11.3 多边形及其内角和 同步练习及答案

合集下载

11.3 多边形及其内角和 同步练习 (含答案)

11.3 多边形及其内角和 同步练习 (含答案)

11.3 多边形及其内角和同步练习一、选择题(共10小题)1. 下列图形中,能镶嵌成平面图案的是( )A. 正六边形B. 正七边形C. 正八边形D. 正九边形2. 一个多边形的每个内角均为108∘,则这个多边形是( )A. 七边形B. 六边形C. 五边形D. 四边形3. 从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形.则m,n的值分别为( )A. 4,3B. 3,3C. 3,4D. 4,44. 某市“佳美大剧院”即将完工,现需选用同一批地砖进行装修,以下不能密铺的地砖是( )A. 正五边形地砖B. 正三角形地砖C. 正六边形地砖D. 正四边形地砖5. 若从多边形的一个顶点可以引出7条对角线,则这个多边形是( )A. 七边形B. 八边形C. 九边形D. 十边形6. 已知实数x,y满足∣x−4∣+√y−8=0,则以x,y的值为两边长的等腰三角形的周长是( )A. 20或16B. 20C. 16D. 以上答案均不对7. 下列边长相等的正多边形能够密铺的组合是( )A. 正八边形和正方形B. 正五边形和正九边形C. 正方形和正六边形D. 正方形和正七边形8. 在下列四种边长均为a的正多边形中,能与边长为a的正三角形进行平面密铺的正多边形有( )①正方形;②正五边形;③正六边形;④正八边形.A. 4种B. 3种C. 2种D. 1种9. 如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于( )A. 90∘B. 180∘C. 210∘D. 270∘10. 一个多边形的内角和是外角和的 1.5倍,则这个多边形是( )A. 四边形B. 五边形C. 六边形D. 八边形二、填空题(共6小题;共48分)11. 一个多边形的内角和为540∘,则这个多边形是边形.12. 过10边形的一个顶点可作条对角线,可将10边形分成个三角形.13. 用4个全等的正八边形进行拼接,使相邻的两个正八边形有一个公共边,围成一圈后中间形成一个正方形,如图①.用n个全等的正六边形按这种方式拼接,如图②,若围成一圈后中间也形成一个正多边形,则n的值为.14. n边形的边数增加1条,其内角增加,对角线增加条.15. 如图所示的是某广场地面的一部分,地面中央是一块正六边形的地砖,周围用正三角形和正方形的大理石地砖密铺,从里向外共铺了12层(不包括中央的正六边形),每一层的外界都围成一个多边形,若中央正六边形地砖的边长为0.5m,则第12层的外界所围成的多边形的周长是.16. 如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过B2,B3,则直线l与A1A2的夹角α=∘.三、解答题(共4小题;共52分)17. 试说明正八边形不能铺满平面的理由.18. 正三角形、正方形、正六边形(如图1)是我们熟悉的特殊多边形.(1)这些图形中的边与角有什么共同特征?一般地,我们把各边相等、各内角也相等的多边形叫做正多边形(regularpolygon).边数为五的正多边形叫做正五边形(如图2),边数为六的正多边形叫做正六边形,如图3的两个正多边形分别是正七边形和正八边形.正多边形有许多优良的性质,匀称美观,常被人们用于图案设计和镶嵌平面(既不留空隙,又不相重叠地拼接)(图4)(2)做一做:分别用若干个全等的正三角形、正方形、正六边形纸片,在桌面上设计镶嵌图.你发现这三种正多边形哪些能单独镶嵌平面,哪些不能?你能说明其中的原因吗?(3)想一想:用若干个全等的正五边形能镶嵌平面吗?为什么?事实上,如果用正多边形来键嵌平面,那么共顶点的各个角之和必须等于360∘.例如,用正六边形镶嵌平面(图5),共顶点的3个角之和为3×120∘=360∘.因此能镶嵌平面的正多边形的内角度数一定能整除360,所以,能单独镶嵌平面的正多边形只有3种,即正三角形、正方形、正六边形.如果用多种正多边镶嵌平面,则能镶嵌平面的正多边形就不止上面所说的这3种.(4)探究:用边长相等的正八边形和正方形能镶嵌平面吗?请说明理由.如果能,画出镶嵌图(只要求画出示意图).19. 如图,凸六边形ABCDEF的六个角都是120∘,边长AB=2cm,BC=8cm,CD=11cm,DE=6cm,你能求出这个六边形的周长吗?20. 奥地利数学家皮克发现了一个计算正方形网格纸中多边形面积的公式:S=a+1b−1,方格纸中每个小正方形的边长为1,其中a表示多边形内部的格点数,b 2表示多边形边界上的格点数,S表示多边形的面积.注:①由n条线段依次首尾连接而成的封闭图形叫做n边形,这些线段的端点叫做顶点.②网格中小正方形的顶点叫格点.如:在图①中,点A,B,C,D都正好在格点上,那么四边形ABCD的面积S= 8+1×4−1=9.2(1)求图②中四边形ABCD的面积.(2)若多边形的顶点都在格点上,且面积为6,请在图③④⑤中画出这样三个形状不同的多边形(多边形的边数≥6).并写出相应的a,b的值.图③中,a=,b=;图④中,a=,b=;图⑤中,a=,b=.参考答案第一部分1. A2. C3. C4. A 【解析】五边形每个内角是180∘−360∘÷5=108∘,不是360∘的约数,不能密铺,符合题意;正三角形的一个内角度数为180∘−360∘÷3=60∘,是360∘的约数,能密铺,不符合题意;正六边形的一个内角度数为180∘−360∘÷6=120∘,是360∘的约数,能密铺,不符合题意;正四边形的一个内角度数为180∘−360∘÷4=90∘,是360∘的约数,能密铺,不符合题意5. D【解析】因为从多边形的一个顶点可引出(n−3)条对角线,所以n−3=7,所以n=10.6. B7. A8. C 【解析】①③可以9. B 【解析】如答图,延长AB,BC,∵AB∥CD,∴∠ABC=∠5,∠ABC+∠4=180∘,∴∠4+∠5=180∘.根据多边形的外角和定理,得∠1+∠2+∠3+∠4+∠5=360∘,∴∠1+∠2+∠3=360∘−180∘=180∘.10. B【解析】设这个多边形n边形,根据题意,得(n−2)×180∘=1.5×360∘,解得:n=5.即这个多边形为五边形.第二部分11. 五12. 7,813. 614. 180∘,n−1【解析】n边形的对角线有n(n−3)2条,(n+1)边形的对角线有(n+1)(n−2)2条,(n+1)(n−2)2−n(n−3)2=n−1 .15. 39m【解析】第1层是6×1+6=12边形,第2层是6×2+6=18边形,⋯每层都比前一层多6条边第12层是6×12+6=78边形,78×0.5=39m.16. 48第三部分17. 正八边形一个内角的度数是135∘,360∘不能被135∘整除,两个内角的和小于360∘,三个内角的和大于360∘,所以正八边形不能铺满平面.18. (1)正三角形、正方形、正六边形的共同特征是各个内角都相等,各条边都相等.(2)做一做:正三角形、正方形、正六边形都能单独镶嵌平面,因为正三角形的一个内角为60∘,将6个正三角形拼在一起,共顶点的6个角之和为360∘,刚好拼成一个周角.(3)想一想:正五边形不能单独镶嵌平面,因为正五边形的一个内角为108∘.3个内角和为324∘<360∘,4个内角和为432∘>360∘,不能拼成周角.(4)探究:用边长相等的正八边形和正方形能镶嵌平面因为正八边形的内角135∘,正方形的内角为90∘,由于135∘×2+90∘=360∘,所以两个正八边形和一个正方形能拼成一幅镶嵌图(如图).19. 如图,分别作直线AB、CD、EF的延长线使它们交于点G、M、N.因为六边形ABCDEF的六个角都是120∘,所以六边形ABCDEF的每一个外角的度数都是60∘.所以三角形AMF、三角形BNC、三角形DGE、三角形GMN都是等边三角形.所以NC=BC=8cm,DG=DE=6cm.所以GN=8+11+6=25cm,FA=MA=MN−AB−BN=25−2−8=15cm,EF=MG−MF−EG=25−15−6=4cm.所以六边形的周长为2+8+11+6+4+15=46cm.20. (1)由题意,得a=5,b=6,∴S=a+12b−1=5+12×6−1=7.(2)由题意得,图象可以如图所示.则图③中,a=3,b=8;图④中,a=1,b=12;图⑤中,a=3,b=8.。

