SC8810 DDR PCB设计指南

合集下载

DDR的PCB设计要求实例介绍

DDR的PCB设计要求实例介绍

DDR的PCB设计要求实例介绍随着嵌入式系统处理能的逐步提高,拥有更高时钟频率和更大存储空间的DDR SDRAM(Double Data Rate SDRAM,以下简称DDR)在新设计中越来越多被使用。

DDR虽然能够给设计带来更好的性能,但是设计者必须比以往的SDRAM设计更小心地处理DDR部分的PCB布线部分,否则不仅不能实现好的性能,整个系统的稳定性也会受到影响。

DDR比传统的SDR有更短的信号建立保持时间、更干净的参考电压、更紧密的走线匹配和新的I/O口信号,并且需要合适的终端电阻匹配。

本文以DDR设计实例为基础,根据EDA方面实际的DDR约束方式,从以下几个方面介绍DDR设计相关事项。

一、信号分组及布局布线要求DDR信号可分为时钟、数据、地址/命令、控制等四个信号组。

各信号组介绍如下:1.时钟组:由于采用更高的时钟频率及双沿采样数据的方式,DDR采用差分时钟。

差分时钟的走线要求如下:以地平面为参考,给整个时钟回路的走线提供一个完整的地平面,给回路电流提供一个低阻抗的路径。

所有的DDR差分时钟信号都必须在关键平面上走线,尽量避免层到层的转换。

线宽和差分间距需要参考DDR控制器的实施细则,信号线的单线阻抗应控制在50~60 Ω,差分阻抗控制在100~120 Ω。

时钟信号到其他信号应保持在20 mil*以上,防止对其他信号的干扰。

蛇形走线的间距不应小于20 mil。

2.数据组:数据组包括DQ、DQS、DM。

以低8位数据为例,该数据组包括:DQ[7..0]、DQS[0]、DM[0]数据组布线要求如下:以地平面为参考,给信号回路提供完整的地平面。

特征阻抗控制在50~60 Ω。

与其他非DDR信号间距至少隔离20 mil。

3.地址、命令组:地址组包括ADD、BANK、RAS、CAS、WE。

该组布线要求如下:保持完整的地和电源平面。

特征阻抗控制在50~60 Ω。

信号线宽参考具体设计实施细则。

信号组与其他非DDR 信号间距至少保持在20 mil以上。

DDR的PCB设计要求实例介绍

DDR的PCB设计要求实例介绍

DDR的PCB设计要求实例介绍DDR(双数据率)是一种常用的存储器技术,广泛应用于计算机和其他电子设备中。

在DDR模块的制造过程中,PCB(印刷电路板)设计是至关重要的一步。

下面是一些DDRPCB设计的常见要求和相关实例介绍。

1.电源和地线规划:DDR模块的电源和地线是其正常运行的关键。

在DDRPCB设计中,电源线和地线需要被正确规划和布局,以确保电源噪声最小化,并提供稳定的供电。

例如,电源和地线应尽量靠近DDR芯片,并避免与其他信号线交叉。

2.时钟信号规划:时钟信号在DDR模块中起到同步和驱动的作用。

在PCB设计中,需要注意时钟信号的传输路径,以减少时钟抖动和干扰。

一种常见的实例是使用信号层的内部层来传输时钟信号,以减少传输路径的长度和干扰。

3.信号完整性:DDR模块的信号完整性是保证数据正确传输的关键。

在PCB设计中,需要进行高速信号的仿真和分析,以保持正确的信号完整性。

例如,差分线对的长度需要匹配,并避免过长的传输路径。

4.阻抗匹配:DDR模块需要满足特定的阻抗匹配要求,以保证信号的质量和稳定性。

在PCB设计中,需要使用相应的布线规则和材料选择,以满足DDR模块的阻抗要求。

例如,差分线对的阻抗要匹配,常见的阻抗控制方法是使用阻抗控制线宽和距离。

5.PCB层间连接:DDR模块通常使用多层PCB设计,以提供更好的信号分离和干扰抑制能力。

在PCB设计中,需要正确规划和布局PCB层间连接,以确保信号传输的良好性能。

例如,需要合理使用信号层和电源层的分层,避免信号层和电源层之间的干扰。

6.接地设计:良好的接地设计有助于减少信号干扰和电磁辐射。

在DDRPCB设计中,需要正确规划和布局接地线,以确保良好的接地连接。

例如,可以使用大面积的接地平面或多个接地点来提供良好的接地。

7.热管理:DDR模块在工作过程中会产生热量,需要适当的热管理措施。

在PCB设计中,需要考虑散热设计和热沉布局,以保持DDR模块的稳定工作温度。

DDR的PCB设计要求实例介绍

DDR的PCB设计要求实例介绍

DDR的PCB设计要求实例介绍DDR(Double Data Rate)是一种高速的双向数据传输技术,广泛应用于电子设备中。

在进行DDR的PCB设计时,有一些关键的要求需要满足,这些要求包括信号完整性、电源干净、时钟分配等。

下面将介绍一些DDR的PCB设计要求的实例。

首先,信号完整性是DDR设计中最重要的要求之一、由于DDR传输速率非常高,所以信号完整性的保持对于数据传输的稳定性至关重要。

为此,PCB设计师需要遵循一些原则,例如:1. 时钟控制:DDR中的时钟信号是非常关键的,必须确保时钟信号的传输和分配是稳定和准确的。

在PCB设计中,时钟路径应该尽量短,避免干扰,并采用差分线对时钟进行传输,以提高抗干扰能力。

2. 排线规则:DDR信号的走线需遵循特定的规则,例如,长度匹配和差分对称等。

长度匹配可以减少信号传输延迟,差分对称则可减小信号差异进而提高抗干扰能力。

3. 信号层分离:DDR信号层需要与其他信号层分离,从而降低信号之间的干扰。

