2004年全国高中数学联赛试题及答案

合集下载

2004年全国高中数学联赛吉林赛区初赛

2004年全国高中数学联赛吉林赛区初赛

分析 :为了证明结论中的不等式 , 可以先 由已知条件 , 运用均值不等式证明以下的 3 个不等式 α 1 ≥ a α α α, 1+2a a + b + c

© 1994-2007 China Academic Journal Electronic Publishing House. All rights reserved.
分别为
( m + 1) x + y - 2 = 0
和 4 m 2 x + ( m + 1) y - 4 = 0 .
). 则 m 的值为 (
二、 填空题 ( 每小题 9 分 , 共 54 分) 7 . 设{ a n } 是递增的正整数数列 1 , 7 , 8 , 49 , 50 , 56 , 57 , …, 它们或者是 7 的幂 , 或者是 若干 个 7 的 不 同 的 幂 之 和 . 则 a1 000 =
2
+
2 y′ 2 a - b b 2 2・ a + b 2
2
= 1.
与 Γ 有何关系 ?
( 20 分) 设 a i ∈R + , i = 1 , 2 , …, 5 . 求 四、 a1 a2 + 3 a3 + 5 a4 + 7 a5 a2 a3 + 3 a4 + 5 a5 + 7 a1
因此 , F 的轨迹为椭圆 , 且与 Γ 相似 . 四、 设原式为 A . 由柯西不等式 , 有
2
1 3 2 ( n + 4) ( n + 3 ) ( n + 2 ) ( n + 1 ) n = n ・ 5 2 11 ( n + 1) 2 n ( n + 1) ( 2 n + 1) - 3 n ( n + 1) 6 1 ( n 5 + 10 n4 + 35 n 3 + 50 n 2 + 24 n ) = 5 3 11 ( 2 n3 + 3 n2 + n) ( n4 + 2 n3 + n2 ) 2 6

全国高中数学竞赛不等式试题

全国高中数学竞赛不等式试题

2000-2005全国高中数学竞赛不等式试题2004年全国高中数学联赛试卷(第一试)3、不等式2log 211log 3212++-x x >0的解集是 ( ) A .[2,3] B 。

(2,3) C 。

[2,4] D 。

(2,4)[答案]3、解:原不等式等价于22331log 0222log 10x x ++>⎪-≥⎩2310,220t t t t ⎧-+>⎪=⎨⎪≥⎩则有 解得01t ≤<。

即20log 11,24x x ≤-<∴≤<。

故选C 。

2003年全国高中数学联赛(第一试)7.不等式322430x x x --+<的解集是______________ 9. 已知 {}2430,,A x x x x R =-+<∈ (){}1220,2750,.x B x a x a x x R -=+≤-++≤∈若A B ⊆,则实数a 的取值范围是_____________.13. 设35,2x ≤≤ 证明不等式319.[答案]7. ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---3,215215,3 . 提示: 原不等式可以化为:()()01||3||2<-+-x x x 9. 14-≤≤-a提示:()3,1=A ,令()a x f x +=-12,()()5722++-=x a x x g ,则只需()()x g x f ,在(1,3)上的图象均在x 轴的下方,其充要条件是()()()()⎪⎪⎩⎪⎪⎨⎧≤≤≤≤03010301g g f f ,由此推出14-≤≤-a ; 13.证明:由()bd ac da cd bc ab d c b a d c b a +++++++++=+++2)(22222可得 ,22222d c b a d c b a +++≤+++当且仅当a=b=c=d 时取等号 ……5分则()()()()x x x x x x x 315321123153212-+-++++≤-+-++ 192142≤+=x ……………………………………………………15分 因为x x x 315,32,1--+不能同时相等,所以1923153212<-+-++x x x ……………………………………20分2001年全国高中数学联赛试卷4.如果满足∠ABC=60°,AC=12,BC=k 的△ABC 恰有一个,那么k 的取值范围是( )(A )k=38(B )0<k≤12 (C ) k≥12(D ) 0<k≤12或k=386.已知6枝玫瑰与3枝康乃馨的价格之和大于24元,而4枝玫瑰与5枝康乃馨的价格之和小于22元,则2枝玫瑰的价格和3枝康乃馨的价格比较结果是( )(A ) 2枝玫瑰价格高 (B ) 3枝康乃馨价格高(C ) 价格相同 (D ) 不确定.10. 不等式232log 121>+x 的解集为 . 11.函数232+-+=x x x y 的值域为[答案].4.D 6.A 10. ()()∞+⎪⎪⎭⎫ ⎝⎛,42,11,072 11. ()∞+⎪⎭⎫⎢⎣⎡,223,12000年全国高中数学联赛 (第一试)10.已知)(x f 是定义在R 上的函数,1)1(=f 且对任意R x ∈都有5)()5(+≥+x f x f 1)()1(+≤+x f x f若x x f x g -+=1)()(,则=)2002(g .11.若1)2(log )2(log 44=-++y x y x ,则||||y x -的最小值是 .12.使不等式x a x a x cos 1cos sin 22+≥++对一切R x ∈恒成立的负数a 的取值范围是 .[答案]10. 解:由x x f x g -+=1)()(,得1)()(-+=x x g x f ,所以5)1()(1)5()5(+-+≥-+++x x g x x g1)1()(1)1()1(+-+≤-+++x x g x x g即)()5(x g x g ≥+,)()1(x g x g ≤+∴)()1()2()4()5()(x g x g x g x g x g x g ≤+≤+≤+≤+≤∴)()1(x g x g =+即)(x g 是周期为1的周期函数,又1)1(=g ,故1)2002(=g11. 解:⎪⎩⎪⎨⎧=-+>->+4)2)(2(0202y x y x y x y x ⇒⎩⎨⎧=-≥>440||222y x y x 由对称性只考虑0≥y ,因为0>x ,所以只须求y x -的最小值.令u y x =-公代入4422=-y x ,有0)4(2322=-+-u uy y .这是一个关于y 的二次方程显然有实根,故0)3(162≥-=∆u ,∴3≥u 当334=x ,33=y 时,3=u .故||||y x -的最小值为3 12. 解:原不等式可化为4)1()21(cos 222-+≤--a a a x ∵1cos 1≤≤-x ,0<a ,021<-a ∴当1cos =x 时,函数2)21(cos --=a x y 有最大值2)211(--a , 从而有4)1()211(222-+≤--a a a ,整理得022≥-+a a ∴1≥a 或2-≤a ,又0<a ,∴2-≤a1999年全国高中数学联合竞赛三、(满分20分)已知当x ∈[0,1]时,不等式0sin )1()1(cos 22>-+--θθx x x x 恒成立,试求的取值范围.[答案]13. 若对一切x ∈[0,1],恒有f(x)= 0sin )1()1(cos 22>-+--θθx x x x ,则 cosθ=f(1)>0, sinθ=f(0)>0. (1)取x ∈ (0,1),由于 ()()()x x x x x f ---≥1cos sin 12θθ,所以,()0>x f 恒成立,当且仅当 01cos sin 2>-θθ (2 )先在[0,2π]中解(1)与(2):由cosθ>0,sinθ>0,可得0<θ<2π.又由(2)得 sin2θ>21注意到0<2θ<π,故有6π<2θ< 65π, 所以,12π<θ<125π.因此,原题中θ的取值范围是2kπ+12π<θ<2kπ+125π,k ∈Z.或解:若对一切x ∈[0,1],恒有f (x )=x 2c o s θ-x (1-x )+(1-x )2s i n θ>0,则c o s θ=f (1)>0,s i n θ=f (0)>0. (1)取 x 0= ∈(0,1),则 .由于 +2x (1-x ),所以,0<f (x 0)=2x 0(1-x 0) .故 -+>0 (2)反之,当(1),(2)成立时,f (0)=s i n θ>0,f (1)=c o s θ>0,且x ∈(0,1)时,f (x )≥2x (1-x )>0.先在[0,2π]中解(1)与(2):由c o s θ>0,s i n θ>0,可得0<θ<.又-+>0, > , s i n 2θ>, s i n 2θ>,注意到 0<2θ<π,故有 <2θ< ,所以,<θ< .因此,原题中θ的取值范围是 2k π+<θ<2k π+ ,k ∈Z首届中国东南地区数学奥林匹克(2004年7月11日 8:00 — 12:00 温州)63)cos()2sin2364sin cosa aπθθθθ+-+-<++对于0,2πθ⎡⎤∈⎢⎥⎣⎦恒成立,求a的取值范围。

4全国高中数学联赛试题及参考答案

4全国高中数学联赛试题及参考答案

2004年全国高中数学联赛试题【第一试】一、选择题(本题满分36分,每小题6分)1、设锐角q 使关于x 的方程0cot cos 42=++θθx x 有重根,则q 的弧度数为A .6πB 。

12512ππ或C 。

1256ππ或D 。

12π答:[ ]2、已知M={}32|),(22=+y xy x ,N={}b mx y y x +=|),(,若对于所有的R m ∈,均有,φ≠⋂N M 则b 的取值范围是A .[26,26-] B 。

(26,26-)C 。

(332,332-) D 。

[332,332-] 答:[ ]3、不等式2log 211log 3212++-x x >0的解集是A .[2,3]B 。

(2,3)C 。

[2,4]D 。

(2,4) 答:[ ]4、设O 点在△ABC 内部,且有032=++OC OB OA ,则△ABC 的面积与△AOC 的面积之比为A .2B 。

23C 。

3D 。

35答:[ ]5、设三位数abc n =,若以c b a ,,为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数有A .45个B 。

81个C 。

165个D 。

216个 答:[ ]6、顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆的圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且PA=4,C 是PA 的中点,则当三棱锥O —HPC 的体积最大时,OB 的长是A .35B 。

352C 。

36D 。

362 答:[ ]二、填空题(本题满分54分,每小题9分)7、在平面直角坐标系xoy 中,函数)0(cos sin )(〉+=a ax ax a x f 在一个最小正周期长的区间上的图像与函数1)(2+=a x g 的图像所围成的封闭图形的面积是_____________。

8、设函数,:R R f →满足1)0(=f ,且对任意的R y x ∈,,都有)1(+xy f =2)()()(+--x y f y f x f ,则________________)(=x f 。