人教版2021年八年级上册11.3《多边形及其内角和》同步练习 word版,含答案

人教版2021年八年级上册11.3《多边形及其内角和》同步练习 word版,含答案

人教版2021年八年级上册11.3《多边形及其内角和》同步练习一.选择题1.下列多边形中,内角和最大的是()A.B.C.D.2.三角形具有稳定性,所以要使如图所示的五边形木架不变形,至少要钉上()根木条.A.1B.2C.3D.43.正多边形的一个外角等于60°,这个多边形的边数是()A.3B.6C.9D.124.如图,四边形ABCD中,∠1、∠2、∠3分别为∠A、∠B、∠C的外角,下列判断正确的是()A.∠1+∠3=∠ABC+∠D B.∠1+∠3=180°C.∠2=∠D D.∠1+∠2+∠3=360°5.如图,正五边形ABCDE中,∠CAD的度数为()A.72°B.45°C.36°D.35°6.如图,小明从A点出发,沿直线前进6米后向左转45°,再沿直线前进6米,又向左转45°…照这样走下去,他第一次回到出发点A时,共走路程为()米.A.60B.72C.48D.367.如果一个正多边形的一个内角与一个外角的度数之比是7:2,那么这个正多边形的边数是()A.11B.10C.9D.88.若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为()A.14或15B.13或14C.13或14或15D.14或15或16二.填空题9.三角形具有稳定性,要使一个四边形框架稳定不变形,至少需要钉根木条.10.如图,则x的值为.11.如果一个多边形的每个外角都是60°,那么这个多边形内角和的度数为.12.一个凸n边形的内角和是540°,则n=.13.如图,五边形ABCDE中,AB∥DE,BC⊥CD,∠1、∠2分别是与∠ABC、∠CDE相邻的外角,则∠1+∠2等于度.14.如图,小亮从A点出发前进2m,向右转15°,再前进2m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了m.15.为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(A,B,C,D,E是正五角星的五个顶点),则图中∠A的度数是度.16.如图,∠A+∠B+∠C+∠D+∠E=°.三.解答题17.求出下列图形中x的值.18.已知,四边形ABCD中,∠C+∠D=200°,∠B=3∠A,求∠A和∠B的度数.19.在一个各内角都相等的多边形中,每一个内角都比与它相邻外角的3倍还大20°,求这个多边形的边数以及它的内角和.20.如图,五角星的顶点为A、B、C、D、E,求∠A+∠B+∠C+∠D+∠E的度数?21.观察每个正多边形中∠α的变化情况,解答下列问题:(1)将下面的表格补充完整:正多边形边数3456 (18)∠α的度数…(2)根据规律,是否存在一个正n边形,使其中的∠α=21°?若存在,直接写出n的值;若不存在,请说明理由.22.如图①,在四边形ABCD中,∠A=x°,∠C=y°.(1)∠ABC+∠ADC=°(用含x,y的代数式表示);(2)BE、DF分别为∠ABC、∠ADC的外角平分线,①当x=y时,BE与DF的位置关系是;②当y=2x时,若BE与DF交于点P,且∠DPB=10°,求y的值.(3)如图②,∠ABC的平分线与∠ADC的外角平分线交于点Q,则∠Q=(用含x,y的代数式表示).参考答案一.选择题1.解:A.三角形的内角和为180°;B.四边形的内角和为360°;C.五边形的内角和为:(5﹣2)×180°=540°;D.六边形的内角和为:(6﹣2)×180°=720°;故选:D.2.解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.3.解:∵正多边形的外角和为360°,∴此多边形的边长为:360°÷60°=6.故选:B.4.解:∵∠1+∠DAB=180°,∠3+∠BCD=180°,∴∠1+∠3+∠DAB+∠BCD=360°,∵∠ABC+∠BCD+∠D+∠DAB=360°,∴∠1+∠3=∠ABC+∠D,故A符合题意;∵∠1+∠3只有∠ABC和∠D互补时才等于180°,故B不符合题意;∵只有∠ABC和∠D互补时,∠2=∠D,故C不符合题意;∵多边形的外角和是360°,∴∠1+∠2+∠3<360°,故D不符合题意;故选:A.5.解:根据正多边形内角和公式可得,正五边形ABCDE的内角和=180°×(5﹣2)=540°,则∠BAE=∠B=∠E==108°,根据正五边形的性质,△ABC≌△AED,∴∠CAB=∠DAE=(180°﹣108°)=36°,故选:C.6.解:根据题意可知,他需要转360÷45=8次才会回到原点,所以一共走了8×6=48(米).故选:C.7.解:设这个正多边形的边数为n,由题意得:(n﹣2)×180=360,解得:n=9,故选:C.8.解:如图,n边形,A1A2A3…A n,若沿着直线A1A3截去一个角,所得到的多边形,比原来的多边形的边数少1,若沿着直线A1M截去一个角,所得到的多边形,与原来的多边形的边数相等,若沿着直线MN截去一个角,所得到的多边形,比原来的多边形的边数多1,因此将一个多边形截去一个角后,变成十四边形,则原来的多边形的边数为13或14或15,故选:C.二.填空题9.解:如图所示:要使这个木架不变形,他至少还要再钉上1个木条,故答案为:110.解:因为四边形的内角和是360°,根据题意得,x+x+90+120=360,解得,x=75,故答案为:75.11.解:∵一个多边形的每个外角都是60°,∴n=360°÷60°=6,则内角和为:(6﹣2)•180°=720°,故答案为:720°.12.解:根据题意得,(n﹣2)•180°=540°,解得n=5,故答案为:5.13.解:连接BD,∵BC⊥CD,∴∠C=90°,∴∠CBD+∠CDB=180°﹣90°=90°,∵AB∥DE,∴∠ABD+∠EDB=180°,∴∠1+∠2=(180°﹣∠ABC)+(180°﹣∠EDC)=360°﹣(∠ABC+∠EDC)=360°﹣(∠ABD+∠CBD+∠EDB+∠CDB)=360°﹣(90°+180°)=90°,故答案为:90.14.解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴根据外角和定理可知正多边形的边数为:360°÷15°=24,则一共走了:24×2=48(m),故答案为:48.15.解:如图,∵正五角星中,五边形FGHMN是正五边形,∴∠GFN=∠FNM==108°,∴∠AFN=∠ANF=180°﹣∠GFN=180°﹣108°=72°,∴∠A=180°﹣∠AFN﹣∠ANF=180°﹣72°﹣72°=36°.故答案是:36.16.解:如图,设线段BD,BE分别与线段AC交于点N,M.∵∠AMB=∠A+∠E,∠DNC=∠B+∠AMB,∠DNC+∠D+∠C=180°,∴∠A+∠B+∠D+∠E+∠C=180°,故答案为:180.三.解答题17.解:(1)由三角形的外角性质得,x+(x+10)=x+70,即2x+10=x+70,解得,x=60.(2)根据四边形的内角和为360°得,x+(x+10)+90+60=360,解得,x=100.18.解:∵四边形内角和360°,∠C+∠D=200°,∴∠B+∠A=360°﹣200°=160°,∵∠B=3∠A,∴3∠A+∠A=160°,∴∠A=40°,∴∠B=120°.答:∠A和∠B的度数分别是40°和120°.19.解:设多边形的一个外角为α,则与其相邻的内角等于3α+20°,由题意,得(3α+20°)+α=180°,解得α=40°,即多边形的每个外角为40°,又∵多边形的外角和为360°,∴多边形的外角个数==9,∴多边形的边数=9,∴多边形的内角和=(9﹣2)×180°=1260°.20.解:如图,由三角形的外角性质得,∠AGE=∠A+∠C,∠DFE=∠B+∠D,∵∠AGE+∠DFE+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.21.解:(1)填表如下:正多边形的边数3456 (18)∠α的度数60°45°36°30°……10°故答案为:60°,45°,36°,30°,10°;(2)不存在,理由如下:假设存在n边形使得∠α=21°,得∠α=21°=()°,解得:n=8,又n是正整数,所以不存在正n边形使得∠α=21°.22.解:(1)在四边形ABCD中,∠ABC+∠ADC=360°﹣∠A﹣∠DCB,∵∠A=x°,∠DCB=y°,∴∠ABC+∠ADC=360﹣x﹣y=(360﹣x﹣y)°,故答案为:(360﹣x﹣y),(2)①如图①中,连接AC,过点C作CG∥DF,则有:∠MDC═∠DAC+∠DCA,∠NBC═∠CAB+∠CBA,∵BE、DF分别为∠NBC、∠MDC的角平分线,∠DAB═∠DCB═x°═y°,∴∠FDC+∠CBE═(∠MDC+∠NBC)═(∠DAC+∠DCA+∠CAB+∠CBA)═(∠DAB+DCB)═x°,∴∠FDC═∠GCD,∵∠DCG+∠BCG═∠DCB═x°,∠FDC+∠CBE═x°,∴∠CBE═∠BCG,∴CG∥BE,∴BE∥DF,故答案为:BE∥DF.②由(1)可知:∠ABC+∠ADC=(360﹣x﹣y)°,∵∠ADC+∠MDC=180°,∠ABC+∠NBC=180°,∴∠NBC+∠MDC=(x+y)°,∵BE、DF分别为∠ABC、∠ADC的外角平分线,∴∠PBC=∠NBC,∠PDC=∠MDC,∴∠PBC+∠PDC=[(x+y)]°,∵∠BCD=∠PDC+∠PBC+∠P,∴y=10+(x+y),即y﹣x=20,∵y=2x,∴x=20°,y=40°.(3)如图②中,由题意:∠DNQ=∠ANB=180°﹣x°﹣∠ABC,∠QDN=(180°﹣∠ADC),∴∠Q=180°﹣∠DNQ﹣∠QDN=180°﹣(180°﹣x°﹣∠ABC)﹣(180°﹣∠ADC),=x°+(∠ABC+∠ADC)﹣90°,=x°+180°﹣(x+y)°﹣90°,=[90+(x﹣y)]°,故答案为:[90+(x﹣y)]°.。

人教版八年级上册 11.3 多边形及其内角和 同步练习(含答案)

人教版八年级上册  11.3 多边形及其内角和 同步练习(含答案)

多边形及其内角和同步练习一.选择题1.正多边形的每个内角为135度,则多边形为()A.4B.6C.8D.102.若一个多边形减去一个角后,内角和为720°,则原多边形不可能是几边形()A.四边形B.五边形C.六边形D.七边形3.一个四边形的四个内角度数之比为1:2:4:5,则这个四边形中,最小的内角为()A.30°B.40°C.50°D.60°4.一个正多边形的每个内角的度数都等于相邻外角的2倍,则该正多边形的边数是()A.3B.4C.6D.125.如图,已知一个五边形ABCDE纸片,一条直线将该纸片分割成两个多边形.若这两个多边形内角和分别为m和n,则m+n不可能是()A.540°B.720°C.900°D.1080°6.如图,在五边形ABCDE中,AE∥BC,延长DE至点F,连接BE,若∥A=∥C,∥1=∥3,∥AEF=2∥2,则下列结论正确的是()∥∥1=∥2 ∥AB∥CD ∥∥AED=∥A ∥CD∥DEA.1个B.2个D.4个7.如图,正五边形ABCDE绕点A顺时针旋转后得到正五边形AB′C′D′E′,旋转角为α (0°<α<90°),若DE∥B′C′,则∥α为()A.36°B.54°C.60°D.72°8.如图,在四边形ABCD中,∥DAB的角平分线与∥ABC的外角平分线相交于点P,且∥D+∥C=210°,则∥P=()A.10°B.15°C.30°D.40°9.设BF交AC于点P,AE交DF于点Q.若∥APB=126°,∥AQF=100°,则∥A-∥F=()A.60°B.46°C.26°D.45°10.如图,已知四边形ABCD中,∥C=90°,若沿图中虚线剪去∥C,则∥1+∥2等于()B.135°C.270°D.315°11.如图,在六边形ABCDEF中,若∥A+∥B+∥C+∥D=500°,∥DEF与∥AFE的平分线交于点G,则∥G等于()A.55°B.65°C.70°D.80°12.如图,A,B,C,D,E,F是平面上的6个点,则∥A+∥B+∥C+∥D+∥E+∥F的度数是()A.180°B.360°C.540°D.720°二.填空题13.八边形的内角和为;一个多边形的每个内角都是120°,则它是边形.14.一个多边形,除了一个内角外,其余各角的和为2750°,则内角和是.15.如图,已知在四边形ABCD中,∥A+∥C=135°,∥ADE=125°,则∥B= .16.如图所示,若∥DBE=78°,则∥A+∥C+∥D+∥E= °.17.如图所示,∥A+∥B+∥C+∥D+∥E+∥F+∥G+∥H= °.三.解答题18.(1)已知一个正多边形的每个内角比它的每个外角的4倍多30°,求这个多边形的边数;(2)一个多边形的外角和是内角和的七分之二,求这个多边形的边数.19.如图,在四边形ABCD中,BD∥CD,EF∥CD,且∥1=∥2.(1)求证:AD∥BC;(2)若BD平分∥ABC,∥A=130°,求∥C的度数.20.如图,四边形ABCD中,∥BAD=106°,∥BCD=64°,点M,N分别在AB,BC上,将∥BMN沿MN翻折得∥FMN,若MF∥AD,FN∥DC.求(1)∥F的度数;(2)∥D的度数.21.将纸片∥ABC沿DE折叠使点A落在点A'处【感知】如图∥,点A落在四边形BCDE的边BE上,则∥A与∥1之间的数量关系是;【探究】如图∥,若点A落在四边形BCDE的内部,则∥A与∥1+∥2之间存在怎样的数量关系?并说明理由.【拓展】如图∥,点A落在四边形BCDE的外部,若∥1=80°,∥2=24°,则∥A的大小为.22.已知,在四边形ABCD中,∥A+∥C=160°,BE,DF分别为四边形ABCD的外角∥CBN,∥MDC的平分线.(1)如图1,若BE∥DF,求∥C的度数;(2)如图2,若BE,DF交于点G,且BE∥AD,DF∥AB,求∥C的度数.参考答案1-5:CAACD 6-10:CBBBC 11-12:CB13、1080°;六14、2880°15、170°16、10217、72018、:(1)设这个多边形的每个内角是x°,每个外角是y°,则得到一个方程组得而任何多边形的外角和是360°,则多边形内角和中的外角的个数是360÷30=12,则这个多边形的边数是12边形;(2)设这个多边形的边数为n,依题意得:(n-2)180°=360°,解得n=9,答:这个多边形的边数为9.19、:(1)证明:∵BD⊥CD,EF⊥CD(已知),∴BD∥EF(垂直于同一直线的两条直线平行),∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AD∥BC(内错角相等,两直线平行).(2)∵AD∥BC(已知),∴∠ABC+∠A=180°(两直线平行,同旁内角互补).∵∠A=130°(已知),∴∠ABC=50°.∵DB平分∠ABC(已知),∴∠3=25°.∴∠C=90°-∠3=65°.20、:(1)∵MF∥AD,FN∥DC,∠BAD=106°,∠BCD=64°,∴∠BMF=106°,∠FNB=64°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=53°,∠FNM=∠MNB=32°,∴∠F=∠B=180°-53°-32°=95°;(2)∠F=∠B=95°,∠D=360°-106°-64°-95°=95°.21、:(1)如图,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A.(2)如图②,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2.(3)如图③,∵∠1=∠DFA+∠A,∠DFA=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,∴2∠A=∠1-∠2=56°,解得∠A=28°.故答案为:∠1=2∠A;28°.22、:(1)过点C作CH∥DF,∵BE∥DF,∴BE∥DF∥CH,∴∠FDC=∠DCH,∠BCH=∠EBC,∴∠DCB=∠DCH+∠BCH=∠FDC+∠EBC,∵BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线,∴∠FDC=∠CDM,∠EBC=∠CBN,∵∠A+∠BCD=160°,∴∠ADC+∠ABC=360°160°=200°,∴∠MDC+∠CBN=160°,∴∠FDC+∠CBE=80°,∴∠DCB=80°;(2)连接GC并延长,同理得∠MDC+∠CBN=160°,∠MDF+∠NBG=80°,∵BE∥AD,DF∥AB,∴∠A=∠MDF=∠DGB=∠NBG=40°,∵∠A+∠BCD=160°,∴∠BCD=160°-40°=120°.。

人教版 八年级数学上册 11.3 多边形及其内角和 同步训练(含答案)

人教版 八年级数学上册 11.3 多边形及其内角和 同步训练(含答案)

