3.4函数的奇偶性

合集下载

【高中数学】函数的奇偶性专题复习(绝对原创!)

【高中数学】函数的奇偶性专题复习(绝对原创!)

【函数的奇偶性】专题复习一、关于函数的奇偶性的定义定义说明:对于函数)(x f 的定义域内任意一个x :⑴)()(x f x f =- ⇔)(x f 是偶函数; ⑵)()(x f x f -=-⇔)(x f 奇函数;二、函数的奇偶性的几个性质①对称性:奇(偶)函数的定义域关于原点对称;②整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立; ③可逆性:)()(x f x f =-⇔)(x f 是偶函数; )()(x f x f -=-⇔)(x f 是奇函数; ④等价性:)()(x f x f =-⇔0)()(=--x f x f ; )()(x f x f -=-⇔0)()(=+-x f x f⑤奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;⑥可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。

三、函数的奇偶性的判断判断函数的奇偶性大致有下列两种方法:第一种方法:利用奇、偶函数的定义,考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下: ①定义域是否关于原点对称;②数量关系)()(x f x f ±=-哪个成立; 例1:判断下列各函数是否具有奇偶性(1)x x x f 2)(3+= (2)2432)(x x x f += (3)1)(23--=x x x x f(4)2)(x x f = []2,1-∈x (5)x x x f -+-=22)( (6)2|2|1)(2-+-=x x x f ;(7)2211)(x x x f -+-= (8)221()lg lgf x x x =+; (9)xx x x f -+-=11)1()(例2:判断函数⎩⎨⎧<≥-=)0()0()(22x x xx x f 的奇偶性。

)(0)0(:2x f f -==解 )()()(,0,022x f x x x f x x -=-=--=-<->有时即当)()()()(,0,022x f x x x f x x -=--=-=->-<有时即当.)(),()(为奇函数故总有x f x f x f =-∴第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数; 两个奇函数的积为偶函数; 两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。

0-3.4函数的奇偶性

0-3.4函数的奇偶性
(2)已知 f ( x ) 是偶函数,且在 (0, ) 上是减函数,试比较 f (1)与f (2) 的大小
f ( 1) f (1) (1) ∵ f ( x )是偶函数,
∵ f ( x ) 在 ( 0,) 上是增函数,
(2)
由1 2 f (1) f ( 2 ) 即 f (-1) f ( 2 ) f ( 1) f (1) ∵ f ( x ) 在 (0,) 上是减函数, ∵ f ( x )是偶函数, 由1 2 f (1) f ( 2 ) 即 f (-1) f ( 2 )
f (1) f ( 2 ) 1 2 (2) ∵ f ( x )在 ( 0, ) 上是减函数, f (1) f ( 2 ) 1 2
y f(2) f(1) 1 2
y f(1) f(2)
xx
1
2
xx
2.综合利用单调性、奇偶性比较两个函数值的大小
(1)已知 f ( x ) 是偶函数,且在 (0, ) 上是增函数,试比较 f (1)与f (2) 的大小
定义域关于原点对称 2 3 2 3 又∵ f ( x ) ( x ) ( x ) x x
f ( x ) f ( x ) 且f ( x ) f ( x )
∴函数 f ( x ) x 2 x 3 是非奇非偶函数
三、函数奇偶性的应用
(-)函数奇偶性的判断
复 一、 函数图象的作法 二、 函数的单调性

(注意定义域优先原则)
1.定义:当自变量由小到大 ( x1 x 2 ), 函数值也由小到大 ( f ( x1 ) f ( x 2 )), 或函数图象从左到右上升, 是增函数 当自变量由小到大 ( x1 x 2 ), 函数值反而由大到小 ( f ( x1 ) f ( x 2 )),

3.4函数的奇偶性

3.4函数的奇偶性

【课题】3.4函数的奇偶性
【教学目标】
知识目标:
⑴理解函数奇偶性的概念;
(2)理解具有奇偶性的函数的图像特征,会判断简单函数的奇偶性.
能力目标:
⑴通过利用函数图像研究函数性质,培养学生的观察能力;
⑵通过函数奇偶性的判断,培养学生的数学思维能力.
【教学重点】
⑴函数奇偶性的概念及其图像特征;
⑵简单函数奇偶性的判定.
【教学难点】
函数奇偶性的判断.
【教学设计】
(1)用学生熟悉的主题活动将所学的知识有机的整合在一起;
(2)引导学生去感知数学的数形结合思想.通过图形认识特征,由此定义性质,再利用图形(或定义)进行性质的判断;
(3)在问题的思考、交流、解决中培养和发展学生的思维能力.【教学备品】
教学课件.
【教学过程】
P2
P3
P1
图(1)图。

函数的奇偶性口诀

函数的奇偶性口诀

函数的奇偶性口诀函数奇偶性的判断口诀:内偶则偶,内奇同外。

验证奇偶性的前提:要求函数的定义域必须关于原点对称。

判定奇偶性四法(1)定义法用定义来判断函数奇偶性,是主要方法。

首先求出函数的定义域,观察验证是否关于原点对称。

其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性。

(2)用必要条件具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件。

例如,函数y=的定义域(-∞,1)∪(1,+∞),定义域关于原点不对称,所以这个函数不具有奇偶性。

(3)用对称性若f(x)的图象关于原点对称,则f(x)是奇函数。

若f(x)的图象关于y轴对称,则f(x)是偶函数。

(4)用函数运算如果f(x)、g(x)是定义在D上的奇函数,那么在D上,f(x)+g(x)是奇函数,f(x)?g(x)是偶函数。

简单地,“奇+奇=奇,奇×奇=偶”。

类似地,“偶±偶=偶,偶×偶=偶,奇×偶=奇”。

函数奇偶性性质1、大部分偶函数没有反函数(因为大部分偶函数在整个定义域内非单调函数)。

2、偶函数在定义域内关于y轴对称的两个区间上单调性相反,奇函数在定义域内关于原点对称的两个区间上单调性相同。

3、奇±奇=奇(可能为既奇又偶函数),偶±偶=偶(可能为既奇又偶函数),奇X奇=偶,偶X偶=偶,奇X偶=奇(两函数定义域要关于原点对称).4、对于F(x)=f[g(x)]:若g(x)是偶函数且f(x)是偶函数,则F[x]是偶函数。

若g(x)是偶函数且f(x)是奇函数,则F[x]是偶函数。

若g(x)是奇函数且f(x)是奇函数,则F[x]是奇函数。

若g(x)是奇函数且f(x)是偶函数,则F[x]是偶函数。

5、奇函数与偶函数的定义域必须关于原点对称。

函数的奇偶性讲义

函数的奇偶性讲义

函数的奇偶性【知识要点】1.函数奇偶性的定义:一般地,对于函数f (x)定义域内的任意一个X,都有f (-x) = f (x), 那么函数f (x)叫偶函数(even function).如果对于函数定义域内的任意一个x,都有f(-x) = -f(x),那么函数f(x)叫奇函数(odd function).2.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之亦真.由此,可由函数图象的对称性判断函数的奇偶性,也可由函数的奇偶性作函数的图象.3.判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别 f (-x) 与f (x)的关系;⑴奇函数o f (-x)=- f (x)o f--)+f (x)=0 o 釜=-1(fx)) 0);(2)偶函数o f (-x)= f (x)o f (- x)- f (x)= 0 o4.函数奇偶性的几个性质:(1)奇偶函数的定义域关于原点对称,在判断函数奇偶性时,应先考察函数的定义域;(2)奇偶性是函数的整体性质,对定义域内任意一个x都必须成立;(3)若奇函数f Q)在原点有意义,则f (0)= 0;(4)根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、既不是奇函数,又不是偶函数;(5)在公共的定义域内:两个奇(偶)函数的和与差仍是奇(偶)函数;两个奇(偶)函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数;(6)函数f Q)与函数有相同的奇偶性.5 .奇偶性与单调性: (1)奇函数在两个关于原点对称的区间L b ,- j a ,4上有相同的单调性;(2)偶函数在两个关于原点对称的区间L b ,- j a ,4上有相反的单调性.【典例精讲】 类型一函数奇偶性的判断 例1判断下列函数的奇偶性:x 2 + 2x + 3, x < 0,(6)f (x )= {a x = 0, -x 2 + 2x - 3, x > 0.变式 判断下列函数的奇偶性:11 ⑴f(x)=x 4; (2)f(x)=X 5;⑶ f (x)=x+x 2 ;(4) f(x)= - x 2(5) f (x )= x 3- 2x(6) f (x ) = 2 x 4 4十 一x 2,、b ,,(7) y = ax H ——(a > 0,b > 0) x(8) x (k > 0)y -例2已知/ Q)是R 上的奇函数,且当X > 0时,f Q)= x 3+ 2 x 2-1,求f Q)的表达式。

