考研数学微积分公式(一)

合集下载

完整word高数微积分公式三角函数公式考研

完整word高数微积分公式三角函数公式考研

高等数学微积分公式大全一、基本导数公式⑴ c⑵ x x1⑶ sin x cos x⑷ cosx sin x⑸ tan xsec 2 x⑹ cot xcsc 2 x⑺ sec x sec x tan x⑻ csc xcsc x cot x⑼ e xe x⑽ a xa x ln a⑾ ln x1x⑿ log a x1 ⒀ arcsin x1 x2 ⒁ arccos x1x ln a11 x 2⒂ arctan x1 ⒃ arccot x1 2⒄x1⒅x1 1 x 21 x2 x二、导数的四则运算法规u vuvuvu v uvu u v uvvv2三、高阶导数的运算法规( 1) u x v xnnv x nncu n xu x(2) cu xnnn( 3) u ax ba n u n ax b( 4) u x v xc n k u n k x v ( k ) xk 0四、基本初等函数的 n 阶导数公式( 1) xnnn!( 2) eaxbnaneax b (3) axna x ln na(4) sin ax bna nsin axb n(5)cos axb naxb n2a n cos21nna nn!nn 1a n n 1 !(6)(7)1 ax b1ax n 1ln ax baxnbb五、微分公式与微分运算法规⑴ d c 0⑵ d xx1dx⑶ d sin x cosxdx⑷ d cosx sin xdx ⑸ d tan xsec 2 xdx⑹ dcot xcsc 2 xdx⑺ d secx secx tan xdx⑻ d cscx cscx cot xdx⑼ dexe xdx⑽ daxa xln adx⑾ d ln x1dxx⑿ dlog a x1 dx ⒀ d arcsin x1 dx ⒁ d arccos x1 dxx ln a1 x 21 x 2⒂ d arctan x12 dx⒃ darccot x1dx1x 1 x 2六、微分运算法规⑴ du v du dv⑵d cu cdu⑶ duv vdu udv⑷ d uvdu udvvv 2七、基本积分公式⑴kdx kx c⑵ x dxx 1c⑶dx ln xc1x⑷a xdx a xc⑸ e x dxe x c⑹ cosxdxsin x cln a⑺sin xdxcosx c⑻1 dxsec 2 xdx tan x ccos 2 x ⑼ 12xdxcot xc⑽ 1 2 dx arctan x csin 2xcsc x1⑾1dxarcsin x c1x 2八、补充积分公式tan xdx ln cos x ccot xdx ln sin x csecxdx ln secx tan x ccscxdx ln cscx cot x c11x1 a 2dx1 x aa2x 2 dx a arctan a cx22a l n x ac1dx arcsinxc1dx ln xx 2 a 2ca 2 x 2ax 2 a 2九、以下常用凑微分公式积分型换元公式f axb dx1 f ax b d ax bu ax baf x x 1dx 1 f x d xu xf ln x1dxfln x d ln xu ln xxf e x e x dx f e x d e xf a x a x dx 1 f a x d a xln af sin x cosxdx f sin x d sin x f cos x sin xdx f cosx d cosx f tan x sec2 xdx f tan x d tan x f cot x csc2 xdx f cot x d cot xf12 dx f arcta n x d arc ta n x arctan xx1f arcsin x 1 dx f arcsin x d arcsin x1 x2十、分部积分法公式⑴形如x n e ax dx ,令u x n, dv e ax dx形如x n sin xdx 令u x n,dv sin xdx形如x n cos xdx 令u x n,dv cosxdx⑵形如x n arctanxdx ,令 u arctan x ,dv x n dx形如x n ln xdx ,令 u ln x ,dv x n dx⑶形如e ax sin xdx,e ax cos xdx令u e ax ,sin x,cos x 均可。

(完整word)高数微积分公式+三角函数公式考研

(完整word)高数微积分公式+三角函数公式考研

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()xxee'= ⑽()ln xxaaa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则 ⑴()0d c = ⑵()1d xxdx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()xxd ee dx = ⑽()ln xxd a aadx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dxx c x=+⎰ ⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsinxc a=+ ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx = ⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。

整理高数微积分公式+三角函数公式考研

整理高数微积分公式+三角函数公式考研

高数微积分公式三角函数公式考研整理表姓名:职业工种:申请级别:受理机构:填报日期:A4打印/ 修订/ 内容可编辑高等数学公式导数公式:基本积分表:三角函数的有理式积分:一些初等函数:两个重要极限:三角函数公式:·诱导公式:·和差角公式:·和差化积公式:·倍角公式:·半角公式:·正弦定理:·余弦定理:·反三角函数性质:高阶导数公式——莱布尼兹(Leibniz)公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:文件编号:F8-65-23-08-CC 多元函数微分法及应用微分法在几何上的应用:文件编号:F8-65-23-08-CC 方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:斯托克斯公式——曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:二阶常系数非齐次线性微分方程整理丨尼克本文档信息来自于网络,如您发现内容不准确或不完善,欢迎您联系我修正;如您发现内容涉嫌侵权,请与我们联系,我们将按照相关法律规定及时处理。

