锐角三角函数--讲义资料

合集下载

初三数学锐角三角函数知识精讲

初三数学锐角三角函数知识精讲

初三数学锐角三角函数知识精讲锐角三角函数1. 锐角三角函数的定义直角三角形中有两条直角边和一条斜边,从这三条边中适当取两条边可以得到不同的比,这些比值的大小显然只与直角三角形中锐角的大小有关,这样便定义了直角三角形中锐角的三角函数,常用的有正弦函数sin A a c =余弦函数cos A bc =正切函数tan A ab =余切函数cot A ba=BCAcab2. 互余角的三角函数间的关系sin cos()cos sin()tan cot()cot tan()αααααααα=︒-=︒-=︒-=︒-909090903. 同余角三角函数间的关系 (1)倒数关系tan cot αα⋅=1(2)商的关系tan sin cos cot cos sin αααααα==, (3)平方关系sin cos 221αα+=4. 三角函数值角度三角函数0°30°45°60°90°sin α 0 12 22 32 1 cos α1 32 22 120 tan α 0 33 13 不存在 cot α不存在3133 0(2)锐角三角函数值的变化情况 <1>锐角三角函数值都是正数且当090︒<<︒α时,01101<<>>+>sin cos sin cos αααα,,,tan α>0,cot α>0。

<2>当角度在090︒︒~间变化时正弦值随着角度的增大(或减小)而增大(或减小) 余弦值随着角度的增大(或减小)而减小(或增大) 正切值随着角度的增大(或减小)而增大(或减小) 余切值随着角度的增大(或减小)而减小(或增大)我们利用以上锐角三角函数的定义及性质,可以解决一些求值、化简以及等式证明等问题。

例(1999某某)已知∆ABC 的两边长a c ==35,,且第三边长b 为关于x 的一元二次方程x x m 240-+=的两个正整数根之一,求sinA 的值。

锐角三角函数讲义

锐角三角函数讲义

锐角三角函数讲义【知识点拨】知识点一:锐角三角函数的概念:锐角三角函数包括正弦函数,余弦函数,和正切函数,如图,在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b ,c . ∠A 的正弦=A asin A=c∠的对边,即斜边;∠A 的余弦=A b cos A=c∠的邻边,即斜边,∠A 的正切=A a tan=A b∠的对边,即∠的邻边注意:我们说锐角三角函数都是在直角三角形中讨论的!若没有直角,要想方设法构造直角。

课堂练习:1. 把Rt △ABC 各边的长度都扩大3倍得Rt △A 'B 'C ',那么锐角A.A '的余弦值的关系为( ).A.cosA =cosA 'B.cosA =3cosA 'C.3cosA =cosA 'D.不能确定 2. 已知中,AC =4,BC =3,AB =5,则( )A .B .C .D .3. 三角形在正方形网格纸中的位置如图1所示,则sin α的值是( )A.34 B.43 C.35 D.45α图14.在△ABC中,∠C=90°,tan A=,则sin B=()A. B. C. D.5.在Rt△ABC中,∠C=90°,a=2,b=3,则cos A=,sin B=,tan B=,6.⑴如图1-1-7①、②锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律;⑵根据你探索到的规律,试比较18○、34○、50○、61○、88○这些锐角的正弦值的大小和余弦值的大小.知识点二:特殊角三角函数值的计算知识点三:运用三角函数的关系化简或求值 1.互为余角的三角函数关系.sin (90○-A )=cosA , cos (90○-A )=sin A tan (900-A )=ctan A ; ctan (900-A )=tan A2.同角的三角函数关系. ①平方关系:sin 2A+cos 2A=l ② 商数关系:sin cos tan ,cot cos sin A AA A A A==sin cos a a += ③倒数关系: tgα·ctgα=1.课堂练习:1. 如α∠是等腰直角三角形的一个锐角,那么cos α的值等于( )A.12D.12. 45cos 45sin +的值等于( ) A. 1B. 2C. 3D.213+ 3. 下列计算错误的是( )A .sin 60sin 30sin 30︒-︒=︒B .22sin 45cos 451︒+︒=C .sin 60cos 60cos 60︒︒=︒D .cos30cos30sin 30︒︒=︒4. 已知a 为锐角,sina=cos500则a 等于( )A 20°B 30°C 40°D 50°5. 若tan(a+10°)=3,则锐角a 的度数是 ( ) A 、20° B 、30° C 、35° D 、50°6. (兰州市)如果sin 2α+sin 230°=1那么锐角α的度数是( )A.15° B.30° C.45° D.60° 7. 已知α为锐角,且sin α-cos α=12 ,则sin α·cos α=___________8. cos 2α+sin 242○ =1,则锐角α=______.9. tan30°sin60°+cos 230°-sin 245°tan45°10. 22sin30cos60tan 60tan30cos 45+-⋅+︒.11. 22sin 45cos30tan 45+-知识点四:锐角三角函数的增减性三角函数的单调性1. 正弦和正切是增函数,三角函数值随角的增大而增大,随角的减小而减小.2. 余弦是减函数,三角函数值随角的增大而减小,随角的减小而增大。

锐角三角函数精品讲解

锐角三角函数精品讲解

第28章:锐角三角函数一、基础知识1.定义:如图在△ABC 中,∠C 为直角,我们把锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ; a sinA c=把锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ;cos b A c =把锐角∠A 的对边与邻边的比叫做∠A 的正切,记作tanA 。

tan a A b=把锐角∠A 的邻边与对边的比叫做∠A 的余切,记作cosA 。

cos b A a=2、三角函数值(2)锐角三角函数值的性质。

锐角三角函数的大小比较:在︒<<︒900A 时,随着A 的增大,正弦值越来越大,而余弦值越来越小. 即:A sin 是增函数,A cos 减函数。

○1锐角三角函数值都是正数。

○2当角度在090间变化时:正弦、正切值随着角度的增大而增大;余弦、余切随着角度的增大而减小。

3、 同角、互余角的三角函数关系:1、同角三角函数关系:1cos sin 22=+A A .sin tan cos ∂∂=∂;cos cot sin ∂∂=∂;tan cot 1∂∙∂=2、互余锐角的三角函数关系:)90cos(cos sin A B A -︒==,A-)==。

B︒90sin(sincos A解直角三角形:由直角三角形中除直角以外的两个已知元素(其中至少有一条边),求出所有未知元素的过程,叫做解直角三角形。

知识梳理:二、精典例题第一部分:锐角三角函数的运算一、直角三角形中锐角的正弦、余弦的概念与表达式:例1:如图所示,则()()()()====E E D D cos ,sin ,cos ,sin 。

例2:在ABC ∆Rt 中,如果各边长度都扩大4倍,则锐角A 的正弦值和余弦值()(A )都没有变化 (B )都扩大4倍 (C )都缩小4倍 (D )不能确定 例3:已知:A ∠为锐角,并且5sin 12A =,则A cos 的值为 . [考点透视]本例主要是考查锐角三角函数的定义。

《锐角三角函数》 讲义

《锐角三角函数》 讲义

《锐角三角函数》讲义一、锐角三角函数的定义在直角三角形中,我们把锐角的对边与斜边的比值叫做正弦(sin),锐角的邻边与斜边的比值叫做余弦(cos),锐角的对边与邻边的比值叫做正切(tan)。

以一个锐角为 A 的直角三角形为例,假设其对边为 a,邻边为 b,斜边为 c。

那么,sin A = a / c,cos A = b / c,tan A = a / b 。

需要注意的是,锐角三角函数的值只与角的大小有关,而与三角形的大小无关。

二、特殊角的三角函数值我们要牢记一些特殊角的三角函数值,这在解题中会经常用到。

30°角:sin 30°= 1 / 2,cos 30°=√3 / 2,tan 30°=√3 / 3 。

45°角:sin 45°=√2 / 2,cos 45°=√2 / 2,tan 45°= 1 。

60°角:sin 60°=√3 / 2,cos 60°= 1 / 2,tan 60°=√3 。

三、锐角三角函数的应用锐角三角函数在实际生活中有广泛的应用。

比如,测量物体的高度。

如果我们知道一个物体与我们的水平距离,以及我们观测物体顶部的仰角,就可以通过三角函数来计算物体的高度。

假设我们站在水平地面上,距离一个建筑物为 d 米,观测建筑物顶部的仰角为α,那么建筑物的高度 h 就可以通过tanα = h / d 来计算,即 h =d × tanα 。