2004年全国高中数学联赛(四川省初赛含答案)

2004年全国高中数学联赛(四川省初赛含答案)
-2 在 n-1 元子集中出现 Cn n-1次, -2 n 1 故数字 1 在所有子集中出现的次数为 1+Cn1-1+Cn2-1+……+Cn n-1=2 -1 次.……10'

……5'
对其余数字有完全相同的结论. n(n+1) n-1 - 于是 Sn=(1+2+3+……+n)(2n 1-1)= (2 -1) 2 ∴ lim n(n+1)(2n 1-1) 1 Sn = lim = Bn n→∞ 2n2· 2n 4 n→∞n ·
(a2-R2)(R2-b2) 2 2 a2b2 = =a +b -R2- 2 2 R R ab =(a-b)2-(R- )2≤(a-b)2. R 即|AB|≤a-b,当且仅当 R= ab时取等号. 所以,A、B 两点的距离|AB|的最大值为 a-b. ……20' ……15'
第5页
∵AE、AF 分别是△ABC 的∠A 及其外角平分线, ∴AE⊥AF 又∵HE⊥AE,HF⊥AF ∴四边形 AEHF 为矩形. 因此 AH 与 EF 互相平分,设其交点为 G 1 1 于是:AG= AH= EF=EG 2 2 而 OA=OM,且 OD∥AH ∴∠OAM=∠OMA=∠MAG=∠GEA 故 EG∥OA (1) ……10' ……5'
第1页
H、K 三点的平面交侧棱 VC 于 L,则四边形 AHLK 的面积为_______________. 12.已知 a、b、x 是实数,函数 f(x)=x2-2ax+1 与函数 g(x)=2b(a-x)的图象不相交,记参 数 a、 b 所组成的点(a, b)的集合为 A, 则集合 A 所表示的平形图象的面积为___________. 三、解答题(每小题 20 分,4 个小题共计 80 分) 13.已知数列{an}满足 a1=1,an=2an-1+n-2(n≥2),求通项 an. 14.如图,O、H 分别是锐角△ABC 的外心和垂心,D 是 BC 边的中点, 由 H 向∠A 及其外角平分线作垂线, 垂 足分别是 E 是 F.证明:D、E、F 三点共线. 15.设 A={1,2,……,n},用 Sn 表示 A 的所有非空真