微积分知识点总结(期末考研笔记)

微积分知识点总结(期末考研笔记)

微积分知识点总结(期末考研笔记)一、第一章:极限与连续第一节:函数1.什么是函数?未知变量x通过某种固定的对应关系确定唯一变量y,称y是x的函数2.什么是复合函数?内层变量导出中间函数的值域,中间函数的值域满足外层函数的定义域,则外层变量是内层变量的复合函数。

3.什么是反函数?能“反”的函数,正函数能由x确定唯一的y与之对应,反函数则要求由y能确定唯一的x与之对应!4.什么是基本初等函数?幂函数,指数函数,对数函数,三角函数,反三角函数通过四则运算把基本初等函数组合构成初等函数5.特殊函数特殊定义的函数:高斯函数,符号函数,狄利克雷函数第二节:极限1.极限定义是什么?●数列极限定义(ε--N),函数极限定义(ε--δ)、(ε--X)\large \epsilon:任意小的正数,可以是是函数值与极限值之差;也可以是数列项与极限值之差。

\large δ:是邻域半径。

2.极限的性质是什么?●唯一性极限存在必唯一。

从左从右逼近相同值。

●保号性极限两侧正负相同●有界性数列极限收敛,必有界,反之不成立;连续函数闭区间有界。

●列与子列同极限数列有极限,子列也存在相同极限;反之不成立。

●极限运算性质1、满足四则运算。

2、满足复合函数嵌套极限。

3、极限存在则左右极限相等。

●极限存在性质迫(夹)敛(逼)定理。

●两个重要极限x\to0 时,\frac{sinx}{x}=1;(1+x)^{1/x} 的1/x次方极限为e●几个特殊关系式●[0,\frac {\pi}{2} ] 时,sinx <x <tanx●x>0 时,\frac{x}{(x+1)} <ln(1+x) <x3.无穷小●什么是无穷小1、定义:自变量趋向某个边界时,f(x)\to 02、无穷小是函数变化极限值,而非确定具体值,即要多小,有多小,但不是0! 3、高阶、同阶、等价无穷小●常用的等价无穷小第三节:连续与间隔1.连续的定义1、该点有定义,且该点极限值等于函数值,则该处连续2、闭区间连续,左边界函数值等于右极限,区间内各点连续,右边界函数值等于左极限2.间断定义第一类间断点:可去间断点,跳跃间断点。

考研数学常用公式整理

考研数学常用公式整理

考研数学常用公式整理数学是考研的一门重要科目,公式的掌握对于解题很关键。

在考研数学中,有一些常用的公式是我们必须掌握的。

下面,我将对一些常用公式进行整理,以帮助大家更好地准备考研数学。

一、微积分1. 导数公式导数公式是微积分中最基本的公式之一,常见的导数公式有:- 常数函数的导数为零:\[ \frac{{d(c)}}{{dx}} = 0 \]- 幂函数的导数公式:\[ \frac{{d(x^n)}}{{dx}} = nx^{n-1}\]- 三角函数的导数公式:\[ \frac{{d(\sin x)}}{{dx}} = \cos x, \frac{{d(\cos x)}}{{dx}} = -\sin x \]- 对数函数的导数公式:\[ \frac{{d(\log_x a)}}{{dx}} = \frac{1}{{x \ln a}} \]2. 积分公式积分是微积分中的另一个重要概念,以下是一些常见的积分公式:- 幂函数的积分公式:\[ \int x^n dx = \frac{1}{{n+1}}x^{n+1} + C \]- 三角函数的积分公式:\[ \int \sin x dx = -\cos x + C, \int \cos x dx = \sin x + C \] - 对数函数的积分公式:\[ \int \frac{1}{x} dx = \ln |x| + C \]二、线性代数1. 行列式公式行列式是线性代数中的重要概念,以下是一些常见的行列式公式:- 二阶行列式:\[ \det(A) = \begin{vmatrix}a & b \\ c & d \end{vmatrix} = ad - bc \]- 三阶行列式:\[ \det(A) = \begin{vmatrix}a & b & c \\ d & e & f \\ g & h & i\end{vmatrix} = aei + bfg + cdh - ceg - afh - bdi \]2. 矩阵转置公式矩阵的转置是指将行与列互换得到的新矩阵,以下是一些常见的矩阵转置公式:- 矩阵的转置:\[ (A^T)_{ij} = A_{ji} \]三、概率与统计1. 概率公式概率是数学中的一个重要分支,以下是一些常见的概率公式:- 事件的概率定义:\[ P(A) = \frac{{n(A)}}{{n(S)}} \]- 互斥事件的概率公式:\[ P(A \cup B) = P(A) + P(B) \]- 独立事件的概率公式:\[ P(A \cap B) = P(A) \cdot P(B) \]2. 统计学公式统计学是研究如何收集、整理、分析和解释数据的科学,以下是一些常见的统计学公式:- 平均数公式:\[ \text{平均数} = \frac{{\text{总和}}}{{\text{个数}}} \]- 方差公式:\[ \text{方差} = \frac{{\sum(X_i-\bar{X})^2}}{{n}} \]- 标准差公式:\[ \text{标准差} = \sqrt{\text{方差}} \]通过掌握以上的常用公式,我们可以更好地应对考研数学中的各种问题。