通常,DDR信号层被放置在内层或者中间层,以尽量避免与高速信号层进行交叉。

其次,PCB设计要求还包括电源干净。

DDR的高速数据传输需要稳定和干净的电源供应来确保信号的正确传输。

以下是一些电源干净的设计要求:1. 电源平面规划:DDR的电源平面应该规划得合理,电源供应路径应尽量短且宽度足够以降低电阻,从而减小电源噪声。

2. 去耦电容:在DDR组件的电源引脚附近放置适当的去耦电容,以吸收高频噪声,保持电源干净。

3. 电源分离:对于不同类型的DDR组件,应分别设计独立的电源线路,并且避免共享电源线路,以降低互相之间的干扰。

最后,时钟分配也是DDR设计中的重要要求之一、合理的时钟分配可以提高DDR的性能和稳定性。

下面是一些时钟分配的设计要求:1. 时钟树:时钟信号的传输和分配应该采用合理的“时钟树”结构。

时钟树的设计应尽量减小时钟偏差,从而确保所有DDR组件所使用的时钟信号具有相同的相位。

pcb设计流程及注意事项

pcb设计流程及注意事项

pcb设计流程及注意事项PCB(Printed Circuit Board,印刷电路板)是电子产品中的一部分,它是将电子元器件连接在一起的重要组成部分。

在设计PCB 时,需要遵循一定的流程并注意一些关键点。

1. 硬件需求分析:了解电路板的主要功能和应用场景,确定所需的电路板规格和性能要求。

2. 电路图设计:根据硬件需求分析,绘制电路原理图。

确保元器件的正确连接和合适的布局,避免信号冲突和干扰。

3. 元器件选型:根据电路图,选择合适的元器件。

考虑元器件的性能、尺寸、价格和供货情况等因素。

4. PCB 布局设计:根据电路图,在 PCB 上布置元器件的位置。

重要原则是尽量缩短信号线的长度,减少信号损耗和干扰。

5. PCB 绘制:使用 PCB 设计软件,根据布局设计绘制 PCB。

确保电路板布线合理、电流通畅,避免出现短路和开路现象。

6. 网络板连接:布局完成后,将每个元器件用导线连接起来,形成电路。

布线应遵循信号和电源线与地线的分离原则,减少干扰。

7. 电源设计:设计合适的电源电路,提供稳定的电源给电路板中的元器件。

避免电源噪声和浪涌,保证电路的正常工作。

8. 差分对布局:对于高速信号线,应使用差分对布局。

差分对布局能够减少信号的串扰和干扰,提高信号的传输质量。

9. 地线布局:设计合理的地线布局,减少地线回流干扰。

地线应尽量宽厚,减小地线电阻,降低信号的共模干扰。

10. 线宽和间距:根据电流、阻抗和信号速度等需求,确定线宽和间距。

合适的线宽和间距能够减小线路电阻和电容,提高信号传输能力。

11. 焊盘和引脚设计:为每个元器件设计合适的焊盘,以确保元器件的稳定焊接,并保证充分接触。

注意引脚的数量、间距和尺寸。

12. 引脚交叉和走线规划:在合适的位置设计引脚交叉和走线规划,避免引脚交叉和走线冲突,减少电路板的复杂性。

13. DRC 检查:在设计完成后,进行设计规则检查(Design Rule Check)。

检查是否有连线问题、信号冲突、孔径大小等错误。

PCB设计指导书

PCB设计指导书

PCB 设计指导书1.术语:1PCB(Print circuit Board) 印制电路板2原理图电路原理图,使用原理图设计工具设计的表达硬件电路中器件关系的图。

3SMT:外表组装技术〔外表贴装技术〕〔Surface Mount Technology 的缩写〕,是目前电子组装行业里最流行的一种技术和工艺。

4AI:AI 是(Auto-Insert)的简写,意思是自动插件技术,自动将元器件安装在PCB 上面。

5EMC: 电磁兼容性EMC(Electro Magnetic Compatibility),是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的力量。

6波峰焊接:波峰焊是让插件板的焊接面直接与高温液态锡接触到达焊接目的,其高温液态锡保持一个斜面,并由特别装置使液态锡形成一道道类似波浪的现象,所以叫“波峰焊“,其主要材料是焊锡条。

又称 FS。

7回流焊接:回流焊机也叫再流焊机或“回流炉”(Reflow Oven),它是通过供给一种加热环境,使焊锡膏受热溶化从而让外表贴装元器件和 PCB 焊盘通过焊锡膏合金牢靠地结合在一起。

简称 RF。

8通孔回流焊接:通孔回流焊接技术(THR,Through-hole Reflow),又称为穿孔回流焊 PIHR(Pin-in-Hole Reflow)。

该技术原理是在印制板完成贴片后,使用一种安装有很多针管的特别模板,调整模板位置使针管与插装元件的过孔焊盘对齐,使用刮刀将模板上的锡膏漏印到焊盘上,然后安装插装元件,最终插装元件与贴片元件同时通过回流焊完成焊接。

9微带线:微带线是由支在介质基片上的单一导体带构成的微波传输线。

适合制作微波集成电路的平面构造传输线。

与金属波导相比,其体积小、重量轻、使用频带宽、牢靠性高和制造本钱低等;但损耗稍大,功率容量小。

10带状线:带状线是介于两个接地层之间的印制导线,它是一条置于两层导电平面之间的电介质中间的铜带线。

sdram pcb 设计规则

sdram pcb 设计规则

sdram pcb 设计规则SDRAM (Synchronous Dynamic Random Access Memory)是一种同步动态随机存取存储器,被广泛应用于计算机和其他电子设备中。

