥S ABCDE -或棱锥S AC -.4.棱台1)棱台的定义棱锥被平行于底面的一个平面所截后,截面和底面之间的部分叫做棱台.原棱锥的底面和截面分别叫做棱台的下底面和上底面;其余各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;与棱台的底面垂直的直线夹在两个底面之间的线段或距离称为棱台的高. 2)棱台的性质棱台的各侧棱延长后交于一点,即棱台的上下底面平行且对应边成比例; 3)棱台的记法用上下底面的字母表示或者用一条对角线两个端点的字母来表示. 4)正棱台由正棱锥截得的棱台叫做正棱台.正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.HH'O'OC'B'A'CBA右图为一个正三棱台,记为棱台ABC A B C '''-,侧棱AA ',BB ',CC '延长后必交于一点.O ,O '为上下底面的中心,它们的连线O O '是棱台的高,H H '是棱台的斜高.三、旋转体的结构与特征1.圆柱、圆锥和圆台定义:将矩形、直角三角形、直角梯形分别绕着它的一边、一直角边、垂直于底边的腰所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥和圆台.这条旋转轴叫做几何体的轴,轴的长即为该旋转体的高.垂直于轴的边旋转而成的圆面叫做底面,不垂直于轴的边旋转而成的曲面叫做侧面,无论旋转到什么位置,这条边都叫做侧面的母线;圆柱、圆锥、圆台一般用表示它的轴的字母来表示. 性质:①平行于底面的截面都是圆;②过轴的截面(轴截面)分别是全等的矩形、等腰三角形、等腰梯形.SOO'OAA'A2.球球的定义:半圆绕着它的直径所在的直线旋转一周而形成的几何体叫做球(或球体),半圆旋转而成的曲面叫做球面.半圆的圆心称为球心,球心与球面上一点的连线段称为球的半径,连结球面上两点且过球心的线段叫作球的直径.一般用球心的字母表示一个球.四、三视图1.投影定义:由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,我们把光线叫做投影线,把留下物体的影子的屏幕叫做投影面.FMlF 'M '2.平行投影定义:我们把在一束平行光线照射下形成的投影,叫做平行投影.平行投影的投涉线是平行的.在平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影.性质:若图形中的直线或线段不平行于投射线时,平行投影具有以下性质:①直线或线段的平行投影仍是直线或线段;②平行直线的平行投影是平行或重合的直线;③平行于投射面的线段,它的投影与这条线段平行且等长;④平行于投射面的平面图形,它的投影与这个图形全等;⑤在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比.3.正投影概念:在平行投影中,如果投射线与投射面垂直,则称这样的平行投影为正投影.性质:①垂直于投射面的直线或线段的正投影是点;②垂直于投射面的平面图形的正投影是直线或直线的一部分.4.中心投影定义:一个点光源把一个图形照射到一个平面上,这个图形的影子就是它在这个平面上的中心投影.中心投影的直观性强,看起来与人的视觉效果一致,常在绘画时使用,在立体几何中,一般用平行投影原理来画图.5.三视图1)正视图:光线从几何体的前面向后面正投影得到的投影图形称为几何体称为正视图(主视图).2)侧视图:光线从几何体的左面向右面正投影得到的投影图形称为几何体称为侧视图(左视图).3)俯视图:光线从几何体的上面向下面正投影得到的投影图形称为几何体称为俯视图.将空间图形向这三个平面作正投影,然后把这三个投影按一定的布局放在一个平面内,这样构成的图形叫做空间图形的三视图.如右图为圆锥的三视图:俯视图主视图5.三视图的对应关系关系:正俯视图长相等、正侧视图图的高相等、俯侧视图图的宽相等,简称“长对正,宽平齐,高相等”或说“主左一样高,主俯一样长,俯左一样宽”.五、直观图1.定义:用来表示空间图形的平面图形,叫做空间图形的直观图.画法:斜二测画法和正等测画法2.斜二测画法规则1)在已知图形所在的空间中取水平平面,作相互垂直的轴Ox ,Oy ,再作Oz 轴,使90xOz ∠=︒,90yOz ∠=︒.(三维空间中) 2)画直观图时,把Ox ,Oy ,Oz 画成对应的轴O x O y O z '''''',,,使45x O y '''∠=︒或135︒,90x O z '''∠=︒,x O y '''所确定的平面表示水平平面.(二维平面上) 3)已知图形中,平行于x 轴,y 轴或z 轴的线段,在直观图中分别画成平行于x '轴,'y 轴或z ' 的线段.并使它们和所画坐标轴的位置关系,与已知图形中相应线段和原坐标轴的位置关系相同.4)已知图形中平行于x 轴和z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段,长度为原来的一半.5)画图完成后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图.五、简单空间几何体的表面积和体积1.直棱柱与圆柱的侧面积()S S ch =直棱柱侧圆柱,其中c 为底面的周长,h 为直棱柱(圆柱)的高,也即侧棱(母线)长;2.