Decolorization of acid and basic dyes understanding the metabolic degradation and cell

合集下载

污染物的降解

污染物的降解

超声辅助电催化氧化降解铬黑T学生姓名:张颖太原师范学院化学系山西太原030031指导教师:宋秀丽太原师范学院化学系山西太原030031摘要:建立可见分光光度法测定铬黑T,在最大吸收波长527 nm处进行检测,浓度在0.020 ~ 0.030 g·L-1范围内线性关系良好,标准曲线为A = 0.031c-0.0397(R2=0.9982),该检测方法快速、简便、精密度高。

电解最佳条件为:以钛基氧化物电极为阳极,钛电极为阴极,电极间距离为3.0 cm,电流密度为0.163 A·cm-2,最佳pH为9,最佳支持电解液是NaCl溶液,最佳电解液浓度为265 g·L-1,降解率为99.57%,在低浓度40 g·L-1时降解率则为96.79%;超声声强为40 W·cm-2,降解60 min,降解率为1.9%;超声协同电催化降解高浓度时降解率降低为93.19%比单一电催化降解率低,辅助降解低浓度(40 g·L-1)时降解率为99.29%比单一电催化降解率高。

关键词:铬黑T;超声;电催化氧化;降解;可见分光光度法1 引言印染行业与纺织工业[1]不断发展的同时产生了大量色度高、难处理、可生化性差和由复杂成分组成的染料废水[2]。

这些废水一旦排入水中,会对水中动植物的生存造成一定的危害,从而进一步威胁整个生态系统[3]。

然而采用传统的处理方法[4],[5]已经很难经济有效地对染料废水进行降解。

活性偶氮染料是染料废水的一类,一般具有非生物降解性,铬黑T(Eriochrome black T,简称EBT,)便是一种活性偶氮萘酚染料,主要用于羊毛与锦纶织物的染色,除了作为活性偶氮染料外,主要用作检验金属离子和水质测定,是实验室常用的分析试剂。

有机染料污染物的降解方法主要有物理法、化学法、生物法。

铬黑T可以采用电解法、超声波法[6],[7]、超声波电催化协同降解法、光电催化氧化法[8]、以Fe2+(Fe3+)/H2O2为主体的UV-Fenton法[9],[10]、二氧化氯催化氧化[11]、高铁酸钾催化氧化[12]等降解。

PCR技术在乳酸菌分类鉴定中的应用

PCR技术在乳酸菌分类鉴定中的应用

PCR技术在乳酸菌分类鉴定中的应用王庭柱,高学军,杨振宇东北农业大学教育部乳品科学重点实验室(150030)E-mail:wangtingzhu1980@摘要:近年来,随着分子生物学和生物信息学的迅速发展,特别是作为生物技术里程碑的PCR技术以及核酸测序和电泳技术的不断改进与完善,产生了许多新的分类学方法,如RAPD、PCR-RFLP、T-RFLP、ARDRA、PCR-SSCP、PCR-DGGE、PCR-TGGE、AFLP、REP-PCR、S-PCR、LCR、LH-PCR、SBCS以及小卫星序列多态性和序列同源性分析等。

本文即论述了这些技术在乳酸菌分类鉴定中的应用及其优势和局限性。

关键词:乳酸菌,PCR,分类,鉴定,分子生物学1. 引言乳酸菌(lactic acid bacteria, LAB)是一大类缺乏细胞色素、糖代谢主要以乳酸为终产物的革兰氏阳性非芽孢细菌,其过氧化氢酶反应为阴性、耐氧耐酸、营养要求复杂并且严格发酵。

LAB这个名称就细菌分类学而言实属一个非正式、非规范的名称。

目前从自然界中已发现的这类细菌在分类学上至少可划分为23个属,涉及到的有关菌种则更多,其代表性的菌属有乳杆菌属、乳球菌属、链球菌属、双歧杆菌属、肠球菌属、明串珠菌属、气球菌属、肉杆菌属、酒球菌属、足球菌属、四体球菌属和漫游球菌属等[1,2]。

传统的LAB鉴定方法主要依赖于表型分析,包括形态学观察、生长需要及特性、发酵图谱、细胞壁蛋白分析、血清学以及脂肪酸甲基酯分析等,其中有些技术已被证明适用于某些LAB的鉴定,但是也普遍意识到表型分析的一些缺点,如重现率及辨识能力低、相似的表型特性并不等同于相似的或者关系密切的基因型[3]。

表型试验可能的固有问题是,不是每一给定种内的所有菌株都有一个共同的性状,而且即使是同一菌株也可能呈现出一定的生化变异性。

此外,实验操作的一点改变也可能产生错误的结果。

因此基于表型试验的常规技术并不能对菌株做出明确的鉴定[4]。

基于PMS的Cr(VI)-染料复合废水协同处理效果及机理

基于PMS的Cr(VI)-染料复合废水协同处理效果及机理

基于PMS的Cr(VI)-染料复合废水协同处理效果及机理闫松; 张成武; 李天一; 秦传玉【期刊名称】《《中国环境科学》》【年(卷),期】2019(039)008【总页数】6页(P3271-3276)【关键词】染料废水; 复合污染; 过一硫酸盐; Cr(VI); 协同处理【作者】闫松; 张成武; 李天一; 秦传玉【作者单位】吉林大学地下水资源与环境教育部重点实验室吉林长春 130012; 吉林大学新能源与环境学院吉林长春 130012【正文语种】中文【中图分类】X703印染废水成分复杂,不仅含有大量难降解的偶氮染料,还有以氯化钠为主的无机盐[1]以及滚筒剥铬产生的含铬物质,是典型的含盐含铬有机废水.对于Cr(VI)或染料废水的单独处理技术已经相对成熟,而对于Cr(VI)-染料复合污染的协同处理研究报道较少,相对于生物法[2-4]及物理吸附法[5-6]耗时长、处理效果差等缺点,化学法展现出了见效快且效果好等优点;有学者利用零价铁还原Cr(VI)同时零价铁与氧气反应在有配体存在下生成高活性自由基降解染料,但该方法成本较高且容易生成大量铁泥[7-8];利用光催化二氧化钛也可以同时降解染料及Cr(VI)[9-10],但Cl-会竞争TiO2表面的活性吸附位点从而影响光催化氧化,且会改变TiO2的空间结构使TiO2失活[11-13].因此寻找一种低成本且在Cl-存在下仍可以有效处理Cr(VI)-染料复合污染的方法具有重要意义.近年来有文献报道Cl-可以活化过一硫酸盐(PMS)产生活性物质降解污染物[14-16];同时过渡金属离子如Fe2+、Co2+、Mn2+、Ce3+等[17-18]可以活化PMS产生硫酸根自由基(SO4·—),Cr(VI)作为一种过渡金属已被报道可以活化H2O2产生羟基自由基(×OH)[19],而PMS与H2O2具有相似的结构且氧化还原电位相近(分别为+1.82V(PMS)和+1.77V (H2O2))[20],因此考虑Cr(VI)是否具有活化PMS降解污染物的潜力,从而通过在含盐含铬染料废水中添加PMS达到同时去除染料和Cr(VI)的目的.本文通过添加氯化钠、重铬酸钾、代表性偶氮染料AO7来模拟含盐含铬染料废水,加入PMS研究该体系协同处理偶氮染料AO7及Cr(VI)的可行性、影响因素及反应机理.过硫酸氢钾(KHSO5×0.5KHSO4×0.5K2SO4),金橙II(上海阿拉丁生化科技股份有限公司);重铬酸钾(99.8%,天津市光复科技发展有限公司);氯化钠,氢氧化钠,硫酸,磷酸(分析纯,北京化工厂);二苯碳酰二肼(分析纯,国药集团化学试剂有限公司);叔丁醇,硫酸铵(化学纯,国药集团化学试剂有限公司);乙醇(分析纯,天津天泰精细化学品有限公司);甲醇(分析纯,西陇科学股份有限公司).HZK-210电子天平(福州华志科学仪器有限公司), YSI pH100pH计(美国黄泉仪器有限公司), HJ- 6A数显恒温磁力搅拌器(金坛市医疗仪器厂), EVOLUTION 201紫外分光光度计(Thermo Fisher Scientific - Shanghai), SPECTRONIC 200E可见分光光度计(Thermo Fisher Scientific - Shanghai), Thermo TSQ三重串联四级杆质谱仪.所有实验通过使用250mL锥形瓶在室温(25±2)℃下进行;向特定浓度的AO7水溶液中依次加入一定量的重铬酸钾及氯化钠,置于磁力搅拌器上搅拌,转速控制在500r/min左右;加入所需量的PMS进行反应,在反应期间不控制pH值;在特定的时间间隔取出样品并立即分析.每组实验重复三次,最终结果取平均值.Cr(VI)浓度测定采用二苯碳酰二肼分光光度法 [21]; AO7浓度测定采用直接分光光度法,于484nm处有特征吸收峰;AO7中间产物采用LC-MS测定,采取手动进样,洗脱液为乙腈,流速为0.2mL/min,采用负离子扫描模式在m/z为40~200范围内获得MS光谱.应用Excel2010、OriginPro8.0进行数据分析处理与作图.对比不同组分体系中AO7的降解率及Cr(VI)的去除率,结果如图1所示.PMS单独降解AO7在120min内效率仅为3.2%,几乎不降解;PMS/Cr(VI)、PMS/Cl-以及PMS/Cr(VI)/Cl-体系均可以降解AO7, 120min时降解率分别达到58.8%、88.9%及97.9%;反应结束后Cr(VI)转化为毒性更低的Cr(III),PMS/ Cr(VI)及PMS/Cr(VI)/Cl-体系Cr(VI)去除率可分别达到35.9%及22.1%.由上述结果可知,PMS与Cl-反应可以有效降解AO7,Cr(VI)同时存在可以提高AO7的降解效率,且Cr(VI)自身可以达到一定程度的去除.2.2.1 Cl-浓度对体系降解的影响分别选取浓度为5.6,14,28mmol/L 的Cl-进行实验,结果如图2所示.随着Cl-浓度增加,AO7降解效率逐渐升高,120min时AO7降解率分别达到56.5%、88.9%及99.1%;虽然28mmol/L的Cl-体系降解效率较高,但其在60min已接近反应完全,不方便后续研究,因此选取14mmol/L作为实验Cl-浓度进行后续研究.2.2.2 初始pH值对体系降解的影响有文献报道碱可以直接活化PMS产生活性物质降解污染物[22],为避免碱性条件干扰体系降解AO7的实验结果,仅探究酸性条件下初始pH值的变化对于体系降解AO7的影响,结果如图3所示.初始pH值在4.5及6.5的条件下AO7的降解率仍能达到97.9%,因此酸性条件下PMS/Cl-体系对AO7的降解效率基本不受初始pH值的影响.2.2.3 HClO掩蔽剂对体系降解的影响 Wang等 [23]考察Cl-对Co2+/PMS体系降解AO7的研究中发现较高浓度的Cl-可以活化PMS生成活性氯与AO7反应,且有研究表明NH4+不能被SO4·—和×OH 氧化,但是可以与HClO发生反应生成活性较低的NH2Cl、NHCl2和NCl3[24-26],因此选用硫酸铵作为HClO掩蔽剂进行掩蔽实验,结果如图4所示.不添加掩蔽剂时体系降解效率为88.9%;添加15mmol/L硫酸铵后体系降解效率降低至43.5%;添加150mmol/L硫酸铵后体系降解效率降低至3.4%,与PMS单独降解效率相近.因此说明该体系中AO7的降解是HClO的作用.2.3.1 初始pH值对体系降解的影响当PMS溶于水时显酸性,pH值可以达到3以下,为考察酸性条件在体系降解AO7中的作用,将PMS/Cr(VI)体系与酸性条件下单独Cr(VI)降解AO7进行对比,并调节不同初始pH值探究其对体系降解效果的影响,结果如图5所示.初始pH值为2.5时Cr(VI)可以单独降解AO7,降解效率与PMS/Cr(VI)体系降解效率相近,说明PMS/Cr(VI)体系降解AO7是由于PMS溶于水创造的酸性条件使得Cr(VI)具有强氧化性进而直接氧化AO7;随着pH值的升高AO7的降解率逐渐降低,pH值为4.5时AO7几乎不降解,表明PMS/Cr(VI)降解AO7的反应仅在3以下时效果较好.2.3.2 自由基掩蔽剂对体系降解的影响为验证Cr(VI)是否能够活化PMS产生活性自由基,使用叔丁醇作为×OH掩蔽剂,乙醇作为×OH及SO4·—的共同掩蔽剂进行掩蔽实验,结果如图6所示.2种掩蔽剂对于体系降解均无明显影响,说明Cr(VI)并不能活化PMS产生活性自由基,结合2.3.2实验结果可以说明AO7的降解是酸性条件下Cr(VI)的强氧化性导致的.徐蕾[27]等人研究发现,在常温条件下Cl-可以与PMS发生非自由基反应生成活性氯,其反应方程如下:本研究中2.2.3实验结果验证了这一机理,同时2.3实验结果表明,Cr(VI)不能活化PMS产生活性自由基,而是由于PMS/Cl-体系创造的酸性条件使得Cr(VI)具有强氧化性,在氧化AO7的同时实现自身向低毒性Cr(III)的转化.由于在PMS/Cr(VI)/Cl-体系中Cr(VI)与活性物质HClO均能降解AO7,因此可以通过计算两部分对AO7降解的贡献占比来确定体系中起主要作用的活性物质.计算过程如下:通过PMS/ Cr(VI)体系中AO7降解及Cr(VI)去除量计算得出单位浓度Cr(VI)消耗对应的AO7降解量,再通过PMS/Cr(VI)/Cl-体系中Cr(VI)的消耗量计算得出对应的AO7降解量,AO7的降解总量除去因Cr(VI)氧化降解的量剩余为HClO 氧化降解的量;计算结果如下:PMS/ Cr(VI)/Cl-体系降解AO7的反应中,HClO氧化降解的部分占70.8%,Cr(VI)氧化降解的部分占29.2%.综上所述,PMS/Cr(VI)/Cl-体系中AO7的降解是由于Cl-与PMS反应产生氧化性物质HClO以及PMS投加创造的酸性条件使得Cr(VI)具有强氧化性的共同作用,其中起主导作用的是HClO;Cr(VI)的转化是由自身与AO7发生氧化还原反应导致的. 为探究PMS/Cr(VI)/Cl-体系降解AO7的途径进行中间产物的测定,测定结果见表1,根据测定结果推测的AO7降解途径见图7.如图7所示,反应中AO7的-N=N-优先被打开从而使染料脱色,AO7被分解为对氨基苯磺酸钠及1-氨基-2-萘酚;随后对氨基苯磺酸钠可以被氧化成对苯酚及1,2,4苯三酚,同时磺基脱下形成甲基磺酸;1-氨基-2-萘酚可以被氧化形成1-硝基-2-萘酚及2-萘酚,随后萘环被破坏生成多种苯系物;沿着对氨基苯磺酸钠及1-氨基-2-萘酚2条路径氧化最终均生成苯系物,且苯环无法进一步被打开.为探究体系降解AO7的矿化程度在反应前后进行TOC测定,测定结果反应前后TOC无明显变化,说明体系降解AO7无法达到矿化,与中间产物测定结果相同. 3.1 单独PMS在120min内对AO7基本无降解,PMS/Cr(VI)、PMS/Cl-以及PMS/Cr(VI)/Cl-体系均可以有效降解AO7,120min时降解率分别达到58.8%、88.9%及97.9%;PMS/Cr(VI)以及PMS/Cr (VI)/Cl-体系中Cr(VI)去除率分别可达到35.9%及22.1%.3.2 初始pH值对PMS/Cl-体系降解AO7无明显影响.PMS/Cr体系在降解AO7的同时Cr(VI)自身可以转化为Cr(III);随着pH值降低AO7及Cr(VI)去除率逐渐升高,pH值在3以下反应效果较好.3.3 PMS/Cr(VI)/Cl-体系中AO7的降解主要是强氧化性物质HClO以及Cr(VI)的共同作用,其中起主导作用的是HClO;Cr(VI)的转化是由自身与AO7发生氧化还原反应导致的.3.4 反应过程中AO7的-N=N-键首先被破坏从而使染料脱色,且随着反应进行萘环可以被破坏但苯环无法被进一步打开,体系反应前后TOC值不变,不能达到矿化.【相关文献】[1] 郭建博.高盐染料废水的生物降解及介提强化作用研究 [D]. 大连:大连理工大学, 2005. Guo JB. Biodegradation of hyper-salinity dye wastewaters and the accelerating effect of redox mediators [D]. Dalian: Dalian University of Technology, 2005.[2] 张禄艳,王竞,吕红,等.高盐条件下染料酸性橙7的生物降解特性 [J]. 中国环境科学, 2009,29(6):640-645. Zhang LY, Wang J, Lv H, et al. Biodegradation characteristics of Acid Orange 7under hypersaline conditions [J]. China Environmental Science, 2009,29(6):640-645.[3] Liu W, Liu C, Liu L, et al. Simultaneous decolorization of sulfonated azo dyes and reduction of hexavalent chromium under high salt condition by a newly isolated salt-tolerant strain Bacillus circulans BWL1061 [J]. Ecotoxicology and Environmental Safety, 2017,141: 9-16.[4] Hussain S, Quinn L, Li J, et al. Simultaneous removal of malachite green and hexavalent chromium by Cunninghamella elegans biofilm in a semi-continuous system [J]. International Biodeterioration & Biodegradation, 2017,125:142-149.[5] Anwar F, Hussain S, Ramzan S, et al. Characterization of Reactive Red-120Decolorizing Bacterial Strain Acinetobacter junii FA10Capable of Simultaneous Removal of Azo Dyes and Hexavalent Chromium [J]. Water, Air, & Soil Pollution,2014,225:1-16.[6] 方伟.改性石墨烯/聚吡咯复合材料对水中Cr(VI)及刚果红的吸附研究 [D]. 广州:华南理工大学, 2018. Fang W. Research on Adsorption of hexavalent chromium and CongoRed in aqueous solutions onto modified graphene/pyrrole composite materials [D]. Guangzhou: South China University of Technology, 2018.[7] Kyzas G Z, Lazaridis N K, Kostoglou M. On the simultaneous adsorption of a reactive dye and hexavalent chromium from aqueous solutions onto grafted chitosan [J]. Journal of Colloid And Interface Science, 2013,407:432-441.[8] Fu F, Han W, Tang B, et al. Insights into environmental remediation of heavy metal and organic pollutants: Simultaneous removal of hexavalent chromium and dye from wastewater by zero-valent iron with ligand-enhanced reactivity [J]. Chemical Engineering Journal, 2013,232:534-540.[9] Kim S A, Kamala-Kannan S, Oh S, et al. Simultaneous removal of chromium(VI) and Reactive Black 5using zeolite supported nano- scale zero-valent iron composite [J]. Environmental Earth Sciences, 2016,75:1-8.[10] Xie W, Zhang M, Liu D, et al. Photocatalytic TiO2/porous BNNSs composites for simultaneous LR2B and Cr (VI) removal in wool dyeing bath [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017,333:165-173.[11] Djellabi R, Ghorab M, Sehili T. Simultaneous Removal of Methylene Blue and Hexavalent Chromium From Water Using TiO2/Fe(III)/ H2O2/Sunlight [J]. CLEAN-SOIL AIR WATER, 2017:45.[12] Suzuko Y, Atsushi Y, Hiroyuki A. Photocatalytic degradation of chloroform in the gas phase on the porous TiO2 pellets: effect of Cl- accumulated on the catalyst surface [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2005,169(2):191-196.[13] Cardoso J C, Lizier T M, Zanoni M V B. Highly ordered TiO2 nanotube arrays and photoelectrocatalytic oxidation of aromatic amine [J]. Applied Catalysis B: Environmental, 2010,99(1/2):96-102.[14] Vogtenhuber D, Podloucky R, Redinger J. Ab initio study of atomic Cl- dsorption on stoichiometric and reduced rutile TiO2 (110) surfaces [J]. Surface Science, 2000,(454-456):369-373.[15] 古振川,高乃云,安娜,等.Cl-/PMS体系降解甲氧苄啶的效能与机理 [J]. 中国环境科学, 2018,38(3):977-984. Gu Z C, Gao N Y, An N, et al. Efficiency and mechanism of trimethoprim degradation in Cl-/PMS system [J]. China Environmental Science,2018,38(3):977-984.[16] 张珂,许芬,陈家斌,等.丙酮/氯离子协同活化过一硫酸盐降解酸性橙 [J]. 中国环境科学, 2018,38(11):4159-4165. Zhang K, Xu F, Chen JB, et al. Acetone and chloride ion synergistically activate peroxymonosulfate to decolorize acid orange [J]. China Environmental Science, 2018,38(11):4159-4165.[17] 谈超群,董雨婕,钟毅杰,等.新型氯离子活化过氧单硫酸盐的非自由基系统去除水中扑热息痛的研究 [J]. 四川大学学报(自然科学版), 2018,55(4):819-826. Tan C Q, Dong Y J, Zhong Y J, et al. Acetaminophen degradation with non-radical based reactive oxidants generated by chloride activated peroxymonosulfate system [J]. Journal of Sichuan University (NaturalScience Edition), 2018,55(4):819-826.[18] Liang C J, Bruell C J, Marley M C, et al. Persulfate oxidation for in situ remediation of TCE. I Activated by ferrous ion with and without a persulfate-thiosulfate redox couple [J]. Chemosphere, 2004,55(9): 1213-1223.[19] Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt [J]. Environmental Science and Technology, 2003,37(20):4790-4797.[20] Asadi A, Dehghani MH, Rastkari N, et al. Comparison of potentiality of Zinc oxide nanoparticles and hydrogen peroxide in removal of hexavalent chromium from polluted water [J]. Journal of Birjand University of Medical Sciences, 2012,19:277-285.[21] GB/7467-87 水质六价铬的测定二苯碳酰二肼分光光度法 [S]. GB/7467-87 Water quality-Determination of chromium(VI) - 1,5diphenylcarbohydrazide spectrophotometric method [S].[22] Betterton E A, Hoffmann M R. Kinetics and mechanism of the oxidation of aqueous hydrogen sulfide by peroxymonosulfate [J]. Environmental Science and Technology, 1990,24(12):1819-1824.[23] 葛勇建,蔡显威,林翰,等.碱活化过一硫酸盐降解水中环丙沙星 [J]. 环境科学,2017,38(12):5116-5123. Ge Y J, Cai X W, Lin H, et al. Base activation of peroxymonosulfate for the degradation of ciprofloxacin in water [J]. Environmental Science, 2017,38(12):5116-5123.[24] Wang Z H, Yuan R X, Guo Y G, et al. Effects of chloride ions on bleaching of azo dyes by Co2+/oxone regent: Kinetic analysis [J]. Journal of Hazardous Materials, 2011,190(1–3):1083-1087.[25] Deborde M, Gunten U V. Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: A critical review [J]. Water Research, 2008,42(1/2):13-51.[26] Yang S Y, Wang P, Yang X, et al. Degradation efficiencies of azo dye Acid Orange7by the interaction of heat,UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide [J]. Journal of Hazardous Materials,2010,179:552-558.[27]徐蕾,袁瑞霞,郭耀广,等.氯离子对钴/单过氧硫酸盐体系降解2,4,6-三氯苯酚的影响 [J]. 武汉大学学报理学版, 2013,59(1):51- 56. Xu L, Yuan R X, Guo Y G, et al. Effects of chloride ions on degradation of 2,4,6-trichlorophenol by Co(II)/peroxymonosulfate (Co/PMS) system [J]. Journal of Wuhan University (Natural Science Edition), 2013,59(1):51-56.。