SDRAM PCB (Printed Circuit Board)设计规则是在设计SDRAM模块时需要遵循的一些准则和规范,以确保模块的性能、稳定性和可靠性。

下面是一些与SDRAM PCB设计相关的参考内容:1. PCB布局:- 确保SDRAM芯片和相关元件之间的连接尽可能短,以减少信号传输的延迟。

- 高速信号线应避免过长的走线,并尽量采用直线走线方式,以减少信号的反射和干扰。

- 将SDRAM芯片和电源引脚放置在接近功耗滤波电容的位置,以最大程度地降低功耗线的阻抗。

- 合理规划地面和电源平面,确保它们之间有足够的距离,以减少地平面与电源平面之间的串扰。

2. 信号完整性:- 为时钟信号、地址信号和控制信号提供低阻抗、低噪声的电源电压。

这可以通过增加电源滤波电容和合理布局电源和地线来实现。

- 使用阻抗匹配技术,保持信号走线的阻抗与适配SDRAM的驱动器和终端之间的要求一致。

- 通过添加补偿差分走线、增加差分走线间距、使用扇出缓冲器等措施,减少信号串扰和互相干扰。

3. 电源和地线:- 提供足够的地平面和电源平面,以减少信号回流路径的长度和电磁干扰。

- 采用较大的电源与地引脚走线,以增加电源回流的路径,减小引脚区距离,提高电源稳定性。

- 使用分区式供电和分离式地线布局,以降低供电噪声和信号引起的传导和射频辐射干扰。

4. DDR引脚布局和输形:- DDR (Double Data Rate)是SDRAM的一种改进版本,它有更高的数据传输速率和更复杂的信号分布。

在布局和输形过程中,应遵循DDR的特殊要求,如匹配长度差异、避免信号回流突变等。

5. 噪声控制:- 在PCB设计中使用分离式地线和电源布局可减少地线回流并降低供电噪声。

pcb设计流程及注意事项

pcb设计流程及注意事项

pcb设计流程及注意事项PCB(Printed Circuit Board)设计是电子产品设计中的一项重要工作,一般涉及到信号传输、功率分配、电路布局等方面。

设计合理的PCB可以大大提高电路运行的效率和稳定性,同时也有助于降低产品的成本和尺寸。

在进行PCB设计时需要严格按照一定的流程进行,下面就介绍一下PCB设计流程及注意事项:1. 确定电路原理图在进行PCB设计之前,必须确定电路的原理图。

其中包括器件的类型、布局和连线等相关信息,这对后续的PCB设计和制造过程起到了决定性的作用。

2. 准备PCB设计根据电路原理图,进行PCB的设计预备工作,这一阶段需要进行设计需求分析,在设计前应该充分了解原理电路设计的环境要求和需求。

3. PCB设计PCB设计阶段是整个PCB设计过程的关键,这一阶段设计师需要进行电路布局、调整元器件之间的间距和高度等相关工作,并在此过程中考虑安全性、可靠性和成本等因素,确保电路能够良好的运行。

4. PCB验证设计完成后,需要进行PCB电路的验证,即通过验收测试来判断PCB设计方案是否符合客户需求和技术要求等相关标准。

同时检查PCB电路板的宽度、引脚、孔径等是否符合标准要求。

5. PCB制造在PCB验证后,若电路板满足设计要求,设计师可将原理图、设计文档、制造文件等相关数据打包发送给PCB制造厂商进行制造,制造过程中需要注意制造工艺,确保制造出的电路板与设计方案一致。

为了保证PCB设计的高效性和质量性,还需要注意以下几点:1. 知识深度:必须掌握完整的电子工程知识,包括电子元器件、电路设计、计算机软件操作、制造工艺等方面。

2. 学习软件:熟悉常用的PCB设计软件,提高运用能力。

3. 按照标准设计:尽可能遵循设计准则进行设计,提高PCB设计的并发性和性能。

4. 小心细节:PCB设计时,一些高频电路、功率线、接地和信号线接排位置等设计方面的细节,需要高度注意,这对于整个电路的性能和可靠性都有重要影响。

PCB设计原则与注意事项

PCB设计原则与注意事项

PCB设计原则与注意事项一、PCB设计原则:1.尽量缩短信号线长度:信号线越短,抗干扰能力越强,同时可以降低信号传输的延迟,提高信号传输速率。

因此,在进行PCB布局时,应尽量缩短信号线的长度。

2.保持信号完整性:在高速信号传输时,需要考虑信号的传输带宽、阻抗匹配等问题,以减少信号损耗和反射。

应尽量避免信号线的突变和长距离平行走线,采用较大的走线宽度和间距,以降低串扰和母线阻抗不匹配等问题。

3.合理划分电源与地线:电源和地线是PCB设计中的关键因素。

一方面,为了降低电源线和信号线之间的干扰,应将它们相互分隔,避免交叉走线。

另一方面,为了保持电源和地线的低阻抗,应采用够粗的金属层和走线宽度,并合理布局电源与地线。

4.规避高频干扰:高频信号很容易产生干扰,可通过以下方法来规避:(1)合理布局和分配信号线与地线,尽量减少信号走线的面积。

(2)在PCB板上增加电源和信号屏蔽,尽量避开信号线和输入/输出端口。

(3)采用地面屏蔽和绕线封装,以减少漏磁和辐射。

5.考虑散热问题:在进行高功耗电路的设计时,应合理布局散热元件,以保证其有效散热。

尽量将散热元件如散热片与大地层紧密接触,并增加足够的散热通道,以提高散热效果。

此外,还应根据安装环境和工作条件,选择合适的散热材料和散热方式。

6.设计可靠性:设计时应考虑PCB板的可靠性,包括电路连接的牢固性、电子元件的固定可靠性和抗振性、PCB板的抗冲击性等。

为了保证可靠性,应合理布局和固定电子元件,并留足够的可靠连接头用于焊接,避免对电子元件造成损害。

二、PCB设计注意事项:1.保持走线的一致性:尽量保持走线的宽度、间距和走向一致,以提高走线的美观性和可维护性。

2.合理分配电源与地线:根据电路的要求,合理分配电源和地线,避免电源过于集中或不均匀,以减少电源线的压降和供电不稳定等问题。

3.考虑EMC问题:电磁兼容性(EMC)是一个重要的问题,应根据产品的要求,选用合适的屏蔽和过滤技术,以降低电磁干扰或受到的干扰。

PCB设计指南

PCB设计指南

PCB设计指南1、微调您的元件布置PCB布局过程的元件放置阶段既是科学又是艺术,需要对电路板上可用的主要元器件进行战略性考虑。

虽然这个过程可能具有挑战性,但您放置电子元件的方式将决定您的电路板的制造难易程度,以及它如何满足您的原始设计要求。

虽然存在元件放置的常规通用顺序,如按顺序依次放置连接器,印刷电路板的安装器件,电源电路,精密电路,关键电路等,但也有一些具体的指导方针需要牢记,包括:取向 - 确保将相似的元件定位在相同的方向上,这将有助于实现高效且无差错的焊接过程。

布置 - 避免将较小元件放置在较大元件的后面,这样小元件有可能受大元件焊接的影响而产生装贴问题。

组织 - 建议将所有表面贴装(SMT)元件放置在电路板的同一侧,并将所有通孔(TH)元件放置在电路板顶部,以尽量减少组装步骤。

最后还要注意的一条PCB设计指南 - 即当使用混合技术元件(通孔和表面贴装元件)时,制造商可能需要额外的工艺来组装电路板,这将增加您的总体成本。

良好的芯片元件方向(左)和不良的芯片元件方向(右)良好的元件布置(左)和不良元件布置(右)2、合适放置电源,接地和信号走线放置元件后,接下来可以放置电源,接地和信号走线,以确保您的信号具有干净无故障的通行路径。