正棱锥(圆锥)的侧面积11''22S ch nah ==正棱锥侧,其中a 为底面边长,'h 为斜高;1π2S cl rl ==圆锥侧,其中c 为底面周长,r 为圆锥的底面半径,l 为母线长;3.正棱台(圆台)的侧面积1(')'(')'22nS c c h a a h =+=+正棱台侧,其中,'a a 分别是正棱台上下底面的边长,'h 为斜高;4.球面面积:24πS R =球,R 为球的半径.5.柱体(棱柱,圆柱)体积公式:V Sh =柱体,其中S 为底面积,h 为高;6.棱体(棱锥,圆锥)的体积公式:13V Sh =棱体,其中S 为底面积,h 为高;7.台体(棱台,圆台)的体积公式: 1(')3V h S S =+台体,其中',S S 分别是台体上,下底面的面积,h 为台体的高;8.球的体积公式:34π3V R 球,R 为球的半径典型例题一.选择题(共8小题)1.(2015•新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A. B. C. D.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.2.(2016•汉中二模)一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是()A.1 B.2 C.3 D.4【解答】解:由题设及图知,此几何体为一个四棱锥,其底面为一个对角线长为2的正方形,故其底面积为=2由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形由于此侧棱长为,对角线长为2,故棱锥的高为=3此棱锥的体积为=2故选:B.3.(2018•郑州一模)若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm3【解答】解:由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4,∴几何体的体积V=×3×4×5﹣××3×4×5=20(cm3).故选:B.4.(2015•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3B.12cm3C. D.【解答】解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形高为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.5.(2016•新课标Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.6.(2016•新课标Ⅱ)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为()A.12πB.πC.8πD.4π【解答】解:正方体体积为8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π.故选:A.7.(2015•新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.8【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.8.(2017•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.+1 B.+3 C.+1 D.+3【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为××π×12×3+××××3=+1,故选:A.二.填空题(共4小题)9.(2017•上海)已知球的体积为36π,则该球主视图的面积等于9π.【解答】解:球的体积为36π,设球的半径为R,可得πR3=36π,可得R=3,该球主视图为半径为3的圆,可得面积为πR2=9π.故答案为:9π.10.(2011•南通三模)底面边长为2m,高为1m的正三棱锥的全面积为m2.【解答】解:如图所示,正三棱锥S﹣ABC,O为顶点S在底面BCD内的射影,则O为正△ABC的垂心,过C作CH⊥AB于H,连接SH.则SO⊥HC,且,在Rt△SHO中,.于是,,.所以.故答案为11.(2016•黄浦区一模)两个半径为1的铁球,熔化后铸成一个大球,这个大球的半径为.【解答】解:设大球的半径为r,则根据体积相同,可知,即.故答案为:.12.(2015•盐城校级模拟)已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的体积为2π.【解答】解:根据题意,圆柱的底面半径r=1,母线长l=2r=2∴圆柱的体积为V=Sl=πr2l=π×12×2=2π.故答案为:2π.三.解答题(共3小题)13.(1965•全国)如图所示的二视图表示的立方体是什么?求出它的体积.【解答】解:二视图表示的是一个正六棱锥,其棱长为2a.底面边长为a,故底面积,棱锥的高,故正六棱锥的体积,,=.14.已知正四棱锥(底面是正方形,顶点在底面的射影是底面的中心)的底面边长为a,侧棱长为a(1)求它的外接球的体积(2)求他的内切球的表面积.【解答】解:(1)由题意,四棱锥为正四棱锥,∵该四棱锥的侧棱长为a,底面是边长为a的正方形,∴四棱锥的高为a,设外接球的半径为R,则有R2=(a)2+(a﹣R)2,∴R=a,∴外接球的体积为=;(2)设内切球的半径为r,则,∴r=a∴表面积为4πr2=.15.根据下列对于几何体结构特征的描述,说出几何体的名称.(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其他各面都是矩形;(2)由五个面围成,其中一个面是正方形,其它各面都是有一个公共顶点的全等三角形.【解答】解:(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其他各面都是矩形,由各个侧面都是矩形,得出侧棱垂直于底面,是直棱柱;所以这样的几何体是正六棱柱;(2)由五个面围成,其中一个面是正方形,其它各面都是有一个公共顶点的全等三角形,这样的几何体是正四棱锥.。
