2017年浙江省嘉兴市高考数学一模试卷(解析版)

合集下载

2017年浙江省高考数学试卷(含解析版)

2017年浙江省高考数学试卷(含解析版)

2017年浙江省高考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1)C.(﹣1,0)D.(1,2)2.(4分)椭圆+=1的离心率是()A.B.C.D.3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.+1B.+3C.+1D.+34.(4分)若x、y满足约束条件,则z=x+2y的取值范围是()A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)5.(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关6.(4分)已知等差数列{an }的公差为d,前n项和为Sn,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.8.(4分)已知随机变量ξi 满足P(ξi=1)=pi,P(ξi=0)=1﹣pi,i=1,2.若0<p1<p2<,则()A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)9.(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D ﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α10.(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6= .12.(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2= ,ab= .13.(6分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4= ,a5= .14.(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是,cos∠BDC= .15.(6分)已知向量、满足||=1,||=2,则|+|+|﹣|的最小值是,最大值是.16.(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)17.(4分)已知a∈R,函数f(x)=|x+﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是.三、解答题(共5小题,满分74分)18.(14分)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.19.(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.21.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA|•|PQ|的最大值.22.(15分)已知数列{xn }满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,(Ⅰ)0<xn+1<xn;(Ⅱ)2xn+1﹣xn≤;(Ⅲ)≤xn≤.2017年浙江省高考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1)C.(﹣1,0)D.(1,2)【考点】1D:并集及其运算.【专题】11:计算题;37:集合思想;5J:集合.【分析】直接利用并集的运算法则化简求解即可.【解答】解:集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q={x|﹣1<x<2}=(﹣1,2).故选:A.【点评】本题考查集合的基本运算,并集的求法,考查计算能力.2.(4分)椭圆+=1的离心率是()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】直接利用椭圆的简单性质求解即可.【解答】解:椭圆+=1,可得a=3,b=2,则c==,所以椭圆的离心率为:=.故选:B.【点评】本题考查椭圆的简单性质的应用,考查计算能力.3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.+1B.+3C.+1D.+3【考点】L!:由三视图求面积、体积.【专题】11:计算题;31:数形结合;44:数形结合法;5Q:立体几何.【分析】根据几何体的三视图,该几何体是圆锥的一半和一个三棱锥组成,画出图形,结合图中数据即可求出它的体积.【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为××π×12×3+××××3=+1,故选:A.【点评】本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出原几何体的结构特征,是基础题目.4.(4分)若x、y满足约束条件,则z=x+2y的取值范围是()A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式.【分析】画出约束条件的可行域,利用目标函数的最优解求解即可.【解答】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).故选:D.【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.5.(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关【考点】3V:二次函数的性质与图象.【专题】32:分类讨论;4C:分类法;51:函数的性质及应用.【分析】结合二次函数的图象和性质,分类讨论不同情况下M﹣m的取值与a,b 的关系,综合可得答案.【解答】解:函数f(x)=x2+ax+b的图象是开口朝上且以直线x=﹣为对称轴的抛物线,①当﹣>1或﹣<0,即a<﹣2,或a>0时,函数f(x)在区间[0,1]上单调,此时M﹣m=|f(1)﹣f(0)|=|a+1|,故M﹣m的值与a有关,与b无关②当≤﹣≤1,即﹣2≤a≤﹣1时,函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,且f(0)>f(1),此时M﹣m=f(0)﹣f(﹣)=,故M﹣m的值与a有关,与b无关③当0≤﹣<,即﹣1<a≤0时,函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,且f(0)<f(1),此时M﹣m=f(1)﹣f(﹣)=1+a+,故M﹣m的值与a有关,与b无关综上可得:M﹣m的值与a有关,与b无关故选:B.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.6.(4分)已知等差数列{an }的公差为d,前n项和为Sn,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11:计算题;35:转化思想;4R:转化法;54:等差数列与等比数列;5L:简易逻辑.【分析】根据等差数列的求和公式和S4+S6>2S5,可以得到d>0,根据充分必要条件的定义即可判断.【解答】解:∵S4+S6>2S5,∴4a1+6d+6a1+15d>2(5a1+10d),∴21d>20d,∴d>0,故“d>0”是“S4+S6>2S5”充分必要条件,故选:C.【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题7.(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】31:数形结合;44:数形结合法;52:导数的概念及应用.【分析】根据导数与函数单调性的关系,当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,根据函数图象,即可判断函数的单调性,然后根据函数极值的判断,即可判断函数极值的位置,即可求得函数y=f(x)的图象可能【解答】解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,故选:D.【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的判断,考查数形结合思想,属于基础题.8.(4分)已知随机变量ξi 满足P(ξi=1)=pi,P(ξi=0)=1﹣pi,i=1,2.若0<p1<p2<,则()A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)【考点】CH:离散型随机变量的期望与方差.【专题】11:计算题;34:方程思想;49:综合法;5I:概率与统计.【分析】由已知得0<p1<p2<,<1﹣p2<1﹣p1<1,求出E(ξ1)=p1,E(ξ2)=p2,从而求出D(ξ1),D(ξ2),由此能求出结果.【解答】解:∵随机变量ξi 满足P(ξi=1)=pi,P(ξi=0)=1﹣pi,i=1,2,…,0<p1<p2<,∴<1﹣p2<1﹣p1<1,E(ξ1)=1×p1+0×(1﹣p1)=p1,E(ξ2)=1×p2+0×(1﹣p2)=p2,D(ξ1)=(1﹣p1)2p1+(0﹣p1)2(1﹣p1)=,D(ξ2)=(1﹣p2)2p2+(0﹣p2)2(1﹣p2)=,D(ξ1)﹣D(ξ2)=p1﹣p12﹣()=(p2﹣p1)(p1+p2﹣1)<0,∴E(ξ1)<E(ξ2),D(ξ1)<D(ξ2).故选:A.【点评】本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.9.(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D ﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α【考点】MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离;5G:空间角;5H:空间向量及应用.【分析】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),Q,R,利用法向量的夹角公式即可得出二面角.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG..可得tanα=.tanβ=,tanγ=.由已知可得:OE>OG>OF.即可得出.【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,6,0),D(0,0,6),B(3,﹣3,0).Q,R,=,=(0,3,6),=(,6,0),=,=.设平面PDR的法向量为=(x,y,z),则,可得,可得=,取平面ABC的法向量=(0,0,1).则cos==,取α=arccos.同理可得:β=arccos.γ=arccos.∵>>.∴α<γ<β.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG.设OD=h.则tanα=.同理可得:tanβ=,tanγ=.由已知可得:OE>OG>OF.∴tanα<tanγ<tanβ,α,β,γ为锐角.∴α<γ<β.故选:B.【点评】本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力,属于难题.10.(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3【考点】9O:平面向量数量积的性质及其运算.【专题】31:数形结合;48:分析法;5A:平面向量及应用.【分析】根据向量数量积的定义结合图象边角关系进行判断即可.【解答】解:∵AB⊥BC,AB=BC=AD=2,CD=3,∴AC=2,∴∠AOB=∠COD>90°,由图象知OA<OC,OB<OD,∴0>•>•,•>0,即I3<I1<I2,故选:C.【点评】本题主要考查平面向量数量积的应用,根据图象结合平面向量数量积的定义是解决本题的关键.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6= .【考点】CE:模拟方法估计概率.【专题】31:数形结合;4O:定义法;5B:直线与圆.【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【解答】解:如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6××1×1×sin60°=.故答案为:.【点评】本题考查了已知圆的半径求其内接正六边形面积的应用问题,是基础题.12.(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2= 5 ,ab=2 .【考点】A5:复数的运算.【专题】34:方程思想;35:转化思想;5N:数系的扩充和复数.【分析】a、b∈R,(a+bi)2=3+4i(i是虚数单位),可得3+4i=a2﹣b2+2abi,可得3=a2﹣b2,2ab=4,解出即可得出.【解答】解:a、b∈R,(a+bi)2=3+4i(i是虚数单位),∴3+4i=a2﹣b2+2abi,∴3=a2﹣b2,2ab=4,解得ab=2,,.则a2+b2=5,故答案为:5,2.【点评】本题考查了复数的运算法则、复数的相等、方程的解法,考查了推理能力与计算能力,属于基础题.13.(6分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4= 16 ,a5= 4 .【考点】DA:二项式定理.【专题】11:计算题;35:转化思想;5P:二项式定理.【分析】利用二项式定理的展开式,求解x的系数就是两个多项式的展开式中x与常数乘积之和,a5就是常数的乘积.【解答】解:多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,(x+1)3中,x的系数是:3,常数是1;(x+2)2中x的系数是4,常数是4,a4=3×4+1×4=16;a5=1×4=4.故答案为:16;4.【点评】本题考查二项式定理的应用,考查计算能力,是基础题.14.(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是,cos∠BDC= .【考点】HT:三角形中的几何计算.【专题】11:计算题;35:转化思想;44:数形结合法;58:解三角形.【分析】如图,取BC得中点E,根据勾股定理求出AE,再求出S△ABC ,再根据S△BDC =S△ABC即可求出,根据等腰三角形的性质和二倍角公式即可求出【解答】解:如图,取BC得中点E,∵AB=AC=4,BC=2,∴BE=BC=1,AE⊥BC,∴AE==,∴S△ABC=BC•AE=×2×=,∵BD=2,∴S△BDC =S△ABC=,∵BC=BD=2,∴∠BDC=∠BCD,∴∠ABE=2∠BDC在Rt△ABE中,∵cos∠ABE==,∴cos∠ABE=2cos2∠BDC﹣1=,∴cos∠BDC=,故答案为:,【点评】本题考查了解三角形的有关知识,关键是转化,属于基础题15.(6分)已知向量、满足||=1,||=2,则|+|+|﹣|的最小值是 4 ,最大值是.【考点】3H:函数的最值及其几何意义;91:向量的概念与向量的模.【专题】11:计算题;31:数形结合;44:数形结合法;51:函数的性质及应用.【分析】通过记∠AOB=α(0≤α≤π),利用余弦定理可可知|+|=、|﹣|=,进而换元,转化为线性规划问题,计算即得结论.【解答】解:记∠AOB=α,则0≤α≤π,如图,由余弦定理可得:|+|=,|﹣|=,令x=,y=,则x2+y2=10(x、y≥1),其图象为一段圆弧MN,如图,令z=x+y,则y=﹣x+z,=1+3=3+1=4,则直线y=﹣x+z过M、N时z最小为zmin当直线y=﹣x+z与圆弧MN相切时z最大,由平面几何知识易知zmax即为原点到切线的距离的倍,也就是圆弧MN所在圆的半径的倍,所以zmax=×=.综上所述,|+|+|﹣|的最小值是4,最大值是.故答案为:4、.【点评】本题考查函数的最值及其几何意义,考查数形结合能力,考查运算求解能力,涉及余弦定理、线性规划等基础知识,注意解题方法的积累,属于中档题.16.(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有660 种不同的选法.(用数字作答)【考点】D9:排列、组合及简单计数问题.【专题】11:计算题;32:分类讨论;4O:定义法;5O:排列组合.【分析】由题意分两类选1女3男或选2女2男,再计算即可【解答】解:第一类,先选1女3男,有C63C21=40种,这4人选2人作为队长和副队有A42=12种,故有40×12=480种,第二类,先选2女2男,有C62C22=15种,这4人选2人作为队长和副队有A42=12种,故有15×12=180种,根据分类计数原理共有480+180=660种,故答案为:660【点评】本题考查了分类计数原理和分步计数原理,属于中档题17.(4分)已知a∈R,函数f(x)=|x+﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是(﹣∞,] .【考点】3H:函数的最值及其几何意义.【专题】11:计算题;35:转化思想;49:综合法;51:函数的性质及应用.【分析】通过转化可知|x+﹣a|+a≤5且a≤5,进而解绝对值不等式可知2a﹣5≤x+≤5,进而计算可得结论.【解答】解:由题可知|x+﹣a|+a≤5,即|x+﹣a|≤5﹣a,所以a≤5,又因为|x+﹣a|≤5﹣a,所以a﹣5≤x+﹣a≤5﹣a,所以2a﹣5≤x+≤5,又因为1≤x≤4,4≤x+≤5,所以2a﹣5≤4,解得a≤,故答案为:(﹣∞,].【点评】本题考查函数的最值,考查绝对值函数,考查转化与化归思想,注意解题方法的积累,属于中档题.三、解答题(共5小题,满分74分)18.(14分)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).(Ⅰ)求f()的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.【考点】3G:复合函数的单调性;GF:三角函数的恒等变换及化简求值;H1:三角函数的周期性;H5:正弦函数的单调性.【专题】35:转化思想;4R:转化法;57:三角函数的图像与性质.【分析】利用二倍角公式及辅助角公式化简函数的解析式,(Ⅰ)代入可得:f()的值.(Ⅱ)根据正弦型函数的图象和性质,可得f(x)的最小正周期及单调递增区间【解答】解:∵函数f(x)=sin2x﹣cos2x﹣2sinx cosx=﹣sin2x﹣cos2x=2sin (2x+)(Ⅰ)f()=2sin(2×+)=2sin=2,(Ⅱ)∵ω=2,故T=π,即f(x)的最小正周期为π,由2x+∈[﹣+2kπ,+2kπ],k∈Z得:x∈[﹣+kπ,﹣+kπ],k∈Z,故f(x)的单调递增区间为[﹣+kπ,﹣+kπ]或写成[kπ+,kπ+],k∈Z.【点评】本题考查的知识点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档.19.(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.【考点】LS:直线与平面平行;MI:直线与平面所成的角.【专题】14:证明题;31:数形结合;41:向量法;5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AD的中点F,连结EF,CF,推导出EF∥PA,CF∥AB,从而平面EFC∥平面ABP,由此能证明EC∥平面PAB.(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,推导出四边形BCDF为矩形,从而BF⊥AD,进而AD⊥平面PBF,由AD∥BC,得BC⊥PB,再求出BC⊥MF,由此能求出sinθ.【解答】证明:(Ⅰ)取AD的中点F,连结EF,CF,∵E为PD的中点,∴EF∥PA,在四边形ABCD中,BC∥AD,AD=2DC=2CB,F为中点,∴CF∥AB,∴平面EFC∥平面ABP,∵EC⊂平面EFC,∴EC∥平面PAB.解:(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,∵PA=PD,∴PF⊥AD,推导出四边形BCDF为矩形,∴BF⊥AD,∴AD⊥平面PBF,又AD∥BC,∴BC⊥平面PBF,∴BC⊥PB,设DC=CB=1,由PC=AD=2DC=2CB,得AD=PC=2,∴PB===,BF=PF=1,∴MF=,又BC⊥平面PBF,∴BC⊥MF,∴MF⊥平面PBC,即点F到平面PBC的距离为,∵MF=,D到平面PBC的距离应该和MF平行且相等,为,E为PD中点,E到平面PBC的垂足也为垂足所在线段的中点,即中位线,∴E到平面PBC的距离为,在,由余弦定理得CE=,设直线CE与平面PBC所成角为θ,则sinθ==.【点评】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】35:转化思想;48:分析法;53:导数的综合应用.【分析】(1)求出f(x)的导数,注意运用复合函数的求导法则,即可得到所求;(2)求出f(x)的导数,求得极值点,讨论当<x<1时,当1<x<时,当x>时,f(x)的单调性,判断f(x)≥0,计算f(),f(1),f(),即可得到所求取值范围.【解答】解:(1)函数f(x)=(x﹣)e﹣x(x≥),导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x=(1﹣x+)e﹣x=(1﹣x)(1﹣)e﹣x;(2)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,e].【点评】本题考查导数的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导是解题的关键,属于中档题.21.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA|•|PQ|的最大值.【考点】KI:圆锥曲线的综合;KN:直线与抛物线的综合.【专题】11:计算题;33:函数思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)通过点P在抛物线上可设P(x,x2),利用斜率公式结合﹣<x <可得结论;(Ⅱ)通过(I)知P(x,x2)、﹣<x<,设直线AP的斜率为k,联立直线AP、BQ方程可知Q点坐标,进而可用k表示出、,计算可知|PA|•|PQ|=(1+k)3(1﹣k),通过令f(x)=(1+x)3(1﹣x),﹣1<x<1,求导结合单调性可得结论.【解答】解:(Ⅰ)由题可知P(x,x2),﹣<x<,所以k==x﹣∈(﹣1,1),AP故直线AP斜率的取值范围是:(﹣1,1);(Ⅱ)由(I)知P(x,x2),﹣<x<,所以=(﹣﹣x,﹣x2),设直线AP的斜率为k,则k==x﹣,即x=k+,则AP:y=kx+k+,BQ:y=﹣x++,联立直线AP、BQ方程可知Q(,),故=(,),又因为=(﹣1﹣k,﹣k2﹣k),故﹣|PA|•|PQ|=•=+=(1+k)3(k﹣1),所以|PA|•|PQ|=(1+k)3(1﹣k),令f(x)=(1+x)3(1﹣x),﹣1<x<1,则f′(x)=(1+x)2(2﹣4x)=﹣2(1+x)2(2x﹣1),由于当﹣1<x<时f′(x)>0,当<x<1时f′(x)<0,故f(x)max=f()=,即|PA|•|PQ|的最大值为.【点评】本题考查圆锥曲线的最值问题,考查运算求解能力,考查函数思想,注意解题方法的积累,属于中档题.22.(15分)已知数列{xn }满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,(Ⅰ)0<xn+1<xn;(Ⅱ)2xn+1﹣xn≤;(Ⅲ)≤xn≤.【考点】8H:数列递推式;8K:数列与不等式的综合.【专题】15:综合题;33:函数思想;35:转化思想;49:综合法;4M:构造法;53:导数的综合应用;54:等差数列与等比数列;55:点列、递归数列与数学归纳法;5T:不等式.【分析】(Ⅰ)用数学归纳法即可证明,(Ⅱ)构造函数,利用导数判断函数的单调性,把数列问题转化为函数问题,即可证明,(Ⅲ)由≥2xn+1﹣xn得﹣≥2(﹣)>0,继续放缩即可证明【解答】解:(Ⅰ)用数学归纳法证明:x n >0, 当n=1时,x 1=1>0,成立, 假设当n=k 时成立,则x k >0,那么n=k+1时,若x k+1<0,则0<x k =x k+1+ln (1+x k+1)<0,矛盾, 故x n+1>0,因此x n >0,(n ∈N*) ∴x n =x n+1+ln (1+x n+1)>x n+1, 因此0<x n+1<x n (n ∈N *),(Ⅱ)由x n =x n+1+ln (1+x n+1)得x n x n+1﹣4x n+1+2x n =x n+12﹣2x n+1+(x n+1+2)ln (1+x n+1), 记函数f (x )=x 2﹣2x+(x+2)ln (1+x ),x ≥0 ∴f′(x )=+ln (1+x )>0,∴f (x )在(0,+∞)上单调递增, ∴f (x )≥f (0)=0,因此x n+12﹣2x n+1+(x n+1+2)ln (1+x n+1)≥0, 故2x n+1﹣x n ≤;(Ⅲ)∵x n =x n+1+ln (1+x n+1)≤x n+1+x n+1=2x n+1, ∴x n ≥,由≥2x n+1﹣x n 得﹣≥2(﹣)>0, ∴﹣≥2(﹣)≥…≥2n ﹣1(﹣)=2n ﹣2,∴x n ≤, 综上所述≤x n ≤.【点评】本题考查了数列的概念,递推关系,数列的函数的特征,导数和函数的单调性的关系,不等式的证明,考查了推理论证能力,分析解决问题的能力,运算能力,放缩能力,运算能力,属于难题。