在布局过程的这个阶段,请记住以下一些准则:1)、定位电源和接地平面层始终建议将电源和接地平面层置于电路板内部,同时保持对称和居中。

这有助于防止您的电路板弯曲,这也关系到您的元件是否正确定位。

对于给IC供电,建议为每路电源使用公共通道,确保有坚固并且稳定的走线宽度,并且避免元件到元件之间的菊花链式电源连接。

2)、信号线走线连接接下来,按照原理图中的设计情况连接信号线。

建议在元件之间始终采取尽可能短的路径和直接的路径走线。

如果您的元件需要毫无偏差地固定放置在水平方向,那么建议在电路板的元件出线的地方基本上水平走线,而出线之后再进行垂直走线。

这样在焊接的时候随着焊料的迁徙,元件会固定在水平方向。

高速pcb设计指南之一

高速pcb设计指南之一

高速p c b设计指南之一The document was prepared on January 2, 2021高速PCB设计指南之一第一篇 PCB布线在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的, 在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大.PCB布线有单面布线、双面布线及多层布线.布线的方式也有两种:自动布线及交互式布线,在自动布线之前, 可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行, 以免产生反射干扰.必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合.自动布线的布通率,依赖于良好的布局,布线规则可以预先设定, 包括走线的弯曲次数、导通孔的数目、步进的数目等.一般先进行探索式布经线,快速地把短线连通, 然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线. 并试着重新再布线,以改进总体效果.对目前高密度的PCB设计已感觉到贯通孔不太适应了, 它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用, 还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会, 才能得到其中的真谛.1 电源、地线的处理既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率.所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量.对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因, 现只对降低式抑制噪音作以表述:1、众所周知的是在电源、地线之间加上去耦电容.2、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:~0.3mm,最经细宽度可达~0.07mm,电源线为~2.5 mm对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用模拟电路的地不能这样使用3、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用.或是做成多层板,电源,地线各占用一层.2 数字电路与模拟电路的共地处理现在有许多PCB不再是单一功能电路数字或模拟电路,而是由数字电路和模拟电路混合构成的.因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰.数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处如插头等.数字地与模拟地有一点短接,请注意,只有一个连接点.也有在PCB上不共地的,这由系统设计来决定.3 信号线布在电地层上在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电地层上进行布线.首先应考虑用电源层,其次才是地层.因为最好是保留地层的完整性.4 大面积导体中连接腿的处理在大面积的接地电中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就电气性能而言,元件腿的焊盘与铜面满接为好,但对元件的焊接装配就存在一些不良隐患如:①焊接需要大功率加热器.②容易造成虚焊点.所以兼顾电气性能与工艺需要,做成十字花焊盘,称之为热隔离heat shield俗称热焊盘Thermal,这样,可使在焊接时因截面过分散热而产生虚焊点的可能性大大减少.多层板的接电地层腿的处理相同.5 布线中网络系统的作用在许多CAD系统中,布线是依据网络系统决定的.网格过密,通路虽然有所增加,但步进太小,图场的数据量过大,这必然对设备的存贮空间有更高的要求,同时也对象计算机类电子产品的运算速度有极大的影响.而有些通路是无效的,如被元件腿的焊盘占用的或被安装孔、定们孔所占用的等.网格过疏,通路太少对布通率的影响极大.所以要有一个疏密合理的网格系统来支持布线的进行.标准元器件两腿之间的距离为英寸2.54mm,所以网格系统的基础一般就定为英寸2.54 mm或小于英寸的整倍数,如:英寸、英寸、英寸等.6 设计规则检查DRC布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查有如下几个方面:1、线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,是否满足生产要求.2、电源线和地线的宽度是否合适,电源与地线之间是否紧耦合低的波阻抗在PCB中是否还有能让地线加宽的地方.3、对于关键的信号线是否采取了最佳措施,如长度最短,加保护线,输入线及输出线被明显地分开.4、模拟电路和数字电路部分,是否有各自独立的地线.5后加在PCB中的图形如图标、注标是否会造成信号短路.6对一些不理想的线形进行修改.7、在PCB上是否加有工艺线阻焊是否符合生产工艺的要求,阻焊尺寸是否合适,字符标志是否压在器件焊盘上,以免影响电装质量.8、多层板中的电源地层的外框边缘是否缩小,如电源地层的铜箔露出板外容易造成短路.第二篇 PCB布局在设计中,布局是一个重要的环节.布局结果的好坏将直接影响布线的效果,因此可以这样认为,合理的布局是PCB设计成功的第一步.布局的方式分两种,一种是交互式布局,另一种是自动布局,一般是在自动布局的基础上用交互式布局进行调整,在布局时还可根据走线的情况对门电路进行再分配,将两个门电路进行交换,使其成为便于布线的最佳布局.在布局完成后,还可对设计文件及有关信息进行返回标注于原理图,使得PCB板中的有关信息与原理图相一致,以便在今后的建档、更改设计能同步起来, 同时对模拟的有关信息进行更新,使得能对电路的电气性能及功能进行板级验证.--考虑整体美观一个产品的成功与否,一是要注重内在质量,二是兼顾整体的美观,两者都较完美才能认为该产品是成功的.在一个PCB板上,元件的布局要求要均衡,疏密有序,不能头重脚轻或一头沉.--布局的检查印制板尺寸是否与加工图纸尺寸相符能否符合PCB制造工艺要求有无定位标记元件在二维、三维空间上有无冲突元件布局是否疏密有序,排列整齐是否全部布完需经常更换的元件能否方便的更换插件板插入设备是否方便热敏元件与发热元件之间是否有适当的距离调整可调元件是否方便在需要散热的地方,装了散热器没有空气流是否通畅信号流程是否顺畅且互连最短插头、插座等与机械设计是否矛盾线路的干扰问题是否有所考虑第三篇高速PCB设计一、电子系统设计所面临的挑战随着系统设计复杂性和集成度的大规模提高,电子系统设计师们正在从事100MHZ以上的电路设计,总线的工作频率也已经达到或者超过50MHZ,有的甚至超过100MHZ.目前约50% 的设计的时钟频率超过50MHz,将近20% 的设计主频超过120MHz.当系统工作在50MHz时,将产生传输线效应和信号的完整性问题;而当系统时钟达到120MHz时,除非使用高速电路设计知识,否则基于传统方法设计的PCB将无法工作.因此,高速电路设计技术已经成为电子系统设计师必须采取的设计手段.只有通过使用高速电路设计师的设计技术,才能实现设计过程的可控性.二、什么是高速电路通常认为如果数字逻辑电路的频率达到或者超过45MHZ~50MHZ,而且工作在这个频率之上的电路已经占到了整个电子系统一定的份量比如说1/3,就称为高速电路.实际上,信号边沿的谐波频率比信号本身的频率高,是信号快速变化的上升沿与下降沿或称信号的跳变引发了信号传输的非预期结果.因此,通常约定如果线传播延时大于1/2数字信号驱动端的上升时间,则认为此类信号是高速信号并产生传输线效应.信号的传递发生在信号状态改变的瞬间,如上升或下降时间.信号从驱动端到接收端经过一段固定的时间,如果传输时间小于1/2的上升或下降时间,那么来自接收端的反射信号将在信号改变状态之前到达驱动端.反之,反射信号将在信号改变状态之后到达驱动端.如果反射信号很强,叠加的波形就有可能会改变逻辑状态.三、高速信号的确定上面我们定义了传输线效应发生的前提条件,但是如何得知线延时是否大于1/2驱动端的信号上升时间一般地,信号上升时间的典型值可通过器件手册给出,而信号的传播时间在PCB设计中由实际布线长度决定.下图为信号上升时间和允许的布线长度延时的对应关系.PCB 板上每单位英寸的延时为 ..