生物法对偶氮染料废水脱色的研究

生物法对偶氮染料废水脱色的研究

生物法对偶氮染料废水脱色的研究从某印染废水的活性污泥中富集了一个能够高效降解酸性大红GR的菌群。

研究结果表明,该菌群在15h内几乎将100mg/L的酸性大红完全脱色。

该菌群在偏碱性环境下的脱色效果大于酸性环境,并表现出高效广谱染料脱色降解特性。

当温度在10°C~30°C之间时,脱色率随温度的递增而增大,在30°C时脱色率达到最大。

标签:酸性大红GR;脱色;菌群;偶氮染料Abstract:A bacteria group capable of degrading acid scarlet GR was enriched from the activated sludge of a printing and dyeing wastewater. The results showed that the bacteria almost completely decolorized acid scarlet at 100 mg/L within 15h. The decolorizing effect of the bacteria group in the alkaline environment was higher than that in the acidic environment,and showed the characteristics of decolorization and degradation of the dyes with high efficiency and broad spectrum. When the temperature is between 10 °C and 30 °C,the decolorization rate increases with the increase of temperature,and reaches the maximum at 30°C.Keywords:acid scarlet GR;decolorization;microflora;azo dyes1 概述1.1 课题背景染料和印染工业快速发展,这种发展导致了生产废水越趋增多,大约占了总的工业废水的十分之一。

UASB反应器降解偶氮和蒽醌染料废水的特性

UASB反应器降解偶氮和蒽醌染料废水的特性

UASB反应器降解偶氮和蒽醌染料废水的特性吕仪婧,邓志毅*,肖利平(湘潭大学环境科学与工程系,湖南湘潭411105)摘要:采用UASB反应器,在中温(35±1℃)条件下,分别处理了偶氮类(活性艳红X-3B和KD-8B)和蒽醌类(活性艳蓝K-GR)模拟染料废水,对比研究了反应器运行条件,探讨了回流比、水力停留时间和染料种类等因素对染料脱色率的影响。

结果表明:采用维持水力停留时间(hydrodynamic retention time, HRT)为24 h,逐步提高进水染料浓度的方式,在约25d内成功启动反应器。

当偶氮类(活性艳红X-3B)和蒽醌类(活性艳兰KG-R)染料的进水浓度为100 mg/L,回流比为2~2.5倍时,系统的COD 去除率和脱色率均可达到90%以上;过高的回流比不利于染料的脱色;染料种类的变化对其脱色影响不大,但HRT的缩短对染料脱色有较大的影响。

紫外-可见光谱分析显示,偶氮染料脱色是通过偶氮键的断裂,而蒽醌染料脱色则是通过蒽醌共轭结构的破坏来实现的。

关键词:UASB;厌氧;染料废水;偶氮染料;蒽醌染料Degradation Performance of Azo and Anthraquinone Dye1Wastewater Treated by UASB ReactorsLV Yijing,DENG Zhiyi*,XIAO Liping(Department of Environmental Science and Engineering,Xiangtan University,Xiangtan 411105,Hu’nan,China)Abstract: The dyeing wastewaters, which is composed of azo dye – X-3B(C.I.Reactive Red2,referred to as X-3B or RR2), KD-8B(C.I.Reactive Red20,referred to as KD-8B or RR20) and anthraquinone – KG-R (C.I.Reactive Blue19,referred to as K-GR or RB19)respectively, were treated by two same size Upflow Anaerobic Sludge Bed (UASB) reactors under mesophilic condition (35±1℃). During this experiment, the effect of effluent recycle rate, hydraulic retention time (HRT) and the type of dyes were all investigated. The results indicated that two reactors were all successfully started up in about 25 d through the operation fashion of improving the influent dye concentration step by step and maintaining HRT of 24h. The COD removal and decoloration rate could obtain above 90% in two reactors with the influent X-3B and K-GR concentration of 100 mg/L and recycle rate of 2~2.5 times. High recycle rate is not benefit for improving decoloration rate. The change of dye types had little effects on its decoloration rate, but the decrease of HRT had large effects on the decoloration rate. Based on the results of UV-Vis spectra analysis, the decoloration of azo and anthraquinone dye was achieved by the breakage of azo and anthraquinone bond respectively.基金项目:国家重大专项东江项目子课题四(2009ZX07211-005-04),湘潭大学博士启动基金(08QDZ31)。

微生物电解池原理及其在废水处理中的研究进展

微生物电解池原理及其在废水处理中的研究进展

微生物电解池原理及其在废水处理中的研究进展高凯拓;华立锋;陶丽杰;顾国平;朱铭;顾亚萍;徐向阳【摘要】微生物电解池是一种利用电极表面的氧化还原反应,通过电极与微生物间电子强化微生物代谢的技术.这项创新技术逐渐被国内外研究者们所关注,并被用于废水处理及高效产氢方向.本论文主要论述了微生物电解池电极微生物及电子传递机理以及其在废水处理领域的研究进展,并展望了其在该领域的发展方向.【期刊名称】《能源环境保护》【年(卷),期】2016(030)004【总页数】4页(P1-4)【关键词】微生物电解池;原理;废水处理;研究进展【作者】高凯拓;华立锋;陶丽杰;顾国平;朱铭;顾亚萍;徐向阳【作者单位】中国联合工程公司,浙江杭州310052;浙江大学,浙江杭州310058;中国联合工程公司,浙江杭州310052;中国联合工程公司,浙江杭州310052;浙江菲达环保科技股份有限公司,浙江绍兴311800;中国联合工程公司,浙江杭州310052;中国联合工程公司,浙江杭州310052;浙江大学,浙江杭州310058【正文语种】中文【中图分类】X703生物电化学系统(Bioelectrochemical system,BES)最早起源于Potter (1911)发现大肠杆菌代谢产生电流,但在此后的一个多世纪里因产电效能低而不被人们所关注。

近几十年来,能源短缺问题日益加剧,环境污染问题凸显,在这样的背景下生物电化学系统在研究领域重获生机,相关报道的研究文献数量呈爆发型增长。

根据外电路是否外加直流电源,一般可将生物电化学系统分为微生物燃料电池(Microbial Fuel Cell,MFC)和微生物电解池(Microbial Electrolysis Cell,MEC),。

此外在工业生产领域,微生物脱盐池(Microbial De-salination Cell,MDS)以及微生物电合成(Microbial Electrosynthesis,MES)也逐渐被研究者关注。

Recovery of Vanadium from Acid and Basic Leach Sol

Recovery of Vanadium from Acid and Basic Leach Sol
Journal of Geological Resource and Engineering 4 (2015) 213-218 doi:10.17265/2328-2193/2015.04.006
D
DAVID PUBLISHING
Recovery of Vanadium from Acid and Basic Leach Solutions of Spent Vanadium Pentoxide Catalysts
All Rights Reserved.
Key words: Vanadium, deactivated, poisoned, catalyst, spectroscopy, diffraction, leaching, calcinations.
1. Introduction
The vanadium pentoxide catalysts are used in the sulfuric acid manufacture, but as an inherent consequence of the process they are deactivated or poisoned, reason why they need to be renewed. The vanadium content is around 4-5% w/w, this element has many industrial uses and it is categorized as dangerous and toxic for environment [1, 5].
The purpose of the present work is to study the possibilities for treat the catalyst residues and to study optimum vanadium pentoxide recovery from spent vanadium pentoxide catalyst. The recovery consists in leaching, following of precipitate by converting the vanadium into vanadate and finally calcination a high temperature of the obtained vanadium pentoxide [2].