再比如,测量河流的宽度。

我们可以在河的一岸选择一个点,然后测出对岸一个目标点与这个点的连线和河岸的夹角,以及这个点到河岸的垂直距离,从而计算出河流的宽度。

四、锐角三角函数的性质1、取值范围正弦和余弦的值域都在-1, 1之间,而正切的值域是全体实数。

2、增减性在锐角范围内,正弦函数值随着角度的增大而增大,余弦函数值随着角度的增大而减小,正切函数值随着角度的增大而增大。

锐角三角函数知识点

锐角三角函数知识点

锐角三角函数知识点锐角三角函数:一、基本概念:1、什么是锐角三角函数:锐角三角函数是一类特殊的函数,涉及到角度和角度对应的三角函数值,用于计算平面向量在多边形中和求解三角形的面积。

2、锐角三角函数的定义:锐角三角函数是基于角度θ,从而定义的三角函数值。

一般情况下,它用半圆线直叙指函数如下所示:sinθ,cosθ,tanθ,cotθ,secθ,cscθ。

3、锐角三角函数的基本关系:cosθ= sin (π/2-θ);sinθ= cos (π/2-θ);tanθ=cot (π/2-θ);cotθ=tan (π/2-θ);secθ=csc(π/2-θ);cscθ=sec (π/2-θ)。

二、圆周角:1、什么是圆周角:圆周角是指以圆等分线在a轴上的量度,即由圆心和两个点确定的弧的长度。

圆周角定义在一个圆的周围,与半径的长度有关,可以用角度μ来表示。

2、单位:圆周角的单位是弧度rad,又称为radian,表示当一个圆的半径为1时,圆周角的长度。

三、锐角的余弦定理:1、锐角余弦定理是用弦和角定义的三角形问题,可以求解共有三角形A、B、C三个锐角所对应边长a、b、c满足关系:a²=b²+c²-2bc cosA;b²=a²+c²-2ac cosB;c²=a²+b²-2ab cosC。

2、此外,锐角余弦定理也可以利用三角形所有边长求解A、B、C三个锐角所对应的角度值,记为A=cos-1[(b²+c²-a²)/2bc];B=cos-1[(a²+c²-b²)/2ac];C=cos-1[(a²+b²-c²)/2ab]。

四、锐角的正弦定理:1、锐角正弦定理是求解三角形的已知一边和两个对边角的问题,满足条件如下:a=b sinA/sinB;b=a sinB/sinA;c=a sinC/sinA,c=bsinC/sinB。

初中数学锐角三角函数综合复习讲义

初中数学锐角三角函数综合复习讲义

初中数学锐角三角函数综合复习讲义一、研究概念1、产生的背景:直角三角形的边与角之间的关系2、明确概念:正弦阐述概念:在直角三角形中,锐角A 的对边与斜边的比叫做锐角A 的正弦,记作sinA 3、本质:特殊的实数 4、知识点产生的条件: [直角三角形] 直角三角形中任意两边和任意一锐角5、特征: 正弦 [定义] 在△ABC 中,∠C 为直角,我们把锐角A 的对边与斜边的比叫做∠A 的正弦 →[表示法] sinA=∠A 的对边斜边[特殊字母] sinA=a c sinB=bc(∠A+∠B=90°) 余弦 [定义] 在△ABC 中,∠C 为直角,我们把锐角A 的邻边与斜边的比叫做∠A 的余弦→[表示法] cosA=∠A 的邻边斜边[特殊字母] cosA=bccosB=a c (∠A+∠B=90°)sinA=ac = cosB= cos (90°—∠A) cosA=bc= sinB= sin (90°—∠A)定义] 在△ABC 中,∠C 为直角,我们把锐角A 的对边与邻边的比叫做∠A 的正切→[表示法] tanA=∠A 的对边邻边特殊字母] tanA=abtanB=b a (∠A+∠B=90°)余切 [定义] 在△ABC 中,∠C 为直角,我们把锐角A 的邻边与对边的比叫做∠A 的余切→[表示法] cotA=∠A 的邻边对边[特殊字母] cotA=b a cotB= ab(∠A+∠B=90°) tanA=ab= cotB= cot (90°—∠A) CBA c bacotA=ba= tanB= tan (90°—∠A) [文字] 一个角的正弦等于它余角的余弦 一个角的余弦等于它余角的正弦一个角的正切等于它余角的余切一个角的余切等于它余角的正切[勾股] sin 2 A+ cos 2A= 1 sin 2 B+ cos 2B= 1[运算] tanA ·cotA=1 tanB · cotB=1[正弦、余弦] tanA=sin A cosA cotA=cos AsinA tanB=cos A sinA cotB=sin AcosA[特殊值] sin30°=cos60°=12sin45°=cos45°=2若α、β是锐角,且α>β,则sin60°=cos30°α>sin β cos α<cos βtan30°=cot60°α>tan β cot α<cot β tan45°=cot45°= 1tan60°=cot30°6、系统找下位含有特殊角的斜三角形∍内角是特殊角∍15°,30°,45°,60°,90° 外角是特殊角∍15°,30°,45°,60°,90°二、应用、例题讲解(一)直角三角形中,已知两边求锐角三角函数 1、在中,∠C 为直角,已知a=3,b=4,则cos B= ( ) (A 级)对象:cos B 角度:cos B=a c分析:a=3,b=4 [勾股] c=5 cos B=a c =35(二)直角三角形中,已知一锐角的三角函数求锐角的其它三角函数 2、∠A 为锐角,且sinA=135,则tanA 的值为 ( ) (A 级) A 、512 B 、1213 C 、1312 D 、125对象:tanA 角度 : tanA=sin AcosA分析:sinA=135 [sin 2 A+ cos 2A= 1] cos 2A= 1- sin 2A cosA=1312 [tanA=sin A cosA ] tanA= 1253、设x 为锐角,且满足 sin x=3cos x ,则sin x ·cos x 等于 (B 级)对象:sin x ·cos x 角度:sin 2x+ cos 2x= 1分 析:sin x=3cos x [sin 2x+ cos 2x= 1] (3cos x)2+cos 2x= 1 cos 2x=101 sin x ·cos x= 3cos 2x=103 4、如果x= tanA+1,y=cotA+1(A 为锐角),那么y 等于 (B 级) 对象: y 角度:tanA · cotA=1分析:x= tanA+1,y=cotA+1 [tanA · cotA=1] (x-1)(y-1)=1y=1-x x 5、如果A 为锐角,且 sinA=54,那么 ( ) (B 级) A 、0°〈 A ≤30° B 、30°〈A ≤45° C 、45°〈A 〈60° D 、60°〈A 〈90°对象:A 角度:sinA=54 分析:22〈54〈23 sin 45°〈sinA 〈sin60° ∵A 为锐角 ~ 0°〈 A 〈90° 此时 sinA 是增函数 ∴ 45°〈A 〈60°6、已知A 为锐角,且2cos sin 2cos 2sin 3=-+AA AA ,那么tanA 的值等于 (B 级)对象:tanA 角度:tanA=sin AcosA分析:2cos sin 2cos 2sin 3=-+A A A A 3 sinA+2cosA=4sinA -2cosA sinA=4cosA sin AcosA=4=tanA7、在 中,c 为斜边,a 、b 为直角边,则a 3 cosA+b 3cosB 等于 (B 级)对象:a 3 cosA+b 3cosB 角度 :cosA=∠A 的邻边斜边勾股定理分析 :a 3cosA+b 3cosB = a 3·b c + b 3·a c =cabc 2 = abc8、计算: (A 级)对象: 角度 :特殊角的三角函数值分析:=213222∙+⎪⎪⎭⎫ ⎝⎛=231+ 9、计算:sin 248°+sin 242°-tan44°·tan45°·tan46°= (B 级)对象:sin 248°+sin 242°-tan44°·tan45°·tan46°角度:sinA= cos (90°—∠A) tanA= cot (90°—∠A)分析:sin48°=cos(90°-48°)=cos42° tan 44°=cot(90°-44°)=cot46°原式= cos 242°+ sin 242°-cot46°·tan46°·tan45°=1-1·1=010、如图,CD 是平面镜,光线从A 点出发经CD 上点E 反射到B 点,若入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC=3,BD=6,CD=11。