(完整版)空间几何体及其计算学生讲义版
第一章 空间几何体(一)柱、锥、台、球的结构特征1、 棱柱的定义:有 个面互相 ,其余各面都是 ,且每相邻两个四边形的公共边都互相 ,由这些面所围成的几何体。
(1)分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
(2)表示:用各顶点字母表示,如五棱柱或用对角线的端点字母,如五棱柱'AD(3)几何特征: ①两底面是对应边平行的全等多边形;②侧面、对角面都是 ;③侧棱 ;平行于底面的截面是与底面全等的 。
2、 棱锥的定义:有 个面是多边形,其余各面都是有一个公共顶点的 ,由这些面所围成的几何体 (1)分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 (2)表示:用各顶点字母,如五棱锥'''''E D C B A P - (3)几何特征: ①侧面、对角面都是 ;②平行于底面的截面与底面 ,其相似比等于顶点到截面距离与高的比的平方。
3、 棱台的定义:用一个平行于 底面的平面去截棱锥,截面和底面之间的部分(1)分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等(2)表示:用各顶点字母,如五棱台'''''E D C B A P -(3)几何特征: ①上下底面是相似的平行多边形②侧面是 ③侧棱交于原棱锥的顶点4、圆柱的定义:以 的一边所在的直线为旋转轴,其余三边旋转所成的面所围成的旋转体 几何特征:①底面是全等的 ;②母线与平行;③轴与底面圆的半径垂直;④侧面展开图是一个。
5、圆锥的定义:以的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个;②母线交于圆锥的;③侧面展开图是一个。
6、圆台的定义:用一个平行于底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个;②侧面母线交于原圆锥的顶点;③侧面展开图是一个。
7、球体的定义:以的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是;②球面上任意一点到球心的距离等于。
考点06 空间几何体的有关计算问题(学生版)
考点06 空间几何体的有关计算问题立体几何是历年高考的必考题,其考查形式主要为空间几何体的有关计算(主要是体积计算),空间线面的位置关系以及空间角和距离的求解。
例如:2020年全国卷Ⅰ(文)[19],2020年全国卷Ⅱ(文)[20],2021年全国甲卷(文)[19],2021年全国乙卷(文)[18],2021年新高考Ⅰ卷[20],2022年全国甲卷(文)[19],2022年全国乙卷(文)[18]等都对空间几何体的体积进行了考查。
〔1〕求空间几何体的表面积(1)求多面体的表面积:只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积.(2)求旋转体的表面积:可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的长度关系.(3)求不规则几何体的表面积:通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积.〔2〕求空间几何体的体积1.直接法:对于规则的几何体,利用相关公式直接计算.2.割补法:把不规则的几何体分割成规则的几何体,把不规则的几何体补成规则的几何体,把不熟悉的几何体补成熟悉的几何体,再进行计算.3.等体积法:选择合适的底面求几何体的体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换.例1.(2022·全国·高考乙卷(文)·18)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.例2.(2022·全国·高考甲卷(文)·18)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在的平面都与平面ABCD 垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).1.如图所示,在空间几何体ABCDE 中,△ABC 与△ECD 均为等边三角形,2AB DE ==,22BD =ABC 和平面CDE 均与平面BCD 垂直.(1)求证:平面ABC ⊥平面ECD ;(2)求空间几何体ABCDE 的体积.2.