考研数学三大公式

考研数学三大公式

考研数学三大公式考研数学中的三大公式是指其中的三个最重要和最常用的公式。

这些公式在解题过程中起到了关键作用,掌握了这些公式对于考生来说至关重要。

下面我就为大家详细介绍一下考研数学中的三大公式。

首先是微分中的导数求法公式。

导数是微分学中的重要概念,它描述了函数在其中一点上的变化率。

对于任意一个函数,其导数可通过求取极限的方式获得。

根据函数的定义和性质,我们可以得到一系列常用的导数求法公式,如常数函数的导数等于零、幂函数的导数等于其指数乘以自身降幂一次、常见初等函数(如指数函数、对数函数、三角函数)的导数等等。

这些求导公式在解决函数的极值、曲线图的形状等问题时非常有用。

其次是积分中的求积公式。

积分是微积分学中的一个重要概念,它描述了函数在其中一区间上的累积效应。

在求解积分问题时,需要利用一系列求积公式。

常见的求积公式有:基本初等函数的积分公式(如多项式函数的积分、指数函数的积分、三角函数的积分),以及一些特殊的积分公式(如换元法、分部积分法、定积分的换限积分等)。

这些求积公式在计算面积、弧长、体积等问题时发挥了重要作用。

最后是线性代数中的矩阵运算公式。

在线性代数中,矩阵是一个重要的数学工具,它在解决线性方程组、向量空间等问题时起到了关键作用。

考研数学中的矩阵公式主要包括:矩阵的加、减、乘法公式、矩阵的转置和逆的求法公式、矩阵的行列式公式等。

这些公式在解决线性方程组的求解、矩阵的特征值和特征向量等问题时非常有用。

以上就是考研数学中的三大公式的详细介绍。

这些公式作为考研数学的基础知识,需要考生们掌握才能在考试中取得好的成绩。

掌握了这些公式之后,考生们在解题过程中可以更加得心应手,提高解题效率。

因此,建议考生们在备考过程中要加强对这些公式的理解和记忆,通过大量的题目练习来熟练掌握这些公式的运用。

只有真正掌握了这些公式,考生们才能在考试中处于一个更有优势的位置,取得更好的成绩。

考研数学微积分公式

考研数学微积分公式

考研数学微积分公式微积分是数学中的一个重要分支,用来研究变化和累积的过程。

在考研数学中,微积分是一个重要的考察点,掌握常见的微积分公式对于解题非常有帮助。

下面是一些考研数学微积分公式的详细介绍。

1.基本导数公式(1) 常数导数公式:如果常数k,那么d/dx(k) = 0。

(2) 幂函数导数公式:如果f(x) = x^n(n不等于-1,-2...),那么d/dx(f(x)) = nx^(n-1)。

(3)基本初等函数导数公式:a. 常数函数的导数:d/dx(c) = 0。

b. 正弦函数的导数:d/dx(sin(x)) = cos(x)。

c. 余弦函数的导数:d/dx(cos(x)) = -sin(x)。

d. 正切函数的导数:d/dx(tan(x)) = sec^2(x)。

e. 反正弦函数的导数:d/dx(arcsin(x)) = 1/√(1-x^2)。

f. 反余弦函数的导数:d/dx(arccos(x)) = -1/√(1-x^2)。

g. 反正切函数的导数:d/dx(arctan(x)) = 1/(1+x^2)。

(4) 乘法法则:如果f(x) = u(x)v(x),那么d/dx(f(x)) =u'(x)v(x) + u(x)v'(x)。

(5) 除法法则:如果f(x) = u(x)/v(x) (其中v(x)不等于0),那么d/dx(f(x)) = (u'(x)v(x) - u(x)v'(x))/[v(x)]^22.基本积分公式(1) 幂函数积分公式:∫x^n dx = (1/n+1)x^(n+1) + C (n不等于-1)a. 常数函数的积分:∫k dx = kx + C。