浙江省嘉兴市2017届高考数学模拟试卷(理科)Word版含解析

浙江省嘉兴市2017届高考数学模拟试卷(理科)Word版含解析

浙江省嘉兴市2017届高考模拟试卷(理科数学)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=R,集合A={x|x≥0},B={x|x2﹣2x﹣3<0},则(∁U A)∩B=()A.{x|﹣3<x<0} B.{x|﹣1<x<0} C.{x|0<0<1} D.{x|0<x<3}2.在△ABC中,“sinA>”是“A>”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知△ABC的面积为3,若动点P满足=2λ+(1﹣λ)(λ∈R),则点P的轨迹与直线AB,AC所围成封闭区域的面积是()A.3 B.4 C.6 D.124.如图,α⊥β,α∩β=l,A∈α,B∈β,A、B到l的距离分别是a和b.AB与α、β所成的角分别是θ和φ,AB在α、β内的射影分别是m和n.若a>b,则()A.θ>φ,m>n B.θ>φ,m<n C.θ<φ,m<n D.θ<φ,m>n5.已知x>0,y>0,且4x++y+=17,则函数F(x,y)=4x+y的最大值与最小值的差为()A.14 B.15 C.16 D.176.已知F1,F2分别是双曲线的左、右焦点,过F2与双曲线的一条渐近线平行的直线交另一条渐近线于点M,若∠F1MF2为锐角,则双曲线离心率的取值范围是()A.B.(,+∞)C.(1,2)D.(2,+∞)7.已知函数f(x)=,则函数y=f(2x2+x)﹣a(a>2)的零点个数不可能()A.3 B.4 C.5 D.68.已知二次函数f(x)=ax2+bx(|b|≤2|a|),定义f1(x)=max{f(t)|﹣1≤t≤x≤1},f2(x)=min{f (t)|﹣1≤t≤x≤1},其中max{a,b}表示a,b中的较大者,min{a,b}表示a,b中的较小者,则下列命题正确的是()A.若f1(﹣1)=f1(1),则f(﹣1)>f(1)B.若f2(﹣1)=f2(1),则f(﹣1)>f(1)C.若f(﹣1)=f(1),则f2(﹣1)>f2(1)D.若f2(1)=f1(﹣1),则f1(﹣1)<f1(1)二、填空题:本大题有7小题,多空题每题6分,单空题每题4分,共36分.把答案填在答题卷的相应位置.9.如果函数f(x)=x2sinx+a的图象过点(π,1)且f(t)=2.那么a= ;f(﹣t)= .10.某三棱锥的三视图如图所示,则该三棱锥体积是,四个面的面积中最大的是.11.已知数列{a n},{b n}满足a1=,a n+b n=1,b n+1=,n∈N*,则a n= ,b2016= .12.已知点P(x,y),其中x,y满足,则z1=的取值范围,z=的最大值是.13.若圆x2+y2=R2(R>0)与曲线||x|﹣|y||=1的全体公共点恰好是一个正多边形的顶点,则R= .14.已知P为抛物线C:y2=4x上的一点,F为抛物线C的焦点,其准线与x轴交于点N,直线NP与抛物线交于另一点Q,且|PF|=3|QF|,则点P坐标为.15.已知a>0,b>0,c>0,则的最大值是.三、解答题:本大题共5小题,满分74分.解答应写出文字说明,证明过程或演算步骤.16.已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<)的部分图象如图所示.(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,若f(x)在x∈上的最大值为c,且C=.求△ABC的面积的最大值.17.如图,四边形ABCD中,△BCD为正三角形,AD=AB=2,,AC与BD交于O点.将△ACD沿边AC 折起,使D点至P点,已知PO与平面ABCD所成的角为θ,且P点在平面ABCD内的射影落在△ACD内.(Ⅰ)求证:AC⊥平面PBD;(Ⅱ)若已知二面角A﹣PB﹣D的余弦值为,求θ的大小.18.{a n}前n项和为S n,2S n=a n+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差数列(1)求a1的值;(2)求{a n}通项公式;(3)证明++…+<.19.已知椭圆+y2=1(a>1),(1)若A(0,1)到焦点的距离为,求椭圆的离心率.(2)Rt△ABC以A(0,1)为直角顶点,边AB、AC与椭圆交于两点B、C.若△ABC面积的最大值为,求a的值.20.已知函数f(x)=ax2+x|x﹣b|.(Ⅰ)当b=﹣1时,若不等式f(x)≥﹣2x﹣1恒成立.求实数a的最小值;(Ⅱ)若a<0,且对任意b∈,总存在实数m,使得方程|f(x)﹣m|=在上有6个互不相同的解,求实数a的取值范围.浙江省嘉兴市2017届高考数学模拟试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=R,集合A={x|x≥0},B={x|x2﹣2x﹣3<0},则(∁U A)∩B=()A.{x|﹣3<x<0} B.{x|﹣1<x<0} C.{x|0<0<1} D.{x|0<x<3}【考点】交、并、补集的混合运算.【分析】求出集合A的补集.把集合B化简,然后取交集.【解答】解:∵全集U=R,集合A={x|x≥0},B={x|x2﹣2x﹣3<0}={x|﹣1<x<3},∴(C U A)∩B={x|x<0}∩{x|﹣1<x<3}={x|﹣1<x<0}.故选B.2.在△ABC中,“sinA>”是“A>”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先看由sinA能否得到:A时,根据y=sinx在上的单调性即可得到,而A时显然满足A;然后看能否得到sinA,这个可通过y=sinx在(0,π)上的图象判断出得不到sinA,并可举反例比如A=.综合这两个方面便可得到“sinA>”是“A>”的充分不必要条件.【解答】解:△ABC中,若A∈(0,], =sin,所以sinA得到A;若A,显然得到;即sinA能得到A;而,得不到sinA,比如,A=,;∴“sinA”是“A”的充分不必要条件.故选A.3.已知△ABC的面积为3,若动点P满足=2λ+(1﹣λ)(λ∈R),则点P的轨迹与直线AB,AC所围成封闭区域的面积是()A.3 B.4 C.6 D.12【考点】轨迹方程.【分析】根据向量加法的几何意义得出P点轨迹,利用△ABC的面积为3,从而求出围成封闭区域的面积.【解答】解:延长AB至D,使得AD=2AB,连结CD,则∵=2λ+(1﹣λ)=λ+(1﹣λ).∴C,D,P三点共线.∴P点轨迹为直线CD.∵△ABC的面积为3,∴S△ACD=2S△ABC=6.故选:C.4.如图,α⊥β,α∩β=l,A∈α,B∈β,A、B到l的距离分别是a和b.AB与α、β所成的角分别是θ和φ,AB在α、β内的射影分别是m和n.若a>b,则()A.θ>φ,m>n B.θ>φ,m<n C.θ<φ,m<n D.θ<φ,m>n【考点】平面与平面垂直的性质;三垂线定理.【分析】在图象中作出射影,在直角三角形中利用勾股定理与三角函数的定义建立相关等式,运算即可.【解答】解:由题意可得,即有,故选D.5.已知x>0,y>0,且4x++y+=17,则函数F(x,y)=4x+y的最大值与最小值的差为()A.14 B.15 C.16 D.17【考点】基本不等式在最值问题中的应用.【分析】设4x+y=t,代入条件可得4xy=,(0<t<17),将4x,y可看作二次方程m2﹣tm+=0的两根,由△≥0,运用二次不等式的解法即可得到所求最值,进而得到它们的差.【解答】解:设4x+y=t,4x++y+=17,即为(4x+y)+=17,即有t+=17,可得xy=,即4xy=,(0<t<17),即有4x,y可看作二次方程m2﹣tm+=0的两根,由△≥0,可得t2﹣≥0,化为t2﹣17t+16≤0,解得1≤t≤16,当x=,y=时,函数F(x,y)取得最小值1;当x=2,y=8时,函数F(x,y)取得最大值16.可得函数F(x,y)=4x+y的最大值与最小值的差为15.故选:B.6.已知F1,F2分别是双曲线的左、右焦点,过F2与双曲线的一条渐近线平行的直线交另一条渐近线于点M,若∠F1MF2为锐角,则双曲线离心率的取值范围是()A.B.(,+∞)C.(1,2)D.(2,+∞)【考点】双曲线的简单性质.【分析】可得M,F1,F2的坐标,进而可得,的坐标,由>0,结合abc的关系可得关于ac的不等式,结合离心率的定义可得范围.【解答】解:联立,解得,∴M(,),F1(﹣c,0),F2(c,0),∴=(,),=(,),由题意可得>0,即>0,化简可得b2>3a2,即c2﹣a2>3a2,故可得c2>4a2,c>2a,可得e=>2故选D7.已知函数f(x)=,则函数y=f(2x2+x)﹣a(a>2)的零点个数不可能()A.3 B.4 C.5 D.6【考点】根的存在性及根的个数判断.【分析】由已知中函数的解析式,我们画出函数y=f(2x2+x)的图象,结合图象观察y=f(2x2+x)与y=a的交点情况,即可得函数y=f(2x2+x)﹣a(a>2)的零点个数所有的情况,进而得到答案.【解答】解:∵函数y=f(2x2+x)﹣a(a>2)的零点个数即函数y=f(2x2+x)和y=a的交点个数,先画出函数y=f(2x2+x)的图象,如图所示.(1)当2<a<3时,函数y=f(2x2+x)和y=a的图象有4个交点,则函数y=f(2x2+x)﹣a(a>2)的零点个数是4,(2)当a=3时,函数y=f(2x2+x)和y=a的图象有5个交点,则函数y=f(2x2+x)﹣a(a>2)的零点个数是5,(3)当a>3时,函数y=f(2x2+x)和y=a的图象的交点个数都不小于4,则函数y=f(2x2+x)﹣a(a>2)的零点个数不小于4,故选A.8.已知二次函数f(x)=ax2+bx(|b|≤2|a|),定义f1(x)=max{f(t)|﹣1≤t≤x≤1},f2(x)=min{f (t)|﹣1≤t≤x≤1},其中max{a,b}表示a,b中的较大者,min{a,b}表示a,b中的较小者,则下列命题正确的是()A.若f1(﹣1)=f1(1),则f(﹣1)>f(1)B.若f2(﹣1)=f2(1),则f(﹣1)>f(1)C.若f(﹣1)=f(1),则f2(﹣1)>f2(1)D.若f2(1)=f1(﹣1),则f1(﹣1)<f1(1)【考点】二次函数的性质.【分析】由新定义可知f1(﹣1)=f2(﹣1)=f(﹣1),f(x)在上的最大值为f1(1),最小值为f2(1).【解答】解:(1)若f1(﹣1)=f1(1),则f(﹣1)为f(x)在上的最大值,∴f(﹣1)>f(1)或f(﹣1)=f(1).故A错误;(2)若f2(﹣1)=f2(1),则f(﹣1)是f(x)在上的最小值,∴f(﹣1)<f(1)或f(﹣1)=f(1),故B错误.(3)若f(﹣1)=f(1),则f(x)关于y轴对称,∴当a>0时,f2(1)=f(0)≠f(﹣1)=f2(﹣1),故C错误.(4)若f2(1)=f1(﹣1),则f(﹣1)为f(x)在上的最小值,而f1(﹣1)=f(﹣1),f1(1)表示f(x)在上的最大值,∴f1(﹣1)<f1(1).故D正确.故选:D.二、填空题:本大题有7小题,多空题每题6分,单空题每题4分,共36分.把答案填在答题卷的相应位置.9.如果函数f(x)=x2sinx+a的图象过点(π,1)且f(t)=2.那么a= 1 ;f(﹣t)= 0 .【考点】函数的值.【分析】由函数性质列出方程组,求出a=1,t2sint=1,由此能求出f(﹣t).【解答】解:∵函数f(x)=x2sinx+a的图象过点(π,1)且f(t)=2,∴,解得a=1,t2sint=1,∴f(﹣t)=t2sin(﹣t)+a=﹣t2sint+1=﹣1+1=0.故答案为:1,0.10.某三棱锥的三视图如图所示,则该三棱锥体积是 1 ,四个面的面积中最大的是.【考点】由三视图求面积、体积.【分析】根据三视图画出三棱锥P﹣ABC的直观图,并做出辅助线,由三视图求出棱长、判断出线面位置关系,由椎体的体积公式求出该三棱锥体积;由勾股定理求出其它棱长,判断该三棱锥的四个面中最大的面,由三角形的面积公式求出答案.【解答】解:根据三视图画出三棱锥P﹣ABC的直观图如图所示:过A作AD⊥BC,垂足为D,连结PD,由三视图可知,PA⊥平面ABC,且BD=AD=1,CD=PA=2,①该三棱锥体积V===1;②BC=3,PD==,同理可求AC=,AB=,PB=,PC=3,∴△PBC是该三棱锥的四个面中最大的面积,∴△PBC的面积S===.故答案为:1;.11.已知数列{a n},{b n}满足a1=,a n+b n=1,b n+1=,n∈N*,则a n= ,b2016=.【考点】数列递推式.【分析】a n+b n=1,b n+1=,n∈N*,可得b1=1﹣a1=.又b n+1==,可得b2,b3,…,猜想:b n=,利用数学归纳法证明即可.进而得出a n=1﹣b n.【解答】解:∵a n+b n=1,b n+1=,n∈N*,∴b1=1﹣a1=.b n+1==,∴b2=,b3=,…,猜想:b n=,下面利用数学归纳法证明:①当n=1时,b1=成立.②假设当n=k≥1(k∈N*)时成立,即b k=.∴b k+1==,因此n=k+1时成立.综上可得:∀n∈N*,b n=,∴b2016=.经过验证可知:b n=成立.∴a n=1﹣b n==.故答案分别为:;.12.已知点P(x,y),其中x,y满足,则z1=的取值范围,z=的最大值是9 .【考点】简单线性规划.【分析】画出满足条件的平面区域,由z1=表示过平面区域的点(x,y)与(0,0)的直线的斜率,通过图象即可得出.作出不等式组对应的平面区域要使z=最大,则x最小,y最大即可,利用数形结合进行求解即可.【解答】解:画出满足条件的平面区域,如图示:由z1=表示过平面区域的点(x,y)与(0,0)的直线的斜率,由,得,即A(1,3),显然直线过A(1,3)时,z1==3,直线过(2,2)时,z1==1,故答案为:.解:作出不等式组对应的平面区域如图:则x≥1,y≥2,要使z=最大,则x最小,y最大即可,由图象知当z=经过点A时,z取得最大值,则z的最大值是z==9,故答案为:;9.13.若圆x2+y2=R2(R>0)与曲线||x|﹣|y||=1的全体公共点恰好是一个正多边形的顶点,则R=.【考点】圆的标准方程.【分析】由题意画出图形,可得正多边形为正八边形,然后由已知通过解三角形求得答案.【解答】解:由||x|﹣|y||=1,得|x|﹣|y|=±1,即,作出图象如图,正多边形为正八边形,在△AOB中,∠AOB=45°,AB=,∴AB2=OA2+OB2﹣2OA•OB•cos45°,即2=2R2﹣,∴,则R=.故答案为:.14.已知P为抛物线C:y2=4x上的一点,F为抛物线C的焦点,其准线与x轴交于点N,直线NP与抛物线交于另一点Q,且|PF|=3|QF|,则点P坐标为(3,).【考点】抛物线的简单性质.【分析】作出抛物线对应的图象,根据抛物线的定义建立条件关系,利用三点共线即可得到结论.【解答】解:∵y2=4x,∴焦点坐标F(1,0),准线方程x=﹣1.过P,Q分别作准线的射影分别为A,B,则由抛物线的定义可知:|PA|=|PF|,|QF|=|BQ|,∵|PF|=3|QF|,∴|AP|=3|QB|,即|BN|=3|AN|,∴P,Q的纵坐标满足y P=3y Q,设P(),y≠0,则Q(),则N(﹣1,0),∵N,Q,P三点共线,∴,解得y2=12,∴y=,此时,即点P坐标为(3,),故答案为:(3,)15.已知a>0,b>0,c>0,则的最大值是.【考点】一般形式的柯西不等式.【分析】a2+b2+4c2=(a2+a2)+(b2+b2)+(c2+3c2),调整,利用基本不等式,即可得出结论.【解答】解:设a2+b2+4c2=(a2+a2)+(b2+b2)+(c2+3c2)=(a2+b2)+(a2+c2)+(b2+3c2)≥ab+ac+3bc∴ab+2ac+3bc≤(a2+b2+4c2),∴≤当且仅当a=,b=2c=时,等号成立.∴的最大值是.故答案为:.三、解答题:本大题共5小题,满分74分.解答应写出文字说明,证明过程或演算步骤.16.已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<)的部分图象如图所示.(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,若f(x)在x∈上的最大值为c,且C=.求△ABC的面积的最大值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(Ⅰ)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数y=f (x)的解析式.(Ⅱ)在△ABC中,由条件求出c,再利用余弦定理求得ab的最大值为1,可得△ABC的面积为ab•sinC 的最大值.【解答】解:(Ⅰ)根据函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<)的图象可得A=,==6+2,∴ω=.再根据五点法作图可得﹣2×+φ=0,∴φ=,∴f(x)=sin(x+).(Ⅱ)在△ABC中,f(x)=sin(x+)在x∈上的最大值为c=1(此时,x=4).由C=,利用余弦定理可得c2=1=a2+b2﹣2ab•cosC≥2ab﹣ab=ab,当且仅当a=b时,取等号,故ab的最大值为1.则△ABC的面积为ab•sinC=×ab×≤,故△ABC的面积的最大值为.17.如图,四边形ABCD中,△BCD为正三角形,AD=AB=2,,AC与BD交于O点.将△ACD 沿边AC折起,使D点至P点,已知PO与平面ABCD所成的角为θ,且P点在平面ABCD内的射影落在△ACD 内.(Ⅰ)求证:AC⊥平面PBD;(Ⅱ)若已知二面角A﹣PB﹣D的余弦值为,求θ的大小.【考点】用空间向量求平面间的夹角;直线与平面垂直的判定.【分析】(Ⅰ)利用线面垂直的判定定理,可证AC⊥平面PBD;(Ⅱ)建立空间直角坐标系,求出平面的法向量,利用二面角A﹣PB﹣D的余弦值为,可求θ的大小.【解答】(Ⅰ)证明:由题意,O为BD的中点,则AC⊥BD,又AC⊥PO,BD∩PO=O,所以AC⊥平面PBD;(Ⅱ)解:以OB为x轴,OC为y轴,过O垂直于平面ABC向上的直线为z轴建立如图所示空间直角坐标系,则A(0,﹣1,0),B(),P(,),则,平面PBD的法向量为设平面ABP的法向量为则由得,,令x=1,则∴cos<>===∴=3,即,又θ∈,∴.18.{a n}前n项和为S n,2S n=a n+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差数列(1)求a1的值;(2)求{a n}通项公式;(3)证明++…+<.【考点】数列的求和;数列递推式.【分析】(1)由2S n=a n+1﹣2n+1+1,n∈N*,分别取n=1,2时,可得a2=2a1+3,a3=6a1+13.利用a1,a2+5,a3成等差数列,即可得出;(2)当n≥2时,2a n=2S n﹣2S n﹣1,化为,变形,利用等比数列的通项公式即可得出;(3)由≥3n﹣1.可得,再利用等比数列的前n项和公式即可得出.【解答】(1)解:∵2S n=a n+1﹣2n+1+1,n∈N*,∴n=1,2时,2a1=a2﹣3,2a1+2a2=a3﹣7,∴a2=2a1+3,a3=6a1+13.∵a1,a2+5,a3成等差数列,∴2(a2+5)=a1+a3,∴2(2a1+8)=a1+6a1+13,解得a1=1.(2)解:当n≥2时,2a n=2S n﹣2S n﹣1=,化为,∴,a1+2=3.∴数列是等比数列,∴,∴.(3)证明:∵≥3n﹣1.∴,∴++…++…+==.19.已知椭圆+y2=1(a>1),(1)若A(0,1)到焦点的距离为,求椭圆的离心率.(2)Rt△ABC以A(0,1)为直角顶点,边AB、AC与椭圆交于两点B、C.若△ABC面积的最大值为,求a的值.【考点】椭圆的简单性质.【分析】(1)由A(0,1)到焦点的距离为,可得a=,c=,即可得出e=.(2)不妨设AB斜率k>0,则AB:y=kx+1,AC:y=.分别与椭圆方程联立可得:,,|AB|==,|AC|=.S=|AB||AC|=2a4×,令=t≥2,通过换元利用基本不等式的性质即可得出.【解答】解:(1)∵A(0,1)到焦点的距离为,∴a=,c==,e===.(2)不妨设AB斜率k>0,则AB:y=kx+1,AC:y=.由,得(1+a2k2)x2+2a2kx=0,解得,同理,|AB|==,同理可得:|AC|=.S=|AB||AC|=2a4×=2a4×,令=t≥2,则S=2a4×=≤,当且仅当t=≥2,即a时取等号.由,解得a=3,或a=(舍去).1<a<1+时无解.∴a=3.20.已知函数f(x)=ax2+x|x﹣b|.(Ⅰ)当b=﹣1时,若不等式f(x)≥﹣2x﹣1恒成立.求实数a的最小值;(Ⅱ)若a<0,且对任意b∈,总存在实数m,使得方程|f(x)﹣m|=在上有6个互不相同的解,求实数a的取值范围.【考点】绝对值不等式的解法;二次函数的性质.【分析】(Ⅰ)由题意可得ax2≥﹣x|x+1|﹣2x﹣1恒成立,讨论x=0,x≠0时,运用参数分离,求得右边函数的最大值即可;(Ⅱ)对a讨论,(1)当a<﹣1时,(2)当a=﹣1时,(3)﹣1<a<0时,①当<b,即﹣,②当>b,即﹣1<a<﹣,运用二次函数的单调性和最值的求法,讨论对称轴和区间的关系,解不等式,求交集即可.【解答】解:(Ⅰ)当b=﹣1时,若不等式f(x)≥﹣2x﹣1恒成立,即为ax2≥﹣x|x+1|﹣2x﹣1,当x=0时,0>﹣1成立;当x≠0时,a≥,令g(x)=,即有g(x)=,当x≥﹣1,x≠0时,x=﹣时,g(x)取得最大值;当x<﹣1时,x=﹣2时,g(x)取得最大值.则有g(x)的最大值为.即有a≥,则a的最小值为;(Ⅱ)若a<0,且对任意b∈,总存在实数m,使得方程f(x)=m±在上有6个互不相同的解.而f(x)=,(1)当a<﹣1时,f(x)在(﹣∞,)递增,在(,+∞)递减.方程f(x)=m±在上不可能有6个互不相同的解;(2)当a=﹣1时,f(x)在(﹣∞,)递增,在(,+∞)递减,方程f(x)=m±在上不可能有6个互不相同的解;(3)﹣1<a<0时,①当<b,即﹣,f(x)在(﹣∞,)递增,在(,b)递减,在(b,+∞)递增.又1≤b≤2,﹣,2[]﹣b>﹣3,要使方程f(x)=m±在上有6个互不相同的解.则f()﹣f(b)>,∀b∈,都有a(9﹣b2)>3b﹣,b2[﹣a]>.当a(9﹣b2)>3b﹣,即a>,令6b﹣17=t∈,g(b)==,当t=﹣5即b=2时,g(x)max=﹣,即有a>﹣,当b2[﹣a]>.则4a2﹣2a﹣1>0,解得a>(舍去)或a<.即有﹣<a<;②当>b,即﹣1<a<﹣,f(x)在(﹣∞,)递增,在(,)递减,在(,+∞)递增.∀b∈,<3,f(3)﹣f()=9(a+1)﹣3b+>,当<3,∀b∈恒成立,解得a>﹣,当9(a+1)﹣3b+>,∀b∈恒成立,取b=2代入得a>﹣或a<﹣.所以无解.综上可得,a的取值范围为(﹣,).。

2017年高考浙江卷数学试题解析(解析版)

2017年高考浙江卷数学试题解析(解析版)

绝密★启用前2017年普通高等学校招生全国统一考试(浙江卷)数学【试卷点评】【命题特点】今年的高考数学试卷,试题的题型和背景熟悉而常见,整体感觉试题灵活,思维含量高.试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础知识、基本技能以及数学思想方法的考查.在保持稳定的基础上,进行适度的改革和创新,最后一题对学生的能力有较高要求.从试卷的整体上看,“以稳为主”的试卷结构平稳,保持了“低起点、宽入口、多层次、区分好”的特色,主要体现了以下特点:1.考查双基、注重覆盖试题覆盖了高中数学的核心知识,涉及了函数的图象、单调性、周期性、最大值与最小值、三角函数、数列、立体几何、解析几何等主要知识,考查全面而又深刻.2.注重通性通法、凸显能力试题看似熟悉平淡,但将数学思想方法和素养作为考查的重点,淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求,提高了试题的层次和品位,许多试题保持了干净、简洁、朴实、明了的特点,充分体现了数学语言的形式化与数学的意义,如选择题第8、9、10等.3.分层考查、逐步加深试题层次分明,由浅入深,各类题型的起点难度较低,但落点较高,选择、填空题的前几道不需花太多时间就能破题,而后几题则需要在充分理解数学概念的基础上灵活应变;解答题的5个题目中共有11个小题,仍然具有往年的“多问把关”的命题特点.数学形式化程度高,不仅需要考生有较强的数学阅读与审题能力,而且需要考生有灵活机智的解题策略与分析问题解决问题的综合能力,如解答题的20、22题.4.紧靠考纲、稳中有变试题在考查重点保持稳定的前提下,坚持以中华文化为背景,体现数学文化的考查与思考,渗透现代数学思想和方法,在内涵方面,增加了基础性、综合性、应用性、创新性的要求.【命题趋势】1. 试卷整体难度会中等及以上;2. 试卷填空题多空出题目的:提高知识覆盖面﹑降低难度﹑提高得分率;3. 试卷会有一部分简单试题,照顾数学基础薄弱的学生,体现公平性原则;选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