但是,如果过孔多,器件管脚多,网线上设置的约束多,延时将增大.通常高速逻辑器件的信号上升时间大约为.如果板上有GaAs芯片,则最大布线长度为7.62mm.设Tr 为信号上升时间, Tpd 为信号线传播延时.如果Tr≥4Tpd,信号落在安全区域.如果2Tpd≥Tr≥4Tpd,信号落在不确定区域.如果Tr≤2Tpd,信号落在问题区域.对于落在不确定区域及问题区域的信号,应该使用高速布线方法.四、什么是传输线PCB板上的走线可等效为下图所示的串联和并联的电容、电阻和电感结构.串联电阻的典型值 ohms/foot,因为绝缘层的缘故,并联电阻阻值通常很高.将寄生电阻、电容和电感加到实际的PCB连线中之后,连线上的最终阻抗称为特征阻抗Zo.线径越宽,距电源/地越近,或隔离层的介电常数越高,特征阻抗就越小.如果传输线和接收端的阻抗不匹配,那么输出的电流信号和信号最终的稳定状态将不同,这就引起信号在接收端产生反射,这个反射信号将传回信号发射端并再次反射回来.随着能量的减弱反射信号的幅度将减小,直到信号的电压和电流达到稳定.这种效应被称为振荡,信号的振荡在信号的上升沿和下降沿经常可以看到.五、传输线效应基于上述定义的传输线模型,归纳起来,传输线会对整个电路设计带来以下效应.· 反射信号Reflected signals· 延时和时序错误Delay & Timing errors· 多次跨越逻辑电平门限错误False Switching· 过冲与下冲Overshoot/Undershoot· 串扰Induced Noise or crosstalk· 电磁辐射EMI radiation反射信号如果一根走线没有被正确终结终端匹配,那么来自于驱动端的信号脉冲在接收端被反射,从而引发不预期效应,使信号轮廓失真.当失真变形非常显着时可导致多种错误,引起设计失败.同时,失真变形的信号对噪声的敏感性增加了,也会引起设计失败.如果上述情况没有被足够考虑,EMI将显着增加,这就不单单影响自身设计结果,还会造成整个系统的失败.反射信号产生的主要原因:过长的走线;未被匹配终结的传输线,过量电容或电感以及阻抗失配.延时和时序错误信号延时和时序错误表现为:信号在逻辑电平的高与低门限之间变化时保持一段时间信号不跳变.过多的信号延时可能导致时序错误和器件功能的混乱.通常在有多个接收端时会出现问题.电路设计师必须确定最坏情况下的时间延时以确保设计的正确性.信号延时产生的原因:驱动过载,走线过长.多次跨越逻辑电平门限错误信号在跳变的过程中可能多次跨越逻辑电平门限从而导致这一类型的错误.多次跨越逻辑电平门限错误是信号振荡的一种特殊的形式,即信号的振荡发生在逻辑电平门限附近,多次跨越逻辑电平门限会导致逻辑功能紊乱.反射信号产生的原因:过长的走线,未被终结的传输线,过量电容或电感以及阻抗失配.过冲与下冲过冲与下冲来源于走线过长或者信号变化太快两方面的原因.虽然大多数元件接收端有输入保护二极管保护,但有时这些过冲电平会远远超过元件电源电压范围,损坏元器件.串扰串扰表现为在一根信号线上有信号通过时,在PCB板上与之相邻的信号线上就会感应出相关的信号,我们称之为串扰.信号线距离地线越近,线间距越大,产生的串扰信号越小.异步信号和时钟信号更容易产生串扰.因此解串扰的方法是移开发生串扰的信号或屏蔽被严重干扰的信号.电磁辐射EMIElectro-Magnetic Interference即电磁干扰,产生的问题包含过量的电磁辐射及对电磁辐射的敏感性两方面.EMI表现为当数字系统加电运行时,会对周围环境辐射电磁波,从而干扰周围环境中电子设备的正常工作.它产生的主要原因是电路工作频率太高以及布局布线不合理.目前已有进行 EMI仿真的软件工具,但EMI仿真器都很昂贵,仿真参数和边界条件设置又很困难,这将直接影响仿真结果的准确性和实用性.最通常的做法是将控制EMI的各项设计规则应用在设计的每一环节,实现在设计各环节上的规则驱动和控制.六、避免传输线效应的方法针对上述传输线问题所引入的影响,我们从以下几方面谈谈控制这些影响的方法.严格控制关键网线的走线长度如果设计中有高速跳变的边沿,就必须考虑到在PCB板上存在传输线效应的问题.现在普遍使用的很高时钟频率的快速集成电路芯片更是存在这样的问题.解决这个问题有一些基本原则:如果采用CMOS或TTL电路进行设计,工作频率小于10MHz,布线长度应不大于7英寸.工作频率在50MHz布线长度应不大于英寸.如果工作频率达到或超过75MHz布线长度应在1英寸.对于GaAs芯片最大的布线长度应为英寸.如果超过这个标准,就存在传输线的问题.合理规划走线的拓扑结构解决传输线效应的另一个方法是选择正确的布线路径和终端拓扑结构.走线的拓扑结构是指一根网线的布线顺序及布线结构.当使用高速逻辑器件时,除非走线分支长度保持很短,否则边沿快速变化的信号将被信号主干走线上的分支走线所扭曲.通常情形下,PCB走线采用两种基本拓扑结构,即菊花链Daisy Chain 布线和星形Star分布.对于菊花链布线,布线从驱动端开始,依次到达各接收端.如果使用串联电阻来改变信号特性,串联电阻的位置应该紧靠驱动端.在控制走线的高次谐波干扰方面,菊花链走线效果最好.但这种走线方式布通率最低,不容易100%布通.实际设计中,我们是使菊花链布线中分支长度尽可能短,安全的长度值应该是:Stub Delay <= Trt .例如,高速TTL电路中的分支端长度应小于英寸.这种拓扑结构占用的布线空间较小并可用单一电阻匹配终结.但是这种走线结构使得在不同的信号接收端信号的接收是不同步的.星形拓扑结构可以有效的避免时钟信号的不同步问题,但在密度很高的PCB板上手工完成布线十分困难.采用自动布线器是完成星型布线的最好的方法.每条分支上都需要终端电阻.终端电阻的阻值应和连线的特征阻抗相匹配.这可通过手工计算,也可通过CAD工具计算出特征阻抗值和终端匹配电阻值.在上面的两个例子中使用了简单的终端电阻,实际中可选择使用更复杂的匹配终端.第一种选择是RC匹配终端.RC匹配终端可以减少功率消耗,但只能使用于信号工作比较稳定的情况.这种方式最适合于对时钟线信号进行匹配处理.其缺点是RC匹配终端中的电容可能影响信号的形状和传播速度.串联电阻匹配终端不会产生额外的功率消耗,但会减慢信号的传输.这种方式用于时间延迟影响不大的总线驱动电路.串联电阻匹配终端的优势还在于可以减少板上器件的使用数量和连线密度.最后一种方式为分离匹配终端,这种方式匹配元件需要放置在接收端附近.其优点是不会拉低信号,并且可以很好的避免噪声.典型的用于TTL输入信号ACT, HCT, FAST.此外,对于终端匹配电阻的封装型式和安装型式也必须考虑.通常SMD表面贴装电阻比通孔元件具有较低的电感,所以SMD封装元件成为首选.如果选择普通直插电阻也有两种安装方式可选:垂直方式和水平方式.垂直安装方式中电阻的一条安装管脚很短,可以减少电阻和电路板间的热阻,使电阻的热量更加容易散发到空气中.但较长的垂直安装会增加电阻的电感.水平安装方式因安装较低有更低的电感.但过热的电阻会出现漂移,在最坏的情况下电阻成为开路,造成PCB走线终结匹配失效,成为潜在的失败因素.抑止电磁干扰的方法很好地解决信号完整性问题将改善PCB板的电磁兼容性EMC.其中非常重要的是保证PCB板有很好的接地.对复杂的设计采用一个信号层配一个地线层是十分有效的方法.此外,使电路板的最外层信号的密度最小也是减少电磁辐射的好方法,这种方法可采用"表面积层"技术"Build-up"设计制做PCB来实现.表面积层通过在普通工艺 PCB 上增加薄绝缘层和用于贯穿这些层的微孔的组合来实现 ,电阻和电容可埋在表层下,单位面积上的走线密度会增加近一倍,因而可降低 PCB的体积.PCB 面积的缩小对走线的拓扑结构有巨大的影响,这意味着缩小的电流回路,缩小的分支走线长度,而电磁辐射近似正比于电流回路的面积;同时小体积特征意味着高密度引脚封装器件可以被使用,这又使得连线长度下降,从而电流回路减小,提高电磁兼容特性.其它可采用技术为减小集成电路芯片电源上的电压瞬时过冲,应该为集成电路芯片添加去耦电容.这可以有效去除电源上的毛刺的影响并减少在印制板上的电源环路的辐射.当去耦电容直接连接在集成电路的电源管腿上而不是连接在电源层上时,其平滑毛刺的效果最好.这就是为什么有一些器件插座上带有去耦电容,而有的器件要求去耦电容距器件的距离要足够的小.任何高速和高功耗的器件应尽量放置在一起以减少电源电压瞬时过冲.如果没有电源层,那么长的电源连线会在信号和回路间形成环路,成为辐射源和易感应电路.走线构成一个不穿过同一网线或其它走线的环路的情况称为开环.如果环路穿过同一网线其它走线则构成闭环.两种情况都会形成天线效应线天线和环形天线.天线对外产生EMI辐射,同时自身也是敏感电路.闭环是一个必须考虑的问题,因为它产生的辐射与闭环面积近似成正比.结束语高速电路设计是一个非常复杂的设计过程,ZUKEN公司的高速电路布线算法Route Editor和EMC/EMI分析软件INCASES,Hot-Stage应用于分析和发现问题.本文所阐述的方法就是专门针对解决这些高速电路设计问题的.此外,在进行高速电路设计时有多个因素需要加以考虑,这些因素有时互相对立.如高速器件布局时位置靠近,虽可以减少延时,但可能产生串扰和显着的热效应.因此在设计中,需权衡各因素,做出全面的折衷考虑;既满足设计要求,又降低设计复杂度.高速PCB设计手段的采用构成了设计过程的可控性,只有可控的,才是可靠的,也才能是成功的。