b. 正弦函数的积分:∫sin(x) dx = -cos(x) + C。

c. 余弦函数的积分:∫cos(x) dx = sin(x) + C。

d. 正切函数的积分:∫tan(x) dx = -ln,cos(x), + C。

考研数学常用公式总结

考研数学常用公式总结

考研数学常用公式总结考研数学是考研中的一门重要科目,它的题目种类繁多,考察内容广泛。

在备考过程中,熟练掌握和灵活运用常用公式是非常关键的。

本文将就考研数学中常用的公式进行总结与归纳,以帮助考生更好地备考。

1、微积分公式微积分是考研数学中的重点内容,以下是一些常用的微积分公式:(1)导数公式:- 基本导数公式:a. 常数函数:$[k]'=0$;b. 幂函数:$[x^n]'=nx^{n-1}$;c. 指数函数:$[a^x]'=a^x\ln a$;d. 对数函数:$[\log_a x]'=\frac{1}{x\ln a}$;e. 三角函数:$[\sin x]'=\cos x$,$[\cos x]'=-\sin x$,$[\tan x]'=\sec^2 x$。

- 运算法则:a. 基本运算:$[u \pm v]'=u' \pm v'$;b. 乘法法则:$[uv]'=u'v+uv'$;c. 除法法则:$\left[\frac{u}{v}\right]'=\frac{u'v-uv'}{v^2}$;d. 复合函数:$[f(g(x))]'=f'(g(x))g'(x)$。

(2)积分公式:- 基本积分公式:a. 幂函数:$\int x^n\mathrm{d}x=\frac{x^{n+1}}{n+1}+C$;b. 指数函数:$\int a^x\mathrm{d}x=\frac{a^x}{\ln a}+C$;c. 对数函数:$\int \frac{1}{x\ln a}\mathrm{d}x=\log_a(\ln a)+C$;d. 三角函数:$\int \sin x\mathrm{d}x=-\cos x+C$,$\int \cosx\mathrm{d}x=\sin x+C$。

新疆维吾尔自治区考研数学复习资料常用公式及解题技巧

新疆维吾尔自治区考研数学复习资料常用公式及解题技巧

新疆维吾尔自治区考研数学复习资料常用公式及解题技巧数学作为考研的一门科目,对于绝大多数考生来说都是一门充满挑战的科目。

而在新疆维吾尔自治区考研数学复习中,熟悉常用公式以及解题技巧将是非常重要的一部分。

本文将为大家介绍一些常用的数学公式,以及一些解题技巧,帮助大家更好地备战考试。

一、常用公式1. 高等数学1.1 微积分公式(1)导数的定义公式:$f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$(2)常见函数的导数公式:$f(x)=x^n$, 则$f'(x)=nx^{n-1}$(3)微积分基本定理:$\int_a^b f(x)dx=F(b)-F(a)$,其中$F(x)$是$f(x)$的一个原函数。

1.2 三角函数公式(1)正弦函数和余弦函数的平方和恒等式:$\sin^2x+\cos^2x=1$(2)二倍角公式:$\sin(2x)=2\sin x\cos x$,$\cos(2x)=\cos^2x-\sin^2x$(3)和差化积公式:$\sin(x\pm y)=\sin x\cos y\pm\cos x\sin y$,$\cos(x\pm y)=\cos x\cos y\mp\sin x\sin y$2. 线性代数2.1 行列式公式(1)二阶行列式公式:$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$(2)三阶行列式公式:$\begin{vmatrix} a & b & c \\ d & e & f \\ g &h & i \end{vmatrix} = aei + bfg + cdh - ceg - bdi - afh$2.2 矩阵公式(1)矩阵加法:$A+B=\begin{bmatrix} a_{11} & a_{12} \\ a_{21}& a_{22} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} &b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}+b_{11} & a_{12}+b_{12} \\ a_{21}+b_{21} & a_{22}+b_{22} \end{bmatrix}$(2)矩阵乘法:$A\times B=\begin{bmatrix} a_{11} & a_{12} \\a_{21} & a_{22} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12}\\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}\cdotb_{11}+a_{12}\cdot b_{21} & a_{11}\cdot b_{12}+a_{12}\cdot b_{22} \\ a_{21}\cdot b_{11}+a_{22}\cdot b_{21} & a_{21}\cdotb_{12}+a_{22}\cdot b_{22} \end{bmatrix}$二、解题技巧1. 数学分析1.1 理清思路在解题过程中,首先要理清思路,将复杂的问题转化为简单的步骤,逐步推导解题思路。