奇偶性知识点总结

奇偶性知识点总结

函数的奇偶性知识点总结本节主要知识点 (1)函数的奇偶性; (2)函数奇偶性的判定; (3)奇函数和偶函数的性质; (4)函数的奇偶性的应用. 知识点一 函数的奇偶性常见函数的奇偶性(1)二次函数和都是偶函数;()0)(2≠=a ax x f ()0)(2≠+=a c ax x f (2)正比例函数和反比例函数都是奇函数. ()0)(≠=k kx x f ()0)(≠=k xkx f 一个函数是奇函数或偶函数,我们就说这个函数具有奇偶性.对函数奇偶性定义的理解(1)注意定义中的的任意性,如果函数的定义域中存在,有,或x )(x f 0x )()(00x f x f ≠-,则函数不是偶函数或奇函数.)()(00x f x f -≠-)(x f (2)函数的奇偶性和单调性都是函数的重要性质.单调性是函数的局部性质,是研究函数值随自变量的变化趋势;而奇偶性是函数的整体性质,是研究函数的图象在整个定义域上的对称性.(3)偶函数和奇函数的定义域都是关于原点对称的,所以在判断一个函数的奇偶性时,要先确定函数的定义域,若定义域关于原点对称,则根据奇、偶函数的定义接着往下判断)(x f -与的关系;若定义域关于原点不对称,则函数既不是偶函数,也不是奇函数. )(x f 即判断函数的奇偶性仍然遵循“定义域优先”的原则.(4)如果函数是偶函数,则,若,则还有;如果)(x f 0)()(=--x f x f 0)(≠x f 1)()(=-x f x f 函数是奇函数,则,若,则还有. )(x f 0)()(=+-x f x f 0)(≠x f 1)()(-=-x f x f (5)既是偶函数,又是奇函数的函数只有一类,即,D ,且D 关于原点对称. 0)(=x f ∈x (6)偶函数的图象关于轴对称,反过来,图象关于轴对称的函数是偶函数;奇函数的图y y 象关于原点对称,反过来,图象关于原点对称的函数是奇函数.因此,对于比较容易画出图象的函数,我们可以利用图象法来判断函数的奇偶性. (7)若函数是偶函数,点在函数的图象上,则点,即)(x f ())(,a f a )(x f ())(,a f a --也在函数的图象上,点与点关于轴对称;())(,a f a -)(x f ())(,a f a ())(,a f a -y 若函数是奇函数,点在函数的图象上,则点,即)(x f ())(,a f a )(x f ())(,a f a --也在函数的图象上.点与点关于原点对称.())(,a f a --)(x f ())(,a f a ())(,a f a --★(8)如果函数在区间或上为偶函数或奇函数,则区间的两个端点互为相)(x f []b a ,()b a ,反数,即(因为这个区间关于原点对称).0=+b a (9)特别说明,若函数是偶函数,则有. )(x f ()x f x f x f ==-)()(偶函数的图象特征若一个函数是偶函数,则这个函数的图象是以轴为对称轴的轴对称图形;反之,若一个函y 数的图象关于轴对称,则这个函数是偶函数.y 下面分别是函数和函数的图象,它们都是偶函数.4x y =1+=x y奇函数的图象特征若一个函数是奇函数,则这个函数的图象关于原点对称;反之,若一个函数的图象关于原点对称,则这个函数是奇函数. 下面分别是函数和对勾函数的图象,它们都是奇函数. x y 2=xx y 4+=知识点二 函数奇偶性的判定判断函数奇偶性的方法有三种:定义法、图象法和性质法. 用定义法判断函数的奇偶性(1)求 求函数的定义域,若定义域关于原点对称,则进行第(2)步;若定义域关于原点不对称,则函数是非奇非偶函数.(2)判 求出,然后根据与的关系,确定函数的奇偶性;)(x f -)(x f -)(x f ①若,或,或(),则函数是偶)()(x f x f =-0)()(=--x f x f 1)()(=-x f x f 0)(≠x f )(x f 函数;②若,或,或(),则函数是)()(x f x f -=-0)()(=+-x f x f 1)()(-=-x f x f 0)(≠x f )(x f 奇函数;③若,则函数是非奇非偶函数.)()(x f x f ±≠-)(x f 说明: 若要说明一个函数不是偶函数(或奇函数),只需在函数定义域内找到一个数,有a (或)即可.(见后面的相关例题))()(a f a f ≠-)()(a f a f -≠-图象法判断函数的奇偶性对于容易画出图象的函数,若函数的图象关于轴对称,则它是偶函数;若函数的图象关于y 原点对称,则它是奇函数. 性质法判断函数的奇偶性两个在公共定义域上具有奇偶性的函数,它们的和与积所构成的函数的奇偶性为: 奇奇奇; 偶偶偶;(一奇一偶的和的单调性不能确定) +=+=奇奇偶; 偶偶偶; 奇偶奇. ⨯=⨯=⨯=知识点三 奇函数和偶函数的性质(1)定义域的对称性 奇函数和偶函数的定义域都关于原点对称;(2)图象的对称性 奇函数的图象关于原点对称,偶函数的图象关于轴对称; y (3)单调性的“奇同偶异”性如果函数是奇函数,那么函数在关于原点对称的区间上具有相同的单调性;如果)(x f )(x f 函数是偶函数,那么函数在关于原点对称的区间上具有相反的单调性.简记为)(x f )(x f “奇同偶异”.函数的奇偶性与函数值及最值的关系与函数值的关系 当函数的自变量互为相反数时,偶函数的函数值相等,奇函数的函数值互为相反数.与最值的关系 奇函数在关于原点对称的区间上的最值互为相反数(其中一个是最大值,另一个是最小值);偶函数在关于原点对称的区间上具有相同的最值. 复合函数的奇偶性对于复合函数,若为偶函数,则为偶函数;若为奇函数,则())(x g f )(x g ())(x g f )(x g 的奇偶性与的奇偶性相同.其中的定义域关于原点对称.())(x g f )(x f ())(x g f题型一 已知函数解析式用定义法判断函数的奇偶性例1. 判断下列函数的奇偶性:(1); (2); (3).1)(23--=x x x x f x x x f 1)(-=22)(+--=x x x f 分析:例1中三个函数的解析式结构都比较简单,可以用定义法判断其奇偶性.先求出函数的定义域,若定义域关于原点对称,则继续往下判断;若定义域关于原点不对称,则函数是非奇非偶函数.解:(1)函数的定义域为,不关于原点对称,所以该1)(23--=x x x x f ()()+∞∞-,11, 函数是非奇非偶函数; (2)函数的定义域为,关于原点对称. xx x f 1)(-=()()+∞∞-,00, ∵ )(111)(x f x x x x x x x f -=⎪⎭⎫ ⎝⎛--=+-=---=-∴该函数是奇函数;(3)函数的定义域为R ,关于原点对称.22)(+--=x x x f ∵ ()())(222222)(x f x x x x x x x f -=--+=---+-=+----=-∴该函数是奇函数. 例2. 判断函数(R )的奇偶性. xax x f +=2)(∈a 分析:该函数的解析式里面含有参数,当参数影响到判断与的关系时,要a )(x f -)(x f 对参数进行分类讨论.x当时, 0=a 2)(x x f =∵())()(22x f x x x f ==-=-∴为偶函数; )(x f 当时,,且. 0≠a ())()(22x f x a x x a x x f ≠-=-+-=-xa x x f x f --=-≠-2)()(∴函数是非奇非偶函数.)(x f 综上所述,当时,函数为偶函数;当时,函数是非奇非偶函数. 0=a )(x f 0≠a )(x f 例3. 已知函数,R ,为实数,判断的奇偶性. 1)(2+-+=a x x x f ∈x a )(x f 分析:上面例2已经提到:对于含有参数的函数的奇偶性的判断,要充分考虑参数的不同取值情况,看是否会影响到与的关系,必要时要对参数进行分类讨论.)(x f -)(x f 在判断函数的奇偶性时,若在函数的定义域内能找到一个,使或a )()(a f a f ≠-,则函数就不是偶函数或减函数. )()(a f a f -≠-)(x f 解:由题意可知函数的定义域关于原点对称. )(x f 当时,. 0=a 11)(22++=+-+=x x a x x x f ∵())(11)(22x f x x x x x f =++=+-+-=-∴函数为偶函数;)(x f 当时,∵, 0≠a 1)(2+=a a f 12)(2++=-a a a f ∴,且 )()(a f a f ≠-1)()(2--=-≠-a a f a f ∴函数为非奇非偶函数.)(x f 综上所述,当时,函数为偶函数;当时, 函数既不是奇函数,也0=a )(x f 0≠a )(x f 不是偶函数.例4. 已知函数,其中为实数,判断函数的奇偶性. xax x f 1)(2+=a )(x fx当时,,函数为奇函数; 0=a xx f 1)(=)(x f 当时,∵ 0≠a ()xax x x a x f 11)(22-=-+-=-∴,且 )()(x f x f ≠-)()(x f x f -≠-∴函数既不是偶函数,也不是奇函数.)(x f 综上所述,当时, 函数为奇函数;当时,函数既不是偶函数,也0=a )(x f 0≠a )(x f 不是奇函数. 例5. 判断函数的奇偶性.1111)(22+++-++=x x x x x f 分析:该函数的解析式结构较为复杂,如果用定义法来判断其奇偶性,研究与)(x f -的关系时会比较困难,我们可以研究与的和、差、商,来进行奇偶)(x f )(x f -)(x f 性的判断.解:函数的定义域为R ,关于原点对称. )(x f ∵11111111)()(2222+++-++++-+--+=+-x x x x x x x x x f x f()()()()()()()()11111211211111111122222222222222=++++-+-+-++---+=++++-+--+++-+=x x x xx x x x x x x x x x x x x x ∴ )()(x f x f -=-∴函数为奇函数.)(x f 解法二:函数的定义域为R ,关于原点对称. )(x f 当时,;当时,0=x 0)(=x f 0≠x 0)(≠x f∵ ()()()()1111111111111111)()(22222222-+++-++++--+=+++-+++-+--+=-x xx xx x x x x x x x x x x x x f x f 1221211212222-=-=-+-+---+=xx x x x x x x ∴)()(x f x f -=-综上所述,函数为奇函数.)(x f 注意:的前提是. 1)()(-=-x f x f 0)(≠x f 题型二 分段函数奇偶性的判断判断分段函数的奇偶性,可以用定义法,也可以用图象法.用定义法时,必须验证在每一段内都有或成立,而不能只验证一段解析式. )()(x f x f =-)(-)(x f x f =- 在判断时,要特别注意与的范围,然后选择合适的解析式代入.x x -总结 若,则,把代入上的解析式即可得到.[]b a x ,∈[]a b x --∈-,x -[]a b --,)(x f -例6. 判断函数的奇偶性.()()⎩⎨⎧>+<-=0,10,1)(x x x x x x x f 解:由题意可知,函数的定义域为,关于原点对称. )(x f ()()+∞∞-,00, 当时,0>x 0<-x ∴; ())(1)(x f x x x f -=+-=-当时,0<x 0>-x ∴. ())(1)(x f x x x f -=--=-综上所述,函数为奇函数.)(x f 例7. 函数,则【 】⎪⎪⎩⎪⎪⎨⎧<-->+=0,1210,121)(22x x x x x f )(x f (A )是奇函数(B )是偶函数(C )既不是奇函数,也不是偶函数 (D )无法判断解:由题意可知函数的定义域为,关于原点对称. )(x f ()()+∞∞-,00, 当时, 0>x 0<-x ∴; ())(121121)(22x f x x x f -=--=---=-当时, 0<x 0>-x ∴. ())(121121)(22x f x x x f -=+=+-=-综上所述,函数是奇函数.选择【 A 】.)(x f 方法二:(图象法),函数的图象如下图所示,其图象关于原点对称,所以函数)(x f 是奇函数.)(x f例8. 已知函数是奇函数,则_________.⎪⎩⎪⎨⎧<+=>+-=0,0,00,2)(22x mx x x x x x x f =m 解:当时,0>x 0<-x ∴()mx x mx x x f -=--=-22)(∵函数是奇函数,∴ )(x f )()(x f x f -=-∴ ()x x x x mx x 22222-=+--=-∴.2=m 题型三 抽象函数奇偶性的判断例9. 已知函数,R ,若对于任意实数,都有.)(x f ∈x b a ,)()()(b f a f b a f +=+求证:为奇函数.)(x f 分析:该函数的定义域是关于原点对称的,所以只需要判断与的关系即)(x f -)(x f 可.考虑到,所以我们可以先求出的值. 0=+-x x )0(f 证明:由题意可知的定义域关于原点对称. )(x f 令0==b a ∵对于任意实数,都有 b a ,)()()(b f a f b a f +=+∴ )0()0()00(f f f +=+∴0)0(=f 令,则 x b x a =-=,0)()()0()(=+-==+-x f x f f x x f ∴ )()(x f x f -=-∴函数为奇函数.)(x f 例10. 已知函数,R ,若对于任意实数,都有:)(x f ∈x 21,x x .()()()()2121212x f x f x x f x x f ⋅=-++求证:为偶函数.)(x f 证明: 由题意可知的定义域关于原点对称. )(x f 令,则有0,21==x x x ① )0()(2)(2)()(f x f x f x f x f ⋅==+令,则有:x x x ==21,0② )()0(2)()(x f f x f x f ⋅=-+由①②得:)()()(2x f x f x f -+=∴ )()(x f x f =-∴函数为偶函数.)(x f例11. 已知是定义在上的函数,且满足对任意,都有)(x f ()2,2-()2,2,-∈y x .)(5)(y f xy y x f x f -⎪⎭⎫⎝⎛-+=(1)求的值;)0(f (2)判断的奇偶性并证明. )(x f (1)解:令0==y x ∵对任意,都有()2,2,-∈y x )(5)(y f xy y x f x f -⎪⎭⎫⎝⎛-+=∴; ()0)0(0)0(=-=f f f (2)函数为奇函数.)(x f 理由如下:由题意可知,函数的定义域关于原点对称. )(x f ()2,2-令,则有 x y -=)(0)()0()(x f x f f x f --=--=∴ )()(x f x f -=-∴函数为奇函数.)(x f 例12. 已知对一切都成立,且,试判断)()(2)()(y f x f y x f y x f =-++y x ,0)0(≠f 的奇偶性.)(x f 解:由题意可知函数的定义域为R ,关于原点对称. )(x f 令,则有 0==y x )0()0(2)0()0(f f f f =+∴, )0(2)0(22f f =()01)0()0(=-f f ∵,∴0)0(≠f 1)0(=f 令,则有 0=x )()0(2)()(y f f y f y f =-+∴ )(2)()(y f y f y f =-+∴)()(y f y f =-∴函数为偶函数.)(x f 注意本题与例10的区别及联系.例13. 已知是定义在R 上的不恒为零的函数,且对于任意R ,都满足)(x f b a ,∈. )()()(a bf b af ab f +=(1)求,的值;)0(f )1(f (2)判断的奇偶性,并证明你的结论.)(x f (1)解:令,则. 0==b a 0)0(0)0(0)0(=⨯+⨯=f f f 令,则,∴; 1==b a )1(2)1(1)1(1)1(f f f f =⨯+⨯=0)1(=f (2)函数为奇函数.)(x f 理由如下:由题意可知函数的定义域关于原点对称. )(x f 令,则有 1-==b a 0)1(2)1()1()1(=--=----=f f f f ∴0)1(=-f 令,则有 1,-==b x a )()(0)()1()(x f x f x f xf x f -=-=--=-∴函数为奇函数.)(x f 例14. 若函数的定义域是R ,且对任意R 都有成)(x f ∈y x ,)()()(y f x f y x f +=+立.(1)试判断的奇偶性;)(x f (2)若,求的值.4)8(=f ⎪⎭⎫⎝⎛-21f 解:(1)∵函数的定义域是R )(x f ∴其定义域关于原点对称.