2004年全国高中数学联赛试题及解答

2004年全国高中数学联赛试题及解答

2004年全国高中数学联赛试卷第一试一.选择题(本题满分36分,每小题6分)1.设锐角使关于x的方程x2+4x cos+cos=0有重根,则的弧度数为( )A.B.或C.或D.2.已知M={(x,y)|x2+2y2=3},N={(x,y)|y=mx+b}.若对于所有的m∈R,均有M∩N,则b的取值范围是( )A.[-,] B.(-,) C.(-,] D.[-,]3.不等式+log x3+2>0的解集为A.[2,3) B.(2,3] C.[2,4) D.(2,4]4.设点O在ABC的内部,且有+2+3=,则ABC的面积与AOC的面积的比为( )A.2 B.C.3 D.5.设三位数n=,若以a,b,c为三条边长可以构成一个等腰(含等边)三角形,则这样的三位数n有( )A.45个B.81个C.165个D.216个6.顶点为P的圆锥的轴截面是等腰直角三角形,A是底面圆周上的点,B是底面圆内的点,O为底面圆圆心,AB⊥OB,垂足为B,OH⊥PB,垂足为H,且PA=4,C为PA的中点,则当三棱锥O-HPC的体积最大时,OB的长为 ( )A.B.C.D.二.填空题(本题满分54分,每小题9分)7.在平面直角坐标系xOy中,函数f(x)=a sin ax+cos ax(a>0)在一个最小正周期长的区间上的图像与函数g(x)=的图像所围成的封闭图形的面积是;8.设函数f:R→R,满足f(0)=1,且对任意x,y∈R,都有f(xy+1)=f(x)f(y)-f(y)-x+2,则f(x)=;9.如图,正方体ABCD-A1B1C1D1中,二面角A-BD1—A1的度数是;10.设p是给定的奇质数,正整数k使得也是一个正整数,则k=;11.已知数列a0,a1,a2,…,a n,…满足关系式(3-a n+1)(6+a n)=18,且a0=3,则的值是;12.在平面直角坐标系xOy中,给定两点M(-1,2)和N(1,4),点P 在x轴上移动,当∠MPN取最大值时,点P的横坐标为;三.解答题(本题满分60分,每小题20分)13.一项“过关游戏”规则规定:在第n关要抛掷一颗骰子n次,如果这n次抛掷所出现的点数的和大于2n,则算过关.问:⑴某人在这项游戏中最多能过几关?⑵他连过前三关的概率是多少?14.在平面直角坐标系xOy中,给定三点A(0,),B(-1,0),C(1,0),点P到直线BC的距离是该点到直线AB、AC距离的等比中项.⑴求点P的轨迹方程;⑵若直线L经过ABC的内心(设为D),且与P点轨迹恰好有3个公共点,求L的斜率k的取值范围.15.已知,是方程4x2-4tx-1=0(t∈R)的两个不等实根,函数f(x)=的定义域为[,].⑴求g(t)=max f(x)-min f(x);⑵证明:对于u i∈(0,)(i=1,2,3),若sin u1+sin u2+sin u3=1,则++ <.二试题一.(本题满分50分)在锐角三角形ABC中,AB上的高CE与AC上的高BD相交于点H,以DE为直径的圆分别交AB、AC于F、G两点,FG与AH相交于点K,已知BC=25,BD=20,BE=7,求AK的长.二.(本题满分50分)在平面直角坐标系XOY中,y轴正半轴上的点列{A n}与曲线y=(x≥0)上的点列{B n}满足|OA n|=|OB n|=,直线A n B n在x轴上的截距为a n,点B n的横坐标为b n,n∈N*.⑴证明a n>a n+1>4,n∈N*;⑵证明有n0∈N*,使得对∀n>n0,都有++…++<n-2004.三.(本题满分50分)对于整数n≥4,求出最小的整数f(n),使得对于任何正整数m,集合{m,m+1,…,m+n-1}的任一个f(n)元子集中,均至少有3个两两互素的元素.2004年全国高中数学联赛试卷第一试一.选择题(本题满分36分,每小题6分)1.设锐角使关于x的方程x2+4x cos+cot=0有重根,则的弧度数为( )A.B.或C.或D.解:由方程有重根,故=4cos2-cot=0,∵ 0<<,2sin2=1,=或.选B.2.已知M={(x,y)|x2+2y2=3},N={(x,y)|y=mx+b}.若对于所有的m∈R,均有M∩N,则b的取值范围是( )A.[-,] B.(-,) C.(-,] D.[-,]解:点(0,b)在椭圆内或椭圆上,2b2≤3,b∈[-,].选A.3.不等式+log x3+2>0的解集为A.[2,3) B.(2,3] C.[2,4) D.(2,4]解:令log2x=t≥1时,>t-2.t∈[1,2),x∈[2,4),选C.4.设点O在ABC的内部,且有+2+3=,则ABC的面积与AOC的面积的比为( )A.2 B.C.3 D.解:如图,设AOC=S,则OC1D=3S,OB1D=OB1C1=3S,AOB=OBD=1.5S.OBC=0.5S,ABC=3选C.5.设三位数n=,若以a,b,c为三条边长可以构成一个等腰(含等边)三角形,则这样的三位数n有( )A.45个B.81个C.165个D.216个解:⑴等边三角形共9个;⑵等腰但不等边三角形:取两个不同数码(设为a,b),有36种取法,以小数为底时总能构成等腰三角形,而以大数为底时,b<a<2b.a=9或8时,b=4,3,2,1,(8种);a=7,6时,b=3,2,1(6种);a=5,4时,b=2,1(4种);a=3,2时,b=1(2种),共有20种不能取的值.共有236-20=52种方法,而每取一组数,可有3种方法构成三位数,故共有523=156个三位数即可取156+9=165种数.选C.6.顶点为P的圆锥的轴截面是等腰直角三角形,A是底面圆周上的点,B是底面圆内的点,O为底面圆圆心,AB⊥OB,垂足为B,OH⊥PB,垂足为H,且PA=4,C为PA的中点,则当三棱锥O-HPC的体积最大时,OB的长为 ( )A.B.C.D.解:AB⊥OB,PB⊥AB,AB⊥面POB,面PAB⊥面POB.OH⊥PB,OH⊥面PAB,OH⊥HC,OH⊥PC,又,PC⊥OC,PC⊥面OCH.PC是三棱锥P-OCH的高.PC=OC=2.而OCH的面积在OH=HC=时取得最大值(斜边=2的直角三角形).当OH=时,由PO=2,知∠OPB=30,OB=PO tan30=.又解:连线如图,由C为PA中点,故V O-PBC=V B-AOP,而V O-PHC∶V O-PBC==(PO2=PH·PB).记PO=OA=2=R,∠AOB=,则V P—AOB=R3sincos=R3sin2,V B-PCO=R3sin2.===.V O-PHC=R3.∴令y=,y==0,得cos2=-,cos=,∴OB=,选D.二.填空题(本题满分54分,每小题9分)7.在平面直角坐标系xOy中,函数f(x)=a sin ax+cos ax(a>0)在一个最小正周期长的区间上的图像与函数g(x)=的图像所围成的封闭图形的面积是;解:f(x)=sin(ax+),周期=,取长为,宽为2的矩形,由对称性知,面积之半即为所求.故填.又解:∫[1-sin(ax+)]dx=∫(1-sin t)dt=.8.设函数f:R→R,满足f(0)=1,且对任意x,y∈R,都有f(xy+1)=f(x)f(y)-f(y)-x+2,则f(x)=;解:令x=y=0,得,f(1)=1-1-0+2,f(1)=2.令y=1,得f(x+1)=2f(x)-2-x+2,即f(x+1)=2f(x)-x.①又,f(yx+1)=f(y)f(x)-f(x)-y+2,令y=1代入,得f(x+1)=2f(x)-f(x)-1+2,即f(x+1)=f(x)+1.②比较①、②得,f(x)=x+1.9.如图,正方体ABCD-A1B1C1D1中,二面角A-BD1—A1的度数是;解:设AB=1,作A1M⊥BD1,AN⊥BD1,则BN·BD1=AB2,BN=D1M=NM=.A1M=AN=.∴AA12=A1M2+MN2+NA2-2A1M·NA cos,12=++-2cos,cos=.=60.10.设p是给定的奇质数,正整数k使得也是一个正整数,则k=;解:设=n,则(k-)2-n2=,(2k-p+2n)(2k-p-2n)=p2,k=(p+1)2.11.已知数列a0,a1,a2,…,a n,…满足关系式(3-a n+1)(6+a n)=18,且a0=3,则的值是;解:=+,令b n=+,得b0=,b n=2b n-1,b n=2n.即=,=(2n+2-n-3).12.在平面直角坐标系xOy中,给定两点M(-1,2)和N(1,4),点P在x轴上移动,当∠MPN取最大值时,点P的横坐标为;解:当∠MPN最大时,⊙MNP与x轴相切于点P(否则⊙MNP与x轴交于PQ,则线段PQ上的点P使∠MPN更大).于是,延长NM交x轴于K(-3,0),有KM·KN=KP2,KP=4.P(1,0),(-7,0),但(1,0)处⊙MNP 的半径小,从而点P的横坐标=1.三.解答题(本题满分60分,每小题20分)13.一项“过关游戏”规则规定:在第n关要抛掷一颗骰子n次,如果这n次抛掷所出现的点数的和大于2n,则算过关.问:⑴某人在这项游戏中最多能过几关?⑵他连过前三关的概率是多少?解:⑴设他能过n关,则第n关掷n次,至多得6n点,由6n>2n,知,n≤4.即最多能过4关.⑵要求他第一关时掷1次的点数>2,第二关时掷2次的点数和>4,第三关时掷3次的点数和>8.第一关过关的概率==;第二关过关的基本事件有62种,不能过关的基本事件有为不等式x+y≤4的正整数解的个数,有C个(亦可枚举计数:1+1,1+2,1+3,2+1,2+2,3+1)计6种,过关的概率=1-=;第三关的基本事件有63种,不能过关的基本事件为方程x+y+z≤8的正整数解的总数,可连写8个1,从8个空档中选3个空档的方法为C==56种,不能过关的概率==,能过关的概率=;∴连过三关的概率==.14.在平面直角坐标系xOy中,给定三点A(0,),B(-1,0),C(1,0),点P到直线BC的距离是该点到直线AB、AC距离的等比中项.⑴求点P的轨迹方程;⑵若直线L经过ABC的内心(设为D),且与P点轨迹恰好有3个公共点,求L的斜率k的取值范围.解:⑴设点P的坐标为(x,y),AB方程:+=1,4x-3y+4=0,①BC方程:y=0,②AC方程:4x+3y-4=0,③∴ 25|y|2=|(4x-3y+4)(4x+3y-4)|,25y2+16x2-(3y-4)2=0,16x2+16y2+24y-16=0,2x2+2y2+3y-2=0.或25y2-16x2+(3y-4)2=0,16x2-34y2+24y-16=0,8x2-17y2+12y-8=0.∴所求轨迹为圆:2x2+2y2+3y-2=0,④或双曲线:8x2-17y2+12y-8=0.⑤但应去掉点(-1,0)与(1,0).⑵ABC的内心D(0,):经过D的直线为x=0或y=kx+.⑥(a) 直线x=0与圆④有两个交点,与双曲线⑤没有交点;(b) k=0时,直线y=与圆④切于点(0,),与双曲线⑤交于(±,),即k=0满足要求.(c) k=±时,直线⑥与圆只有1个公共点,与双曲线⑤也至多有1个公共点,故舍去.(c) k0时,k时,直线⑥与圆有2个公共点,以⑥代入⑤得:(8-17k2)x2-5kx-=0.当8-17k2=0或(5k)2-25(8-17k2)=0,即得k=±与k=±.∴所求k值的取值范围为{0,±,±}.15.已知,是方程4x2-4tx-1=0(t∈R)的两个不等实根,函数f(x)=的定义域为[,].⑴求g(t)=max f(x)-min f(x);⑵证明:对于u i∈(0,)(i=1,2,3),若sin u1+sin u2+sin u3=1,则++<.解:⑴ +=t,=-.故<0,>0.当x1,x2∈[,]时,∴f (x)==.而当x∈[,]时,x2-xt<0,于是f (x)>0,即f(x)在[,]上单调增.∴g(t)=-====⑵g(tan u)==≥,∴ ++≤[163+9(cos2u1+cos2u2+cos2u3)]= [75-9(sin2u1+sin2u2+sin2u3)]而(sin2u1+sin2u2+sin2u3)≥()2,即9(sin2u1+sin2u2+sin2u3)≥3.∴++≤(75-3)=.由于等号不能同时成立,故得证.二试题一.(本题满分50分)在锐角三角形ABC中,AB上的高CE与AC上的高BD相交于点H,以DE为直径的圆分别交AB、AC于F、G两点,FG与AH相交于点K,已知BC=25,BD=20,BE=7,求AK的长.解:∵BC=25,BD=20,BE=7,∴CE=24,CD=15.∵AC·BD=CE·AB,AC=AB,①∵BD⊥AC,CE⊥AB,B、E、D、C共圆,AC(AC-15)=AB(AB-7),AB(AB-15)=AB(AB-18),∴AB=25,AC=30.AE=18,AD=15.∴DE=AC=15.延长AH交BC于P,则AP⊥BC.∴AP·BC=AC·BD,AP=24.连DF,则DF⊥AB,∵AE=DE,DF⊥AB.AF=AE=9.∵D、E、F、G共圆,∠AFG=∠ADE=∠ABC,AFG∽ABC,∴=,AK==.二.(本题满分50分)在平面直角坐标系XOY中,y轴正半轴上的点列{A n}与曲线y=(x≥0)上的点列{B n}满足|OA n|=|OB n|=,直线A n B n在x轴上的截距为a n,点B n的横坐标为b n,n∈N*.⑴证明a n>a n+1>4,n∈N*;⑵证明有n0∈N*,使得对∀n>n0,都有++…++<n-2004.解:⑴点A n(0,),B n(b n,)由|OA n|=|OB n|,b n2+2b n=()2,b n=-1(b n>0).∴ 0<b n<.且b n递减,n2b n=n(-n)= =单调增.∴ 0<n<.令t n=>且t n单调减.由截距式方程知,+=1,(1-2n2b n=n2b n2)∴a n====()2+()=t n2+t n=(t n+)2-≥(+)2-=4.且由于t n单调减,知a n单调减,即a n>a n+1>4成立.亦可由=b n+2.=,得 a n=b n+2+,.∴由b n递减知a n递减,且a n>0+2+=4.⑵即证(1-)>2004.1-===k2(()2-()2)≥>>.∴(1-)>>(+)+(+++)+…+>+++….只要n足够大,就有(1-)>2004成立.三.(本题满分50分)对于整数n≥4,求出最小的整数f(n),使得对于任何正整数m,集合{m,m+1,…,m+n-1}的任一个f(n)元子集中,均至少有3个两两互素的元素.解:⑴当n≥4时,对集合M(m,n)={m,m+1,…,m+n-1},当m为奇数时,m,m+1,m+2互质,当m为偶数时,m+1,m+2,m+3互质.即M的子集M中存在3个两两互质的元素,故f(n)存在且f(n)≤n.①取集合T n={t|2|t或3|t,t≤n+1},则T为M(2,n)={2,3,…,n+1}的一个子集,且其中任3个数无不能两两互质.故f(n)≥card(T)+1.但card(T)=[]+[]-[].故f(n)≥[]+[]-[]+1.②由①与②得,f(4)=4,f(5)=5.5≤f(6)≤6,6≤f(7)≤7,7≤f(8)≤8,8≤f(9)≤9.现计算f(6),取M={m,m+1,…,m+5},若取其中任意5个数,当这5个数中有3个奇数时,这3个奇数互质;当这3个数中有3个偶数k,k+2,k+4(k0(mod2))时,其中至多有1个被5整除,必有1个被3整除,故至少有1个不能被3与5整除,此数与另两个奇数两两互质.故f(6)=5.而M(m,n+1)=M(m,n)∪{m+n},故f(n+1)≤f(n)+1.③∴f(7)=6,f(8)=7,f(9)=8.∴对于4≤n≤9,f(n)= []+[]-[]+1成立.④设对于n≤k,④成立,当n=k+1时,由于M(m,k+1)=M(m,k-5)∪{m+k-5,m+k-4,…,m+k}.在{m+k-5,m+k-4,…,m+k}中,能被2或3整除的数恰有4个,即使这4个数全部取出,只要在前面的M(m,k-5)中取出f(n)个数就必有3个两两互质的数.于是当n≥4时,f(n+6)≤f(n)+4=f(n)+f(6)-1.故f(k+1)≤f(k-5)+f(6)-1=[]+[]-[]+1,比较②,知对于n=k+1,命题成立.∴对于任意n∈N*,n≥4,f(n)= []+[]-[]+1成立.又可分段写出结果:f(n)=。