考研数学必备公式总结

考研数学必备公式总结

考研数学必备公式总结随着考研大军的不断壮大,考研数学作为其中最重要的一门科目,备考的重要性不言而喻。

在备考数学的过程中,熟练掌握并运用各种数学公式无疑是提高解题效率和成绩的重要途径。

下面将对考研数学中的必备公式进行总结,以供同学们参考。

一、微积分公式1.导数运算法则:(uv)' = uv' + u'v,(u/v)' = (u'v - uv')/v²,(u^n)' = nu^(n-1)u',(e^u)' = u'e^u,(lnu)' = u'/u,带入法则等。

2.积分运算法则:∫udv = uv - ∫vdu,∫x^n dx = (x^(n+1)) / (n+1),∫du/u = ln|u| + C,∫e^u du = e^u + C,∫(1 / (a² + x²)) dx = (1/a)arctan(x/a) + C,等。

3.泰勒展开公式:f(x) = f(a) + f'(a)(x-a) + (f''(a))/2!(x-a)² + ... + (fⁿ(a))/n!(x-a)ⁿ +Rⁿ₊₁,其中Rⁿ₊₁是拉格朗日余项。

二、线性代数公式1.向量及矩阵:·向量点乘:A·B = |A||B|cosθ·向量叉乘:A×B = |A||B|sinθ·向量长度:|A| = √(x1² + x2² + ... + xn²)·平面向量:平移、旋转、缩放等基本变换·矩阵乘法:(AB)C = A(BC),(AB)⁻¹ = B⁻¹A⁻¹,(A⁻¹)⁻¹ = A·矩阵的行列式计算公式2.线性方程组:·克拉默法则·矩阵求逆法·高斯消元法三、概率统计公式1.概率公式:·全概率公式:P(A) = P(A|B₁)P(B₁) + P(A|B₂)P(B₂) + ... + P(A|Bn)P(Bn)·贝叶斯公式:P(Bi|A) = P(A|Bi)P(Bi) / (ΣP(A|Bj)P(Bj))2.数理统计公式:·样本均值:x = (x₁ + x₂ + ... + xn) / n·样本方差:s² = (Σ(xi - x)²) / (n-1)·样本标准差:s = √s²·样本协方差:sxy = (Σ(xi - x)(yi - ȳ)) / (n-1)·样本相关系数:r = sxy / (sx·sy)四、复变函数公式1.欧拉公式:e^(ix) = cosx + isinx2.柯西-黎曼方程:·设 f(z) = u(x,y) + iv(x,y) 是一个复变函数,则 u 和 v 的一阶偏导数存在且连续,且满足如下方程:∂u/∂x = ∂v/∂y,∂u/∂y = -∂v/∂x3.柯西积分公式:·设 f(z) 是闭区域 G 内的单值解析函数,C 是 G 内的一简单逐段光滑曲线,则有:∮C f(z) dz = 0综上所述,以上是考研数学中的一些必备公式的总结。

考研数学公式总结

考研数学公式总结

考研数学公式总结数学对大多数考研学生来说是一个重要的科目,尤其是在理工类专业中,数学更是至关重要。

在考研数学中,大量的公式需要我们掌握和熟练运用。

本文将对考研数学中常见的公式进行总结,希望对考生复习备考有所帮助。

一、初等数学公式在考研数学的复习过程中,我们首先需要掌握的是初等数学中的基本公式。

例如:1. 二项式定理:对于任意实数a、b和自然数n,有(a+b)^n的展开式等于C(n,0)a^n + C(n,1)a^(n-1)b + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n。