最新锐角三角函数讲义

最新锐角三角函数讲义

一、锐角三角函数【基础知识精讲】一、正弦与余弦,正切:1、 在ABC ∆中,C ∠为直角,锐角A 的对边与斜边的比叫做A ∠的正弦,记作A sin ,⋅=∠=caA A 斜边的对边sin锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos .cbA A =∠=斜边的邻边cos锐角A ∠的对边与邻边的比叫做A ∠的正切,记作A tan 。

的邻边的对边A A A ∠∠=tan =ab2、当A ∠为锐角时, 1sin 0<<A ,1cos 0<<A ,0tan >A 。

二、特殊角的三角函数值:三、增减性:当0900<<α时,sin α、tan α随角度α的增大而增大;cos α、cot α随角度α的增大而减小。

【例题巧解点拨】例1. 在Rt △ABC 中,∠C=90°,AC=12,BC=5(1)求AB 的长。

(2)求sinA ,cosA 的值。

(3)求的值。

(4)比较sinA 与cosB 的大小。

(5)比较tanA 与AAcos sin 的大小。

例2. 在平面直角坐标系xOy 中,已知点A (3,0) 和点B (0,-4), 则cos ∠OAB 等于( )A.43B.-43C. 53D. 54例3. 已知a 为锐角,且aa aa a cos 2sin cos sin ,3tan +-=求的值.例4.如图,在△ABC 中,AD 是BC 边上的高,tanB=cos ∠DAC. (1)求证:AC=BD ; (2)若sinC=54,BC=12.求AD 的长.例5、如图,在△ABC 中,∠C=90°,ED ⊥AB 于D 点,若tan ∠BED=34,cosA=1312,CE=1333,求DE 的长。

例6、如图,M 是正方形ABCD的边AD 的中点,BE=3AE 。

求sin ∠ECM 的值。

CDE【夯实基础】1.化简:+;2、△ABC 中,若cosB=23,tan A=,且 ∠A 、∠B 为锐角,则△ABC 是 三角形; 3、若αα,则锐角)110tan(3=︒+的度数为 ; 4、已知β是锐角,且cos β=23,则tan(90°-β)= ; 5.在△ABC 中,CD ⊥AB 于D 。

锐角三角函数—知识讲解

锐角三角函数—知识讲解

锐角三角函数—知识讲解责编:康红梅【学习目标】1.结合图形理解记忆锐角三角函数定义;2.会推算30°、45°、60°角的三角函数值,并熟练准确的记住特殊角的三角函数值; 3.理解并能熟练运用“同角三角函数的关系”及“锐角三角函数值随角度变化的规律”.【要点梳理】要点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sin A aA c ∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cos A bA c ∠==的邻边斜边;锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边.同理sin B b B c ∠==的对边斜边;cos B aB c∠==的邻边斜边;tan B b B B a ∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA ,cosA ,tanA 分别是一个完整的数学符号,是一个整体,不能写成Ca b,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°间变化时,,,tanA>0.要点二、特殊角的三角函数值要点诠释:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:①正弦、正切值随锐角度数的增大(或减小)而增大(或减小);②余弦值随锐角度数的增大(或减小)而减小(或增大).要点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.【典型例题】类型一、锐角三角函数值的求解策略1.(2016•安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC 的正切值是()A .2B .C .D .【思路点拨】根据勾股定理,可得AC 、AB 的长,根据正切函数的定义,可得答案. 【答案】D . 【解析】 解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC 为直角三角形, ∴tan ∠B==,故选:D .【总结升华】本题考查了锐角三角函数的定义,先求出AC 、AB 的长,再求正切函数. 举一反三:【高清课程名称:锐角三角函数 高清ID 号: 395948 关联的位置名称(播放点名称):例1(1)-(2)】【变式】在Rt ΔABC 中,∠C =90°,若a =3,b =4,则c = ,sinA = , cosA = ,sinB = , cosB = .【答案】c = 5 ,sinA = 35 , cosA =45,sinB =45, cosB =35.类型二、特殊角的三角函数值的计算2.求下列各式的值:(1)(2015•茂名校级一模) 6tan 230°﹣sin60°﹣2sin45°; (2)(2015•乐陵市模拟) sin60°﹣4cos 230°+sin45°•tan60°;Ca bc(3)(2015•宝山区一模)+tan60°﹣.【答案与解析】解:(1)原式==122-.(2)原式=×﹣4×()2+×=﹣3+=63-;(3)原式=+﹣=2+﹣=3﹣2+2=322+.【总结升华】熟记特殊角的三角函数值或借助两个三角板推算三角函数值,先代入特殊角的三角函数值,再进行化简.举一反三:【高清课程名称:锐角三角函数高清ID号:395948关联的位置名称(播放点名称):例1(3)-(4)】【变式】在RtΔABC中,∠C=90°,若∠A=45°,则∠B=,sinA=,cosA=,sinB=,cosB=.【答案】∠B=45°,sinA=22,cosA=22,sinB=22,cosB=22.类型三、锐角三角函数之间的关系3.(2015•河北模拟)已知△ABC 中的∠A 与∠B 满足(1﹣tanA )2+|sinB ﹣|=0(1)试判断△ABC 的形状. (2)求(1+sinA )2﹣2﹣(3+tanC )0的值. 【答案与解析】解:(1)∵|1﹣tanA )2+|sinB ﹣|=0,∴tanA=1,sinB=,∴∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴△ABC 是锐角三角形;(2)∵∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴原式=(1+)2﹣2﹣1=.【总结升华】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.类型四、锐角三角函数的拓展探究与应用4.如图所示,AB 是⊙O 的直径,且AB =10,CD 是⊙O 的弦,AD 与BC 相交于点P , 若弦CD =6,试求cos ∠APC 的值.【答案与解析】连结AC ,∵ AB 是⊙O 的直径,∴ ∠ACP =90°, 又∵ ∠B =∠D ,∠PAB =∠PCD ,∴ △PCD ∽△PAB ,∴PC CDPA AB=. 又∵ CD =6,AB =10, ∴ 在Rt △PAC 中,63cos 105PC CD APC PA AB ∠====.【总结升华】直角三角形中,锐角的三角函数等于两边的比值,当这个比值无法直接求解,可结合相似三角形的性质,利用对应线段成比例转换,间接地求出这个比值.锐角的三角函数是针对直角三角形而言的,故可连结AC ,由AB 是⊙O 的直径得∠ACB =90°,cos PC APC PA ∠=,PC 、PA 均为未知,而已知CD =6,AB =10,可考虑利用△PCD ∽△PAB 得PC CDPA AB=.5.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1①,在△ABC 中,AB =AC ,顶角A 的正对记作sadA ,这时sadA BCAB==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=________.(2)对于0<A <180°,∠A 的正对值sadA 的取值范围是_______.(3)如图1②,已知sinA =35,其中∠A 为锐角,试求sadA 的值.【答案与解析】(1)1; (2)0<sadA <2;(3)如图2所示,延长AC 到D ,使AD =AB ,连接BD .设AD =AB =5a ,由3sin 5BC A AB ==得BC =3a , ∴ 22(5)(3)4AC a a a =-=,∴ CD =5a-4a =a ,22(3)10BD a a a =+=, ∴ 10sadA 5BD AD ==. 【总结升华】(1)将60°角放在等腰三角形中,底边和腰相等,故sadA =1;(2)在图①中设想AB =AC的长固定,并固定AB 让AC 绕点A 旋转,当∠A 接近0°时,BC 接近0,则sadA 接近0但永远不会等于0,故sadA >0,当∠A 接近180°时,BC 接近2AB ,则sadA 接近2但小于2,故sadA <2;(3)将∠A 放到等腰三角形中,如图2所示,根据定义可求解.。