BDD电极电化学氧化处理印染废水

BDD电极电化学氧化处理印染废水

印染废水污染物成分复杂、浓度高、难降解等,如果未经有效处理就排放,会严重污染土壤和水环境,影响人体健康。

随着人们环保意识的增强及国家排放标准的不断提高,传统的印染废水处理工艺难以满足要求,需要进行深度处理[1-2]。

高级氧化法利用光、电、氧化剂等产生活性强的自由基(如·OH ),将大分子有机污染物分解为小分子甚至H 2O 、CO 2等无机物处理有机废水,氧化能力强、处理效率高、无副产物。

高级氧化法包括电化学氧化法、臭氧氧化法、光催化氧化法、Fenton 氧化法等[3-6]。

电化学氧化法利用电化学产生的强氧化·OH 无差别降解有机污染物,设备简单、易于规模化控制、无添加物二次污染,广泛应用于有机废水的处理[7]。

硼掺杂金刚石膜(BDD )电极易产生羟基自由基、电化学势窗大、导电性能良好、背景电流低,对多种有机污染物均表现出良好的去除效果,受到广泛关注[8-9]。

本实验以实际印染废水为研究对象、COD 去除率为考察指标,探究不同因素对BDD 电极电化学氧化技术处理印染废水效果的影响。

1实验1.1试剂与仪器彭敏1,彭羽2(1.四川建筑职业技术学院设备工程系,四川德阳618000;2.西南交通大学生命科学与工程学院,四川成都610000)摘要:以BDD 电极对印染废水进行电化学氧化处理,考察处理时间、印染废水初始pH 、电极材料、印染废水稀释倍数、电解质Na 2SO 4浓度和电流密度对COD 去除率的影响。

结果表明:BDD 电化学氧化对印染废水具有较好的处理效果,在不调节pH 、稀释1倍、电解质浓度0.4mol/L 、电流密度50mA/cm 2的情况下,90min 时COD 去除率达到89.7%。

关键词:电化学氧化;硼掺杂金刚石;印染废水;COD 去除率中图分类号:X703.1文献标志码:B文章编号:1004-0439(2021)01-0058-03Treatment of printing and dyeing wastewater by electrochemicaloxidation with BDD electrodePENG Min 1,PENG Yu 2(1.Sichuan College of Architectural Technology,Deyang 618000,China;2.Southwest Jiaotong UniversitySchool of Life Science and Engineering,Chengdu 610000,China)Abstract:BDD electrode was used to treat printing and dyeing wastewater by electrochemical oxidation.The effects of treatment time,initial pH of printing and dyeing wastewater,electrode material,dilution ratio of printing and dyeing wastewater,concentration of electrolyte Na 2SO 4and current density on COD removal rate were investigated.The result showed that BDD electrochemical advanced oxidation had good treatment effi⁃ciencies on dyeing wastewater.Under the conditions of no adjustment of pH,double dilution,electrolyte con⁃centration 0.4mol/L and current density 50mA/cm 2,the COD removal rate reached 89.7%after 90min.Key words:electrochemical oxidation;BDD;dyeing wastewater;COD removal rateBDD 电极电化学氧化处理印染废水收稿日期:2019-07-18作者简介:彭敏(1981—),男,四川德阳人,高级工程师,讲师,工程硕士,主要研究方向给排水工程。

211171517_降解偶氮染料嗜盐菌的分离、降解特性及机制

211171517_降解偶氮染料嗜盐菌的分离、降解特性及机制

化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 4 期降解偶氮染料嗜盐菌的分离、降解特性及机制田芳1,郭光1,丁克强1,杨凤1,刘翀2,王慧雅1(1 南京工程学院环境工程学院, 江苏 南京 211167;2 中国农业科学院农业环境与可持续发展研究所,北京 100081)摘要:高盐限制了普通微生物处理印染废水的效果,分离嗜盐微生物对于提高高盐印染废水的处理效率,具有重要的应用价值。

本研究从印染废水的活性污泥中,分离了一株降解酸性金黄G 的菌株,通过16S rDNA 对该菌进行鉴定,并研究了其降解机理。

结果表明,该菌与Exiguobaterium strain ACCC11618同源性最高,属于微小杆菌属。

该菌在5%盐度下,8h 内对100mg/L 的酸性金黄G 脱色95%以上。

最佳脱色条件是30℃下,pH=7,5%盐度,以酵母粉作为碳源。

偶氮还原酶、NADH-DCIP 酶是主要的降解酶,盐度抑制了这两种酶的活性。

酸性金黄G 的偶氮键对称断裂成4-氨基苯磺酸和对氨基二苯胺,进一步降解为二苯胺、苯胺、2-庚酮肟等,降解后产物毒性降低。

菌株对不同浓度的酸性金黄G 具有耐受性,具有良好的应用潜力。

该研究以期为嗜盐菌处理高盐印染废水提供菌种资源和理论依据。

关键词:偶氮染料;分离;脱色;酸性金黄G ;嗜盐菌中图分类号:X170 文献标志码:A 文章编号:1000-6613(2023)04-2115-07Isolation of halophilic bacterium and their decolorization characteristicsand mechanism of azo dyesTIAN Fang 1,GUO Guang 1,DING Keqiang 1,YANG Feng 1,LIU Chong 2,WANG Huiya 1(1 College of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, Jiangsu, China; 2 Institute ofEnvironment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China)Abstract: High salinity in textile wastewater limited the application of biological method in textile wastewater. Isolation of halophilic microorganisms is important for improving the treatment efficiency of high salinity textile wastewater. A strain was isolated from active sludge of textile wastewater, which can decolorize metanil yellow. The bacteria were identified by 16S rDNA. The degradation mechanism was analyzed. The results showed the bacteria had the highest homology with Exiguobaterium strain ACCC11618 and belong to the genus. At 5% salinity, more than 95% metanil yellow was decolorized by S2 within 8h. The optimum decolorization condition was 5% salinity, pH 7, at 30℃, and yeast powder as carbon source. Azo reductase and NADH-DCIP are the main degrading enzymes. Salinity inhibits the activity of these two enzymes. The azo bond of metanil yellow was symmetrically broken into 4-aminobenzene sulfonic acid and p -aminobenzidine, which further degraded into diphenylamine, aniline, and 2-heptanone oxime. The toxicity was decreased after decolorization. The strain could decolorize metanil yellow at different研究开发DOI :10.16085/j.issn.1000-6613.2022-1092收稿日期:2022-06-10;修改稿日期:2022-09-26。

挑战杯范例大全

挑战杯范例大全

序号:编码:第十届“挑战杯”全国大学生课外学术科技作品竞赛作品申报书作品名称:白毒鹅膏菌漆酶的产酶条件、酶学性质及用于染料脱色的研究学校全称:山东大学威海分校申报者姓名(集体名称):山海联创类别:√自然科学类学术论文□哲学社会科学类社会调查报告和学术论文□科技发明制作A类□科技发明制作B类报送方式:√省级报送作品□高校直送作品说明1.申报者应在认真阅读此说明各项内容后按要求详细填写。

2.申报者在填写申报作品情况时只需根据个人项目或集体项目填写A1或A2表,根据作品类别(自然科学类学术论文、哲学社会科学类社会调查报告和学术论文、科技发明制作)分别填写B1、B2或B3表。

所有申报者可根据情况填写C表。

3.表内项目填写时一律用钢笔或打印,字迹要端正、清楚,此申报书可复制。

4.序号、编码由第十届“挑战杯”全国大学生课外学术科技作品竞赛全国组委会填写。

5.学术论文、社会调查报告及所附的有关材料必须是中文(若是外文,请附中文本),请以4号楷体打印在A4纸上,附于申报书后,字数在8000字左右(文章版面尺寸14.5×22cm)。

6.发起高校的三件直送作品和各省(区、市)通过初评的作品(数量参照“作品数额分配方案”)各一式四份分别按全国组委会规定的时间用特快专递寄至全国竞赛组委会办公室。

7.作品申报书须按要求由各省或各校竞赛组织协调机构统一寄送。

8.其他参赛事宜请向本校竞赛组织协调机构咨询。

9.寄送地址:南开大学团委第十届“挑战杯”全国大学生课外学术科技作品竞赛组委会办公室联系人:韩旭联系电话:(022)23508540传真:(022)23508540邮政编码:300071A2.申报者情况(集体项目)说明:1.必须由申报者本人按要求填写;2.申报者代表必须是作者中学历最高者,其余作者按学历高低排列;B1.申报作品情况(自然科学类学术论文)说明:1.必须由申报者本人填写;2.本部分中的科研管理部门签章视为对申报者所填内容的确认;3.作品分类请按作品的学术方向或所涉及的主要学科领域填写;C.当前国内外同类课题研究水平概述说明:1.申报者可根据作品类别和情况填写;D.推荐者情况及对作品的说明说明:1.由推荐者本人填写;2.推荐者必须具有高级专业技术职称,并是与申报作品相同或相关领域的专家学者或专业技术人员(教研组集体推荐亦可);3.推荐者填写此部分,即视为同意推荐;4.推荐者所在单位签章仅被视为对推荐者身份的确认。

金属配位化合物光催化降解罗丹明 B

金属配位化合物光催化降解罗丹明 B

金属配位化合物光催化降解罗丹明 B吴震宇;刘宁宁【摘要】当今世界的水污染日益严重、水资源逐渐匮乏,因此开发出利用太阳光能降解水中有机污染物的催化剂是当前研究的热点之一。

以金属配位化合物为光催化剂,在可见光的照射下,研究了其对有机染料罗丹明 B 的光催化降解作用。

结果表明,当罗丹明 B 水溶液的浓度为1×10-5 mol/L、罗丹明 B 水溶液的体积为80 mL、催化剂质量为0.02 g、反应温度为25℃、可见光功率为300 W、照射时间为120 min 时,Co(en)3 Cl3对罗丹明 B 的降解率为87%,Ni(en)3 Cl2对罗丹明 B 的降解率为2%,Ni(dien)2 Cl2对罗丹明 B 的降解率为8%。

因此,Co(en)3 Cl3是性能良好的光催化剂。

%Nowadays,the increasingly serious phenomenon of water pollution and the gradual shortage of water resources have been addressed more attentions all over the world.Developing effective catalyst for the degradation of organic pollutants in the water by using solar energy is one of the hot research topic currently.In this paper,the photocatalytic degradation of organic dye rhodamine B under visible light irradiation was studied by using metal coordination compounds as photocatalyst.The results show that the degradation rate of rhodamine B by Co(en)3 Cl3 reach 87%,the degradation rate of rhodamine B by Ni(en)3 Cl2 reach 2%,the degradation rate of rhodamine B by Ni (dien)2 Cl2 reach 2%,under the condition of rhodamine B aqueous solution (1×10 -5mol/L)80 mL,catalyst dosage 0.02 g,reaction temperature 25 ℃,300 W visible light irradiation for 120 min.Thus,Co(en)3 Cl3 is a good photocatalyst.【期刊名称】《辽宁石油化工大学学报》【年(卷),期】2016(036)002【总页数】4页(P5-8)【关键词】金属配位化合物;罗丹明 B;光催化;可见光;降解率【作者】吴震宇;刘宁宁【作者单位】辽宁石油化工大学化学化工与环境学部,辽宁抚顺 113001;辽宁石油化工大学化学化工与环境学部,辽宁抚顺 113001【正文语种】中文【中图分类】TE662;TQ016工业的发展给环境带来了越来越多的污染,其中,水污染由于直接威胁到人类的健康,因此是当前研究的热点之一。

微生物在染料脱色中的应用及其机理

微生物在染料脱色中的应用及其机理

收稿日期:2000-08-22作者简介:郝鲁江(1972-),男,山东省济南市人,山东轻工业学院讲师,硕士,主要从事微生物学理论及应用的研究。

微生物在染料脱色中的应用及其机理郝鲁江1,许 平2(11山东轻工业学院食品工程系,山东济南 250100;21山东大学微生物技术国家重点实验室,山东济南 250100)摘要: 本文系统介绍了染料按化学结构及应用的分类、染料结构与生色机理的关系,染料脱色微生物,脱色机理及其相关的遗传背景。

关键词: 微生物;染料;脱色;机理中图法分类号:X172 文献标识码:A 文章编号:1004-4280(2001)02-0052-05染料是纺织、印染等染色废水的主要污染物。

染料脱色是印染废水治理的关键环节。

利用微生物氧化、分解、吸附废水中有机物从而净化废水的方法称为废水的生物处理。

微生物用于降解、转化物质有如下优势[1]:个体小,比表面积大,代谢速率快;种类繁多,分布广泛,代谢类型多样降解酶专一性强,且很多酶是在污染物的诱导下产生的;微生物繁殖快,易变异适应性强;等等。

这些特点使得微生物在降解、转化物质方面有着巨大的潜力。

研究染料脱色微生物已经有相当长的一段时间,并发现了许多有染料脱色能力的微生物,如细菌中的假单胞杆菌[2](Pseudomonas ),藻类中的普通小球藻[3](Chlorella valgaris )、蛋白核小球藻[3](Chlorella pyrenoidosa ),真菌中的黄孢原毛平革菌[4-7](Phanerochaete chrysospori 2um )等。

本文介绍了染料的分类及其生色机理、染料脱色微生物、脱色机理等方面的内容。

1 染料的分类、结构及生色机理111 染料的分类染料的分类方法有两种[8-10]:其一是根据染料的化学结构;其二是按照染料的应用方法。

以染料分子中类似的基本结构作为分类依据,如靛族、芳甲基、酞菁等。

表1列出了部分染料及其共同的基团。

化学专业英语

化学专业英语
•Class n, 类别 •Classify Vt.分类 • Classification n. 分类
普通化合物分类 我们可以根据化学式按着下面的方法分类许多普
通化合物。
1. Acids, in the conventional sense, may be recognized by noting that the H is written first in the formula and that the rest of the compound is generally nonmetallic. Ex., HCl, H2SO4, HClO.
• become (be) familiar with…熟悉,通晓
例如,盐酸归类为酸,由于已熟悉作为不同类别 的酸的性质,我们就会立即知道这一化合物的一 般性质。
A great many of the compounds we are to study may be classified as acids, bases, salts, metallic oxides, or nonmetallic oxides. Of these five classes of compounds, the first three-acids, bases, and salts-are by far the most important.
• be aware of 知道,意识到……
那么,如果我们能够恰当地将一个化合物归类,我们立 刻就能从这类化合物的性质来了解这个化合物的一般性 质。
For example, HCl is classed as an acid, and by becoming familiar with the behavior of acids as a distinct class, we are at once aware of the general properties of the compound.