PCB设计布局规则与技巧

PCB设计布局规则与技巧

PCB设计布局规则与技巧PCB(Printed Circuit Board,印刷电路板)设计布局是电子产品设计中非常重要的一部分,合理的布局能够提高电路板性能、稳定性和可靠性。

同时,布局也会影响到电磁兼容性(EMC)和易于制造性。

下面将介绍一些常用的PCB设计布局规则和技巧。

1.尽量减少线长:线长越短,信号传输的时间越短,电路的性能越好。

因此,在进行PCB设计布局时,应尽量使信号和电源线的路径尽可能短。

2.分离高频和低频信号:高频信号容易产生干扰和耦合,所以应尽量远离低频信号线。

同时,高频信号线和低频信号线应分别布局,以减少相互之间的干扰。

3.分层设计:多层PCB可以有效地减小信号线间的干扰,并提高信号的完整性。

布局时需要根据不同功能和频率的信号进行分层布局,避免信号线交叉和干扰。

4.组织布局:把电路板上的元器件和线缆进行逻辑分组和合理布局,可以提高电路板的操作性和可靠性。

例如,将相关的器件和接口放在一起,减少线缆走线的复杂性。

5.场效应管的布局:场效应管是敏感元件,容易受到外界影响而导致不稳定。

在布局时,应尽量远离高频信号源、变压器、电机等产生辐射干扰的元件。

6.地线布局:地线是所有电路的公共回路,应该足够宽,稳定和低阻抗。

在布局时,应尽量减少地线的长度和面积,降低地线的电感和电阻。

7.高频元件布局:对于频率较高的器件和信号线,应尽量减小其长度,将其布置在靠近负载的位置,以减少传输延迟和信号损失。

8.散热布局:散热是电子产品设计中一个重要的考虑因素。

在布局时,应考虑到热源的位置,并合理布置散热器件和散热片,以提高散热效果。

9.电源布局:电源是电路正常运行的保障,应该足够稳定和可靠。

在布局时,应规划好电源线和滤波电容器的位置,减少电源噪声和泄漏。

10.细节布局:除了上述规则,还需要注意一些细节布局。

例如,尽量避免信号线相交,避免直角拐弯,避免尖锐的边缘等,以减少信号反射和辐射干扰。

总之,PCB设计布局是一个需要综合考虑各种因素的过程。

pcb设计注意事项及设计原则

pcb设计注意事项及设计原则

pcb设计注意事项及设计原则
1. 注意电路的布局:将关键的电路元件和元件之间的连接线尽量短,并且按照电路信号流的路径进行布局,以降低电路的干扰和噪声。

2. 确保供电和地线的良好连接:供电和地线必须足够宽,以确保电流的充分通畅,同时尽量减少导线的长度和阻抗。

3. 保持信号的完整性:重要的高频信号和低噪声信号应该有独立的接线层进行隔离,并且保持信号线之间的最小交叉和最小输入/输出延迟。

4. 尽量减少板层数量:增加板层会增加制造成本和装配难度,因此应该尽量减少板层数量,并合理布局各种信号。

5. 为高功率模块提供散热解决方案:对于功率较大的模块,应该考虑合适的散热解决方案,如散热片、散热孔等。

6. 注意阻抗匹配:对于高速信号线,应该根据需求确定合适的阻抗,并尽量避免阻抗不匹配。

7. 考虑EMC问题:应该尽量减少电磁干扰并提高抗干扰能力,如采用合适的屏蔽、阻尼材料和接地。

8. 保证良好的可维护性:电路的布局应该考虑到维修和更换元件的方便性,如保留合适的测试点和备用元件位置。

9. 注意元器件的热分布:对于容易发热的元件,应该注意合适的散热和降温措施。

10. 使用规范的命名和标记:为了方便阅读和维护,应该使用规范的元件命名和标记方法,并为电路板添加清晰的标签和说明。

PCB设计基础及实训教案

PCB设计基础及实训教案
第2页/共31页
⑵双面印制板 双面印制板指两面都有导电图形的印制板,板的厚度约为0.2~5.0mm,它是在两面敷有铜箔的绝缘基板上,通过印制和腐蚀的方法在基板上形成印制电路,两面的电气互连通过金属化孔实现。 它适用于要求较高的电子设备,如计算机、电子仪表等,由于双面印制板的布线密度较高,所以能减小设备的体积。
第7页/共31页
三、PCB设计中的基本组件
1.板层(Layer) 板层分为敷铜层和非敷铜层,平常所说的几层板是指敷铜层的层面数。一般在敷铜层上放置焊盘、线条等完成电气连接;在非敷铜层上放置元件描述字符或注释字符等;还有一些层面(如禁止布线层)用来放置一些特殊的图形来完成一些特殊的作用或指导生产。 敷铜层一般包括顶层(又称元件面)、底层(又称焊接面)、中间层、电源层、地线层等;非敷铜层包括印记层(又称丝网层、丝印层)、板面层、禁止布线层、阻焊层、助焊层、钻孔层等。
第13页/共31页
元件封装的命名一般与管脚间距和管脚数有关,如电阻的封装AXIAL-0.3中的0.3表示管脚间距为0.3英寸或300mil(1英寸=1000mil=2.54cm);双列直插式IC的封装DIP-8中的8表示集成块的管脚数为8。元件封装中数值的意义如图4-17所示。
第14页/共31页
一、印制电路板概述
第1页/共31页
⑴单面印制板 单面印制板指仅一面有导电图形的印制板,板的厚度约在0.2~5.0mm,它是在一面敷有铜箔的绝缘基板上,通过印制和腐蚀的方法在基板上形成印制电路。它适用于一般要求的电子设备,如收音机、电视机。
1.根据PCB导电板层划分
二、印制电路板的种类
第17页/共31页
四、Protel 2004 PCB编辑器使用
1.启动PCB编辑器 进入Protel 2004主窗口,执行菜单“文件”→ “创建”→“项目”→“PCB项目”建立PCB工程项目文件,执行菜单“文件”→ “创建” →“PCB文件”,系统自动产生默认文件名为PCB1.PcbDoc的PCB文件,并进入PCB编辑器状态。 PCB编辑器的主菜单与原理图编辑器的主菜单基本相似,操作方法也类似。 PCB编辑器的工具栏主要有PCB标准工具栏、配线工具栏和实用工具栏等。 执行菜单“查看”→ “工具栏”下的相关菜单,可以设置打开或关闭相应的工具栏。