令,则有 0==y x )0(2)0()0()0(f f f f =+=∴0)0(=f令,则有 x y -=0)()()0(=-+=x f x f f ∴ )()(x f x f -=-∴函数为奇函数;)(x f (2)令,则有 y x =)(2)()()2(x f x f x f x f =+=∴ 2)2()(x f x f =∵ 4)8(=f ∴,,, 2242)8()4(===f f 1222)4()2(===f f 212)2()1(==f f 412)1(21==⎪⎭⎫ ⎝⎛f f ∵函数为奇函数)(x f ∴.412121-=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-f f 例15. 已知函数,R 对任意实数都有,且当时,)(x f ∈x b a ,)()()(b f a f ab f +=1>x .0)(>x f (1)试判断函数的奇偶性;)(x f (2)求证:函数在上是增函数.)(x f ()+∞,0(1)解:由题意可知函数的定义域关于原点对称. )(x f 令,则,∴.1==b a )1(2)1()1()1(f f f f =+=0)1(=f 令,则,∴. 1-==b a 0)1(2)1()1()1(=-=-+-=f f f f 0)1(=-f 令,则 1,-==b x a )()1()()(x f f x f x f =-+=-∴函数为偶函数;)(x f (2)任取,且,则∈21,x x ()+∞,021x x <112>x x ∵当时,,∴1>x 0)(>x f 012>⎪⎪⎭⎫⎝⎛x x f∴ ()()()()()0121121112112>⎪⎪⎭⎫ ⎝⎛=-⎪⎪⎭⎫ ⎝⎛+=-⎪⎪⎭⎫⎝⎛⋅=-x x f x f x x f x f x f xx x f x f x f ∴()()21x f x f <∴函数在上是增函数. )(x f ()+∞,0题型四 函数奇偶性的应用 (1)求函数值; (2)求函数解析式;(3)求参数的值或取值范围; (4)求函数的值域或最值. 应用1 求函数值例16.(1)已知为奇函数,,,则_________; )(x f 9)()(+=x f x g 3)2(=-g =)2(f (2)设函数的最大值为M ,最小值为,则_________.()11)(22++=x x x f m =+m M 解:(1)∵为奇函数,∴ )(x f )()(x f x f -=-∵, 9)()(+=x f x g 3)2(=-g ∴ 6939)2()2(-=-=--=-g f ∴.6)2()2(=--=f f (2) ()12112111)(22222++=+++=++=x xx x x x x x f 设,其定义域为R ,关于原点对称. 12)(2+=x xx g ∵ )(12)(2x g x xx g -=+-=-∴为奇函数)(x g ∵奇函数在关于原点对称的区间上的最大值与最小值互为相反数 ∴0)()(min max =+x g x g ∴.2))(1())(1(min max =+++=+x g x g m M重要结论(1) 若函数为奇函数,则在关于原点对称的区间上的最值互为相反数,即)(x f )(x f .0)()(min max =+x f x f (2)若函数为奇函数,(为常数),则.)(x f k x f x g +=)()(k ()k x g x g 2)(min max =+例17. 已知,且,则【 】 8)(35-++=bx ax x x f 10)2(=-f =)2(f (A )(B )(C )(D )1026-18-10-解法一:设,易知函数为奇函数. bx ax x x g ++=35)()(x g ∴,)()(x g x g -=-8)()(-=x g x f ∵,∴,. 10)2(=-f 108)2(=--g 18)2(=-g ∴18)2()2(-=--=g g ∴.选择【 A 】. 268188)2()2(-=--=-=g f 解法二:①8222)2(35-++=b a f ②()()()8222)2(35--+-+-=-b a f ①②得: +16)2()2(-=-+f f ∵10)2(=-f ∴.261016)2(16)2(-=--=---=f f 例18. 已知,其中是偶函数,且,则【 】 1)()(--=x x f x g )(x g 1)2(=f =-)2(f (A )(B )1(C )(D )31-3-解:∵是偶函数,∴. )(x g )()(x g x g =-∵,∴1)()(--=x x f x g 1)()(++=x x g x f ∵,∴ 13)2(12)2()2(=+=++=g g f 2)2()2(-=-=g g ∴.选择【 C 】.312212)2()2(-=+--=+--=-g f 例19. 已知,均为R 上的奇函数,且在上)(x f )(x g 2)()()(++=x bg x af x F ()+∞,0的最大值为5,则在上的最小值为_________. )(x F ()0,∞-解:设,则 )()()(x bg x af x G +=2)()(+=x G x F ∵,均为R 上的奇函数)(x f )(x g ∴也是R 上的奇函数 )()()(x bg x af x G +=∵当时, ∈x ()+∞,052)()(max max =+=x G x F ∴3)(max =x G ∴根据奇函数图象的对称性,在的最小值为 )(x G ()0,∞-3)()(max min -=-=x G x G ∴.1232)()(min min -=+-=+=x G x F 注意:本题利用结论: 若函数为奇函数,(为常数),则)(x f k x f x g +=)()(k .可以快速得出结果.()k x g x g 2)(min max =+例20. 已知是奇函数,则_________.⎩⎨⎧<>-=0),(0,3)(2x x g x x x f ()=-)3(g f 分析:先求出当时,函数的解析式,然后代入求值. 0<x )(x g 解:当时,0<x 0>-x ∴())(33)(22x f x x x f -=-=--=-∴3)(2+-=x x f ∴,∴⎩⎨⎧<+->-=0,30,3)(22x x x x x f 3)(2+-=x x g ∴()633)3(2-=+--=-g ∴.()()3336)6()3(2-=+--=-=-f g f 应用2 求函数解析式利用函数的奇偶性求函数解析式的一般方法是:(1)“求谁设谁”,即求函数在哪个区间上的解析式,就设在哪个区间上; x (2)利用已知区间的函数解析式矩形化简,得到的解析式;)(x f -(3)利用函数的奇偶性写出或,即可得到函数的解析式. )(x f )(x f -)(x f )(x f 注意:若是R 上的奇函数时,不要遗漏的情形.)(x f 0=x 例21. 已知是R 上的奇函数,当时,. )(x f 0>x 132)(2++-=x x x f (1)求的值; (2)求函数的解析式. )0(f )(x f 解:(1)∵是R 上的奇函数 )(x f ∴, )0()0()0(f f f -==-0)0(2=f ∴;0)0(=f (2)当时,则0<x 0>-x ∴ ())(132132)(22x f x x x x x f -=-+-=+--=-∴.132)(2-+=x x x f ∴函数的解析式为.)(x f ⎪⎩⎪⎨⎧<-+=>++-=0,1320,00,132)(22x x x x x x x x f 例22. 若函数是偶函数,函数是奇函数,且,求函数)(x f )(x g 11)()(-=+x x g x f 的解析式.)(x f 解:∵函数是偶函数,函数是奇函数 )(x f )(x g ∴,)()(x f x f =-)()(x g x g -=-∵ 11)()(-=+x x g x f ∴,11)()(--=-+-x x g x f 11)()(+-=-x x g x f 解方程组得:.⎪⎪⎩⎪⎪⎨⎧+-=--=+11)()(11)()(x x g x f x x g x f 11)(2-=x x f ∴函数的解析式为. )(x f 11)(2-=x x f 例23. 已知是定义在R 上的偶函数,且≤0时,.)(x f x 1)(+-=x x f(1)求,; )0(f )2(f (2)求函数的解析式.)(x f 解:(1)∵当≤0时,,∴.x 1)(+-=x x f 1)0(=f ∵是定义在R 上的偶函数,∴; )(x f 31)2()2()2(=+--=-=f f (2)当时,则 0>x 0<-x ∴.()11)(+=+--=-x x x f ∴函数的解析式为.)(x f ⎩⎨⎧>+≤+-=0,10,1)(x x x x x f 例24. 已知函数是定义在R 上的奇函数,当时,,则函)(x f y =0>x x x x f 2)(2-=数在R 上的解析式为____________.)(x f 结论 若奇函数在原点处有定义,则.0)0(=f 解:∵函数是定义在R 上的奇函数∴. )(x f y =0)0(=f ∵当时,0>x x x x f 2)(2-=∴当时,, 0<x 0>-x ())(22)(22x f x x x x x f -=---=+=-∴.x x x f 2)(2--=∴函数的解析式为.)(x f ⎪⎩⎪⎨⎧<--=>-0,20,00,222x x x x x x x 例25. 函数为R 上的奇函数,且. 1)(2++=x b ax x f 5221=⎪⎭⎫ ⎝⎛f (1)求函数的解析式;)(x f (2)若≤在区间上恒成立,求的取值范围.)(x f 532-m []4,2m 解:(1)∵函数为R 上的奇函数1)(2++=x bax x f ∴,∴0)0(==b f 1)(2+=x axx f∵,∴,解之得:. 5221=⎪⎭⎫ ⎝⎛f 5252121212==+⎪⎭⎫ ⎝⎛a a1=a ∴函数的解析式为; )(x f 1)(2+=x xx f (2)∵≤在区间上恒成立)(x f 532-m []4,2∴≤恒成立 12+x x 532-m 设,只需≤即可.1)(2+=x x x g max )(x g 532-m 任取,且,则有[]4,2,21∈x x 21x x < ()()()()()()()()111111111)()(22212121222121222122221121++--=+++-+=+-+=-x x x x x x x x x x x x x x x x x g x g ∵,且[]4,2,21∈x x 21x x <∴ ()()011,01,022212121>++<-<-x x x x x x ∴,∴ 0)()(21>-x g x g ()()21x g x g >∴函数在上为减函数 )(x g []4,2∴ 52122)2()(2max =+==g x g ∴≤,解之得:≥1或≤. 52532-m m m 1-∴实数的取值范围是.m (][)+∞-∞-,11, 例26. 已知函数是定义在R 上的奇函数,当时,,求. )(x f 0>x 32)(x x x f +=)(x f 解:∵函数是定义在R 上的奇函数,∴. )(x f 0)0(=f ∵当时,0>x 32)(x x x f +=∴当时,,∴.0<x ,0>-x ())()(3232x f x x x x x f -=+--=-=-32)(x x x f +-=∴.⎪⎩⎪⎨⎧<+-=>+=0,0,00,)(3232x x x x x x x x f应用3 求参数的值例27. 已知函数为偶函数,其定义域为,则()b a x b ax x f ++-+=31)(2[]a a 2,1-的值为_________.b a +结论 如果函数在区间或上为偶函数或奇函数,则区间的两个端点互为相)(x f []b a ,()b a ,反数,即(因为这个区间关于原点对称).0=+b a 解:∵偶函数的定义域关于原点对称 ∴,解之得:. 021=+-a a 31=a ∴ ()b x b x x f ++-+=1131)(2∵)()(x f x f =-∴ ()()b x b x b x b x ++-+=++--1131113122∴,解之得: ()11-=--b b 1=b ∴. 34131=+=+b a 例28. 若函数为奇函数,则_________.()()a x x xx f -+=12)(=a 解:∵函数为奇函数 )(x f ∴, )()(x f x f -=-()()()()a x x xa x x x -+-=--+--1212∴ ()()()()a x x a x x -+=--+-1212展开并整理得: ()()x a x a 2112-=-∴,解之得:. a a 2112-=-21=a 例29. 若函数为偶函数,则_________. ()()a x x x f -+=1)(=a 解:∵函数为偶函数,∴ )(x f )()(x f x f =-∴ ()()()()a x x a x x -+=--+-11∴()()x a x a -=-11∴,解之得:.a a -=-111=a 例30. 若函数为偶函数,则函数在区间上()321)(2++-=mx x m x f )(x f ()3,5--【 】(A )先增后减 (B )先减后增 (C )单调递减(D )单调递增分析: 结论 对于函数:c bx ax y ++=2(1)当时,它是偶函数; 0=b (2)当时,它是奇函数.0==c a 对于本题,因为函数为偶函数,所以不难得到. ()321)(2++-=mx x m x f 0=m 解:∵函数为偶函数()321)(2++-=mx x m x f ∴, )()(x f x f =-()()32132122++-=+--mx x m mx x m ∴,解之得:m m 22=-0=m ∴,其图象开口向下,对称轴为轴. 3)(2+-=x x f y ∵函数在区间单调递增.选择【 D 】.)(x f ()3,5--例31. 设为常数,函数.若为偶函数,则_________. a 34)(2+-=x x x f ()a x f +=a 分析:将函数的图象向左或向右平移个单位长度,即可得到)(x f ()0>a ()0<a a 函数的图象.偶函数的图象关于轴对称.()a x f +y 结论 若函数满足,则函数的图象关于直线对称.)(x f )()(x a f x a f -=+)(x f a x =解法一:∵()1234)(22--=+-=x x x x f ∴()()122--+=+a x a x f ∵为偶函数()a x f +∴其图象的对称轴为轴,∴,解之得:.y 02=-a 2=a 解法二:,其图象的对称轴为直线.()1234)(22--=+-=x x x x f 2=x ∵为偶函数()a x f +∴,即 )()(a x f a x f +=+-)()(x a f x a f +=-∴函数的图象关于直线对称. )(x f a x =∴. 2=a例32. 已知是定义在上的偶函数,则_______. ()231)(bx x a x f +-=[]b b +2,=+b a 解:∵偶函数的定义域关于原点对称 ∴,解之得: 02=++b b 1-=b ∴()231)(x x a x f --=∵,∴ )()(x f x f =-()()232311x x a x x a --=---∴,解之得:. ()11-=--a a 1=a ∴0.=+b a 例33. 已知函数是奇函数,则_________.⎪⎩⎪⎨⎧<+=>+-=0,0,00,2)(22x mx x x x x x x f =m 解:当时,,∴ 0<x 0>-x x x x f 2)(2--=-∵函数是奇函数 )(x f ∴ )(2)(2x f x x x f -=--=-∴() mx x x x x f +=+=222)(0<x ∴.2=m 例34. 已知函数为偶函数.()()21)(xt x x x f -+=(1)求实数的值;t (2)是否存在实数,使得当时,函数的值域为?0>>a b ∈x []b a ,)(x f ⎦⎤⎢⎣⎡--b a 22,22若存在,请求出的值;若不存在,请说明理由.b a ,分析:,设,因为与均为()()21)(x t x x x f -+=()()()t x x x h x x g -+==1,1)(2)(x f )(x g 偶函数,所以也是偶函数,故,得到. ()t x t x x h --+=1)(201=-t 1=t 解:∵函数为偶函数()()21)(xt x x x f -+=∴()()()()2211)(x t x x x t x x x f -+=--+-=-∴ ()()()()t x x t x x -+=--+-11∴,解之得:. t t -=-111=t ∴; ()()222211111)(xx x x x x x f -=-=-+=(2)∵ 0>>a b ∴函数在区间上为增函数 211)(xx f -=[]b a ,∴,2min11)()(a a f x f -==2max 11)()(bb f x f -==∵函数的值域为)(x f ⎦⎤⎢⎣⎡--b a 22,22∴,解之得:⎪⎪⎩⎪⎪⎨⎧-=--=-b b a a 2211221122⎩⎨⎧==11b a ∵0>>a b ∴不存在实数,使得当时,函数的值域为.0>>a b ∈x []b a ,)(x f ⎦⎤⎢⎣⎡--b a 22,22例35. 