地衣芽孢杆菌对雪茄烟叶发酵产香及菌群演替的影响

地衣芽孢杆菌对雪茄烟叶发酵产香及菌群演替的影响

引用格式:宋 雯,陈 曦,余 君,等. 地衣芽孢杆菌对雪茄烟叶发酵产香及菌群演替的影响[J]. 湖南农业科学,2023(8):69-75. DOI:DOI:10.16498/ki.hnnykx.2023.008.0152021年国产手工雪茄销量超过2 000万支[1],但国产雪茄烟叶香气不够浓郁、化学成分不协调[2],因此需要通过微生物、酶及一些化学作用共同完成雪茄烟叶的发酵以提升烟叶品质。

利用生物发酵技术改善雪茄烟叶品质成为了一大研究热点[3]。

微生物的生长代谢使得烟叶中的木质素、蛋白质等生物大分子降解或转化,形成一系列的挥发性香气物质,同时降低烟叶中的青杂气,进而提升发酵后烟叶品质[4-5]。

迟建国[6]为了降低烟叶中木质素含量,从废弃烟草中筛选出一株白腐菌并用于烟叶发酵,使得发酵后烟叶木质素含量降低30%,并显著提升了烟叶品质;蔡文等[7]为了降低烟叶蛋白质含量,采用源自烟叶的高斯芽孢杆菌进行发酵,降低了烟叶总氮含量,且提高了烟叶中β-紫罗兰酮、E-大马士酮等类胡萝卜素降解产物的含量。

张倩颖等[8]使用冬虫夏草菌株发酵烟叶,提高了发酵后烟叶中茄酮等西柏烷类降解产物的香气含量,且感官质量评价明显提升。

地衣芽孢杆菌作为一种遗传背景清楚的益生菌[9],被广泛应用于食品发酵等[10-11],许多发酵食品特征性风味化合物与地衣芽孢杆菌代谢特征关系密切[12-13]。

目前地衣芽孢杆菌在烟草领域主要作为根际促生菌用于育苗过程[14-15]。

雪茄发酵过程中菌群演替规律对科学可控地设计雪茄发酵工艺具有重要意义[16]。

由于传统分离培地衣芽孢杆菌对雪茄烟叶发酵产香及菌群演替的影响宋 雯1,陈 曦1,余 君2,胡路路1,陈 雄1,王 志1(1. 发酵工程教育部重点实验室,湖北工业大学,湖北武汉 430068;2. 湖北省烟草科学研究院,湖北武汉 430030)摘 要:为揭示施加地衣芽孢杆菌对雪茄烟叶发酵的影响,结合宏基因组学技术对雪茄烟叶发酵后香气物质生成、菌群演替及其功能多样性进行了分析,探讨了各菌属在香气物质形成中的作用,揭示了菌群演替特征与代谢功能变化。

3种酸性染料对不同去色工艺处理的非洲白梧桐及桦木单板的染色效果

3种酸性染料对不同去色工艺处理的非洲白梧桐及桦木单板的染色效果

家具2019年第40卷第5期Furniture2019Vol.40No.5 3种酸性染料对不同去色工艺处理的非洲白梧桐及桦木单板的染色效果梁铁强-谢序勤2,程明娟2,沈煜燕2,王立娟心(1.东北林业大学材料科学与工程学院.哈尔滨150036:2.德华兔宝宝装饰新材股份有限公司,浙江德清313200)摘要:为了提高低档木材的后续使用价值,对3种去色工艺处理得到的非洲白梧桐及桦木单板进行酸性染料染色实验,以色度参数为对比依据得出适用于酸性染料染色的去色工艺。

实验结果表明染色后的过氧乙酸去色单板的明度值相对较髙,并且在色度方面与其余两种传统去色工艺所得单板在染色后的色度方面相差不大,说明过氧乙酸去色工艺更加具有优势,既有利于后续的染色,又在视觉上又提高了染色后单板的明亮度与艳丽程度,以期为提高中低档木材的表面涂饰效果提供一定的参考。

关键词:非洲白梧桐;桦木;去色;酸性染料;色度中图分类号:TS664文献标识码:A文章编号:1000-4629(2019)05-0009-04Study of Dyeing Effects of Three Acid Pigments on Triplochiton Sclexylon and Birch Veneers Decolorized by Different DecolorizationProcessesLIANG Tieqiang1>XIE Xuqin2,CHENG Mingjuan2,SHEN Yuyan2,WANG Lijuan1,2*(1.College of Material Science and Engineering,Northeast Forestry University,Harbin150036,China;2.Zhejiang Province Dehua TBDecoration Material Research Institute,Deqing313200,Zhejiang,China)Abstract:In order to improve the subsequent application values of low・grade wood,three acid pigments were used as dyeing agents to dye the decolorized Triplochiton sclexylon and birch veneers under three de・colorization processes.Based on the chromaticity parameters,the optimum decolorization process for acid pigments dyeing treatment was obtained.It was found that the lightness values of the peracetic acid deco1・orized veneers after dyeing was higher than that of the other two decolorized veneers,but the chroma of all the veneers was not significantly different.Peracetic acid decolorization process was the optimum decolor・ization process for the subsequent acid pigments dyeing treatment,and it also obviously improved the brightness and brilliance of the dyed veneers.Key words:Triplochiton sclexylon;birch;acid dyes;decolorization;acid pigment;chroma基金项目:2017年度湖州市“南太湖精英计划”创新领军人才创新短期项目(〔2017〕1号)。