2. 三角函数的和差化积公式:sin(a±b) = sinacosb ± cosasinb,cos(a±b) = cosacosb ∓ sinasinb。

3. 对数运算:log(ab) = loga + logb,log(a/b) = loga - logb,其中a和b分别为a>0、b>0的实数。

二、高等数学公式除了初等数学的公式,考研数学中还涉及到大量的高等数学公式。

这些公式主要涵盖微积分、线性代数以及概率论等内容。

下面我们分别介绍其中的一些重要公式。

1. 微积分公式:(1) 无穷级数的求和公式:求和∑(n=1->∞)a^n = a/(1-a),其中|a|<1。

(2) 微分与积分的关系:若F(x)是f(x)的一个不定积分,则F(x) + C是f(x)的所有不定积分,其中C为常数。

(3) 泰勒展开式:函数f(x)在x=a处的泰勒级数展开式为f(x) = f(a) + f'(a)(x-a) +f''(a)/2!(x-a)^2 + ...。

2. 线性代数公式:(1) 矩阵的转置:若A是一个m行n列的矩阵,则A的转置记作A^T,其中(A^T)_(ij) = A_(ji)。

(2) 行列式的性质:若A是n阶方阵,则A的行列式记作det(A)或|A|,其中|A| = Σ(±)(a1j1)(a2j2)...(anjn)。

考研数学常见公式推导与应用

考研数学常见公式推导与应用

考研数学常见公式推导与应用在考研数学中,掌握常见公式的推导与应用是非常重要的。

这些公式不仅能够帮助我们解决各种数学问题,同时也是我们理解数学背后原理的基础。

本文将为大家介绍一些常见的数学公式,并对其推导和应用进行详细说明。

一、微积分公式1.导数的定义与公式导数是微积分中最基础也是最重要的概念之一。

其定义如下:设函数y=f(x),当x在x0处有定义时,若极限lim(h→0)[f(x0+h)-f(x0)]/h存在,则该极限称为函数f(x)在x0处的导数,记为f'(x0)。

常见的导数公式如下:(1)常数函数:y=C,导数为0,即f'(x)=0。

(2)幂函数:y=x^n,其中n为任意实数,其导数为f'(x)=n*x^(n-1)。

(3)指数函数:y=a^x,其中a>0且a≠1,其导数为f'(x)=a^x*ln(a)。

(4)对数函数:y=log_a(x),其中a>0且a≠1,其导数为f'(x)=1/(x*ln(a))。

2.积分的定义与公式积分也是微积分的重要概念之一,其定义如下:设函数y=f(x),若存在函数F(x),使得对于所有[a,b]区间内任意x∈[a,b],有F'(x)=f(x),则称F(x)为函数f(x)在[a,b]区间上的一个原函数,记为∫f(x)dx=F(x)+C,其中C为常数。

常见的积分公式如下:(1)幂函数积分:∫x^n dx=x^(n+1)/(n+1)+C,其中n≠-1。

(2)指数函数积分:∫a^x dx=(a^x)/ln(a)+C。

(3)对数函数积分:∫1/x dx=ln|x|+C。

二、线性代数公式1.向量运算公式线性代数中,向量运算是非常重要的。

常见的向量运算公式如下:(1)向量点乘:若向量a=(a1,a2,...,an)和向量b=(b1,b2,...,bn),则向量a与向量b的点乘为a·b=a1*b1+a2*b2+...+an*bn。

考研数学一公式大全

考研数学一公式大全

考研数学涉及多个领域,而每个领域都有大量的公式和概念。

以下是一些考研数学中常见的公式:### 高等数学1. 微积分- 极限定义:$$\lim_{x \to a} f(x) = L$$- 求导法则:$\frac{d}{dx}(u \pm v) = u' \pm v'$,$\frac{d}{dx}(uv) = uv' + vu'$,$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v -uv'}{v^2}$- 不定积分:$\int f(x) \,dx$- 定积分:$\int_a^b f(x) \,dx$2. 微分方程- 一阶线性微分方程:$y' + P(x)y = Q(x)$- 二阶线性常系数齐次微分方程:$ay'' + by' + cy = 0$### 线性代数1. 矩阵- 矩阵乘法:$C = A \cdot B$- 逆矩阵:$A^{-1}$- 行列式:$|A|$2. 向量- 向量点积:$ \mathbf{a} \cdot \mathbf{b} =|\mathbf{a}| |\mathbf{b}| \cos{\theta}$- 向量叉积:$ \mathbf{a} \times \mathbf{b} =|\mathbf{a}| |\mathbf{b}| \sin{\theta}$### 概率论与数理统计1. 概率- 条件概率:$P(A|B) = \frac{P(A \cap B)}{P(B)}$- 贝叶斯定理:$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$2. 统计- 样本均值:$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$- 样本方差:$s^2 = \frac{\sum_{i=1}^{n} (x_i -\bar{x})^2}{n-1}$这只是一小部分的公式。