锐角三角函数讲义

锐角三角函数讲义

教育学科教师辅导讲义课题三角函数教学内容锐角三角函数新知:⑴三个比值与B点在α∠的边AM上的位置无关;⑵三个比值随α∠的变化而变化,但α∠(00﹤α∠﹤900)确定时,三个比值随之确定;比值ABBC,ABAC,ACBC都是锐角α的函数比值ABBC叫做α∠的正弦(sine),sinα=ABBC比值ABAC叫做α∠的余弦(cosine),cosα=ABAC比值ACBC叫做α∠的正切(tang e nt),tanα=ACBC(3)注意点:sinα,cosα,tanα都是一个完整的符号,单独的“sin”没有意义,其中α前面的“∠”一般省略不写。

强化读法,写法;分清各三角函数的自变量和应变量。

1、三角函数的定义在Rt△ABC中,如果锐角A确定,那么∠A的对边与斜边的比、邻边与斜边的比也随之确定.则有sinA=斜边的对边A∠cosA斜边的邻边A∠tanAAA∠=∠的对边的邻边明确:锐角的三角函数值的范围:0<sinα<1,0<cosα<1.例1.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,(1)求∠A的正弦、余弦和正切.(2)求∠B的正弦、余弦和正切.(明确:sinA=cosB,cosA=sinB,tanA·tanB=1)练一练:1、如图,在△ABC中,∠ABC=90°,BD⊥AC于D,∠CBD=α,AB=3,•BC=4,•求sinα,cosα,tanα的值.2.在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,•根据勾股定理有公式a2+b2=c2,根据CBA三角函数的概念有sinA=ac,cosA=bc,sin2A+cos2A=2222222a b a bc c c++==1,sincosAA=ac÷bc=ab=tanA,•其中sin2A+cos2A=1,sincosAA=tanA可作为公式来用.例如,△ABC中,∠C=90°,sinA=45,求cosA,tanA的值.解法一:∵sin2A+cos2A=1;∴cos2A=1-sin2A=1-(45)2=925.∴cosA=35,tanA=sincosAA=45÷35=43.解法二:∵∠C=90°,sinA=45.∴可设BC=4k,AB=5k.由勾股定理,得AC=3k.根据三角函数概念,得cosA=35,tanA=43.运用上述方法解答下列问题:(1)Rt△ABC中,∠C=90°,sinA=35,求cosA,tanA的值;(2)Rt△ABC中,∠C=90°,,求sinA,tanA的值;(3)Rt△ABC中,∠C=90°,tanA=12,求sinA,cosA的值;(4)∠A是锐角,已知cosA=1517,求sin(90°-A)的值.3.已知tan2α-()tanα,求锐角α的度数.4.如图,已知锐角△ABC中,∠A,∠B,∠C的对边分别是a,b,c.(1)试说明:S△ABC=12absinC;(2)若a=30cm ,b=36cm ,∠C=30°,求△ABC 的面积.5.求下列各式的值:(1)2sin30°-3cos60°+tan45°; (2)cos 270°+cos45°·sin45°+sin 270°;(3)3tan30°-2tan45°+2cos30°; (4)2cos30°+5tan60°-2sin30°;22cos 60(5)2tan 60;1sin 60︒+︒-︒ sin 301(6).1cos30tan 30︒++︒︒6.已知3是方程x 2-5xsin α+1=0的一个根,α为锐角,求tan α的值.7.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB•的值.bABCa┌c有关三角函数的计算小结:Sin α,tan α随着锐角α的增大而增大; Cos α随着锐角α的增大而减小.1.如图,已知直线AB 与x 轴,y 轴分别交于A ,B 两点,它的解析式为y=-3x+3,角α的一边为OA ,另一边OP ⊥AB 于P ,求cos α的值.2.如图,AB 是直径,CD 是弦,AD ,BC 相交于E ,∠AEC=60°. (1)若CD=2,求AB 的长;(2)求△CDE 与△ABE 的面积比.解直角三角形:(如图)在⊿ABC 中,∠C=900,(1).已知a,b.解直角三角形(即求:∠A ,∠B 及C 边) (2). 已知∠A ,a.解直角三角形 (3).已知∠A ,b. 解直角三角形 (4) 已知∠A ,c. 解直角三角形四 解直角三角形(△ABC 中,∠C =90°,每小题6分,共24分): 1.已知:c = 83,∠A =60°,求∠B 、a 、b .解:2.已知:a =36, ∠A =30°,求∠B 、b 、c . 解:. .3.已知:c =26-,a =3-1 , 求∠A 、∠B 、 b .解:4.已知:a =6,b =23,求 ∠A 、∠B 、c .解:五 在直角三角形ABC 中,锐角A 为30°,锐角B 的平分线BD 的长为8cm ,求这个三角形的三条边的长.解:三 计算题(每小题6分,共18分):1.tan 30°cot 60°+cos 230°-sin 245°tan 45°解:2.sin 266°-tan 54°tan 36°+sin 224°; 解:;3.οοοοοοο50cos 40sin 0cos 45cot 30cos 330sin 145tan 41222-+-+.解:。

完整版)锐角三角函数超经典讲义

完整版)锐角三角函数超经典讲义

完整版)锐角三角函数超经典讲义锐角三角函数锐角三角函数是三角函数的一种,包括正弦、余弦和正切。

在一个锐角三角形中,锐角的对边、邻边和斜边之间的比例就是锐角三角函数。

具体来说,对于锐角A,其正弦、余弦和正切分别表示为sinA、cosA和XXX。

其中,XXX表示A的对边与斜边的比,cosA表示A的邻边与斜边的比,XXX表示A的对边与邻边的比。

这些符号都是完整的,单独的“sin”没有意义。

在用大写字母表示角度时,一般省略“∠”符号。

在求解锐角三角函数时,关键在于构造以此锐角所在的直角三角形。

例如,在一个直角三角形ABC中,如果已知∠C=90°,cosB=4/5,则AC:BC:AB=3:4:5.另外,需要注意的是,正弦、余弦和正切是实数,没有单位,它们的大小只与角的大小有关,而与所在直角三角形无关。

例1:在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE。

证明△ABE≌△DFA,并求sin∠EDF的值。

解:首先,连接AC,易得△ABC为等腰直角三角形,∠BAC=45°。

又因为AE=BC,所以△ABE和△ACD相似,即∠ABE=∠ACD,∠XXX∠ADC。

又因为∠ADC=90°,所以∠AEB=90°。

因此,△ABE和△DFA是全等三角形。

接下来,求sin∠EDF的值。

由于∠BAC=45°,所以∠AED=45°。

由于△ABE和△DFA全等,所以∠XXX∠BAE=45°。

因此,sin∠EDF=sin45°=1/√2.例2:在△ABC中,∠A=60°,∠B=45°,AB=8,求△ABC面积(结果可保留根号)。

解:由于∠A=60°,∠B=45°,所以∠C=75°。

根据三角函数的定义,可以得到:sin75°=cos15°=(sin60°cos45°+cos60°sin45°)/2=√6+√2/4cos75°=sin15°=(sin60°cos45°-cos60°sin45°)/2=√6-√2/4因此,△ABC面积为S=(1/2)AB·BC·sin75°=4(√6+√2)。