过一硫酸盐碱催化处理染料废水

过一硫酸盐碱催化处理染料废水

中国环境科学 2020,40(2):647~652 China Environmental Science 过一硫酸盐碱催化处理染料废水翟俊1*,柳沛松1,赵聚姣1(重庆大学环境与生态学院,三峡库区生态环境教育部重点实验室,重庆 400045)摘要:利用PMS碱催化法处理亚甲基蓝、酸性橙7(AO7)和罗丹明B(RhB)3种典型染料,优化了脱色条件并分析了机理.在pH=10.8~11.5(亚甲基蓝)或pH=10.0~10.8(酸性橙7或罗丹明B),PMS投加量100mg/L的最优条件下,亚甲基蓝、酸性橙7和罗丹明B的脱色速率常数可分别达到0.097,0.074,0.004min-1,脱色率可分别达到95.1%,93.3%和30.1%.捕获剂实验证实PMS碱催化脱色3种染料时起主要作用的均是单线态氧.基于紫外-可见全波长光谱的结果推测,亚甲基蓝和酸性橙7反应脱色较快可归因于单线态氧对噻嗪生色基团和偶氮键的攻击更有效率.关键词:染料废水;过一硫酸盐(PMS);碱催化中图分类号:X703 文献标识码:A 文章编号:1000-6923(2020)02-0647-06Treatment of dye wastewater by base catalysis of peroxymonosulfate (PMS). ZHAI Jun1*, LIU Pei-song1, ZHAO Ju-jiao1 (1.Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400045, China). China Environmental Science, 2020,40(2):647~652Abstract:Three typical dyes, methylene blue, acid orange 7, and rhodamine B were treated by base catalysis of PMS in this study to investigate the optimal degradation conditions and the mechanism. Under the optimal condition (pH=10.8~11.5(methylene blue) or pH=10.0~10.8(acid orange 7 or rhodamine B), PMS dosage=100mg/L), the decolorization rate constants of methylene blue, acid orange 7 and rhodamine B were 0.097, 0.074, and 0.004min-1, respectively, and the decolorization efficiency were 95.1%, 93.3%, and 30.1%, respectively. The scavenging tests indicated that singlet oxygen played a critical role in the treatment by PMS/base for all of the three dyes. Based on the results of UV-Vis spectra analysis, it could be speculated that the faster decolorization rates of methylene blue and acid orange 7 could be due to the more efficient oxidation of the thiazide chromophore group and the azo bond by singlet oxygen.Key words:dye wastewater;peroxymonosulfate (PMS);base catalysis我国是染料生产大国,产量可达全球的65%以上[1],这也导致我国染料废水污染问题尤为严峻.染料种类繁多且具有生物毒性,传统的生物法难以对其进行有效处理.利用强氧化性自由基处理污染物的高级氧化技术在处理染料废水方面受到了广泛的关注,如芬顿法已经被用于处理酸性品红和丽春红等染料,显示出了优异的效果[2-3].但传统芬顿法具有适用pH值范围窄(pH=3~6)且产生大量铁泥的缺点,严重限制了其进一步应用[4].过一硫酸盐(PMS)法作为一种类芬顿技术近年来日益受到重视.PMS可在较宽pH值范围内产生强氧化性的硫酸根自由基(2.5~3.1eV),能够实现对有机染料的快速降解[5].如徐鹏飞等[6]通过紫外活化光催化剂过硫酸盐对废水中的甲基橙染料进行降解,在pH=9条件下反应90min,降解率达到87.6%.刘贝贝[7]利用Co2+催化PMS降解罗丹明B,反应1min,去除率达到100%.Huang等[8]用Co2+催化PMS降解双酚A, TOC的去除率可达40%.然而,现有研究大多依靠外部能量(紫外光)或可能导致二次污染的催化剂进行激活,限制了技术的应用前景.研究表明,PMS在碱性条件下无需催化剂和外部能量就可以发生自身活化过程,实现对污染物的降解[9-10].这种PMS碱催化技术避免了上述现有PMS活化技术的缺点,有广阔的潜在前景.但在染料废水处理方面,该技术仍处于初步阶段.由于染料种类繁多,不同类型染料在氧化处理时其反应过程会有所差异,因此了解PMS碱催化对多种染料的处理效果具有重要意义,而相关的研究仍未见报道.本研究选择了噻嗪类阳离子型染料亚甲基蓝、氧杂蒽类阳离子染料罗丹明B(RhB)、偶氮类阴离子型染料酸性橙7(AO7)3种染料的模拟废水作为处理对象,考察了PMS碱催化方法对其的处理效果,收稿日期:2019-06-24基金项目:重庆市社会事业与民生保障科技创新专项重点研发项目(csct2017shms-zdyfX0050)* 责任作者, 教授, zhaijun@648 中国环境科学 40卷优化了脱色条件并分析了pH值、PMS投加量、温度等因素的影响,阐明了反应过程中的自由基机理并对脱色途径进行了分析.研究成果有望提高对于PMS碱催化过程的认识深度并为该技术在染料废水处理方向的潜在应用提供理论参考.1材料与方法1.1 主要试剂与仪器主要试剂:过硫酸氢钾,纯度≥47%,购于上海阿拉丁生化科技股份有限公司;L-组氨酸,纯度≥98.5%,购于成都市科隆化学品有限公司;其他使用的化学品试剂均为分析纯.主要仪器:紫外分光光度计(型号:UV-2550)、pH 计(型号:PHS-3C)、恒温磁力搅拌器(型号:85-2A)、顺磁共振波谱仪ESR/EPR(型号:布鲁克a300).1.2 PMS碱催化处理染料废水实验1.2.1 pH值对PMS碱催化的影响实验在250mL烧杯中进行,反应总体系为100mL,亚甲基蓝浓度为50mg/L.用NaOH溶液调节反应体系pH值到指定值,稳定后加入有效浓度为100mg/L的PMS,反应开始.由于PMS为酸性,在PMS加入后需立即用NaOH溶液将反应体系pH值调回原设定的pH 值,避免对碱催化造成影响.反应过程中控制反应体系温度为25℃,转速为400r/min.在不同时间点取样测量反应体系中亚甲基蓝浓度的变化情况,研究pH值对PMS碱催化的影响,确定反应最佳pH值.为排除pH值对染料显色的影响,实验在不同pH值下分别作了标线.1.2.2 PMS投加量的影响控制反应温度25℃,转速为400r/min,在之前确定的最佳pH值下,投加指定量的PMS,进行上述反应,同时不投加PMS,进行上述反应,作为空白实验,研究PMS投加量对反应的影响,确定最佳PMS投加量.1.2.3温度对PMS碱催化的影响控制转速为400r/min,在确定的最佳pH值与PMS投加量下,调节反应体系到指定温度后进行上述反应,研究温度对PMS碱催化的影响,确定反应活化能.1.2.4对多种染料的处理效果采用与上述实验相同方法,在最佳PMS投加量下,控制反应温度25℃,转速为400r/min,调节反应体系到指定pH值,分别研究PMS碱催化对酸性橙7与罗丹明B的脱色效果,各染料浓度均为50mg/L.同时在最佳pH值下,不投加PMS,进行上述反应,作为空白实验,研究单独pH值对酸性橙7和罗丹明B显色的影响.1.2.5自由基捕获实验在之前得到的最佳反应条件下分别对亚甲基蓝、酸性橙7、罗丹明B进行上述反应.反应前分别向反应体系中加入浓度为0.4mol/L的乙醇、0.4mol/L的叔丁醇、50mmol/L的L-组氨酸作自由基抑制剂,研究PMS碱催化反应中主要起作用的自由基,同时在最佳pH值条件和最佳PMS投加量下,进行电子顺磁共振(EPR)检测.1.2.6脱色途径分析在之前得到的最佳反应条件下分别对亚甲基蓝、酸性橙7、罗丹明B进行上述反应.对反应前后的混合溶液进行紫外分光光度计的全波段扫描,根据反应前后UV-Vis谱图变化,研究各污染物的脱色途径.2结果与讨论2.1pH值对PMS碱催化效果的影响0102030 40 5060 00.20.40.60.81.0C/C时间(min)图1 亚甲基蓝在不同pH值下的脱色效果Fig.1 Decolorization efficiency of methylene blue at differentpH values如图1所示,不同pH值下,亚甲基蓝的脱色均符合一级动力学模型.随着初始pH值从7.0提高11.5,反应的速率逐渐上升,60min反应对亚甲基蓝的脱色率从25.5%提高至96.8%,在pH=10.8时反应速率常数可达0.097min-1.当pH值从10.8增加到11.5时,反应效果提升并不明显,且当pH=13时反应速率反而出现下降.过高pH值导致效率下降2期翟 俊等:过一硫酸盐碱催化处理染料废水 649的原因是高浓度的OH -会导致PMS 自分解为SO 42-和O 2.基于此可以确认最佳脱色的pH 值条件为10.8~11.5,这一结论也与文献处理其他污染物的报道相一致[9-10].2.2 PMS 投加量的影响在pH=10.8,亚甲基蓝初始浓度50mg/L,反应体系温度为25℃的条件下,向反应体系中分别加入浓度为0,50,100,125mg/L 的PMS,结果如图2所示.在不加入PMS,单独的高pH 值环境下,亚甲基蓝脱色率仅为9.9%,仅在加入PMS 后出现明显的脱色现象.在不同PMS 浓度下,亚甲基蓝的脱色均符合一级动力学模型.当PMS 浓度从50mg/L 增大到100mg/L 时,动力学常数从0.043min-1增大到0.097min -1,60min 时亚甲基蓝脱色率可达95.1%.而进一步提高浓度至125mg/L 时,动力学仅有微弱提高(达到0.115min -1).考虑到PMS 利用效率,故确定PMS 最佳投加量为100mg/L.0 10 20 3040 50 60C /C 0时间(min)图2 亚甲基蓝在不同PMS 投加量下的脱色效果 Fig.2 Decolorization efficiency of methylene blue at differentPMS dosages2.3 温度对碱催化的影响在pH=10.8,亚甲基蓝初始浓度50mg/L,PMS 投加浓度为100mg/L 的条件下,将反应体系温度分别调节至25,34,42℃后开始反应,一级反应速率常数分别为0.097,0.119,0.140min -1,反应速率随温度的提升而加快,实验结果如图3所示.进一步根据阿伦乌斯方程计算了反应所需活化能,如下式所示:ln ln aE k A RT=−(1) 式中:R 为通用气体常数(8.314kJ/(mol ·K)).将ln k 和1/T 进行线性拟合,根据斜率可得到碱催化PMS 脱色亚甲基蓝的反应活化能为16.79Kj /mol.102030 40 506000.20.40.60.81.0C /C 0时间(min)图3 亚甲基蓝在不同温度下的脱色效果Fig.3 Decolorization efficiency of methylene blue at differenttemperatures2.4 对多种染料的处理效果在相同的优化条件下分别处理50mg/L 酸性橙7及50mg/L 罗丹明B 模拟废水,结果如图4(a)、4(b)所示.PMS 碱催化反应对酸性橙7和罗丹明B 都有一定的脱色效果,随着pH 值的升高,反应速率先增大后减小,在pH=10.0~10.8时达到最大,这与脱色亚甲基蓝时的情况基本相同.反应60min,酸性橙7的脱色率最高可达到93.3%,反应速率常数为0.074min -1;反应120min,罗丹明B 的脱色率最高可达到30.1%,反应速率常数为0.004min -1.0102030 40 50600.20.40.60.81.0C /C 0时间(min)650中 国 环 境 科 学 40卷0 15 30 45 60 75 90 105120C /C 0时间(min)图4 PMS 碱催化对酸性橙7(a)和罗丹明B(b)的脱色效果 Fig.4Decolorization of acid orange 7 (a) and rhodamine B (b)by base catalysis of PMS研究同时考察了最佳pH 值条件对酸性橙7和罗丹明B 显色的影响,如图5所示.观察到的现象与脱色亚甲基蓝时相似,在单独的高pH 值环境下,染料几乎不出现脱色.仅在同时加入PMS 后出现明显的脱色现象.0 10 20 3040 50 60C /C 0时间(min)图5 高pH 值对酸性橙7和罗丹明B 显色的影响 Fig.5 Effect of high pH value on the coloration of acid orange7 and rhodamine B对比可知,在3种染料的脱色中,PMS 碱催化对亚甲基蓝的脱色速率最快,对罗丹明B 的脱色速率较慢.PMS 的激活是自由基过程,罗丹明B 为氧杂蒽类染料,酸性橙7为偶氮类染料,亚甲基蓝为噻嗪类染料.因此,推断脱色速率差异可能是由于3种染料的化学结构不同影响了它们被自由基氧化的效率. 2.5 自由基捕获实验为确定在PMS 碱催化中起主要作用的自由基种类进行了捕获剂实验,结果如图6(a)所示.102030 40 506000.20.40.60.81.0C /C 0102030 40 506000.20.40.60.81.0C /C 0153045 60 75900.60.81.0C /C 0时间(min)图6 PMS 碱催化脱色亚甲基蓝、酸性橙7和罗丹明B 的自由基捕获实验Fig.6 Free radical trapping experiment during decolorization of methylene blue, acid orange 7 and rhodamine B by basecatalysis of PMS硫酸根自由基和羟基自由基通常被认为是活化PMS 过程中产生的主要自由基.叔丁醇是常用的羟基自由基捕获剂( k OH ·=3.8~7.6×108M -1·s -1)[11-12];乙醇是常用的硫酸根自由基和羟基自由基捕获剂(k SO4·=1.6~7.7×107M -1·s -1,k OH·=1.2~2.8×107M -12期翟 俊等:过一硫酸盐碱催化处理染料废水 651·s -1)[10].然而通过实验发现,乙醇和叔丁醇的存在对亚甲基蓝脱色的影响基本可忽略不计,表明硫酸根自由基与羟基自由基并不在PMS 碱催化体系中起主要作用.L -组氨酸为常用的单线态氧捕获剂[13],实验表明L -组氨酸的存在对PMS 碱催化脱色亚甲基蓝有明显的抑制作用,且L -组氨酸的投加量越大,反应的抑制越明显.当L -组氨酸的浓度为50mmol/L 时,反应60min,亚甲基蓝的脱色率仅为9.4%.对PMS 碱催化脱色酸性橙7和罗丹明B 进行自由基捕获实验所得结果也基本相同,如图6(b),6(c)所示.这些结果表明,在PMS 碱催化处理这3种染料的过程中,主要起作用的是单线态氧.单线态氧能与捕获剂4-氨基-2,2,6,6-四甲基哌啶(TEMP)形成稳定的TEMPO 自由基, TEMP O 具有顺磁性能够被EPR 探测到信号.在最佳pH 值和最佳PMS 投加量下,加入0.6mmol/L 的TEMP,测定EPR 图谱(图7). TEMPO 的1:1:1三重峰信号特征也进一步表明反应体系中存在单线态氧[9].3460 3480 3500 3520 3540 3560强度(a .u .)磁场(G)图7 最佳pH 值和最佳PMS 投加量条件下的EPR 谱图 Fig.7 EPR spectrum at optimal pH value and optimal PMSdosage2.6 脱色途径分析利用UV -Vis 全波长扫描考察了亚甲基蓝、酸性橙7和罗丹明B 在PMS 碱催化脱色过程中的结构变化.亚甲基蓝的结果如图8(a)所示,对应于亚甲基蓝的噻嗪生色基团在665nm 处的吸收峰在反应60min 后明显减弱,对应于芳烃和多环芳烃类的245和292nm 等波长处的吸收峰也有所下降[14],说明在脱色中破坏的是亚甲基蓝的噻嗪生色集团、芳烃与多环芳烃结构.200400 600 8000.51.01.52.02.5吸光度t =0min t =60min(a) 亚甲基蓝200400 600 8000.51.01.52.02.53.0吸光度t =0min t =60min(b) 酸性橙7200400 600 8000.51.01.5吸光度波长(nm)t =0min t =120min(c) 罗丹明B图8 亚甲基蓝、酸性橙7和罗丹明B 脱色前后紫外可见吸收光谱变化Fig.8 Variation of UV -visible absorption spectra before andafter decolorization of methylene blue, acid orange 7 andrhodamine B偶氮染料酸性橙7脱色前后的紫外可见吸收光谱如图8(b)所示,在484nm 处的吸收峰对应酸性橙7的偶氮键,229和311nm 的吸收峰分别对应酸性橙7的苯环和萘环[15].在反应60min 后,484nm 处偶氮的吸收峰几乎消失,229和311nm 处苯环和萘环的吸收峰也均有下降,说明在脱色过程中,偶氮键、萘环和苯环均发生破坏.罗丹明B 的脱色主要通过N -位脱乙基作用和生色基团共轭结构的破坏[16].罗丹明B 脱色前后的紫外吸收光谱如图8(c)所示,罗丹明B 位于的554nm 处的吸收峰对应于共轭结构中的C =N 和C =O 结652 中国环境科学 40卷构,259nm处的吸收峰对应于罗丹明B的苯环结构.在反应120min后554和259nm处的吸收峰都有所降低,但并不显著.基于自由基捕获实验与以上脱色过程分析,推测PMS碱催化对3种染料脱色速率差异可归结于单线态氧氧化不同结构染料的效率有所不同.PMS 碱催化脱色亚甲基蓝和酸性橙7更快,可能原因是单线态氧对噻嗪生色基团和偶氮键的攻击更有效率.这一点也见于其他研究的报道[17],在氮掺杂污泥碳活化PMS和丙酮活化PMS以单线态氧为主的氧化体系中,亚甲基蓝与酸性橙7也均能够被有效降解,说明单线态氧在亚甲基蓝与酸性橙7的降解中起重要作用.而单线态氧对C=O键等共轭结构的攻击效率较低导致了其脱色罗丹明B速度较慢.3结论3.1PMS碱催化可以有效处理多种染料废水,脱色亚甲基蓝时反应适合的pH值范围为10.8~11.5,脱色罗丹明B或酸性橙7时为10.0~10.8.在最优反应条件下亚甲基蓝、酸性橙7、罗丹明B的脱色速率常数分别可达0.097,0.074,0.004min-1,具有良好发展前景. PMS碱催化对不同种类染料脱色速率存在显著差异,亚甲基蓝和酸性橙7脱色较快而罗丹明B脱色较慢.3.2 3种染料的脱色过程中,PMS自催化产生的单线态氧均起主要作用.其中亚甲基蓝和酸性橙7脱色较快可以归因于单线态氧对噻嗪生色基团和偶氮键的攻击更有效率.参考文献:[1] 周宁,宇秉勇,宋红,等.染料工业废水产污情况分析 [J]. 染料与染色, 2018,55(1):54-61.Zhou N, Yu B Y, Song H, et al. Analysis on the pollution of dye Industrial wastewater [J]. Dyestuffs and Coloration, 2018,55(1):54-61.[2] 覃思月.Fenton体系处理染料废水耦合铁的回收与资源化研究 [D].杭州:杭州电子科技大学, 2018.Qin S Y. Study on the dye wastewater treatment by Fenton system and iron recycling and resource utilization [D]. Hangzhou: Hangzhou Dianzi University, 2018.[3] 陈文才. Fenton氧化法处理丽春红2R废水及其动力学研究 [D]. 南京:南京农业大学, 2014.Chen W C. Ponceau 2R wastewater degradation with Fenton oxidation and its kinetic study [D]. Nanjing: Nanjing Agricultural University, 2014. [4] 严梅,张青,谢慧芳,等.纳米Fe3O4负载聚苯胺对染料的协同催化降解 [J]. 中国环境科学, 2017,37(4):1394-1400.Yan M, Zhang Q, Xie H F, et al. Load of PANI on nano-Fe3O4 and synergy catalytic degradation of dyes [J]. China EnvironmentalScience, 2017,37(4):1394-1400.[5] 黄振夫.非均相钴催化剂活化PMS降解染料的研究 [D]. 杭州:浙江理工大学, 2016.Huang Z F. Heterogeneous cobalt catalysts for dye degradation based on PMS activation [D]. Hangzhou: Zhejiang Sci-Tech University, 2016.[6] 徐朋飞,郭怡秦,王光辉,等.紫外活化过硫酸盐对甲基橙脱色处理实验研究 [J]. 环境工程, 2017,35(11):58-61+89.Xu P F, Guo Y Q, Wang G H, et al. Experimental study on UV- activated persulfate for decolorization of methyl orange wastewater [J].Environmental Engineering, 2017,35(11):58-61+ 89.[7] 刘贝贝. Co/PMS体系降解染料废水 [D]. 郑州:河南科技大学, 2018.Liu B B. Degradation of dyeingwaster by Co/PMS system [D].Zhengzhou:Henan University of Science and Technology, 2018.[8] Huang Y F, Huang Y H. Behavioral evidence of the dominant radicalsand intermediates involved in Bisphenol A degradation using an efficient Co2+/PMS oxidation process [J]. Journal of Hazardous Materials, 2009,167(1-3):418-426.[9] Qi C D, Liu X T, Ma J, et al. Activation of peroxymonosulfate by base:I mplications for the degradation of organic pollutants [J].Chemosphere, 2016,151:280-288.[10] Nie M H, Deng Y W, Nie S H, et al. Simultaneous removal ofbisphenol A and phosphate from water by peroxymonosulfate combined with calcium hydroxide [J]. Chemical Engineering Journal.2019,369:35-45.[11] Neta P, Huie R E, Ross A B, Rate constants for reactions of inorganicradicals in aqueous solution [J]. Journal of Physical and Chemical, Reference Data, 1988,17(3):1027-1284.[12] Wang X, Dong W, Brigante M, et al. Hydroxyl and sulfate radicalsactivated by Fe(I I I)-EDDS/UV: comparison of their degradation efficiencies and influence of critical parameters [J]. Applied Catalysis B: Environmental, 2019,245:271-278.[13] Dai D J, Yang Z Y, Yao Y Y, et al. Highly efficient removal of organiccontaminants based on peroxymonosulfate activation by iron phthalocyanine: mechanism and the bicarbonate ion enhancement effect [J]. Catal. Sci. Technol., 2017,7:934–942.[14] 颜桂炀.ZnS/AIPO-5复合材料光催化降解亚甲基蓝 [C]//中国化学会分子筛专业委员会.第14次全国分子筛学术年会论文集——微孔介孔材料科学及在新能源与节能、减排中的应用.中国化学会分子筛专业委员会:中国化学会, 2008:5.Yan G Y. Photocatalytic degradation of methylene blue over ZnS/AIPO-5composite [C]//CZA 2008: 14th annual symposium on energy and emission related MMM science. Chinese Zeolite Association: Chinese Chemical Society, 2008:5.[15] 程金苹.三维电极法处理酸性橙7(AO7)模拟染料废水的研究 [D].上海:华东师范大学, 2017.Cheng J P. Treatment of acid orange 7 (AO7) simulated dye wastewater by three-dimensional electrode method [D]. Shanghai: East China Normal University, 2017.[16] 田东凡,王玉如,宋薇,等.UV/PMS降解水中罗丹明B的动力学及反应机理 [J]. 环境科学学报, 2018,38(5):1868-1876.Tian D F, Wang Y R, Song W, et al. Degradation of rhodamine B in aqueous solution by UV/PMS system: kinetics and reaction mechanism [J]. Acta Scientiae Circumstantiae, 2018,38(5):1868-1876.[17] Hu W R, Xie Y, Lu S, et al. One-step synthesis of nitrogen-dopedsludge carbon as a bifunctional material for the adsorption and catalytic oxidation of organic pollutants [J]. Science of The Total Environment, 2019,680:51-60.作者简介:翟俊(1977-),男,江苏溧阳人,教授,博士,从事废水处理理论与技术研究.发表论文100余篇.。

花生壳及其提取有价物质后的残渣在环境保护领域的应用

花生壳及其提取有价物质后的残渣在环境保护领域的应用

花生壳及其提取有价物质后的残渣在环境保护领域的应用杨莉;谢宇【摘要】花生壳及其提取有价物质后的残渣在环境保护领域有大量的应用,将其制成纤维素膜或改性修饰,可用于纯水制备、膜生物反应器、海水淡化等;残渣可用于重金属离子吸附、偶氮染料吸附处理;也可热解制备富氢可燃气或发电,提供绿色能源.【期刊名称】《花生学报》【年(卷),期】2009(038)003【总页数】4页(P25-28)【关键词】花生壳残渣;吸附;环境保护【作者】杨莉;谢宇【作者单位】南昌航空大学环境与化学工程学院,江西,南昌,330063;南昌航空大学环境与化学工程学院,江西,南昌,330063【正文语种】中文【中图分类】S565.2;X712花生壳中含有非常丰富的资源,通过一系列提取技术,可以将这些有价物质分别提取出来,用于食品、医药、化工等领域[1]。