2017年高考数学浙江卷含答案

2017年高考数学浙江卷含答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前2017年普通高等学校招生全国统一考试(浙江卷)数 学本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.参考公式:球的表面积公式椎体的体积公式24πS R =1h3V S = 球的体积公式其中S 代表椎体的底面积24π3V R =h 表示椎体的高其中R 表示球的半径 台体的体积公式柱体的体积公式()b1h 3a V S S =h V S =其中的a S ,b S 分别表示台体的 h 表示柱体的高上、下底面积h 表示台体的高选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合{}{}-1<1Q=02P x x x x =<<<,,那么PUQ = A .(-1,2)B .(0,1)C .(-1,0)D .(1,2)2.椭圆2214x y+=的离心率是AB C .23 D .593.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是第3题图A .π+12B .π+32C .3π+12D .3π+32 4.若x ,y 满足约束条件0+-30-20x x y x y ⎧⎪⎨⎪⎩≥≥≤,则z 2x y =+的取值范围是A .[0]6,B .[0]4,C .[6+)∞,D .[4+)∞,5.若函数2()=f x x ax b ++在区间[0]1,上的最大值是M ,最小值是m ,则-m M A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,且与b 无关D .与a 无关,但与b 有关6.已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是465"+2"S S S >的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.函数()y f x =的导函数()y f x '=的图象如图所示,则函数()y f x =的图象可能是第7题图毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)ABCD8.已知随机变量i ξ满足i 1()i P p ξ==,i ()01P pi ξ==-,12i =,.若12201p p <<<,则 A .12E()E()ξξ<,12D()D()ξξ< B .12E()E()ξξ<,12D()D()ξξ> C .12E()E()ξξ>,12D()D()ξξ< D .12E()E()ξξ>,12D()D()ξξ>9.如图,已知正四面体–D ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP PB =,2BQ CRQC RA==.分别记二面角––D PR Q ,––D PQ R ,––D QR P 的平面角为αβγ,,,则A .γαβ<<B .αγβ<<C .αβγ<<D .βγα<<10.如图,已知平面四边形ABCD ,AB BC ⊥,2AB BC AD ===,3CD =,AC 与BD 交于点O ,记1I O AO B =,2I OB OC =,3I OC OD =,则A .123I I I <<B .132I I I <<C .312I I I <<D .213I I I <<非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积6S ,6=S ________.12.已知a b R ∈,,2i 34i a b +=+()(i 是虚数单位),则22a b +=________,ab =________.13.已知多项式()()5432123453212=x x x a x a x a x a x a +++++++,则4=a ________,5=a ________.14.已知ABC △,4AB AC ==,2BC =.点D 为AB 延长线上一点,2BD =,连接CD ,则BDC △的面积是________,cos BDC ∠=________.15.已知向量a ,b 满足1=a ,2=b ,则+-a +b a b 的最小值是________,最大值是________.16.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答)17.已知a ∈R ,函数4()f x x a a x =+-+在区间[]14,上的最大值是5,则a 的取值范围是________.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分14分)已知函数()22()sin cos cos R f x x x x x x =--∈.(I)求2()3f π的值; (II)求()f x 的最小正周期及单调递增区间.(第9题图)(第10题图)数学试卷 第5页(共18页) 数学试卷 第6页(共18页)19.(本题满分15分) 如图,已知四棱锥P ABCD -,PAD △是以AD 为斜边的等腰直角三角形,BC AD ∥,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点. (I)证明:CE ∥平面PAB ;(II)求直线CE 与平面PBC 所成角的正弦值.20.(本题满分15分)已知函数(1()e 2x f x x x -⎛⎫= ⎪⎝⎭≥.(I)求()f x 的导函数;(II)求()f x 在区间1+2⎡⎫∞⎪⎢⎣⎭,上的取值范围.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共18页) 数学试卷 第8页(共18页)21.(本题满分15分)如图,已知抛物线2x y =,点1124A ⎛⎫- ⎪⎝⎭,,3924B ⎛⎫⎪⎝⎭,,抛物线上的点()12,32P x x y ⎛⎫- ⎪⎝⎭<<,过点B 作直线AP 的垂线,垂足为Q .(I )求直线AP 斜率的取值范围;(II )求PA PQ 的最大值.22.(本题满分15分)已知数列{}n x 满足:1=1x ,()()*11ln 1N n n n x x x n ++=++∈. 证明:当*N n ∈时, (I )10n n x x +<<;(I I )1122n n n n x x x x ++-≤; (III )1-21122n n n x -≤≤.2017年普通高等学校招生全国统一考试(浙江卷)数学答案解析选择题部分一、选择题 1.【答案】A【解析】根据集合的并集的定义,得2(1)PUQ =-,. 2.【答案】B【解析】根据题意知,3a =,b2=,则c ==∴椭圆的离心率c e a =故选B . 3.【答案】A【解析】由几何体的三视图可得,该几何体是由半个圆锥和一个三棱锥组成的,故该几何体的体积1111ππ3+213=+132322V =⨯⨯⨯⨯⨯⨯,故选A .4.【答案】D【解析】作出不等式组所表示的平面区域如图中阴影部分所示,由z 2x y =+,得1y=22zx -+,∴2z 是直线1=22z y x -+在y 轴上的截距,根据图形知,当直线1=22z y x -+过A 点时,2z取得最小值.由20+30x y x y -=⎧⎨-=⎩,得2x =,1y =,即21A (,),此时,4z =,∴4x ≥,故选D .数学试卷 第9页(共18页) 数学试卷 第10页(共18页)5.【答案】B【解析】22()=++b 24a af x x ⎛⎫- ⎪⎝⎭,①当012a ≤-≤时,min ()=m =()2a f x f -{}{}2max +b ()max (0)(1)max b ++b 4a f x M f f a =-===,,1,∴22max 1+44a a M m a ⎧⎫-=+⎨⎬⎩⎭,与a 有关,与b 无关;②当02a-<时,()f x 在[]01,上单调递增,∴(1)(0)1M m f f a -==+-与a 有关,与b 无关;③当12a->时,()f x 在[]01,上单调递减,∴(0)(1)1f f M m a -=---=与a 有关,但与b 无关,故选B . 6.【答案】C【解析】因为{}n a 为等差数列,所以46111+=466151021aa a S S d d d +++=+,512=1020a S d +,465+2=S S S d -,所以4650+2d S S S ⇔>>,故选C .7.【答案】D【解析】根据题意,已知导函数的图象有三个零点,且每个零点的两边导函数值的符号相反,因此函数()f x 在这些零点处取得极值,排除A 、B ;记导函数()f x '的零点从左到右分别为123x x x ,,,又在()1x -∞,()0f x '<,在()12x x ,上()0f x '>,所以函数()f x 在()1x -∞,上单调递减,排除C ,故选D .8.【答案】A【解析】根据题意得,1()i E p ξ=,11(-)i i p D p ξ=(),12i =,,∵12102p p <<<,∴12()()E E ξξ<,令()f x 在102(,)上单调递增,所以12(p )(p )f f <,即12()()D D ξξ<,故选A . 9.【答案】B【解析】如图1,设O 是点D 在底面ABC 的射影,过O 作OE PR ⊥,OF PQ ⊥,OG RQ ⊥,垂足分别为E 、F 、G ,连接ED 、FD 、GD ,易得ED PR ⊥,∴OED ∠就是二面角D PR Q --的平面角,∴=OED α∠,tan =OD OE α,同理tan =OD OF β,tan =ODOGγ.底面的平面图如图2所示,以P 为原点建立平面直角坐标系,不妨设2AB =,则0,1)A(,,0)B (1,C (,O (,∵AP PB =,2BQ CRQC RA ==,∴13Q(,23R (-,则直线RP的方程为y =,直线PQ的方程为y =,直线RQ的方程为y ,根据点到直线的距离公式,知21OE =,OF =,13OG =,∴OE OG OF >>,∴tan tan tan αγβ<<,又α,β,γ为锐角,∴αγβ<<,故选B .10.【答案】C【解析】如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而90AFB ∠=︒,∴AOB ∠与COD ∠为钝角,AOD ∠与BOC ∠为锐角,根据题意,12()cos 0I I OA OB OB OC OB OA OC OB CA OB CA AOB -=-=-==∠<,∴12I I <,同理得23I I >,作AG BD ⊥于G ,又AB AD =,∴OB BG GD OD =<<,而OA AF FC OC =<<,数学试卷 第11页(共18页) 数学试卷 第12页(共18页)∴OA OB OC OD <,而cos =cos 0AOB COD ∠∠<,∴OA OB OC OD >,即13I I >,∴312I I I <<,故选C .非选择题二.填空题.11.【解析】如图,单位圆内接正六边形由六个边长为1的正三角形组成,所以,正六边形的面积61=612S ⨯⨯. 12.【答案】5 2【解析】∵222+2bi 2i 34i a a b ab =-+=+(),∴22324a b ab ⎧-=⎨=⎩,∴21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,∴225a b +=,2ab =.13.【答案】16 4【解析】由题意知4a 为含x 的项的系数,根据二项式定理得222233143232121216a C C C C =⨯⨯⨯+⨯⨯⨯=,5a 是常数项,所以332532124a C C =⨯⨯⨯=. 14.4【解析】在ABC △中,4AB AC ==,2BC =,由余弦定理得2222224241cos ABC=224AB BC AC AB BC +-+-==⨯∠,则sin ABC=sin CBD ∠∠,所以B D C 15=B D BC s 2S CBD =△∠.因为2B D B C ==,所以12C DB A BC =∠∠,则cos CDB ∠. 15.【答案】4【解析】解法一:()()()222222222a b a b a b a b a b a b a b a b a b++-=++-++-=+++-=10+2a b a b+-,而()()223a b a b a b a b a b +-+-=-=≥,∴()216a b a b ++-≥,即4a b a b++-≥,即a b a b ++-的最小值为4.又2a b a b+-≤,∴a b a b ++-的最大值为.解法二:由向量三角不等式得,()()24a b a b a b a b b ++-+--==≥,又2a b a b++-=∴a b a b ++-的最大值为.16.【答案】660【解析】分两步,第一步,选出4人,由于至少1名女生,故有448655C C -=种不同的选法;第二步,从4人中选出队长、副队长各1人,有2412A =种不同的选法.根据分步乘法计数原理知共有55 12 660⨯=种不同的选法.17.【答案】(92⎤-∞⎥⎦,【解析】∵[]1,4x ∈,∴[]44,5x x +∈,①当92a ≤时,max ()=555f x a a a a -+=-+=,符合题意,②当分92a >时,max ()=4245f x a a a -+=-=,∴92a =(矛盾),故a 的取值范围是(92⎤-∞⎥⎦,.三、解答题. 18.【答案】(Ⅰ)2π()23f = (Ⅱ)()f x 的的单调递增区间是()π2ππ,π63k k k Z ⎡⎤++∈⎢⎥⎣⎦【解析】(Ⅰ)由2πsin32π1cos 32=-,222π11()322f ⎛⎫⎛⎫=---- ⎪ ⎪⎝⎭⎝⎭⎝⎭,得2π()23f =.数学试卷 第13页(共18页) 数学试卷 第14页(共18页)(Ⅱ)由22cos2cos sin x x x =-与sin22sin cos x x x =得π()cos 222sin 26f x x x x ⎛⎫=--=-+ ⎪⎝⎭.所以()f x 的最小正周期是π.由正弦函数的性质得ππ3π2π22π262k x k +++≤≤,k Z ∈, 解得π2πππ63k x k ++≤≤,k Z ∈,所以()f x 的的单调递增区间是()π2ππ,π63k k k Z ⎡⎤++∈⎢⎥⎣⎦.19.【答案】(Ⅰ)如图,设PA 中点为F ,连接EF ,FB .因为E 、F 分別为PD ,PA 中点,所以EF AD∥且1=2EF AD ,又因为BC AD ∥,1=2BC AD ,所以EF BC ∥且=EF BC ,即四边形BCEF 为平行四边形,所以CE BF ∥,因此CE ∥平面PAB . (Ⅱ)直线CE 与平面PBC【解析】(Ⅰ)如图,设PA 中点为F ,连接EF ,FB .因为E 、F 分別为PD ,PA 中点,所以EF AD ∥且1=2EF AD ,又因为BC AD ∥,1=2BC AD ,所以EF BC ∥且=EF BC ,即四边形BCEF 为平行四边形,所以CE BF ∥,因此CE ∥平面PAB . (Ⅱ)分别取BC ,AD 的中点为M ,N .连接PN 交EF 于点Q ,连接MQ .因为E 、F 、N 分别是PD ,PA ,AD 的中点,所以Q 为EF 中点,在平行四边形BCEF 中,MQ CE ∥.由PAD ∆为等腰直角三角形得PN AD ⊥. 由DC AD ⊥,N 是AD 的中点得BN AD ⊥. 所以AD ⊥平面PBN ,由BC AD ∥得BC ⊥平面PBN ,那么平面PBC ⊥平面PBN . 过点Q 作PB 的垂线,垂足为H ,连接MH .MH 是MQ 在平面PBC 上的射影,所以QMH ∠是直线CE 与平面PBC 所成的角. 设1CD =.在PCD △中,由2PC =,1CD =,PDCE ,在PBN △中,由1PN BN ==,PB =得14QH =,在t R MQH △中,14QH =,MQ =所以sin =8MQH ∠,所以,直线CE 与平面PBC.20.【答案】(Ⅰ)因为(1x '=,()e e x x --'=-,所以(()12e 1()1e e 2x x xx f x x x ----⎛⎫'=-=⎪ ⎭⎝>.(Ⅱ)由()12e ()x x f x --'=,解得1x =,52x =. 因为又())211e 02x f x -=≥,所以()f x 在1,2⎡⎫+∞⎪⎢⎣⎭上的取值范围是1210,e 2-⎡⎤⎢⎥⎣⎦.【解析】(Ⅰ)因为(1x '-=-,()e e x x --'=-,所以(()12e 1()1e e 2x x xx f x x x ----⎛⎫'=-=⎪⎭⎝>.数学试卷 第15页(共18页) 数学试卷 第16页(共18页)(Ⅱ)由()12e ()x x f x --'=,解得1x =,52x =. 因为又())211e02xf x -=≥,所以()f x 在1,2⎡⎫+∞⎪⎢⎣⎭上的取值范围是1210,e 2-⎡⎤⎢⎥⎣⎦.21.【答案】(Ⅰ)()1,1-(Ⅱ)2716【解析】(Ⅰ)设直线AP 的斜率为k ,2114122x k x x -==-+, 因为1322x -<<,所以直线AP 斜率的取值范围是()1,1-.(Ⅱ)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩解得点Q 的横坐标是()224321Q k k x k -++=+.因为)1x+12PA k ⎫==+⎪⎭,)211xQk k PQ x -+=-=所以()()311PA PQ k k =--+. 令()()()311f k k k =--+,因为()()2()421f k k k '=--+,所以()f k 在区间11,2⎛⎫-- ⎪⎝⎭上单调递增,1,12⎛⎫⎪⎝⎭上单调递减,因此当12k =时,PA PQ 取得最大值2716.22.【答案】(Ⅰ)用数学归纳法证明:0n x >. 当1n =时,110x =>. 假设n k =时,0k x >,那么+1n k =时,若10k x +≤,则()110=+ln 1+0k k k x x x ++≤<,矛盾,故10k x +>.因此()n 0N*x n ∈>.所以()111=+ln 1+n n n n x x x x +++>. 因此()10N*n n x x n +∈<≤. (Ⅱ)由()11=+ln 1+n n n x x x ++得,()()2111111x -4=+2=22ln 1+n n n n n n n n n x x x x x x x x ++++++-++.记函数()()()2()22ln 1+0f x x x x x x =-++≥,()()22()ln 1+001x xf x x x x +'=++>≥,函数()f x 在[)0+∞,上单调递增,所以()(0)=0f x f ≥,因此 ()()211111x 22ln 1+=()n n n n n x x x f x +++++-++≥0,故()112N*2n n n n x x x x n ++-≤∈. (III )因为()11111x ln 1+2n n n n n n x x x x x +++++=+≤+=, 所以112n n x -≥. 由1122n n n n x x x x ++-≥得111112022n n x x +⎛⎫-- ⎪⎝⎭≥>, 所以1-21111111-22=2222n n n n n x x x --⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭≥≥…≥,故212n n x -≤.综上,()1211N*22n n n x n --∈≤≤.【解析】(Ⅰ)用数学归纳法证明:0n x >.数学试卷 第17页(共18页) 数学试卷 第18页(共18页)当1n =时,110x =>. 假设n k =时,0k x >,那么+1n k =时,若10k x +≤,则()110=+ln 1+0k k k x x x ++≤<,矛盾,故10k x +>. 因此()n 0N*x n ∈>.所以()111=+ln 1+n n n n x x x x +++>. 因此()10N*n n x x n +∈<≤. (Ⅱ)由()11=+ln 1+n n n x x x ++得,()()2111111x -4=+2=22ln 1+n n n n n n n n n x x x x x x x x ++++++-++.记函数()()()2()22ln 1+0f x x x x x x =-++≥,()()22()ln 1+001x x f x x x x +'=++>≥,函数()f x 在[)0+∞,上单调递增,所以()(0)=0f x f ≥,因此 ()()211111x 22ln 1+=()n n n n n x x x f x +++++-++≥0,故()112N*2n n n n x x x x n ++-≤∈. (III )因为()11111x ln 1+2n n n n n n x x x x x +++++=+≤+=, 所以112n n x -≥. 由1122n n n n x x x x ++-≥得111112022n n x x +⎛⎫-- ⎪⎝⎭≥>, 所以1-21111111-22=2222n n n n n x x x --⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭≥≥…≥,故212n n x -≤.综上,()1211N*22n n n x n --∈≤≤.。

2017年普通高等学校招生全国统一考试-数学(浙江卷)解析(参考版)

2017年普通高等学校招生全国统一考试-数学(浙江卷)解析(参考版)

选择题部分(共40分)、选择题:本大题共 10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题 目要求的。

1 .已知P {x |1 x 1} , Q {2 x 0},则 P QA • ( 2,1)B • ( 1,0)C • (0,1)D • ( 2, 1)【答案】A【解析】取P,Q 所有元素,得P Q ( 2,1).绝密★启用前2017年普通高等学校招生全国统一考试 (浙江卷)数学本试题卷分选择题和非选择题两部分。

全卷共 4页,选择题部分1至2页,非选择题部分 3至4页。

满分150分。

考试用时120分钟。

考生注意: 1 •答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定 的位置上。

2 •答题时,请按照答题纸上 注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式: 球的表面积公式 锥体的体积公式S 4 R 2 球的体积公式 1 V -Sh3其中S 表示棱锥的底面面积,h 表示棱锥的高 台体的体积公式 其中R 表示球的半径 柱体的体积公式 V=Sh其中S 表示棱柱的底面面积,h 表示棱柱的高1 ------------------ V §h(S a S a S £)其中S a , $分别表示台体的上、下底面积 h 学%科网表示台体的高2 2x 2 .椭圆一9 y1的离心率是4A .远3 【答案】B【解析】e .9 433 .某几何体的三视图如图所示(单位: cm3)是nF+1【答案】【解析】n 12(_2~ 1)4 .若x, y满足约束条件y2yA. [0,6] B . [0,4] 【答案】Dcm),则该几何体的体积(单位:正视图Q俯视圈C.3n彳T+1D.弓+31,选A.0,则z=x+2y的取值范围是C. [6, +8]D. [4,+ 8【解析】可行域为一开放区域,所以直线过点(2,1)时取最小值4, 无最大值,选D.5.若函数f(x)=x2+ ax+b在区间[0,1]上的最大值是M,最小值是m,则A .与a有关,且与b有关B .与a有关,但与b无关C.与a无关, 且与b无关D.与a无关,但与b有关【答案】B【解析】因为最值在f (0) b, f(1) 12a aa b, f ( )b 中取,所以最值之差2 4b无关,选B.6.已知等差数列[a n ]的公差为d ,前n 项和为3,贝U d>0”是S 4 + S” >S 的A .充分不必要条件B .必要不充分条件C .充分必要条件D •既不充分也不必要条件【答案】C【解析】S 4 S 6 2S 5 d ,所以为充要条件,选 C.【答案】D8.【答案】9 .如图,已知正四面体 D-\BC (所有棱长均相等的三棱锥),PQR 分别为AB , BC , CA 上的点,C . a < B <Y【解析】原函数先减再增,再减再增,因此选 8.已知随机变量A . E( J<E( C . E(1)>E( 1满足P(1 =1) =P)i, P (1=0) =1 —|:)i , i = 12) , D( 1)<D( 2)B.E( 1)<E( 2), D( 1)<D( 2) D.E( 1)>E(1 小,2.若 0<p 1<p 2< ,则22) , D( 1)>D( 2)2) , D(1)>D( 2)【解析】 Q E( i )P i ,E( 2) p 2 , E( 1)E( 2) Q D( 1)P 1(1 pj, D( 2) P 2(1 P 2),D( 1) D( 2) (P 1P 2)(1 P 1 P 2)0,选 A.AP=PB ,BQ QCCR RA2,分别记二面角 D -PR-Q , D -PQ-R , D -QR-P 的平面较为 a B, Y 则7.函数y=f(x)的导函数y f (x)的图像如图所示,则函数y=f(x)的图像可能是D.【答案】B【解析】设0为三角形ABC 中心,贝U O 到PQ 距离最小,0到PR 距离最大,0到RQ 距离居中,而高相 等,因此所以选BLLW iun10.如图,已知平面四边形 ABCD , AB 丄BC, AB = BC = AD = 2, CD = 3, AC 与BD 交于点O ,记Ii = OAOB ,uur Lur LLLT Lur I 2=OB OC , I 3=OC OD ,贝U/)A. I 1 <I 2 < I 3 nB . I 1<I 3 <I 2C . c I 3<I 1 < I 2D . I 2<I 1<I 3【答案】CLUL LILT LLTT L ILT LLL T LLLT【解析】因为 AOBCOD 90°,所以 OB OC 0 OA OB OCOD(QOA OC,OB OD)非选择题部分(共110分)7小题,多空题每题 6分,单空题每题 4分,共36分。

2017年高考浙江卷数学试题解析(正式版)(原卷版)

2017年高考浙江卷数学试题解析(正式版)(原卷版)

绝密★启用前2017年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至2页,非选择题部分3至4页.满分150分.考试用时120分钟. 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效. 参考公式:球的表面积公式 锥体的体积公式 24S R =π13V Sh =球的体积公式 其中S 表示棱锥的底面面积,h 表示棱锥的高 343V R =π台体的体积公式其中R 表示球的半径 1()3a ab b V h S S S S =+⋅+柱体的体积公式其中S a ,S b 分别表示台体的上、下底面积V =Sh h 表示台体的高其中S 表示棱柱的底面面积,h 表示棱柱的高数学试题选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{|11}P x x =-<<,{02}Q x =<<,那么P Q =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2)2.椭圆22194x y +=的离心率是A .133B .53C .23D .593.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是(第3题图)A .12π+ B .32π+ C .312π+D .332π+ 4.若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,,,则2z x y =+的取值范围是A .[0,6]B .[0,4]C .[6,)+∞D .[4,)+∞5.若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – m A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,且与b 无关D .与a 无关,但与b 有关6.已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是(第7题图)8.已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1–p i ,i =1,2. 若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξ B .1E()ξ<2E()ξ,1D()ξ>2D()ξ C .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为α,β,γ,则(第9题图)A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记1·I O A O B =,2·I OB OC =,3·I OC OD =,则(第10题图)A .123I I I <<B .132I I I <<C .312I I I <<D .213I I I <<非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

浙江省2017届高三一模数学试题(原卷版)(可编辑附答案精品)-物理小金刚系列

浙江省2017届高三一模数学试题(原卷版)(可编辑附答案精品)-物理小金刚系列

2017年高三“一模”数学试卷一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数满足:(是虚数单位),则复数的虚部是()A. B. C. D.2. 已知集合,,那么()A. B. C. D.3. “”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要4. 已知平面和共面的两条不同的直线,下列命题是真命题的是()A. 若与所成的角相等,则B. 若,,则C. 若,,则D. 若,,则5. 函数的图像大致是()A. B.C. D.6. 已知满足条件,若取得最大值的最优解不唯一,则实数的值为()A. 1或-2B. 1或C. -1或-2D. -2或7. 袋子里有大小、形状相同的红球个,黑球个(),从中任取1个球是红球的概率记为,若将红球、黑球个数各增加1个,此时从中任取1个球是红球的概率记为;若将红球、黑球个数各减少1个,此时从中任取1个球是红球的概率记为,则()A. B. C. D.8. 设点是椭圆上异于长轴端点上的任意一点,分别是其左右焦点,为中心,,则此椭圆的离心率为()A. B. C. D.9. 如图,半径为1的扇形中,,是弧上的一点,且满足,分别是线段上的动点,则的最大值为()学#科#网...A. B. C. 1 D.10. 已知是实数,关于的方程有4个不同的实数根,则的取值范围为()A. B. C. D.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,满分36分,将答案填在答题纸上)11. 已知是等比数列,且,,则__________,的最大值为__________.12. 某几何体的三视图如图所示(单位:),该几何体的表面积为__________,体积为__________.13. 已知,,则__________,__________.14. 若实数且,则__________,__________.15. 教育装备中心新到7台同型号的电脑,共有5所学校提出申请,鉴于甲、乙两校原来电脑较少,决定给这两校每家至少2台,其余学校协商确定,允许有的学校1台都没有,则不同的分配方案有__________种(用数字作答).16. 已知曲线及点,若曲线上存在相异两点,其到直线的距离分别为和,则__________.17. 已知等腰中,,分别为的中点,沿将折成直二面角(如图),则四棱锥的外接球的表面积为__________.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)18. 在中,角所对的边分别为,已知. (1)求角的大小;(2)若,求面积的最大值.19. 如图,已知四棱锥的底面是菱形,,,.(1)求证:平面平面;(2)求直线与平面所成角的正弦值.20. 已知函数,,.(1)当时,求曲线在处的切线方程;(2)若对任意的,都有成立,求实数的取值范围.21. 设椭圆:的离心率,原点到点、所在直线的距离为.(1)求此椭圆的方程;(2)如图,设直线与椭圆交于两点,点关于轴的对称点为,直线与轴是否交于一定点?若是,求出该定点的坐标;若不是,请说明理由.22. 已知数列满足,,数列的前项和为,证明:当时,(1);(2);(3).。