已知函数是R 上的偶函数. 211)(x mx x f ++=(1)求实数的值;m (2)判断并用定义法证明函数在上的单调性.)(x f y =()0,∞-解:(1)∵函数是R 上的偶函数 211)(x mx x f ++=∴,)()(x f x f =-221111x mx x mx ++=++-∴,,解之得:;11+=+-mx mx m m =-0=m(2)由(1)知:. 211)(x x f +=函数在上为增函数,理由如下: )(x f y =()0,∞-任取,且,则有()0,,21∞-∈x x 21x x < ()()()()()()()()222112122221212222212111111111x x x x x x x x x x x x x f x f ++-+=++-=+-+=-∵,且()0,,21∞-∈x x 21x x <∴ ()()011,0,022211212>++>-<+x x x x x x ∴ ()()()()2121,0x f x f x f x f <<-∴函数在上为增函数.)(x f y =()0,∞-例36. 已知函数是奇函数,且,其中R .nmx x x f ++=2)(23)1(=f ∈n m ,(1)求的值;n m ,(2)判断在上的单调性,并加以证明. )(x f (]2,-∞-解:(1)∵,∴,∴. 3)1(=f 33=+nm 1=+n m ∵函数为奇函数)(x f ∴, )()(x f x f -=-nmx x n mx x --+=+-+2222∴,解之得:n n -=0=n 解方程组得:;⎩⎨⎧==+01n n m ⎩⎨⎧==01n m (2)由(1)可知:(可见函数为对勾函数)xx x x x f 22)(2+=+=)(x f 函数在上为增函数,理由如下: )(x f (]2,-∞-任取,且,则有∈21,x x (]2,-∞-21x x <()()()()()212121212122112122222x x x x x x x x x x x x x x x f x f --=⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫⎝⎛+-+=-∵,且 ∈21,x x (]2,-∞-21x x <∴ 02,0,0212121>-<->x x x x x x ∴∴ ()()()()2121,0x f x f x f x f <<-∴函数在上为增函数. )(x f y =()0,∞-应用4 函数的奇偶性与单调性的综合例37. 已知在定义域上是奇函数,又是减函数,若)(x f []1,1-,求实数的取值范围.()()0112<-+-a f a f a 解:∵ ()()0112<-+-a f a f ∴()()a f a f --<-112∵在定义域上是奇函数 )(x f []1,1-∴ ()()()1)1(1-=--=--a f a f a f ∴()()112-<-a f a f 由题意可得:,解之得:0≤.⎪⎩⎪⎨⎧->-≤-≤-≤-≤-1111111122a a a a 1<a ∴实数的取值范围是.a [)1,0例38. 定义在上的偶函数在上单调递减,若,求实[]2,2-)(x f []2,0()()m f m f <-1数的取值范围.m 结论:若函数为偶函数,则有.)(x f ()x f x f x f ==-)()(解:∵函数是定义在上的偶函数)(x f []2,2-∴,,.()()m f m f -=-11()()m f m f =[]2,0,1∈-m m∵在上单调递减, )(x f []2,0()()m f m f <-1∴,.()()m f m f <-1m m >-1由题意可得:,解之得:≤.⎪⎩⎪⎨⎧>-≤≤-≤-≤-mm m m 1222121-m 21<∴实数的取值范围是.m ⎪⎭⎫⎢⎣⎡-21,1注意:的同解不等式为.m m >-1()221m m >-例39. 定义在R 上的奇函数,满足,且在上单调递减,求不等)(x f 021=⎪⎭⎫⎝⎛f ()+∞,0式的解集.0)(>x xf 分析:奇函数在关于原点对称的区间上具有相反的单调性.解:∵定义在R 上的奇函数,满足)(x f 021=⎪⎭⎫⎝⎛f ∴021=⎪⎭⎫⎝⎛-f ∵函数在上单调递减 )(x f ()+∞,0∴函数在上单调递增 )(x f ()0,∞-∴当时,;当时, 210<<x 0)(>x f 021<<-x 0)(<x f ∴不等式的解集为.0)(>x xf ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-21,00,21 注意:对于奇函数的理解,可结合下面的图象.图中.)(x f 0)0(=f例40. 已知奇函数,是减函数,解不等式. )(x f y =∈x ()1,1-0)31()1(<-+-x f x f 解:∵ 0)31()1(<-+-x f x f ∴ )31()1(x f x f --<-∵是奇函数)(x f y =∴ ()()13)31()31(-=--=--x f x f x f ∴)13()1(-<-x f x f 由题意可得:,解之得:.⎪⎩⎪⎨⎧->-<-<-<-<-1311311111x x x x 210<<x ∴不等式的解集为. 0)31()1(<-+-x f x f ⎭⎬⎫⎩⎨⎧<<210x x 例41. 已知偶函数在上单调递减,,若,则的取值)(x f [)+∞,0()02=f ()01>-x f x 范围是__________.解:由题意可得的解集为 0)(>x f ()2,2-∵()01>-x f ∴,解之得: 212<-<-x 31<<-x ∴的取值范围是.x ()3,1-例42. 已知函数是定义在上的偶函数,且当≥0时,单调递增,)(x f []a a 2,1-x )(x f则关于的不等式的解集为【 】x ()()a f x f >-1(A )(B )⎪⎭⎫⎢⎣⎡35,34⎥⎦⎤ ⎝⎛⎪⎭⎫⎢⎣⎡35,3432,31 (C )(D )随的值的变化而变化⎪⎭⎫⎢⎣⎡⎥⎦⎤ ⎝⎛--32,3131,32 a 解:∵函数是定义在上的偶函数 )(x f []a a 2,1-∴,解之得: 021=+-a a 31=a ∴函数的定义域为)(x f ⎥⎦⎤⎢⎣⎡-32,32∵,∴,∴ ()()a f x f >-1()⎪⎭⎫⎝⎛>-311f x f ()⎪⎭⎫ ⎝⎛>-311f x f ∵当≥0时,单调递增,≥0 x )(x f 1-x ∴. 311>-x 由题意可得: ,解之得:≤或≤.⎪⎪⎩⎪⎪⎨⎧>-≤-≤-31132132x x 3132<x x <3435∴不等式的解集为.选择【 B 】.()()a f x f >-1⎦⎤⎝⎛⎪⎭⎫⎢⎣⎡35,3432,31 例43. 已知是定义在R 上的偶函数,且在区间上单调递增.若实数满)(x f (]0,∞-a 足,则的取值范围是【 】()⎪⎭⎫⎝⎛->-211f a f a (A )(B )⎪⎭⎫ ⎝⎛∞-21,⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛∞-,2321, (C )(D )⎪⎭⎫⎝⎛23,21⎪⎭⎫⎝⎛+∞,23解:∵是定义在R 上的偶函数,且在区间上单调递增)(x f (]0,∞-∴在区间上单调递减,. )(x f [)+∞,0⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛-2121f f ∵()⎪⎭⎫⎝⎛->-211f a f ∴,∴,解之得:.()⎪⎭⎫⎝⎛>-211f a f 211<-a 2321<<a ∴的取值范围是.选择【 C 】.a ⎪⎭⎫⎝⎛23,21☆例44. 已知函数的定义域为,且是奇函数.)(x f ()+∞,0⎩⎨⎧><+=0),(0,2)(2x x f x x x x g (1)求的表达式;)(x f (2)若在上的值域是,求值:是方程的两个根.)(x f []b a ,⎦⎤⎢⎣⎡a b 1,1b a ,x x f 1)(=解:当时, 0>x 0<-x ∴ ()x x x g 22-=-∵是奇函数)(x g ∴ ()()()x g x x x g -=+--=-22∴() x x x g 2)(2+-=0>x ∴(); x x x f 2)(2+-=0>x (2)证明:由题意可知: 0>>a b ∵≤1()112)(22+--=+-=x x x x f ∴≤1,∴≥1 a1a ∴在上单调递减)(x f []b a ,∴, ()a a f 1=()bb f 1=∴是方程的两个根.b a ,xx f 1)(=例45. 设函数对任意R 都有,且当时,)(x f ∈y x ,()()()y f x f y x f +=+0>x,. 0)(<x f 2)1(-=f (1)证明:为奇函数; )(x f (2)证明:在R 上是减函数;)(x f (3)若,求的取值范围; ()()47652>-++x f x f x (4)求在上的最大值与最小值.)(x f []3,3-(1)证明:令,则,∴ 0==y x )0(2)0()0()0(f f f f =+=0)0(=f 令,则有 x y -=0)()()0(=-+=x f x f f ∴)()(x f x f -=-∵函数的定义域为R ,关于原点对称 )(x f ∴函数为奇函数;)(x f (2)证明:任取R ,且,则 ∈21,x x 21x x <012>-x x ∵当时,,∴0>x 0)(<x f ()012<-x x f ∴()()()()()()()1112211212)(x f x f x x f x f x x x f x f x f -+-=-+-=-.()012<-=x x f ∴,∴. ()()012<-x f x f ()()21x f x f >∴在R 上是减函数;)(x f (3)解:由(1)可知:2)1()1(=--=-f f 令,则 1-==y x 4)1(2)1()1()2(=-=-+-=-f f f f ∵()()47652>-++x f x f ∴, ())2(7652->-++f x x f ())2(511->-f x f ∵在R 上是减函数 )(x f ∴,解之得:. 2511-<-x 513>x∴的取值范围是; x ⎪⎭⎫ ⎝⎛+∞,513(4)令,则1,2-=-=y x 624)1()2()3(=+=-+-=-f f f ∵在R 上是减函数)(x f ∴在上的最大值为6)(x f []3,3-∵奇函数在关于原点对称的区间上的最值互为相反数∴在上的最小值为.)(x f []3,3-6-例46. 函数对任意R 都有,并且当时,)(x f ∈b a ,()()()1-+=+b f a f b a f 0>x .1)(>x f (1)判断函数是否为奇函数;)(x f (2)证明:在R 上是增函数;)(x f (3)解不等式.()1232<--m m f (1)解:令,则0==b a 1)0(21)0()0()0(-=-+=f f f f ∴01)0(≠=f ∴函数不是奇函数;)(x f (2)任取R ,且,则∈21,x x 21x x <012>-x x ∵当时,,∴0>x 1)(>x f ()112>-x x f ∴ ()()()()()()()11121112121)(x f x f x x f x f x x x f x f x f --+-=-+-=-()0112>--=x x f ∴()()12x f x f >∴在R 上是增函数;)(x f (3)由(1)可知:1)0(=f ∵()1232<--m m f∴())0(232f m m f <--∵在R 上是增函数)(x f ∴,解之得: 0232<--m m 132<<-m ∴不等式的解集为. ()1232<--m m f ⎪⎭⎫ ⎝⎛-1,32例47. 设是定义在上的减函数,且满足, )(x f y =()+∞,0())()(y f x f xy f +=. 131=⎪⎭⎫ ⎝⎛f (1)求,,的值; )1(f ⎪⎭⎫ ⎝⎛91f )9(f (2)若,求的取值范围.2)2()(<--x f x f x 解:(1)令,则有,∴;1==y x )1(2)1()1()1(f f f f =+=0)1(=f 令,则有; 31==y x 212313191=⨯=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛f f f ∵ 01)3(31)3(313)1(=+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛⨯=f f f f f ∴1)3(-=f ∴;()2)3(2)3()3(33)9(-==+=⨯=f f f f f (2)∵2)2()(<--x f x f ∴ ⎪⎭⎫ ⎝⎛+-<91)2()(f x f x f ∴ ()⎪⎭⎫ ⎝⎛-<x f x f 291)(∵是定义在上的减函数)(x f y =()+∞,0∴()()⎪⎪⎪⎩⎪⎪⎪⎨⎧->>->x x x x 29102910,解之得:251<<x . ∴的取值范围是. x ⎪⎭⎫ ⎝⎛2,51☆例48. 设是定义在上的函数,且满足,当)(x f ()()+∞∞-,00, ()()()y f x f xy f +=时,.1>x ()0<x f (1)求的值,并证明是偶函数;)1(f )(x f (2)证明函数在上单调递减;)(x f ()+∞,0(3)若,≥,求的取值范围.1)3(-=f )8()(-+x f x f 2-x 解:(1)令,则有,∴;1==y x )1(2)1()1()1(f f f f =+=0)1(=f ∵是定义在上的函数)(x f ()()+∞∞-,00, ∴其定义域关于原点对称.令,则有,∴.1-==y x ()()()01211)1(=-=-+-=f f f f ()01=-f 令,则有1-=y ()())(1)(x f f x f x f =-+=-∴是偶函数;)(x f (2)证明:任取,且,则 ∈21,x x ()+∞,021x x <112>x x ∵当时,,∴ 1>x ()0<x f 012<⎪⎪⎭⎫ ⎝⎛x x f ∴ ()()()()()0121112111212<⎪⎪⎭⎫ ⎝⎛=-+⎪⎪⎭⎫ ⎝⎛=-⎪⎪⎭⎫ ⎝⎛⋅=-x x f x f x f x x f x f x x x f x f x f ∴.()()21x f x f >∴函数在上单调递减;)(x f ()+∞,0(3)解:∵1)3(-=f ∴令,则有 3==y x 2)3(2)3()3()9(-==+=f f f f ∴≥)8()(-+x f x f )9(f ∴≥())8(-x x f )9(f ∵函数是偶函数)(x f ∴≥()()8-x x f )9(f ∵函数在上单调递减;)(x f ()+∞,0∴,解之得:≤≤或≤≤9,且,. ()()⎩⎨⎧≠-≤-0898x x x x 1-x 74-74+x 0≠x 8≠x ∴的取值范围是. x [)(][)(]9,88,7474,00,1 +--例49. 若函数为区间上的奇函数,则它在这一区间上的最大1)(++-=bx a x x f []1,1-值为_________.解:∵函数为区间上的奇函数)(x f []1,1-∴,∴0)0(=f 0=a ∴ 1)(+-=bx x x f ∵,∴,解之得: ())1(1f f --1111+=+---b b 0=b ∴,在区间上为减函数x x f -=)([]1,1-∴.()11)(max =-=f x f 例50. 已知函数.32)(2-+-=x x x f (1)求在区间上的最小值; )(x f []2,12-a ()a g (2)求的最大值.)(a g 解:(1)由题意可知:,解之得:. 212<-a 23<a ,其图象的开口向下,对称轴为直线. ()2132)(22---=-+-=x x x x f 1=x当,即时, 12212<+-a 21<a 684)12()(2min -+-=-=a a a f x f ∴;()6842-+-=a a a g 当≥1,即≤时, 2212+-a 2123<a ()()32min -==f x f ∴.3)(-=a g 综上所述,; ⎪⎪⎩⎪⎪⎨⎧<≤-<-+-=2321,321,684)(2a a a a a g (2)由(1)可知:.3)(max -=a g。