但是,提取有价物质后的残渣中仍然有一定含量的营养物质,且属于多孔类物质。

为了有效利用资源,同时消除残渣对环境的污染,本文重点探讨了花生壳及其残渣在环境保护领域的应用,最大限度地对花生壳进行综合利用。

1 利用花生壳制备纤维素膜花生壳含有纤维素,其中以性能优良的α-纤维素(α-cellulose)为主,其分子式为(C16H10O5)n,是棉短绒、木浆原料的重要补充,通过适当化学处理后,用铜氨溶液溶解,制成再生纤维素膜。

α-纤维素是一种多糖类物质,每个纤维素大分子由n个葡萄糖酐彼此以1,4氧桥联结而成,具有超分子结构,其微观内部是多孔性结构。

张金梅等[2]根据花生壳组成中木质素、多糖、多酚类物质含量高及其可在不同酸、碱试剂中水解的性质,选择先在酸中水解,再以碱溶液回流,最后经漂白烘干,制备α-纤维素。

将再生纤维素膜加工成微孔滤膜、半透膜、透析管产品,在水处理、物质分离、浓缩精制等方面具有广泛的应用前景;或精制成较纯的纤维素原料,用于制造人造纤维、无烟火药、纤维素塑料、纸张和葡萄糖等。

将再生纤维素膜固定到膜生物反应器(MBR)上,取代传统生化处理技术中二次沉淀池和砂滤池的水处理技术,其特点是出水水质好、剩余污泥量少、设备紧凑、占地少,可用于污水处理中的固液分离、工业废水中优先污染物的处理、萃取特定的污染物、海水淡化(用于海水淡化的膜孔径为0.5~5nm)、反渗透制备纯水和高纯水、处理放射性废水等[3]。

Fenton法处理苯胺废水最佳条件的研究

Fenton法处理苯胺废水最佳条件的研究

Fenton法处理苯胺废水最佳条件的研究罗丹;程文婷;郑婷【摘要】采用Fenton法处理苯胺模拟废水,通过正交试验和单因素实验考察了(H2 O2)/(Fe2+)摩尔比值、苯胺初始浓度、FeSO4·7H2O加入量和初始pH对苯胺模拟废水处理效果的影响.在最佳实验条件下,分析Fenton氧化后苯胺浓度、COD等水质参数的变化.研究结果表明,在(H2 O2)/(Fe2+)摩尔比值为10、苯胺初始浓度为100 mg/L、FeSO4·7 H2 O加入量为5 mmol/L、初始pH为3、反应时间为120 min条件下,废水中苯胺和COD的去除率分别为99.9%、89.7%.Fenton氧化后,苯胺完全被去除,氧化后产生的小分子有机物可生化性得到较大提高,有利于后续的生化处理.【期刊名称】《上饶师范学院学报》【年(卷),期】2017(037)006【总页数】6页(P59-64)【关键词】苯胺废水;Fenton;羟基自由基【作者】罗丹;程文婷;郑婷【作者单位】上饶师范学院化学与环境科学学院,江西上饶 334001;上饶师范学院化学与环境科学学院,江西上饶 334001;上饶师范学院化学与环境科学学院,江西上饶 334001【正文语种】中文【中图分类】X705苯胺是一种重要的有机化工原料和精细化工中间体,不易生物降解且毒性大,广泛用于染料、农药、医药、军工、香料和橡胶硫化等行业[1]。

苯胺类有机物具有致畸、致癌、致突变作用,其废水往往呈现浓度高、色度大、难降解、生物毒性大等特点,如未经有效处理将给人体健康和生态系统带来严重潜在危害。

苯胺是最重要的胺类物质之一,因其为有机物,对其主要采用生物法处理,然而苯胺是一类难降解有机物,故去除效果不佳[2]。

Fenton法是以H2O2在Fe2+催化下生成具有强氧化能力的·OH(氧化还原电位E0=2.73 V),可使废水中的有机物结构发生碳链裂解,将难生物降解的大分子有机物氧化分解为可生物降解的小分子有机物,或者完全矿化为CO2和H2O[3]。

染色(dyeing)

染色(dyeing)

染色(dyeing)Microbial stains were HE staining and TTC stainingconceptHE staining is the most basic and widely used method in the teaching and research of histology, embryology and pathologyTTC staining is the succinate dehydrogenase reaction in the mitochondria of TTC and living cells, producing a red moon, which is used to indicate cell viability. The preparation is mostly 2%, and the dyeing should be avoided from light. Under the condition of 37 degrees, it is a common index to evaluate the cerebral ischemia injury.The basic principle of microbial dyeing is based on the aid of physical and chemical factors. Physical factors such as capillarity, osmosis and adsorption of dyes by cells and cell substances. Chemical factors are based on the different properties of cells, substances, and dyes. The acid substance is easy to adsorb to the basic dye, and the adsorption is stable; similarly, the alkaline substance is easy to adsorb to the acid dye. Such as acidic material, the nucleus of the alkaline dye has a chemical affinity, easy to adsorption. However, in order to make acidic materials get acidic materials, it is necessary to change their physical form (such as changing the pH value), which is beneficial to the adsorption. In contrast, an alkaline substance (such as the cytoplasm) is usually only capable of dyeing acid dyes. If they are turned into suitable physical forms, they can also adsorb with basic dyes.The isoelectric point of bacteria is low, and the value of pH is about 2 - 5, so in the neutral, alkaline or weak acid solution, the protein of the organism is ionized with negative charge; and when the basic dye is ionized, the dye ion is electropositive. Therefore, with negative bacteria often and basic dyes are combined with positive electricity. Therefore, alkaline dyes are often used in bacteriology.Other factors that affect staining include the structure of bacteria cells and the permeability of their outer membranes, such as the permeability of cell membranes, the size of membrane pores and the integrity of cell structures. They play a role in dyeing. In addition, the composition of the medium, the order of bacteria, the amount of dielectric in the dye solution, pH, temperature, and the effect of the drug can also affect the staining of bacteria.Types and selection of dyesDye is divided into two kinds of natural dyes and artificial dyes. Natural dye cochineal, orcein, litmus and hematoxylin, they extracted from plants, its complex composition, some have not yet clear. At present, artificial dyes are mainly used, also known as coal tar dyes, which are extracted from coal tar and are derivatives of benzene. Most dyes are colored organic acids or bases, insoluble in water and soluble in organic solvents. To make them soluble in water, they are usually made of salts.Dyes can be divided into four categories: acid dyes, basic dyes, neutral dyes and simple dyes according to the nature of the electric charge of dye ions after their ionization.1 acid dyesThis kind of dye dye after the ionization of negatively charged ions, such as Iran red, Congo red, red algae, aniline black, picric acid and acid fuchsin, can be combined with alkaline substances into salt. When the culture gene breaks down and produces acid and reduces the pH value, the positive charge increases with the bacteria, and acid dyes are used to dye them.2. Basic dyesAfter the dye is ionized, the dye ion is positively charged and can be combined with acid to form salt. The microbiology laboratory commonly used basic dyes with methylene blue and methyl violet, crystal violet, magenta, neutral red, malachite green and safranin, in general, bacteria easily basic dyeing.3, neutral (compound) dyeCombination of acid dyes and basic dyes called neutral (composite) dyes, such as Ruituo's (Wright) Kim Sa S (Gimsa) dyes and dyes, which are commonly used in nuclear staining.4. Simple dyesThe chemical affinity of these dyes is low, the material to form a salt and can not be dyed, the dyeing ability of the fabric is soluble and, because most of them are azo compounds, insoluble in water, but soluble in aliphatic solvents, such as tournefortia class (Sudanb) dyes.Basic procedures for making and dyeingThere are many ways to dye microorganisms, and the dyes used in different ways are not the same.1, producerIn the slide with a drop of distilled water in a clean, sterile operation by inoculating loop, culture were a little, the water slides, mixed with water into suspension and painted thin layer about 1 cm in diameter, the number of bacteria in order to avoid too much together into a group, a negative observation form you can add a drop of water, on one side of the slide, and then from the bacteria coated in a ring on the drop of water for dilution, coating into a thin layer, if the material is a liquid culture or solid culture wash bacteria liquid prepared in the directly coated on glass slides.2. Natural dryingThe smear is best dried naturally at room temperature and sometimes the specimen faces up in order to make it work faster,The two sides of one end of the holder slide are carefully heated slightly above the alcohol lamp to evaporate the water, but do not close to the flame or heat for too long to prevent the specimen from drying and deforming.3, fixedThe specimens are fixed after drying, and the purpose of fixation is three:1) kill microorganisms and fix cell structures.2) ensure that the bacteria can be more firmly adhered to the slide to prevent the specimen from being washed away by water.3) alter the permeability of the dye to the cell because the dying protoplasm is easier to dye than the living protoplasm.Often use fixed temperature, holding one end of the slide (distal coated specimens), were up in the alcohol lamp flame outer as soon as possible back and forth through 3 - 4 times, a total of about 2 to 3 seconds, not to slide back heating skin, do not feel too hot is appropriate (no more than 60 C), place a cold after dyeing.Although this method is widely used in microbiological laboratory, it should be pointed out that it is not suitable to study the structure of microbial cells, and chemical fixation should be adopted. The most common fixation agents for chemical fixation are: alcohol (95%), mixture of alcohol and ether, acetone, 1 - 2% acids, and so on. Starved acid can quickly fix cells without changing its structure, so it is more commonly used. The following application of the immobilized cell technology: hungry acid in the cultivation of a glass dish placed in glass, glass capillary, the capillary injection of a small amount of 1 - 2% hungry acid solution, and then placing the wet slide specimen smear on the glass, and then put the dish on the cover, after 1 to 2 minutes after the samples from theculture dishes and allowed to dry out.4, dyeingAfter the specimen was fixed, the staining solution was added. The dyeing time varies, depending on the nature of the specimen and the dye, and sometimes on dyeing. The average time of dye action is about 1 - 3 minutes, and in all the dyeing time, the whole smear (or part of the specimen) should be immersed in the dye.If in the composite dyeing, mordant treatment, mordant dyes and the formation of insoluble compounds can increase the affinity of dye and bacteria. General fixed after dyeing, but also can be combined with fixation or staining at the same time.5, decolorizationTreat a dyed cell with alcohol or acid to make it discolored. Check the stability of the dye and cell combination and identify the different kinds of bacteria. The most commonly used bleaching agents are 95% alcohol and 3% hydrochloric acid solution.6 、 re dyeingAfter bleaching, the dye is dyed with a dye, which is in sharp contrast with that which is not stained, so that it is easy to observe. After dyeing, the alcohol is dyed and then dyed with red, stone and carbonic acid.7, washWhen stained, the dye is removed from the back of the specimen with a small stream of water. The dye that is absorbed by the cell remains.8, dryAfter the specimen has been washed, the sample is dried, or the absorbent paper is used to absorb the excess water, and then dried or dried by hot water. When the absorbent paper is used, the slide is not turned over so as not to erase the bacteria.9, microscopic examinationThe dried specimens can be observed by microscope.To sum up, the basic procedures of dyeing are as follows:Production, dyeing, mordant, fixed, stained, decoloring, washing, drying and microscopic examination.Dyeing methodMicrobial dyeing methods are generally divided into two types: single staining and complex dyeing. The former dyes microorganisms with a dye, but does not identify microorganisms. Double staining is the use of two or more than two dyes to aid in the identification of microorganisms. Differential staining is also called. The commonly used complex staining methods are Gram staining and acid resistance staining, in addition tospecial staining for identifying the structures of various parts of cells (e.g., spores, flagella, nuclei, etc.). Single staining and Gram staining are commonly used in food microbiological tests.1 and single stainingStaining a smear with a stain is simple and suitable for morphological observation of microorganisms. In general, bacterial cells are negatively charged and are readily stained with a positively charged basic dye. Therefore, the commonly used alkaline dye staining, such as methylene blue and malachite green, magenta, crystal violet and neutral red. If you use acid dyes, use Congo red, Iran red, algae red and acid fuchsin. The use of acid dyes, dye must reduce the pH value, which showed strong acid (below the isoelectric point of bacteria, so bacteria) with positive charge, it is easy to be dyed with acid dyes.Single staining usually involves five steps: smear, fixation, dyeing, washing and drying.The staining results vary depending on the dye:Re dyeing liquid: quick coloration, short time, red body.Methylene blue staining: coloring slow, long time, the effect is clear, the bacteria were blue.Ammonium oxalate crystal dyeing solution: rapid staining, dark staining, purple bacteria.2 gram stainingGram staining is a widely used method of differential staining in bacteriology. It was established in 1884 by Gram, a Danish physician.The bacteria first by alkaline dye crystal by iodine staining, and mordant dyeing after alcohol decolorization, under certain conditions, some bacteria of this color is not removed, some can be removed, so the bacteria are divided into two categories, the former is called the gram positive bacteria (G+), the latter for gram negative bacteria (G). For convenient observation, decolorization and then a red dye such as safranin counterstain such as alkaline. The positive bacteria still have purple, while the negative ones are dyed red. Bacillus and most cocci and cocci, as well as all actinomycetes and fungi, were gram positive; Vibrio, Leptospira, and most pathogenic non spore bacilli showed negative reactions.There are many differences in the chemical composition and physiological properties between gram positive bacteria and gram negative bacteria, and the dyeing reactions are different. It is generally accepted that the complex of gram positive bacteria in nuclear protein containing special magnesium salt and polysaccharide, compound it with iodine and crystal violet with a solid, easy bleaching, negative bacteria complex combination of bottom, dye adsorption, easy bleaching, this is mainly based on the staining reaction.In addition, the positive bacteria and isoelectric point werelower than that of negative bacteria. Under the same PH condition, the positive bacteria absorbed much alkaline dyes, so they were not easy to remove, and the negative bacteria were opposite. Therefore, the conditions of dyeing should be strictly controlled. For example, in the strong alkali conditions for dyeing, two kinds of bacteria adsorption of alkaline dyes are more, can be positive reaction; PH is very low, can be negative reaction. In addition, the permeability of the two types of bacteria cell wall to the crystalline purple iodine complex is not consistent, the positive bacteria permeability is small, so it is difficult to be decolorization, negative bacteria permeability is large, easy to decolorization. Therefore, bleaching time, decolorization methods should also be strictly controlled.Generally includes four steps: initial dyeing and mordant dyeing, bleaching, complex gram stain method. The specific methods of operation:1) smear fixation.2) the ammonium oxalate crystal violet is dyed for 1 minutes.3) tap water washing.4) iodized liquid covered with painted surface for 1 minutes.5) wash, use absorbent paper to absorb moisture.6) add 95% drops of alcohol and gently shake to remove water after 30 seconds.7) fan beam red color liquid (dilute) staining after 10 seconds, tap water. Dry, microscopic examination.As a result of dyeing, gram positive cells are purple, and negative reactions are red.。