如图所示,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,//AB CD ,24AB CD ==,0=60BAD ∠,侧棱1DD △底面ABCD 且1DD DC =.(1)指出棱1CC 与平面1ADB 的交点E 的位置(无需证明);(2)求点B 到平面1ADB 的距离.3.已知平面α和平面β是空间中距离为2的两平行平面,球面M 与平面α、平面β的交线分别为圆A 、圆B .(1)若平面γ与平面α、平面β的交线分别为1l ,2l ,证明:12l l ∥;(2)若球面M 的半径为2,求以圆A 为上底面,圆B 为下底面的几何体AB 的体积的最大值.4.一个正方体的平面展开图及该正方体的直观图的示意图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N(1)证明:直线//MN 平面BDH .(2)过点,,M N H 的平面将正方体分割为两部分,求这两部分的体积比.5.如图,正方形ABCD 和直角梯形BEFC 所在平面互相垂直,,BE BC BE CF ⊥∥,且2,3AB BE CF ===.(1)证明:AE 平面DCF ;(2)求四面体F ACE -的体积.6.如图,在直三棱柱111ABC A B C 中,点E 为AB 的中点,点F 在BC 上,且3AC BC BF ==.(1)证明:平面11A B F ⊥平面1CC E ;(2)若160,2ABC AA AB ∠==,且三棱锥11E A B F -43,求AB .7.如图,底面ABCD 是边长为2的菱形,60,BAD DE ∠=⊥平面ABCD ,,2CF DE DE CF =∥,BE 与平面ABCD 所成的角为45.(1)求证:平面BEF ⊥平面BDE ;(2)求几何体ABCDEF 的体积8.如图,圆锥的底面半径2OA =,高6PO =,点C 是底面直径AB 所对弧的中点,点D 是母线PA 的中点.求:(1)该圆锥的表面积;(2)直线CD 与平面PAB 所成角的大小(结果用反三角函数值表示).9.如图,在三棱柱111ABC A B C 中,112224AC AA AB AC BC =====,160BAA ∠=︒. (1)证明:平面ABC ⊥平面11AA B B .(2)设P 是棱1CC 上一点,且12CP PC =,求三棱锥111A PB C -体积.10.如图,已知圆柱的轴截面ABCD 是边长为2的正方形,E 是弧AD 的中点.(1)求该圆柱的表面积和体积;(2)求异面直线BE 与AD 所成角的大小.11.已知圆锥的顶点为S ,底面圆心为O ,母线SA 的长为22(1)若圆锥的侧面积为2π,求圆锥的体积(2)A B 、是底面圆周上的两个点,90AOB ∠=︒, M 为线段AB 的中点,若圆锥的底面半径为2,求直线SM 与平面SOA 所成角的大小.12.如图,在四棱柱1111ABCD A B C D -中,四边形ABCD 是正方形,E ,F ,G 分别是棱1BB ,11B C ,1CC 的中点.(1)证明:平面1//A EF 平面1AD G ;(2)若点1A 在底面ABCD 的投影是四边形ABCD 的中心,124A A AB ==,求三棱锥11A AD G -的体积.。
第31讲 空间几何体的结构及其表面积、体积(讲义版)
第31讲空间几何体的结构及其表面积、体积一、考情分析1.利用实物、计算机软件等观察空间图形,认识柱、锥、台、球及简单组合体的结构特征,能运用这些特征描述现实生活中简单物体的结构;2.知道球、棱柱、棱锥、棱台的表面积和体积的计算公式,能用公式解决简单的实际问题;3.能用斜二测法画出简单空间图形(长方体、球、圆柱、圆锥、棱柱及其简单组合)的直观图.二、知识梳理1.空间几何体的结构特征(1)多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且全等多边形互相平行且相似侧棱平行且相等相交于一点,但不一定相等延长线交于一点侧面形状平行四边形三角形梯形(2)旋转体的结构特征名称圆柱圆锥圆台球图形母线互相平行且相等,垂直于底面相交于一点延长线交于一点轴截面全等的矩形全等的等腰三角形全等的等腰梯形圆侧面展开图矩形扇形扇环2.直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.3.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l4.空间几何体的表面积与体积公式名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=S底h锥体(棱锥和圆锥)S表面积=S侧+S底V=13S底h台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S=4πR2V=43πR3[微点提醒]1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点.2.正方体的棱长为a,球的半径为R,则与其有关的切、接球常用结论如下:(1)若球为正方体的外接球,则2R=3a;(2)若球为正方体的内切球,则2R=a;(3)若球与正方体的各棱相切,则2R=2a.3.长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.4.正四面体的外接球与内切球的半径之比为3∶1.