3.4 函数的奇偶性(核)

3.4 函数的奇偶性(核)

柳州市第一职业技术学校 201 -201 学年下学期教学教案科目《数学》授课班级:班任课教师:教案使用时间:第周第课时课题:3.4函数的奇偶性课时安排: 2 课时知识与技能目标:使学生理解奇函数,偶函数的概念,学会判断函数的奇偶性过程与方法目标:通过设置问题情境培养学生判断,推理的能力情感态度与价值观目标:通过绘制和展示优美的函数图象来陶冶学生的情操.通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质.教学重点:函数的奇偶性的概念教学难点:函数奇偶性的判断教学重点、难点解决办法:通过设置问题引导学生观察分析归纳,形成概念,使学生在独立思考的基础上进行合作交流,在思考,探索和交流的过程中获得对函数奇偶性的全面的体验和理解。

教师教法:讲授法、观察,归纳,启发探究相结合学生学法:观察法、讨论分析法、练习法教具、学具准备:三角尺、铅笔教学程序设计:复习引入—概念形成—概念深化—应用举例—归纳小结——布置作业备课时间: 201 年月日教研员签字:年月日柳州市第一职业技术学校教师备课纸教学内容教 师 活 动学生活 动设计意图一、复习引入:复习在初中学习的轴对称图形和中心对称图形的定义教师提出问题学生回答 为学生认识奇偶函数的图像特征做好准备二、概念形成:1、要求学生画出函数f (x)=3x 与2)(x xg =的图像2、老师在黑板上画出函数f (x)=3x 与2)(xx g =的图象,并让学生分别求出21,2,3±±±=x 时的函数值同时让学生在两个函数图象标明21,2,3±±±=x 对应的图像上的点。