数学考研微积分常用公式速记

数学考研微积分常用公式速记

数学考研微积分常用公式速记微积分是数学的重要分支,广泛应用于各个领域。

无论是在学术研究还是在实际问题求解中,熟练掌握微积分的基本公式是非常重要的。

本文将为大家介绍一些常用的微积分公式,并提供一些速记技巧,帮助大家更好地记忆和运用这些公式。

1. 极限和导数1.1 极限(1) 当 x 趋于 a 时,有以下常用极限:- $\lim_{x\to a}x=a$- $\lim_{x\to a}c=c$,其中 c 为常数- $\lim_{x\to a}(x^n-a^n)=(n\cdot a^{n-1})$,其中 n 为自然数- $\lim_{x\to a}(a^x-a^a)=(a^a\cdot \ln a)$- $\lim_{x\to 0}\frac{\sin x}{x}=1$(2) 夹逼定理:如果有两个函数 g(x) 和 h(x),满足 $g(x)\leq f(x)\leqh(x)$,且 $\lim_{x\to a}g(x)=\lim_{x\to a}h(x)=L$,那么 $\lim_{x\toa}f(x)=L$。

1.2 导数(1) 常用函数的导数:- $(c)'=0$,c 为常数- $(x^n)'=n\cdot x^{n-1}$,其中 n 为自然数- $(a^x)'=a^x\cdot \ln a$,其中 a>0 且a≠1- $(\ln x)'=\frac{1}{x}$- $(e^x)'=e^x$- $(\sin x)'=\cos x$- $(\cos x)'=-\sin x$(2) 导数的四则运算:- $(c\cdot f(x))'=c\cdot f'(x)$,其中 c 为常数- $(f(x)+g(x))'=f'(x)+g'(x)$- $(f(x)-g(x))'=f'(x)-g'(x)$- $(f(x)\cdot g(x))'=f'(x)\cdot g(x)+f(x)\cdot g'(x)$- $(\frac{f(x)}{g(x)})'=\frac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{(g(x))^2}$,其中g(x)≠02. 积分和微分2.1 不定积分(1) 基本积分表:- $\int x^n \mathrm{d}x=\frac{1}{n+1}\cdot x^{n+1}+C$,其中 n 为自然数,C 为常数- $\int \frac{1}{x} \mathrm{d}x=\ln |x|+C$- $\int e^x \mathrm{d}x=e^x+C$- $\int \sin x \mathrm{d}x=-\cos x+C$- $\int \cos x \mathrm{d}x=\sin x+C$(2) 分部积分公式:$\int u \mathrm{d}v=uv-\int v \mathrm{d}u$2.2 定积分(1) 基本定积分表:- $\int_a^b k \mathrm{d}x=k(b-a)$,其中 k 为常数- $\int_a^b x^n \mathrm{d}x=\frac{1}{n+1}\cdot (b^{n+1}-a^{n+1})$,其中 n 为自然数- $\int_a^b e^x \mathrm{d}x=e^x|_a^b=e^b-e^a$- $\int_a^b \sin x \mathrm{d}x=-\cos x|_a^b=\cos a-\cos b$- $\int_a^b \cos x \mathrm{d}x=\sin x|_a^b=\sin a-\sin b$(2) 牛顿-莱布尼兹公式:若函数 F(x) 是 f(x) 的一个原函数,则$\int_a^b f(x) \mathrm{d}x=F(b)-F(a)$。

微积分基本公式

微积分基本公式
3
4.2 微积分基本公式
一般, 若F(x)为f (x)的一个原函数, 则
F( x) C 亦为f (x)的原函数 (C为任意常数).

[F(x)C]F(x)f ( x).
一个函数如果有原函数, 就有无穷多个.
T T 1 2 v (t)d t s (T 2 ) s (T 1 )其 , s (t)中 v (t). 启发 如果能从v(t)求出s(t), 定积分 T2 v(t)dt
设函数 y = f (x)在区间 [1,3]上的图形为
f (x)
2
则函数 F(x) xf(t)dt的图形为 0
1
( D ) F(x)

1
O

1


23
x
1
O

1



1 23
x
1
此题为定积分的应用知识考核, 由y = f (x)的图
形可见, 其图像与x轴, y轴及 xx0所围图形面积的 代数和为所求函数F(x). 从而可得出几个方面的特征:
y f(x)
(x)
Oa x
bx
下面讨论这个函数的可导性.
6
4.2 微积分基本公式
考研数学一至四, 选择题, 4分
如图, 连续函数 y = f (x)在区间 [3,2][,2,3] 上的图形分别是直径为1的上、下半圆周, 在区间
[2,0][,0,2]上的图形分别是直径为2的下、上半圆周.
设 F(x)

lim
x0
x2 3x2
1 3
.
18
4.2 微积分基本公式
考研数学二 解答题, 10分
设 f (x)在区间 [ 0 , π ] 上的单调、可导函数,