2017-2018学年浙江省嘉兴市高考数学一模试卷(理科) Word版含解析

2017-2018学年浙江省嘉兴市高考数学一模试卷(理科) Word版含解析

2017-2018学年浙江省嘉兴市高考数学一模试卷(理科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数的最小正周期为( )A .B .C .πD .2π2.设函数,则f [f (1)]的值为( ) A .﹣6 B .0C .4D .53.设变量x ,y 满足约束条件:,则目标函数z=2x +3y +4的最小值为( )A .10B .11C .12D .274.若α是第二象限角,,则=( )A .B .C .D .5.已知f (x )=ax 3+b 3+4(a ,b ∈R ),f [lg (log 32)]=1,则f [lg (log 23)]的值为( ) A .﹣1 B .3 C .7 D .86.如图,B 、D 是以AC 为直径的圆上的两点,其中,,则=( )A .1B .2C .tD .2t7.已知双曲线=1(a >0,b >0),若焦点F (c ,0)关于渐近线y=x 的对称点在另一条渐近线y=﹣x 上,则双曲线的离心率为( )A .B .2C .D .38.已知三棱锥ABCD 中,AB ⊥CD ,且AB 与平面BCD 成60°角.当的值取到最大值时,二面角A ﹣CD ﹣B 的大小为( ) A .30° B .45° C .60° D .90°二、填空题(本大题共7小题,共36分)9.设全集U=R,集合A={x|1<x≤3},B={x|x≥2},则A∩B=______,A∪B=______,A∩(∁R B)=______.10.已知命题p:“若a2=b2,则a=b”,则命题p的否命题为______,该否命题是一个______命题.(填“真”,“假”)11.如图是一个几何体的三视图,正视图是边长为2的正三角形,俯视图是等腰直角三角形,该几何体的表面积为______,体积为______.12.若函数f(x)是幂函数,则f(1)=______,若满足f(4)=8f(2),则=______.13.空间四点A、B、C、D满足|AB|=1,|CD|=2,E、F分别是AD、BC的中点,若AB与CD所在直线的所成角为60°,则|EF|=______.14.已知F1,F2分别是椭圆C: +=1(a>b>0)的左右焦点,A是其上顶点,且△AF1F2是等腰直角三角形,延长AF2与椭圆C交于另一点B,若△AF1B的面积为6,则椭圆C的方程为______.15.已知等差数列{a n}满足a9<0,且a8>|a9|,数列{b n}满足b n=a n a n+1a n+2(n∈N*),{b n}的前n项和为S n,当S n取得最大值时,n的值为______.三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)16.在△ABC中,角A、B、C分别是边a、b、c的对角,且3a=2b,(Ⅰ)若B=60°,求sinC的值;(Ⅱ)若,求cosC的值.17.如图,平行四边形ABCD⊥平面CDE,AD=DC=DE=4,∠ADC=60°,AD⊥DE (Ⅰ)求证:DE⊥平面ABCD;(Ⅱ)求二面角C﹣AE﹣D的余弦值的大小.18.已知函数f(x)=x2+ax+1,(Ⅰ)设g(x)=(2x﹣3)f(x),若y=g(x)与x轴恰有两个不同的交点,试求a的取值集合;(Ⅱ)求函数y=|f(x)|在[0,1]上的最大值.19.过离心率为的椭圆的右焦点F(1,0)作直线l与椭圆C交于不同的两点A、B,设|FA|=λ|FB|,T(2,0).(Ⅰ)求椭圆C的方程;(Ⅱ)若1≤λ≤2,求△ABT中AB边上中线长的取值范围.20.数列{a n}各项均为正数,a1=,且对任意的n∈N*,都有a n=a n+ca n2(c>0).+1(1)求++的值;(2)若c=,是否存在n∈N*,使得a n>1,若存在,试求出n的最小值,若不存在,请说明理由.2016年浙江省嘉兴市高考数学一模试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数的最小正周期为()A.B.C.πD.2π【考点】三角函数的周期性及其求法.【分析】由已知利用两角和的正弦函数公式化简函数解析式可得f(x)=2sin(2x+),利用三角函数的周期公式即可求值得解.【解答】解:∵=2sin(2x+),∴最小正周期T==π.故选:C.2.设函数,则f[f(1)]的值为()A.﹣6 B.0 C.4 D.5【考点】分段函数的应用;函数的值.【分析】直接利用分段函数化简求解即可.【解答】解:函数,则f[f(1)]=f(1﹣4)=f(﹣3)=﹣6.故选:A.3.设变量x,y满足约束条件:,则目标函数z=2x+3y+4的最小值为()A.10 B.11 C.12 D.27【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(2,1),化目标函数z=2x+3y+4为,由图可知,当直线过A时,直线在y轴上的截距最小,z有最小值为11.故选:B.4.若α是第二象限角,,则=()A.B.C.D.【考点】两角和与差的正切函数;两角和与差的余弦函数.【分析】由条件利用同角三角的基本关系,三角函数在各个象限中的符号,求得的值.【解答】解:∵α是第二象限角,=,∴+α为第三项象限角.∵+=1,sin()<0,cos()<0,求得=﹣,故选:A.5.已知f(x)=ax3+b3+4(a,b∈R),f[lg(log32)]=1,则f[lg(log23)]的值为()A.﹣1 B.3 C.7 D.8【考点】奇偶性与单调性的综合;函数的值.【分析】易判lg(log23)与lg(log32)互为相反数,构造函数f(x)=g(x)+4,即g(x)=ax3+b3,利用g(x)的奇偶性可求结果.【解答】解:∵lg(log23)+lg(log32)=lg(log23•log32)=lg1=0,∴lg(log23)与lg(log32)互为相反数,令f(x)=g(x)+4,即g(x)=ax3+b3,易知g(x)为奇函数,则g(lg(log23))+g(lg(log32))=0,∴f(lg(log23))+f(lg(log32))=g(lg(log23))+4+g(lg(log32))+4=8,又f(lg(log23))=1,∴f(lg(log32))=7,故选:C.6.如图,B、D是以AC为直径的圆上的两点,其中,,则=()A.1 B.2 C.t D.2t【考点】向量在几何中的应用.【分析】可连接CD,CB,从而得到CD⊥AD,BC⊥AB,这便可得到,,从而得出=,带入便可求出的值.【解答】解:如图,连接CD,CB;∵AC为直径;∴CD⊥AD,BC⊥AB;∴====t+2﹣(t+1)=1.故选A.7.已知双曲线=1(a>0,b>0),若焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,则双曲线的离心率为()A.B.2 C.D.3【考点】双曲线的简单性质.【分析】首先求出F1到渐近线的距离,利用焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,可得直角三角形,即可求出双曲线的离心率.【解答】解:由题意,F1(﹣c,0),F2(c,0),设一条渐近线方程为y=x,则F1到渐近线的距离为=b.设F1关于渐近线的对称点为M,F1M与渐近线交于A,∴|MF1|=2b,A为F1M的中点,又焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,∴OA∥F2M,∴∠F1MF2为直角,∴△MF1F2为直角三角形,∴由勾股定理得4c2=c2+4b2∴3c2=4(c2﹣a2),∴c2=4a2,∴c=2a,∴e=2.故选:B.8.已知三棱锥ABCD中,AB⊥CD,且AB与平面BCD成60°角.当的值取到最大值时,二面角A﹣CD﹣B的大小为()A.30°B.45°C.60°D.90°【考点】二面角的平面角及求法.【分析】根据直线和平面所成的角,求出的值取到最大值时的条件,进行求解即可.【解答】解:过A作AO⊥平面BCD,连接BO并延长交CD,于E,连接AE,则BE是AB在底面BCD上的射影,则∠ABE=60°,∵AB⊥CD,AO⊥CD,∴AO⊥平面ABE,即AE⊥CD,则∠AEB是二面角A﹣CD﹣B的平面角,则==,要使的值取到最大值,则取得最大,由正弦定理得=,∴当sin∠BAE取得最大值,即当∠BAE=90°时取最大值.此时∠AEB=30°,故选:A二、填空题(本大题共7小题,共36分)9.设全集U=R,集合A={x|1<x≤3},B={x|x≥2},则A∩B={x|2≤x≤3,A∪B={x|x >1} ,A∩(∁R B)={x|1<x<2} .【考点】交集及其运算;交、并、补集的混合运算.【分析】由A与B,求出两集合的交集,并集,找出A与B补集的交集即可.【解答】解:∵全集U=R,集合A={x|1<x≤3},B={x|x≥2},即∁R B={x|x<2},∴A∩B={x|2≤x≤3},A∪B={x|x>1},A∩(∁R B)={x|1<x<2},故答案为:{x|2≤x≤3},{x|x>1},{x|1<x<2}10.已知命题p:“若a2=b2,则a=b”,则命题p的否命题为若a2≠b2则a≠b,该否命题是一个真命题.(填“真”,“假”)【考点】四种命题间的逆否关系;四种命题的真假关系.【分析】根据命题:“若p,则q”的否命题为“若¬p,则¬q”,写出它的否命题,再判定真假性.【解答】解:命题p:“若a2=b2,则a=b”,则命题p的否命题为“若a2≠b2,则a≠b”,该否命题是一个真命题.故答案为:“若a2≠b2,则a≠b”,真.11.如图是一个几何体的三视图,正视图是边长为2的正三角形,俯视图是等腰直角三角形,该几何体的表面积为,体积为.【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体为一个三棱锥P ﹣ABC ,底面△ABC 是等腰直角三角形,△PBC 是边长为2的正三角形,且平面PBC ⊥底面ABC .利用三角形面积计算公式、三棱锥的体积计算公式即可得出.【解答】解:由三视图可知:该几何体为一个三棱锥P ﹣ABC ,底面△ABC 是等腰直角三角形,△PBC 是边长为2的正三角形,且平面PBC ⊥底面ABC .∴该几何体的表面积为=+++×=4++,体积V==.故答案分别为:4++;.12.若函数f (x )是幂函数,则f (1)= 1 ,若满足f (4)=8f (2),则=.【考点】函数的值.【分析】设f (x )=x α,由幂函数的性质能求出结果. 【解答】解:∵函数f (x )是幂函数,∴设f (x )=x α, ∴f (1)=1,∵满足f (4)=8f (2), ∴4α=8×2α,解得α=3,∴==.故答案为:1,.13.空间四点A、B、C、D满足|AB|=1,|CD|=2,E、F分别是AD、BC的中点,若AB与CD所在直线的所成角为60°,则|EF|=或.【考点】点、线、面间的距离计算.【分析】取BD中点O,连结EO、FO,推导出EO∥CD,且|EO|=1,FO∥AB,且|FO|=,∠EOF(或其补角)是异面直线AB与CD所成的角,由此能求出EF.【解答】解:取BD中点O,连结EO、FO,∵四面体ABCD中,|AB|=1,|CD|=2,E、F分别为BC、AD的中点,且异面直线AB与CD所成的角为60°,∴EO∥CD,且|EO|=1,FO∥AB,且|FO|=,∴∠EOF(或其补角)是异面直线AB与CD所成的角,∴∠EOF=60°或120°,∴∠EOF=60°,EF==,∠EOF=120°,EF==.故答案为:或.14.已知F1,F2分别是椭圆C: +=1(a>b>0)的左右焦点,A是其上顶点,且△AF1F2是等腰直角三角形,延长AF2与椭圆C交于另一点B,若△AF1B的面积为6,则椭圆C的方程为=1.【考点】椭圆的简单性质.【分析】由△AF 1F 2是等腰直角三角形,可得b=c ,可设椭圆的标准方程为: =1(b>0).在Rt △ABF 1中,由勾股定理可得: +|AB |2=,|AF 2|=|AF 1|=b ,设|BF 2|=m ,则|BF 1|=2a ﹣m=2b ﹣m ,2b 2+=,又=×=6,联立解出即可得出.【解答】解:∵△AF 1F 2是等腰直角三角形, ∴b=c ,可设椭圆的标准方程为:=1(b >0).在Rt △ABF 1中,由勾股定理可得: +|AB |2=,|AF 2|=|AF 1|=b ,设|BF 2|=m ,则|BF 1|=2a ﹣m=2b ﹣m ,代入可得:2b 2+=,又=×=6,联立解得b 2=,∴椭圆的标准方程为: =1.故答案为: =1.15.已知等差数列{a n }满足a 9<0,且a 8>|a 9|,数列{b n }满足b n =a n a n +1a n +2(n ∈N *),{b n }的前n 项和为S n ,当S n 取得最大值时,n 的值为 8 . 【考点】等差数列的前n 项和.【分析】设等差数列{a n }的公差为d ,由满足a 9<0,且a 8>|a 9|,可得d <0,a 8>﹣a 9>0,因此当n ≤8时,a n >0;当n ≥9时,a n <0.S n =a 1a 2a 3+a 2a 3a 4+…+a 6a 7a 8+a 7a 8a 9+a 8a 9a 10+a 9a 10a 11+…+a n a n +1a n +2,当n ≤6时,S n 的每一项都大于0,当n ≥9时,a n a n +1a n +2<0,只要计算a 7a 8a 9+a 8a 9a 10与0的关系即可得出. 【解答】解:∵设等差数列{a n }的公差为d ,∵满足a 9<0,且a 8>|a 9|, ∴d <0,a 8+a 9>0,a 8>﹣a 9>0,∴当n ≤8时,a n >0;当n ≥9时,a n <0.S n =a 1a 2a 3+a 2a 3a 4+…+a 6a 7a 8+a 7a 8a 9+a 8a 9a 10+a 9a 10a 11+…+a n a n +1a n +2, 当n ≤6时,S n 的每一项都大于0,当n ≥9时,a n a n +1a n +2<0, 而a 7a 8a 9<0,a 8a 9a 10>0,并且a 7a 8a 9+a 8a 9a 10=a 8a 9(a 7+a 10)=a 8a 9(a 8+a 9)>0,因此当S n取得最大值时,n=8.故答案为:8.三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)16.在△ABC中,角A、B、C分别是边a、b、c的对角,且3a=2b,(Ⅰ)若B=60°,求sinC的值;(Ⅱ)若,求cosC的值.【考点】正弦定理.【分析】(Ⅰ)利用正弦定理化简已知可得3sinA=2sinB,由已知可求sinA,利用大边对大角可得A为锐角,可求cosA,利用三角形内角和定理,两角和的正弦函数公式即可求sinC的值.(Ⅱ)设a=2t,b=3t,由已知可求,利用余弦定理即可得解cosC的值.【解答】(本题满分为14分)解:(Ⅰ)在△ABC中,∵3a=2b,∴3sinA=2sinB又∵B=60°,代入得3sinA=2sin60°,解得.∵a:b=2:3,∴A<B,即∴.…(Ⅱ)设a=2t,b=3t,则,则.…17.如图,平行四边形ABCD⊥平面CDE,AD=DC=DE=4,∠ADC=60°,AD⊥DE(Ⅰ)求证:DE⊥平面ABCD;(Ⅱ)求二面角C﹣AE﹣D的余弦值的大小.【考点】直线与平面垂直的判定;二面角的平面角及求法.【分析】(Ⅰ)过A作AH⊥DC交DC于H.证明AH⊥DE,AD⊥DE,然后证明DE⊥平面ABCD;(Ⅱ)过C作CM⊥AD交AD于M,过C作CN⊥AE交AE于N,连接MN.说明∠CNM 就是所求二面角的一个平面角.然后求解即可.【解答】(本题满分15分)证明:(Ⅰ)过A作AH⊥DC交DC于H.∵平行四边形ABCD⊥平面CDE∴AH⊥平面CDE又∵DE⊂平面CDE∴AH⊥DE…①由已知AD⊥DE…②,AH∩AD=A…③由①②③得,DE⊥平面ABCD;…解:(Ⅱ)过C作CM⊥AD交AD于M,过C作CN⊥AE交AE于N,连接MN.由(Ⅰ)得DE⊥平面ABCD,又∵DE⊂平面ADE,∴平面ADE⊥平面ABCD.∴CM⊥AE,又∵CN垂直AE,且CM∩CN=C.∴AE⊥平面CMN,得角CNM就是所求二面角的一个平面角.又∵,,∴所求二面角的余弦值为.…18.已知函数f(x)=x2+ax+1,(Ⅰ)设g(x)=(2x﹣3)f(x),若y=g(x)与x轴恰有两个不同的交点,试求a的取值集合;(Ⅱ)求函数y=|f(x)|在[0,1]上的最大值.【考点】函数的最值及其几何意义.【分析】(Ⅰ)分类讨论,从而由f(x)=0恰有一解及f(x)=0有两个不同的解求得;(Ⅱ)分类讨论,从而确定二次函数的单调性及最值,从而确定函数y=|f(x)|在[0,1]上的最大值.【解答】解:(Ⅰ)(1)若f(x)=0恰有一解,且解不为,即a2﹣4=0,解得a=±2;(2)若f(x)=0有两个不同的解,且其中一个解为,代入得,故;综上所述,a的取值集合为.(Ⅱ)(1)若,即a≥0时,函数y=|f(x)|在[0,1]上单调递增,故y max=f(1)=2+a;(2)若,即﹣2<a<0时,此时△=a2﹣4<0,且f(x)的图象的对称轴在(0,1)上,且开口向上;故,(3)若,即a≤﹣2时,此时f(1)=2+a≤0,,综上所述,.19.过离心率为的椭圆的右焦点F(1,0)作直线l与椭圆C交于不同的两点A、B,设|FA|=λ|FB|,T(2,0).(Ⅰ)求椭圆C的方程;(Ⅱ)若1≤λ≤2,求△ABT中AB边上中线长的取值范围.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)由题意可得,c=1,a2=b2+c2,联立解出即可得出.(Ⅱ)当直线l的斜率为0时,不成立.于是可设直线l的方程为:my=x﹣1,设A(x1,y1),B(x2,y2),与椭圆方程联立可得:(m2+2)y2+2my﹣1=0,由|FA|=λ|FB|,可得y1=﹣λy2,再利用根与系数的关系代入可得:﹣2=,由1≤λ≤2,可得0≤,利用AB边上的中线长为=,及其二次函数的单调性即可得出.【解答】解:(Ⅰ)∵,c=1,a2=b2+c2,∴=b,∴椭圆C的方程为:.(Ⅱ)当直线l的斜率为0时,显然不成立.因此可设直线l的方程为:my=x﹣1,设A(x1,y1),B(x2,y2),直线l的方程与椭圆方程联立可得:(m2+2)y2+2my﹣1=0,∴,,由|FA|=λ|FB|,可得y1=﹣λy2,∵,∴,∴﹣2=,∵1≤λ≤2,∴∈,∴0≤,又AB边上的中线长为===,∵0≤,∴=t∈.∴f(t)=2t2﹣7t+4=2﹣∈.∴.∴△ABT中AB边上中线长的取值范围是.20.数列{a n}各项均为正数,a1=,且对任意的n∈N*,都有a n+1=a n+ca n2(c>0).(1)求++的值;(2)若c=,是否存在n∈N*,使得a n>1,若存在,试求出n的最小值,若不存在,请说明理由.【考点】数列递推式;数列与不等式的综合.【分析】(1)由a1=,且对任意的n∈N*,都有a n+1=a n+ca n2(c>0),可得a2==,a3=(2+c)(4+2c+c2).代入化简整理即可得出.(2)a n+1=a n+ca n2,c=,变形为=,可得++…+=++…+=.通过“放缩法”即可得出结论.【解答】解:(1)∵a1=,且对任意的n∈N*,都有a n+1=a n+ca n2(c>0),∴a2==,a3==+c=(2+c)(4+2c+c2).∴++=++=++==2.(2)∵a n+1=a n+ca n2,c=,∴a n+1>a n>0.∴,即=,++…+=++…+=.∴<++…+=.当n=2016时,<1,可得a2017<1.当n=2017时,2﹣>++…+=1,可得a2018>1.因此存在n∈N*,使得a n>1.2016年9月29日。

2017高考浙江数学试卷(解析版)

2017高考浙江数学试卷(解析版)

绝密★启用前2017年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至2页,非选择题部分3至4页.满分150分.考试用时120分钟.考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效.参考公式: 球的表面积公式 锥体的体积公式24S R =π13V Sh =球的体积公式 其中S 表示棱锥的底面面积,h 表示棱锥的高 343V R =π台体的体积公式其中R 表示球的半径 1()3a b V h S S =柱体的体积公式 其中S a ,S b 分别表示台体的上、下底面积 V =Shh 表示台体的高其中S 表示棱柱的底面面积,h 表示棱柱的高选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知}11|{<<-=x x P ,}20{<<=x Q ,则=Q P Y A .)2,1(-B .)1,0(C .)0,1(-D .)2,1(【答案】A【解析】取Q P ,所有元素,得=Q P Y )1,2(-.2.椭圆22194x y +=的离心率是 A .133B .53C .23D .59【答案】B 【解析】945e -==,选B. 3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .π2+1 B .π2+3 C .3π2+1 D .3π2+3 【答案】A 【解析】2π1211π3(21)1322V ⨯=⨯⨯+⨯⨯=+,选A. 4.若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则z =x +2y 的取值范围是A .[0,6]B .[0,4]C .[6,+∞]D .[4,+∞]【答案】D【解析】可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D. 5.若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – m A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B.6.已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】4652S S S d +-=,所以为充要条件,选C.7.函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是【答案】D【解析】原函数先减再增,再减再增,因此选D.8.已知随机变量ξ1满足P (1ξ=1)=p i ,P (1ξ=0)=1—p i ,i =1,2. 若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξ B .1E()ξ<2E()ξ,1D()ξ>2D()ξ C .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ8.【答案】A【解析】112212(),(),()()E p E p E E ξξξξ==∴<Q111222121212()(1),()(1),()()()(1)0D p p D p p D D p p p p ξξξξ=-=-∴-=---<Q ,选A.9.如图,已知正四面体D –ABC (所有棱长均相等的三棱锥)学科&网,PQR 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面较为α,β,γ,则A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【答案】B【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而高相等,因此αγβ<<所以选B.10.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记1·I OA OB u u u r u u u r =,2·I OB OC u u u r u u u r =,3·I OC OD u u u r u u u r=,则A .I 1<I 2<I 3B .I 1<I 3<I 2C . I 3<I 1<I 2D .I 2<I 1<I 3【答案】C非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位学.科.网,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积6S ,=6S .【答案】332【解析】将正六边形分割为6个等边三角形,则233)60sin 1121(66=⨯⨯⨯⨯=οS12.已知a ,b ∈R ,2i 34i a b +=+()(i 是虚数单位)则22a b += ,ab = . 【答案】5,2【解析】由题意可得22234a b abi i -+=+,则2232a b ab ⎧-=⎨=⎩,解得2241a b ⎧=⎨=⎩,则225,2a b ab +==13.已知多项式()1x +3()2x +2=5432112345x a x a x a x a x a +++++,则4a =________,5a =________. 【答案】16,4【解析】由二项式展开式可得通项公式为:32r r m mC x C x ,分别取0,1r m ==和1,0r m ==可得441216a =+=,令0x =可得325124a =⨯=14.已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD=2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.【答案】,24【解析】取BC 中点E ,DC 中点F ,由题意:,AE BC BF CD ⊥⊥,△ABE 中,1cos 4BE ABC AB ∠==,1cos ,sin 4DBC DBC ∴∠=-∠==,BC 1sin 2D S BD BC DBC ∴=⨯⨯⨯∠=△又21cos 12sin ,sin 44DBC DBF DBF ∴∠=-∠=-∴∠=,cos sin 4BDC DBF ∴∠=∠=,综上可得,△BCD ,cos BDC ∠=. 15.已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是_______.【答案】4,【解析】设向量,a b r r 的夹角为θ,由余弦定理有:a b -==r ra b +==r ra b a b ++-=r r r r,令y =[]21016,20y =+,据此可得:()()maxmin4a b a ba b a b++-==++-==r r r rr r r r,即a b a b ++-r r r r的最小值是4,最大值是16.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有______中不同的选法.(用数字作答)【答案】660【解析】由题意可得:总的选择方法为:411843C C C ⨯⨯种方法,其中不满足题意的选法有411643C C C ⨯⨯种方法,则满足题意的选法有:411411843643660C C C C C C ⨯⨯-⨯⨯=种.17.已知α∈R ,函数a a xx x f +-+=|4|)(在区间[1,4]上的最大值是5,则a 的取值范围是___________. 【答案】9(,]2-∞【解析】[][]41,4,4,5x x x∈+∈,分类讨论: ①.当5a ≥时,()442f x a x a a x x x =--+=--,函数的最大值9245,2a a -=∴=,舍去;②.当4a ≤时,()445f x x a a x x x=+-+=+≤,此时命题成立;③.当45a <<时,(){}max max 4,5f x a a a a =-+-+⎡⎤⎣⎦,则:4545a a a a a a ⎧-+≥-+⎪⎨-+=⎪⎩或:4555a a a a a a ⎧-+<-+⎪⎨-+=⎪⎩, 解得:92a =或92a < 综上可得,实数a 的取值范围是9,2⎛⎤-∞ ⎥⎝⎦.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(本题满分14分)已知函数f (x )=sin 2x –cos 2x –sin x cos x (x ∈R ).(Ⅰ)求f (2π3)的值. (Ⅱ)求f (x )的最小正周期及单调递增区间.【答案】(Ⅰ)2;(Ⅱ)最小正周期为单调递增区间为2+,+63ππππ⎡⎤∈⎢⎥⎣⎦k k k Z19.(本题满分15分)如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.(Ⅰ)证明:CE ∥平面PAB ;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值. 【答案】(Ⅰ)见解析;(Ⅱ)82. 【解析】本题主要考查空间点、线、面位置关系,直线与平面学科&网所成的角等基础知识,同时考查空间【解析】方法一:(1)取AD的中点F,连接EF,CF∵E为PD的重点∴EF∥P A在四边形ABCD中,BC∥AD,AD=2DC=2CB,F为中点易得CF∥AB∴平面EFC∥平面ABP∵EC 平面EFC∴EC∥平面P AB(Ⅱ)分别取BC,AD的中点为M,N.连结PN交EF于点Q,连结MQ.因为E,F,N分别是PD,PA,AD的中点,所以Q为EF中点,在平行四边形BCEF中,MQ∥CE.由△PAD为等腰直角三角形得PN⊥AD.由DC⊥AD,N是AD的中点得BN⊥AD.所以AD⊥平面PBN,由BC∥AD得BC⊥平面PBN,那么,平面PBC⊥平面PBN.过点Q作PB的垂线,垂足为H,连结MH.MH是MQ在平面PBC上的射影,所以∠QMH是直线CE与平面PBC所成的角.设CD=1.在△PCD中,由PC=2,CD=1,PD=得CE=,在△PBN中,由PN=BN=1,PB=得QH=,在Rt△MQH中,QH=,MQ=,所以sin ∠QMH=,所以,直线CE 与平面PBC 所成角的正弦值是.20.(本题满分15分)已知函数f (x )=(x –21x -)e x -(12x ≥). (Ⅰ)求f (x )的导函数;(Ⅱ)求f (x )在区间1[+)2∞,上的取值范围.【答案】(Ⅰ)f '(x )=(1-x )(1-221x -)xe -;(Ⅱ)[0, 1212e -].(Ⅱ)由解得或.因为 x() 1 ()()-0 + 0 -f (x )↓ 0 ↑ ↓又,所以f (x )在区间[)上的取值范围是.21.(本题满分15分)如图,已知抛物线2x y =,点A 11()24-,,39()24B ,,抛物线上的点)2321)(,(<<-x y x P .过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围; (Ⅱ)求||||PQ PA ⋅的最大值. 【答案】(Ⅰ)(-1,1);(Ⅱ)2716所以 f (k )在区间(-1,12)上单调递增,(12,1)上单调递减, 因此当k =12时,|P A |g |PQ | 取得最大值2716. 22.(本题满分15分)已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n ∈N*). 证明:当n ∈N*时,(Ⅰ)0<x n +1<x n ;(Ⅱ)2x n +1− x n ≤12n n x x +; (Ⅲ)112n +≤x n ≤212n +.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析.。

2017年高考浙江卷数学试题解析(正式版)(原卷版)

2017年高考浙江卷数学试题解析(正式版)(原卷版)
A. 13 3
C. 2 3
B. 5 3
D. 5 9
3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是
A. 1 2
C. 3 1 2
(第 3 题图) B. 3 2 D. 3 3 2
x 0,
4.若
x

y
满足约束条件
x
y
3
0,则
z
x
2y
的取值范围是
x 2 y 0,
1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定
的位置上.
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的
作答一律无效.
参考公式:
球的表面积公式 S 4R2 球的体积公式 V 4 R3
3 其中 R 表示球的半径 柱体的体积公式
1.已知集合 P {x | 1 x 1} , Q {0 x 2} ,那么 P Q
A. (1, 2)
B. (0,1)
1
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
C. (1, 0)
D. (1, 2)
2.椭圆 x2 y2 1 的离心率是 94
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
绝密★启用前
2017 年普通高等学校招生全国统一考试(浙江卷)
数学
本试题卷分选择题和非选择题两部分.全卷共 4 页,选择题部分 1 至 2 页,非选择题部分 3 至 4 页.满分 150 分.考试用时 120 分钟. 考生注意:

2017年浙江高考数学模拟卷参考答案

2017年浙江高考数学模拟卷参考答案

2017年浙江省普通高等学校招生考试模拟卷参考答案数学(一)一、选择题1.答案B 。

解:[][)2,2,0,M N =-=+∞,[]0,2M N ∴=。

2.答案C.解:由题意知点A 、B 的坐标为(6,5)A 、(2,3)B -,则点C 的坐标为(2,4)C , 则24i z =+,从而220z z z ⋅==。

3.答案B 。

解:因为向量b 在向量a 方向上的投影为2,则有2a b a=,即有6a b =。

则2()963a a b a a b -=-=-=。

4.答案A 。

解:由3)4(log 21-=f ,得(2)3f -=-,又)(x f 是奇函数,则有(2)3f =,即23a =,而0a >,故a =5.答案D 解法1:从6名候选人中选出3人,担任团生活委员的有155A =种不同的选举结果;担任团支部书记、团组织委员的有2520A =种不同的选举结果;故总共有520100⨯=种不同的选举结果。

解法2:从6名候选人中选出3人,不含甲的有3560A =种不同的选举结果; 从6名候选人中选出3人,含有甲的有21252240C A A =种不同的选举结果;故总共有6040100+=种不同的选举结果。

6.答案D. 解:475628a a a a +=⎧⎨=-⎩,得474728a a a a +=⎧⎨=-⎩,解得4742a a =⎧⎨=-⎩或4724a a =-⎧⎨=⎩。

若474,2a a ==-,则有1108,1a a =-=,此时1107a a +=-。

若472,4a a =-=,则有1101,8a a ==-,此时1107a a +=-。

综合有1107a a +=-。

7.答案C 解:在ABC ∆中,220sin sin sin sin A B a b A B A B <⇔<⇔<<⇔<,2212sin 12sin cos 2cos 2A B A B ⇔->-⇔>,故选C 。

2017年高考浙江数学试题及答案(word解析版)

2017年高考浙江数学试题及答案(word解析版)

2017年普通高等学校招生全国统一考试(浙江卷)数学(理科)第Ⅰ卷(选择题 共40分)一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【2017年浙江,1,4分】已知,,则( ){|11}P x x =-<<{20}Q x =-<<P Q = (A ) (B ) (C ) (D )(2,1)-(1,0)-(0,1)(2,1)--【答案】A【解析】取所有元素,得,故选A .,P Q P Q = (2,1)-【点评】本题考查集合的基本运算,并集的求法,考查计算能力.(2)【2017年浙江,2,4分】椭圆的离心率是( )22194x y +=(A (B (C ) (D)2359【答案】B【解析】B .e ==【点评】本题考查椭圆的简单性质的应用,考查计算能力.(3)【2017年浙江,3,4分】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )(A ) (B )(C ) (D )12π+32π+312π+332π+【答案】A【解析】由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为,故选A .2111π3(21)13222V π⨯=⨯⨯+⨯⨯=+【点评】本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出原几何体的结构特征,是基础题目.(4)【2017年浙江,4,4分】若,满足约束条件,则的取值范围x y 03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩2z x y =+是( )(A )(B )(C )(D )[]0,6[]0,4[]6,+∞[]4,+∞【答案】D【解析】如图,可行域为一开放区域,所以直线过点时取最小值4,无最大值,故选D .()2,1【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.(5)【2017年浙江,5,4分】若函数在区间上的最大值是,最小值是,则(()2f x x ax b =++[]01(M m –M m )(A )与a 有关,且与b 有关 (B )与a 有关,但与b 无关(C )与a 无关,且与b 无关 (D )与a 无关,但与b 有关【答案】B【解析】解法一:因为最值在中取,所以最值之差一定与b无关,故选2(0),(1)1,(24a af b f a b f b==++-=-B.解法二:函数的图象是开口朝上且以直线为对称轴的抛物线,①当或()2f x x ax b=++2ax=-12a->,即,或时,函数在区间上单调,此时,故2a-<2a<-0a>()f x[]0,1()()10M m f f a-=-=的值与有关,与无关;②当,即时,函数在区间上递减,M m-a b1122a≤-≤21a-≤≤-()f x0,2a⎡⎤-⎢⎥⎣⎦在上递增,且,此时,故的值与有关,与无,12a⎡⎤-⎢⎥⎣⎦()()01f f>()224a aM m f f⎛⎫-=--=⎪⎝⎭M m-a b 关;③当,即时,函数在区间上递减,在上递增,且122a≤-<10a-<≤()f x0,2a⎡⎤-⎢⎥⎣⎦,12a⎡⎤-⎢⎥⎣⎦,此时,故的值与有关,与无关.综上可得:()()01f f<()224a aM m f f a⎛⎫-=--=-⎪⎝⎭M m-a b的值与有关,与无关,故选B.M m-a b【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.(6)【2017年浙江,6,4分】已知等差数列的公差为,前项和为,则“”是“”的([]na d nnS0d>4652S S S+>)(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件【答案】C【解析】由,可知当时,有,即,()46511210212510S S S a d a d d+-=+-+=0d>46520S S S+->4652S S S+>反之,若,则,所以“”是“”的充要条件,故选C.4652S S S+>0d>0d>4652S S S+>【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题.(7)【2017年浙江,7,4分】函数的导函数的图像如图所示,则函数()y f x=()y f x'=的图像可能是()()y f x=(A)(B)(C)(D)【答案】D【解析】解法一:由当时,函数单调递减,当时,函数单调递增,则由导函数()0f x'<f x((()0f x'>f x((的图象可知:先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,()y f x='()f x且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,,故选D.解法二:原函数先减再增,再减再增,且位于增区间内,故选D.x=【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的判断,考查数形结合思想,属于基础题.(8)【2017年浙江,8,4分】已知随机变量满足,,.若1ξ()11iP pξ==()101iP pξ==-1,2i=,则()1212p p<<<(A),(B),12E()E()ξξ<12D()D()ξξ<12E()E()ξξ<12D()D()ξξ>(C),(D),12E()E()ξξ>12D()D()ξξ<12E()E()ξξ>12D()D()ξξ<【答案】A【解析】,112212(),(),()()E p E p E Eξξξξ==∴<111222()(1),()(1)D p p D p pξξ=-=-,故选A.121212()()()(1)0D D p p p pξξ∴-=---<【点评】本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想i象能力,考查数形结合思想、化归与转化思想,是中档题.(9)【2017年浙江,9,4分】如图,已知正四面体(所有棱长均相等的三棱锥),–D ABCPQR分别为,,上的点,,,分别记二面角,AB BC CA AP PB=2BQ CRQC RA==––D PR Q,的平面较为,,,则()––D PQ R––D QR Pαβγ(A)(B)(C)(D)γαβ<<αγβ<<αβγ<<βγα<<【答案】B【解析】解法一:如图所示,建立空间直角坐标系.设底面的中心为.不妨ABC∆O设.则3OP=,,,,,,()0,0,0O()0,3,0P-()0,6,0C-(D)Q()R-,,,,()PR=-(PD=)PQ=()2,0QR=--.设平面的法向量为,则,可得(QD=-PDR(),,n x y z=n PRn PD⎧⋅=⎪⎨⋅=⎪⎩,可得,取平面的法向量.3030yy⎧-+=⎪⎨+=⎪⎩)1n=-ABC()0,0,1m=则.同理可得:.cos,m nm nm n⋅==α=β=.∴.γ=>>αγβ<<解法二:如图所示,连接,过点发布作垂线:,,OD OQ OR((O OE DR⊥OF DQ⊥,垂足分别为,连接.设.则OG QR⊥E F G((PE PF PG((OP h=cos ODRPDRS OES PEα∆∆==c,.=cosOFPFβ==cosOGPGγ==由已知可得:.∴,为锐角.∴α<γ<β,故选B.OE OG OF>>cos cos cosαγβ>>αβγ((【点评】本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力,属于难题.(10)【2017年浙江,10,4分】如图,已知平面四边形,ABCD,,,AB BC⊥2AB BC AD(((3CD(与交于点O,记,,,则()AC BD1·I OA OB=2·I OB OC=3·I OC OD=(A)(B)(C)(D)123I I I<<132I I I<<312I I I<<223I I I<<【答案】C【解析】∵,,,∴,∴,AB BC⊥2AB BC AD===3CD=AC=90AOB COD∠=∠>︒由图象知,,∴,,即,故选C.OA OC<OB OD<0OA OB OC OD>⋅>⋅OB OC⋅>312I I I<<【点评】本题主要考查平面向量数量积的应用,根据图象结合平面向量数量积的定义是解决本题的关键.第Ⅱ卷(非选择题共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.(11)【2017年浙江,11,4分】我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度。

2017年浙江省高考数学试题+解析(可编辑修改word版)

2017年浙江省高考数学试题+解析(可编辑修改word版)

133 {2017 浙江省高考理科数学试卷一、选择题(共 10 小题,每小题 4 分,满分 40 分)1.(4 分)已知集合 P={x |﹣1<x <1},Q={x |0<x <2},那么 P ∪Q=( )A .(﹣1,2)B .(0,1)C .(﹣1,0)D .(1,2)x 2 y 22.(4 分)椭圆 + =1 的离心率是( ) 9 4 5 2 5 A . B . 3 C .3 D .93.(4 分)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )π π 3π 3πA .2+1B .2+3C . 2+1D . 2+3x ≥ 0 4.(4 分)若 x 、y 满足约束条件 x + y ‒ 3 ≥ 0,则 z=x +2y 的取值范围是()x ‒ 2y ≤ 0 A .[0,6] B .[0,4] C .[6,+∞) D .[4,+∞)5.(4 分)若函数 f (x )=x 2+ax +b 在区间[0,1]上的最大值是 M ,最小值是 m , 则 M ﹣m ()A .与 a 有关,且与 b 有关B .与 a 有关,但与 b 无关C .与 a 无关,且与 b 无关D .与 a 无关,但与 b 有关6.(4 分)已知等差数列{a n }的公差为 d ,前 n 项和为 S n ,则“d >0”是“S 4+S 6>2S 5” 的()A .充分不必要条件B .必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(4 分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.8.(4 分)已知随机变量ξi满足P(ξi=1)=p i,P(ξi=0)=1﹣p i,i=1,2.若0<p1<p2<1,则()2A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)9.(4 分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分BQ C R别为AB、BC、CA 上的点,AP=PB,QC=R A=2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P 的平面角为α、β、γ,则()A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α10.(4 分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC→→→→→→与BD 交于点O,记I1=OA•OB,I2=OB•OC,I3=OC•OD,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3二、填空题:本大题共7 小题,多空题每题6 分,单空题每题4 分,共36 分11.(4 分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6=.12.(6 分)已知a、b∈R,(a+bi)2=3+4i(i 是虚数单位),则a2+b2=,ab= .13.(6 分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=,a5=.14.(6 分)已知△ABC,AB=AC=4,BC=2,点D 为AB 延长线上一点,BD=2,连结CD,则△BDC 的面积是,cos∠BDC= .→→→→→ →→→15.(6 分)已知向量a、b满足|a|=1,|b|=2,则|a+b|+|a﹣b|的最小值是,最大值是.16.(4 分)从6 男2 女共8 名学生中选出队长1 人,副队长1 人,普通队员2 人组成4 人服务队,要求服务队中至少有1 名女生,共有种不同的选法.(用数字作答)417.(4 分)已知a∈R,函数f(x)=|x+x﹣a|+a 在区间[1,4]上的最大值是5,则a 的取值范围是.三、解答题(共5 小题,满分74 分)3sinx cosx(x∈R).18.(14 分)已知函数f(x)=sin2x﹣cos2x﹣22π(Ⅰ)求f(3 )的值.(Ⅱ)求f(x)的最小正周期及单调递增区间.19.(15 分)如图,已知四棱锥P﹣ABCD,△PAD 是以AD 为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E 为PD 的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线 CE 与平面PBC 所成角的正弦值.20.(15 分)已知函数 f (x )=(x﹣(1) 求 f (x )的导函数;1)e ﹣x1(x ≥2).(2) 求 f (x )在区间[2,+∞)上的取值范围.1 1 3 9 21.(15 分)如图,已知抛物线 x 2=y ,点 A (﹣ , ),B ( , ),抛物线上的点 P (x ,y )2 4 2 41 3 (﹣ <x < ),过点 B 作直线 AP 的垂线,垂足为 Q .2 2(Ⅰ)求直线 AP 斜率的取值范围; (Ⅱ)求|PA |•|PQ |的最大值.22.(15 分)已知数列{x n }满足:x 1=1,x n =x n +1+ln (1+x n +1)(n ∈N *),证明:当 n ∈N * 时,(Ⅰ)0<x n +1<x n ;x n x n + 1 (Ⅱ)2x n +1﹣x n ≤2;1 1(Ⅲ) n ‒ 1≤x n ≤ .2 2n ‒ 22x ‒ 1133 5 2017 年浙江省高考理科数学参考答案与试题解析一、选择题(共 10 小题,每小题 4 分,满分 40 分)1.(4 分)已知集合 P={x |﹣1<x <1},Q={x |0<x <2},那么 P ∪Q=( )A .(﹣1,2)B .(0,1)C .(﹣1,0)D .(1,2)【分析】直接利用并集的运算法则化简求解即可. 【解答】解:集合 P={x |﹣1<x <1},Q={x |0<x <2}, 那么 P ∪Q={x |﹣1<x <2}=(﹣1,2). 故选:A .【点评】本题考查集合的基本运算,并集的求法,考查计算能力.x 2 y 22.(4 分)椭圆 + =1 的离心率是( ) 9 4 5 2 5 A . B . 3 C .3 D .9【分析】直接利用椭圆的简单性质求解即可.x 2 y 2【解答】解:椭圆 + =1,可得 a=3,b=2,则 c= 9 ‒ 4= 5, 9 4c所以椭圆的离心率为: = .a 3故选:B .【点评】本题考查椭圆的简单性质的应用,考查计算能力.3.(4 分)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是(){π π 3π 3πA.2+1 B .2+3 C .2 +1D . 2+3【分析】根据几何体的三视图,该几何体是圆锥的一半和一个三棱锥组成,画出图形,结合图中数据即可求出它的体积.【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成, 圆锥的底面圆的半径为 1,三棱锥的底面是底边长 2 的等腰直角三角形,圆锥的高和棱锥的高相等均为 3,1 1 1 1 π故该几何体的体积为 × ×π×12×3+ × × 2× 2×3= +1,2 3 3 2 2故选:A【点评】本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出原几何体的结构特征,是基础题目.x ≥ 04.(4 分)若 x 、y 满足约束条件 x + y ‒ 3 ≥ 0,则 z=x +2y 的取值范围是()x ‒ 2y ≤ 0 A .[0,6] B .[0,4] C .[6,+∞) D .[4,+∞)【分析】画出约束条件的可行域,利用目标函数的最优解求解即可.{x ‒ 2y = 0x ≥ 0【解答】解:x 、y 满足约束条件 x + y ‒ 3 ≥ 0,表示的可行域如图:x ‒ 2y ≤ 0 目标函数 z=x +2y 经过 C 点时,函数取得最小值, 由{x + y ‒ 3 = 0解得 C (2,1), 目标函数的最小值为:4 目标函数的范围是[4,+∞).故选:D .【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.5.(4 分)若函数 f (x )=x 2+ax +b 在区间[0,1]上的最大值是 M ,最小值是 m ,则 M ﹣m ()A .与 a 有关,且与 b 有关B .与 a 有关,但与 b 无关C .与 a 无关,且与 b 无关D .与 a 无关,但与 b 有关【分析】结合二次函数的图象和性质,分类讨论不同情况下 M ﹣m 的取值与 a ,b 的关系,综合可得答案.a【解答】解:函数 f (x )=x 2+ax +b 的图象是开口朝上且以直线 x=﹣2为对称轴的抛物线,a a①当﹣2>1 或﹣2<0,即 a <﹣2,或 a >0 时,函数 f (x )在区间[0,1]上单调, 此时 M ﹣m=|f (1)﹣f (0)|=|a +1|, 故 M ﹣m 的值与 a 有关,与 b 无关1 a②当≤﹣≤1,即﹣2≤a≤﹣1 时,2 2a a函数f(x)在区间[0,﹣2]上递减,在[﹣2,1]上递增,且f(0)>f(1),a a2此时M﹣m=f(0)﹣f(﹣2)= 4 ,故M﹣m 的值与 a 有关,与 b 无关a 1③当0≤﹣<,即﹣1<a≤0 时,2 2a a函数f(x)在区间[0,﹣2]上递减,在[﹣2,1]上递增,且f(0)<f(1),a a2此时M﹣m=f(1)﹣f(﹣2)=1+a+ 4 ,故M﹣m 的值与 a 有关,与 b 无关综上可得:M﹣m 的值与a 有关,与b 无关故选:B【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.6.(4 分)已知等差数列{a n}的公差为d,前n 项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据等差数列的求和公式和S4+S6>2S5,可以得到d>0,根据充分必要条件的定义即可判断.【解答】解:∵S4+S6>2S5,∴4a1+6d+6a1+15d>2(5a1+10d),∴21d>20d,∴d>0,故“d>0”是“S4+S6>2S5”充分必要条件,故选:C【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题7.(4 分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()A.B.C.D.【分析】根据导数与函数单调性的关系,当f′(x)<0 时,函数f(x)单调递减,当f′(x)>0 时,函数f(x)单调递增,根据函数图象,即可判断函数的单调性,然后根据函数极值的判断,即可判断函数极值的位置,即可求得函数y=f(x)的图象可能【解答】解:由当f′(x)<0 时,函数f(x)单调递减,当f′(x)>0 时,函数f(x)单调递增,则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,且第二个拐点(即函数的极大值点)在x 轴上的右侧,排除B,故选D【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的判断,考查数形结合思想,属于基础题.8.(4 分)已知随机变量ξi满足P(ξi=1)=p i,P(ξi=0)=1﹣p i,i=1,2.若0<p1<p2<1,则()2A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)2 2C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)1 1【分析】由已知得0<p1<p2<,<1﹣p2<1﹣p1<1,求出E(ξ1)=p1,E(ξ2)=p2,2 2从而求出D(ξ1),D(ξ2),由此能求出结果.【解答】解:∵随机变量ξi满足P(ξi=1)=p i,P(ξi=0)=1﹣p i,i=1,2,…,10<p1<p2<,1∴ <1﹣p2<1﹣p1<1,E(ξ1)=1×p1+0×(1﹣p1)=p1,E(ξ2)=1×p2+0×(1﹣p2)=p2,D(ξ1)=(1﹣p1)2p1+(0﹣p1)2(1﹣p1)=p1 ‒p12,D(ξ2)=(1﹣p2)2p2+(0﹣p2)2(1﹣p2)=p2 ‒p22,D(ξ1)﹣D(ξ2)=p1﹣p12﹣(p2 ‒p22)=(p2﹣p1)(p1+p2﹣1)<0,∴E(ξ1)<E(ξ2),D(ξ1)<D(ξ2).故选:A.【点评】本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.9.(4 分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分BQ C R别为AB、BC、CA 上的点,AP=PB,QC=R A=2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P 的平面角为α、β、γ,则()A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α【分析】解法一:如图所示,建立空间直角坐标系.设底面△ABC 的中心为{O .不妨设 OP=3.则 O (0,0,0),P (0,﹣3,0),C (0,6,0),D (0,0,6 2),Q ( 3,3,0),R ( ‒ 2 3,0,0),利用法向量的夹角公式即可得出二面角.解法二:如图所示,连接 O P ,O Q ,O R ,过点 O 分别作垂线:OE ⊥PR ,OF ⊥PQ ,OG ⊥OD ODQR ,垂足分别为 E ,F ,G ,连接 DE ,DF ,DG . 可得 tan α=O E .tan β=OF,tan γ=ODOG.由已知可得:OE >OG >OF .即可得出. 【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC 的中心为 O .不妨设 OP=3.则 O (0,0,0),P (0,﹣3,0),C (0,6,0),D (0,0,6 3,﹣3,0).Q ( 3,3,0),R ( ‒ 2 3,0,0),2),B (3 →→→→PR =( ‒ 2 3,3,0),P D =(0,3,6 0),→ QD =( ‒ 3, ‒ 3,6 2).2),P Q =( 3,6,0),Q R =( ‒ 3 3, ‒ 3, →→设平面 PDR 的法向量为n =(x ,y ,z ),则 → → ,可得{3y + 6 2z = 0,→ n ⋅ PR = 0 n ⋅ PD = 0 →→‒ 2 3x + 3y = 0可得n =( 6,2 2, ‒ 1),取平面 ABC 的法向量m =(0,0,1).→ →→→m ⋅ n ‒ 1 1则 cos <m ,n >= → → = 15, 取 α=arccos 15.|m ||n |32同理可得:12 3∴α<γ<β.解法二:如图所示,连接 O P ,O Q ,O R ,过点 O 分别作垂线:OE ⊥PR ,OF ⊥PQ ,OG ⊥ QR ,垂足分别为 E ,F ,G ,连接 DE ,DF ,DG . 设 OD=h .OD则 tan α=O E.OD OD同理可得:tanβ=OF,tanγ=OG.由已知可得:OE>OG>OF.∴tanα<tanγ<tanβ,α,β,γ 为锐角.∴α<γ<β.故选:B.【点评】本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力,属于难题.10.(4 分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC→→→→→→与BD 交于点O,记I1=OA•OB,I2=OB•OC,I3=OC•OD,则()3 3 A .I 1<I 2<I 3 B .I 1<I 3<I 2 C .I 3<I 1<I 2 D .I 2<I 1<I 3【分析】根据向量数量积的定义结合图象边角关系进行判断即可. 【解答】解:∵AB ⊥BC ,AB=BC=AD=2,CD=3, ∴AC=2 2,∴∠AOB=∠COD >90°, 由图象知 OA <OC ,OB <OD ,→→→→→→∴0>OA •OB >OC •OD ,OB •OC >0, 即 I 3<I 1<I 2, 故选:C .【点评】本题主要考查平面向量数量积的应用,根据图象结合平面向量数量积的定义是解决本题的关键.二、填空题:本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分11.(4 分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率 π,理论上能把 π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将 π 的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形 3 3 的面积 S 6,S 6=2.【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积. 【解答】解:如图所示,单位圆的半径为 1,则其内接正六边形 ABCDEF 中, △AOB 是边长为 1 的正三角形, 所以正六边形 ABCDEF 的面积为 1 3 S 6=6×2×1×1×sin60°= 2 .3 故答案为: 2.【点评】本题考查了已知圆的半径求其内接正六边形面积的应用问题,是基础题.12.(6 分)已知a、b∈R,(a+bi)2=3+4i(i 是虚数单位),则a2+b2= 5 ,ab= 2 .【分析】a、b∈R,(a+bi)2=3+4i(i 是虚数单位),可得3+4i=a2﹣b2+2abi,可得3=a2﹣b2,2ab=4,解出即可得出.【解答】解:a、b∈R,(a+bi)2=3+4i(i 是虚数单位),∴3+4i=a2﹣b2+2abi,∴3=a2﹣b2,2ab=4,解得ab=2,{a = 2,{a=‒ 2.b = 1 b=‒ 1则a2+b2=5,故答案为:5,2.【点评】本题考查了复数的运算法则、复数的相等、方程的解法,考查了推理能力与计算能力,属于基础题.13.(6 分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4= 16 ,a5= 4 .【分析】利用二项式定理的展开式,求解x 的系数就是两个多项式的展开式中x 与常数乘积之和,a5就是常数的乘积.【解答】解:多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,(x+1)3中,x 的系数是:3,常数是1;(x+2)2中x 的系数是4,常数是4,a4=3×4+1×4=16;a5=1×4=4.故答案为:16;4.152 10415 2 104【点评】本题考查二项式定理的应用,考查计算能力,是基础题.14.(6 分)已知△ABC ,AB=AC=4,BC=2,点 D 为 AB 延长线上一点,BD=2,连15 结 CD ,则△BDC 的面积是 2 10,cos ∠BDC= 4.【分析】如图,取 BC 得中点E ,根据勾股定理求出 AE ,再求出 S △ABC ,再根据 S △BDC = 12S △ABC 即可求出,根据等腰三角形的性质和二倍角公式即可求出 【解答】解:如图,取 BC 得中点 E , ∵AB=AC=4,BC=2,1∴BE=2BC=1,AE ⊥BC ,∴AE= AB 2 ‒ B E 2= 15,1 1∴S = BC•AE= ×2× 15= 15, △ABC2 2∵BD=2, 1 ∴S △BDC =2S △ABC = ,∵BC=BD=2, ∴∠BDC=∠BCD , ∴∠ABE=2∠BDC 在 Rt △ABE 中,B E 1∵cos ∠ABE=AB =4,1∴cos ∠ABE=2cos 2∠BDC ﹣1=4,∴cos ∠BDC= ,故答案为: ,【点评】本题考查了解三角形的有关知识,关键是转化,属于基础题→→→→→ →→ →15.(6 分)已知向量a 、b 满足|a |=1,|b |=2,则|a +b |+|a ﹣b |的最小值是 4 , 最大值是 2→ →【分析】通过记∠AOB=α(0≤α≤π),利用余弦定理可可知|a +b |→ →| a ﹣b |【解答】解:记∠AOB=α,则 0≤α≤π,如图, 由余弦定理可得: → →|a +b | → →|a ﹣b |令 x= 5 ‒ 4cosα,y= 5 + 4cosα,则 x 2+y 2=10(x 、y ≥1),其图象为一段圆弧 MN ,如图,令 z=x +y ,则 y=﹣x +z ,则直线 y=﹣x +z 过 M 、N 时 z 最小为 z min =1+3=3+1=4, 当直线 y=﹣x +z 与圆弧 MN 相切时 z 最大,由平面几何知识易知 z max 即为原点到切线的距离的 2倍, 也就是圆弧 MN 所在圆的半径的 2倍, 所以 z max = 2× 10=2 5.→ →→ →综上所述,|a +b |+|a ﹣b |的最小值是 4,最大值是2 5. 故答案为:4、2 5.【点评】本题考查函数的最值及其几何意义,考查数形结合能力,考查运算求解能力,涉及余弦定理、线性规划等基础知识,注意解题方法的积累,属于中档题.16.(4 分)从6 男2 女共8 名学生中选出队长1 人,副队长1 人,普通队员2人组成4 人服务队,要求服务队中至少有1 名女生,共有660 种不同的选法.(用数字作答)【分析】由题意分两类选 1 女 3 男或选2 女2 男,再计算即可【解答】解:第一类,先选1 女3 男,有C63C21=40 种,这4 人选2 人作为队长和副队有A42=12 种,故有40×12=480 种,第二类,先选2 女2 男,有C62C22=15 种,这4 人选2 人作为队长和副队有A42=12 种,故有15×12=180 种,根据分类计数原理共有480+180=660 种,故答案为:660【点评】本题考查了分类计数原理和分步计数原理,属于中档题417.(4 分)已知a∈R,函数f(x)=|x+x﹣a|+a 在区间[1,4]上的最大值是5,则a9的取值范围是(﹣∞, ] .24【分析】通过转化可知|x+x﹣a|+a≤5 且a≤5,进而解绝对值不等式可知2a﹣5≤x+4x≤5,进而计算可得结论.4 4【解答】解:由题可知|x+x﹣a|+a≤5,即|x+x﹣a|≤5﹣a,所以a≤5,4又因为|x+x﹣a|≤5﹣a,4所以a﹣5≤x+x﹣a≤5﹣a,4所以2a﹣5≤x+x≤5,4又因为1≤x≤4,4≤x+x≤5,9所以2a﹣5≤4,解得a≤ ,29故答案为:(﹣∞,2].【点评】本题考查函数的最值,考查绝对值函数,考查转化与化归思想,注意解题方法的积累,属于中档题.三、解答题(共5 小题,满分74 分)18.(14 分)已知函数f(x)=sin2x﹣cos2x﹣22π(Ⅰ)求f(3 )的值.3sinx cosx(x∈R).(Ⅱ)求f(x)的最小正周期及单调递增区间.【分析】利用二倍角公式及辅助角公式化简函数的解析式,2π(Ⅰ)代入可得:f(3 )的值.(Ⅱ)根据正弦型函数的图象和性质,可得f(x)的最小正周期及单调递增区间7π【解答】解:∵函数f(x)=sin2x﹣cos2x﹣2 3sinx cosx=﹣3sin2x﹣cos2x=2sin(2x+ 6 )2π2π7π5π(Ⅰ)f(3 )=2sin(2× + )=2sin =2,3 6 2(Ⅱ)∵ω=2,故T=π,即f(x)的最小正周期为π,7πππ由2x+6 ∈[﹣2+2kπ,2+2kπ],k∈Z 得:5ππx∈[﹣6 +kπ,﹣3+kπ],k∈Z,5πππ2π故f(x)的单调递增区间为[﹣6 +kπ,﹣3+kπ]或写成[kπ+6,kπ+ 3 ],k∈Z.【点评】本题考查的知识点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档.19.(15 分)如图,已知四棱锥P﹣ABCD,△PAD 是以AD 为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E 为PD 的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.【分析】(Ⅰ)取AD 的中点F,连结EF,CF,推导出EF∥PA,CF∥AB,从而平面EFC∥平面ABP,由此能证明EC∥平面PAB.(Ⅱ)连结BF,过F 作FM⊥PB 于M,连结PF,推导出四边形BCDF 为矩形,从而BF⊥AD,进而AD⊥平面PBF,由AD∥BC,得BC⊥PB,再求出BC⊥MF,由此能求出sinθ.【解答】证明:(Ⅰ)取AD 的中点F,连结EF,CF,∵E 为PD 的中点,∴EF∥PA,在四边形ABCD 中,BC∥AD,AD=2DC=2CB,F 为中点,∴CF∥AB,∴平面EFC∥平面ABP,∵EC⊂平面EFC,∴EC∥平面PAB.解:(Ⅱ)连结BF,过 F 作FM⊥PB 于M,连结PF,∵PA=PD,∴PF⊥AD,推导出四边形BCDF 为矩形,∴BF⊥AD,∴AD⊥平面PBF,又AD∥BC,∴BC⊥平面PBF,∴BC⊥PB,2设 DC=CB=1,由 PC=AD=2DC=2CB ,得 AD=PC=2,∴PB= P C 2 ‒ BC 2= 14 ‒ 1= 3, BF=PF=1,∴MF=2,又 BC ⊥平面 PBF ,∴BC ⊥MF ,1∴MF ⊥平面 PBC ,即点 F 到平面 PBC 的距离为 ,21 1 ∵MF=2,D 到平面 PBC 的距离应该和 MF 平行且相等,为 ,E 为 PD 中点,E 到平面 PBC 的垂足也为垂足所在线段的中点,即中位线,1∴E 到平面 PBC 的距离为 ,4在△ PCD 中,P C = 2,CD = 1,P D = 2, 由余弦定理得 CE= 2,142设直线 CE 与平面 PBC 所成角为 θ,则 sin θ=C E = 8.【点评】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.20.(15 分)已知函数 f (x )=(x ﹣(1) 求 f (x )的导函数;1)e ﹣x1(x ≥2).(2) 求 f (x )在区间[2,+∞)上的取值范围.【分析】(1)求出 f (x )的导数,注意运用复合函数的求导法则,即可得到所求;1 5(2)求出 f (x )的导数,求得极值点,讨论当 <x <1 时,当 1<x < 时,当 x >2 25 1 5 时,f (x )的单调性,判断 f (x )≥0,计算 f ( ),f (1),f ( ),即可得到所 2 2 22x ‒ 11 2x ‒ 1 2x ‒ 1 )e , )e =(1 ﹣ )e ;2 2 1求取值范围. 【解答】解:(1)函数 f (x )=(x ﹣)e ﹣x1 (x ≥2), 1 导数 f′(x )=(1﹣2• •2)e ﹣x ﹣(x ﹣ 2x ‒ 1)e ﹣x =(1﹣x + 2x ‒2 ﹣x ﹣x )(1 2 ﹣x 2x ‒ 1 (2)由 f (x )的导数 f′(x )=(1﹣x )(1﹣ 2 ﹣x 2x ‒ 1 5 可得 f′(x )=0 时,x=1 或 , 2 1 当 <x <1 时,f′(x )<0,f (x )递减; 2 5 当 1<x < 时,f′(x )>0,f (x )递增; 2 5当 x >2时,f′(x )<0,f (x )递减, 且 x ≥ 2x ‒ 1⇔x 2≥2x ﹣1⇔(x ﹣1)2≥0,则 f (x )≥0.1 5 1 1 ‒2 5 1 ‒ 2 由 f (2)=2e ,f (1)=0,f ( )=2e , 1 ‒ 2 即有f (x )的最大值为2e ,最小值为 f (1)=0. 1 11 ‒ 2则 f (x )在区间[2,+∞)上的取值范围是[0, e ]. 【点评】本题考查导数的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导是解题的关键,属于中档题.1 1 3 921.(15 分)如图,已知抛物线 x 2=y ,点 A (﹣ , ),B ( , ),抛物线上的点 P (x ,y ) 2 4 2 4 1 3 (﹣ <x < ),过点 B 作直线 AP 的垂线,垂足为 Q .2 2 (Ⅰ)求直线 AP 斜率的取值范围;(Ⅱ)求|PA |•|PQ |的最大值.2x ‒ 14 21 3 【分析】(Ⅰ)通过点 P 在抛物线上可设 P (x ,x 2),利用斜率公式结合﹣ <x <2 2 可得结论; 13 (Ⅱ)通过(I )知 P (x ,x 2)、﹣ <x < ,设直线 AP 的斜率为 k ,联立直线 AP 、BQ2 2→ →方程可知 Q 点坐标,进而可用 k 表示出P Q 、P A ,计算可知|PA |•|PQ |=(1+k )3 (1﹣k ),通过令 f (x )=(1+x )3(1﹣x ),﹣1<x <1,求导结合单调性可得结论.1 3 【解答】解:(Ⅰ)由题可知 P (x ,x 2),﹣ <x < ,2 2x 2 ‒ 11所以 k AP = x + 1 =x ﹣ ∈(﹣1,1), 2故直线 AP 斜率的取值范围是:(﹣1,1);1 3 (Ⅱ)由(I )知 P (x ,x 2),﹣ <x < ,2 2 → 1 1 所以P A =(﹣ ﹣x , ﹣x 2), 2 4 1 1 13 9 设直线 AP 的斜率为 k ,则 AP :y=kx + k + ,BQ :y=﹣ x + + ,2 4 k 2k 43 + 4k ‒ k 2 9k 2 + 8k + 1 联立直线 AP 、BQ 方程可知 Q ( , 2k 2 + 2 ), 4k 2 + 4→1 + k ‒ k2 ‒ k3 ‒ k4 ‒ k 3 + k 2 + k 故P Q =(→ , 1 + k 2 ), 1 + k 2 又因为P A =(﹣1﹣k ,﹣k 2﹣k ),→ → (1 + k )3(k ‒ 1) k 2(1 + k )3(k ‒ 1)故﹣|PA |•|PQ |=P A •P Q =+ 1 + k 2 1 + k 2 =(1+k )3(k ﹣1),所以|PA |•|PQ |=(1+k )3(1﹣k ),2 16 16令 f (x )=(1+x )3(1﹣x ),﹣1<x <1,则 f′(x )=(1+x )2(2﹣4x )=﹣2(1+x )2(2x ﹣1),1 1由于当﹣1<x <2时 f′(x )>0,当 <x <1 时 f′(x )<0, 1 27 27故 f (x )max =f (2)= ,即|PA |•|PQ |的最大值为 . 【点评】本题考查圆锥曲线的最值问题,考查运算求解能力,考查函数思想,注意解题方法的积累,属于中档题.22.(15 分)已知数列{x n }满足:x 1=1,x n =x n +1+ln (1+x n +1)(n ∈N *),证明:当 n ∈N * 时,(Ⅰ)0<x n +1<x n ;x n x n + 1(Ⅱ)2x n +1﹣x n ≤ 2 ;1 1 (Ⅲ) n ‒ 1≤x n ≤ .2 2n ‒ 2【分析】(Ⅰ)用数学归纳法即可证明,(Ⅱ)构造函数,利用导数判断函数的单调性,把数列问题转化为函数问题,即可证明,x n x n + 1 1 1 1 1 (Ⅲ)由 2 ≥2x n +1﹣x n 得 ﹣ ≥2( ﹣ )>0,继续放缩即可证明 x n + 1 2 x n 2【解答】解:(Ⅰ)用数学归纳法证明:x n >0,当 n=1 时,x 1=1>0,成立,假设当 n=k 时成立,则 x k >0,那么 n=k +1 时,若 x k +1<0,则 0<x k =x k +1+ln (1+x k +1)<0,矛盾,故 x n +1>0,因此 x n >0,(n ∈N*)∴x n =x n +1+ln (1+x n +1)>x n +1,因此 0<x n +1<x n (n ∈N *),(Ⅱ)由x n =x n +1+ln (1+x n +1)得 x n x n +1﹣4x n +1+2x n =x n +12﹣2x n +1+(x n +1+2)ln (1+x n +1),记函数 f (x )=x 2﹣2x +(x +2)ln (1+x ),x ≥02x 2 + x∴f′(x )= x + 1+ln (1+x )>0,∴f (x )在(0,+∞)上单调递增,∴f (x )≥f (0)=0,因此 x n +12﹣2x n +1+(x n +1+2)ln (1+x n +1)≥0,x n x n + 1故 2x n +1﹣x n ≤2 ;(Ⅲ)∵x n =x n +1+ln (1+x n +1)≤x n +1+x n +1=2x n +1,1 ∴x n ≥ , 2n ‒ 1 x n x n + 1 1 1 1 1 由 2 ≥2x n +1﹣x n 得 ﹣ ≥2( ﹣ )>0, 1 1 1 1 x n + 1 2 x n 2 1 1 ∴ ﹣ ≥2( ﹣ )≥…≥2n ﹣1( ﹣ )=2n ﹣2, x n 2 1 x n ‒ 1 2 x 1 2∴x n ≤ , 2n ‒ 2 1 1 综上所述 n ‒ 1≤x n ≤ .2 2n ‒ 2【点评】本题考查了数列的概念,递推关系,数列的函数的特征,导数和函数的单调性的关系,不等式的证明,考查了推理论证能力,分析解决问题的能力,运算能力,放缩能力,运算能力,属于难题。