让学生发现两个函数的对称性反映到函数值上具有特性:)()()()(x g x g x f x f =--=-然后通过解析式给出证明,进一步说明这两个特性对定义域内的任意一个x 都成立。

3.4函数的基本性质-奇偶性(第一课时)

3.4函数的基本性质-奇偶性(第一课时)

3.4函数的基本性质—奇偶性(第一课时)一、教学内容分析本节的重点是偶函数与奇函数的概念.由熟悉的一次函数、反比例函数和二次函数的图像作为研究的起点,抓住图像的特征:关于原点中心对称和关于y轴轴对称,初步形成函数图像具有这种对称的代数特征.从对图像的研究这一角度来理解奇偶性并不困难.“形”的这种特征可以从“数”的角度,即用数量关系来描述函数这一特性,形成对奇偶性概念的认识.从具体到一般情况的研究方法是遵循认识事物的一般规律,用准确的数学语言刻画出偶函数与奇函数的定义.本小节的难点是理解定义域关于原点对称是函数具有奇偶性的必要非充分条件.突破难点的关键一是借助于图象对称的直观性,二是借助于)(x()=-的数量关系的真f-xf)((xff=x-或)实意义.利用数形结合的思想阐述满足条件的函数关系式:)(xfx=f--,这是既简单又直观且是最基本、最x-或)())(f=f(x常见的方法,要注意灵活运用.二、教学目标设计理解偶函数与奇函数的概念; 掌握判断函数奇偶性的一般方法;明确定义域关于原点对称是函数具有奇偶性的必要非充分条件;知道奇函数与偶函数的图象特征.通过对偶函数的学习,促进对奇函数的自我观察、比较、分析、概括等能力.发展运用数学语言进行表达、交流的能力.从“数”和“形”两个角度来检验函数的奇偶性,强调通过对函数图象的观察来研究函数的性质,是今后学习其他较为复杂的函数的一般方法.三、教学重点及难点偶函数与奇函数的概念及其图象特征,数形结合思想方法在概念理解与解题中的运用;偶函数与奇函数之间的联系与区别;判断函数的奇偶性的一般方法.五、教学过程设计一、复习回顾对称这种结构我们大家很熟悉,在生活中有许多的对称的例子:赵州桥、古代宫殿、寺庙等.对称的设计体现了数学形态的美感.在数学学习中有很多对称,回忆一下在我们所学的内容中,特别是函数中有没有对称问题呢?初中,我们学过哪些函数的图象是关于y轴对称和关于原点对称的呢?(启发学生回忆)【学生回答:正比例函数)0y=kxy关于原点对称,2x(≠=k关于y轴对称.】当时一次函数等简单函数只要结合图象,一眼就观察出来了!那要是较为复杂的函数,我们不知道它的图象呢?怎么判断它的对称性呢?今天,我们从函数“形”的特征中,研究它们在数值上的规律,便于今后绘制函数图象与研究一些比较复杂的函数的性质.【提问:函数图象有哪几种对称?】(学生回答:函数图象的对称性有关于y轴对称和关于原点对称)【提问:有关于x轴对称吗?】(学生根据函数图象的特征回答“没有”)函数图象的对称性,就是今天我们研究的函数的基本性质之一——奇偶性【板书标题《函数的基本性质——奇偶性(第一课时)》】 先来看一组具体的函数,并按要求完成:①x y 3= ②xy 1= ③1+=x y ④2x y =⑤x x y 22+= ⑥32+=x y1) 分别画出函数的大致图像,观察图像的对称性.把它们分成不同的小组.【请学生上黑板演示】y 轴对称——④ ⑥②y 轴对称也不关于原点对称——③ ⑤2) 图像的对称性怎样用数学符号来表示呢?从数值的角度研究图像的对称性呢?.①在A,B 两组中分别计算)1(),1(-f f ;)2(),2(-f f 寻找等量关系.②对定义域内的任意x 的值,都具有这种等量关系吗?有没有D x ∈,)()(x f x f ≠-? 二、讲授新课关于偶函数1、概念的萌发发现A组函数中,当Dx∈时都有)x=,这组函数叫f-f(x()做偶函数,请学生根据已有的经验,用完整的语言归纳出偶函数的定义.[说明]启发学生观察图象,并发现如下结论:当Dx∈时都有)f-=fx()(x2、概念形成⏹偶函数的定义如果对于函数)y=的定义域(xf......x,都有.....D.内的任意实数f=fy=是偶函数.x-,则函数)(x)()f(x对B组中的函数图象关于原点成中心对称,在数值上的特征又是什么?类比偶函数的定义,你可否给出奇函数的定义?(学生回答)⏹奇函数的定义如果对于函数)y=的定义域(xf.....D.内的任意实数......x,都有f-=y=是奇函数.xf-,则函数)(x())f(x对函数的奇偶性有了一定的认识,检验学生对概念的理解.请学生判断下列函数的奇偶性:1.Ry=)1((22.x=,)-xxf∈x3.1xy 4.2=x+1-+f-=x)1(x【说明】第1-4题,学生将是否满足)xf=-作为判断的依(x()f据对不是奇函数或者不是偶函数,要求举反例来说明.提问1:)2,2[,)(2-∈=x x x f 是偶函数吗?提问2:)(x f y =是偶函数或者奇函数应该具备的条件是什么?3、概念深化(1)“定义域...D .内的任意实数......x ”中“任意”指“所有”,即定义域内的所有x 具有的性质.是函数在整个定义域上的一个属性.把“任意”改为“无穷多个”行吗?(2)都有..)()(x f x f =-或)()(x f x f -=-”指数量关系式要恒成立.两要素相互结合,不能只注重第二个等式.函数的研究首先是在定义域内的研究.根据以上两点,偶函数和奇函数的定义域有什么特点?※ 定义域关于原点对称 【解释若D x ∈则D x ∈-】那么,反之成立吗?【举反例】※ “定义域关于原点对称”是函数具有奇偶性的必要非充分条件(概念辨析题)请学生判断下列函数的奇偶性:1.)1,1[,0-∈=x y 2.52x y =3.11)(22-+-=x x x f 4.x x x f -+-=11)(【要求:不是奇函数或偶函数请举反例说明】(3)偶函数、奇函数的图特像征※偶函数的图像关于y轴成轴对称.※奇函数的图像关于原点成中心对称4、例题解析例1:求证:函数243f-=是偶函数(教师板演)x)x2(x小结:证明函数是偶函数的一般步骤.(紧扣定义)证明函数是奇函数的一般步骤.5.概念的外延一、判断函数的奇偶性的方法★紧扣定义来判断1.定义域是否关于原点对称2.在定义域上是否满足)-x+f恒成立(=xf((x)f-=)(xf或0)★根据图像的对称性来判断【提问1】怎样解释图像的对称性?紧扣定义,由Dx∈恒有)+-x(=ff,由点的x()(x)(f)-或0f=x对称⇒图像的对称.【提问2】由图像的对称性可以判断函数的奇偶性吗?为什么?(抓住定义来解释)小结如下:※“图像关于y轴成轴对称”是函数为偶函数的充要条件※“图像关于原点成中心对称”是函数为奇函数的充要条件二、怎样绘制偶函数和奇函数的图像?结合偶函数和奇函数图像的对称性先描绘y轴一侧的图像,然后做出这部分关于y轴对称或原点对称的图像,就得到整个函数的图像了.(完成课本P66页的绘图练习)三、函数奇偶性的类别(1)偶函数(2)奇函数(3)非奇非偶函数定义域没有关于原点对称;或者定义域关于原点对称,但是)f没有奇、偶函数那样的恒等式.(x(xf-与)(4)既奇又偶函数定义域关于原点对称且满足0x∈;既奇又偶函数f,D(=x)的图像特征——图像在x轴上且关于原点对称.三、巩固练习一、下列说法是否正确?如果错误,请举例说明.1. 奇函数的图像都通过原点.2. 偶函数的图像都和y 轴相交.3. 既奇又偶的函数只能是0)(=x f4. =y )(x f 是定义在R 上的奇函数,一定有0)0(=f5. 图像关于y 轴对称的函数一定是偶函数.二、函数)(),(x g x f 在区间],[a a -上都是奇函数,且0)(≠x g ,则下列函数:①)()(x g x f + ②)()(x g x f - ③)()(x g x f ⋅ ④)()(x g x f 中为奇函数的是 ;为偶函数的是 (填序号)四、课堂小结本节课从“数”和“形”两个角度来检验函数的奇偶性(1)从“数”的角度:D x x f x f ∈=-),()(是偶函数;)()(x f x f -=-,D x ∈是奇函数.(2)从“形”的角度:图像的对称性来判断奇偶性.五、课后作业1、书面作业:课本部分剩余习题 66P #1,2,62、思考题:请你寻找判断函数奇偶性的一般规律◆偶函数与偶函数的和函数是 ;◆偶函数与奇函数的和函数是 ;◆奇函数与奇函数的和函数是 ;◆偶函数与偶函数的积函数是 ;◆偶函数与奇函数的积函数是 ;◆奇函数与奇函数的积函数是 ;3. 思考题:已知)(x f 是定义在R 上的任意一个函数,请以)(x f 和)(x f -构造)(x F ,使)(x F 为偶函数或者为奇函数.六、教学设计说明1.注重课题引入的自然性.由研究函数图像的对称性导入课题,是对偶函数、奇函数概念的铺垫,由初中的函数知识过渡到研究函数的性质,体现初高中函数知识的衔接.最好不要直接给出它们各自概念的含义,建议结合图形,启发学生从一些常见的例子中,寻找)(x f 与)(x f -之间的联系,学生较为容易接受,理解也较为深刻,为以后进行概念的教学打下基础.2、注意概念的数学语言表示,提高学生的数学语言表达能力.3、运用对比教学的方法,使学生区分偶函数和奇函数的概念,能正确理解函数的奇偶性在图像上的特征.教师在讲解了偶函数的概念后,可以涉及一个表格,让学生填写内容.见下表:小结奇偶性的判断方法与步骤,设计如下流程图:征的理解与掌握.密切联系实际,会以正比例函数、反比例函数、一次函数、二次函数及它们的线性组合为载体,注重从特殊到一般的学习过程,加深对函数奇偶性的本质理解,先对偶函数进行详细地研究,再用类比的方法来要求主动研究奇函数的定义和图像特征.为提高学生对函数性质的研究能力而打下扎实的知识基础.重视数形结合的思想方法.整堂课从“数”和“形”两个角度来检验函数的奇偶性,强调通过对函数图像的观察来研究函数的性质,是今后学习其他较为复杂的函数的一般方法.在学生体会学习的过程中,感悟知识的习得.。

函数奇偶性总结

函数奇偶性总结

函数奇偶性总结一、函数的奇偶性概念在数学中,我们经常研究函数的性质,其中一个重要的性质就是奇偶性。

函数的奇偶性描述了函数的对称性质。

一个函数$f(x)$被称为奇函数,如果对于任意实数$x$,有$f(-x)=-f(x)$成立。

换句话说,奇函数在原点处对称,图像关于坐标原点对称。

一个函数$f(x)$被称为偶函数,如果对于任意实数$x$,有$f(-x)=f(x)$成立。

换句话说,偶函数在原点处对称,图像关于$y$轴对称。

二、判断函数的奇偶性判断函数的奇偶性有以下几种方法:1. 使用函数表达式对于多项式函数或已知函数表达式,可以通过观察函数表达式中的各项系数来快速判断函数的奇偶性。