第1节 锐角三角函数

第1节  锐角三角函数

第二十八章 锐角三角函数 第一节 锐角三角函数一、课标导航二、核心纲要1.锐角三角函数的概念(1)定义:在Rt △ABC 中,锐角A 的正弦、余弦和正切统称为锐角A 的三角函数. (2)如下图所示,在Rt △ABC 中,∠C =90°,①正弦:锐角A 的对边与斜边的比叫做∠A 的正弦,记作sin A ,即sinA =A ac =∠的对边斜边.②余弦:锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cos A ,即cosA =A bc=∠的邻边斜边.③正切:锐角A 的对边与邻边的比叫做∠A 的正切,记作tan A ,即tanA =A aA b=∠的对边∠的邻边.注:(1)锐角三角函数没有单位.(2)锐角三角函数值只与角的大小有关,与直角三角形的大小和位置无关.(3)sin A 是一个整体符合,即表示∠A 的正弦,习惯省去角的符号“∠”,但不能写成sin ·A ,三个大写字母表示一个角时,角的符号“∠”不能省略,如sin ∠BA C .(4)当0°<∠A <90°时,0<sin A <1,0<cos A <1,tan A >0. 2.特殊角的三角函数(如下表所示)注:特殊角的锐角三角函数值的记忆方法(1)数形结合记忆法如下左图、中图所示,有定义可得各角的三角函数值.(2)增减规律记忆法①sin a的值随着a的增大而增大,依次为:222,,.②cos a的值随着a的增大而减小,依次为:222,,.③tan a的值随着a的增大而增大,依次为:31.3.锐角三角函数之间的关系如下右图所示,在Rt△ABC中,∠C=90°.(1)互余关系:sin A=cos(90°-∠A)=cos B,cos A=sin(90°-∠A)=sinB.(2)平方关系:sin 2A+cos2A=1.(3)倒数关系:tan A·tan B=1.(4)商数关系:sintancosAAA=.4.通过构造合适的图形,求15°和75°的三角函数值(如下表所示)5.求三角函数值的常用方法 ①根据特殊角的三角函数值求值. ②借助边的数量关系求值. ③借助等角求值. ④根据三角函数关系求值.本节重点讲解:一个概念,一个特殊值,一个方法.三、全能突破基 础 演 练1.(1)在△ABC 中,∠C =90°,cos B =25,AB =15,则BC 的长为( ).A .B .C .6D .23(2)在Rt △ABC 中,∠C =90°,若BC =1,AB ,则tan A 的值为( ).A .5B .5C .12D .22.如图28-1-1所示,菱形ABCD 的边长为10cm ,DE ⊥AB ,sin A =35,则这个菱形的面积为 ( )cm 2.A .40B .60C .80D .1003.在平面直角坐标系中,已知点A (2,1)和点B (3,0),则sin ∠AOB 的值等于( ).A .5B .2C .2D .124.如图28-1-2所示,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,若AC =AB =,则tan ∠BCD 的值为( ).AB .2C .3D .35.点A (sin30°,-tan30°)关于原点对称点A 1的坐标是 .6.在△ABC 中,若∠A 、∠B 满足|cos (A -15°-12|+(sin B )2=0,则∠C = .7.计算:201cos 60tan 30sin 60cos 45cos30sin 30tan 60-?胺??+??°()().8.如图28-1-3所示,AB 是⊙O 的直径,C 是⊙O 上一点,CD ⊥AB ,垂足为点D ,F 是AC 的中点,OF 与AC 相交于点E ,AC =8cm ,EF =2cm .(1)求AO 的长. (2)求sin C 的值.能 力 提 升9.已知a 为锐角,且1sin 22a <<,则a 的取值范围是( ). A .0°<a <30° B .60°<a <90° C .45°<a <60° D .30°<a <45° 10.直线y =2x 与x 轴正半轴的夹角为a ,那么下列结论正确的是( ). A .tan a =2B .cot a =2C .sin a =2D .cos a =211.如图28-1-4所示,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF =2,BC =5,CD =3,则tan C 等于( ).A .34B .43C .35D .4512.在Rt △ABC 中,∠C =90°,∠A 、∠B 的对边是a 、b ,且满足a 2-ab -b 2=0,则tan A =( ).A .1B .2C .12- D .12± 13.小明在学习“锐角三角函数”中发现,将图28-1-5所示的矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 上的点E 处,还原后,再沿过点E 的直线折叠,使点A 落在BC 上的点F 处,这样就可以求出67.5°角的正切值是( ).A 1B 1+C .2.5D 14.(1)如图28-1-6所示,在8×4的矩形网格中,每个小正方形的边长都是1,若△ABC 的三个顶点都在图中相应的格点上,则sin ∠A 的值为 .(2)如图28-1-7所示,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是 ...15.(1)如图28-1-8所示,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则cos B 的值为 .(2)如图28-1-9所示,已知△ABC 的外接圆⊙O 的半径为1,D 、E 分别是AB 、AC 的中点,则sin ∠BAC 的值等于线段 的长.16.如图28-1-10所示,在Rt △ABC 中,∠C =90°,AB 的垂直平分线与BC 、AB 的交点分别为D 、E .(1)若AD =10,sin ∠ADC =45,求AC 的长和tan B 的值. (2)若AD =1,∠ADC =a ,参考(1)的计算过程直接写出tan 2a的值(用sin a 和cos a 的值表示).17.已知a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 的对边,关于x 的一元二次方程a (1-x )2+2bx +c (1+x 2)=0有两个相等的实数根,且3c =a +3b .(1)判断△ABC 的形状. (2)求sin A ·sin B 的算术平方根.18.当0°<a <60°时,下列关系式中有且仅有一个正确.A .2sin (a +30°)=sin aB .2sin (a +30°)=2sin aC .2sin (a +30°)a +cos a (1)正确的选项是 .(2)如图28-1-11(a )所示,在△ABC 中,AC =1,∠B =30°,∠A =a ,请利用此图证明(1)中的结论.(3)两块分别含45°和30°的直角三角板按图28-1-11(b )所示方式放置在同一平面内,BD =S △AD C .中 考 链 接19.(2013·四川乐山改编)如图28-1-12所示,定义:在Rt △ABC 中,锐角a 的邻边与对边的比叫做角a 的余切,记作cot a ,即cot ==ACBC角的邻边角的对边a a a ,根据上述角的余切定义,解下列问题:(1)cot 30°= .(2)已知3tan =4A ,其中∠A 为锐角,试求cot A 的值. (3)已知第一象限内的点A 在反比例函数2y x=的图像上,第二象限内的点B 在反比例函数ky x=的图像上,且OA ⊥OB ,cot A =3,直接写出k 的值.20.(2013·广东湛江改编)阅读下面的材料,先完成阅读填空,再按要求答题:sin30°=12,cos 30°sin 230°+cos 230°= .①sin45°=2,cos 30°=2,则sin 245°+cos 245°= .②sin60°=2,cos 30°=12,则sin 260°+cos 260°= .③ 观察上述等式,猜想:对任意锐角A ,都有sin 2A +cos 2A = .(1)如图28-1-13所示,在锐角三角形ABC中,利用三角函数的定义及勾股定理对∠A证明你的猜想.(2)已知:∠A为锐角(cos A>0),且sin A=0.335,求cosA.(3)在Rt△ABC中,∠C=90°,且sin A、cos A是关于x的方程3x2-mx+1=0的两根,m为实数,则sin4A+cos4A= .巅峰突破21.在△ABC中,∠ACB=90°,∠ABC=15°,BC=1,则AC=().A.B.2-C.0.3 D22.如图28-1-14所示,在等腰直角三角形ABC中,∠C=90°,D为BC中点,将△ABC折叠,使点A与D点重合,若EF为折痕,则sin∠BED的值为,DEDF的值为.。

初三锐角三角函数复习讲义

初三锐角三角函数复习讲义

锐角三角函数:知识点一:锐角三角函数的定义:一、锐角三角函数定义:如图所示,在Rt△ABC 中,∠C=90则∠A 的正弦可表示为:sinA0, ∠A 、∠B、∠C 的对边分别为a、b、c,∠A 的余弦可表示为:cosA∠A 的正切可表示为:tanA,它们称为∠ A 的锐角三角函数①( )sin A =______,斜边②( )cos A =______,斜边③( )tan A =______,A的邻边【特别提醒:1、sinA、cosA、tanA 表示的是一个整体,是两条线段的比,没有单位,这些比值只与有关,与直角三角形的无关。