三、经典例题考点一空间几何体的结构特征【例1】(1)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0B.1C.2D.3(2)给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③存在每个面都是直角三角形的四面体;④棱台的侧棱延长后交于一点.其中正确命题的序号是________.【答案】(1)A(2)②③④【解析】(1)①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.(2)①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;③正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1-ABC,四个面都是直角三角形;④正确,由棱台的概念可知.规律方法 1.关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一个反例.2.圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.3.既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.考点二空间几何体的直观图【例2】已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为()A.34a2 B.38a2 C.68a2 D.616a2【答案】 D【解析】如图①②所示的实际图形和直观图.规律方法 1.画几何体的直观图一般采用斜二测画法,其规则可以用“斜”(两坐标轴成45°或135°)和“二测”(平行于y轴的线段长度减半,平行于x轴和z轴的线段长度不变)来掌握.2.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:S直观图=24S原图形.考点三空间几何体的表面积【例3】(1)若正四棱锥的底面边长和高都为2,则其全面积为________.(2)圆台的上、下底面半径分别是10 cm和20 cm,它的侧面展开图的扇环的圆心角是180°,那么圆台的表面积为________(结果中保留π).(3)如图直平行六面体的底面为菱形,若过不相邻两条侧棱的截面的面积分别为Q1,Q2,则它的侧面积为______.【答案】(1)4+45(2)1 100π cm2(3)2Q21+Q22【解析】(1)因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,如图.由题意知底面正方形的边长为2,正四棱锥的高为2,则正四棱锥的斜高PE=22+12= 5.所以该四棱锥的侧面积S=4×12×2×5=45,∴S全=2×2+45=4+4 5.又C=2π×10=20π,所以SA=20.同理SB=40.所以AB=SB-SA=20.S表=S侧+S上底+S下底=π(10+20)×20+π×102+π×202 =1 100π(cm 2).故圆台的表面积为1 100π cm 2.(3)设直平行六面体的底面边长为a ,侧棱长为l ,则S 侧=4al ,因为过A 1A ,C 1C 与过B 1B ,D 1D 的截面都为矩形,从而⎩⎪⎨⎪⎧Q 1=AC ·l ,Q 2=BD ·l ,则AC =Q 1l ,BD =Q 2l .又AC ⊥BD ,∴⎝ ⎛⎭⎪⎫AC 22+⎝ ⎛⎭⎪⎫BD 22=a 2.∴⎝ ⎛⎭⎪⎫Q 12l 2+⎝ ⎛⎭⎪⎫Q 22l 2=a 2. ∴4a 2l 2=Q 21+Q 22,2al =Q 21+Q 22,∴S 侧=4al =2Q 21+Q 22.规律方法 1.求解有关多面体侧面积的问题,关键是找到其特征几何图形,如棱柱中的矩形、棱台中的直角梯形、棱锥中的直角三角形,它们是联系高与斜高、边长等几何元素间的桥梁,从而架起求侧面积公式中的未知量与条件中已知几何元素间的联系.2.多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.3.旋转体的表面积问题注意其侧面展开图的应用. 考点四 空间几何体的体积【例4】 (1)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱的体积比V 球∶V 柱为( ) A.1∶2 B.2∶3 C.3∶4D.1∶3(2)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积为________.【答案】(1)B(2)1 12【解析】(1)设球的半径为R,则V球V柱=43πR3πR2×2R=23.(2)连接AD1,CD1,B1A,B1C,AC,因为E,H分别为AD1,CD1的中点,所以EH∥AC,EH =12AC.因为F,G分别为B1A,B1C的中点,所以FG∥AC,FG=12AC.所以EH∥FG,EH=FG,所以四边形EHGF为平行四边形,又EG=HF,EH=HG,所以四边形EHGF为正方形.又点M到平面EHGF的距离为12,所以四棱锥M-EFGH的体积为13×⎝⎛⎭⎪⎫222×12=112.规律方法 1.(直接法)规则几何体:对于规则几何体,直接利用公式计算即可.2.(割补法)不规则几何体:当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体.3.