人教版八年级数学上册11.3 多边形及其内角和同步训练(含答案)一、选择题(本大题共7道小题)1. 若一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.62. 将一个n边形变成(n+2)边形,内角和将()A.减少180° B.增加180°C.减少360° D.增加360°3. 下列哪一个度数可以作为某一个多边形的内角和()A.240° B.600°C.540° D.2180°4. 设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A. a>bB. a=bC. a<bD. b=a+180°5. 一个正多边形的每个外角不可能等于()A.30° B.50° C.40° D.60°6. 若在n边形内部任意取一点P,将点P与各顶点连接起来,可以把n边形分成n个三角形,利用这个事实,可以探索到n边形的内角和为()A.180°×n B.180°×n-180°C.180°×n+180° D.180°×n-360°7. 如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m).则点E的坐标是()A. (2,-3)B. (2,3)C. (3,2)D. (3,-2)二、填空题(本大题共7道小题)8. 如图所示,x的值为________.9. 如图,在四边形ABCD中,若∠A+∠B+∠C=260°,则∠D的度数为________.10. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.11. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.12. 一个正五边形和一个正六边形按如图所示的方式摆放,它们都有一边在直线l上,且有一个公共顶点O,则∠AOB的度数是________.13. 如图,小明从点A出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°……照这样走下去,他第一次回到出发地点A时,一共走了________米.14. 如图,含30°角的三角尺的直角边AC,BC分别经过正八边形的两个顶点,则∠1+∠2=________°.三、解答题(本大题共3道小题)15. “X”与“Y”分别是两个多边形,请根据图中“X”与“Y”的对话,解答下列各小题.(1)求“X”与“Y”的外角和相加的度数;(2)分别求“X”与“Y”的内角和的度数.16. 小华与小明在讨论一个凸多边形的问题,他们的对话如下:小华说:“这个凸多边形的内角和是2020°.”小明说:“不可能吧!你错把一个外角当作内角了!”请根据俩人的对话,回答下列问题:(1)凸多边形的内角和为2020°,小明为什么说不可能?(2)小华求的是几边形的内角和?17. 如图,在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延长线与∠EDC处的外角的平分线相交于点P,求∠P的度数.人教版八年级数学上册11.3 多边形及其内角和同步训练-答案一、选择题(本大题共7道小题)1. 【答案】B2. 【答案】D[解析] (n+2)边形的内角和比n边形的内角和大n·180°-(n-2)·180°=360°.3. 【答案】C[解析] ∠多边形内角和公式为(n-2)×180°,∠多边形内角和一定是180°的倍数.∠540°=3×180°,∠540°可以作为某一个多边形的内角和.4. 【答案】B【解析】∠四边形的内角和为360°,五边形的外角和为360°,∴a =b.5. 【答案】B[解析] 设正多边形的边数为n,则当30°n=360°时,n=12,故A可能;当50°n=360°时,n=365,不是整数,故B不可能;当40°n=360°时,n=9,故C可能;当60°n=360°时,n=6,故D可能.6. 【答案】D7. 【答案】C【解析】点A(0,a),∴y轴过点A,点C、D纵坐标相同,∴CD 与x轴平行,∵正五边形是轴对称图形,∴点E和点B关于y轴对称,∴点E的坐标为(3,2).二、填空题(本大题共7道小题)8. 【答案】55°[解析] 由多边形的外角和等于360°,得360°-105°-60°+x+2x =360°,解得x=55°.9. 【答案】100°10. 【答案】8【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.【一题多解】因为正多边形的每一个外角都是45°,所以这个正多边形的每一个内角都是180°-45°=135°,设正多边形的边数为n,则(n-2)×180°=135°×n,解得n=8.方法指导设正多边形的边数为n,正多边形的外角和为360°,内角和为(n-2)×180°,每个内角的度数为180°×(n-2)n.11. 【答案】6【解析】设这个多边形的边数为n,则内角和为(n-2)·180°,外角和为360°,则根据题意有:(n-2)·180°=2×360°,解得n=6.12. 【答案】84°[解析] 由题意,得∠AOE=108°,∠BOF=120°,∠OEF=72°,∠OFE=60°,∠∠EOF=180°-72°-60°=48°.∠∠AOB=360°-108°-48°-120°=84°.13. 【答案】120[解析] 由题意得360°÷36°=10,则他第一次回到出发地点A时,一共走了12×10=120(米).故答案为120.14. 【答案】180[解析] 正八边形的每一个内角为(8-2)×180°8=135°,所以∠1+∠2=2×135°-90°=180°.三、解答题(本大题共3道小题)15. 【答案】解:(1)360°+360°=720°.(2)设X的边数为n,则Y的边数为3n.由题意,得180(n-2)+180(3n-2)=1440,解得n =3.所以X 的内角和为180°×(3-2)=180°, Y 的内角和为180°×(3×3-2)=1260°.答:“X”的内角和的度数为180°,“Y”的内角和的度数为1260°.16. 【答案】解:(1)∠n 边形的内角和是(n -2)×180°, ∠多边形的内角和一定是180°的整倍数. ∠2020÷180=11……40, ∠多边形的内角和不可能为2020°.(2)设小华求的是n 边形的内角和,这个内角为x°,则0<x <180. 根据题意,得(n -2)×180°-x +(180°-x)=2020°,解得n =12+2x +40180. ∠n 为正整数,∠2x +40必为180的整倍数. 又∠0<x <180, ∠40180<2x +40180<400180. ∠n =13或14.∠小华求的是十三边形或十四边形的内角和.17. 【答案】解:延长ED ,BC 相交于点G.在四边形ABGE 中,∠G =360°-(∠A +∠B +∠E)=50°, ∠P =∠FCD -∠CDP =12(∠DCB -∠CDG)=12∠G =12×50°=25°.。

人教版八年级上数学11.3 多边形及其内角和 同步练习及答案(含答案)

人教版八年级上数学11.3 多边形及其内角和 同步练习及答案(含答案)

第11章《三角形》同步练习(§11.3 多边形及其内角和)班级学号姓名得分1.填空:(1)平面内,由____________________________________________________________叫做多边形.组成多边形的线段叫做______.如果一个多边形有n条边,那么这个多边形叫做______.多边形____________叫做它的内角,多边形的边与它的邻边的______组成的角叫做多边形的外角.连结多边形________________的线段叫做多边形的对角线.(2)画出多边形的任何一条边所在直线,如果整个多边形都在______,那么这个多边形称作凸多边形.(3)各个角______,各条边______的______叫做正多边形.2.(1)n边形的内角和等于____________.这是因为,从n边形的一个顶点出发,可以引______条对角线,它们将此n边形分为______个三角形.而这些三角形的内角和的总和就是此n边形的内角和,所以,此n边形的内角和等于180°×______.(2)请按下面给出的思路,进行推理填空.如图,在n边形A1A2A3…A n-1A n内任取一点O,依次连结______、______、______、……、______、______.则它们将此n边形分为______个三角形,而这些三角形的内角和的总和,减去以O为顶点的一个周角就是此多边形的内角和.所以,n边形的内角和=180°×______-( )=( )×180°.3.任何一个凸多边形的外角和等于______.它与该多边形的______无关.4.正n边形的每一个内角等于______,每一个外角等于______.5.若一个正多边形的内角和2340°,则边数为______.它的外角等于______.6.若一个多边形的每一个外角都等于40°,则它的内角和等于______.7.多边形的每个内角都等于150°,则这个多边形的边数为______,对角线条数为______.8.如果一个角的两边分别垂直于另一个角的两边,其中一个角为65°,则另一个角为______度.9.选择题:(1)如果一个多边形的内角和等于它的外角和的两倍,则这个多边形是( ).(A)四边形(B)五边形(C)六边形(D)七边形(2)一个多边形的边数增加,它的内角和也随着增加,而它的外角和( ).(A)随着增加(B)随着减少(C)保持不变(D)无法确定(3)若一个多边形从一个顶点,只可以引三条对角线,则它是( )边形.(A)五(B)六(C)七(D)八(4)如果一个多边形的边数增加1,那么它的内角和增加( ).(A)0°(B)90°(C)180°(D)360°(5)如果一个四边形四个内角度数之比是2∶2∶3∶5,那么这四个内角中( ).(A)只有一个直角(B)只有一个锐角(C)有两个直角(D)有两个钝角(6)在一个四边形中,如果有两个内角是直角,那么另外两个内角( ).(A)都是钝角(B)都是锐角(C)一个是锐角,一个是直角(D)互为补角10.已知:如图四边形ABCD中,∠ABC的平分线BE交CD于E,∠BCD的平分线CF交AB于F,BE、CF相交于O,∠A=124°,∠D=100°.求∠BOF的度数.11.(1)已知:如图1,求∠1+∠2+∠3+∠4+∠5+∠6___________.图1(2)已知:如图2,求∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8____________.图212.如图,在图(1)中,猜想:∠A+∠B+∠C+∠D+∠E+∠F=______度.请说明你猜想的理由.图1如果把图1成为2环三角形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F;图2称为2环四边形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H;图2则2环四边形的内角和为_____________________________________________度;2环五边形的内角和为________________________________________________度;2环n边形的内角和为________________________________________________度.13.一张长方形的桌面,减去一个角后,求剩下的部分的多边形的内角和.14.一个多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数.15.如果一个凸多边形除了一个内角以外,其它内角的和为2570°,求这个没有计算在内的内角的度数.16.小华从点A出发向前走10米,向右转36°,然后继续向前走10米,再向右转36°,他以同样的方法继续走下去,他能回到点A吗?若能,当他走回点A时共走了多少米?若不能,写出理由.参考答案1.略.2.(1)(n -2)×180°,n -3,n -2,n -2.(2)OA 1,OA 2,OA 3……,OA n -1,OA n ,n ,n ,360°,(n -2).3.360°,边数. 4.⋅⨯-n nn oo 360,180)2( 5.十五,24°. 6.1260°. 7.12,54. 8.65°或115°.9.(1)C ,(2)C ,(3)B ,(4)C ,(5)A ,(6)D 10.68°11.(1)360°;(2)360°.12.(1)360°;(2)720°;(3)1080°;(4)2(n -2)×180°.13.180°或360°或540°.14.九.提示:设多边形的边数为n ,某一个外角为α.则(n -2)×180+α =1350. 从而1809071801350)2(αα-+=-=-n . 因为边数n 为正整数,所以α =90,n =9.15.130°.提示:设多边形的边数为n ,没有计算在内的内角为x °.(0<x <180)则(n -2)×180=2570+x . 从而⋅++=-18050142x n 因为边数n 为正整数,所以x =130.16.可以走回到A 点,共走100米.。

数学人教版八年级上册多边形及其内角和同步练习(配套练习附答案)

数学人教版八年级上册多边形及其内角和同步练习(配套练习附答案)
∵AB∥DE,
∴∠BAG+∠AGD=90°,
则AG⊥DE.
点睛:此题考查了平行线的性质,以及外角性质,熟练掌握平行线的性质是解本题的关键.
18.如图,小东在足球场的中间位置,从A点出发,每走6m向左转60°,已知AB=BC=6m.
(1)小东是否能走回A点,若能回到A点,则需走几m,走过的路径是一个什么图形?为什么?(路径A到B到C到…)
详解:(1)由平移的性质得:△ABC≌△DEF,
∴AB=DE,AB∥DE,
∴四边形ABED为平行四边形,
∴AD∥BF,∠ADG=∠ABC,
∴∠ADG=∠DEF,
∴∠ABC=∠DEF=∠ADG,
∵∠AGE为△ADG的外角,
∴∠AGE=∠DAG+∠ADG=∠GAD+∠ABC;
(2)AG⊥DE,理由为:
由平移的性质得到∠EDF=∠BAC,
A. 200米B. 180米C. 160米D. 140米
【答案】B
【解析】
【分析】
多边形的外角和为360°每一个外角都为20°,依此可求边数,再求多边形的周长.
【详解】∵多边形的外角和为360°,而每一个外角为20°,
∴多边形的边数为360°÷20°=18,
∴小华一共走了:18×10=180米.
故选B.
∴∠AEF+∠CFE=540°-∠A-∠B-∠C=540°-90°-90°-90°=270°.
故选B.
点睛:本题考查了四边形的性质及多边形的内角和定理.解决本题亦可通过外角关系.
6.如图所示,小华从A点出发,沿直线前进10米后左转 ,再沿直线前进10米,又向左转 , ,照这样走下去,他第一次回到出发地A点时,一共走的路程是( )

人教版八年级数学上册《11.3多边形及其内角和》同步练习题(含答案)

人教版八年级数学上册《11.3多边形及其内角和》同步练习题(含答案)