2017年浙江省嘉兴市高考数学一模试卷

2017年浙江省嘉兴市高考数学一模试卷

2017年浙江省嘉兴市高考数学一模试卷(文科)一、选择题1.已知集合A={x|x2﹣x﹣2≤0},集合B={x|0<x≤3},则A∩B=()A.(0,1]B.(0,2]C.(2,3)D.[2,3]2.命题“(x﹣1)2+(y﹣2)2=0”是(x﹣1)(y﹣2)=0的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.在等比数列{a n}中,S n为前n项和,已知a5=2S4+3,a6=2S5+3,则此数列的公比q为()A.2 B.3 C.4 D.54.某几何体的三视图如图所示(单位:cm)则该几何体的体积是()A.4cm3 B.8cm3 C.cm3D.cm35.已知,α∈[0,π],则tanα=()A.B.C.D.6.定义max{a,b}=,若实数x,y满足,则max{2x+1,x﹣2y+5}的最小值为()A.1 B.2 C.3 D.47.设α,β是两个不同的平面,l,m是两条不同的直线,α∩β=m,记α1为直线l与平面α所成的角,A={l|l⊂β},B={α1|l∈A},若对任意α1∈B,存在α∈B,恒有α1<α,则()A.α⊥β B.α与β不垂直C.l0⊥a D.l0⊥m8.l是经过双曲线C:﹣=1(a>0,b>0)焦点F且与实轴垂直的直线,A,B是双曲线C的两个顶点,若在l上存在一点P,使∠APB=60°,则双曲线的离心率的最大值为()A.B.C.2 D.3二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9.已知数列{a n }满足a 2=2,且数列{3a n ﹣2n }为公比为2的等比数列,则a 1=______,数列{a n }通项公式a n =______. 10.函数则f (﹣1)=______,若方程f (x )=m 有两个不同的实数根,则m 的取值范围为______.11.已知实数x ,y 满足x >0,y >0,x +2y=3,则的最小值为______,x 2+4y 2+xy 的最小值为______.12.已知实数x ,y 满足.(1)当a=2时,则2x +y 的最小值为______;(2)若满足上述条件的实数x ,y 围成的平面区域是三角形,则实数a 的取值范围是______. 13.是按先后顺序排列的一列向量,若,且,则其中模最小的一个向量的序号为______.14.如图,平面ABC ⊥平面α,D 为线段AB 的中点,,∠CDB=45°,点P 为面α内的动点,且P 到直线CD 的距离为,则∠APB 的最大值为______.15.边长为1的正方体ABCD ﹣A 1B 1C 1D 1若将其对角线AC 1与平面α垂直,则正方体ABCD ﹣A 1B 1C 1D 1在平面α上的投影面积为______.三、解答题:本大题共5小题,满分74分.解答应写出文字说明,证明过程或演算步骤.16.(本题满分15分)已知(cos 3sin ,1),(,2cos )a x x b y x =+= ,且//a b. (1)将y 表示为x 的函数()f x ,并求()f x 的单调增区间.(2)已知,,a b c 分别为ABC ∆的三个内角,,A B C ∠∠∠对应边的边长,若()32Af =且2,3ABC a S ∆==,求b ,c 的值.17.(本题满分15分)如图,在直三棱柱111ABC A BC -中,M 为1AB 的中点,1CMB ∆为等边三角形。

浙江省嘉兴市2017届高三上学期基础测试数学试题(解析版)

浙江省嘉兴市2017届高三上学期基础测试数学试题(解析版)

一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合2{|20}A x x x =-->, {|||3}B x x =<,则AB =( )A .{|31}x x -<<-B .{|23}x x <<C .{|3123}x x x -<<-<<或D .{|323}x x x -<<-<<或1 【答案】C考点:集合的运算. 2.已知复数21a ii++(i 是虚数单位)是纯虚数,则实数a =( ) A .-2 B .-1 C .0 D .2 【答案】A 【解析】 试题分析:222122a i a a i i ++-=++,由21a i i ++是纯虚数得20,22a a +=∴=-,故选A.考点:复数的代数运算.3.已知,a b R ∈,则“||3a b +≤”是“||||3a b +≤”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B 【解析】试题分析:设{}{}3),(,3),(≤+=≤+=b a b a B b a b a A ,如图涂色部分为A ,红色为B ,有B 是A 的真子集,故为必要不充分条件,选B.考点:充分条件;必要条件.【易错点睛】本题考查了充分条件;必要条件.判断充分、必要条件时应注意的问题:(1)要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A ;(2)要善于举出反例:如果从正面判断或证明一个命题的正确或错误不易进行,那么可以通过举出恰当的反例来说明.4.对于空间的三条直线,,m n l 和三个平面,,αβγ,则下列命题中为假命题的是( ) A .若,m n αα⊥⊥,则//m n B .若//,m αβα⊥,则m β⊥ C .若,,l αγβγαβ⊥⊥=,则l γ⊥D .若//,//m n ββ,则//m n 【答案】D考点:直线与平面的位置关系.5.若函数()g x 的图象可由函数()sin 22f x x x =+的图象向右平移6π个单位长度变换得到,则()g x 的解析式是( )A .()2sin 2g x x =B .()2sin(2)6g x x π=+C .()2sin(2)2g x x π=+D .2()2sin(2)3g x x π=+【答案】A 【解析】试题分析:()sin 222sin(2)3f x x x x π==+向右平移6π个单位长度变换得到 ()g x 2sin[2()]2sin 263x x ππ=-+=,故选A.考点:sin()y A x ωϕ=+的图象的变换.6.设点M 是线段AB 的中点,点C 在直线AB 外,||6AB =,||||CA CB CA CB +=-,则||CM = ( )A .12B .6C .3D .32【答案】C 【解析】试题分析:2,,26,3CA CB CM CA CB BA CM BA CM +=-=∴==∴=,故选C. 考点:向量的加法、减法. 7.若函数()2()af x x a R x=+∈在[1,)+∞上是增函数,则实数a 的取值范围是( ) A .[0,2] B .[0,4] C .(,2]-∞ D .(,4]-∞ 【答案】C考点:导数与函数的单调性.【易错点睛】导数法解决函数的单调性问题:(1)当()f x 不含参数时,可通过解不等式'()0f x > (或'()0f x <)直接得到单调递增(或递减)区间.(2)已知函数的单调性,求参数的取值范围,应用条件'()0f x ≥ (或'()0,(,)f x x a b ≤∈)恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是'()f x 不恒等于0的参数的范围.8.已知双曲线22221(0,0)x y a b a b-=>>与抛物线220y x =有一个公共的焦点F ,且两曲线的一个交点为P ,若||17PF =,则双曲线的离心率为( )A .53 C .54 D 【答案】B考点:双曲线的定义.【易错点睛】本题主要考查了双曲线的定义,双曲线的离心率,抛物线的定义.利用抛物线的定义可求得点P 的横坐标,代入抛物线方程,可求得点P 的坐标.而后利用双曲线的定义可得a 的值,离心率就可求得.本题考查的知识点多,综合性强,以基础知识为主,放在最后一个选择题的位置难度不大.属于中等难度.第Ⅱ卷(非选择题共110分)二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,满分36分.)9.设等差数列{}n a 的前n 项和为n S ,已知316a =,610a =,则公差d = ;n S 为最大 值时的n = .【答案】2d =- 10n =或11 【解析】试题分析:63(63),10163,2a a d d d =+-∴=+∴=-,因为31(31)a a d =+-,1162(2)a ∴=+⨯-,120a ∴=,221n S n n ∴=-+,当212(1)n =-⨯-,由n ∈Z 得10n =或11时,n S 为最大值.考点:等差数列的通项公式;等差数列的前n 项和.10.已知某几何体的三视图如图所示,则其表面积为 ;体积为 .【答案】53+32考点:几何体的表面积和体积.11.在6(2)x -的展开式中,含3x 项的二项式系数为 ;系数为 .(均用数字 作答)【答案】20 160- 【解析】试题分析:r r r r x C T )(2661-=-+,含3x 项的二项式系数为2036=C ,含3x 项的系数为363362(1)160C --=-.考点:二项式定理.12.已知一个袋子中装有4个红球和2个白球,假设每一个球被摸到的可能性是相等的,若从袋子中摸出3个球,记摸到白球的个数ζ,则1ζ=的概率是 ;随机变量ζ的均值是 . 【答案】531 【解析】试题分析:1ζ=的概率是53362412=C C C ,0ζ=的概率是513634=C C ,2ζ=的概率是51361422=C C C ,则随机变量ζ的均值是1512510531=⨯+⨯+⨯. 考点:数学期望.13.若,x y 满足4003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则|2|z x y =-的最大值为 .【答案】9考点:线性规划.14.由直线3450x y -+=上的一动点P 向圆224240x y x y +-++=引切线,则切线长的最小值 为 . 【答案】22 【解析】试题分析:当直线上的点到圆心(2,1)-的距离最短时,切线长最小,此时,圆心到直线的距离1,3)4(35)1(42323==-++-⨯-⨯=r d ,所以切线长为22.考点:直线与圆相切.【易错点睛】本题主要考查了直线与圆相切的切线长的问题,转化与化归思想.直线3450x y -+=上的一动点P 向圆224240x y x y +-++=引切线,切线最小可转化为直线上的点到圆心的最小值.利用圆到直线的距离,切线上,圆的半径可建立勾股定理,建立等式,求得切线长.本题知识点难度不大,本题的难度为如何转化为相切问题.15.已知两单位向量12,e e 的夹角为60,若实数,x y 满足12|2|3xe ye +=,则2x y +的取值范 围是 . 【答案】]2,2[-考点:向量的数量积.【易错点睛】本题主要考查了向量的数量积,一元二次方程的解的问题.向量与其他知识的精彩交汇:向量与其他知识结合,题目新颖而精巧,既符合考查知识的“交汇处”的命题要求,又加强了对双基履盖面的考查,特别是通过向量坐标表示的运算,利用解决平行、垂直、夹角和距离等问题的同时,把问题转化为新的函数、三角或几何问题.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分14分)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c cos sin B b A =. (1)求角B 的大小;(2)若ABC ∆的面积2S =,求ac的值. 【答案】(1) 3π=B ;(2)1=ca.考点:正弦定理;余弦定理.【易错点睛】解三角形问题的两重性:①作为三角形问题,它必须要用到三角形的内角和定理,正弦、余弦定理及其有关三角形的性质,及时进行边角转化,有利于发现解题的思路;②它毕竟是三角变换,只是角的范围受到了限制,因此常见的三角变换方法和原则都是适用的,注意“三统一”(即“统一角、统一函数、统一结构”)是使问题获得解决的突破口. 17.(本小题满分15分)已知数列{}n a 的前n 项和为n S ,若11a =,且12n n S ta =-,其中*n N ∈. (1)求实数t 的值和数列{}n a 的通项公式; (2)若数列{}n b 满足32log n n b a =,求数列11{}n n b b +的前n 项和n T . 【答案】(1)23=t ,13-=n n a ;(2)12121121+=⎪⎭⎫ ⎝⎛+-n n n . 【解析】试题分析:(1)由n n a S =可得32t =,2n ≥时由1n n n a S S -=-得数列{}n a 为首项为1,公比为3的等比考点:等比数列的通项公式;数列求和.【易错点睛】本题主要考查了等比数列的通项公式,用裂项相消的方法数列求得等.用裂项相消法求和应注意的问题:利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差与系数相乘后与原项相等. 18.(本小题满分15分)如图,在三棱锥P ABC -中,ABC ∆是等边三角形,D 是AC 的中点,PA PC =,二面角P AC B -- 的大小为60.(1)求证:平面PBD ⊥平面PAC ; (2)求AB 与平面PAC 所成角的正弦值.【答案】(1)证明见解析;(2)43.方法二:BD AC ,如图建立空间直角坐标系,则()0,0,0D ,令()0,0,1A , 则()0,3,0B ,()0,0,1-C又PDB ∠为二面角B AC P --的平面角,得︒=∠60PDB设λ=DP ,则⎪⎪⎭⎫ ⎝⎛λλ23,2,0P 设()z y x n ,,=为面PAC 的一法向量,则()0,0,2-=AC ⎪⎪⎭⎫ ⎝⎛-=λλ23,2,1AP 得⎪⎩⎪⎨⎧=++-=-023202z y x x λλ 取3=y ,得()1,3,0-= 又()0,3,1-=AB , 得 43223,cos =⨯>=<AB n 设AB 为平面PAC 所成角为θ,则43,cos sin <=n θ 考点:直线与平面垂直的判定定理;二面角;直线与平面所成的角.19.(本小题满分15分) 已知函数21()ln (,)2f x a x x bx a b R =++∈在122,3x x ==处取得极值. (1)求,a b 的值;(2)求()f x 在点(1,(1))P f 处的切线方程.【答案】(1)⎩⎨⎧=-=65a b ;(2)01324=--y x .据题意,得 2,3是方程02=++a bx x 两根则有 ⎩⎨⎧=-=⇒⎩⎨⎧=⨯-=+653232a b a b ┅8分 (2)()x x x x f 521ln 62-+=, 则 ()295211-=-=f , 得 )29,1(-P 又由()xx x x f 652+-=',得 ()26511=+-='f 从而,得所求切线方程为()1229:-=+x y l ,即01324=--y x . 考点:导数的几何意义;导数与极值.20.(本小题满分12分)已知椭圆:C 22221(0)x y a b a b +=>>的左、右焦点分别为12,F F ,离心率为12,经过点2F 且倾斜角为45 的直线l 交椭圆于,A B 两点.(1)若1ABF ∆的周长为16,求直线l 的方程;(2)若24||7AB =,求椭圆C 的方程.【答案】(1)2:-=x y l ;(2)13422=+y x .考点:直线与椭圆的位置关系.:。