Bi12O17Cl2光催化降解RhB——响应曲面法优化反应条件

Bi12O17Cl2光催化降解RhB——响应曲面法优化反应条件

Bi12O17Cl2光催化降解RhB——响应曲面法优化反应条件穆晓斐;葛建华;郭学涛;高良敏【摘要】利用水热法制备出Bi12 O17 Cl2,并对其进行了SEM和XRD表征,研究在不同条件下光催化降解RhB活性.通过单因素实验确定主要的影响因素和水平,利用响应曲面法对主要影响因素进行优化.通过分析实验结果,建立了Bi12 O17 Cl2光催化降解罗丹明B(RhB)的二次多项式模型.预测光催化降解RhB的最佳反应参数是:催化剂投加量32.65 mg,RhB初始浓度5.53 mg/L,反应时间160.13 min,预测降解率可达100%.【期刊名称】《广州化工》【年(卷),期】2016(044)024【总页数】4页(P74-77)【关键词】印染废水;Bi12O17Cl2;光催化降解;响应曲面法【作者】穆晓斐;葛建华;郭学涛;高良敏【作者单位】安徽理工大学地球与环境学院,矿山地质灾害防治与环境保护省重点实验室,安徽淮南 232001;安徽理工大学地球与环境学院,矿山地质灾害防治与环境保护省重点实验室,安徽淮南 232001;安徽理工大学地球与环境学院,矿山地质灾害防治与环境保护省重点实验室,安徽淮南 232001;安徽理工大学地球与环境学院,矿山地质灾害防治与环境保护省重点实验室,安徽淮南 232001【正文语种】中文【中图分类】X52随着纺织、印染等行业的不断发展,越来越多的染料被开发和利用,进入环境中的印染废水逐年递增。