初中数学·人教版·八年级上册——第11 章三角形11.3多边形及其内角和同步练习题测试时间 :30 分钟一、选择题1. 正十二边形的每一个内角的度数为()A.120 °B.135 °C.150°D.1 080 °答案C正十二边形的每一个外角的度数是=30°, 则每一个内角的度数是180°-30 ° =150°. 应选 C.2. 一个多边形的边数增添2, 则这个多边形的外角和()A. 增添 180°B. 增添 360°C.增添 540°D.不变答案D由多边形的外角和为360°, 知一个多边形的边数增添2, 这个多边形的外角和不变.3. 假如一个多边形的每个内角都相等, 且内角和为 1 800 °, 那么这个多边形的一个外角是()A.30°B.36°C.60°D.72°答案A设多边形是n边形,依据题意得(n-2)·180°=1 800°,解得n=12,那么这个多边形的一个外角是360°÷ 12=30°, 即这个多边形的一个外角是30°. 应选 A.二、填空题4. 从一个多边形的一个极点出发, 一共可作 10 条对角线 , 则这个多边形的内角和是度.答案 1 980分析(10+3-2) × 180°=1 980 °, 则这个多边形的内角和是 1 980 度.5. 如图 , 在七边形 ABCDEFG中, 线段 AB、 ED的延伸线订交于O 点. 若∠ 1、∠ 2、∠ 3、∠ 4 极点处的外角的度数和为220°, 则∠ BOD的度数为.答案40°分析∵∠ 1、∠ 2、∠ 3、∠ 4 极点处的外角的度数和为220° , ∴∠ 1+∠ 2+∠3+∠4+220° =4×180°,∴∠ 1+∠ 2+∠ 3+∠ 4=500° , ∵五边形 OAGFE的内角和 =(5-2) × 180°=540°,∴∠ 1+∠ 2+∠ 3+∠ 4+∠BOD=540°, ∴∠ BOD=540°-500 °=40° .6. 一个多边形的内角和与它的一个外角的和为570°, 那么这个多边形的边数为.答案 5分析设多边形的边数为n, 此中一个外角为x°, 则 0<x<180, 依据题意 , 得 (n-2) ·180°+x°=570° , ∴n=5-.又∵ 0<x<180, ∴4<n<5, ∵ n 为大于或等于 3 的整数 , ∴n=5.三、解答题7.请依据下边 X 与 Y 的对话 , 解答以下各小题 :X: 我和 Y 都是多边形 , 我们俩的内角和相加的结果为 1 440 ° .Y:X 的边数与我的边数之比为1∶3.(1)求 X 与 Y 的外角和相加的度数 ;(2)分别求出 X与 Y 的边数 ;(3)试求出 Y 共有多少条对角线 .分析(1)360 °+360°=720°. 故 X 与 Y 的外角和相加的度数为720°.(2) 设 X 的边数为 n, 则 Y 的边数为 3n, 由题意得 180(n-2)+180(3n-2)=1 440,解得n=3,∴3n=9,∴X与Y的边数分别为 3 和 9.(3)×9× (9-3)=27( 条 ), 故 Y 共有 27 条对角线 .8. 如图, 四边形ABCD中,AE 均分∠BAD,DE均分∠ADC.(1) 假如∠ B+∠C=120°, 则∠ AED的度数为( 直接写出结果 );(2)依据 (1) 的结论 , 猜想∠ B+∠C 与∠ AED之间的关系 , 并证明 .分析(1)60 °.(2) ∠AED=( ∠B+∠C).证明 : 在四边形 ABCD中, ∵∠ BAD+∠ CDA+∠B+∠C=360°, ∴∠ BAD+∠CDA=360°-( ∠B+∠C),又∵ AE均分∠ BAD,DE均分∠ ADC,∴∠ EAD=∠ BAD,∠EDA=∠ADC,∴∠ EAD+∠EDA=∠ BAD+∠ ADC=×[360°-(∠ B+∠C)],∴在△ AED中,∠AED=180°-(∠EAD+∠EDA)=180°-×[360° -(∠ B+∠C)]=( ∠B+∠ C), 故∠ AED=( ∠B+∠C).内容总结。

八年级数学同步练习-多边形及其内角和

八年级数学同步练习-多边形及其内角和

11.3多边形及其内角和1、若一个凸多边形的内角和为720°,则这个多边形的边数为().A. 4B. 5C. 6D. 72、若多边形的边数由3增加到n(n为大于3的整数),则其外角和的度数().A. 增加B. 减少C. 不变D. 不能确定3、如果一个多边形的内角和等于它的外角和的2倍,则这个多边形是().A. 三角形B. 四边形C. 五边形D. 六边形4、正十边形的每一个内角的度数为().A. 120°B. 135°C. 140°D. 144°5、一个多边形的每一个外角都是45°,则这个多边形的边数为().A. 6B. 7C. 8D. 96、如图,小明从A点出发,沿直线前进12米后向左转36°,再沿直线前12米,又向左转36°⋯照这样走下去,他第一次回到出发地A点时,一共走了米.7、若一个正多边形的内角和为720°,则这个正多边形的每一个内角是().A. 60°B. 90°C. 108°D. 120°8、如果过一个多边形的一个顶点的对角线有6条,则该多边形是().A. 九边形B. 八边形C. 七边形D. 六边形9、从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是().A. n个B. (n−1)个C. (n−2)个D. (n−3)个10、下面的平面图形中,不能镶嵌平面的图形是().A. 正三角形B. 正六边形C. 正四边形D. 正五边形11、如图,将一个长方形剪去一个角,则剩下的多边形为().A. 五边形B. 四边形或五边形C. 三角形或五边形D. 三角形或四边形或五边形12、一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为().A. 5B. 5或6C. 5或7D. 5或6或713、如图,∠1是五边形ABCDE的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D=°.14、如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是.15、若正多边形的内角和是1080°,则该正多边形的边数是.16、一个多边形的每一个外角都等于40°,则它的边数为.17、如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是().A. 8B. 9C. 10D. 1118、某多边形的内角和加上其外角和等于1080°,则此多边形的边数是().A. 4B. 5C. 6D. 719、一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为().A. 8B. 9C. 10D. 1220、如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,⋅⋅⋅,照这样走下去,他第一次回到出发地A点时,一共走的路程是().A. 140米B. 150米C. 160米D. 240米21、经过多边形一个顶点的所有对角线把多边形分成10个三角形,多边形的边数是().A. 8条B. 9条C. 12条D. 11条22、如果一个多边形的每个外角是40°,那么从这个多边形的一个顶点出发,可以引出条对角线.23、如果限于用一种正多边形镶嵌,下列正多边形不能镶嵌成一个平面图形的是().A. 正三角形B. 正方形C. 正五边形D. 正六边形24、如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是.25、一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是().A. 17B. 16C. 15D. 16或15或1726、如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P=().A. 50°B. 55°C. 60°D. 65°27、如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=°.28、如图,∠A+∠B+∠C+∠D+∠E+∠F=°.1 、【答案】 C;【解析】设这个多边形的边数为n,则(n−2)×180°=720°,解得n=6,故这个多边形为六边形.故选C.2 、【答案】 C;【解析】因为多边形外角和固定为360°,所以外角和的度数是不变的.故选:C.3 、【答案】 D;【解析】设多边形为n边形,由题意,得(n−2)⋅180=360×2,解得n=6.故选D.4 、【答案】 D;【解析】方法一 : ∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°−36°=144°;故选:D.方法二 : 由多边形的内角和公式可知,正十边形的内角和为180°×(10−2)=1440°.所以每个内角的度数为1440°÷10=144°.故选D.5 、【答案】 C;【解析】由多边形外角和为360°,=8,则边数:360°45°所以多边形为8边形.故选C.6 、【答案】120;【解析】由题意得:360°÷36°=10,则他第一次回到出发地A点时,一共走了12×10=120(米).7 、【答案】 D;【解析】(n−2)×180°=720°,∴n−2=4,∴n=6.则这个正多边形的每一个内角为720°÷6=120°.故选:D.8 、【答案】 A;【解析】∵过一个多边形的一个顶点的对角线有6条,∴多边形的边数为6+3=9,∴这个多边形是九边形.9 、【答案】 C;【解析】从n边形的一个顶点作对角线,把这个n边形分成(n−2)个三角形.10 、【答案】 D;【解析】 A选项 : 正三角形的一个内角度数为180°−360°÷3=60°,是360°的约数,能镶嵌平面,不符合题意,故A错误;B选项: 正六边形的一个内角度数为180°−360°÷6=120°,是360°的约数,能镶嵌平面,不符合题意,故B错误;C选项 : 正四边形的一个内角度数为180°−360°÷4=90°,是360°的约数,能镶嵌平面,不符合题意,故C错误;D选项 : 正五边形的一个内角度数为180°−360°÷5=108°,不是360°的约数,不能镶嵌平面,符合题意,故D正确;11 、【答案】 D;【解析】沿对角线剪则剩下三角形.剪痕过一个顶点,并与一面相交得四边形.剪痕与相邻的两边相交,得五边形.12 、【答案】 D;【解析】如图:剪切的三种情况:①不经过顶点剪,则比原来边数多1,②只过一个顶点剪,则和原来边数相等,③按照顶点连线剪,则比原来的边数少1,设内角和为720°的多边形的边数是n,则(n−2)⋅180°=720°,解得:n=6,则原多边形的边数为5或6或7,故选:D.13 、【答案】425;【解析】∠A+∠B+∠C+∠D+∠AED=180°×(5−2)=540°,∵∠1+∠AED=180°,∠1=65°,∴∠AED=180°−65°=115°,∴∠A+∠B+∠C+∠D=540°−∠AED=540°−115°=425°.14 、【答案】100°;【解析】如图:∵五边形ABCDE的外角和是360°,∴∠5=360°−70°×4=80°,∴∠AED=180°−80°=100°.15 、【答案】8;【解析】根据n边形的内角和公式,得:(n−2)⋅180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.16 、【答案】9;【解析】解法一:360°÷40°=9.多边形外角和是360°,边数=外角数=内角数.解法二:∵外角都是40°,∴内角都是140°,设它为n边形则度数总和为140n°,又∵n边形的度数和是(n−2)×180°,所以140n=(n−2)×180,解得n=9.17 、【答案】 A;【解析】设该多边形边数为n,则内角和为180°(n−2),外角和为360°,∴180°⋅(n−2)=3×360°,解得n=8,故选A.18 、【答案】 C;【解析】多边形外角和为360°,则此多边形内角和为720°,+2=6.∴边数为=720°180°19 、【答案】 C;【解析】由外角与它相邻的内角是邻补角可得:x+4x=180°,一个外角度数x=36°,∴正多边形的边数为360°÷36°=10.20 、【答案】 B;【解析】∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走了:15×10=150米.故选:B.21 、【答案】 C;【解析】从n边形的一个顶点出发可引出(n−3)条对角线,可组成(n−2)个三角形,即可得n−2=10,解得n=12.故选C.22 、【答案】6;【解析】多边形的边数:360°÷40°=9,从一个顶点出发可以引对角线的条数:9−3=6(条).23 、【答案】 C;【解析】 A选项 : 正三角形每个内角是60°,能整除360°,能镶嵌.B选项 : 正方形每个内角是180°−360°÷4=90°,能整除360°,能镶嵌.C选项 : 正五边形每个内角为180°−360°÷5=108°,不能整除360°,不能镶嵌.D选项 : 正六边形每个内角为180°−360°÷6=120°,能整除360°,能镶嵌.24 、【答案】540°或360°或180°;【解析】n边形的内角和是(n−2)⋅180°,所得新的多边形的边数增加1,则新的多边形的内角和是(4+1−2)×180°=540°,所得新的多边形的边数不变,则新的多边形的内角和是(4−2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4−1−2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.25 、【答案】 D;【解析】一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或者减少了一条,根据(n−2)×180°=2520°,解得n=16.∴多边形的边数为15,16或17.故选D.26 、【答案】 C;【解析】方法一 : ∵在五边形ABCDE中,∠A+∠B+∠E=300°,∴∠EDC+∠BCD=240°,又∵DP、CP分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP中,∠P=180°−(∠PDC+∠PCD)=180°−120°=60°.方法二 : 五边形的内角和为(5−2)×180°=540°∵∠A+∠B+∠E=300°,∴∠EDC+∠BCD=240°.∵DP、CP分别平分∠EDC,∠BCD,∴∠PDC=12∠EDC,∠PCD=12∠BCD,∴∠PDC+∠PCD=12(∠EDC+∠BCD)=12×240°=120°∴∠P=60°.故选C.27 、【答案】360;【解析】∠1+∠2+∠3+∠4+∠5=(180°−∠BAE)+(180°−∠ABC)+(180°−∠BCD)+(180°−∠CDE)+(180°−∠DEA)=180°×5−(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°−(5−2)×180°=900°−540°=360°.故答案为:360°.28 、【答案】360;【解析】如下图所示∵∠AHG=∠A+∠B,∠DNG=∠C+∠D,∠EGN=∠E+∠F,∴∠AHG+∠DNG+∠EGN=∠A+∠B+∠C+∠D+∠E+∠F,又∵∠AHG、∠DNG、∠EGN是△GHN的三个不同的外角,∴∠AHG+∠DNG+∠EGN=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360.。