2017年浙江省嘉兴市高考数学一模试卷(解析版)

2017年浙江省嘉兴市高考数学一模试卷(解析版)

2017年浙江省嘉兴市高考数学一模试卷(解析版)D2017年浙江省嘉兴市高考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.设复数z=1﹣i(i是虚数单位),则+z等于()A.2 B.﹣2 C.2i D.﹣2i【考点】复数代数形式的加减运算.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解: +z=+1﹣i=+1﹣i=1+i+1﹣i=2.故选:A.2.已知α∈R,则“cosα=﹣”是“α=2kπ+,k∈Z”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】cosα=﹣,解得α=2kπ±,k∈Z,即可判断出结论.【解答】解:cosα=﹣,解得α=2kπ±,k∈Z,∴“cosα=﹣”是“α=2kπ+,k∈Z”的必要但充分条件.故选:B.3.已知a为实数,设函数f(x)=,则f(2a+2)的值为()A.2a B.a C.2 D.a或2【考点】函数的值.【分析】根据函数的解析式求出函数值即可.【解答】解:∵函数f(x)=,∴f(2a+2)=log(2a+2﹣2)=a,2故选:B.4.已知实数x,y满足,若ax+y的最大值为10,则实数a=()A.4 B.3 C.2 D.1【考点】简单线性规划.【分析】画出满足条件的平面区域,判断最优解的位置,将点的坐标代入求出a 的值即可.【解答】解:画出满足条件的平面区域,如图示:由,解得A(3,4),令z=ax+y,因为z的最大值为10,所以直线在y轴上的截距的最大值为10,即直线过(0,10),所以z=ax+y与可行域有交点,当a>0时,直线经过A时z取得最大值.即ax+y=10,将A(3,4)代入得:3a+4=10,解得:a=2,当a≤0时,直线经过A时z取得最大值.即ax+y=10,将A(3,4)代入得:3a+4=10,解得:a=2,与a≤0矛盾,综上:a=2.5.设Sn 为等差数列{an}的前n项和,若=,则=()A.B.C.D.【考点】等差数列的性质.【分析】利用=,可得d=a1,即可求出.【解答】解:设公差为d,则=,d=a1,∴==,故选A.6.已知抛物线y2=4x的焦点为F,直线l过F且与抛物线交于A、B两点,若|AB|=5,则AB中点的横坐标为()A.B.2 C.D.1【考点】抛物线的简单性质.【分析】先根据抛物线方程求出p的值,再由抛物线的性质可得到答案.【解答】解:∵抛物线y2=4x,∴P=2,设经过点F的直线与抛物线相交于A、B两点,其横坐标分别为x1,x2,利用抛物线定义,AB中点横坐标为x0=(x1+x2)=(|AB|﹣P)=(5﹣2)=.故选:C.7.函数f(x)=()x﹣x2的大致图象是()A. B.C.D.【考点】函数的图象.【分析】利用排除法,即可得出结论.【解答】解:由题意,x=0,f(0)=1,排除B,x=﹣2,f(﹣2)=0,排除A,x→﹣∞,f(x)→+∞,排除C,故选D.8.已知平面向量、满足||=||=1,•=,若向量满足|﹣+|≤1,则||的最大值为()A.1 B.C.D.2【考点】平面向量数量积的运算.【分析】通过向量的数量积的定义,设出向量的坐标,利用向量的坐标运算和向量的模的公式及几何意义,结合圆的方程即可得出最大值为圆的直径.【解答】解:由平面向量、满足||=||=1,•=,可得||•||•cos<,>=1•1•cos<,>=,由0≤<,>≤π,可得<,>=,设=(1,0),=(,),=(x,y),则|﹣+|≤1,即有|(+x,y﹣)|≤1,即为(x+)2+(y﹣)2≤1,故|﹣+|≤1的几何意义是在以(﹣,)为圆心,半径等于1的圆上和圆内部分,||的几何意义是表示向量的终点与原点的距离,而原点在圆上,则最大值为圆的直径,即为2.故选:D.9.已知函数f(x)=3sin(3x+φ),x∈[0,π],则y=f(x)的图象与直线y=2的交点个数最多有()A.2个B.3个C.4个D.5个【考点】三角函数的最值.【分析】令f(x)=2,得sin(3x+φ)=,根据x∈[0,π],求出3x+φ的取值范围,根据正弦函数的图象与性质,可得出函数y=f(x)的图象与直线y=2的交点最多有4个.【解答】解:令f(x)=3sin(3x+φ)=2,得sin(3x+φ)=∈(﹣1,1),又x∈[0,π],∴3x∈[0,3π],∴3x+φ∈[φ,3π+φ];根据正弦函数的图象与性质,可得该方程在正弦函数一个半周期上最多有4个解,即函数y=f(x)的图象与直线y=2的交点最多有4个.故选:C.10.如图,点F1、F2是椭圆C1的左右焦点,椭圆C1与双曲线C2的渐近线交于点P,PF1⊥PF2,椭圆C1与双曲线C2的离心率分别为e1、e2,则()A.e22=B.e22=C.e22= D.e22=【考点】圆锥曲线的综合.【分析】设椭圆及双曲线方程,由曲线共焦点,则a12+b12=c2,a22+b22=c2,求得双曲线的渐近线方程,代入椭圆方程,求得P点坐标,由直角三角形的性质,即可求得丨OP丨=c,利用勾股定理及椭圆及双曲线的性质即可求得答案.【解答】解:设椭圆的方程为:,双曲线的方程为:,P(x,y),由题意可知:a12+b12=c2,a22+b22=c2,双曲线的渐近线方程:y=±x,将渐近线方程代入椭圆方程:解得:x2=,y2=,由PF1⊥PF2,∴丨OP丨=丨F1F2丨=c,∴x2+y2=c2,代入整理得:a14+a22c2=2a12c2,两边同除以c4,由椭圆及双曲线的离心率公式可知:e1=,e2=,整理得:e22=,故选D.二、填空题(共7小题,多空题每题6分,单空题每题4分,满分36分)11.已知集合A={x|﹣1≤x≤2},B={x|x2﹣4x≤0},则A∪B= {x|﹣1≤x≤4} ,A∩(∁RB)= {x|﹣1≤x<0} .【考点】交、并、补集的混合运算.【分析】先求出集合A,B,再求出∁R B,由此能求出A∪B和 A∩(∁RB).【解答】解:∵集合A={x|﹣1≤x≤2},B={x|x2﹣4x≤0}={x|0≤x≤4},∴∁RB={x|x<0或x>4},∴A∪B={x|﹣1≤x≤4},A∩(∁RB)={x|﹣1≤x<0}.故答案为:{x|﹣1≤x≤4},{x|﹣1≤x<0}.12.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是76 cm2,体积是40 cm3.【考点】由三视图求面积、体积.【分析】根据几何体的三视图得该几何体是一个底面为直角梯形的四棱柱,由三视图求出几何元素的长度,由梯形的面积公式、柱体的体积公式求出该几何体的体积,由四棱柱的各个面的长度求出几何体的表面积.【解答】解:根据几何体的三视图得:该几何体是一个底面为直角梯形的四棱柱,其底面是正视图中的直角梯形,上底为1cm,下底为4cm,高为4cm,由侧视图知四棱柱的高为4cm,所以该几何体的体积V==40(cm3),由正视图可知直角梯形斜腰是5,=2×+(1+4+4+5)×4=76(cm2),则该几何体的表面积S表面积故答案为:76,40.13.已知随机变量ξ的分布列如下:ξ 012P b a2﹣则E(ξ)的最小值为,此时b= .【考点】离散型随机变量的期望与方差.【分析】由题意可得:b+a2+=1,即b+a2﹣=,b∈[0,1],a∈[﹣1,1].E (ξ)=0+a2+2()=a2﹣a+1=+,利用二次函数的单调性即可得出.【解答】解:由题意可得:b+a2+=1,即b+a2﹣=,b∈[0,1],a∈[﹣1,1].E(ξ)=0+a2+2()=a2﹣a+1=+,当且仅当a=时取等号,此时b=.故答案为:,.14.已知f(x)=x﹣2,g(x)=2x﹣5,则不等式|f(x)|+|g(x)|≤2的解集为[,3] ;|f(2x)|+|g(x)|的最小值为 1 .【考点】绝对值不等式的解法.【分析】通过讨论x的范围,求出不等式|f(x)|+|g(x)|≤2的解集即可;根据绝对值的性质求出|f(2x)|+|g(x)|的最小值即可.【解答】解:∵f(x)=x﹣2,g(x)=2x﹣5,∴|f(x)|+|g(x)|≤2,即|x﹣2|+|2x﹣5|≤2,x≥时,x﹣2+2x﹣5≤2,解得:≤x≤3,2<x<时,x﹣2+5﹣2x≤2,解得:x≥1,x≤2时,2﹣x+5﹣2x≤2,解得:x≥,综上,不等式的解集是[,3];|f(2x)|+|g(x)|=|2x﹣4|+|2x﹣5|≥|2x﹣4﹣2x+5|=1,故|f(2x)|+|g(x)|的最小值是1,故答案为:[,3],1.15.动点P从正方体ABCD﹣A1B1C1D1的顶点A出发,沿着棱运动到顶点C1后再到A,若运动中恰好经过6条不同的棱,称该路线为“最佳路线”,则“最佳路线”的条数为18 (用数字作答).【考点】排列、组合的实际应用;棱柱的结构特征.【分析】根据分步计数和分类计数原理即可求出答案【解答】解:从A点出发有3种方法,(A1,B,D),假如选择了A1,则有2种选法(B1,D1)到C1,再从C1出发,若选择了(B1,或D1),则只有一种方法到A,若选择了C,则有2种方法到A,故“最佳路线”的条数为C31C21(1+2)=18种,故答案为:1816.已知a>0,b>0,且满足3a+b=a2+ab,则2a+b的最小值为3+2.【考点】基本不等式.【分析】由a>0,b>0,且满足3a+b=a2+ab,可得b=>0,解得1<a<3.则2a+b=2a+=a﹣1++3,利用基本不等式的性质即可得出.【解答】解:由a>0,b>0,且满足3a+b=a2+ab,∴b=>0,解得1<a <3.则2a+b=2a+=a﹣1++3≥2+3=2+3,当且仅当a=1+,b=1时取等号.故答案为:3+2.17.如图,已知三棱锥A﹣BCD的所有棱长均相等,点E满足=3,点P在棱AC上运动,设EP与平面BCD所成角为θ,则sinθ的最大值为.【考点】直线与平面所成的角.【分析】设棱长为4a,PC=x(0<x≤4a),则PE=.求出P到平面BCD 的距离,即可求出结论.【解答】解:设棱长为4a,PC=x(0<x≤4a),则PE=.设P到平面BCD的距离为h,则=,∴h=x,∴sinθ==,∴x=2a时,sinθ的最大值为.故答案为.三、解答题(共5小题,满分74分)18.在锐角△ABC中,a、b、c分别是角A、B、C的对边,若A满足2cos2A+cos (2A+)=﹣.(Ⅰ)求A的值;(Ⅱ)若c=3,△ABC的面积为3,求a的值.【考点】余弦定理.【分析】(Ⅰ)由三角恒等变换化简2cos2A+cos(2A+)=﹣,结合A的取值范围,即可求出A的值;(Ⅱ)根据△ABC的面积公式求出b的值,再利用余弦定理求出a的值.【解答】解:(Ⅰ)△ABC中,2cos2A+cos(2A+)=﹣,∴2•+cos(2A+)=﹣,即1+cos2A+cos2Acos﹣sin2Asin=﹣,∴sin2A﹣cos2A=,∴sin2A﹣cos2A=,即sin(2A﹣)=;又△ABC是锐角三角形,∴0<A<,∴﹣<2A﹣<,∴2A﹣=,解得A=;=bcsinA==3,(Ⅱ)c=3,且△ABC的面积为S△ABC解得b=4;由余弦定理得a2=b2+c2﹣2bccosA=42+32﹣2×4×3×=13,解得a=.19.如图,棱柱ABCD﹣A1B1C1D1中,底面ABCD是平行四边形,侧棱AA1⊥底面ABCD,AB=1,AC=,BC=BB1=2.(Ⅰ)求证:AC⊥平面ABB1A1;(Ⅱ)求二面角A﹣C1D﹣C的平面角的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(Ⅰ)推导出AB⊥AC,AA1⊥AC,由此能证明AC⊥平面ABB1A1.(Ⅱ)过点C作CP⊥C1D于P,连接AP,则AC⊥平面DCC1D1,从而∠CPA是二面角A﹣C1D﹣C的平面角,由此能求出二面角A﹣C1D﹣C的平面角的余弦值.【解答】证明:(Ⅰ)∵在底面ABCD中,AB=1,AC=,BC=2,∴AB2+AC2=BC2,∴AB⊥AC,∵侧棱AA1⊥底面ABCD,∴AA1⊥AC,又∵AA1∩AB=A,AA1,AB⊂平面ABB1A1,∴AC⊥平面ABB1A1.解:(Ⅱ)过点C作CP⊥C1D于P,连接AP,由(Ⅰ)可知,AC⊥平面DCC1D1,∠CPA是二面角A﹣C1D﹣C的平面角,∵CC1=BB1=2,CD=AB=1,∴CP===,∴tan=,∴cos,∴二面角A﹣C1D﹣C的平面角的余弦值为.20.已知函数f(x)=x﹣alnx+b,a,b为实数.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+3,求a,b的值;(Ⅱ)若|f′(x)|<对x∈[2,3]恒成立,求a的取值范围.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【分析】(I)根据导数的几何意义可得f′(1)=2,f(1)=5,列方程组解出a,b即可;(II)分离参数得出x﹣<a<x+,分别求出左侧函数的最大值和右侧函数的最小值即可得出a的范围.【解答】解:(I)f′(x)=1﹣,∵曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+3,∴f′(1)=2,f(1)=5,∴,解得a=﹣1,b=4.(II)∵|f′(x)|<对x∈[2,3]恒成立,即|1﹣|<对x∈[2,3]恒成立,∴|x﹣a|<对x∈[2,3]恒成立,∴x﹣<a<x+对x∈[2,3]恒成立,设g(x)=x﹣,h(x)=x+,x∈[2,3],则g′(x)=1+>0,h′(x)=1﹣>0,∴g(x)在[2,3]上是增函数,h(x)在[2,3]上是增函数,∴gmax (x)=g(3)=2,hmin(x)=h(2)=.∴a的取值范围是[2,].21.如图,设斜率为k(k>0)的直线l与椭圆C: +=1交于A、B两点,且OA⊥OB.(Ⅰ)求直线l在y轴上的截距(用k表示);(Ⅱ)求△AOB面积取最大值时直线l的方程.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(Ⅰ)设l:y=kx+t,A(x1,y1),B(x2,y2),由OA⊥OB,得(1+k2)x1x2+kt(x1+x2)+t2=0,联立,得x2+3(kx+t)2=9,即(1+3k2)x2+6ktx+3t2﹣9=0,由此利用韦达定理、根的判别式,结合已知条件能求出直线l在y轴上的截距.(Ⅱ)设△AOB的面积为S,O到直线l的距离为d,则S=|AB|•d,由此利用点到直线的距离公式和弦长公式能求出△AOB面积取最大值时直线l的方程.【解答】解:(Ⅰ)设l:y=kx+t,A(x1,y1),B(x2,y2),∵斜率为k(k>0)的直线l与椭圆C: +=1交于A、B两点,且OA⊥OB,∴∠AOB=90°,∴,∴x1x2+(kx1+t)(kx2+t)=0,∴(1+k2)x1x2+kt(x1+x2)+t2=0,(*)联立,消去y,得x2+3(kx+t)2=9,即(1+3k2)x2+6ktx+3t2﹣9=0,则,x1x2=,且△>0,代入(*)从而得(1+k2)(3t2﹣9)﹣6k2t2+t2(1+3k2)=0,∴3t2﹣9﹣9k2+t2=0,∴,∴t=±,∴直线l在y轴上的截距为或﹣.(Ⅱ)设△AOB的面积为S,O到直线l的距离为d,则S=|AB|•d,而由(1)知d=,且|AB|====,∴≤,当时,,解得k=,∴t=,∴所求直线方程为y=或y=.22.已知数列{an }满足:a1=,an=an﹣12+an﹣1(n≥2且n∈N).(Ⅰ)求a2,a3;并证明:2﹣≤an≤•3;(Ⅱ)设数列{an 2}的前n项和为An,数列{}的前n项和为Bn,证明:=an+1.【考点】数列递推式;数列的求和.【分析】(I)分别令n=2,3即可计算a2,a3,配方得an+>(an﹣1+)2,利用{an +}的增减性得出不等式2﹣≤an,利用{an}增减性得出an≤•3;(II)分别使用因式分解和裂项法计算An ,Bn,即可得出结论.【解答】解:(I)a2=a12+a1==,a3=a22+a2==.证明:∵an =an﹣12+an﹣1,∴an +=an﹣12+an﹣1+=(an﹣1+)2+>(an﹣1+)2,∴an +>(an﹣1+)2>(an﹣2+)4>>(an﹣3+)8>…>(a1+)=2,∴an>2﹣,又∵an ﹣an﹣1=an﹣12>0,∴an>an﹣1>an﹣2>…>a1>1,∴an 2>an,∴an =an﹣12+an﹣1<2a,∴an <2a<2•22<2•22•24<...<2•22•24• (2)1=2•()=•3.综上,2﹣≤an≤•3.(II)证明:∵an =an﹣12+an﹣1,∴an﹣12=an﹣an﹣1,∴An =a12+a22+a32+…an2=(a2﹣a1)+(a3﹣a2)+…+(an+1﹣an)=an+1﹣,∵an =an﹣12+an﹣1=an﹣1(an﹣1+1),∴==,∴=,∴Bn=…+=()+()+(﹣)+…+()=﹣.∴==.2017年3月30日。

浙江省嘉兴市数学高三理数一模试卷

浙江省嘉兴市数学高三理数一模试卷

浙江省嘉兴市数学高三理数一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017高二下·沈阳期末) 已知复数,若在复平面内对应的点分别为,线段的中点C对应的复数为z,则()A .B . 5C . 10D . 252. (2分)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)0},则A B=()A . A={-1,0}B . {0,1}C . {-1,0,1}D . {0,1,2}3. (2分) (2020高三上·天津期末) 抛物线的准线方程为()A .B .C .D .4. (2分)已知等比数列的公比是正数,且则()A . 1B .C . 2D .5. (2分)从集合中随机抽取一个数a,从集合中随机抽取一个数b,则向量与向量垂直的概率为A .B .C .D .6. (2分)以点(2,0)为圆心且与直线相切的圆的方程为()A .B .C .D .7. (2分)(2018·大新模拟) 已知为定义在上的偶函数,且,当时,,记,则的大小关系为()A .B .C .D .8. (2分)在中,, AB=2,且△ A B C的面积为,则BC的长为()A .B . 3C .D . 79. (2分) (2018高二下·抚顺期末) 已知函数任意,都有图象关于点(1,0)对称,,则()A .B .C .D .10. (2分)(2016·太原模拟) 在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为()A .B .C . 2D . 211. (2分)(2018·淮南模拟) 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的的外接球的体积是()A .B .C .D .12. (2分)(2018·攀枝花模拟) 已知函数若对区间内的任意实数,都有,则实数的取值范围是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)(2017·黑龙江模拟) 的展开式中,常数项为20,则实数a的值为________.14. (1分) (2016高一下·大庆开学考) 已知sin2α=﹣sinα,α∈(,π),则tanα=________.15. (1分)正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是________,体积是________.16. (1分) (2018高二上·宁夏月考) 已知数列{an}的前n项和为Sn , a1=1,当n≥2时,an+2Sn-1=n,则S2 017的值________三、解答题 (共7题;共70分)17. (10分)(2017·平谷模拟) 在△ABC中,角A,B,C的对边分别是a,b,c,,.(Ⅰ)求边c的值;(Ⅱ)若,求△ABC的面积.18. (10分) (2016高二上·红桥期中) 三棱锥P﹣ABC中,已知PA=PB=PC=AC=4,BC= AB=2 ,O为AC中点.(1)求证:PO⊥平面ABC;(2)求异面直线AB与PC所成角的余弦值.19. (10分) (2017高三上·沈阳开学考) 2008年5月12日14时28分04秒,四川省阿坝藏族羌族自治州汶川县发生里氏8.0级地震,地震造成69227人遇难,374643人受伤,17923人失踪.重庆众多医务工作者和志愿者加入了抗灾救援行动.其中重庆三峡中心医院外科派出由5名骨干医生组成的救援小组,奔赴受灾第一线参与救援.现将这5名医生分别随机分配到受灾最严重的汶川县、北川县、绵竹三县中的某一个.(1)求每个县至少分配到一名医生的概率.(2)若将随机分配到汶川县的人数记为ξ,求随机变量ξ的分布列,期望和方差.20. (10分)(2017·日照模拟) 已知椭圆C:的上、下焦点分别为F1 , F2 ,上焦点F1到直线 4x+3y+12=0的距离为3,椭圆C的离心率e= .(I)若P是椭圆C上任意一点,求| || |的取值范围;(II)设过椭圆C的上顶点A的直线l与椭圆交于点B(B不在y轴上),垂直于l的直线与l交于点M,与x 轴交于点H,若 =0,且| |=| |,求直线l的方程.21. (10分)(2017·新余模拟) 已知函数f(x)=sinx﹣xcosx(x≥0).(1)求函数f(x)的图象在处的切线方程;(2)若任意x∈[0,+∞),不等式f(x)<ax3恒成立,求实数a的取值范围;(3)设m=f(x)dx,,证明:.22. (10分)求圆(x﹣2)2+(y+3)2=4上的点到x﹣y+2=0的最远、最近的距离.23. (10分)解不等式|3x﹣1|<x+2.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共70分) 17-1、18-1、18-2、19-1、19-2、20-1、21-1、21-2、21-3、22-1、23-1、。

浙江省嘉兴市高考数学一模试卷(理科)

浙江省嘉兴市高考数学一模试卷(理科)