2、取值范围<sinA< ,<cosA< ,tanA>例1. 锐角三角函数求值:在Rt△ABC 中,∠C=90°,若a=9,b=12,则c=______,sinA=______,cosA=______,tanA=______,sinB=______,cosB=______,tanB=______.典型例题:类型一:利用直角三角形求值1.已知:如图,Rt△TNM 中,∠TMN =90°,MR⊥TN 于R 点,TN=4,MN=3.求:sin∠TMR、cos∠TMR 、tan∠TMR.2.已知:如图,⊙O 的半径OA=16cm,OC⊥AB 于C 点,sin AOC 求:AB 及OC 的长.3 4类型二.利用角度转化求值:1.已知:如图,Rt△ABC 中,∠C=90°.D 是AC 边上一点,DE⊥AB 于E 点.DE∶AE=1∶2.求:sin B、cosB、tanB.2.如图,直径为10 的⊙ A 经过点C (0,5) 和点O (0,0) ,与x 轴的正半轴交于点D,B 是y 轴右侧圆弧上一点,则c os∠OBC 的值为()A.y 12B.32C.35D.45CAxO DB第8题图35.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为2,AC 2 ,则sin B 的值是()A.23B.32C.34D.436. 如图4,沿AE 折叠矩形纸片A BCD ,使点D 落在BC 边的点F 处.已知AB 8 ,BC 10 ,AB=8,则t an∠EFC 的值为()A DEA.34 B.43C.35D.45BFC7. 如图6,在等腰直角三角形ABC 中, C 90 ,AC 6 ,D为A C 上一点,若tan1DBA ,则A D 的长为( )5A. 2 B .2 C.1 D .2 2类型三. 化斜三角形为直角三角形8.如图,在△ABC 中,∠A=30°,∠B=45°,AC=2 3,求AB 的长.2.如图,在Rt△ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2 ,求△ABC 的周长.(结果保留根号)3. ABC 中,∠A=60°,AB=6 cm,AC=4 cm,则△ABC 的面积是()2 B.43 cm2A.2 3 cm2 D.12 cm2C.6 3 cm类型四:利用网格构造直角三角形1.如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为()12 A.B.55C.10102 55D. ACO BA B2.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.3.如图,A、B、C 三点在正方形网络线的交点处,若将ABC 绕着点 A 逆时针旋转得到AC'B',则tan B' 的值为()A. 14B.13C.12D. 14.正方形网格中,∠AOB 如图放置,则tan∠AOB 的值是()A .55B.2 5512C.D. 2知识点二:特殊角的三角函数值锐角30°45°60°sincostan当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而例1.求下列各式的值.29.计算:tan 60 sin 45 2 cos30 -1+(2 π-1)0-10.计算:333tan30 -°tan45 °3.计算:122 cos60 sin 4532tan 30 4.计算:t an 45 sin 301 cos60例2.求适合下列条件的锐角.(1)1cos (2)23tan (3)32sin 2 (4) 6 cos( 16 ) 3 32()已知为锐角,且tan( 30 ) 3,求tan 的值1 22()在ABC 中,cos A (sin B ) 0 ,A, B 都是锐角,求 C 的度数2 2例3.三角函数的增减性1.已知∠A 为锐角,且sin A < 12,那么∠A 的取值范围是A. 0 <°A < 30 °B. 30 <°A <60°C. 60 <°A < 90 °D. 30 <°A < 90 °4. 已知 A 为锐角,且0cos A sin 30 ,则()A. 0 <°A < 60 °B. 30 <°A < 60 °C. 60 <°A < 90 °D. 30 <°A < 90 °类型五:三角函数在几何中的应用1.已知:如图,在菱形ABCD 中,DE ⊥AB 于E,BE=16cm,sin A 1213求此菱形的周长.2.已知:如图,Rt△ABC 中,∠C=90°,AC BC 3 ,作∠DAC =30°,AD 交CB 于D 点,求:(1)∠BAD;(2)sin∠BAD、cos∠BAD 和tan∠BAD.11. 已知:如图△ABC 中,D 为BC 中点,且∠BAD=90°,∠CAD 、tan∠CAD.1tan B ,求:sin∠CAD、cos3312. 如图,在Rt△ABC 中,∠C=90°,sin B ,点D 在BC 边上,DC= AC = 6 ,求tan ∠BAD5的值.AB D C5(.本小题 5 分)如图,△ABC 中,∠A=30°,AC 4 3.求AB 的长.tan3B ,2CAB知识点三:解直角三角形:1.在解直角三角形的过程中,一般要用的主要关系如下(如图所示):在Rt△ABC 中,∠C=90°,AC=b,BC=a,AB=c,①三边之间的等量关系:________________________________ .②两锐角之间的关系:__________________________________ .③边与角之间的关系:sin A cos B______;cos A sin B _______;1 1tan A _____;tan Btan B tan A______.④直角三角形中成比例的线段(如图所示).在Rt△ABC 中,∠C=90°,CD⊥AB 于D.2=_________;AC2=_________; CD2=_________;AC·BC=_________. BC例1.在Rt△ABC 中,∠C=90°.(1)已知:a 2 3 ,b 2 ,求∠A、∠B,c;(2)已知:2sin A ,c 6 ,求a、b;3(3).已知:△ABC 中,∠A=30°,∠B=60°,AC=10cm.求AB 及BC 的长.类型六:解直角三角形的实际应用仰角与俯角1.如图,从热气球C 处测得地面A、B 两点的俯角分别是30°、45°,如果此时热气球C 处的高度CD为100 米,点 A 、D、B 在同一直线上,则A B 两点的距离是()A .200 米B.200 米C.220 米D.100()米2.在一次数学活动课上,海桂学校初三数学老师带领学生去测万泉河河宽,如图13 所示,某学生在河东岸点A处观测到河对岸水边有一点 C ,测得 C 在A北偏西31 的方向上,沿河岸向北前行20 米到达B 处,测得C 在B北偏西45 的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(参考数值:tan31 °≈35,sin31 °≈12)图133.如图,小聪用一块有一个锐角为30 的直角三角板测量树高,已知小聪和树都与地面垂直,且相距3 3 米,小聪身高AB 为1.7 米,求这棵树的高度.CADB E4.一数学兴趣小组为测量河对岸树AB 的高,在河岸边选择一点C,从C 处测得树梢A的仰角为45°,沿BC 方向后退10 米到点D,再次测得点 A 的仰角为30°.求树高.(结果精确到0.1 米.参考数据: 2 1.414, 3 1.732)A45°30°BCD5.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的在 A 处,离益阳大道的距离(AC)为30 米.这时,一辆测点设知识检测车速.如图,观为8 秒,∠BAC=75°.小轿车由西向东匀速行驶,测得此车从 B 处行驶到 C 处所用的时间(1)求B、C 两点的距离;(2)请判断此车是否超过了益阳大道60 千米/小时的限制速度?(计算时距离精确到 1 米,参考数据:sin75 °≈0.96,59cos75°≈0.258,8 tan75°≈ 3.73,23 ≈ 1.73,260 千米/小时≈16.7米/秒)坡度与坡角13.如图,某水库堤坝横断面迎水坡AB 的坡比是1: 3 ,堤坝高BC=50m,则应水坡面AB 的长度是()A.100m B.100 3 m C.150m D.50 3 m14.数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB 的高度.如图,老师测得升旗台前斜坡FC 的坡比为i=1:10,学生小明站在离升旗台水平距离为35m(即CE=35m)处的 C 点,测得旗杆顶端 B 的仰角为α,已知tanα= CD =1.6m,请帮小明计算出旗杆AB 的高度. 37,升旗台高AF =1m,小明身高BA i FC = 1:10αD FC E15.如图,有两条公路OM,ON 相交成30°角,沿公路OM 方向离O 点80 米处有一所学校A,当重型运输卡车P 沿道路ON 方向行驶时,在以P 为圆心、50 米长为半径的圆形区域内部会受到卡车噪声的影响,且卡车P 与学校 A 的距离越近噪声影响越大,若已知重型运输卡车P 沿道路ON 方向行驶的速度为18 千米/时.(1)求对学校 A 的噪声影响最大时,卡车P 与学校 A 的距离;(2)求卡车P 沿道路ON 方向行驶一次给学校 A 带来噪影响的时间.NP30°O M80米 A16.如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4 米,AB=6 米,中间平台宽度DE =1 米,EN、DM 、CB 为三根垂直于AB 的支柱,垂足分别为N、M、B,∠EAB=31°,DF⊥BC 于F,∠CDF =45°.求DM 和BC 的水平距离BM 的长度.(结果精确到0.1 米,参考数据:sin31 °≈0.,52cos31°≈0.8,6tan31°≈0.)60CE D 45° F31°A N MB5.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45o降为30o,已知原滑滑板AB 的长为 5 米,点D、B、C 在同一水平地面上.(1)改善后滑滑板会加长多少?(精确到0.01)(2)若滑滑板的正前方能有 3 米长的空地就能保证安全,原滑滑板的前方有 6 米长的空地,像这样改造是否可行?说明理由。