11.3多边形及其内角和练习题 ?(含答案)八年级数学

11.3多边形及其内角和练习题    ?(含答案)八年级数学

11.3多边形及其内角和练习题一.选择题(共16小题)1.(2013•湛江)已知一个多边形的内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形2.(2013•梅州)若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.63.(2014•达州)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α4.(2004•陕西)如图,在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE相交于一点P,若∠A=50°,则∠BPC=()A.150°B.130°C.120°D.100°5.(2015•丽水)一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形6.(2015•葫芦岛)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60°B.65°C.55°D.50°7.(2015•莱芜)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27 B.35 C.44 D.548.(2015•南宁)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60°B.72°C.90°D.108°9.(2014•临沂)将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°10.(2016•凉山州)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或911.(2015•北仑区一模)一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为()A.8 B.9 C.10 D.1212.(2014•大丰市模拟)如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90°B.135°C.270°D.315°13.(2015•无锡模拟)如果一个多边形的内角和等于1260°,那么这个多边形的边数为()A.7 B.8 C.9 D.1014.(2015•重庆)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形15.(2014•莱芜)若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.1616.(2012秋•渝中区校级期末)从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成()个三角形.A.6 B.5 C.8 D.7二.填空题(共8小题)17.(2015•资阳)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.18.(2014•巴中)若一个正多边形的一个内角等于135°,那么这个多边形是正边形.19.(2014•遵义)正多边形的一个外角等于20°,则这个正多边形的边数是.20.(2013•巴中)若一个多边形外角和与内角和相等,则这个多边形是边形.21.(2013•乐山)如图,在四边形ABCD中,∠A=45°.直线l与边AB,AD分别相交于点M,N,则∠1+∠2= .22.(2015•盘锦二模)如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2= .23.(2016•太原一模)如图,已知正五边形ABCDE,AF∥CD,交DB 的延长线于点F,则∠DFA= 度.24.(2015•崇安区二模)正n边形的一个内角比一个外角大100°,则n 为.三.解答题(共1小题)25.(2015春•沙河市期末)在△ABC中,如果∠A、∠B、∠C的外角的度数之比是4:3:2,求∠A的度数.11.3多边形及其内角和练习题参考答案与试题解析一.选择题(共16小题)1.(2013•湛江)已知一个多边形的内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形【解答】解:根据多边形的内角和可得:(n﹣2)180°=540°,解得:n=5,则这个多边形是五边形.故选B.【点评】本题比较容易,主要考查多边形的内角和公式.2.(2013•梅州)若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.6【解答】解:设边数为n,根据题意得(n﹣2)•180°<360°解之得n<4.∵n为正整数,且n≥3,∴n=3.故选A.【点评】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,还需要懂得挖掘此题隐含着边数为正整数这个条件.本题既可用整式方程求解,也可用不等式确定范围后求解.3.(2014•达州)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α【解答】解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:C.【点评】本题考查了多边形的内角和外角以及三角形的内角和定理,属于基础题.4.(2004•陕西)如图,在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE相交于一点P,若∠A=50°,则∠BPC=()A.150°B.130°C.120°D.100°【解答】解:∵BE⊥AC,CD⊥AB,∴∠ADC=∠AEB=90°,∴∠BPC=∠DPE=180°﹣50°=130°.故选B.【点评】主要考查了垂直的定义以及四边形内角和是360度.注意∠BPC与∠DPE互为对顶角.5.(2015•丽水)一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形【解答】解:外角是180°﹣120°=60°,360÷60=6,则这个多边形是六边形.故选:C.【点评】考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.6.(2015•葫芦岛)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60° B.65° C.55°D.50°【解答】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选:A.【点评】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.7.(2015•莱芜)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27 B.35 C.44 D.54【解答】解:设这个内角度数为x,边数为n,∴(n﹣2)×180°﹣x=1510,∵n为正整数,∴n=11,∴=44,故选:C.【点评】此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.8.(2015•南宁)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60°B.72°C.90°D.108°【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选B.【点评】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.9.(2014•临沂)将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°【解答】解:n边形的内角和是(n﹣2)•180°,n+1边形的内角和是(n﹣1)•180°,因而(n+1)边形的内角和比n边形的内角和大(n﹣1)•180°﹣(n﹣2)•180=180°.故选:C.【点评】本题主要考查了多边形的内角和公式,是需要识记的内容.10.(2016•凉山州)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9【解答】解:设内角和为1080°的多边形的边数是n,则(n﹣2)解得:n=8.则原多边形的边数为7或8或9.故选:D.【点评】本题考查了多边形的内角和定理,一个多边形截去一个角后它的边数可能增加1,可能减少1,或不变.11.(2015•北仑区一模)一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为()A.8 B.9 C.10 D.12【解答】解:设正多边形的每个外角的度数为x,与它相邻的内角的度数为4x,依题意有x+4x=180°,解得x=36°,这个多边形的边数=360°÷36°=10.故选:C.【点评】本题考查了多边形的外角定理:多边形的外角和为360°.也考查了邻补角的定义.12.(2014•大丰市模拟)如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A.90°B.135°C.270°D.315°【解答】解:∵∠C=90°,∴∠A+∠B=90°.∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.故选:C.【点评】本题考查了直角三角形的性质和四边形的内角和定理.知道剪去直角三角形的这个直角后得到一个四边形,根据四边形的内角和定理求解是解题的关键.13.(2015•无锡模拟)如果一个多边形的内角和等于1260°,那么这个多边形的边数为()A.7 B.8 C.9 D.10【解答】解:根据题意,得(n﹣2)•180=1260,解得n=9,故选C.【点评】本题考查了多边形的内角和,已知多边形的内角和求边数,可以转化为方程的问题来解决.14.(2015•重庆)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故本题选C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.15.(2014•莱芜)若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.16【解答】解:∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°﹣156°=24°,∴这个多边形的边数为:360°÷24°=15,故选:C.【点评】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握多边形的外角和定理是关键.16.(2012秋•渝中区校级期末)从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成()个三角形.A.6 B.5 C.8 D.7【解答】解:从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7﹣2=5个三角形.故选:B.【点评】本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成(n﹣2)个三角形.二.填空题(共8小题)17.(2015•资阳)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是8 .【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是8.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.18.(2014•巴中)若一个正多边形的一个内角等于135°,那么这个多边形是正八边形.【解答】解:∵内角与外角互为邻补角,∴正多边形的一个外角是180°﹣135°=45°,∵多边形外角和为360°,∴360°÷45°=8,则这个多边形是八边形.故答案为:八.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.19.(2014•遵义)正多边形的一个外角等于20°,则这个正多边形的边数是18 .【解答】解:因为外角是20度,360÷20=18,则这个多边形是18边形.故答案为:18【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.20.(2013•巴中)若一个多边形外角和与内角和相等,则这个多边形是四边形.【解答】解:设这个多边形的边数是n,则(n﹣2)•180°=360°,解得n=4.故答案为:四.【点评】本题考查了多边形的内角和公式与多边形的外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.21.(2013•乐山)如图,在四边形ABCD中,∠A=45°.直线l与边AB,AD分别相交于点M,N,则∠1+∠2= 225°.【解答】解:∵∠A=45°,∴∠B+∠C+∠D=360°﹣∠A=360°﹣45°=315°,∴∠1+∠2+∠B+∠C+∠D=(5﹣2)•180°,解得∠1+∠2=225°.故答案为:225°.【点评】本题考查了多边形的内角和公式,熟记多边形的内角和为(n ﹣2)•180°是解题的关键,整体思想的利用也很重要.22.(2015•盘锦二模)如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2= 240°.【解答】解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.【点评】主要考查了三角形及四边形的内角和是360度的实际运用与三角形内角和180度之间的关系.23.(2016•太原一模)如图,已知正五边形ABCDE,AF∥CD,交DB 的延长线于点F,则∠DFA= 36 度.【解答】解:∵正五边形的外角为360°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=36°,∵AF∥CD,∴∠DFA=∠CDB=36°,故答案为:36.【点评】本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.24.(2015•崇安区二模)正n边形的一个内角比一个外角大100°,则n 为9 .【解答】解:设内角为x°,则外角为(x﹣100)°,根据题意得:x+x﹣100=180,解得:x=140,所以外角为40°,∴360°÷40°=9,故答案为:9.【点评】本题考查了多边形的内角与外角,解题的关键是知道多边形的外角和为360°.三.解答题(共1小题)25.(2015春•沙河市期末)在△ABC中,如果∠A、∠B、∠C的外角的度数之比是4:3:2,求∠A的度数.【解答】解:设∠A、∠B、∠C的外角分别为∠1=4x度、∠2=3x度、∠3=2x度.(1分)因为∠1、∠2、∠3是△ABC的三个外角,所以4x+3x+2x=360,解得x=40.(2分)所以∠1=160°、∠2=120°、∠3=80°.(1分)因为∠A+∠1=180°,(1分)所以∠A=20°.(1分)【点评】本题主要考查三角形的外角性质及三角形的内角和定理,解题的关键是熟练掌握三角形的外角性质定理,即三角形的一个外角等于与它不相邻的两个内角之和.。

人教版 八年级数学上册 11.3 多边形及其内角和 同步训练(含答案)

人教版 八年级数学上册 11.3 多边形及其内角和 同步训练(含答案)

人教版八年级数学上册11.3 多边形及其内角和同步训练(含答案)一、选择题(本大题共7道小题)1. 若一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.62. 将一个n边形变成(n+2)边形,内角和将()A.减少180° B.增加180°C.减少360° D.增加360°3. 下列哪一个度数可以作为某一个多边形的内角和()A.240° B.600°C.540° D.2180°4. 设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A. a>bB. a=bC. a<bD. b=a+180°5. 一个正多边形的每个外角不可能等于()A.30° B.50° C.40° D.60°6. 若在n边形内部任意取一点P,将点P与各顶点连接起来,可以把n边形分成n个三角形,利用这个事实,可以探索到n边形的内角和为()A.180°×n B.180°×n-180°C.180°×n+180° D.180°×n-360°7. 如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m).则点E的坐标是()A. (2,-3)B. (2,3)C. (3,2)D. (3,-2)二、填空题(本大题共7道小题)8. 如图所示,x的值为________.9. 如图,在四边形ABCD中,若∠A+∠B+∠C=260°,则∠D的度数为________.10. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.11. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.12. 一个正五边形和一个正六边形按如图所示的方式摆放,它们都有一边在直线l上,且有一个公共顶点O,则∠AOB的度数是________.13. 如图,小明从点A出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°……照这样走下去,他第一次回到出发地点A时,一共走了________米.14. 如图,含30°角的三角尺的直角边AC,BC分别经过正八边形的两个顶点,则∠1+∠2=________°.三、解答题(本大题共3道小题)15. “X”与“Y”分别是两个多边形,请根据图中“X”与“Y”的对话,解答下列各小题.(1)求“X”与“Y”的外角和相加的度数;(2)分别求“X”与“Y”的内角和的度数.16. 小华与小明在讨论一个凸多边形的问题,他们的对话如下:小华说:“这个凸多边形的内角和是2020°.”小明说:“不可能吧!你错把一个外角当作内角了!”请根据俩人的对话,回答下列问题:(1)凸多边形的内角和为2020°,小明为什么说不可能?(2)小华求的是几边形的内角和?17. 如图,在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延长线与∠EDC处的外角的平分线相交于点P,求∠P的度数.人教版八年级数学上册11.3 多边形及其内角和同步训练-答案一、选择题(本大题共7道小题)1. 【答案】B2. 【答案】D[解析] (n+2)边形的内角和比n边形的内角和大n·180°-(n-2)·180°=360°.3. 【答案】C[解析] ∠多边形内角和公式为(n-2)×180°,∠多边形内角和一定是180°的倍数.∠540°=3×180°,∠540°可以作为某一个多边形的内角和.4. 【答案】B【解析】∠四边形的内角和为360°,五边形的外角和为360°,∴a =b.5. 【答案】B[解析] 设正多边形的边数为n,则当30°n=360°时,n=12,故A可能;当50°n=360°时,n=365,不是整数,故B不可能;当40°n=360°时,n=9,故C可能;当60°n=360°时,n=6,故D可能.6. 【答案】D7. 【答案】C【解析】点A(0,a),∴y轴过点A,点C、D纵坐标相同,∴CD 与x轴平行,∵正五边形是轴对称图形,∴点E和点B关于y轴对称,∴点E的坐标为(3,2).二、填空题(本大题共7道小题)8. 【答案】55°[解析] 由多边形的外角和等于360°,得360°-105°-60°+x+2x =360°,解得x=55°.9. 【答案】100°10. 【答案】8【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.【一题多解】因为正多边形的每一个外角都是45°,所以这个正多边形的每一个内角都是180°-45°=135°,设正多边形的边数为n,则(n-2)×180°=135°×n,解得n=8.方法指导设正多边形的边数为n,正多边形的外角和为360°,内角和为(n-2)×180°,每个内角的度数为180°×(n-2)n.11. 【答案】6【解析】设这个多边形的边数为n,则内角和为(n-2)·180°,外角和为360°,则根据题意有:(n-2)·180°=2×360°,解得n=6.12. 【答案】84°[解析] 由题意,得∠AOE=108°,∠BOF=120°,∠OEF=72°,∠OFE=60°,∠∠EOF=180°-72°-60°=48°.∠∠AOB=360°-108°-48°-120°=84°.13. 【答案】120[解析] 由题意得360°÷36°=10,则他第一次回到出发地点A时,一共走了12×10=120(米).故答案为120.14. 【答案】180[解析] 正八边形的每一个内角为(8-2)×180°8=135°,所以∠1+∠2=2×135°-90°=180°.三、解答题(本大题共3道小题)15. 【答案】解:(1)360°+360°=720°.(2)设X的边数为n,则Y的边数为3n.由题意,得180(n-2)+180(3n-2)=1440,解得n =3.所以X 的内角和为180°×(3-2)=180°, Y 的内角和为180°×(3×3-2)=1260°.答:“X”的内角和的度数为180°,“Y”的内角和的度数为1260°.16. 【答案】解:(1)∠n 边形的内角和是(n -2)×180°, ∠多边形的内角和一定是180°的整倍数. ∠2020÷180=11……40, ∠多边形的内角和不可能为2020°.(2)设小华求的是n 边形的内角和,这个内角为x°,则0<x <180. 根据题意,得(n -2)×180°-x +(180°-x)=2020°,解得n =12+2x +40180. ∠n 为正整数,∠2x +40必为180的整倍数. 又∠0<x <180, ∠40180<2x +40180<400180. ∠n =13或14.∠小华求的是十三边形或十四边形的内角和.17. 【答案】解:延长ED ,BC 相交于点G.在四边形ABGE 中,∠G =360°-(∠A +∠B +∠E)=50°, ∠P =∠FCD -∠CDP =12(∠DCB -∠CDG)=12∠G =12×50°=25°.。

人教版八年级数学上册同步练习11.3多边形及其内角和(含答案解析)

人教版八年级数学上册同步练习11.3多边形及其内角和(含答案解析)