浙江省嘉兴市高考数学一模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017高一上·中山月考) 设如果且那么符合条件的集合的个数是()A . 4B . 10C . 11D . 122. (2分)复数的共轭复数是()A .B .C .D .3. (2分)设x1=18,x2=19,x3=20,x4=21,x5=22,将这5个数依次输入如图所示的程序框图运行,则输出S的值及其统计意义分别是()A . S=2,这5个数据的方差B . S=2,这5个数据的平均数C . S=10,这5个数据的方差D . S=10,这5个数据的平均数4. (2分)若0<x1<x2, 0<y1<y2 ,且x1+x2=y1+y2=1,则下列代数式中值最大的是()A . x1y1+x2y2B . x1x2+y1y2C . x1y2+x2y1D .5. (2分)设a、b、m为整数(m>0),若a和b被m除得余数相同,则称a和b对模m同余,记a=b(modm).若,且a=b(mod10),则b的值可以为()A . 2011B . 2012C . 2013D . 20146. (2分) (2015高三上·合肥期末) 若实数x,y满足约束条件,则目标函数z=x+y的最大值为()A . 2B . 1C . ﹣1D . ﹣27. (2分)如图,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A .B .C . πD .8. (2分)在平面内,已知双曲线C:的焦点为,则是点在双曲线上的()A . 充要条件B . 充分不必要条件C . 必要不充分条件D . 既不充分又不必要条件9. (2分)已知抛物线上存在关于直线x+y=0对称的相异两点A,B,则等于()A . 3B . 4C .D .10. (2分) (2016高二上·长春期中) 双曲线mx2﹣y2=1(m>0)的右顶点为A,若该双曲线右支上存在两点B,C使得△ABC为等腰直角三角形,则实数m的值可能为()A .B . 1C . 2D . 311. (2分)关于下面等高条形图说法正确的有()A . 在被调查的 x 1中,y 1占70%B . 在被调查的 x 2中,y 2占20%C . x 1与 y 1有关D . 以上都不对12. (2分)已知三棱锥P﹣ABC的所有顶点都在球O的球面上,PC为球O的直径,且PC⊥OA,PC⊥OB,△AOB 为等边三角形,三棱锥P﹣ABC的体积为,则球O的表面积为()A . 4πB . 8πC . 12πD . 16π二、填空题 (共4题;共4分)13. (1分)(2017·长春模拟) 若非零向量满足| |=2| |=| + |,则向量与夹角的余弦值为________.14. (1分) (2019高一下·上海月考) 已知点在角的终边上,且,则________.15. (1分)(2017·邯郸模拟) 在等差数列{an}中,a4=﹣2,且al+a2+…+a10=65,则公差d的值是________.16. (1分)(2017·青岛模拟) 设随机变量ξ~N(μ,σ2),且 P (ξ<﹣3)=P(ξ>1)=0.2,则 P(﹣1<ξ<1)=________.三、解答题 (共7题;共55分)17. (5分) (2016高二上·枣阳开学考) 设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.18. (10分) (2017高二上·湖北期末) 设p:实数x满足x2+4ax+3a2<0,其中a≠0,命题q:实数x满足.(1)若a=﹣1,且p∨q为真,求实数x的取值范围;(2)若¬p是¬q的必要不充分条件,求实数a的取值范围.19. (10分) (2018高二下·上海月考) 如图,在长方体中,、分别是棱、的中点,,,求:(1)与所成的角;(2)与平面所成的角.20. (5分) (2018高三上·沧州期末) 某厂为检验车间一生产线是否工作正常,现从生产线中随机抽取一批零件样本,测量尺寸(单位:)绘成频率分布直方图如图所示:(Ⅰ)求该批零件样本尺寸的平均数和样本方差(同一组中的数据用该组区间的中点值作代表);(Ⅱ)若该批零件尺寸服从正态分布,其中近似为样本平均数,近似为样本方差,利用该正态分布求;(Ⅲ)若从生产线中任取一零件,测量尺寸为,根据原则判断该生产线是否正常?附:;若,则,,.21. (10分)(2017·舒城模拟) 已知函数f(x)=lnx﹣ax+ (a∈R).(1)当a=﹣时,求函数f(x)的单调区间和极值.(2)若g(x)=f(x)+a(x﹣1)有两个零点x1,x2,且x1<x2,求证:x1+x2>1.22. (5分)已知曲线C的极坐标方程为ρ=,直线l的参数方程为(t为参数,0≤α<π).(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.23. (10分)(2018·江西模拟) 已知函数 .(1)若的最小值为2,求的值;(2)若对,,使得不等式成立,求实数的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共55分)17-1、18-1、18-2、19-1、19-2、20-1、21-1、21-2、22-1、23-1、23-2、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年浙江省嘉兴市高考数学一模试卷一、选择题(共10小题,每小题4分,满分40分)1.设复数z=1﹣i(i是虚数单位),则+z等于()A.2 B.﹣2 C.2i D.﹣2i2.已知α∈R,则“cosα=﹣”是“α=2kπ+,k∈Z”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.已知a为实数,设函数f(x)=,则f(2a+2)的值为()A.2a B.a C.2 D.a或24.已知实数x,y满足,若ax+y的最大值为10,则实数a=()A.4 B.3 C.2 D.15.设S n为等差数列{a n}的前n项和,若=,则=()A.B.C.D.6.已知抛物线y2=4x的焦点为F,直线l过F且与抛物线交于A、B两点,若|AB|=5,则AB中点的横坐标为()A.B.2 C.D.17.函数f(x)=()x﹣x2的大致图象是()A.B. C. D.8.已知平面向量、满足||=||=1,•=,若向量满足|﹣+|≤1,则||的最大值为()A.1 B.C.D.29.已知函数f(x)=3sin(3x+φ),x∈[0,π],则y=f(x)的图象与直线y=2的交点个数最多有()A.2个 B.3个 C.4个 D.5个10.如图,点F1、F2是椭圆C1的左右焦点,椭圆C1与双曲线C2的渐近线交于点P,PF1⊥PF2,椭圆C1与双曲线C2的离心率分别为e1、e2,则()A.e22=B.e22=C.e22= D.e22=二、填空题(共7小题,多空题每题6分,单空题每题4分,满分36分)11.已知集合A={x|﹣1≤x≤2},B={x|x2﹣4x≤0},则A∪B=,A∩(∁R B)=.12.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.13.已知随机变量ξ的分布列如下:ξ 012P b a2﹣则E(ξ)的最小值为,此时b=.14.已知f(x)=x﹣2,g(x)=2x﹣5,则不等式|f(x)|+|g(x)|≤2的解集为;|f(2x)|+|g(x)|的最小值为.15.动点P从正方体ABCD﹣A1B1C1D1的顶点A出发,沿着棱运动到顶点C1后再到A,若运动中恰好经过6条不同的棱,称该路线为“最佳路线”,则“最佳路线”的条数为(用数字作答).16.已知a>0,b>0,且满足3a+b=a2+ab,则2a+b的最小值为.17.如图,已知三棱锥A﹣BCD的所有棱长均相等,点E满足=3,点P在棱AC上运动,设EP与平面BCD所成角为θ,则sinθ的最大值为.三、解答题(共5小题,满分74分)18.在锐角△ABC中,a、b、c分别是角A、B、C的对边,若A满足2cos2A+cos (2A+)=﹣.(Ⅰ)求A的值;(Ⅱ)若c=3,△ABC的面积为3,求a的值.19.如图,棱柱ABCD﹣A1B1C1D1中,底面ABCD是平行四边形,侧棱AA1⊥底面ABCD,AB=1,AC=,BC=BB1=2.(Ⅰ)求证:AC⊥平面ABB1A1;(Ⅱ)求二面角A﹣C1D﹣C的平面角的余弦值.20.已知函数f(x)=x﹣alnx+b,a,b为实数.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+3,求a,b的值;(Ⅱ)若|f′(x)|<对x∈[2,3]恒成立,求a的取值范围.21.如图,设斜率为k(k>0)的直线l与椭圆C: +=1交于A、B两点,且OA⊥OB.(Ⅰ)求直线l在y轴上的截距(用k表示);(Ⅱ)求△AOB面积取最大值时直线l的方程.22.已知数列{a n}满足:a1=,a n=a n﹣12+a n﹣1(n≥2且n∈N).(Ⅰ)求a2,a3;并证明:2﹣≤a n≤•3;(Ⅱ)设数列{a n2}的前n项和为A n,数列{}的前n项和为B n,证明:=a n+1.2017年浙江省嘉兴市高考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.设复数z=1﹣i(i是虚数单位),则+z等于()A.2 B.﹣2 C.2i D.﹣2i【考点】复数代数形式的加减运算.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解: +z=+1﹣i=+1﹣i=1+i+1﹣i=2.故选:A.2.已知α∈R,则“cosα=﹣”是“α=2kπ+,k∈Z”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】cosα=﹣,解得α=2kπ±,k∈Z,即可判断出结论.【解答】解:cosα=﹣,解得α=2kπ±,k∈Z,∴“cosα=﹣”是“α=2kπ+,k∈Z”的必要但充分条件.故选:B.3.已知a为实数,设函数f(x)=,则f(2a+2)的值为()A.2a B.a C.2 D.a或2【考点】函数的值.【分析】根据函数的解析式求出函数值即可.【解答】解:∵函数f(x)=,∴f(2a+2)=log2(2a+2﹣2)=a,故选:B.4.已知实数x,y满足,若ax+y的最大值为10,则实数a=()A.4 B.3 C.2 D.1【考点】简单线性规划.【分析】画出满足条件的平面区域,判断最优解的位置,将点的坐标代入求出a 的值即可.【解答】解:画出满足条件的平面区域,如图示:由,解得A(3,4),令z=ax+y,因为z的最大值为10,所以直线在y轴上的截距的最大值为10,即直线过(0,10),所以z=ax+y与可行域有交点,当a>0时,直线经过A时z取得最大值.即ax+y=10,将A(3,4)代入得:3a+4=10,解得:a=2,当a≤0时,直线经过A时z取得最大值.即ax+y=10,将A(3,4)代入得:3a+4=10,解得:a=2,与a≤0矛盾,综上:a=2.5.设S n为等差数列{a n}的前n项和,若=,则=()A.B.C.D.【考点】等差数列的性质.【分析】利用=,可得d=a1,即可求出.【解答】解:设公差为d,则=,d=a1,∴==,故选A.6.已知抛物线y2=4x的焦点为F,直线l过F且与抛物线交于A、B两点,若|AB|=5,则AB中点的横坐标为()A.B.2 C.D.1【考点】抛物线的简单性质.【分析】先根据抛物线方程求出p的值,再由抛物线的性质可得到答案.【解答】解:∵抛物线y2=4x,∴P=2,设经过点F的直线与抛物线相交于A、B两点,其横坐标分别为x1,x2,利用抛物线定义,AB中点横坐标为x0=(x1+x2)=(|AB|﹣P)=(5﹣2)=.故选:C.7.函数f(x)=()x﹣x2的大致图象是()A.B. C. D.【考点】函数的图象.【分析】利用排除法,即可得出结论.【解答】解:由题意,x=0,f(0)=1,排除B,x=﹣2,f(﹣2)=0,排除A,x→﹣∞,f(x)→+∞,排除C,故选D.8.已知平面向量、满足||=||=1,•=,若向量满足|﹣+|≤1,则||的最大值为()A.1 B.C.D.2【考点】平面向量数量积的运算.【分析】通过向量的数量积的定义,设出向量的坐标,利用向量的坐标运算和向量的模的公式及几何意义,结合圆的方程即可得出最大值为圆的直径.【解答】解:由平面向量、满足||=||=1,•=,可得||•||•cos<,>=1•1•cos<,>=,由0≤<,>≤π,可得<,>=,设=(1,0),=(,),=(x,y),则|﹣+|≤1,即有|(+x,y﹣)|≤1,即为(x+)2+(y﹣)2≤1,故|﹣+|≤1的几何意义是在以(﹣,)为圆心,半径等于1的圆上和圆内部分,||的几何意义是表示向量的终点与原点的距离,而原点在圆上,则最大值为圆的直径,即为2.故选:D.9.已知函数f(x)=3sin(3x+φ),x∈[0,π],则y=f(x)的图象与直线y=2的交点个数最多有()A.2个 B.3个 C.4个 D.5个【考点】三角函数的最值.【分析】令f(x)=2,得sin(3x+φ)=,根据x∈[0,π],求出3x+φ的取值范围,根据正弦函数的图象与性质,可得出函数y=f(x)的图象与直线y=2的交点最多有4个.【解答】解:令f(x)=3sin(3x+φ)=2,得sin(3x+φ)=∈(﹣1,1),又x∈[0,π],∴3x∈[0,3π],∴3x+φ∈[φ,3π+φ];根据正弦函数的图象与性质,可得该方程在正弦函数一个半周期上最多有4个解,即函数y=f(x)的图象与直线y=2的交点最多有4个.故选:C.10.如图,点F1、F2是椭圆C1的左右焦点,椭圆C1与双曲线C2的渐近线交于点P,PF1⊥PF2,椭圆C1与双曲线C2的离心率分别为e1、e2,则()A.e22=B.e22=C.e22= D.e22=【考点】圆锥曲线的综合.【分析】设椭圆及双曲线方程,由曲线共焦点,则a12+b12=c2,a22+b22=c2,求得双曲线的渐近线方程,代入椭圆方程,求得P点坐标,由直角三角形的性质,即可求得丨OP丨=c,利用勾股定理及椭圆及双曲线的性质即可求得答案.【解答】解:设椭圆的方程为:,双曲线的方程为:,P(x,y),由题意可知:a12+b12=c2,a22+b22=c2,双曲线的渐近线方程:y=±x,将渐近线方程代入椭圆方程:解得:x2=,y2=,由PF1⊥PF2,∴丨OP丨=丨F1F2丨=c,∴x2+y2=c2,代入整理得:a14+a22c2=2a12c2,两边同除以c4,由椭圆及双曲线的离心率公式可知:e1=,e2=,整理得:e22=,故选D.二、填空题(共7小题,多空题每题6分,单空题每题4分,满分36分)11.已知集合A={x|﹣1≤x≤2},B={x|x2﹣4x≤0},则A∪B={x|﹣1≤x≤4} ,A∩(∁R B)={x|﹣1≤x<0} .【考点】交、并、补集的混合运算.【分析】先求出集合A,B,再求出∁R B,由此能求出A∪B和A∩(∁R B).【解答】解:∵集合A={x|﹣1≤x≤2},B={x|x2﹣4x≤0}={x|0≤x≤4},∴∁R B={x|x<0或x>4},∴A∪B={x|﹣1≤x≤4},A∩(∁R B)={x|﹣1≤x<0}.故答案为:{x|﹣1≤x≤4},{x|﹣1≤x<0}.12.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是76cm2,体积是40cm3.【考点】由三视图求面积、体积.【分析】根据几何体的三视图得该几何体是一个底面为直角梯形的四棱柱,由三视图求出几何元素的长度,由梯形的面积公式、柱体的体积公式求出该几何体的体积,由四棱柱的各个面的长度求出几何体的表面积.【解答】解:根据几何体的三视图得:该几何体是一个底面为直角梯形的四棱柱,其底面是正视图中的直角梯形,上底为1cm,下底为4cm,高为4cm,由侧视图知四棱柱的高为4cm,所以该几何体的体积V==40(cm3),由正视图可知直角梯形斜腰是5,1+4+4+5)×4=76(cm2),则该几何体的表面积S表面积=2×+(故答案为:76,40.13.已知随机变量ξ的分布列如下:ξ 012P b a2﹣则E(ξ)的最小值为,此时b=.【考点】离散型随机变量的期望与方差.【分析】由题意可得:b+a2+=1,即b+a2﹣=,b∈[0,1],a∈[﹣1,1].E (ξ)=0+a2+2()=a2﹣a+1=+,利用二次函数的单调性即可得出.【解答】解:由题意可得:b+a2+=1,即b+a2﹣=,b∈[0,1],a∈[﹣1,1].E(ξ)=0+a2+2()=a2﹣a+1=+,当且仅当a=时取等号,此时b=.故答案为:,.14.已知f(x)=x﹣2,g(x)=2x﹣5,则不等式|f(x)|+|g(x)|≤2的解集为[,3] ;|f(2x)|+|g(x)|的最小值为1.【考点】绝对值不等式的解法.【分析】通过讨论x的范围,求出不等式|f(x)|+|g(x)|≤2的解集即可;根据绝对值的性质求出|f(2x)|+|g(x)|的最小值即可.【解答】解:∵f(x)=x﹣2,g(x)=2x﹣5,∴|f(x)|+|g(x)|≤2,即|x﹣2|+|2x﹣5|≤2,x≥时,x﹣2+2x﹣5≤2,解得:≤x≤3,2<x<时,x﹣2+5﹣2x≤2,解得:x≥1,x≤2时,2﹣x+5﹣2x≤2,解得:x≥,综上,不等式的解集是[,3];|f(2x)|+|g(x)|=|2x﹣4|+|2x﹣5|≥|2x﹣4﹣2x+5|=1,故|f(2x)|+|g(x)|的最小值是1,故答案为:[,3],1.15.动点P从正方体ABCD﹣A1B1C1D1的顶点A出发,沿着棱运动到顶点C1后再到A,若运动中恰好经过6条不同的棱,称该路线为“最佳路线”,则“最佳路线”的条数为18(用数字作答).【考点】排列、组合的实际应用;棱柱的结构特征.【分析】根据分步计数和分类计数原理即可求出答案【解答】解:从A点出发有3种方法,(A1,B,D),假如选择了A1,则有2种选法(B1,D1)到C1,再从C1出发,若选择了(B1,或D1),则只有一种方法到A,若选择了C,则有2种方法到A,故“最佳路线”的条数为C31C21(1+2)=18种,故答案为:1816.已知a>0,b>0,且满足3a+b=a2+ab,则2a+b的最小值为3+2.【考点】基本不等式.【分析】由a>0,b>0,且满足3a+b=a2+ab,可得b=>0,解得1<a<3.则2a+b=2a+=a﹣1++3,利用基本不等式的性质即可得出.【解答】解:由a>0,b>0,且满足3a+b=a2+ab,∴b=>0,解得1<a <3.则2a+b=2a+=a﹣1++3≥2+3=2+3,当且仅当a=1+,b=1时取等号.故答案为:3+2.17.如图,已知三棱锥A﹣BCD的所有棱长均相等,点E满足=3,点P在棱AC上运动,设EP与平面BCD所成角为θ,则sinθ的最大值为.【考点】直线与平面所成的角.【分析】设棱长为4a,PC=x(0<x≤4a),则PE=.求出P到平面BCD 的距离,即可求出结论.【解答】解:设棱长为4a,PC=x(0<x≤4a),则PE=.设P到平面BCD的距离为h,则=,∴h=x,∴sinθ==,∴x=2a时,sinθ的最大值为.故答案为.三、解答题(共5小题,满分74分)18.在锐角△ABC中,a、b、c分别是角A、B、C的对边,若A满足2cos2A+cos (2A+)=﹣.(Ⅰ)求A的值;(Ⅱ)若c=3,△ABC的面积为3,求a的值.【考点】余弦定理.【分析】(Ⅰ)由三角恒等变换化简2cos2A+cos(2A+)=﹣,结合A的取值范围,即可求出A的值;(Ⅱ)根据△ABC的面积公式求出b的值,再利用余弦定理求出a的值.【解答】解:(Ⅰ)△ABC中,2cos2A+cos(2A+)=﹣,∴2•+cos(2A+)=﹣,即1+cos2A+cos2Acos﹣sin2Asin=﹣,∴sin2A﹣cos2A=,∴sin2A﹣cos2A=,即sin(2A﹣)=;又△ABC是锐角三角形,∴0<A<,∴﹣<2A﹣<,∴2A﹣=,解得A=;=bcsinA==3,(Ⅱ)c=3,且△ABC的面积为S△ABC解得b=4;由余弦定理得a2=b2+c2﹣2bccosA=42+32﹣2×4×3×=13,解得a=.19.如图,棱柱ABCD﹣A1B1C1D1中,底面ABCD是平行四边形,侧棱AA1⊥底面ABCD,AB=1,AC=,BC=BB1=2.(Ⅰ)求证:AC⊥平面ABB1A1;(Ⅱ)求二面角A﹣C1D﹣C的平面角的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(Ⅰ)推导出AB⊥AC,AA1⊥AC,由此能证明AC⊥平面ABB1A1.(Ⅱ)过点C作CP⊥C1D于P,连接AP,则AC⊥平面DCC1D1,从而∠CPA是二面角A﹣C1D﹣C的平面角,由此能求出二面角A﹣C1D﹣C的平面角的余弦值.【解答】证明:(Ⅰ)∵在底面ABCD中,AB=1,AC=,BC=2,∴AB2+AC2=BC2,∴AB⊥AC,∵侧棱AA1⊥底面ABCD,∴AA1⊥AC,又∵AA1∩AB=A,AA1,AB⊂平面ABB1A1,∴AC⊥平面ABB1A1.解:(Ⅱ)过点C作CP⊥C1D于P,连接AP,由(Ⅰ)可知,AC⊥平面DCC1D1,∠CPA是二面角A﹣C1D﹣C的平面角,∵CC1=BB1=2,CD=AB=1,∴CP===,∴tan=,∴cos,∴二面角A﹣C1D﹣C的平面角的余弦值为.20.已知函数f(x)=x﹣alnx+b,a,b为实数.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+3,求a,b的值;(Ⅱ)若|f′(x)|<对x∈[2,3]恒成立,求a的取值范围.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【分析】(I)根据导数的几何意义可得f′(1)=2,f(1)=5,列方程组解出a,b即可;(II)分离参数得出x﹣<a<x+,分别求出左侧函数的最大值和右侧函数的最小值即可得出a的范围.【解答】解:(I)f′(x)=1﹣,∵曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+3,∴f′(1)=2,f(1)=5,∴,解得a=﹣1,b=4.(II)∵|f′(x)|<对x∈[2,3]恒成立,即|1﹣|<对x∈[2,3]恒成立,∴|x﹣a|<对x∈[2,3]恒成立,∴x﹣<a<x+对x∈[2,3]恒成立,设g(x)=x﹣,h(x)=x+,x∈[2,3],则g′(x)=1+>0,h′(x)=1﹣>0,∴g(x)在[2,3]上是增函数,h(x)在[2,3]上是增函数,∴g max(x)=g(3)=2,h min(x)=h(2)=.∴a的取值范围是[2,].21.如图,设斜率为k(k>0)的直线l与椭圆C: +=1交于A、B两点,且OA⊥OB.(Ⅰ)求直线l在y轴上的截距(用k表示);(Ⅱ)求△AOB面积取最大值时直线l的方程.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(Ⅰ)设l:y=kx+t,A(x1,y1),B(x2,y2),由OA⊥OB,得(1+k2)x1x2+kt(x1+x2)+t2=0,联立,得x2+3(kx+t)2=9,即(1+3k2)x2+6ktx+3t2﹣9=0,由此利用韦达定理、根的判别式,结合已知条件能求出直线l在y轴上的截距.(Ⅱ)设△AOB的面积为S,O到直线l的距离为d,则S=|AB|•d,由此利用点到直线的距离公式和弦长公式能求出△AOB面积取最大值时直线l的方程.【解答】解:(Ⅰ)设l:y=kx+t,A(x1,y1),B(x2,y2),∵斜率为k(k>0)的直线l与椭圆C: +=1交于A、B两点,且OA⊥OB,∴∠AOB=90°,∴,∴x1x2+(kx1+t)(kx2+t)=0,∴(1+k2)x1x2+kt(x1+x2)+t2=0,(*)联立,消去y,得x2+3(kx+t)2=9,即(1+3k2)x2+6ktx+3t2﹣9=0,则,x1x2=,且△>0,代入(*)从而得(1+k2)(3t2﹣9)﹣6k2t2+t2(1+3k2)=0,∴3t2﹣9﹣9k2+t2=0,∴,∴t=±,∴直线l在y轴上的截距为或﹣.(Ⅱ)设△AOB的面积为S,O到直线l的距离为d,则S=|AB|•d,而由(1)知d=,且|AB|====,∴≤,当时,,解得k=,∴t=,∴所求直线方程为y=或y=.22.已知数列{a n}满足:a1=,a n=a n﹣12+a n﹣1(n≥2且n∈N).(Ⅰ)求a2,a3;并证明:2﹣≤a n≤•3;(Ⅱ)设数列{a n2}的前n项和为A n,数列{}的前n项和为B n,证明:=a n+1.【考点】数列递推式;数列的求和.【分析】(I)分别令n=2,3即可计算a2,a3,配方得a n+>(a n﹣1+)2,利用{a n+}的增减性得出不等式2﹣≤a n,利用{a n}增减性得出a n≤•3;(II)分别使用因式分解和裂项法计算A n,B n,即可得出结论.【解答】解:(I)a2=a12+a1==,a3=a22+a2==.证明:∵a n=a n﹣12+a n﹣1,∴a n+=a n﹣12+a n﹣1+=(a n﹣1+)2+>(a n﹣1+)2,∴a n+>(a n﹣1+)2>(a n﹣2+)4>>(a n﹣3+)8>…>(a1+)=2,∴a n>2﹣,又∵a n﹣a n﹣1=a n﹣12>0,∴a n>a n﹣1>a n﹣2>…>a1>1,∴a n2>a n,∴a n=a n﹣12+a n﹣1<2a,∴a n<2a<2•22<2•22•24<…<2•22•24•…•2a1=2•()=•3.综上,2﹣≤a n≤•3.(II)证明:∵a n=a n﹣12+a n﹣1,∴a n﹣12=a n﹣a n﹣1,∴A n=a12+a22+a32+…a n2=(a2﹣a1)+(a3﹣a2)+…+(a n+1﹣a n)=a n+1﹣,∵a n=a n﹣12+a n﹣1=a n﹣1(a n﹣1+1),∴==,∴=,∴B n=…+=()+()+(﹣)+…+()=﹣.∴==.2017年3月30日。

相关文档
最新文档