锐角三角函数超经典讲义

锐角三角函数超经典讲义

锐角三角函数知识点一:锐角三角函数1、锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数。

2、锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即斜边的对边AA∠=sin。

3、锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即斜边的邻边AA∠=cos。

4、锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即的邻边的对边AAA∠∠=tan。

sinα,cosα,tanα都是一个完整的符号,单独的“sin”没有意义,其中α前面的“∠”一般省略不写;但当用三个大写字母表示一个角时,“∠”的符号就不能省略。

考点一:锐角三角函数的定义1、在Rt△ABC中,∠C=90°,cosB=54,则AC:BC:AB=()A、3:4:5B、5:3:4C、4:3:5D、3:5:42、已知锐角α,cosα=35,sinα=_______,tanα=_______。

3、在△ABC中,∠C=90°,若4a=3c,则cosB= = ______。

4、在△ABC中,∠C=90°,AB=15,sinA=13,则BC等于_______。

5、在△ABC中,∠C=90°,若把AB、BC都扩大n倍,则cosB的值为()A、ncosBB、1ncosB C、cosnBD、不变考点二:求某个锐角的三角函数值——关键在构造以此锐角所在的直角三角形例1、如图,在矩形ABCD中,E是BC边上的点,AE BC=,DF AE⊥,垂足为F,连接DE。

(1)求证:ABE△DFA≌△;(2)如果10AD AB=,=6,求sin EDF∠的值。

6、如图,在△ABC中,∠A=60°,∠B=45°,AB=8,求△ABC面积(结果可保留根号)。

7、如图(1),∠α的顶点为O,它的一边在x轴的正半轴上,另一边OA上有一个点P(3,4),则sinα=______8、如图(2)所示,在正方形网格中,sin∠AOB等于()A5B、255C、12D、2注意:正弦、余弦、正切是在一个直角三角形中引入的,实际上是两条边的比,它们是正实数,没单位,其大小只与角的大小有关,而与所在直角三角形无关。

锐角三角函数讲义

锐角三角函数讲义

锐角三角函数专题1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、30°、45°、60°特殊角的三角函数值(重要)5、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

6、正切、的增减性:A 90B 90∠-︒=∠︒=∠+∠得由B A对边邻边当0°<α<90°时,tan α随α的增大而增大,7、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。

(注意:尽量避免使用中间数据和除法)8、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即hi l=。

坡度一般写成1:m 的形式,如1:5i =等。

把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。

9、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。

10、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。

如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。

:i h l =hlα典型例题1、已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( )A .43B .45C .54D .342、104cos30sin 60(2)2008)-︒︒+--=______.3、 某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( )A .8米B.C米 D米 4、一架5米长的梯子斜靠在墙上,测得它与地面的夹角是40°,则梯子底端到墙的距离为( )A .5sin 40°B .5cos 40°C .5tan 40°D .5cos 40°5、如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8m ,则乘电梯从点B 到点C 上升的高度h 是( )A.4 m C..8 m6、 河堤横断面如图所示,堤高BC=5米,迎水坡AB 的坡比是BC 与水平宽度AC 之比),则AC 的长是( )A. 米 B . 10米C .15米 D. 7、如图,在矩形ABCD 中,DE ⊥AC 于E ,∠EDC ∶∠EDA=1∶3,且AC=10,则DE 的长度是( )A .3B .5C .25D .2258、如图所示,小明在家里楼顶上的点A处,测量建在与小明D家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为 米(精确到0.1).1.4141.732)9、如图,热气球的探测器显示,从热气球A 看一栋大楼顶部B 的俯角为30°,看这栋大楼底部C 的俯角为60°,热气球A 的高度为240米,求这栋大楼的高度.10、如图所示,城关幼儿园为加强安全管理,决定将园内的滑滑板的倾斜角由45°降为30°,已知原滑滑板AB 的长为4米,点D 、B 、C 在同一水平面上.(1)改善后滑滑板会加长多少米?(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由.(参考数据:141.12=,732.13=,449.26=,以上结果均保留到小数点后两位.)11、求值101|2|20093tan 303-⎛⎫+--+ ⎪⎝⎭°A BC名校真题1.(巴蜀半期) 如图,A 为某旅游景区的最佳观景点,游客可以在B 处乘坐缆车沿BD 方向先到达小观景平台DE 观景,然后再由E 处继续乘坐缆车沿EA 方向到达A 处,返程时从A 处乘坐升降电梯直接到C 处.已知AC BC ⊥于C ,//DE BC ,斜坡BD 的坡度4:3i =,210BC =米,48DE =米,100BD =米,64α=︒,则AC 的高度为( )米(结果精确到0.1米,参考数据:sin640.9︒≈,tan642.1︒≈)A .214.2B .235.2C .294.2D .315.2 2.(南开月考三)如图,市规划局准备修建一座高6AB m =的过街天桥,已知天桥的坡面AC 的坡度3:4i =,则坡面AC 的长度为( )A 、10mB 、8mC 、6mD、3.(南开月考二)如图,在课题学习后,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图所示,其中,AB 表示窗户,且 2.82AB =米,BCD ∆表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD 的最小夹角α为18,最大夹角β为66,根据以上数据,计算出遮阳蓬中CD 的长是(结果精确到0.1)(参考数据:sin180.31≈,tan180.32≈,sin 660.91≈,tan66 2.2≈)( ) A 、1.2米 B 、1.5米 C 、1.9米 D 、2.5米4.(南开月考一)如图,小明在大楼30米高(即30PH =米)的窗口P 处进行观测,测得山坡顶A 处的俯角为15,山脚处B 的俯角为60,已知该山坡的坡度i =P 、H 、B 、C 、A 在同一个平面上,点HBC 在同一条直线上,且PH HC ⊥,则A 到BC 的距离为( )A.米 B .15米C.米D .30米5.(八中月考三)11、如图,某风景区在坡度2题图1题图为7:24的斜坡AB上有一座标志性建筑物BC,在点A处测得建筑物顶部C的仰角为31,斜坡AB=100米,则这座建筑物BC的高度约为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锐角三角函数 讲义一、基础知识点: 1.定义:如图在△ABC 中,∠C 为直角,我们把锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sin A ;ca A =sin 把锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cos A ;cb A =cos 把锐角∠A 的对边与邻边的比叫做∠A 的正切,记作tan A ;ba A =tan 2、三角函数值(1)特殊角的三角函数值角度 三角函数 0° 30° 45° 60° 90° s inA 0 12 22 321cosA 1 32 22 12 0tanA313不存在(2)锐角三角函数值的变化:(1)当α为锐角时,各三角函数值均为正数,且0<s inα<1,0<c os α<1,当0°≤α≤45°时,sin α,tan α随角度的增大而_______,co sα随角度的增大而_______.(3)当0°<α<45°时,sin α_____c os α;当45°<α<90°时,sin α______c os α.3、 同角、互余角的三角函数关系:(1)同角三角函数关系:1cos sin 22=+A A .; AA A cos sin tan =;(2)互余锐角的三角函数关系:)90cos(cos sin A B A -︒==,)90sin(sin cos A B A -︒==。