11.3多边形及其内角和专题一根据正多边形的内角或外角求值1.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.92.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.专题二求多个角的和4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.540°C.630°D.720°5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.状元笔记【知识要点】1.多边形及相关概念多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.多边形的内角和与外角和内角和:n边形的内角和等于(n-2)·180°.外角和:多边形的外角和等于360°.【温馨提示】1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.2.多边形的外角和等于360°,而不是180°.【方法技巧】1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.参考答案:1.A 解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A.2.1440 解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.5.360°解析:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.∵∠A+∠B+∠BPO+∠POA=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.。

113多边形及其内角和练习题含答案

113多边形及其内角和练习题含答案

11.3多边形及其内角和练习题姓名:_______________班级:_______________考号:_______________一、选择题1、n边形所有对角线的条数有()A. B. C. D.2、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315° B.270°C.180° D.135°3、一个多边形的内角和与它的一个外角的和为,那么这个多边形的边数为()A.5 B.6C.7D.84、如图,四边形ABCD中,∠A+∠B=200°,∠ADC、∠DCB的平分线相交于点O,则∠COD的度数是()A.80°B.90°C.100°D.110°5、一个四边形,截一刀后得到的新多边形的内角和将()A.增加180°B.减少180° C.不变 D.以上三种情况都有可能6、如果一个多边形的边数变为原来的2倍后,其内角和增加了1260°,则这个多边形的边数为()A.7 B.8 C.9 D.107、一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A. 5 B. 5或6 C. 5或7 D. 5或6或78、多边形的每个内角都等于150°,则从此多边形的一个顶点出发可引的对角线有A.8条B.9条C.10条D.11条9、一个多边形有14条对角线,那么这个多边形有()条边A.6B.7C.8D.910、一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为--()A.8 B.9 C.10 D.1211、如图,国旗上的五角星的五个角的度数是相同的,每一个角的度数都是()A.30° B.35° C.36° D.42°12、一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.813、一个正多边形每个外角都是30°,则这个多边形边数为()A.10 B.11 C.12 D.1314、正多边形的一个内角的度数为108°,则这个正多边形的边数为A. 4B. 5C. 6D. 715、多边形的边数增加1,则它的外角和()A.不变 B.增加180° C.增加360° D.无法确定二、填空题16、一块四边形绿化园地,四角都做有半径为R的圆形喷水池,则这四个喷水池占去的绿化园地的面积为.17、如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4= _________ .18、如图,正方形ABCD中,截去∠B、∠D后,∠1、∠2、∠3、∠4的和为19、一个多边形的内角和与外角和之比为9:2,则从这个多边形的个顶点可以引_______条对角线。

2022年人教版八年级上册《11.3多边形及其内角和》同步练习附答案

2022年人教版八年级上册《11.3多边形及其内角和》同步练习附答案

11.3多边形及其内角和专题一根据正多边形的内角或外角求值1.假设一个正多边形的每个内角为150°,那么这个正多边形的边数是〔〕A.12 B.11 C.10 D.92.一个多边形的每一个外角都等于36°,那么该多边形的内角和等于________°.3.一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.专题二求多个角的和4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=〔〕A.360°B.540°C.630°D.720°5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.状元笔记【知识要点】1.多边形及相关概念多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.多边形的内角和与外角和内角和:n边形的内角和等于(n-2)·180°.外角和:多边形的外角和等于360°.【温馨提示】1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.2.多边形的外角和等于360°,而不是180°.【方法技巧】1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.参考答案:1.A 解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.应选A.2.1440 解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.应选B.5.360°解析:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.∵∠A+∠B+∠BPO+∠POA=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.第十三章轴对称检测题〔本检测题总分值:100分,时间:90分钟〕一、选择题〔每题3分,共30分〕1.〔2021·兰州中考〕在以下绿色食品、循环回收、节能、节水四个标志中,属于轴对称图形的是〔〕A B C D2.〔2021·山东泰安中考〕以下四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是〔 〕A. 1B.2C.3D.4 3.如下图,在△中,,∠,的垂直平分线交于,交于,以下结论错误的选项是〔 〕 A.平分∠ B.△的周长等于 C. D.点是线段的中点4.以下说法正确的选项是〔 〕A.如果图形甲和图形乙关于直线MN 对称,那么图形甲是轴对称图形B.任何一个图形都有对称轴,有的图形不止一条对称轴C.平面上两个大小、形状完全一样的图形一定关于某条直线对称D.如果△ABC 和△EFG 成轴对称,那么它们的面积一定相等 5.如下图,在2×2的方格纸中有一个以格点为顶点的△ABC , 那么与△ABC 成轴对称且以格点为顶点的三角形共有〔 〕个 个 个 个6.以下说法中,正确的命题是〔 〕〔1〕等腰三角形的一边长为4 cm ,一边长为9 cm ,那么它的周长为17 cm 或22 cm ; 〔2〕三角形的一个外角等于两个内角的和; 〔3〕有两边和一角对应相等的两个三角形全等; 〔4〕等边三角形是轴对称图形;〔5〕如果三角形的一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角 形.A .〔1〕〔2〕〔3〕B .〔1〕〔3〕〔5〕C .〔2〕〔4〕〔5〕D .〔4〕〔5〕7.如下图,△与△关于直线对称,那么∠等第5题图A B第3题图 E D C于〔 〕A. B. C. D.8.如下图,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是〔 〕9.如下图,在3×3正方形网格中,已有三个小正方形被涂黑,将剩余的白色小正方形再任意涂黑一个,那么所得黑色图案是轴对称图形的情况有〔 〕 种 种 种 种10.如下图,在△ABC 中,AB +BC =10,AC 的垂直平分线分别交AB 、AC 于点D 和点E ,那么△BCD 的周长是〔 〕A.6B.8C.10D.无法确定二、填空题〔每题3分,共24分〕11. 国际奥委会会旗上的图案由5个圆环组成.每两个圆环相交的局部叫做曲边四边形,如下图,从左至右共有8个曲边四边形,分别给它们标上序号.观察图形,我们发现标号为2的曲边四边形〔下简称“2〞〕经过平移能与“6〞重合,2还与 成轴对称.〔请把能成轴对称的曲边四边形标号都填上〕12.光线以如下图的角度照射到平面镜上,然后在平面镜Ⅰ、Ⅱ间来回反射,=60°,β=50°,那么= .13.在平面直角坐标系中,点P 〔,3〕与点Q 〔〕关于y 轴对称,那么= .14.工艺美术中,常需设计对称图案.在如下图的正方形网格中,点A ,D 的坐标分别为〔1,0〕,〔9,-4〕.请在图中再找一个格点P ,使它与的4个格点组成轴对称图形,那么点第10题图第9题图第11题图A B C D第8题图 上折 右折 沿虚线剪下 展开P 的坐标为 〔如果满足条件的点P 不止一个,请将它们的坐标都写出来〕.15.如下图,是∠的平分线,于点,于,那么关于直线对称的三角形共有_______对. 16.(2021·陕西中考)一个正五边形的对称轴共有 条. 17.如下图,在△中,是的垂直平分线,,△的周长为,那么△的周长为______. 18.三角形的三边长分别为,且,那么这个三角形〔按边分类〕一定是 .三、解答题〔共46分〕19.〔6分〕如下图,在矩形中,假设,,在边上取一点,将△折叠,使点恰好落在边上的点处,请你求出的长.20.〔6分〕如图,∠内有一点,在射线上找出一点,在射线上找出一点,使最短.21.〔8分〕在如下图的正方形网格中,每个小正方形的边长为1,格点三角形〔顶点是网格线的交点的三角形〕ABC 的顶点A ,C 的坐标分别为〔-4,5〕,〔-1,3〕. 〔1〕请在如下图的网格平面内作出平面直角坐标系; 〔2〕请作出△ABC 关于y 轴对称的△A ′B ′C ′; 〔3〕写出点B ′的坐标.22.〔8分〕如下图,在△中,分别平分∠和△的外角∠,∥交于点,求证:.23.〔10分〕如下图,∥∠的平分线与∠的平分线交于点,过点的直线垂直于,垂足为,交于点.试问:点是线段的中点吗?为什么? 24.〔8分〕:如下图,等边三角形ABC 中,D 为AC 边的中点,E 为BC 延长线上一点,CE =CD ,DM ⊥BC 于M ,求证:M 是BE 的中点.第14题图 A B DC O E 第15题图 A B C DP 第23题图 第22题图 D C B E FG A 第21题第24题图第十三章轴对称检测题参考答案1.A 解析:根据轴对称图形的概念:只有A图形沿着一条直线对折后直线两旁的局部能完全重合,故A是轴对称图形.2.C 解析:第一个是轴对称图形,有2条对称轴;第二个是轴对称图形,有2条对称轴;第三个是轴对称图形,有2条对称轴;第四个是轴对称图形,有3条对称轴.应选C.3.D 解析:因为在△中,,∠,所以∠∠.因为的垂直平分线是,所以,所以∠∠,所以∠∠∠∠,所以平分∠,故正确.△的周长为,故正确.因为∠,∠,所以∠∠∠,所以∠∠,所以,所以,故正确.因为,所以,所以点不是线段的中点,故错误.应选.4.D 解析:A.如果图形甲和图形乙关于直线MN对称,那么图形甲不一定是轴对称图形,错误;B.有的图形没有对称轴,错误;C.平面上两个大小、形状完全一样的图形不一定关于某条直线对称,与摆放位置有关,错误;D.如果△ABC和△EFG成轴对称,那么它们全等,故其面积一定相等,正确.应选D.5.C 解析:与△ABC成轴对称且以格点为顶点的三角形有第5题答图△ABG、△CDF、△AEF、△DBH,△BCG共5个,应选C.6.D 解析:〔1〕等腰三角形的一边长为4 cm,一边长为9 cm,那么三边长可能为9 cm,9 cm,4 cm,或4 cm,4 cm,9 cm.因为4+4<9,所以它的周长只能是22 cm,故此命题错误;〔2〕三角形的一个外角等于与它不相邻的两个内角的和,故此命题错误;〔3〕有两边和一角对应相等的两个三角形全等错误,角必须是两边夹角;〔4〕等边三角形是轴对称图形,此命题正确;〔5〕如果三角形的一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形,正确.如下图,∵AD∥BC,∴∠1=∠B,∠2=∠C.∵AD是角平分线,∴∠1=∠2,∴∠B=∠C,∴AB=AC,即△ABC是等腰三角形.应选D.7.D 解析:因为△与△关于直线对称,第6题答图所以所以.8.B 解析:按照题意,动手操作一下,可知展开后所得的图形是选项B.9.C 解析:根据题意,涂黑每一个格都会出现一种等可能情况,共出现6种等可能情况,而当涂黑左上角和右下角的小正方形时,不会是轴对称图形,其余的4种情况均可以.应选C.10.C 解析:∵DE是AC的垂直平分线,∴AD=DC,∴△BCD的周长=BC+BD+DC=BC+BD+AD=10.应选C.11.1,3,7 解析:根据轴对称图形的定义可知:标号为2的曲边四边形与标号为1,3,7的曲边四边形成轴对称.12.40°解析:=180°-[60°+〔180°-100°〕]=40°.13.1 解析:关于y轴对称的点,纵坐标相同,横坐标互为相反数,∵点P〔2,3〕与Q〔4,5〕关于y轴对称,∴解得∴〔〕2 014=〔1-2〕2 014=1.14.〔9,-6〕,〔2,-3〕解析:∵点A的坐标为〔1,0〕,∴坐标原点是点A左边一个单位的格点.∵点C在线段AB的垂直平分线上,∴对称轴是线段AB的垂直平分线,∴点P是点D关于对称轴的对称点.∵点D的坐标是〔9,-4〕,∴P〔9,-6〕.AB=BD,以AD的垂直平分线为对称轴,P′与C关于AD的垂直平分线对称,∵C点的坐标为〔6,-5〕,∴P′〔2,-3〕.15. 解析:△和△,△和△△和△△和△共4对.16.5 解析:如图,正五边形的对称轴共有5条.17.19 解析:因为是的垂直平分线,所以,所以因为△的周长为,所以所以.所以△的周长为18.等腰三角形解析:∵∴ ,∴.∵+≠0,∴=0,∴,那么三角形一定是等腰三角形.第14题答图第16题答图19.解:根据题意,得△≌△, 所以∠,,. 设,那么.在Rt △中,由勾股定理,得,即, 所以 ,所以.在Rt △中,由勾股定理可得,即, 所以,所以,即.20.解:如图,分别以直线、为对称轴,作点的对应点和,连接,交于点,交于点, 那么此时最短.21.分析:〔1〕易得y 轴在C 的右边1个单位,轴在C 的下方3个单位; 〔2〕作出A ,B ,C 三点关于y 轴对称的三点,顺次连接即可; 〔3〕根据点B ′所在象限及其与坐标轴的距离可得相应坐标. 解:〔1〕〔2〕如下图;〔3〕点B ′的坐标为〔2,1〕. 22.证明:因为分别平分∠和∠, 所以∠∠,∠∠. 因为∥,所以∠∠,∠∠. 所以∠∠,∠∠. 所以.所以.23.解:点是线段的中点.理由如下: 过点作于点 因为∥所以.又因为∠的平分线,是∠的平分线, 所以所以所以点是线段的中点.24.分析:欲证M 是BE 的中点,DM ⊥BC ,因此只需证DB =DE ,即证∠DBE =∠E . 根据BD 是等边△ABC 的中线可知∠DBC =30°,因此只需证∠E =30°. 第21题答图O 错误!未找到引用源。