数学考研必备公式速记方法

数学考研必备公式速记方法

数学考研必备公式速记方法考研数学是许多考生的难点,公式多、概念复杂,记不住是常见的问题。

在备战考研数学过程中,熟练掌握公式是非常重要的一部分。

本文将为大家介绍几种数学考研必备公式的速记方法,帮助大家更好地记忆并应用这些公式。

一、线性代数公式1. 矩阵转置:(A^T)ij = Aji2. 矩阵求逆:若矩阵A可逆,则AA^{-1} = I,其中I为单位矩阵。

快速记忆方法:矩阵转置可记为括号外的T,矩阵求逆可记为括号外的-1。

二、微积分公式1. 导数定义:f'(x) = lim(h->0) (f(x+h)-f(x))/h2. 常见导数表达式:- 幂函数:(x^n)' = nx^(n-1)- 指数函数:(a^x)' = a^x ln(a)- 对数函数:(ln(x))' = 1/x- 三角函数:(sin(x))' = cos(x), (cos(x))' = -sin(x)快速记忆方法:导数定义中的差分项可以记为分数形式,各类函数的导数公式尽量熟记为模板,通过做题巩固记忆。

三、概率论与数理统计公式1. 条件概率公式:P(A|B) = P(A∩B)/P(B),其中P(A∩B)表示事件A与事件B同时发生的概率。

2. 期望公式:E(X) = Σx·P(X=x),其中X为离散随机变量,x为X可能取到的值。

快速记忆方法:条件概率公式可记为等号两边各有一个P,期望公式可记为等号左边为E,右边为累加求和。

四、高等数学公式1. 泰勒展开公式:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ...2. 微分公式:(uv)' = u'v + uv',(u/v)' = (u'v - uv')/v^2快速记忆方法:泰勒展开公式与微分公式的系数需要熟记,可将其视为模板,在具体计算时代入对应的函数和变量。

考研数学微积分公式(一)6e

考研数学微积分公式(一)6e

考研数学微积分公式〔一〕考研复习已经进入了冲刺复习阶段,凯程考研老师提醒大家,复习固然是考研中很重要的一环,但是考研信息的关注也十分的重要,在我们专注于考研复习的同时千万不要忽略掉考研相关信息资料的发布。

数学要做题,死记硬背知识点是不行的,不背知识点也是不行的。

为了提高做题的速度,数学很多知识点需要考生熟练掌握。

凯程考研:凯程考研成立于2005年,具有悠久的考研辅导历史,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研效劳。

凯程考研的宗旨:让学习成为一种习惯;凯程考研的价值观:凯旋归来,前程万里;信念:让每个学员都有好最好的归宿;使命:完善全新的教育模式,做中国最专业的考研辅导机构;激情:永不言弃,乐观向上;敬业:以专业的态度做非凡的事业;效劳:以学员的前途为已任,为学员提供高效、专业的效劳,团队合作,为学员效劳,为学员引路。

特别说明:凯程学员经验谈视频在凯程官方网站有公布,同学们和家长可以查看。

扎扎实实的辅导,真真实实的案例,凯程考研的价值观:凯旋归来,前程万里。

如何选择考研辅导班:在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的缺乏,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。

师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。

判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。

还要深入了解教师的学术背景、资料著述成就、辅导成就等。

凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。

考研数一公式定理大全

考研数一公式定理大全

考研数一公式定理大全
考研数学一涉及的公式和定理比较多,主要包括以下几类:
1. 高等数学:极限、导数、微积分等相关的基本概念、性质和公式。

2. 线性代数:矩阵、向量、线性方程组、特征值与特征向量等相关的基本概念、性质和公式。

3. 概率论与数理统计:概率、随机变量、分布函数、期望、方差等相关的基本概念、性质和公式。

此外,还需要掌握一些常用的数学公式,如三角函数公式、乘法公式、排列组合公式等。

以上信息仅供参考,建议查阅考研数学一的相关教材或参考书,以获取更全面和准确的信息。

同时,对于每个公式和定理的理解和应用也需要通过大量的练习来加深理解和记忆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研数学微积分公式(一)
考研复习已经进入了冲刺复习阶段,太奇考研老师提醒大家,复习固然是考研中很重要的一环,但是考研信息的关注也十分的重要,在我们专注于考研复习的同时千万不要忽略掉考研相关信息资料的发布。

数学要做题,死记硬背知识点是不行的,不背知识点也是不行的。

为了提高做题的速度,数学很多知识点需要考生熟练掌握。

小提示:目前本科生就业市场竞争激烈,就业主体是研究生,在如今考研竞争日渐激烈的情况下,我们想要不在考研大军中变成分母,我们需要:早开始+好计划+正确的复习思路+好
的辅导班(如果经济条件允许的情况下)。

2017考研开始准备复习啦,早起的鸟儿有虫吃,一分耕耘一分收获。

加油!。

相关文档
最新文档