- 对于多项式函数,如果函数的各项次数都是偶数,则函数是偶函数;如果函数的各项次数都是奇数,则函数是奇函数。

- 对于已知函数表达式,如果函数表达式中只包含偶数次幂或只包含奇数次幂的项,则函数是奇函数或偶函数。

2. 使用图像对称性通过观察函数的图像可以判断函数的奇偶性。

- 如果函数图像关于$y$轴对称,则函数是偶函数。

- 如果函数图像关于原点对称,则函数是奇函数。

3. 使用微积分方法利用微积分的性质可以判断函数的奇偶性。

- 奇函数的导函数是偶函数。

- 偶函数的导函数是奇函数。

通过求导函数,可以判断函数的奇偶性。

三、函数奇偶性的应用函数的奇偶性在数学和物理中具有广泛的应用。

- 在函数的图像对称性的研究中,奇函数和偶函数是常见的对象。

- 在积分计算中,奇函数在对称区间上的积分为零,只需要计算一个半区间的积分即可。

- 在物理学中,奇函数和偶函数经常用于描述对称性问题,如电荷分布的对称性等。

四、总结函数的奇偶性是函数的重要性质,可以通过函数表达式、图像对称性和微积分方法等多种方法来判断函数的奇偶性。

了解函数的奇偶性对于解决数学问题和物理问题都具有重要的意义。

春考数学知识点总结3.4 函数的奇偶性

春考数学知识点总结3.4 函数的奇偶性
(2)f(x)=lgx2
【证明】 (1)函数的定义域为R
f(-x)=-(-x)2+1=-x2+1=f(x)
∴f(x)是偶函数.
(2)函数的定义域为A={x|x≠0},
当x∈A时,-x∈A.
f(-x)=lg(-x)2=lgx2
∴f(x)是偶函数.
16.已知函数f(x)=-ax3+bx-1,且f(3)=-6,求f(-3).
∵f(3)=g(3)+1=-7
∴g(3)=-8
又∵g(x)是奇函数
∴g(-3)=8
f(-3)=g(-3)+1=9.
同,若f(x)为偶函数,则f(x)在两对称区间上单调性相反.
(2)若奇函数在某区间上有最大值,则在对称区间有最小值,且两
值相反;
若偶函数在某区间上有最大值,则在对称区间有最大值,且两值
相等.
【例5】
已知f(x)=ax5+bx3-x+3,且f(2)=7,求f(-2).
【解】 令g(x)=ax5+bx3-x,则f(x)=g(x)+3 ∴f(2)=g(2)+3

次方相加减,则函数为奇函数(其中可看作
x-1),如例 1 中(1)和例 2 中
(C);若函数表达式含有 x 的偶次方与奇次方相加减,则函数为非奇非
偶函数,如例 1 中(3)和例 2 中(B).
【例4】 函数f(x)是奇函数,且在x>0上是增函数且有最大值
6;函数g(x)是偶函数,且在x>0上是减函数且有最大值-5.那么
(0,+∞)上有最大值8,则在(-∞,0)上,F(x)有 (
)
A.最小值-8
B.最大值-8
C.最小值-6

函数奇偶性的归纳总结

函数奇偶性的归纳总结

函数奇偶性的归纳总结函数的奇偶性是指函数图像关于一些点或一些线对称的性质。

具体来说,对于函数f(x),如果对于所有的x,都有f(x)=f(-x),则称该函数为偶函数;如果对于所有的x,都有f(x)=-f(-x),则称该函数为奇函数;如果既不满足偶函数的性质,也不满足奇函数的性质,则称该函数为非奇非偶函数。

奇偶性是函数的一个重要特征,它可以帮助我们更好地理解和分析函数的性质。

下面将对函数奇偶性的归纳总结进行详细介绍。

1.偶函数的特点:对于任意的x,都有f(x)=f(-x)。

即关于y轴对称。

具体来说,偶函数的图像关于y轴对称,即将y轴作为对称轴进行对称,对称后的图像与原图像完全重合。

偶函数可以表达为f(x)=f(-x)的形式,其中x和-x的取值范围相同。

2.奇函数的特点:对于任意的x,都有f(x)=-f(-x)。

即关于原点对称。

具体来说,奇函数的图像关于原点对称,即将原点作为对称点进行对称,对称后的图像与原图像完全重合。

奇函数可以表达为f(x)=-f(-x)的形式,其中x和-x的取值范围相同。

3.非奇非偶函数的特点:即既不满足偶函数的性质,也不满足奇函数的性质。

对于非奇非偶函数,其图像既不关于y轴对称,也不关于原点对称。

它可能存在对称轴,但不是y轴;也可能存在对称点,但不是原点。

非奇非偶函数的图像可以是任意形状,没有特定的对称性。

4.奇偶函数的性质:(1)偶函数与偶函数之和、差仍然是偶函数;(2)奇函数与奇函数之和、差仍然是奇函数;(3)偶函数与奇函数之积仍然是奇函数;(4)奇函数与偶函数之积仍然是偶函数。

以上是根据函数的定义对奇偶性进行的总结,接下来将从数学的角度对函数的奇偶性进行归纳推理。

首先,我们知道任意一个函数f(x)可以表示为其奇部分和偶部分的和或差。

偶函数可以表示为f(x)=g(x)+h(x),其中g(x)是偶函数,h(x)也是偶函数;奇函数可以表示为f(x)=g(x)-h(x),其中g(x)是奇函数,h(x)也是奇函数。

3.4函数的奇偶性

3.4函数的奇偶性

注: 1.定义域D关于原点对称也是函数为奇函 数的前提条件 2.奇函数的图像特征:图像关于原点对称 3.奇偶性为函数的整体特征,没有部分偶 部分奇的函数
问:有没有既是奇函数又是偶函数的函数?如 果有这样的函数的解析式有什么特点?
若函数y=f(x)为既奇又偶函数 f ( x) ( 0 x D,且定义域关于原点对称)
eg5.已知:函数f(x)=x ax bx 8, 且f(-2)=10
5 3
求f(2)
eg6.1)已知:函数y=f(x)为偶函数,x>0时, f(x)=x x 1, 求x 0时,y ( f x)的解析式
2
2)已知函数y=f(x)(x R)为奇函数,且x<0时 f(x)=2 x, 求y f ( x )的解析式
eg 3.判断下列函数的奇偶性,并说明理由 2 x 2 ( x 1) 1)y 1 x 1 1 3) y x 2 1 2 1 x2 2) y | x 3| x
x 1 4)y ( x 1) x 1 x(2 x ) x 0 2 2 5)y 1 x x 1 6)y x(2 x ) x 0 1 x Q 7)y | x 1 | | x 1 | 8)狄里克拉函数y 0 x C Q R f(x)为偶函数 f ( x ) f ( x ) 0
x
eg7.1)函数y f ( x )为奇函数,且x 0时函数图像 如图所示,求不等式x f(x) 0的解集 2)已知y=f(x)为偶函数,其图像与x轴有交点,求 方程f(x)=0的所有实根之和
利用奇偶函数的图像特征解题
eg8.已知:对于x,y R,f(x)满足 f(x+y)=f(x)+f(y) 判断函数y=f(x)的奇偶性并证明

函数的奇偶性与对称性

函数的奇偶性与对称性

函数的奇偶性与对称性函数在数学中起着非常重要的作用,它通过各种数学运算将一个数对映到另一个数。

在这篇文章中,我们将讨论函数的奇偶性与对称性。

一、函数的奇偶性函数的奇偶性是指函数在变量值取正和负时的性质是否一致。

具体而言,若对于任意的x,有f(-x)=-f(x),则函数被称为奇函数;若对于任意的x,有f(-x)=f(x),则函数被称为偶函数;若对于某些x,有f(-x)≠±f(x),则函数既不是奇函数也不是偶函数。

奇函数具有对称中心为原点的特点,也就是说当将函数关于原点对称时,图像不变。

例如,f(x)=x^3就是一个简单的奇函数。

当x取正值和负值时,函数的值相反,而且当将其图像沿y=x对称时,图像仍然保持不变。

偶函数则具有关于y轴的对称性,也就是说当将函数关于y轴对称时,图像不变。

例如,f(x)=x^2就是一个典型的偶函数。

当x取正值和负值时,函数的值相同,而且当将其图像沿y轴对称时,图像仍然保持不变。

二、函数的对称性与函数的奇偶性相关的是函数的对称性。

函数的对称性有三种:关于x轴的对称性、关于y轴的对称性和关于原点的对称性。

关于x轴的对称性是指当将函数关于x轴翻转时,图像不变。

例如,f(x)=sin(x)就是一个具有关于x轴对称性的函数。

当x取正值时,函数值是正的,而当x取负值时,函数值是负的,因此函数在x轴上关于原点具有对称性。

关于y轴的对称性是指当将函数关于y轴翻转时,图像不变。

例如,f(x)=cos(x)就是一个具有关于y轴对称性的函数。

当x取正值时,函数值相同,而当x取负值时,函数值也相同,因此函数在y轴上关于原点具有对称性。

关于原点的对称性是指当将函数关于原点翻转时,图像不变。

例如,f(x)=tan(x)就是一个具有关于原点对称性的函数。

当x取正值和负值时,函数的值相反,因此函数在原点上具有对称性。

三、实际应用函数的奇偶性与对称性在实际问题中有广泛应用。

在物理学中,奇函数常用于描述对称的场景,例如电流的方向或磁场的分布。

3.4 函数的奇偶性

3.4   函数的奇偶性

提问:我们学过偶函数、奇函数,非奇非偶函数, 提问:我们学过偶函数、奇函数,非奇非偶函数, 那么有没有既是奇函数又是偶函数的函数呢? 那么有没有既是奇函数又是偶函数的函数呢?
提问:这样的函数有几个? 提问:这样的函数有几个?
函数按奇偶性总结可分为: 函数按奇偶性总结可分为: 1、偶函数、 2、奇函数, 、偶函数、 、奇函数, 3、非奇非偶函数,4、既奇且偶函数。 、非奇非偶函数, 、既奇且偶函数。
奇函数的定义域 关于原点对称 奇函数的图像 关于原点成中心对称
关于奇偶函数的理解: 关于奇偶函数的理解:
1、函数的奇偶性是相对函数的定义域来 、 说的,奇偶性是函数的“ 性质, 说的,奇偶性是函数的“整体”性质, 都有f(-x)=f(x)或 都有 或 只有对定义域中每一个x都有 f(-x)=-f(x)才能说是偶函数或奇函数; 才能说是偶函数或奇函数; 才能说是偶函数或奇函数 2、偶函数或奇函数中都要求x∈D, -x∈D, 、偶函数或奇函数中都要求 ∈ ∈ 即定义域是关于原点对称的,否则就 不是偶函数或奇函数。 不是偶函数或奇函数。
例:判断下列函数是否为偶函数? 判断下列函数是否为偶函数?
6
4
f ( x) = x +1
2
2
2
f ( x) = x − 2
-2
6
4
f ( x) = x − 2 x + 2
2
2
( x ∈ [−3,3))
例、利用对称性,作出函数 1 y = 的图象。 x
2
1 的定义域是( ∞ ∪ 解: = 2 的定义域是(-∞,0)∪(0,+∞), ∞ y x 1 是偶函数,图象关于y轴对称 轴对称, 所以 y = 2 是偶函数,图象关于 轴对称, x