2023-2024学年人教版数学八年级上册 11.3多边形及其内角和同步练习(含答案)

2023-2024学年人教版数学八年级上册  11.3多边形及其内角和同步练习(含答案)

2023-2024学年人教版数学八年级上册11.3多边形及其内角和同步练习(含答案)2023-2024学年人教版数学八年级上册11.3 多边形及其内角和同步练习一、单选题1.五边形的内角和为()A.720° B.540° C.360° D.180°2.下列角度中,不能成为多边形内角和的是()A.600° B.720° C.900° D.1080°3.一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形4.若从一个正多边形的一个顶点出发,最多可以引5条对角线,则它的一个内角为()A.B.C.D.5.如果一个四边形的面积正好等于它的两条对角线乘积的一半,那么这个四边形一定是()A.菱形B.矩形C.正方形D.对角线互相垂直的四边形6.在一个凸n边形的纸板上切下一个三角形后,剩下一个内角和为1080°的多边形,则n的值为()A.7 B.8C.9 D.以上都有可能7.一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.14或15或16 B.15或16或17 C.15或16 D.16或178.下列说法中,正确的个数有()①若一个多边形的外角和等于360°,则这个多边形的边数为4;②三角形的高相交于三角形的内部;③三角形的一个外角大于任意一个内角;④一个多边形的边数每增加一条,这个多边形的内角和就增加;⑤对角线共有5条的多边形是五边形.A.1个B.2个C.3个D.4个二、填空题9.若一个正多边形的一个外角等于18°,则这个正多边形的边数是.10.一个多边形的内角和与外角和的比是4:1,则它的边数是.11.如图,点O是正五边形ABCDE的中心,连接BD、OD,则∠BDO =°.12.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.13.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=度.三、解答题14.一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.15.如图,是四边形的一个外角,且.那么与互补吗?为什么?16.如图,CD∠AF,∠CDE=∠BAF,AB∠BC,∠C=120°,∠E=80°,试求∠F的度数.17.如图,四边形ABCD中,BA丄DA,CD丄BC,BE、DF分别是∠ABC、∠ADC的平分线.(1)∠1与∠2有什么数量关系,为什么?(2)BE与DF有什么位置关系?请说明理由.18.如图,将六边形纸片ABCDEF沿虚线剪去一个角(∠BCD)后,得到∠1+∠2+∠3+∠4+∠5=460°.(1)求六边形ABCDEF的内角和;(2)求∠BGD的度数.19.如图,五边形中,.(1)求的度数;(2)直接写出五边形的外角和.参考答案1.B 2.A 3.C 4.D 5.D 6.D 7.A 8.B 9.2010.1011.1812.24°13.360 °14.解:根据题意,得(n﹣2)180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.15.解:与互补,理由如下:∠ ,∠ABC+=180∠∠ABC+∠D=180 ,∠四边形内角和等于360 ,∠ + =360°-(∠ABC+∠D)=180°∠ 与互补.解:如图,连结AD在四边形ABCD中,∠BAD+∠ADC+∠B+∠C=360°.∠AB∠BC,∠∠B=90°.又∠∠C=120°,∠∠BAD+∠ADC=150°.∠CD∠AF,∠∠CDA=∠DAF.又∠∠CDE =∠BAF,∠∠EDA=∠BAD.在四边形ADEF∠DAF+∠EDA+∠F+∠E=360°,∠∠F+∠E=360°(∠ADC+∠BAD)=210°.又∠∠E=80°,∠∠F=130°17.(1)解:∠1+∠2=90°;理由如下:∠BE,DF分别是∠ABC,∠ADC的平分线,∠∠ABC=2∠1,∠ADC=2∠2,∠BA丄DA,CD丄BC,∠∠A=∠C=90°,∠∠ABC+∠ADC=180°,∠2(∠1+∠2)=180°,∠∠1+∠2=90°;(2)解:BE∠DF;理由如下:在∠FCD中,∠∠C=90°,∠∠DFC+∠2=90°,∠∠1+∠2=90°,∠∠1=∠DFC,∠BE∠DF.18.(1)解:六边形ABCDEF的内角和为:180°×(6-2)=720°;(2)解:∠∠1+∠2+∠3+∠4+∠5=460°,∠∠GBC+∠C+∠CDG=720°-460°=260°,∠∠G=360°-(∠GBC+∠C+∠CDG)=100°.19.(1)解:∠AE∠CD,∠∠D+∠E=180°,∠五边形ABCDE中,∠A=100°,∠B=120°,∠.(2)解:根据多边形的外角和定理:五边形的外角和是:°。

人教版2021年八年级上册:11.3 多边形及其内角和 同步练习 word版,含详解

人教版2021年八年级上册:11.3 多边形及其内角和 同步练习 word版,含详解

11.3 多边形及其内角和同步练习一.选择题1.下面的多边形中,内角和是360°的是()A.B.C.D.2.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75B.65C.60D.55 3.如图,五边形ABCDE是正五边形,则x为()A.30°B.35°C.36°D.45°4.若一个正多边形的一个内角是144°,则它的边数是()A.6B.10C.12D.13 5.若正多边形的一个外角是40°,则这个正多边形的内角和是()A.720°B.900°C.1080°D.1260°6.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.360°C.540°D.720°7.如图.∠A+∠B+∠C+∠D+∠E的度数为()A.90°B.180°C.120°D.360°8.如图,在五边形ABCDE中,若去掉一个30°的角后得到一个六边形BCDEMN,则∠1+∠2的度数为()A.210°B.110°C.150°D.100°二.填空题9.一个多边形的内角和跟它的外角和相等,则这个多边形是边形.10.如果一个多边形的每一个外角都等于40°,那么该多边形是边形.11.如果一个正多边形的一个内角是162°,则这个正多边形是正边形.12.如图,在四边形ABCD中,E、F分别是两组对边延长线的交点,EG、FG分别平分∠BEC、∠DFC,若∠ADE=115°,∠ABF=95°,则∠EGF的度数为.13.如图,小亮从A点出发前进2m,向右转15°,再前进2m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了m.14.一个不规则的图形如图所示,那么∠A+∠B+∠C+∠D+∠E+∠F=.15.如图,∠A+∠B+∠C+∠D+∠E=°.16.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P=.三.解答题17.如图,∠1,∠2,∠3,∠4是四边形ABCD的四个外角.用两种方法证明∠1+∠2+∠3+∠4=360°.18.一个多边形的所有内角与它的一个外角之和是2018°,求这个外角的度数和它的边数.19.在一个各内角都相等的多边形中,每一个内角都比与它相邻外角的3倍还大20°,求这个多边形的边数以及它的内角和.20.某科技小组制作了一个机器人,它能根据指令要求进行行进和旋转,某一指令规定:机器人先向前方行走2m,然后左转60°,若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了多少米?21.(1)如图1,四边形ABCD沿MN折叠,使点C、D落在四边形ABCD内的点C'D'处,探索∠AMD′、∠BNC'与∠A+∠B之间的数量关系,并说明理由;(2)如图2,将四边形ABCD沿着直线MN翻折,使得点D落在四边形ABCD外部的D′处,点C落在四边形ABCD内部的C'处,直接写出∠AMD'、∠BNC'与∠A+∠B之间的关系.22.(1)如图①,把三角形纸片ABC沿DE折叠,当点A落在四边形BCDE的内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律;(2)如果把△ABC纸片沿DE折叠,使点A落在四边形BCED的外部点A′的位置,如图②,此时∠A与∠1、∠2之间存在什么样的关系?(3)如果把四边形ABCD沿EF折叠,使点A、D落在四边形BCFE的内部A′、D′的位置,如图③,你能求出∠A、∠D、∠1与∠2之间的关系吗?(直接写出关系式即可)参考答案一.选择题1.解:∵n边形的内角和公式为180°(n﹣2),∴当180°(n﹣2)=360°,则n=4.∴四边形的内角和等于360°.故选:B.2.解:∵AB∥CD,∴∠B=180°﹣∠C=180°﹣60°=120°,∵五边形ABCDE内角和为(5﹣2)×180°=540°,∴在五边形ABCDE中,∠E=540°﹣135°﹣120°﹣60°﹣150°=75°.故图中x的值是75.故选:A.3.解:因为五边形ABCDE是正五边形,所以∠E=∠CDE==108°,AE=DE,所以,所以x=∠CDE﹣∠1﹣∠3=36°.故选:C.4.解:设这个正多边形的边数为n,则(n﹣2)×180°=144°×n,解得n=10.故选:B.5.解:正多边形的每个外角相等,且其和为360°,据此可得=40°,解得n=9,(9﹣2)×180°=1260°,即这个正多边形的内角和为1260°.故选:D.6.解:∵∠A+∠B+∠1=180°,∠C+∠D+∠3=180°,∠E+∠F+∠2=180°,∴∠A+∠B+∠1+∠C+∠D+∠3+∠E+∠F+∠2=540°,∵∠1+∠2+∠3=180°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故选:B.7.解:如图:∵∠1=∠2+∠C,∠2=∠A+∠D,∴∠1=∠A+∠C+∠D,∵∠1+∠B+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°,故选:B.8.解:解法一:∵∠A+∠B+∠C+∠D+∠E=(5﹣2)×180°=540°,∠A=30°,∴∠B+∠C+∠D+∠E=510°,∵∠1+∠2+∠B+∠C+∠D+∠E=(6﹣2)×180°=720°,∴∠1+∠2=720°﹣510°=210°,解法二:在△ANM中,∠ANM+∠AMN=180°﹣∠A=180°﹣30°=150°,∴∠1+∠2=360°﹣(∠AMN+∠ANM)=360°﹣150°=210°故选:A.二.填空题9.解:设多边形的边数为n,根据题意(n﹣2)•180°=360°,解得n=4.故答案为:4.10.解:∵一个多边形的每一个外角都等于40°,且多边形的外角和等于360°,∴这个多边形的边数是:360°÷40°=9.故答案为九.11.解:∵正多边形的一个内角是162°,∴它的外角是:180°﹣162°=18°,边数n=360°÷18°=20.故答案为:二十.12.解:如图:连接EF,根据三角形内角和定理及角平分线的性质得:∠EGF=180°﹣(∠GEF+∠GFE)=180°﹣(∠CEF﹣∠CEG+∠CFE﹣CFG)=180°﹣(∠CEF+∠CFE)+(∠CFG+∠CEG)=∠C+∠CFD+∠CEB=∠C+(180°﹣∠C﹣∠CDF)+(180°﹣∠C﹣∠CBE)=∠C+180°﹣∠C﹣(180°﹣115°+180°﹣95°)=105°.故答案为:105°.13.解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴根据外角和定理可知正多边形的边数为:360°÷15°=24,则一共走了:24×2=48(m),故答案为:48.14.解:如图,连接AD,则∠F AD+∠EDA+∠1=180°,∠E+∠F+∠2=180°,又∵∠1=∠2,∴∠F AD+∠EDA=∠E+∠F,∴∠BAF+∠B+∠C+∠CDE+∠E+∠F=∠BAF+∠B+∠C+∠CDE+∠F AD+∠EDA=∠BAD+∠B+∠C+∠CDA=360°.故答案为:360°.15.解:如图,∵∠1=∠B+∠2,∠2=∠D+∠E,∠A+∠1+∠C=180°,∴∠A+∠B+∠D+∠E+∠C=180°,故答案为:180.16.解:∵在五边形ABCDE中,∠A+∠B+∠E=300°,∴∠EDC+∠BCD=(5﹣2)×180°﹣300°=240°,又∵DP、CP分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP中,∠P=180°﹣(∠PDC+∠PCD)=180°﹣120°=60°.故答案为:60°.三.解答题17.证法1:∵∠1+∠BAD=180°,∠2+∠ABC=180°,∠3+∠BCD=180°,∠4+∠CDA=180°,∴∠1+∠BAD+∠2+∠ABC+∠3+∠BCD+∠4+∠CDA=180°×4=720°.∵∠BAD+∠ABC+∠BCD+∠CDA=360°,∴∠1+∠2+∠3+∠4=360°.证法2:连接BD,∵∠1=∠ABD+∠ADB,∠3=∠CBD+∠CDB,∴∠1+∠2+∠3+∠4=∠ABD+∠ADB+∠2+∠CBD+∠CDB+∠4=180°×2=360°.18.解:设这个多边形的边数是n,n为正整数,根据题意得:0°<2018°﹣(n﹣2)×180°<180°,解得:<n<,即n=13,这个外角为2018°﹣(13﹣2)×180°=38°.19.解:设多边形的一个外角为α,则与其相邻的内角等于3α+20°,由题意,得(3α+20°)+α=180°,解得α=40°,即多边形的每个外角为40°,又∵多边形的外角和为360°,∴多边形的外角个数==9,∴多边形的边数=9,∴多边形的内角和=(9﹣2)×180°=1260°.20.解:∵机器人向前走2米,然后向左60°,反复执行这一指令,∴从出发到第一次回到原处,机器人走过的图形是正多边形,边数=360°÷60°=6,∴机器人共走了6×2=12(米).答:从出发到第一次回到原处,机器人共走了12米.21.解:(1)∠AMD′+∠BNC′=360°﹣2(∠A+∠B),理由如下:根据四边形的内角和为360°可知,∠D+∠C=360°﹣(∠A+∠B),∠DMN+∠CNM=360°﹣(∠C+∠D)=∠A+∠B,根据折叠的性质得,∠DMN=∠D′MN,∠CNM=∠C′NM,∴∠DMD′+∠CNC′=2(∠A+∠B),∵∠DMD′+∠AMD′=180°,∠CNC′+∠BNC′=180°,∴∠AMD′+∠BNC′=360°﹣2(∠A+∠B).(2)∠BNC′﹣∠AMD′=360°﹣2(∠A+∠B),理由如下:由(1)知,∠DMN+∠CNM=∠A+∠B,根据折叠的性质得,∠DMN=∠D′MN,∠CNM=∠C′NM,∴∠D′MN+∠C′NM=∠A+∠B,由四边形的内角和为360°得,∠D′MN﹣∠AMD′+∠BNC′+∠C′NM=360°﹣(∠A+∠B)∴∠BNC′﹣∠AMD′=360°﹣2(∠A+∠B).22.解:(1)根据折叠的性质可知:∠ADE=∠A′DE,∠AED=∠A′ED,∴∠1=180°﹣2∠ADE①,∠2=180°﹣2∠AED②,①+②,得∠1+∠2=360°﹣2(∠ADE+∠AED),∵∠ADE+∠AED+∠A=180°,∴∠ADE+∠AED=180°﹣∠A,∴∠1+∠2=360°﹣2(180°﹣∠A)=360°﹣360°+2∠A=2∠A,∴∠A=(∠1+∠2).故答案为:∠A=(∠1+∠2).(2)根据折叠的性质可知,∴∠1=180°﹣2∠ADE①,∠2=2∠AED﹣180°②,①﹣②,得∠1﹣∠2=180°﹣2∠ADE﹣2∠AED+180°=360°﹣2(∠ADE+∠AED),∴2(∠ADE+∠AED)=360°﹣(∠1﹣∠2),∵∠A+∠ADE+∠AED=180°,∴∠ADE+∠AED=180°﹣∠A,∴2(180°﹣∠A)=360°﹣(∠1﹣∠2),360°﹣2∠A=360°﹣∠1+∠2,∴∠1﹣∠2=2∠A,∴∠A=(∠1﹣∠2).(3)根据折叠的性质可知,∠AEF=(180°﹣∠1),∠DFE=(180°﹣∠2),∵∠A+∠D+∠AEF+∠DFE=360°,∴∠A+∠D+(180°﹣∠1)+(180°﹣∠2)=360°,∴2(∠A+∠D)=∠1+∠2+360°,∴∠A+∠D=(∠1+∠2+360°).。