2004年全国高中数学联赛试题解答

2004年全国高中数学联赛试题解答

A. 5 / 3 B. 2 5 / 3 C. 6 / 3 D. 2 6 / 3
答(D).∵ AB ⊥ OB , AB ⊥ OP ,
∴ AB ⊥ PB ,面 PAB ⊥ 面 POB .
∵ OH ⊥ PB ,∴ OH ⊥ HC , OH ⊥ PA .
∵ C 是 PA 中点,
∴ OC ⊥ PA .
P
PC 是三棱锥 P −
包括:“得 300 分”与“得 400 分”两种情形.
而学生一旦在(I)问中已求得这名同学得 300
分的概率 P1 = 0.228 ,则这名同学至少得 300 分的概率 P2 = P1 + 0.8 × 0.7 × 0.6 = 0.564 .
然而,(II)问若从反面入手,则相对比较繁
琐.因为“至少得 300 分”的反面包括“得 0
比为
A.2 B.3/2 C.3 D.5/3 则 OuuAuv答+(OuCu)Cuv,设= 2DOuu,DuEv ,分OuuBu别v +是OuuCuAvC= ,2BOuuCEuv边,从的而中有点,
·28·
uuuv 2OD
+
uuuv 4OE
uuuv OE
共线,且
=OuuOuDuvuAuv=+22OOuuuuEBuuvv
{(x, y) y = mx + b} .若对于所有 m ∈ R ,均有
M I N ≠ ∅ ,则 b 的取值范围是
A.[− 6 / 2, 6 / 2] B. (− 6 / 2, 6 / 2)
C. (−2 3 / 3, 2 3 / 3] D. [−2 3 / 3, 2 3 / 3] 答 (A). M I N ≠ ∅ 相当点 (0,b) 在椭圆 x2 + 2 y2 = 3 上或它的内部,

2004年全国高中数学联合竞赛试题一试及答案

2004年全国高中数学联合竞赛试题一试及答案

2004年全国高中数学联合竞赛试题第 一 试 时间:10月16日一、选择题(本题满分36分,每小题6分)1、设锐角θ使关于x 的方程24cos cot 0x x θθ++=有重根,则θ的弧度数为( ) A.6π B.51212orππ C.5612orππ D.12π 2、已知22{(,)|23},{(,)|}M x y x y N x y y mx b =+===+。

若对所有,m R MN ∈≠∅均有,则b 的取值范围是( )A. ,22⎡-⎢⎣⎦B. 22⎛-⎝⎭C. (33-D. 33⎡-⎢⎣⎦ 3、3121log 202x +>的解集为( ) A. [2,3)B. (2,3]C. [2,4)D. (2,4]4、设O 点在ABC ∆内部,且有230OA OB OC ++=,则ABC ∆的面积与AOC ∆的面积的比为( ) A. 2B.32C. 3D.535、设三位数n abc =,若以a ,b ,c 为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( ) A. 45个 B. 81个 C. 165个 D. 216个6、顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆的圆心,AB OB ⊥,垂足为B ,OH PB ⊥,垂足为H ,且PA=4,C 为PA 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长是( )A.3B.3C.3D.3二、填空题(本题满分54分,每小题9分)7、在平面直角坐标系xoy 中,函数()sin cos (0)f x a ax ax a =+>在一个最小正周期长的区间上的图像与函数()g x 的图像所围成的封闭图形的面积是________________。

8、设函数:,(0)1f R R f →=满足,且对任意,,x y R ∈都有(1)()()()2f xy f x f y f y x +=--+,则()f x =_____________________。

2004年全国及各地联赛试题(共7套)-2

2004年全国及各地联赛试题(共7套)-2

2004年全国高中数学联赛福建赛区预赛试卷(2004.9.12. 8:00 —10:30)题 号 一 二三总分1314 15 16 得 分 评卷人考生注意:1本试卷共三大题(16个小题),全卷满分150分 .2.完卷时间150分钟 ,用钢笔,签字笔或圆珠笔作答.不能使用计算器 .3.解答题书写不要超出装订线。

一、选择题(本题满分24分,每小题4分)本题共有6个小题,每题均给出A 、B 、C 、D 四个结论,其中有且仅有一个是正确的.请将正确答案的代表字母填在题后的括号内.每小题选对得4分;不选、选错或选出的代表字母超过一个(不论是否在括号内),一律得0分。