函数奇偶性总结

函数奇偶性总结

函数奇偶性总结
函数的奇偶性是指函数在定义域内是否具有对称性质。

具体来说,奇函数满足 $f(-x)=-f(x)$,而偶函数则满足 $f(-x)=f(x)$。

通过了解函数的奇偶性,我们可以得到一些有用的信息,帮助我们分析函数的性质和行为。

以下是一些关于函数奇偶性的总结:
1. 奇函数的特点:
- 奇函数在原点处对称,即 $f(0)=0$。

- 奇函数的图像关于原点对称。

- 奇函数的定义域可分为负半轴、原点和正半轴三个部分。

2. 偶函数的特点:
- 偶函数在原点处对称,即 $f(0)=f(-0)$。

- 偶函数的图像关于纵轴对称。

- 偶函数的定义域为整个实数集。

3. 一些常见的奇函数有:
- 正弦函数:$f(x)=\sin(x)$
- 反正弦函数:$f(x)=\arcsin(x)$
- 立方函数:$f(x)=x^3$
4. 一些常见的偶函数有:
- 余弦函数:$f(x)=\cos(x)$
- 平方函数:$f(x)=x^2$
- 绝对值函数:$f(x)=|x|$
了解函数的奇偶性对于分析函数的性质和解决问题非常有帮助。

通过奇偶性,我们可以得到函数在某些特定点的取值信息,并进一
步推导出函数的图像、对称性以及性质的变化。

注意:函数的奇偶性是在定义域内进行考虑的,因此在使用奇
偶性进行分析时,需要注意定义域的范围。

函数的奇偶性是在定义
域内进行考虑的,因此在使用奇偶性进行分析时,需要注意定义域
的范围。

希望上述总结能够帮助您更好地理解和应用函数的奇偶性。

3.4函数的奇偶性yqy

3.4函数的奇偶性yqy
2
求f ( x )
思考3、
设 f ( x ) ax (a 1) x 2 是以[2, 2]
2
为定义域的偶函数, 则 f ( x )的值域是 _________
o
x
x
图象关于 原点对称的函数
y
(x,y) g(x)
-x
g(-x) (-x,-y)
o
x
x

g(-x)=-g(x)
奇函数定义:
如果对于函数f(x)定义域D内的任意 一个x,都有f(-x)=-f(x),那么就把 函数f(x)叫做奇函数.
偶函数定义:
如果对于函数f(x)定义域D内的任意 一个x,都有f(-x)=f(x), 那么就把函 数f(x)叫做偶函数.
(2) 求证:g(x)=x3+x 是奇函数
证:g(x)的定义域 D=R ∵对于R中的任意一个x, 有g(-x)=(-x)3+(-x)=-x3-x, 又-g(x)=-x3-x, 则g(-x)=-g(x), ∴函数g(x)是奇函数。
奇函数和偶函数图像的性质
⑴ 奇函数的图像关于原点成中心对称图形. ⑵ 偶函数的图像关于y轴成轴对称图形.
x 3 x 2 x 2 x 1 2 错解: f(x) x x 1 x 1
x x (4) f(x) x 1
3
2
y
1
f (x)是偶函数。
o
1
x
正解:∵f (x)的定义域D=(-∞,1)∪(1,+∞) ∴D不关于原点对称, ∴f(x)是非奇非偶函数。
(5)
f ( x) 2
2
⑵若 2 f ( x) 3g ( x) 6 x 2 x 3
2
求 f (x) 、g (x) 的表达式。

3.4函数的奇偶性2

3.4函数的奇偶性2

综上所述
f ( x ) 的解析式为
教学目标
重点难点
情境导入
探究新知
例题分析
检测反馈
总结提升
【例 2】已知 f ( x) 是定义在 R 上的奇函数,当 x 0 时,
f ( x) x 2 2 x ,求 f ( x ) 的表达式.
点评:本题在求解的时候要充分考虑原函数的定义域, 要看清题目到底是求另一半定义域内的解析式还是求整 个定义域上函数的解析式,尤其不能忽略 x 0 时的解析 式.
又∵ f ( x) 在(-1,1)上为减函数
1 1 a 1 2 1 a 1 1 ∴ 2 1 a a 1
解得: 0 a 1
点评:在利用函数的奇偶性和单调性转化不等式时,要树 立“定义域优先”的原则,即在转化时要优先考虑定义域.
教学目标
重点难点
f ( x ) 是定义在
R 上的奇函数,
f ( x) - f ( x) 且 f (0) 0
∴ f ( x) f ( x) ( x2 2x) x2 2x ( x 0)
x 2 2 x ( x 0) 0( x 0) f ( x) = 2 . x 2 x ( x 0 )
教学目标
重点难点
情境导入
探究新知
例题分析
检测反馈
总结提升
【举一反三】 已知 f ( x) 是定义在 R 上的奇函数,当 x 0 时,
f ( x) x 2 2 x ,求 f ( x) 的表达式.
教学目标
重点难点
情境导入
探究新知
例题分析
检测反馈
总结提升
【例 3】定义在(-1,1)上的奇函数 f ( x) 为减函数,且有

3.4函数奇偶性复习

3.4函数奇偶性复习

【例题分析】 例题分析】 判断下列函数的奇偶性: 例1 判断下列函数的奇偶性: 2 1+ x 1g (1 − x ) (1) f ( x) = ( x − 1) ;(2) f ( x) = ; 1− x | x − 2 | −2 解: 1 + x x +1 (1)由 ≥0⇒ ≤ 0 ⇒ −1 ≤ x < 1, 1− x x −1
【解题回顾】 本题的结论揭示了这样一个事实 : 解题回顾】本题的结论揭示了这样一个事实: 任意一个定义在关于原点对称的区间上的函数, 任意一个定义在关于原点对称的区间上的函数 , 总可以表示成一个奇函数与一个偶函数的和. 总可以表示成一个奇函数与一个偶函数的和.
3.设 f(x)与 g(x)分别为奇函数和偶函数 , 若 f(x)设 分别为奇函数和偶函数, 与 分别为奇函数和偶函数 g(x)=(1/2)x,比较 、g(0)、g(-2)的大小 比较f(1) 的大小. 的大小
1 f (x) = x x + a 变题2 是偶函数,试求a的值 的值. 变题 已知函数 是偶函数,试求 的值 2 −1
5.设函数 的定义域关于原点对称,且满足 设函数f(x)的定义域关于原点对称 的定义域关于原点对称, 设函数
例1 判断下列函数的奇偶性: 判断下列函数的奇偶性:
1− x (3) f ( x) = 1 − x + x + 1;(4) f ( x) = log a (a > 0, a ≠ 1). 1+ x
2 2
解:(3)由 − x 2 ≥ 0且x 2 − 1 ≥ 0得x = ±1, 1
这时f(x)=0,故f(x)既是奇函数也是偶函数。 故 既是奇函数也是偶函数 既是奇函数也是偶函数。 这时 1+ x x +1 (4)由 >0⇒ < 0 ⇒ −1 < x < 1, 1− x x −1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
请同学们考察:图象关于原点中心对称的函 数与函数式有怎样的关系?
奇函数及其性质
y 1 (x 0), y 2x.
xy
y
o
x
o
x
结合偶函数的定义,你能总结出奇函数的定义吗?
一般地,如果对于函数 f (x)的定义域内的任
意一个 x ,都有 f (x) f (x),那么称函数是奇
函数(odd function);
..
1.3 函数的基本性质
1.3.2 奇偶性
通过杭州西湖断桥美景,通过断桥的对称美,引入 研究函数的对称性,进而讲解函数的奇偶性,奇偶性的 特点,然后详细讲解了如何判断函数的奇偶性,并运用 奇偶性解决相关方面的问题。
在讲述的过程中,老师应注重从图像入手直观先让 学生感知对称关系,感知在这样的对称关系下横纵坐标 之间的关系。讲解判断函数的奇偶性的时候应规范学生 的解题步骤,形成一个良好的习惯。
f ( 3)有意义,则f ( 3)有意义;
……
-----定义域关于数“0”对称.
例题展示
例1、判断下列函数是否为奇函数或偶函数:
(1) f ( x) x2 1;
(2) f ( x) x2 (1 x 1);
(3) f ( x) x 12 .
解:(1)f (x) 的定义域是 R,
意味着定义域关于 数“0”对称
(1) y x2 , y 2 | x |;
y
y
o
x
o
x
再观察表,你看出了什么?
x
… -3 -2 -1 0 1 2 3 …
y x2 … 9 4 1 0 1 4 9 …
x
… -3 -2 -1 0 1 2 3 …
y 2| x| … 6 4 2 0 2 4 6 …
——当自变量x取一对相反数时,相应的两个函数值相等。
3、思想与方法:
形(图象对称) 点(点对称) 数
(坐标)相等
式相等(f (x) f (x))。
课后练习 课后习题
OU
例3
范围是
(D )
规律总结
求给定哪个区间的解析式就设这个区间上的变量为 x,然后把 x 转化为-x,此时-x 成为了已知区间上的解 析式中的变量,通过应用奇函数或偶函数的定义,适当推 导,即可得所求区间上的解析式.
1、知识结论: 函数的奇偶性及其简单应用;
2、学习过程: 观察→思考→探索→交流 →建构→应用→引申;
因为对任意的 x R,都有
验证
f (x) x2 1 x2 1 f (x),
下结论
所以函数 f (x) x2 1是偶函数。
例 2 函数 f(x)是定义域为 R 的奇函数,当 x>0 时, f(x)=-x+1,求当 x<0 时,f(x)的解析式.
解 设 x<0,则-x>0, 学.科.网 ∴f(-x)=-(-x)+1=x+1, 又∵函数 f(x)是定义域为 R 的奇函数, ∴f(-x)=-f(x)=x+1, ∴当 x<0 时,f(x)=-x-1.
右图为美丽的杭 州西湖断桥风景, 空中的断桥与水中 的断桥相映成趣, 分不清哪个为空中 的,哪个为水中的 ,别有一番风味, 这么优美的图片, 真是令人陶醉,那 么,函数是否也具 有这么优美的对称 呢?这就是本节课 需要探讨的主要问 题。
偶函数与其性质
请观察以下两组函数的图象,从对称的角度,你发 现了什么?
【探究】
图象关于 y 轴对称的函数满足:对定义域
内的任意一个 x ,都有 f (x) f (x).
反之也成立吗?
从以上的讨论,你能够得到什么? 一般地,如果对于函数 f (x) 的定义域内的任意
一个x ,都有 f (x) f (x),那么称函数 y f (x)
是偶函数(even function);
【想一想】具有奇偶性函数的图象的对称如何?
——偶函数的图象关于y轴对称,奇函数的图象 关于原点对称。
奇偶性的分类
例如: 例如: 例如: 例如:
【探索】
具有奇偶性的函数,满足 f (x) f (x)或 f (x),
意味着其定义域满足怎样的条件?
f (1)有意义,则f (1)有意义;
f (2)有意义,则f 2 f (2)有意义;
相关文档
最新文档