(等积法)三棱锥:利用三棱锥的“等积性”可以把任一个面作为三棱锥的底面.(1)求体积时,可选择“容易计算”的方式来计算;(2)利用“等积性”可求“点到面的距离”,关键是在面中选取三个点,与已知点构成三棱锥.考点五多面体与球的切、接问题【例5】在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.9π2 C.6π D.32π3【答案】 B【解析】由AB⊥BC,AB=6,BC=8,得AC=10.要使球的体积V最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC的内切圆的半径为r.2r=4>3,不合题意.球与三棱柱的上、下底面相切时,球的半径R最大.由2R=3,即R=32.故球的最大体积V=43=92π.3πR规律方法 1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P,A,B,C中P A,PB,PC两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.[方法技巧]1.几何体的截面及作用(1)常见的几种截面:①过棱柱、棱锥、棱台的两条相对侧棱的截面;②平行于底面的截面;③旋转体中的轴截面;④球的截面.(2)作用:利用截面研究几何体,贯彻了空间问题平面化的思想,截面可以把几何体的性质、画法及证明、计算融为一体.2.棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和圆台的相关问题时,常“还台为锥”,体现了转化的数学思想.3.转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.4.求组合体的表面积时:组合体的衔接部分的面积问题易出错.5.底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.四、 课时作业A .1B .4C .6D .8A .8:27B .2:3C .4:9D .2:9A .5πB .6πC .3πD .4πA .200πB .50πC .100πD .25πA 3B 3C .33D .53A .213B 294π+C 2916π+D .2294π+ A .4π B 3C .2πD .πA.23B.2 C.22D.23A.8 B.12 C.18 D.20 A.16πB.20πC.36πD.40πA.13B.49C.59D.23A.3πB.32πC.2πD.πA.2π3B3C.2πD.3πA .最长的是AB ,最短的是ACB .最长的是AC ,最短的是AB C .最长的是AB ,最短的是AD D .最长的是AD ,最短的是ACA .()21:4+B .2:2C .1:2D .()21:2+A .162B .82C .16D .8A .4πB .8πC .12πD .16πA.8243π-B.16243π-C.8303π-D.16303π-A.23πB.233πC.433πD.833πA.1:2B.1:8C.1:3D.1:6A.43πB.323πC.12πD.643πA.122πB.12πC.82πD.10πA.2 B.52C.4 D.5(注:在截口曲线上任取一点A,过A作圆锥的母线,分别与两个球相切于点,B C,由相切的几何性质可知,AE AC=,AF AB=,于是AE AF AB AC BC+=+=,为椭圆的几何意义)A .12B .815C .1127D .1563A .3B .23C .6D .263A .94B .49C .274D .33A .球O 的半径为32B .球O 的表面积为6C .球O 的内接正方体的棱长为6D .球O 的外切正方体的棱长为6A .//ED 平面1ACCB .该三棱柱的外接球的表面积为68πC .异面直线1B C 与1AA 所成角的正切值为32D .二面角A EC D --的余弦值为413A .直线BM 与平面11ADD A 平行B .平面1BMD 截正方体所得的截面为三角形C .异面直线1AD 与11A C 所成的角为3πD .1MB MD +的最小值为5A .直线1AD 与BD 的夹角为60︒B .平面AED ⊥平面11A FDC .点1C 到平面11ABD 的距离为3D .若正方体每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面只能是三角形和六边形(1)异面直线BD与AB1所成的角的大小;(2)四面体AB1C1D1的体积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
()
A.等边三角形
B.等腰直角三角形
C.顶角为 30°的等腰三角形
D.其他等腰三角形
6.下列命题中正确的是 ( )
A.由五个平面围成的多面体只能是四棱锥
B.棱锥的高线可能在几何体之外
C.仅有一组对面平行的六面体是棱台
D.有一个面是多边形,其余各面是三角形的几
何体是棱锥
二、填空题:
7.已知,ABCD 为等腰梯形,两底边为 AB,CD 且 AB>CD,绕 AB 所在的直线旋转一周所得的几何体中
的小球的个数为( )
A.5
B.15
C.25
D.125
7.与正方体各面都相切的球,它的表面积与正方体的表面积之比为
A.