1. 已知,点(x,y)在直线 x+2y=3上移动,当24xy+取最小值时,点(x ,y )与原点的距离是( ) A .354 B .4516 C .324D .982.设双曲线22221x y a b -= 的离心率e 23,23⎡⎤∈⎢⎥⎣⎦,则双曲线的两条渐近线夹角α的取值范围是 ( )A. ,63ππ⎡⎤⎢⎥⎣⎦ B .,62ππ⎡⎤⎢⎥⎣⎦ C .,32ππ⎡⎤⎢⎥⎣⎦ D .2,33ππ⎡⎤⎢⎥⎣⎦3. 正四面体的4个面分别写着1,2,3,4,将4个这样均匀的正四面体同时投掷于桌面上,与桌面接触的4个面上的4个数的乘积被4整除的概率是 ( )A .18 B .964C . 116 D. 1316 4.甲、乙、丙三人用擂台赛形式进行训练.每局两人单打比赛,另一人当裁判.每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战.半天训练结束时,发现甲共打12局,乙共打21局,而丙共当裁判8局.那么整个比赛的第10局的输方 ( ) A .必是甲 B .必是乙 C .必是丙 D .不能确定5.曲线x 2+y 2-ay=0 与ax 2+bxy+x=0 有且只有3个不同的公共点,那么必有( )A .(a 4+4ab+4)(ab+1)=0B .(a 4-4ab -4)(ab+1)=0C .(a 4+4ab+4)(ab -1)=0D .(a 4-4ab -4)(ab -1)=06.两个周期函数y 1,y 2 的最小正周期分别为a,b,且b = na (n ≥2,n 为整数).如果函数y 3=y 1+y 2的最小正周期为t . 那么五种情形:”t<a ”,”t=a ”,”a<t<b ”,”t=b ”,”t>b ” 中,不可能出现的情形的个数是 ( ) A. 1 B .2 C .3 D .4得 分 评卷人二、填空题(本题满分36分,每小题6分)本题共有6个小题,要求直接将答案写在横线上 . 7.已知 log a x = 24, log b x = 40, log abc x = 12 . 那么 log c x =8 . 设 f (x) = (x 2 – 8x +c 1 ) ( x 2 – 8x+c 2 ) (x 2 – 8x +c 3 ) ( x 2 – 8x+c 4 ) . M ={x ︱f ( x )= 0 }.已知 M ={x 1,.x 2 , x 3, x 4.,x 5, x 6, x 7, x 8}⊆ N . 那么max {c 1,.c 2, c 3, c 4}– min {c 1,.c 2, c 3, c 4}= 9 . 如果实数 x ,y 满足3x + 2y -1≥0 , 那么 u = x 2 + y 2 + 6x -2y 的最小值是 . 10 . 不等式组sinx > cosx > tanx > cotx 在 (0 , 2π)中的解集 (用区间表示)是 . 11 . 四面体ABCD 中, AB = CD = a , BC = AD = b , CA = BD = c . 如果异面直线AB 与CD 所成的角为θ, 那么cos θ= .12. 设a , b , x ∈N * , a ≤b . X 为关于x 的不等式lgb -lga < lgx < lgb +lga 的解集 . 已知 card (X) = 50 . 当a ⋅b 取最大可能值时 ,b a + =三、解答题(本题90分.共4个小题 .第13,14, 15题各20分,第16题30分)13 . 求函数f (x) =︱sinx + cosx +tanx + cotx + secx + cscx ︱ 的最小值 . 其中 secx=x cos 1, cscx=xsin 1.14.椭圆 x 2 + 4y 2 = 8 中, AB 是长为25的动弦 .O 为坐标原点 . 求∆AOB 面积的取值范围 .得 分 评卷人得 分 评卷人 得 分 评卷人15 . 无穷数列{x n }中(n ≥1),对每个奇数n ,x n, x n+1,x n+2 成等比数列,而对每个偶数n, x n, x n+1, x n+2 成等差数列.已知x 1= a , x 2=b .(1) 求数列的通项公式 . 实数a , b 满足怎样的充要条件时, 存在这样的无穷数列? (2) 求2x ,4x ,……,n x 2的调和平均值, 即∑=nk kxn121的值 .16.(1) 给定正整数n ≥5,集合 A n ={}n ,,2,1 .是否存在一一映射 φ: A n →A n 满足条件:对一切k ( 1≤ k ≤n -1 ) , 都有k |φ(1)+φ(2) +……+φ(k) ?(2) N * 为全体正整数的集合,是否存在一一映射 φ: N *→ N * 满足条件: 对一切k ∈N *, 都有k | φ(1)+φ(2) + ……+φ(k) ?证明你的结论 .得 分评卷人得 分 评卷人注: 映射 φ: A →B 称为一一映射,如果对任意 b ∈B,有且只有一个 a ∈A 使得φ(a)=b . 题中“|”为整除符号.二00四年全国高中数学联赛福建赛区预赛试题参考解答及评分标准说明:1.选择,填空题只按0分与满分两档给分,不设中间档次.2.解答题5分一个档次.如果考生的解法与参考解答不同.可参照本标准酌情给分. 一. 选择题(每小题4分,共24分)1 2 3 4 5 6 ACDABB二. 填空题 (每小题6分,共36分)7 8 9101112 6015-1366 (,43ππ-arcsin 215- ) 222ac b --6 三. 解答题13. 设 u = sin x + cos x , 则 sin x cos x =21( u 2- 1 ) . sin x + cos x + tan x + cot x + sec x + csc x = u + 12-u , ( 5 分 )当 u > 1 时 , f ( x ) = 1 + u -1 + 12-u ≥ 1 + 22 . ( 5 分 )当 u < 1 时 , f ( x ) = -1 + 1-u +u-12≥ 22-1 ( u = 1-2时等号成立 ) . ( 5 分)因此, f ( x ) 的最小值是 22-1 . ( 5 分 ) 14. 令 A, B 的坐标为 ( x 1 , y 1 ) ,( x 2 , y 2 ) , 直线 AB 的方程为 y = kx + b , 代入椭圆方程整理得: (4k 2+1)x 2+ 8kbx + 4(b 2-2) = 0 . 故 x 1 + x 2 =-1482+k kb , x 1x 2 =14)2(422+-k b . ( 5 分 ) 由 425 = AB 2 = (k 2+1)(x 2-x 1)2 = (k 2+1)((x 1+x 2)2-4 x 1x 2) =222)14()1(16++k k (2(4k 2+1)-b 2) 得到 b 2= 2 (4k 2+1)-)1(64)14(25222++k k ( 5 分) 原点O 到 AB 的距离为12+k b, ∆AOB 的面积 S = ⋅4512+k b, 记 u = 11422++k k , 则有 S 2= -1024625(u 2-25128u ) = 4-1024625(u -2564)2( 5 分)u = 4-132+k 的范围为 []4,1 , (u = 4 为竖直弦 ). 故 u =2564时, max S 2 = 4 , 而 u = 1时, min S 2 =10242575, 因此 S 的 取值范围是 ⎥⎦⎤⎢⎣⎡2,103325. ( 5 分) 15. (1) 观察前几项: a , b , a b 2, a a b b )2(-, aa b 2)2(-, a a b a b )23)(2(--,a ab 2)23(-,… 猜测: x 2 k-1 = aa kb k 2))2()1((---, x 2k = aa k kb a k b k ))1()()2()1((-----,( k ≥ 1 ). ( 5 分 )对k 归纳证明通项公式: k =1 显然成立,设 x 2 k-1, x 2k 如上,则x 2k+1 = 1222)(-k k x x = a a k kb 2))1((--,x 2k+2 = 2x 2k+1-x 2k =aka b k a k kb ))1)(()1((-+--, 因此, 公式成立 . ( 5 分 )存在这样的无穷数列 ⇔ 所有的 x n ≠0 ⇔∉a b ⎭⎬⎫⎩⎨⎧∈+N n n n |1. ( 5 分 ) (2) b ≠a 时,kx 21= a b a -(a k kb a k b k )1(1)2()1(1------),故∑=nk kx n 121=))1(11(an nb a a b a n----= nb -(n -1)a .( b = a 时所有的x n = a ,结果也对). ( 5 分 )16. (1) 不存在. ( 5 分)记 S k =∑=ki i 1)(φ.当 n = 2m+1 时 ( m ≥2 ), 由 2m | S 2 m 及S 2 m =2)22)(12(++m m -φ(2m+1) 得 φ(2m+1)≡m+1(mod 2m), 但 φ(2m+1)∈A 2m+1,故φ(2m+1)= m+1.再由 2m -1 | S 2m -1及S 2m -1=2)22)(12(++m m -(m+1)-φ(2m) 得φ(2m) ≡m+1(mod 2m -1),又有φ(2m)= m+1,与φ的一一性矛盾. ( 5 分) 当 n = 2m+2 时 ( m ≥2 ), S 2m+1=2)32)(22(++m m -φ(2m+2) 给出φ(2m+2)=1 或 2m+2,同上又得φ(2m+1)= φ(2m)= m+2 或 m+1 ,矛盾. ( 5 分)(2) 存在. 对n 归纳定义φ(2n -1)及φ(2n) 如下: ( 5 分) 令φ(1)=1, φ(2)=3 .设已定义出不同的正整数值φ(k) (1≤k ≤2n)满足整除条件且包含1,2,…,n ,设 v 是未取到的最小正整数值,由于 2n+1 与 2n+2 互素,根据孙子定理,存在不同于v 及φ(k) (1≤k ≤2n)的正整数u 满足同余式组 u ≡-S 2n (mod 2n+1)≡-S 2n -v (mod 2n+2) . ( 5 分)定义φ(2n+1)=u, φ(2n+2)=v .则正整数φ(k) ( 1≤k ≤2n+2 )也互不相同,满足整除条件,且包含 1,2,…,n+1 .根据数学归纳法原理,已经得到符合要求的一一映射φ:N * → N *. ( 5 分)附:选择、填空题简解:1. 2x +4y≥222x y += 42. x =32, y =34时取最小值, 此时22x y +=354. 2.设渐近线y =b a x 的倾斜角为β, 1 +22b a = e 2∈4,43⎡⎤⎢⎥⎣⎦, tan β=b a ∈1,33⎡⎤⎢⎥⎣⎦,,63ππβ⎡⎤∈⎢⎥⎣⎦, 故 α= min {2β,π-2β},32ππ⎡⎤∈⎢⎥⎣⎦.3. 事件 “4个数均为奇数”的概率p 1=412⎛⎫ ⎪⎝⎭=116,事件“3个为奇数,1个为2”的概率p 2=3141142C ⎛⎫⋅⋅ ⎪⎝⎭=18. 故p =1-p 1-p 2 =1316 .4. 共比赛12+21-8 = 25局,甲当裁判25-12 = 13局.由于同一人不会接连当两局裁判, 故甲是第1,3,5,……,21,23,25局的裁判, 从而第10局的输方为甲 .5. 易知a ≠0.曲线ax 2+bxy+x = 0是两条直线x = 0与ax+by+1 = 0. 直线x = 0与圆x 2+y 2ay=0有两个不同的公共点(0,0), (0,a), 依题意有两种可能:(1).ax+by+1 = 0与圆x 2+(y -2a )2 =24a 相切于第三点. 此时22|01|22aa b a a b ⋅+⋅+=+, 即a 4-4ab -4=0; (2).ax+by+1= 0过点(0,a)且不与坐标轴平行, 此时ab+1= 0.6. b 是y 3的一个周期,故t ≤b.若t = a, 则由y 2=y 3-y 1可得b ≤a,矛盾.故”t=a ”和”t>b ”不可能.下面的例子表明另外的三种情形都可能出现:取y 2 = sinx + sin 23x, 则b = 6π. (1).令y 1 = -sin23π, 此时a =3π, y 3= sinx, t =2π, t < a ; (2). 令y 1 = -sinx, 此时a =2π, y 3= sin 23π, t =3π, a < t< b ;(3). 令y 1 = sinx, 此时a = 2π, y 3 = 2sinx+sin 23π, t = 6π, t = b ;7. log x c = log x abc -log x a -log x b =121-241-401=601, log c x = 60 .8. 令x 2-8x+c = 0 的两根为α,β, 则α+β=8. (α,β)的不等非负整数值只有(0,8), (1,7), (2,6), (3,5) 故{c 1,c 2,c 3, c 4}={0,7,12,15}.9. u = (x+3)2+(y -1)2-10 .半平面 3x+2y -1≥0 中的点到定点 (-3,1) 距离的最小值是13129-+-=138, 所以 min u = (138)2-10 = -1366 . 2π10. 在象限图上用区间法求解:各分界线为 ② ③ ①4πk (0≤k ≤7) 与方程 cosx = tanx 的解 arcsin 215-, ③ ① 0π-arcsin215-. ② ① ① ① 由 sinx> cosx 排除区间 ①, 由 tanx> cotx 排除 ②, 由 cosx> tanx 排除 ③, 解集为 (43π,π-arcsin 215-) . , 11. (1) 向量法: 记 DC = a , DA = b , DB = c .由已知条件, | b a -| = |c |, a 2 + b 2-2b a ⋅ = c 2 . 故 b a ⋅ =2222c b a -+,同理 c a ⋅ =2222bc a -+. cos θ=|||||)(|c b a c b a -⋅-⋅=222a c b -. (2) 几何法: 该四面体各棱是一个长方体的面对角线 , 设长方体三边为 x , y , z , 则a 2 = y 2+z 2 ,b 2 = z 2+x 2 ,c 2 = x 2+y 2 . θ 是 y , z 矩形中两对角线的夹角 , 故cos θ=222|)2()2(|222a a y aa ⋅⋅-+=222||a c b - 12. a b < x < ab , a ≥2 , 50 ≥ ab -a b -1 = ab(1-21a)-1 ≥43ab -1 , 故 ab ≤ 68 .等号当且仅当 a =2 ,b =34 时成立 , 此时 b a += 6 .。

历年联赛题-2004年全国高中数学联赛

历年联赛题-2004年全国高中数学联赛

闭图形的面积是
.
8. 设函数 f : R →R ,满足 f (0) = 1 ,且对任意 x 、y
∈R ,都有 f ( xy + 1) = f ( x) f ( y) - f ( y) - x + 2. 则
f ( x) =
.
9. 如 图 3 , 正 方 体
ABCD - A1 B1 C1 D1 中 ,二
2 004.
三 、(50 分) 对于整数 n ( n ≥4) ,求出最小的整数
f ( n) ,使得对于任何正整数 m ,集合{ m , m + 1 , …,
m + n - 1}的任一个 f ( n) 元子集中 ,均有至少 3 个
两两互质的元素.
参考答案
一 、1. B.
因题设方程有重根 ,故Δ = 16cos2θ- 4cot θ= 0.
bn + 1 +
1 3
= 2 ( bn +
1 3
)
.
故数列
bn +
1 3
是公比为 2 的等比数列.
bn +
1 3
=2n
b0 +
1 3
=2n
1 a0
+
1 3
=
1 3
×2 n + 1 ,
即 bn =
1 3
20
中等数学
竞赛之窗
2004 年全国高中数学联赛
一 、选择题 (每小题 6 分 ,共 36 分)
1. 设锐角θ使关于 x 的方程 x2 + 4 xcosθ+ cot θ
= 0 有重根. 则θ的弧度数为 ( ) .
(A)
π 6