据统计2014年中国纺织印染废水排放量超过了20亿吨,占全国工业废水排放总量的11%,位于全国工业废水排放量的第3位[1]。

在染料生产和印染过程中,约有10%~15%的染料进人废水中[2],对水环境造成危害,由于这类废水成分复杂,一直是工业废水处理的难点[3-5]。

印染废水治理的方法很多,国内外主要采用生化法[6]、混凝法[7]等,但是上述方法难以同时达到去除效果,经济效益和环境保护的统一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ENVIRONMENTAL BIOTECHNOLOGYDecolorization of acid and basic dyes:understanding the metabolic degradation and cell-induced adsorption/precipitation by Escherichia coliMatteo Cerboneschi1&Massimo Corsi2&Roberto Bianchini2&Marco Bonanni2&Stefania Tegli1Received:11February2015/Revised:16April2015/Accepted:19April2015#Springer-Verlag Berlin Heidelberg2015Abstract Escherichia coli strain DH5αwas successfully employed in the decolorization of commercial anthraquinone and azo dyes,belonging to the general classes of acid or basic dyes.The bacteria showed an aptitude to survive at different pH values on any dye solution tested,and a rapid decoloriza-tion was obtained under aerobic conditions for the whole col-lection of dyes.A deep investigation about the mode of action of E.coli was carried out to demonstrate that dye decoloriza-tion mainly occurred via three different pathways,specifically bacterial induced precipitation,cell wall adsorption,and me-tabolism,whose weight was correlated with the chemical na-ture of the dye.In the case of basic azo dyes,an unexpected fast decolorization was observed after just2-h postinoculation under aerobic conditions,suggesting that metabolism was the main mechanism involved in basic azo dye degradation,as unequivocally demonstrated by mass spectrometric analysis. The reductive cleavage of the azo group by E.coli on basic azo dyes was also further demonstrated by the inhibition of decolorization occurring when glucose was added to the dye solution.Moreover,no residual toxicity was found in the E.coli-treated basic azo dye solutions by performing Daphnia magna acute toxicity assays.The results of the present study demonstrated that E.coli can be simply exploited for its nat-ural metabolic pathways,without applying any recombinant technology.The high versatility and adaptability of this bac-terium could encourage its involvement in industrial bioreme-diation of textile and leather dyeing wastewaters. Keywords Escherichia coli.Bacteria.Dyes. Bioremediation.Azoreductase.Decolorization.Aerobic metabolism.Cell adsorption.ToxicityIntroductionAcid and basic dyes are some of the most extensively used colorants within the textile and leather industry(Hunger 2002).Their wide application involves routine dyeing proce-dures,which may differ among dyers for the number of steps and/or chemical auxiliaries used to favor dyeing homogeneity (Shore2002).As a result of the large number and different nature of the chemicals used,the wastewaters generated from the dyeing of textile and leather materials are some of the major polluting chemical containing wastes(Claudio2007; Slater2003).Although progresses have been made to replace the chemical auxiliaries with natural or semisynthetic sub-stances in a view to generating more environmentally friendly wastewaters(de Sousa et al.2011),the traditional dyes are still in use and represent one of the main sources of pollution for water streams(Alinsafi et al.2007).These dyes cause serious environmental and health concerns to aqueous ecosystems and humans(Sarnaik and Kanekar1995),due to their toxicity (de Campos Ventura-Camargo and Marin-Morales2013). Typically,dyeing baths contain a nominal percentage of dye between1and15%by weight of material,but2up to50%of the original dye is generally lost in the wastewaters,depending on the class of the dye used(Khan et al.2013;Ogugbueand Electronic supplementary material The online version of this article(doi:10.1007/s00253-015-6648-4)contains supplementary material,which is available to authorized users.*Matteo Cerboneschimatteo.cerboneschi@unifi.it1Dipartimento di Scienze delle Produzioni Agroalimentari edell’Ambiente,Laboratorio di Patologia Vegetale Molecolare,Universitàdegli Studi di Firenze,Sesto Fiorentino(Firenze),Italy2Dipartimento di Chimica B Ugo Schiff^,Universitàdegli Studi diFirenze,Sesto Fiorentino(Firenze),ItalyAppl Microbiol BiotechnolDOI10.1007/s00253-015-6648-4Sawidis2011;Khalid et al.2008;McMullan et al.2001).In particular,the global annual production of leather and textile dyes is7×105T,for an annual trade of these industries that is over2and70million tons,respectively(The Freedonia Group 2013;Zaharia and Suteu2012).Therefore,the environmental impact of the effluents from the dyeing industry is a serious concern.In addition,the disposal of dyeing effluents consti-tutes the largest portion of the costs associated to water man-agement(Slater2003).Various treatments for dye-containing wastewaters have been developed,to address these environ-mental and economical issues:mainly chemical and electro-chemical oxidation,filtration on micromembranes,precipita-tion of dyes in the form of insoluble salts,photocatalytic deg-radation,and adsorption or electrosorption(Singh and Arora 2011;Forgacs et al.2004;Hao et al.2000;Avlonitis et al. 2008;Berberidou et al.2009;Harrelkas et al.2009;Zhao et al.2009).Unfortunately,all these methods are highly costly and thus commercially unattractive.Therefore,it is mandatory to develop alternative means of dye decolorization,such as innovative biological methods,to provide more economical cleanup protocols and allow the recycling of industrial treated wastewaters.In recent years,bioremediation and more generally bio-technologies have gathered growing interest because of their cost-effective and eco-friendly profile(Khan et al.2013;Ali 2010;Solís et al.2012).Some algae(Daneshvar et al.2007; Khataee et al.2010),bacteria(Ayed et al.2010;Amoozegar et al.2011;Saratale et al.2011),fungi(Kaushik and Malik 2009;Novotnýet al.2011;Verma et al.2012;Ali et al.2008; Jin et al.2007;Xian-Chun et al.2007;Fu and Viraraghavan 2001;Marimuthu et al.2013;Tegli et al.2014),and yeasts (Vitor and Corso2008;Qu et al.2012)were proved to achieve acceptable and efficient dye removal.The vast majority of the research on biological decolorization has been carried out on fungi and mainly on their ligninolytic enzymes,discovered to degrade azo dyes aerobically(Erkurt et al.2010).Conversely, studies on dye removal operated by bacteria are relatively less reported(Pokharia and Ahluwalia2013;Satheesh Babu et al. 2013;Pandey et al.2007),although the bacterial decoloriza-tion is normally faster than the fungal systems(Shobana and Thangam2012).Several bacteria have been shown to degrade azo dyes(Saratale et al.2011),and it has been documented that decolorization occurs via bacterial azoreductases,follow-ed by the aerobic mineralization of colorless amines(Pandey et al.2007;Van der Zee and Villaverde2005).Generally,this two-step process may require a bacterial consortium to suc-cessfully complete the azo dye biodegradation task,but the reproducibility profile is often low undermining potential in-dustrial applications(Phugare et al.2011).The most exten-sively studied bacterial species belong to the genus Pseudomonas(e.g.,P.luteola)(Chang et al.2001;Chen and Lin2007).Surprisingly,the degrading abilities of enteric bac-teria have been by far less investigated(Chen et al.2004;Mate and Pathade2012;Chan et al.2012)including Escherichia coli frequently used to produce recombinant proteins and overexpress foreign bacterial genes coding for azoreductase enzymes(Lončar et al.2013;Isįk and Sponza2003;Sandhya et al.2008;Chang and Lin2001;Chang et al.2000).In this paper,we explored for the first time the aerobic dye degrading performances of E.coli DH5α,whose metabolic potential in dye bioremediation has been rarely explored to the best of our knowledge(Rau et al.2002).This strain is highly adaptable,it has the aptitude to switch between aerobic and anaerobic lifestyles(Dougan et al.2001),and it is character-ized by fast growth kinetic even on very simple nutrient media (Sezonov et al.2007).E.coli DH5αwas tested on several azo and anthraquinone dyes among those most commonly used within the dyeing industry.The kinetics of decolorization and the influence of operational parameters were also studied on a representative dye for each chemical group.A significant abi-otic dye removal was also revealed,which rarely has been considered in previous studies(Sarioglu et al.2007). Materials and methodsDyesThe15dyes used in this study were kindly provided by Tintoria Cometa Srl(Prato,Italy)and were of commercial quality.These dyes were grouped according to their chemical nature:acid anthraquinone(group A),acid azo(group B), basic anthraquinone(group C),basic azo(group D).The name,CAS number,and the wavelength of maximum absorp-tion(λmax)of each dye are reported in Table1.Experiments were carried out with an initial concentration of0.3mg/ml of each dye dissolved in double distilled water.E.coli growth conditions and culture mediaThe bacterial strain used in this study was E.coli DH5α(DSM No.6897at Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures),grown aerobically at 37°C on Luria–Bertani broth(LB)(BD Biosciences,Milan, Italy,supplemented with15mg/l of nalidixic acid(Sigma Aldrich Co,Milan,Italy)),under orbital shaking(150rpm). Overnight bacterial cultures having an OD600=1were har-vested by centrifugation(5000g,10min at room temperature) and washed twice with sterile physiological solution(NaCl 8.5%w/w in water).Subsequently,the bacterial pellets were used for decolorization experiments.The average wet weight biomass of E.coli culture sampled from an early stationary phase was approximately1.0mg/ml,corresponding to about 5×109cells/ml.Appl Microbiol BiotechnolDecolorization assays:experimental and analytical proceduresBatch decolorization assays were carried out by inoculating E.coli in 50-ml Falcon tubes (BD Biosciences),containing 20ml of LB medium amended separately with each of the dyes reported in Table 1,at known concentrations.The decol-orization performances were systematically analyzed as a function of the following parameters:static or shaken (150rpm)cultures,incubation temperature (25and 37°C),initial dye concentration,and 15-mg wet weight biomass.The effect of glucose,ammonium chloride,and ammonium sulfate on E.coli decolorizing activity was also investigated,by adding separately these nutrients (500,250,and 250mg/l,respectively)to the decolorizing medium.Negative controls with uninoculated dye medium and heat-killed E.coli cells (10min at 100°C)were also performed.Treatments and con-trols were run in triplicate,in three independent experiments.Incubation of E.coli on decolorizing medium was kept up to a maximum of 48h.Aliquots were periodically and asep-tically sampled,centrifuged (5000g ,5min at room tempera-ture)to collect the biomass as a pellet,and filtered on 0.2-μm sterile cellulose acetate Nalgene®filter (VWR,Milan,Italy).A UV –Vis spectrophotometer (Infinite 200Pro,Tecan,Seetrasse,Switzerland)was used to measure the λmax of the supernatants of each dye.The percentage of dye reduction (DR%)was calculated according to the following:DR ¼A 0−A 1ðÞ.A 0hi Â100where DR=decolorization as percentage;A 0and A 1,initial and final absorbance at the λmax of each dye in the visible region.The pH of the supernatants was also measured,usinga Basic 20-Crison pH meter (Carpi,Italy).Bacterial growth was measured as cell biomass.Experimental data were subjected to statistical analysis to determine means and the corresponding standard deviations.Significant differences between means of experiments were determined by analysis of variance (ANOV A)with a signifi-cance level of 0.05.Mass spectrometryA 50.0-μl aliquot of each dye solution subjected to decol-orization was diluted with 2ml of HPLC grade methanol (Fisher Scientific,Leicestershire,UK)and then filtered on Titan2®Syringe Filter (ThermoFisher Scientific,Austin TX,USA).The filtered sample was analyzed using a ThermoScientific LCQ-Fleet mass spectrometer under electrospray ionization (ESI)(Thermo Scientific,Austin TX,USA)by direct infusion with a 500KL Hamilton microsyringe and using a 10-μl/min flow.Data were ac-quired over hundred scans,after stabilization of the ionic current for 5min at the above mentioned sample flow.The mass spectrometer parameters used were as follows:sheet gas flow =10,auxiliary gas flow=0,sweep gas flow=0,spray voltage=5.00kV,capillary tube tempera-ture=220°C,capillary voltage=12.0V,and tube lens=77.8V.Toxicity assayThe short-term tests to determine acute toxicity were carried out using the water flea Daphnia magna ,a standardized test organism for toxicity assays and proposed as a representativeTable 1Commercial dyesType of dyeLab code Name CAS 39λmax (nm)Group A acid anthraquinoneA277Acid Blue 27725797-81-3605A260Acid Blue 26062168-86-9590A40Acid Blue 406424-85-7620A25Acid Blue 256408-78-2605A43Acid Violet 434430-18-6580A324Acid Blue 32488264-80-6610Group B acid azoA361Acid Red 36161931-22-4525A118Acid Red 11812217-35-5505A97Acid Red 9710169-02-5495A357Acid Red 35761951-36-8490A151Acid Yellow 15112715-61-6435Group C basic anthraquinone B47Basic Blue 4712217-43-5575Group D basic azoB46Basic Red 4612221-69-1530B41Basic Blue 4112270-13-2605B51Basic Red5112270-25-6520Appl Microbiol Biotechnolinvertebrate in the EU Guidance Document on Aquatic Eco-toxicological and among EU criteria for classification of dan-gerous substances(Verma2008;Crosby et al.1966;Brock and Van Wijngaarden2012).Young organisms(6–24-h life) were used for toxicity bioassay and were not fed during the test period.For each sample and each experimental condition, 25organisms were tested in triplicate,along with negative (water)and positive(untreated dye)controls.The number of immobile individuals was evaluated after48-h incubation at 21±1°C,with a16-h light/8-h dark photoperiod.D.magna individuals are officially accepted as dead if they do not show any mobility within30s of observation.ResultsPreliminary screening on E.coli dye decolorization ability Initially,a general screening about the E.coli decoloriza-tion abilities was carried out for the whole selection of dyes,to evaluate the bacterial activity on a wide range of colorants.The solutions were inoculated with an overnight starter culture of E.coli in shaken tubes at constant tem-perature(25and37°C).The pH of each sample was mon-itored at the beginning and at the end of the experiment.E.coli modified the initial pH of each sample to a value oscillating between6and7regardless of the incubation temperature.This behavior was coherent with the bacterial growth,which was recorded positive for each sample and generally higher at37°C,as expected(Fig.1a).Therefore, it was not surprising that the visible spectrophotometric analysis of the supernatants showed a sensible decrease in dye concentration(Fig.1b).The decolorization was statistically similar at37and 25°C,except for dye A40.Conversely,a stronger decolor-ization was obtained for compounds A357,B41,B46,and B51at37°C.Also,it was interesting to note that when the bacterial biomass of each experiment was separated from the treated dye solutions and visually examined,the bacte-rial pellets retained some of the original color in the case of dyes of groups A,B,and C.On the other hand,no colora-tion was observed for dyes of group D(data not shown), since the original color had completely vanished from both the supernatant and the pellet.It is known that some bacte-ria may degrade azo dyes,here represented by groups B and D,through specific azoreductase enzymes and during an-aerobic growth(Liu et al.2009).In our case,this event may have happened in aerobic growth conditions.However,the data did not allow to understand which mechanisms were involved in the decolorization of dyes.Therefore,A324, A361,B47,and B46were selected as representative dyes of each group,in order to carry out further investigation to clarify the mode of action of E.coli.Analysis of decolorization behavior of E.coliThe decolorization of dyes may take place according to very different mechanisms,such as adsorption and degra-dation(Saratale et al.2011).In the first case,dyes are adsorbed onto the bacterial cell surface,while when dyes are going to be degraded by bacterial enzymes,they are first compartmentalized inside the bacterial cells.The rep-resentative colorants were treated with E.coli for16h at 37°C.Afterward,the biomasses were separated from the supernatants(hereafter named B first generation superna-tants^for the total decolorization),and the resulting bacte-rial pellets were washed with water.This step was repeated until the absorbance of the supernatant washing water was completely clear at naked eye.These supernatants(hereaf-ter named B second generation supernatants^)corresponded to the washing of the dye probably precipitated and adsorbed on the bacterial cell surface.Subsequently,each pellet was subjected to thermal lysis in water at100°C for 10min and separated from the supernatant(hereafter named B third generation supernatants^)which contained the intracellular dye portion(Fig.2).The spectrophotomet-ric analysis in the visible region of the supernatants thus obtained from A324,A361,and B47confirmed that their λmax was consistent with that of the untreated dye(Table2). These results were also consistent with the data derived from the mass spectrometric analysis of the supernatants (Fig.3).The E.coli pellets derived from the decolorization on A324and A361released the color both during the wash-ing and the lysis procedure,suggesting the presence of the dyes both on the bacterial surface and inside the bacterial cell wall,respectively.The same also occurred for B47, although to a lesser extent.However,data obtained from second generation supernatants could not exclude a poten-tial dye precipitation induced by bacterial addition and cell growth.Visible spectra of B46supernatants did not exhibit anyλmax consistent with this dye.The differences between the absorbance of the first generation supernatants and those combined from the second and third generation su-pernatants were correlated to the metabolic contribution of E.coli to the overall decolorization.Metabolism was27, 36,and45%for A324,A361,and B47,respectively.In the case of B46,this percentage reached98%,clearly indicat-ing that metabolism was the only mechanism involved in decolorization.In addition,mass spectrometric analysis confirmed(Table2and Fig.3)the presence of N′-benzyl-N′-methylbenzene-1,4-diamine1,having a molecular weight of212(Fig.S1)which would originate from the reductive cleavage of the azo group of B46,promoted by E.coli(Fig.3d and Fig.S1).This transformation may have been driven also by the cationic nature of this dye,as rep-resented by its resonance hybrid structure3(Fig.S2)dur-ing its interaction with the degrading bacteria.Appl Microbiol BiotechnolEffect of bacterial biomass on E.coli decolorization activityDifferent amounts of E.coli biomass (1.5,7.5,15,and 30mg of bacterial wet weight)were inoculated separately into each representative dye solution,and the cultures werehomogenized by mechanical stirring.An aliquot (1ml)was taken from each sample and centrifuged at time 0(t 0)to assess whether precipitation of the dye may have been induced by bacterial biomass.Subsequently,the cultures were incubated at 37°C for 48h on an orbital shaker,sampled at 2-h interval from t 0to 8h,then at 24and 48h.The decolorization results obtained for A324,A361,and B47showed a nonproportional increase in dye reduction related to the different biomass amounts.In Fig.4,it was reported the decolorization trend for experiments containing the maximum amount of bacterial biomass.Dye reduction occurred even at t 0for those three dyes (46,17,and 38%,respectively)remaining practically constant for 8h,a time which implicates at least 24E.coli generations (Kutsu 2007).Finally,the decolorization percent-age increased to a threshold value at 48h regardless of the dye (Fig.4).The overall profile of the experiments appeared to remain constant,suggesting that decolorization of A324,A361,and B47had been occurring with a combination of metabolism and cell-induced dye precipitation.Control exper-iments were also prepared in the absence of bacterial biomass.After mechanical homogenization,each solution was centri-fuged without observing any precipitation,leaving the sam-ples on standing for 24h.A324A361B47B46DyeFig.2Decolorization rate after 16h of E.coli activity at 0.3mg/ml of dye concentration:precipitation,adsorption,and metabolism.Black portion metabolic contribution;white portion precipitation and adsorption on bacterial cell wall;gray intracellularaccumulationFig.1a E.coli growth at 25(black )and 37°C (white )after 16h of incubation at 0.3mg/ml of dye concentration.b Dye decolorization reported in this figure was related to the same trial in which bacterial growth had been monitoredAppl Microbiol BiotechnolThe experiments carried out on the degradation of B46 showed the typical trend of a metabolic decolorizing activity (Fig.4):the biomass increase induced a proportional reduc-tion of time to reach the plateau of bacterial decolorization atTable2Data from the visible spectroscopic(λmax)and mass spectrometric(m/z)analyses of the supernatants after decolorization of A324,A361,B47,and B46Dye Reference SupernatantsLab codeλmax(nm)mass ion(m/z)1st generation2nd generation3rd generationA324610450.44a615450.34614450.34615450.33 A361525517.60a530517.34530517.34528517.40 B47575371.43b585372.15587372.13588372.15 B46530321.18b n.d.213.06n.d.213.12n.d.213.12a Anion,analysis under ESI-c methodb Cation,analysis under ESI+c methodn.d not detecteda bc dFig.3Mass spectra of the firstgeneration supernatants fromdecolorization assay.a A324;bA361;c B47;d B46.Massspectra were carried out on thesupernatants collected aftercentrifugation and without furtherpurification.The presence ofother peaks was related tochemical species of the LBmedium after bacterial treatmentAppl Microbiol Biotechnol24h(data not shown).This evidence was supportive for a specific metabolic activity,induced by the presence of azoreductase enzymes produced by E.coli(Pandey et al. 2007).A comparative experiment between alive and dead bacte-rial cells shed light on the contribution of both metabolism and adsorption to the decolorizing activity of E.coli.S olutions of A324,A361,B47,and B46were inoculated and evaluated after16h of incubation.As reported in Fig.S3,only for A361,it was possible to observe a dye reduction(over 10%)caused by the inoculation of dead cells,while for A324and B47,the decolorization level was less than5%. Conversely,there was no evidence of E.coli absorption activ-ity on the B46solution.Using the same experimental conditions,we decided to ver-ify whether the decolorization performances of E.coli were affected by the oxygenation of the cultures(steady or shaken). The dye removal rate decreased in a range between10and20% for A324,A361,and B47,when the cultures were not under agitation(Fig.S3).On the other hand,the experiment of B46did not display any significant difference related to the decolorizing performances of E.coli cells in steady or shaken condition. Effect of dye concentration on E.coli decolorization activityCulture samples were prepared at0.06-,0.15-,0.3-,0.4-,and 0.6-mg/ml dye concentration,and the solutions were inoculat-ed with E.coli biomass.Aliquots(1ml)were sampled at2,6, 8,and24h.As reported in Fig.5,the analysis of the superna-tants by visible spectrophotometry indicated that the highest percentages of color removal for dyes A324,A361,and B47 were obtained at0.6mg/ml.Decolorization also showed sim-ilar patterns from the lowest to the highest dye concentration regardless of the initial amount of color,highlighting an al-most linear trend.The largest difference of decolorization was observed for dye A324from the lowest to the highest concen-tration,whereas in the case of A361and B47,this phenome-non was reduced of about50%.Concerning compound B46,the highest percentages of de-colorization were obtained from0.06-to0.3-mg/ml concentration(Fig.6a),and surprisingly,the decolorization at t4and t24was somehow similar.This result indicated that as the concentration of dye increased,it would not be neces-sary to prolong the experiment beyond the4h:or at least to extend it necessarily to t24or longer.A marked difference was observed for the0.4-and0.6-mg/ml concentrations in the same interval of time.At the maximum concentration tested, we could assume that the relative high concentration of B46 had induced E.coli to adapt its membrane transport systems. The decolorization after4h was lower than10%of the initial dye concentration as indicated by the speed plot:the maxi-mum speed of dye reduction could be observed just after2h at lower concentrations(Fig.6b).Inhibition of E.coli azoreductase activityThe decolorization of azo dyes by bacterial strains is typically initiated by azoreductase enzymes in anaerobic condition (Pandey et al.2007).On the contrary,as previously shown, the reduction of B46was due to the aerobic metabolism of E.coli.Therefore,we decided to verify the kinetic of dye degradation in relation to the azoreductase activity.It is known that the reduction of azo dyes is linked to the presence and availability of cosubstrates as carbon and nitrogen sources, and the degradation rate of bacterial cells is correlated to the chemical structures of these molecules.The assay for the azoreductase inhibition was carried out for6h in aerobic condition at0.15mg/ml of B46.For each replicate,a specific amount of glucose(carbon source),am-monium chloride,and ammonium sulfate(nitrogen sources) was added,at1,0.5,and0.5%(w/v),respectively,which had already demonstrated to be able to decrease dye decolorization (Modi et al.2010).There was a decrease of B46dye reduction up to4%in the case of glucose supplementation and moder-ate scores for nitrogen substrates(Fig.S4).Thus,these resultsFig.4Effect of maximum E.coli biomass(30mg)on the decolorizationof A324(black triangle),B47(white square),A361(black square),andB46(white triangle)as a function of timeFig.5Decolorization at the lowest and the highest concentrations of dye.A324(triangle);A361(square);B47(circle).White indicators wererelated to maximum concentration of dye(continuous lines),blackindicators to the minimum concentration of dye(dashed lines)Appl Microbiol Biotechnolshowed that the decolorization of B46had been occurred in aerobic conditions and included azoreductase activity too.Toxicity assayThe assessment of the toxicity of the residual dye mixtures treated with E.coli was a very important aspect for bioreme-diation applications,to demonstrate that the solutions thus obtained were not toxic,as well as visually clear.Acute tox-icity tests were carried out on the representative dyes treated with E.coli after16h of incubation.As shown in Table S1,the toxicity rates of B46-treated solutions were absent after6h. Excellent scores were achieved by A324and A361after12h (after6h ca.2and4%,respectively),while the worst perfor-mances were obtained for B47(after12h ca.5%).According to these results,it is reasonable to hypothesize that the differ-ences here observed in the acute toxicity between the different dyes might be mainly related to putatively different mecha-nisms adopted by this bacteria for decolorization. DiscussionIn general,the adaptability of E.coli to xenobiotic species such as dyes was proved by the cell growth and by the adjust-ment of the initial pH of the dye solutions to nearly neutral values.This finding meant that the cells were inclined to make their surrounding environment favorable to survive,although the decolorization performance was found not always strictly correlated to the bacterial growth.Here,we demonstrated that the E.coli type strain DH5αworked well on acid and basic dyes under aerobic conditions, showing different mechanisms of decolorization.Both acid anthraquinone(group A)and acid azo(group B)dyes were removed from effluents by the combined action of precipita-tion,cell adsorption,and metabolism.These three events have been rarely considered as acting altogether in previous studies (Saratale et al.2011;Giwa et al.2012)while claiming the metabolic activity of the bacterial biomasses as the only de-colorizing mechanism.It is important to underline that those phenomena occurred during cell culture growth regardless of the amount of biomass and the type of acid dyes.It is reasonable to assume that groups A and B dyes were likely to precipitate in the presence of E.coli already at t0as dem-onstrated by A324and A361.The phenomenon can be cer-tainly described by a biotic event,since control experiments in the absence of E.coli did not show any dye precipitation induced by the nutrient medium or by mechanical action such as centrifugation.The effect of biomass growth resulted in an increase of decolorization mainly due to precipitation,cell wall adsorption,and intracellular accumulation,although a significant fraction could be also associated to metabolic events,related to the activity of bacterial azo reductases(Liu et al.2009).Similar findings were also described for a basic anthraquinone(group C)dye,which has never been reported in previous papers to the best of our knowledge.Even in this particular case,the presence of bacterial biomass induced a strong precipitation effect at t0,causing a reduction of metab-olism contribution.It was interesting to notice that the differ-ent chemical nature of A324and B47anthraquinone dyes caused their opposite contribution between metabolism(27 and45%,respectively)and precipitation effect(46and 38%,respectively).This phenomenon is related to the differ-ent chemical affinity of acid or basic anthraquinone dyes to the cell wall of the Gram-negative E.coli.Degradation of basic azo dyes(group D)occurred efficient-ly under aerobic conditions,confirming the metabolic path-way of E.coli involving oxygen-resistant azo reductases.This result was also consistent with recent findings,which demon-strated the prominent role of E.coli AzoR-purified enzyme under aerobic conditions(Mercier et al.2013).The remark-ably high rate of decolorization for B46was found to be de-pendent on the amount of biomass and the concentration of dye.Conversely,metabolic contribution to total dye reduction on A324,A361,and B47was even lower than50%,probably because of the absence of redox mediators as recently reported (Cui et al.2015).Comparative trials with steady and shaken alive cells con-firmed that precipitation and absorption phenomena contrib-uted in a different way to the total dye reduction for A324, A361,and B47,whereas B46underwent enzymatic degrada-tion.This concept may be indirectly confirmed by the decol-orization of B46,which resulted marginally affected by steady and shaken biomass.In this case,it could be remarked thatFig.6Rate(a)and speed(b)decolorization with15-mg wetweight of E.coli at different dyeconcentrations of B46.Dyeconcentration(mg/ml):triangle0.06;square0.15;plus0.30;circle0.40;cross0.60Appl Microbiol Biotechnol。

相关文档
最新文档