2
B.
6
C.
4
D.
3
二、填空题:
()
8.直平行六面体的底面是菱形,两个对角面面积分别为 Q1,Q2 ,直平行六面体的侧面积为_____________.
9.球的表面积扩大为原来的 4 倍,则它的体积扩大为原来的___________倍.
() () ()
A. 6a 2
B.12a2
C.18a2
D.24a2
5.直三棱柱 ABC—A′B′C′各侧棱和底面边长均为 a,点 D 是 CC′上任意一点,连结 A′B,BD,
A′D,AD,则三棱锥 A—A′BD 的体积( )
A. 3 a3 6
B. 3 a3 12
C. 1 a3 12
6.直径为 10cm 的一个大金属球,熔化后铸成若干个直径为 2cm 的小球,如果不计损耗,可 铸成这样
2.一个多边形沿不平行于多边形所在平面的方向平移一段距离可以形成
A.棱锥
B.棱柱
C.平面
D.长方体
3.下面的图形可以构成正方体的是
() () ()
A
B
C
D
4.说出下列三视图(依次为主视图、左视图、俯视图)表示的几何体是
()
A.六棱柱
B.六棱锥
C.六棱台
D.六边形
5.圆锥的侧面展开图是直径为 a 的半圆面,那么此圆锥的轴截面是
(3)几何特征: ①上下底面是相似的平行多边形 ②侧面是
③侧棱交于原棱锥的顶点
4、圆柱的定义: 以 的一边所在的直线为旋转轴,其余三边旋转所成的面所围成的旋转体 几何特征:①底面是全等的 ;
②母线与 平行;
③轴与底面圆的半径垂直;
④侧面展开图是一个 。
5、圆锥的定义:以
的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体
(3)几何特征: ①侧面、对角面都是
;
②平行于底面的截面与底面
,其相似比等于顶点到截面距离与高的比的平方。
3、 棱台的定义: 用一个平行于
底面的平面去截棱锥,截面和底面之间的部分
(1)分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
(2)表示:用各顶点字母,如五棱台 P A' B 'C ' D ' E '
2、画三视图的原则:
3、空间几何体的直观图——斜二测画法
斜二测画法特点:①原来与 x 轴平行的线段仍然与 x
;
②原来与 y 轴平行的线段仍然与 y
,长度为
。
③平行于 z 轴的平行的线段仍然与 z
4、平面图形面积与其直观图面积的关系: S直 = 2 S平 4
5、用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图
三、解答题 11 .已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比. 12.如图,在四边形 ABCD 中,∠DAB=90°,∠ADC=135°,AB=5,CD=2 2 ,AD=2,求四边形 ABCD 绕 AD 旋转一周所成几何体的表面积及体积.
空间几何体的表面积和体积
一、选择题:
1.过正三棱柱底面一边的截面是
A.三角形
B.三角形或梯形
C.不是梯形的四边形
D.梯形
2.若正棱锥底面边长与侧棱长相等,则该棱锥一定不是
A.三棱锥
B.四棱锥
C.五棱锥
D.六棱锥
3.球的体积与其表面积的数值相等,则球的半径等于
A.二分之一
B.1
C.2
D.3
4.将一个边长为 a 的正方体,切成 27 个全等的小正方体,则表面积增加了
()
最短距离是
.
三、解答题:
10.把一个圆锥截成圆台,已知圆台的上、下底面半径的比是 1∶4,母线长 10cm.求:圆锥的母线长.
空间几何体计算简练 一、选择题 1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).