2004年全国高中数学联赛试题及详细解析

2004年全国高中数学联赛试题及详细解析

2004年全国高中数学联赛试题及详细解析一.选择题(本题满分36分,每小题6分)1.设锐角使关于x 的方程x 2+4x cos +cos=0有重根,则的弧度数为( )A .6B .12或512C .6或512 D .122.已知M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.若对于所有的m ∈R ,均有M ∩N,则b 的取值范围是( )A .[-62,62]B .(-62,62)C .(-233,233]D .[-233,233] 3.不等式log 2x -1+12log 12x 3+2>0的解集为A .[2,3)B .(2,3]C .[2,4)D .(2,4] 4.设点O 在ABC 的内部,且有→OA +2→OB +3→OC =→0,则ABC 的面积与AOC 的面积的比为( )A .2B .32C .3D .538.设函数f :R →R ,满足f (0)=1,且对任意x ,y ∈R ,都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (x )= ;9.如图,正方体ABCD -A 1B 1C 1D 1中,二面角A -BD 1—A 1的度数是 ;10.设p 是给定的奇质数,正整数k 使得k 2-pk 也是一个正整数,则k= ; 11.已知数列a 0,a 1,a 2,…,a n ,…满足关系式(3-a n +1)(6+a n )=18,且a 0=3,则n∑i=01a i的值是 ;12.在平面直角坐标系xOy 中,给定两点M (-1,2)和N (1,4),点P 在x 轴上移动,当∠MPN 取最大值时,点P 的横坐标为 ;二试题一.(本题满分50分)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K ,已知BC=25,BD=20,BE=7,求AK 的长.二.(本题满分50分)在平面直角坐标系XOY 中,y 轴正半轴上的点列{A n }与曲线y=2x (x ≥0)上的点列{B n }满足|OA n |=|OB n |=1n,直线A n B n 在x 轴上的截距为a n ,点B n 的横坐标为b n ,n ∈N*.⑴ 证明a n >a n +1>4,n ∈N*;⑵ 证明有n 0∈N *,使得对∀n >n 0,都有b 2b 1+b 3b 2+…+b n b n -1+b n +1b n<n -2004. 三.(本题满分50分)对于整数n ≥4,求出最小的整数f (n ),使得对于任何正整数m ,集合{m ,m +1,…,m+n -1}的任一个f (n )元子集中,均至少有3个两两互素的元素.EFBCDAGHK2004年全国高中数学联赛试卷第一试一.选择题(本题满分36分,每小题6分)1.设锐角使关于x 的方程x 2+4x cos +cot =0有重根,则的弧度数为( )A .6B .12或512C .6或512 D .12【答案】B【解析】由方程有重根,故14=4cos 2-cot=0,∵ 0<<2,2sin2=1,=12或512.选B .3.不等式log 2x -1+12log 12x 3+2>0的解集为A .[2,3)B .(2,3]C .[2,4)D .(2,4] 【答案】C【解析】令log 2x=t ≥1时,t -1>32t -2.t ∈[1,2),x ∈[2,4),选C .4.设点O 在ABC 的内部,且有→OA +2→OB +3→OC =→0,则ABC 的面积与AOC 的面积的比为( )A .2B .32C .3D .53【答案】C【解析】如图,设AOC=S ,则OC 1D=3S ,OB 1D=OB 1C 1=3S ,AOB=OBD=1.5S .OBC=0.5S ,ABC=3S .选C .5.设三位数n=¯¯¯abc ,若以a ,b ,c 为三条边长可以构成一个等腰(含等边)三角形,则1这样的三位数n 有( )A .45个B .81个C .165个D .216个6.顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且PA=4,C 为PA 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为 ( )A .53 B .253 C .63 D .263二.填空题(本题满分54分,每小题9分) 7.在平面直角坐标系xOy 中,函数f (x )=a sin ax +cos ax (a >0)在一个最小正周期长的区间上的图像与函数g (x )= a 2+1的图像所围成的封闭图形的面积是 ;【答案】2aa 2+1.【解析】f (x )= a 2+1sin(ax +),周期=2a ,取长为2a,宽为2a 2+1的矩形,由对称性知,面积之半即为所求.故填2aa 2+1.又解:∫10a 2+1[1-sin(ax +)]dx=a 2+1a ∫20(1-sin t )dt=2p aa 2+1.8.设函数f :R →R ,满足f (0)=1,且对任意x ,y ∈R ,都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (x )= ;【答案】x+1【解析】令x=y=0,得,f (1)=1-1-0+2,f (1)=2.令y=1,得f (x +1)=2f (x )-2-x +2,即f (x +1)=2f (x )-x .①又,f (yx +1)=f (y )f (x )-f (x )-y +2,令y=1代入,得f (x +1)=2f (x )-f (x )-1+2,即f (x +1)=f (x )+1.②比较①、②得,f (x )=x +1.10.设p 是给定的奇质数,正整数k 使得k 2-pk 也是一个正整数,则k= ;【答案】14(p +1)2.【解析】设k 2-pk=n ,则(k -p 2)2-n 2=p 24,(2k -p +2n )(2k -p -2n )=p 2,k=14(p +1)2.11.已知数列a 0,a 1,a 2,…,a n ,…满足关系式(3-a n +1)(6+a n )=18,且a 0=3,则n∑i=01a i的值是 ;【答案】13(2n +2-n -3).【解析】1a n +1=2a n +13,令b n =1a n +13,得b 0=23,b n =2b n -1,b n =23 2n .即1a n =2n +1-13,n∑i=01a i =13(2n +2-n -3).12.在平面直角坐标系xOy 中,给定两点M (-1,2)和N (1,4),点P 在x 轴上移动,当∠MPN 取最大值时,点P 的横坐标为 ;【答案】1【解析】当∠MPN 最大时,⊙MNP 与x 轴相切于点P (否则⊙MNP与x 轴交于PQ ,则线段PQ 上的点P 使∠MP N 更大).于是,延长NM 交x 轴于K (-3,0),有KM ·KN=KP 2,KP=4.P (1,0),(-7,0),但(1,0)处⊙MNP 的半径小,从而点P 的横坐标=1.三.解答题(本题满分60分,每小题20分)13.一项“过关游戏”规则规定:在第n 关要抛掷一颗骰子n 次,如果这n 次抛掷所出现的点数的和大于2n,则算过关.问:⑴ 某人在这项游戏中最多能过几关? ⑵ 他连过前三关的概率是多少?14.在平面直角坐标系xOy 中,给定三点A (0,43),B (-1,0),C (1,0),点P 到直线BC的距离是该点到直线AB 、AC 距离的等比中项.⑴ 求点P 的轨迹方程;⑵ 若直线L 经过ABC 的内心(设为D ),且与P 点轨迹恰好有3个公共点,求L 的斜率k 的取值范围.【解析】⑴ 设点P 的坐标为(x ,y ),(b ) k=0时,直线y=12与圆④切于点(0,12),与双曲线⑤交于(±582,12),即k=0满足要求.(c ) k=±12时,直线⑥与圆只有1个公共点,与双曲线⑤也至多有1个公共点,故舍去.(c ) k 0时,k12时,直线⑥与圆有2个公共点,以⑥代入⑤得:(8-17k 2)x 2-5kx -254=0. 当8-17k 2=0或(5k )2-25(8-17k 2)=0,即得k=±23417与k=±22.∴ 所求k 值的取值范围为{0,±23417,±22}.15.已知,是方程4x 2-4tx -1=0(t ∈R )的两个不等实根,函数f (x )= 2x -t x 2+1的定义域为[,].⑴ 求g (t )=max f (x )-min f (x );⑵ 证明:对于u i ∈(0,2)(i=1,2,3),若sin u 1+sin u 2+sin u 3=1,则1g (tan u 1)+1g (tan u 2)+1g (tan u 3)<364.【解析】⑴+=t ,=-14.故<0,>0.当x 1,x 2∈[,]时,∴ f (x )= 2(x 2+1)-2x (2x -t )(x 2+1)2=-2(x 2-xt )+2(x 2+1)2.而当x ∈[α,β]时,x 2-xt <0,于是 f (x )>0,即f (x )在[,]上单调增.∴g (t )=2-t 2+1-2-t 2+1=(2-t )(2+1)-(2-t )(2+1)(2+1)(2+1)=(-)[t (+)-2+2]22+2+2+1=t 2+1(t 2+52)t 2+2516=8t 2+1(2t 2+5)16t 2+25二试题一.(本题满分50分)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K ,已知BC=25,BD=20,BE=7,求AK 的长.二.(本题满分50分)在平面直角坐标系XOY 中,y 轴正半轴上的点列{A n }与曲线y=2x(x ≥0)上的点列{B n }满足|OA n |=|OB n |=1n,直线A n B n 在x 轴上的截距为a n ,点B n 的横坐标为b n ,n ∈N*.⑴ 证明a n >a n +1>4,n ∈N*;⑵ 证明有n 0∈N*,使得对∀n >n 0,都有b 2b 1+b 3b 2+…+b n b n -1+b n +1b n<n -2004. 【解析】⑴ 点A n (0,1n ),B n (b n ,2b n )由|OA n |=|OB n |,b n 2+2b n =(1n)2,b n =1+(1n)2-1(b n >0).∴ 0<b n <12n2.且b n 递减,n 2b n =n (n 2+1-n )=n n 2+1+n=11+(1n)2+1单调增. ∴ 0<n b n <12.令t n =1n b n>2且t n 单调减.由截距式方程知,b n a n +2b n1n=1,(1-2n 2b n =n 2b n 2)∴ a n =b n 1-n 2b n =b n (1+n 2b n )1-2n 2b n =1+n 2b n n 2b n =(1n b n )2+2(1n b n)=t n 2+2t n =(t n +22)2-12≥(2+22)2-12=4. 且由于t n 单调减,知a n 单调减,即a n >a n+1>4成立.亦可由1n 2b n=b n +2.1n b n=b n +2,得 a n =b n +2+2b n +2,.∴ 由b n 递减知a n 递减,且a n >0+2+2 2=4.三.(本题满分50分)对于整数n ≥4,求出最小的整数f (n ),使得对于任何正整数m ,集合{m ,m +1,…,m+n -1}的任一个f (n )元子集中,均至少有3个两两互素的元素.【解析】⑴ 当n ≥4时,对集合M (m ,n )={m ,m +1,…,m+n -1},当m 为奇数时,m ,m +1,m +2互质,当m 为偶数时,m +1,m +2,m +3互质.即M 的子集M 中存在3个两两互质的元素,故f (n )存在且f (n )≤n . ①取集合T n ={t |2|t 或3|t ,t ≤n +1},则T 为M (2,n )={2,3,…,n +1}的一个子集,且其中任3个数无不能两两互质.故f (n )≥card (T )+1.但card(T )=[n+12]+[n+13]-[n+16].故f (n )≥[n+12]+[n+13]-[n+16]+1. ②由①与②得,f (4)=4,f (5)=5.5≤f (6)≤6,6≤f (7)≤7,7≤f (8)≤8,8≤f (9)≤9. 现计算f (6),取M={m ,m +1,…,m +5},若取其中任意5个数,当这5个数中有3个奇数时,这3个奇数互质;当这3个数中有3个偶数k ,k +2,k +4(k 0(mod 2))时,其中至多有1个被5整除,必有1个被3整除,故至少有1个不能被3与5整除,此数与另两个。