11.3多边形及其内角和-2023-2024学年人教版八年级数学上册同步练习(含答案)

11.3多边形及其内角和-2023-2024学年人教版八年级数学上册同步练习(含答案)

11.3多边形及其内角和-2023-2024学年人教版八年级数学上册同步练习(含答案)11.3多边形及其内角和-2023-2024学年人教版八年级数学上册同步练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.正多边形的一个内角等于150 ,则该多边形是正()边形A.9 B.10 C.11 D.122.下列说法中正确的是()A.三角形的角平分线是一条射线.B.三角形的一个外角大于任何一个内角.C.任意三角形的外角和都是180°.D.内角和是1080°的多边形是八边形.3.下列正多边形中,内角和等于外角和的是()A.正三边形B.正四边形C.正五边形D.正六边形4.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为的新多边形,则原多边形的边数为A.13 B.14 C.15 D.165.十边形的内角和是()A.1080° B.1260° C.1440° D.1800°6.若一个多边形的内角和与外角和之差是,则此多边形是()边形.A.6 B.7 C.8 D.97.正五边形的外角和为()A.360° B.540° C.720° D.900°8.如图,过正六边形ABCDEF的顶点B作一条射线与其内角∠BAF的角平分线相交于点P,且∠APB=40°,则∠CBP的度数为()A.80° B.60° C.40° D.30°9.在下列四组多边形的地板砖中:①正三角形与正方形;②正三角形与正十边形;③正方形与正六边形;④正方形与正八边形.将每组中的两种多边形结合,能密铺地面的是()A.①②③ B.①②④ C.③④ D.①④10.若一个多边形的内角和是外角和的1.5倍,则这个多边形是()A.三角形B.四边形C.五边形D.六边形二、填空题11.八边形从其中的任何一个顶点最多可画条对角线,这些对角线可将八边形分成三角形.12.一个多边形的每个外角均为40°,则这个多边形的内角和为.13.如图,.14.我们把正多边形的一个内角与外角的比值叫做正多边形的内外比,内外比为3的正多边形的边数为15.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.正多边形的一个外角是40°,则这个正多边形的边数是.B.运用科学计算器比较大小:sin37.5° .16.一个多边形的内角和比外角和多1080°,并且这个多边形的各内角都相等,则这个多边形的每一个外角等于.17.从一个八边形的一个顶点画对角线,可画出条对角线.18.已知一个多边形的每一个外角都等于,则这个多边形的边数是.19.如图,AB∠CD,∠BAC与∠DCA的平分线相交于点G,GE∠AC于点E,F为AC上的一点,且AF=FC,GH∠CD于H.下列说法①AG∠CG;②∠BAG=∠CGE;③S∠AFG=S∠CFG;④若∠EGH∠∠ECH=2∠7,则∠EGH=40°.其中正确的有.20.如果n边形的每一个内角都等于与它相邻外角的2倍,则n的值是.三、解答题21.如图,在四边形中,与互补,、分别平分、,与相交于点G.(1)与有怎样的数量关系?说明理由;(2)若,,求的度数.22.已知n边形的内角和等于900°,试求出n边形的边数.23.已知一个多边形的内角和是,求这个多边形是多少边形.24.已知一个多边形的每个内角都相等,且一个内角比一个外角大36°,求这个多边形的边数.25.(1)如图(1)所示是四边形,小明作出它对角线为2条,算法为=2.(2)如图(2)是五边形,小明作出它的对角线有5条,算法为=5.(3)如图(3)是六边形,可以作出它的对角线有________条,算法为________.(4)猜想边数为n的多边形对角线条数的算法及条数.试卷第1页,共3页试卷第1页,共3页参考答案:1.D2.D3.B4.B5.C6.C7.A8.C9.D10.C11. 5 612.1260°13./度14.815.9, >16.36°17.518.519.①②③④.20.621.(1)互余,理由见解析;(2)20°22.723.十边形24.525.(3)9,=9;(4).答案第1页,共2页答案第1页,共2页。

初中八年级数学人教版上册同步练习11.3多边形及其内角和(含答案解析)

初中八年级数学人教版上册同步练习11.3多边形及其内角和(含答案解析)

11.3多边形及其内角和专题一根据正多边形的内角或外角求值1.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.92.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.专题二求多个角的和4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.540°C.630°D.720°5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.状元笔记【知识要点】1.多边形及相关概念多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.多边形的内角和与外角和内角和:n边形的内角和等于(n-2)·180°.外角和:多边形的外角和等于360°.【温馨提示】1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.2.多边形的外角和等于360°,而不是180°.【方法技巧】1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.参考答案:1.A 解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A.2.1440 解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.5.360°解析:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.∵∠A+∠B+∠BPO+∠POA=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.。

8年级数学人教版上册同步练习11.3多边形及其内角和(含答案解析)

8年级数学人教版上册同步练习11.3多边形及其内角和(含答案解析)

11.3多边形及其内角和专题一根据正多边形的内角或外角求值1.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.92.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.专题二求多个角的和4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.540°C.630°D.720°5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.状元笔记【知识要点】1.多边形及相关概念多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.多边形的内角和与外角和内角和:n边形的内角和等于(n-2)·180°.外角和:多边形的外角和等于360°.【温馨提示】1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.2.多边形的外角和等于360°,而不是180°.【方法技巧】1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.参考答案:1.A 解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A.2.1440 解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.5.360°解析:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.∵∠A+∠B+∠BPO+∠POA=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11章《三角形》
同步练习
(§11.3 多边形及其内角和)
班级学号姓名得分
1.填空:
(1)平面内,由____________________________________________________________叫做
多边形.组成多边形的线段叫做______.如果一个多边形有n条边,那么这个多边形叫做______.多边形____________叫做它的内角,
多边形的边与它的邻边的______组成的角叫做多边形的外角.
连结多边形________________的线段叫做多边形的对角线.
(2)画出多边形的任何一条边所在直线,如果整个多边形都在______,那么这个多边形称
作凸多边形.
(3)各个角______,各条边______的______叫做正多边形.
2.(1)n边形的内角和等于____________.这是因为,从n边形的一个顶点出发,可以引______条对角线,它们将此n边形分为______个三角形.而这些三角形的内角和的总和就是此n边形的内角和,所以,此n边形的内角和等于180°×______.
(2)请按下面给出的思路,进行推理填空.
如图,在n边形A1A2A3…A n-1A n内任取一点O,依次连结______、______、______、……、______、______.则它们将此n边形分为______个三角形,而这些三角形的内角和的总和,减去以O为顶点的一个周角就是此多边形的内角和.所以,n边形的内角和=180°×______-( )=( )×180°.
3.任何一个凸多边形的外角和等于______.它与该多边形的______无关.
4.正n边形的每一个内角等于______,每一个外角等于______.
5.若一个正多边形的内角和2340°,则边数为______.它的外角等于______.
6.若一个多边形的每一个外角都等于40°,则它的内角和等于______.
7.多边形的每个内角都等于150°,则这个多边形的边数为______,对角线条数为______.8.如果一个角的两边分别垂直于另一个角的两边,其中一个角为65°,则另一个角为______
度.
9.选择题:
(1)如果一个多边形的内角和等于它的外角和的两倍,则这个多边形是( ).
(A)四边形(B)五边形(C)六边形(D)七边形
(2)一个多边形的边数增加,它的内角和也随着增加,而它的外角和( ).
(A)随着增加(B)随着减少(C)保持不变(D)无法确定
(3)若一个多边形从一个顶点,只可以引三条对角线,则它是( )边形.
(A)五(B)六(C)七(D)八
(4)如果一个多边形的边数增加1,那么它的内角和增加( ).
(A)0°(B)90°(C)180°(D)360°
(5)如果一个四边形四个内角度数之比是2∶2∶3∶5,那么这四个内角中( ).
(A)只有一个直角(B)只有一个锐角
(C)有两个直角(D)有两个钝角
(6)在一个四边形中,如果有两个内角是直角,那么另外两个内角( ).
(A)都是钝角(B)都是锐角
(C)一个是锐角,一个是直角(D)互为补角
10.已知:如图四边形ABCD中,∠ABC的平分线BE交CD于E,∠BCD的平分线CF交AB于F,BE、CF相交于O,∠A=124°,∠D=100°.求∠BOF的度数.
11.(1)已知:如图1,求∠1+∠2+∠3+∠4+∠5+∠6___________.
图1
(2)已知:如图2,求∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8____________.
图2
12.如图,在图(1)中,猜想:∠A+∠B+∠C+∠D+∠E+∠F=______度.请说明你猜想的理由.
图1
如果把图1成为2环三角形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F;图2称为2环四边形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H;
图2
则2环四边形的内角和为_____________________________________________度;
2环五边形的内角和为________________________________________________度;
2环n边形的内角和为________________________________________________度.13.一张长方形的桌面,减去一个角后,求剩下的部分的多边形的内角和.
14.一个多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数.
15.如果一个凸多边形除了一个内角以外,其它内角的和为2570°,求这个没有计算在内的内角的度数.
16.小华从点A出发向前走10米,向右转36°,然后继续向前走10米,再向右转36°,他以同样的方法继续走下去,他能回到点A吗?若能,当他走回点A时共走了多少米?
若不能,写出理由.
参考答案
1.略.
2.(1)(n -2)×180°,n -3,n -2,n -2.
(2)OA 1,OA 2,OA 3……,OA n -1,OA n ,n ,n ,360°,(n -2).
3.360°,边数. 4.⋅⨯-n n
n o
o 360,180)2( 5.十五,24°. 6.1260°. 7.12,54. 8.65°或115°.
9.(1)C ,(2)C ,(3)B ,(4)C ,(5)A ,(6)D 10.68°
11.(1)360°;(2)360°.
12.(1)360°;(2)720°;(3)1080°;(4)2(n -2)×180°.
13.180°或360°或540°.
14.九.提示:设多边形的边数为n ,某一个外角为α.
则(n -2)×180+α =1350. 从而180
9071801350)2(αα-+=-=
-n . 因为边数n 为正整数,所以α =90,n =9.
15.130°.提示:设多边形的边数为n ,没有计算在内的内角为x °.(0<x <180)则(n -
2)×180=2570+x . 从而⋅++=-180
50142x n 因为边数n 为正整数,所以x =130.
16.可以走回到A 点,共走100米.。

相关文档
最新文档