主视图
左视图
俯视图
(第 1 题)
A.棱台
B.棱锥
C.棱柱
D.正八面体
2.如果一个水平放置的平面图形的斜二测直观图是一个底角为 45°,腰和上底均为1的等腰梯形,那么原
(三)空间几何体的表面积与体积
1、空间几何体的表面积
(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c 为底面周长,h 为高, h' 为斜高,l 为母线)
S直棱柱侧面积 ch
S正棱台侧面积ຫໍສະໝຸດ 1 2 (c1c2 )h'
S圆柱侧 2rh
S正棱锥侧面积
1 2
ch'
S圆台侧面积 (r R)l
10.已知正三棱锥的侧面积为 18
3
2
cm ,高为 3cm. 求它的体积
.
三、解答题: 11.①轴截面是正方形的圆柱叫等边圆柱.
已知:等边圆柱的底面半径为 r,求:全面积; ②轴截面是正三角形的圆锥叫等边圆锥.
已知:等边圆锥底面半径为 r,求:全面积.
12.如图,圆锥形封闭容器,高为
h,圆锥内水面高为
。
6、等体积的球和正方体,它们的表面积的大小关系是 S球 ___ S正方体 ;
7、 一个直径为 32 厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高 9 厘米,则此球的半 径为_________厘米.
8、正方体 ABCD-A1B1C1D1 中,O 是上底面 ABCD 的中心,若正方体的棱长为 a,则三棱锥 O-AB1D1 的 体积_________
平面图形的面积是( ).
A.2+ 2
1+ 2 B.
2
3.棱长都是1的三棱锥的表面积为( ).
2+ 2 C.
2
D.1+ 2
A. 3
B.2 3
C.3 3
D.4 3
4.长方体的一个顶点上三条棱长分别是 3,4,5,且它的 8 个顶点都在同一球面上,则这个球的表面积是
( ).
A.25π
B.50π
C.125π
A. 2 3
B.
4
C. 2 3 + 4
54 3 4 3
D.
3
3
27
3、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是
4、如图(单位:cm),求图中阴影部分绕 AB 旋转一周所形成的几何体的表面积和体积.。
2
A
D
4
5
B
C
5、棱长都是 1 的三棱锥的表面积为
,体积为
V圆台
1 3
(S
'
S 'S S)h 1 (r2 rR R2 )h 3
球体的体积V 4 R3 3
V圆柱 Sh r 2h
V圆锥
1 r 2h 3
【专项练习】 1、已知一个几何体的三视图(单位:cm)如右图所示,则该几何体的侧面
积为
_____cm 2
2、一组合体三视图如右,正视图中正方形边长为 2,俯视图为正三角形及内 切圆,则该组合体体积为( )
几何特征:①底面是一个 ;
②母线交于圆锥的 ;
③侧面展开图是一个
。
6、圆台的定义:用一个平行于
底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个 ;
②侧面母线交于原圆锥的顶点;
③侧面展开图是一个
。
7、球体的定义:以
的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是 ;
S圆锥侧面积 rl
圆柱的表面积 S 2rl 2r 2
圆锥的表面积 S rl r 2
圆台的表面积 S rl r 2 Rl R2
球的表面积 S 4R2
2、空间几何体的体积 柱体、锥体、台体的体积公式
柱体的体积V S底 h
锥体的体积 V
1 3 S底
h
台体的体积 V
1( S 3
上
S上S下 S下) h
D.都不对
5.正方体的棱长和外接球的半径之比为( ).
A. 3 ∶1
B. 3 ∶2
C.2∶ 3
D. 3 ∶3
6.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为 5,它的对角线的长分别是 9 和 15,则这个棱柱
的侧面积是( )
A.130
B.140
C.150
D.160
7.如图是一个物体的三视图,则此物体的直观图是( ).
h1,h1
h 3
, 若将圆锥倒置后,圆锥内水面高为
h2 ,求h2 .
13.已知:一个圆锥的底面半径为 R,高为 H,在其中有一个高为 x 的内接圆柱. (1)求圆柱的侧面积; (2)x 为何值时,圆柱的侧面积最大.
二、填空题
(第 7 题)
8.若三个球的表面积之比是 1∶2∶3,则它们的体积之比是_____________. 9.正方体 ABCD-A1B1C1D1 中,O 是上底面 ABCD 的中心,若正方体的棱长为 a,则三棱锥 O-AB1D1 的体积 为_________