2004年全国高中数学联合竞赛.doc

2004年全国高中数学联合竞赛.doc

2004年全国高中数学联合竞赛(天津初赛)(9月19日上午9:00~11:00)一、选择题(本题共6个小题,每小题5分满分30分)(1)若函数x x x f 2sin 2cos 811)(--=的最大值为a ,最小值为b ,则ba 1-等于( ) (A )18 (B )6 (C )5 (D )0 (2)若b a <<0,且1=+b a ,则下列各式中最大的是( ) (A )1- (B )1log log 22++b a(C )b 2log(D ))(log 32232b ab b a a +++(3)已知数列2004,2005,1,2004-,2005-,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2004项之和2004S 等于( ) (A )2005(B )2004 (C )1 (D )0(4)已知函数xx xx ee e e xf --+-=)(的反函数是)(1x f -,且k f f =---|)6.0(||)8.0(|11,则( ) (A ))21,0(∈k (B ))1,21(∈k(C ))23,1(∈k(D ))2,23(∈k(5)正四棱锥ABCD S -中,侧棱与底面所成的角为α,侧面与底面所成的角为β,侧面等腰三角形的底角为γ,相邻两侧面所成的二面角为θ,则α、β、γ、θ的大小关系是( ) (A )θγβα<<< (B )γθβα<<< (C )βγαθ<<<(D )θβγα<<<(6)若对任意的长方体A ,都存在一个与A 等高的长方体B ,使得B 与A 的侧面积之比和体积之比都等于k ,则k 的取值范围是( ) (A )0>k (B )10≤<k (C )1>k(D )1≥k二、填空题(本题共6个小题,每小题5分,满分30分)1P 2P 3P AOBC4P 5P 6P(7)若关于x 的方程x ax a x =+-lg 1lg 2只有一个实数解,则a 的值等于 . (8)在ABC ∆中,若21tan =A ,31tan =B ,且最长的边的长为1,则最短的边的的长等于 .(9)若正奇数n 不能表示为三个不相等的合数之和,则满足条件的n 的最大值为 . (10)设a 、b 、c 是直角三角形的三条边长,且)(2)(2222n n nn nnc b a c b a ++=++,其中*N n ∈,2≥n ,则n 的值等于 .(11)连接正文体各个顶点的所有直线中,异面直线共有 对.(12)如图,以)0,0(O 、)0,1(A 为顶点作正1OAP ∆,再以1P 和A P 1的中点B 为顶点作正21BP P ∆,再以2P 和B P 2的中点C 为顶点作正32CP P ∆,…,如此继续下去.有如下结论:①所作的正三角形的边长构成公比为21的等比数列;②每一个正三角形都有一个顶点在直线2AP (1=x )上;③第六个正三角形的不在第五个正三角形边上的顶点6P 的坐标是)36421,6463(; ④第2004个正三角形的不在第2003个正三角形边上的顶点2004P 的横坐标是20042004211-=x .其中正确结论的序号是 (把你认为正确结论的序号都填上).三、解答题(本题共3小题,每小题20分,满分60分)(13)已知函数a a x f x3)(+=(0>a ,1≠a )的反函数是)(1x fy -=,而且函数)(x g y =的图象与函数)(1x fy -=的图象关于点)0,(a 对称.(Ⅰ)求函数)(x g y =的解析式; (Ⅱ)若函数)()()(1x g x f x F --=-在]3,2[++∈a a x 上有意义,求a 的取值范围.(14)设边长为1的正ABC ∆的边BC 上有n 等分点,沿点B 到点C 的方向,依次为1P ,2P ,…,1-n P ,若AC AP AP AP AP AB S n n ⋅++⋅+⋅=-1211 ,求证:nn S n 62112-=.(15)已知}{n a 是等差数列,d 为公差且不等于0,1a 和d 均为实数,它的前n 项和记作n S ,设集合}|),{(*N n n S a A n n ∈=,},,141|),{(22R y x y x y x B ∈=-=,试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明.(Ⅰ)若以集合A 中的元素作为点的坐标,则这些点都在一条直线上; (Ⅱ)B A 至多有一个元素;(Ⅲ)当01≠a 时,一定有∅≠B A .二00四年全国高中数学联合竞赛(天津初赛)试题参考答案及评分标准一、选择题(本题共6个小题,每小题5分满分30分)(1)B (2)C (3)D (4)D (5)A (6)D 二、填空题(本题共6个小题,每小题5分,满分30分) (7)100 (8)55(9)17 (10)4 (11)174 (12)①②③④ 三、解答题(本题共3小题,每小题20分,满分60分)(13)【解】(Ⅰ)由a a x f x3)(+=(0>a ,1≠a ),得)3(log )(1a x x fa -=-…………5分又函数)(x g y =的图象与函数)(1x fy -=的图象关于点)0,(a 对称,则)()(1x a f x a g --=+-,于是,)(l o g )2()(1a x x a fx g a---=--=-.(a x -<)…………………………………10分(Ⅱ)由(Ⅰ)的结论,有)(log )3(log )()()(1a x a x x g x fx F a a -+-=--=-.要使)(x F 有意义,必须⎩⎨⎧>->-.0,03a x a x又0>a ,故a x 3>. (15)分由题设)(x F 在]3,2[++∈a a x 上有意义,所以a a 32>+,即1<a .于是,10<<a . ……………………………………………………………………… 20分14.【证明】如图,设=,=,=, 令n=1,则p k c BP AB AP k k +=+=(0=k ,1,2,…,n ) 其中,AP =0,AP n =. ∴)(])1([1p k c p k c AP AP k k +⋅-+=⋅-22)1()12(p k k p c k c -+⋅-+=(0=k ,1,2,…,n ) ……………5分又∵AC AP AP AP AP AB S n n ⋅++⋅+⋅=-1211 , ∴2112)]1([)]12([p k k p c k c n S nk n k n ∑∑==-+⋅-+=222)(3)1)(1(n n n n n n -++⋅+= ……………………………………………10分22222231)(31)(nn n n n n n n n n -+⋅+=-+⋅+=. ………………………15分又∵1||||||===,与的夹角为60,∴nn n n n n S n 6211312122-=-++=. ……………………………………………………20分15.【解】(Ⅰ)正确.因为,在等差数列}{n a 中,2)(1n n a a n S +=,所以,21nn a a n S +=. 这表明点),(n S a n n 的坐标适合方程)(211a x y +=. 所以,点),(nS a nn 均在直线)(211a x y +=上. ……………………………………………5分 (Ⅱ)正确.设B A y x ∈),(,则),(y x 坐标中的x 、y 应是方程组⎪⎩⎪⎨⎧=-+=14,2121221y x a x y 的解. 解这个方程组,消去y ,得42211-=+a x a .(﹡)当01=a 时,方程(﹡)无解,此时,∅=B A . …………………………………10分当01≠a 时,方程(﹡)只有一个解12124a a x --=,此时方程组也只有一个解,即⎪⎪⎩⎪⎪⎨⎧-=--=.44,24121121a a y a a x 故上述方程组至多有一解,所以B A 至多有一个元素. ………………………………15分(Ⅲ)不正确.取11=a ,1=d ,对一切*N n ∈,有0)1(1>=-+=n d n a a n ,0>nS n. 这时集合A 中的元素的点的横、纵坐标均为正.另外,由于011≠=a ,如果∅≠B A ,那么根据(Ⅱ)的结论,B A 至多有一个元素(00,y x ),而025241210<-=--=a a x ,043441210<-=-=a a y .这样的A y x ∉),(00,产生矛盾.所以,11=a ,1=d 时,∅=B A ,故01≠a 时,一定有∅=B A 是不正确的. ……………………………………20分。

2004年全国高中数学联合竞赛试题及解答.

2004年全国高中数学联合竞赛试题及解答.
◆答案:C ★解析:⑴等边三角形共 9 个; ⑵ 等腰但不等边三角形:取两个不同数码(设为 a, b ),有 36 种取法,以小数为底时总能构成
2004 年全国高中数学联合竞赛试题 第 1 页 共 11 页
等腰三角形,而以大数为底时, b a 2b . a 9 或 8 时, b 4,3,2,1 ,有 4 2 8 种;
0 0
2 时取得最大值.此时, OH HC 2 , PO 2 2 , 2 6 3 1 VB AOP , 2
又解:连线如图,由 C 为 PA 中点,故 VO PBC 而 VO PHC : VO PBC
PH PO 2 2 ( PO PH PB ). 2 PB PB 1 3 1 R sin cos R 3 sin 2 , 6 12
◆答案:B ★解析:由方程有重根,故 0 ,∵ 0
5 1 ,得 sin 2 ,得 或 . 2 2 12 12
2004*2、已知 M ( x, y ) | x 2 y 3 , M ( x, y ) | y mx b ,若对所有的 m R ,均有
2 a
a2 1
2004*8、设函数 f : R R ,满足 f (0) 1 ,且对任意 x, y R , 都有 f ( xy 1) f ( x ) f ( y ) f ( y ) x 2 ,则 f ( x ) ◆答案: f ( x ) x 1 ★解析:令 x y 0 ,得 f (1) 2 ;令 y 1 得 f ( x 1) 2 f ( x ) x ① 交换 x, y 位置后,令 y 1 ,得 f ( x 1) f ( x ) 1 ② 比较①、②得, f ( x ) x 1 . 2004*9、如图,正方体 ABCD A1 B1C1 D1 中,二面角 A BD1 A1 的度数是 ◆答案: 60 ★解析: 解:不妨设 AB 1 ,作 A1M BD1 , AN BD1 ,则 BN BD1 AB ,可 得 BN D1M NM

2004年全国高中数学联赛试题及答案

2004年全国高中数学联赛试题及答案

2004年全国高中数学联合竞赛试题第 一 试 时间:10月16日一、选择题(本题满分36分,每小题6分)1、设锐角θ使关于x 的方程24cos cot 0x x θθ++=有重根,则θ的弧度数为( )A.6πB.51212orππ C.5612orππ D.12π 2、已知22{(,)|23},{(,)|}M x y x y N x y y mx b =+===+。