1、 解直角三角形:由直角三角形中除直角以外的两个已知元素(其中至少有一条边),求出所有未知元素的过程,叫做解直角三角形。

直角三角形的可解条件及解直角三角形的基本类型如下表: 已知条件 解法 一条边和一个锐角 斜边c和 锐角A290,sin ,cos ,sin cos B A a c A b c A S c A A ο=-===直角边a 和锐角A 90,,,tan sin a aB A b c A Aο=-==两条边两条直角 边a 和b 22c a b =+,1,90,2A B A S ab ο=-=直角边a和 斜边c22,sin ,,90ab c a A A B A cο=-==-备注:a 、b、c 为三角形的三边;A 、B 、C 为三角形的三个内角、S 为三角形的面积 三、典型例题:1. 锐角三角函数的相关概念例1、如图1,在RT △A BC中,∠C=90°,si nA =53,则tanB 的值为(ﻩ)A .34ﻩ B.54 ﻩC .45 ﻩﻩD .43例5例2、如图,⊙O 是△A BC 的外接圆,A D是⊙O的直径,若⊙O 的半径是23,AC=2,则sinB 的值是( )A.32ﻩﻩ B.23ﻩﻩﻩC .43 ﻩﻩD .34ﻩ例3:已知在Rt ABC △中,∠C 为直角,A C = 4cm ,BC = 3cm ,sin ∠A = . 例4:在Rt ABC △中,90C ∠=°,a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =,则tan A = .例5:如图,在Rt △ABC 中,∠C =90°,AB =5,AC =2,则cos A的值是( ) A.错误! B.错误! C.错误! D .错误!A CB图1A BCDO例2ACB ACBDBACDE 例6:如图2,在△ABC 中,∠C =90°,AB =10cm ,sinA =54,则B C的长为 ___c m. 例6例7:正方形网格中,AOB ∠如图3放置,则cos AOB ∠的值为( )A.55ﻩ B.255ﻩ C.12ﻩﻩD.2 典型例题题型一:求锐角三角函数的值例1 在Rt △ABC 中,∠C =90°,sin B=35,点D 在BC边上,且∠ADC=45°,DC=6,求∠BAD 的正切值.变式训练1 如图,在ABC △中,90ACB ∠=,CD AB ⊥于D ,若23AC =,32AB =,则tan BCD ∠的值为( ) A.2 B .2C .6ﻩD .3变式训练2如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE=60°,BD=4,CE=43,则△ABC 的面积为( )A.83B.15ﻩC.3D.3题型三:化简计算例1(1))计算:20113015(1)()(cos68)338sin 602π---+++-.ABO例7变式1图 变式2图变式:已知α是锐角,且s in(α+15°)=32。

计算10184cos ( 3.14)tan 3απα-⎛⎫---++ ⎪⎝⎭。

特殊角的三角函数值例1菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,,则点B 的坐标为( )A.(21),B .(12),C .(211)+, D.(121)+, 变式训练2. 如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A优弧上一点,则∠OBC 的余弦值为( ).A .12 B. 34 C. 32 D.45概念巩固练习1.已知ABC ∆中,A C=4,BC =3,AB =5,则sin A =( ) A . 35B .45 C. 53 D . 342.已知α为锐角,且23)10sin(=︒-α,则α等于( ) A.︒50 B.︒60 C.︒70 D.︒803.如图,已知直角三角形ABC 的斜边AB 长为m ,40B ∠=,则直角边BC 的长是( ) A.sin 40m ﻩﻩB.cos 40m ﻩC .tan 40m D .tan 40m4.正方形网格中,AOB ∠如图放置,则sin AOB ∠=( )AB O例1图变式1图第3图第4图A.55 B.255 C .12D .2 5.在△A BC 中,∠C=90°,tan A =31,则sin B =( ) A.1010 B.32 C.43 D.101036.直角三角形纸片的两直角边长分别为6,8,现将ABC △如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE 的值是( ) A .247ﻩ B .73 C.724D.137、如图,A B是⊙O 的直径,C、D 是圆上的两点(不与A、B 重合),已知BC =2,tan ∠ADC =1,则A B=__________.2、锐角三角函数的应用性问题 (1)求线段长、面积、周长例1如图,测量河宽AB (假设河的两岸平行),在C 点测得∠ACB =30°,D 点测得∠A DB=60°,又CD =60m,则河宽AB 为 m(结果保留根号).变式1如图,一个小球由地面沿着坡度i=1∶2的坡面向上前进了10 m,此时小球距离地面的高度为( )A .5 m B.25m C.45m D.310m变式2 如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得s in∠D OE =1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?6 8CEABD(第6题)ABCDOEC D 第7图 例1图例2如图,菱形ABCD的边长为10cm,DE⊥AB,3sin5A=,则这个菱形的面积=cm2.(2)测量问题例2、某学校宏志班的同学们五一期间去双塔寺观赏牡丹,同时对文宣塔的高度进行了测量,如图2,他们先在A处测得塔顶C的仰角为30°;再向塔的方向直行80步到达B 处,又测得塔顶C的仰角为60°,请用以上数据计算塔高。

(学生的身高忽略不计,1步=0.8m,结果精确到1m)(3)、航海问题例3、如图3,灯塔A在港口0的北偏东55°的方向,且与港口的距离为80海里,一艘船上午9时从港口0出发向正东方向航行,上午11时到达B处,看到灯塔A在它的正北方向,试求这艘船航行的速度(精确到0.01海里/小时)(供选数据:sin55°=0.8192,cos55°=0.5736,tan55°=1.4281)四、巩固练习:1.如图,在Rt ABC△中,ACB∠=Rt∠,1BC=,2AB=,则下列结论正确的是( )A.3sin A=B.1tan2A= C.3cos B= D.tan3B=BCAABO北东西南)552. 如图,在坡屋顶的设计图中,AB=AC,屋顶的宽度l 为10米,坡角α为35°,则坡屋顶的高度h 为 米.(结果精确到0.1米)3. △AB C中,∠C =90°,AB =8,cos A=43,则AC 的长是 ;4.先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为( )A. αcos 5 B. αcos 5 C . αsin 5 D. αsin 55.如图10,已知R t△AB C中,AC=3,BC= 4,过直角顶点C 作CA 1⊥AB,垂足为A 1,再过A 1作A1C 1⊥BC,垂足为C 1,过C 1作C 1A 2⊥AB,垂足为A 2,再过A2作A 2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组线段CA 1,A 1C 1,12C A ,…,则CA 1= ,=5554C A A C第5题图 填空第1题图 填空第2题图6.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为52米,则这个破面的坡度为__________.7.如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点、C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,co s52°≈0.62,t an52°≈1.28)8. 104cos30sin 60(2)(20092008)-︒︒+---=______.9. (1) 计算2(2)tan 452cos 60-+-。

= (2)计算:()02cos602009π9--+°=五、课后练习1.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m,AB 为1.5m (即小颖的眼睛距地面的距离),那么这棵树高是B A ED C30图A BCD 6米 52° 35°(第7题图)CBA( ) A.(53332+)m B.(3532+)m C. 533m D .4m 2.如图,在等腰R t△AB C中,∠C=90o ,AC =6,D 是AC 上一点,若tan∠DBA =51,则AD 的长为( )(A) 2 (B )3 (C )2 (D)1 3.已知在ABC △中,90C ∠=,设sinB n =,当B ∠是最小的内角时,n 的取值范围是A.202n <<B .102n << C .303n << D.302n << 4.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( ) A.90° B .60° C.45° D.30°5.如图,矩形ABCD 中,AB >AD ,AB=a ,AN 平分∠DAB ,D M⊥AN 于点M,CN ⊥A N于点N .则DM +CN 的值为(用含a 的代数式表示)( ) A .a B .a 54C.a 22 D .a 23 6.在△ABC 中,∠C=90°,s inA=45,则tanB=( ) A .43 B .34 C.35 D.457.在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( )A.12ﻩ B.22C .32ﻩﻩD .338.计算2sin 45°的结果等于________.9.在Rt△ABC 中,∠C=90°,若AC =2BC,则si n A 的值是( ) A .12B .2 C.5 D.5 10.在Rt △ABC 中,∠C=90°,AC=2,B C=1,则tanB= ,sinA = 。

相关文档
最新文档