PCB布局设计技巧及注意事项

PCB布局设计技巧及注意事项

PCB布局设计技巧及注意事项PCB(Printed Circuit Board)是电子设备中最常见的组装方式之一,它承载着电子元器件,连接着电路。

一个优秀的PCB布局设计可以提高电路性能,减少电磁干扰,并且更加美观。

以下是关于PCB布局设计技巧及注意事项的详细介绍。

技巧一:分区规划一个好的PCB布局设计首先需要一个合理的分区规划。

不同功能的电路部分应该组织在互相独立的区域内,以避免干扰。

例如,高速数字信号和模拟信号应该分开布局;功率电源和低电平电路应该分开布局。

这种分区能够有效地减少信号之间的串扰和干扰。

技巧二:信号与地分离为了避免干扰以及噪声问题,信号线和其对应的地线应该尽量分离布局,并保持平行。

这有助于减少回流和串扰。

同时,为了保持地面的均匀性和连续性,应该确保每个地线都有足够的宽度。

技巧三:电源线与信号线分离电源线和信号线应该分离布局,以避免电源噪声对信号线的影响。

尽量使用地平面或电源平面来屏蔽电源干扰。

对于高速数字电路,应该尽量将电源线和地线布局在同一层上,以减少回流问题。

技巧四:正确放置电容在PCB布局设计中,电容的位置非常重要。

电容应放置在靠近其所服务的器件附近,以最大限度地减少电路之间的电感和串扰。

此外,为了提高电容的效果,应保持电容两端的线长尽量短,同时使用大而近似的线宽。

技巧五:避免电路斜交避免信号线和电源线在垂直方向上斜交,这样可以减少电感和串扰。

尽量让信号线和电源线平行走线,并按照同一方向进行布局。

技巧六:良好的散热设计在PCB布局设计中,对于功率器件和高功率电路,需要做好散热设计。

应合理安排散热器的位置,并确保其能够充分散热。

此外,应将高功率部分与其他敏感电路部分分开,以避免热量传导和干扰。

注意事项一:避免盲孔在PCB布局设计中,应尽量避免使用盲孔,因为盲孔会增加制造成本和制作难度。

如果无法避免使用盲孔的情况,应提前与PCB制造商沟通,并调整布局设计。

注意事项二:考虑PCB层数在进行PCB布局设计时,应考虑当前电路的层数。

pcb设计流程及注意事项

pcb设计流程及注意事项

pcb设计流程及注意事项PCB设计是一个涉及电子原理图、元器件布局、信号完整性、PCB规格、层数、线宽等多个方面的复杂过程。

在进行PCB设计时,需要关注以下几个方面:1、根据设计需求,确定PCB的规格和层数,绘制电子原理图,并在原理图中选择对应元器件。

2、完成原理图的布局,同时关注信号完整性,其包括布线长度、引脚的布局等多个细节,保证信号传输的质量和稳定性。

3、通过PCB设计软件完成元器件布局,布线和钻孔的设置,并优化阻抗控制等参数。

4、进行设计规则检查(DRC)和电气检查(ERC),确保PCB设计符合规范和要求。

5、在PCB设计完成后,进行电路板的制造,在制造过程中需要注意材料选择、焊盘接触性、线路走向和符号标识等多个细节以保证PCB的性能。

在进行PCB设计时,需要关注以下几个注意事项:1、规格和层数的选择应符合设计的实际需求,同时在满足电路复杂度的前提下尽量控制PCB的面积和层数。

2、元器件的选择应符合设计要求,在选择器件时需要考虑其尺寸、参数和适用环境等多个因素。

3、在绘制电子原理图和进行元器件布局时,需要考虑输入输出端口、驱动电压和信号速度等多个参数,以确保信号传输质量。

4、在进行布线时,需要关注信号层的选择、线宽、线距和阻抗控制等参数,并尽量减少信号穿越。

5、在设计规则检查和电气检查时,应仔细核查PCB是否符合设计规范和要求,特别注意电源设计和地道分配问题。

6、在制造过程中,需要关注材料选择、制造工艺和检查标准等多个方面的问题,同时尽量减少和避免因制造过程引起的缺陷。

综上可见,PCB设计是一个复杂的过程,需要在多个方面进行设计和优化。

在进行设计时,需要遵循标准化的流程和步骤,并关注多个细节和注意事项,以确保PCB的良好性能和质量。

PCB布局设计技巧及注意事项

PCB布局设计技巧及注意事项

PCB布局设计技巧及注意事项在PCB布局设计中,技巧和注意事项影响着电路的性能和可靠性。

下面是一些常见的PCB布局设计技巧和注意事项。

1.确定电路板尺寸和布局区域:在开始设计之前,先确定电路板的尺寸和布局区域,以确保电路板能够适应所要求的空间。

同时,对于复杂的电路板,可以将电路模块划分为不同的区域,以方便布线和调试。

2.保持信号和电源的分离:为了避免干扰和噪声,应该尽可能将信号和电源分开布局。

特别是在高频电路中,信号和电源之间的交叉干扰会导致性能下降。

同时,还要注意将地线和电源线铺设得足够宽,以减小电阻和电感,降低电源噪声。

3.使用适当的封装:选取适当的封装对于电路性能和良好的热管理非常重要。

大功率元件应使用散热片或散热器,以确保其可以正常工作并保持温度。

另外,尽量选择体积小、参数稳定的封装,以减小电路板尺寸和增加布局灵活性。

4.可靠的功率和地线铺铜:为了保证电流传输和电源供应的稳定性,应该尽可能宽带地铺设功率和地线。

通过增加铜的厚度或宽度,可以降低电阻和压降,提高电源线和地线的稳定性和可靠性。

5.层次布线:对于大型复杂的PCB设计,使用多层布线可以提高信号完整性、降低电磁干扰。

可以将不同信号层分开布线,在不同层之间通过使用电源和地引线进行连接。

同时,注意避免信号线与电源线和地线之间的交叉,以减小互相干扰的可能性。

6.规避电磁干扰:在设计过程中,应该尽量规避电磁干扰。

可以通过在关键信号线周围布置地层或电源层,使用屏蔽罩和磁环等器件来抑制干扰。

另外,要注意避开高压电源和高功率设备等可能产生干扰的元件。

7.优化布线走线:布线时要注意合理规划信号线的路径,以最短、最直的路径连接器件。

同时,要避免信号线之间的交叉和迂回,以减小串扰和电阻。

对于高频信号,应该避免信号线太长、太弯曲和与其他信号线平行。

8.地线设计:地线的设计同样非常重要,要注意将所有的地线连接在一起,并且保持平衡和均匀分布。

合理布置地线,可以减小地线的电感和电阻,提高电路的灵敏度和抗干扰能力。

DDR部分布板指南

DDR部分布板指南

DDR部分布板指南1.1 元件摆放指南1.2 DDR Memory 附近的元件摆放1.2.1 时钟(O)时钟CLK/CLK#按差分对布线,与之串联的电阻尽可能靠近主芯片摆放。

时钟差分对的并联电阻尽可能靠近DDR摆放(针对一片DDR的情况),如果是两片DDR,则靠近串联电阻摆放。

1.2.2 地址线和控制信号线(CS,RAS,CAS,WE,CKE,ADDRESS)(O)地址线上和控制信号线的串联电阻应靠近主芯片摆放。

地址线上和控制信号线的上拉电阻则靠近DDR摆放。

1.2.3 DQS线(O)DQS线上的串联电阻尽量靠近主芯片摆放。

DQS信号的上拉电阻则应靠近DDR摆放。

1.3 SDRAM 附近的元件摆放参考DDR元件的摆放。

1.4 布线指南1.4.1 总体规划如果与信号连接的负载在一个以上,则必须考虑采用T状布线,并且要使得所有的分支布线尽量保持等长。

布线中把DATA的串联电阻尽量放置在主芯片与MEMORY之间,而DQM与DQS对主芯片来说为输出信号,因此尽可能靠近主芯片摆放,达不到的的情况下也要与DATA信号的串联电阻要求一致。

VTT的终端电阻要尽量靠近它们各自的信号,他们可以在走线的中间放置,建议靠近MEMORY的管脚放置。

所有的旁路电容都应该放置在相关的电源引脚的旁边。

对于存储器的时钟线(CLK/CLK#)和数据选通信号(DQS)以及DQM信号,需要特别的注意的是,它们需要靠近到电源或者地层布线,也最好能做到包地处理。

对于约为信号阻抗为60欧的PCB来讲,线宽:间距:线宽为1:1:1,建议为8mil。

1.4.1 DATA,DQS,DQM信号DQS信号在布线时应该特别小心,对它的信号有以下要求:首先要做包地处理,地线应尽量包全整个信号,并且每隔1”要打过孔缝到地上,如果有可能的话,DQS信号与其它信号的间距与线宽比为3:1,如下图所示。

建议Data/DQM的间距最少为2:1。

memory的数据组划分如下(10个)信号:(建议将一个LMI接口的数据线做为一组,不只这10个)Data0-Data1-Data2-Data3-DQM-DQS-Data4-Data5-Data6-Data7数据信号与DQS信号的长度关系为:L QS– 0.05 inch <= L DATA <=L QS +0.05 inch因此DQS线的最长与最短布线关系为:L Longest QS-L Shortest QS <= 0.1 inch时钟按下面的公式布线L CLK= (L Longest QS +L Shortest QS) / 21.4.2 CLK,CLK#时钟差分信号不但要做包地处理,而且全程应该始终参考一个平面布线。

pcb工艺设计说明书标准

pcb工艺设计说明书标准

为使公司产品设计符合我司现有的生产设备要求,增强产品的可制造性,节约生产成本,提高产品质量与生产效率,特制定此PCB 工艺设计标准。

一、PCB 板边与MARK 点的设计1、为了提高装配零件与贴片生产准确性和机器识别精度,PCB 板必须放置便于机械定位的工艺孔和便于光标定位的MARK 点;a.工艺孔定位孔采用非金属性的定位孔,不得有沉铜;b. MARK 点必须放在PCB 板长边的对角上,一般在离PCB 板的长边缘两端10mm 位置各做1个直径为1mm 的实心圆铜箔的Mark 点。