若对所有,m R M N ∈≠∅均有,则b 的取值范围是( )A. ⎡⎢⎣⎦B. ⎛ ⎝⎭C. (]33-D. ⎡⎢⎣⎦3、3121log 202x +>的解集为( ) A. [2,3)B. (2,3]C. [2,4)D. (2,4]4、设O 点在ABC ∆内部,且有230OA OB OC ++=,则ABC ∆的面积与AOC ∆的面积的比为( )A. 2B.32C. 3D.535、设三位数n abc =,若以a ,b ,c 为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( )A. 45个B. 81个C. 165个D. 216个6、顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆的圆心,AB OB ⊥,垂足为B ,OH PB ⊥,垂足为H ,且PA=4,C 为PA 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长是( )A.3B.3C.3D.3二、填空题(本题满分54分,每小题9分)7、在平面直角坐标系xoy 中,函数()sin cos (0)f x a ax ax a =+>在一个最小正周期长的区间上的图像与函数()g x 的图像所围成的封闭图形的面积是________________。

8、设函数:,(0)1f R R f →=满足,且对任意,,x y R ∈都有(1)()()()2f xy f x f y f y x +=--+,则()f x =_____________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2004年全国高中数学联合竞赛试题第 一 试一、选择题(本题满分36分,每小题6分)1、设锐角θ使关于x 的方程24cos cot 0x x θθ++=有重根,则θ的弧度数为( ) A.6π B.51212orππ C.5612orππ D.12π 2、已知22{(,)|23},{(,)|}M x y x y N x y y mx b =+===+。

若对所有,m R M N ∈≠∅ 均有,则b 的取值范围是( )A. ⎡⎢⎣⎦B. ⎛ ⎝⎭C. (D. ⎡⎢⎣⎦3、3121log 202x +>的解集为( ) A. [2,3)B. (2,3]C. [2,4)D. (2,4]4、设O 点在ABC ∆内部,且有230OA OB OC ++=,则ABC ∆的面积与AOC ∆的面积的比为( ) A. 2B.32C. 3D.535、设三位数n abc =,若以a ,b ,c 为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( ) A. 45个 B. 81个 C. 165个 D. 216个6、顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆的圆心,AB OB ⊥,垂足为B ,OH PB ⊥,垂足为H ,且PA=4,C 为PA 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长是( )A.B.C.D.二、填空题(本题满分54分,每小题9分)7、在平面直角坐标系xoy 中,函数()sin cos (0)f x a ax ax a =+>在一个最小正周期长的区间上的图像与函数()g x 的图像所围成的封闭图形的面积是________________。

8、设函数:,(0)1f R R f →=满足,且对任意,,x y R ∈都有(1)()()()2f xy f x f y f y x +=--+,则()f x =_____________________。

9、如图、正方体1111ABCD A B C D -中, 二面角11A BD A --的度数是____________。

10、设p 是给定的奇质数,正整数k也是一个正整数,则k=____________。

11、已知数列012,,,...,,...,n a a a a 满足关系式10(3)(6)18,3n n a a a +-+==且,则1ni o ia =∑的值是_________________________。

12、在平面直角坐标系XOY 中,给定两点M (-1,2)和N (1,4),点P 在X 轴上移动,当MPN ∠取最大值时,点P 的横坐标为___________________。

三、解答题(本题满分60分,每小题20分)13、一项“过关游戏”规则规定:在第n 关要抛掷一颗骰子n 次,如果这n 次抛掷所出现的点数之和大于2n,则算过关。

问:(Ⅰ)某人在这项游戏中最多能过几关? (Ⅱ)他连过前三关的概率是多少?(注:骰子是一个在各面上分别有1,2,3,4,5,6点数的均匀正方体。

抛掷骰子落地静止后,向上一面的点数为出现点数。

)14、在平面直角坐标系xoy 中,给定三点4(0,),(1,0),(1,0)3A B C -,点P 到直线BC 的距离是该点到直线AB ,AC 距离的等比中项。

(Ⅰ)求点P 的轨迹方程;(Ⅱ)若直线L 经过ABC ∆的内心(设为D ),且与P 点的轨迹恰好有3个公共点,求L 的斜率k 的取值范围。

15、已知,αβ是方程24410()x tx t R --=∈的两个不等实根,函数22()1x tf x x -=+的定义域为[],αβ。

(Ⅰ)求()max ()min ()g t f x f x =-; (Ⅱ)证明:对于(0,)(1,2,3)2i u i π∈=,若123sin sin sin 1,u u u ++=123111(tan )(tan )(tan )g u g u g u ++<则。

B2004年全国高中数学联合竞赛试题参考答案及评分标准说明:1、评阅试卷时,请依据本评分标准。

选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次。

2、如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时可参照本评分标准适当划分档次评分,5分为一个档次,不要再增加其他中间档次。

一、选择题(本题满分36分,每小题6分)1、解:因方程24cos cot 0x x θθ++=有重根,故216cos 4cot 0θθ∆=-=0,4cot (2sin 21)02πθθθ<<∴-= 得1sin 22θ=52266ππθθ∴==或,于是51212ππθ=或。

故选B 。

2、解:M N ≠∅ 相当于点(0,b )在椭圆2223x y +=上或它的内部221,3b b ∴≤≤≤。

故选A 。

3、解:原不等式等价于22331log 0222log 10x x ++>⎪-≥⎩2310,22t t t t ⎧-+>⎪=⎨⎪≥⎩则有 解得01t ≤<。

即20log 11,24x x ≤-<∴≤<。

故选C 。

4、解:如图,设D ,E 分别是AC ,BC 边的中点,则2(1)2()4(2)OA OC OD OB OC OE +=+=由(1)(2)得,232(2)0OA OB OC OD OE ++=+= , 即OD OE与共线,且332||2||,322AEC ABC AOC AOC S S OD OE S S ∆∆∆∆⨯=∴=∴== , 故选C 。

解法2 如图建立坐标系xo y ',分别设(,0),(0,),(,0),(,)A a B b C c O x y ,则 (,),(,),(,)OA a x y OB x b y OC c x y =--=--=--由230OA OB OC ++= 得,3b y =,3ABC AOC S bS y∆∆∴==, 故选C5、解:a ,b ,c 要能构成三角形的边长,显然均不为0。

即,,{1,2,...,9}a b c ∈(1)若构成等边三角形,设这样的三位数的个数为1n ,由于三位数中三个数码都相同,所以,1199n C ==。

(2)若构成等腰(非等边)三角形,设这样的三位数的个数为2n ,由于三位数中只有2个不同数码。

设为a 、b ,注意到三角形腰与底可以置换,所以可取的数码组(a ,b )共有292C 。

2b a b <<同时,每个数码组(a ,b )中的二个数码填上三个数位,有23C 种情况。

故2222399(220)6(10)156n C C C =-=-=。

综上,12165n n n =+=。

6、解:,,,AB OB AB OP AB PB OH PB ⊥⊥∴⊥⊥又,,PAB POB OH HC OH PA ∴⊥∴⊥⊥面面。

C 是PA 中点,OC PA ∴⊥HOC HO HC S ∆∴=当时最大,也即O HPC P HCO V V --=最大。

此时,,30tan303HO OP HPOOB OP=∴∠=∴=⋅=1故HO=2,故选D。

二、填空题(本题满分54分,每小题9分)7、解:1()),arctanf x axaϕϕ=+=其中,它的最小正周期为2aπ,振幅为。

由()f x的图像与()g x的图像围成的封闭图形的对称性,可将这图形割补成长为2aπ8、解:,,(1)()()()2,x y R f xy f x f y f y x∀∈+=--+对有(1)()()()2f xy f y f x f x y∴+=--+有∴()()()2f x f y f y x--+=()()()2f y f x f x y--+即()(),0,()1f x y f y x y f x x+=+==+令得。

9、解:连结1,DC⊥1作CE BD,垂足为E,延长CE交1A B于F,则1FE BD⊥,连结AE,由对称性知1,AE BD FEA⊥∴∠是二面角11A BD A--的平面角。

连结AC,设AB=1,则11AC AD BD===1Rt ABD∆在中,11AB ADAEBD⋅==,在2222222213cos42223AE CE AC AE ACAEC AECAE CE AE-+--∆∠====-⋅中,120,AEC FEA AEC∴∠=∠∠而是的补角,060FEA∴∠=。

B10、解:*22,,0,n n N k pk n k =∈--==则从而224p n +是平方数,设为2*2,,(2)(2)m m N m n m n p ∈-+=则22212123,,214p m m n p p m n p p n ⎧+=⎪-=⎧⎪≥∴⎨⎨+=-⎩⎪=⎪⎩ 是质数,且解得222(1)(1),244p m p p p k k ±±++∴===故。

(负值舍去)11、解:设1111,0,1,2,...,(3)(6)18,n n n nb n a b b +==-+=则即1111113610.2,2()333n n n n n n b b b b b b +++--=∴=++=+ 故数列1{}3n b +是公比为2的等比数列,11001111112()2()2(21)33333n n n n n n b b b a +++=+=+=⨯∴=-。

()112001112(21)1(21)(1)2333213n nn ni n i i o i i i b n n a +++===⎡⎤-==-=-+=--⎢⎥-⎣⎦∑∑∑。

12、解:经过M 、N 两点的圆的圆心在线段MN 的垂直平分线y=3-x 上,设圆心为 S (a ,3-a ),则圆S 的方程为:222()(3)2(1)x a y a a -+-+=+对于定长的弦在优弧上所对的圆周角会随着圆的半径减小而角度增大,所以,当MPN ∠取最大值时,经过M ,N ,P 三点的圆S 必与X 轴相切于点P ,即圆S 的方程中的a 值必须满足222(1)(3),a a +=-解得 a=1或a=-7。

即对应的切点分别为'(1,0)(7,0)P P -和,而过点M ,N ,'p 的圆的半径大于过点M ,N ,P 的圆的半径,所以'MPN MP N ∠>∠,故点P (1,0)为所求,所以点P 的横坐标为1。

三、解答题(本题满分60分,每小题20分)13、解:由于骰子是均匀的正方体,所以抛掷后各点数出现的可能性是相等的。

(Ⅰ)因骰子出现的点数最大为6,而45642,652⨯>⨯<,因此,当5n ≥时,n 次出现的点数之和大于2n已不可能。

相关文档
最新文档