对于双面板,则两面都要放置Mark 点。

如果是拼板,必须是在每一块拼板上都设置MARKS 。

每块PCB 板至少要有两个MARKS (在生产设备夹边缘 4.0mm 范围内无效)。

C.最常用的标记为圆形和正方形,圆形标记中心3mm 范围内应无铜箔、阻焊层和图案,方形标记中心4mm 范围内应无铜箔或图案,如下图(A=1.0mm±10%):AAAA正方形圆形三角形菱形1.0mm 3.0mm不能有焊盘或丝印等d 、板边需要放置插座、连结器的地方,必须考虑插座、连结器本身的尺寸,在设置板边时,应当留有一定的空间,元件本体至工艺边边缘距离至少要有4.5mm 以上。

2、PCB 板在生产设备导轨的夹持边边缘4.5mm 范围内不可以放置任何元件,在离V 割线1mm 范围不可以放置任何线路,1.5MM 范围不可以放置任何元件。

当元件本体至工艺边边缘距离不足 4.5mm 时,可在PCB 板边缘加3mm 工艺边,辅边开V-CUT 槽,在生产时掰断即可,防止由于外形加工引起边缘部分的缺损(主要是供生产设备和生产线导轨使用)。

3、为了便于提高生产设备利用率和PCB 供应厂商的制造,所有同一类型的PCB 板的工艺边和拼板尽量采用同一方式放置(即同规格制造),特殊要求的板卡除外。

4、对于对称拼接的PCB 板,两条工艺边的工艺孔和Mark 点必须对称的对角相应放置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018/5/29
保密信息
. 10
DDR 数据线
• 为方便走线,DDR数据线支持组内的交换.
组内交换
2018/5/29
保密信息
. 11
DDR 走线的等长要求
• • • • • • • CLKDP,DM的长度差最大1mm DQS和CLK的长度差最大5mm 数据线,DQM线对 DQS线 (组内)长度差最大3mm 不同组的DQS信号的长度差最大4mm 地址线,控制线对CLK的长度差是最大5mm 地址线之间的长度差是最大6mm 相同性质的信号线上过孔的数量要一致 (DQ≤ 3,CLK,Address,control ≤4)
2018/5/29
保密信息
.8
DDR CLK
DDR的CLKDP,DM要差分走线,并完全保护好。 DDR的CLK走线不能在表层走长线,要走到内层。
2018/5/29
保密信息
.9
DDR数据线
DDR的数据线总共有4组,BYTE0:DQ0~7,DQS0,DQM0; BYTE1:DQ8~15, DQS1,DQM1; BYTE2:DQ16~23,DQS2,DQM2; BYTE3:DQ24~31, DQS3,DQM3; 走线要组内一起走,并满足等长要求。 走线尽量在L1,L2层完全走完。
DDR PCB设计指南
培训目的
提高客户PCB layout质量 减少DDR 部分的PCB layout 风险
2018/5/29
保密信息
.2
8层HDI板叠层指导
TOP:Component(RF) L2:Signal L3:GND L4: Signal(重要信号) L5:GND L6: Signal L7: Signal
PCB
2018/5/29
保密信息
.5
BaseBand和MCP布局
如图,BaseBand和MCP的P1脚采用 如下的相对位置放置,两者之间留 些位置方便走线,最好能有3mm以 上。电容的位置要一组组分散在电 源pin附近。 在Layout的时候要优先做好电源层 和地。保证电源和地的完整。
2018/5/29
2018/5/29
保密信息
. 14
典型案例-3
• 8层HDI板,板厚0.8mm,案例2的改板,叠层如下,电源层在L6层,L5层是相对完 整的地。电源和地层之间的间距是3.15mil。等长基本符合要求。DDR时序没有问题。
2018/5/29
保密信息
. 15
典型案例-4
• • 8层HDI板,板厚1.6mm,叠层如下,电源层在L5层,相邻层没有相对完整的地层。 电源和相邻层之间的间距是4.3mil。等长基本符合要求。DDR时序有问题。 主要在于电源层没有相邻的地层,和相邻层的间距大。
保密信息
.6
DDR布线次序
在DDR部分走线的时候,建议按以下的顺序来布线: 1. 首先确定VDDMEM的电源平面和相邻层的地。电源平面先画好(6层板建议在 L5层,8层板建议在L7层,TOP层是器件层)。 2. 数据线 3. CLKDP,DM走线。 4. 地址线和控制线 5. 对于DDR的部分,一般数据线走在L1,L2层(表层的信号线尽量的短)。地址 线,控制线走在L4层。
2018/5/29
保密信息
. 17
典型案例-6
• • 8层HDI板,板厚1mm,叠层如下,电源层在L2层,L1层是相对完整的地(器件在 BOttOM层),电源层和地层之间的间距是2.7mil。等长基本满足要求。 DDR有问题. 主要问题:电源层的面积太小,没有覆盖整个DDR走线区域。
2018/5/29
Bottom:LCM,KEY
PCB
2018/5/29
保密信息
.3
6层(HDI)板叠层指导
TOP:Component(RF) L2:Signal L3:GND L4:Signal(重要信号) L5:Signal Bottom:LCM,KEY
PCB
2018/5/29
保密信息
.4
PCB叠层的选择
1:单面器件,另一面只有电池或LCM等器件的要可以做6层板。 2:半截板,L型板,U型板,镂空板等板型怪异,两面有器件对着的板子一定要做8 层板。
保密信息
. 18
L6
L5
2018/5/29 保密信息
L4
. 16
典型案例-5
• • 6层HDI板,板厚0.8mm,叠层如下,电源层在L4层,L3层是相对完整的地,电源层 和地层之间的间距是13.2mil。等长基本满足要求。 DDR时序有问题. 主要问题:电源层不完整中间有很多走线,BB到DDR部分地方宽度只有4mil。电源 层到地层的间距太大。
2018/5/29
保密信息
.7
DDR 电源平面
• • • • VDDMEM 一定要做电源平面(在BB的MCP区域和DDR区域,简单的说就是DDR的信号线到的 地方都需要) , 相邻层要是地.电源和地层的间距不大于0.1mm, 对 8 层板 (器件在 top层), 最好 在L7层(相邻的L8层是地).对 6 层板 (器件在 top层), 最好在L5层(相邻的L6层最好是地). VDDMEM 如果在电源平面外的线宽至少 0.5mm 每个电源管脚都要有过孔到电源平面. VDDMEM 的电容要靠近电源管脚摆放,0.1和0.01UF的电容要搭配在一起,分散在DDR的周围,密信息
. 12
典型案例-1
• • 8层HDI板,板厚0.8mm,叠层如下,没有电源层,等长基本符合要求。DDR时序有 问题。 问题主要在于没有电源层。电源的电容也不多。
2018/5/29
保密信息
. 13
典型案例-2
• 6层HDI板,板厚0.8mm,叠层如下,电源层在bottom层,L5层是相对完整的地 (也可以电源在L5层,Bottom层是相对完整的地),电源层和地层之间的间距是 2.6mil。VDDMEM电容较多,分布在四周,等长基本符合要求。 DDR时序没有问题。
相关文档
最新文档