540.(高中数学)3.1空间向量及其运算第4课时

合集下载

高中数学空间向量的线性运算知识点解析

高中数学空间向量的线性运算知识点解析

向量:
→ (1)AP; → → → 解 AP=AD1+D1P
→ → 1→ =(AA1+AD)+2AB
1 =a+c+2b.
→ (2)A1N;
解 → → → A1N=A1A+AN
→ → 1→ =-AA1+AB+2AD
1 =-a+b+2c.
→ → (3)MP+NC1.
→ → → — → → → → 解 MP+NC1=(MA1+A1D1+D1P)+(NC+CC1)
PART TWO
2
题型探究
题型一 空间向量的概念理解
例1 (1)下列关于空间向量的说法中正确的是
A.空间向量不满足加法结合律
B.若|a|=|b|,则a,b的长度相等而方向相同或相反 → → → → → → C.若向量AB,CD满足|AB|>|CD|,则AB>CD 解析 A中,空间向量满足加法结合律; B中,|a|=|b|只能说明a,b的长度相等而方向不确定; C中,向量作为矢量不能比较大小,故选D.
1 → → 1→ 1 → → =2AA1+AD+2AB+2AD+AA1
3 → 3 → 1→ =2AA1+2AD+2AB
3 1 3 =2a+2b+2c.
引申探究 C1P 1 若把本例中“P 是 C1D1 的中点”改为“P 在线段 C1D1 上,且PD =2”,其他 1 → 条件不变,如何表示AP?
2 → → → → → 2→ 解 AP=AD1+D1P=AA1+AD+3AB=a+c+3b.
— → — → — → — → — → B′B,CC′,C′C,DD′,D′D,共 8 个向量都是单位向量,而其他向量的 模均不为 1,故单位向量共有 8 个.
②试写出模为 5的所有向量.
— → 解 由于长方体的左右两侧面的对角线长均为 5,故模为 5的向量有AD′, — → — → — → — → — → — → — → D′A,A′D,DA′,BC′,C′B,B′C,CB′.

高中数学 第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.4 空间向量的直角坐标运算学

高中数学 第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.4 空间向量的直角坐标运算学

3.1.4 空间向量的直角坐标运算1.了解空间向量坐标的定义.2.掌握空间向量的坐标运算.3.会利用向量的坐标关系,判定两个向量共线或垂直.4.会计算向量的长度及两向量的夹角.1.空间向量的坐标表示(1)单位正交基底.建立空间直角坐标系Oxyz,分别沿x轴,y轴,z轴的正方向引________向量i,j,k,这三个互相________的单位向量构成空间向量的一个基底{i,j,k},这个基底叫做单位正交基底.单位向量i,j,k都叫做________.【做一做1-1】设{e1,e2,e3}是空间向量的一个单位正交基底,则|e1|+|e2|+|e3|=__________.(2)空间向量的坐标表示.在空间直角坐标系中,已知任一向量a,根据空间向量分解定理,存在______实数组(a1,a2,a3),使a=a1i+a2j+a3k,a1i,a2j,a3k分别为向量a在i,j,k方向上的分向量,有序实数组__________叫做向量a在此直角坐标系中的坐标.上式可简记作a=__________.【做一做1-2】向量0的坐标为__________.向量的坐标与点的坐标表示方法不同,如向量a=(x,y,z),点A(x,y,z).2.空间向量的直角坐标运算(1)设a=(a1,a2,a3),b=(b1,b2,b3),则容易得到a+b=____________;a-b=____________;λa=______________;a·b=____________.(2)向量在空间直角坐标系中的坐标的求法:设A(x1,y1,z1),B(x2,y2,z2),则AB=OB-OA=(x2,y2,z2)-(x1,y1,z1)=(x2-x1,y2-y1,z2-z1).【做一做2】设a=(1,2,3),b=(1,1,1),则2a+b=__________.3.空间向量平行和垂直的条件设a=(a1,a2,a3),b=(b1,b2,b3),则(1)a∥b(b≠0)⇔__________⇔__________,当b1,b2,b3都不为0时,a∥b⇔__________;(2)a⊥b⇔__________⇔__________.【做一做3】设a=(1,2,3),b=(1,-1,x),a⊥b,则x=__________.4.两个向量夹角与向量长度的坐标计算公式设a=(a1,a2,a3),b=(b1,b2,b3),则|a|=____________,|b|=____________,cos〈a,b〉=a·b|a||b|=________________________. 设A(x1,y1,z1),B(x2,y2,z2),则|AB|=____________.【做一做4】向量a =(2,-1,-1),b =(1,-1,0)的夹角余弦值为__________,||a -b =__________.(1)空间向量的坐标是空间向量的一种形式.在坐标形式下的模长公式,夹角公式,向量平行和垂直的条件与在普通基底下相同,仅仅是形式不同;(2)空间向量在坐标形式下同样可以用来求距离(长度),夹角,证明垂直和平行关系等.如何理解空间向量的坐标及其运算?剖析:(1)注意空间向量的坐标与向量终点的坐标的区别与联系.向量的坐标是其终点与起点坐标的差量.只有以原点为起点的向量,向量的坐标才等于向量终点的坐标.(2)空间向量的坐标运算和平面向量基本一致,只是多了一个竖坐标. (3)坐标形式下向量的计算就是指坐标的运算.题型一 空间向量的坐标运算【例1】设向量a =(3,5,-4),b =(2,1,8),计算3a -2b ,(a +b )·(a -b ). 分析:利用空间向量的坐标运算先求3a,2b ,a +b ,a -b ;再进行相关运算. 反思:空间向量的坐标运算首先进行数乘运算然后再进行加减运算,最后进行数量积运算,先算括号内的后算括号外的.题型二 空间向量的平行与垂直问题【例2】设向量a =(1,x,1-x ),b =(1-x 2,-3x ,x +1),求满足下列条件时,实数x 的值.(1)a ∥b ;(2)a ⊥b .分析:解答本题可先由a ∥b ,a ⊥b 分别建立x 的方程,再解方程即可. 反思:要熟练掌握向量平行和垂直的条件,借助此条件可将立体几何中的平行垂直问题转化为向量的坐标运算.在应用坐标形式下的平行条件时,一定注意结论成立的前提条件,在条件不明确时,要分类讨论.在解答本题时易出现由a ∥b ⇔1-x 21=-3x x =x +11-x ⇔⎩⎪⎨⎪⎧1-x 2=-3x +11-x=-3⇔x =2的错误,导致此错误的原因是忘记了这个结论成立的前提条件是1,x,1-x 都不是0.题型三 空间向量的夹角及长度公式的应用【例3】已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5),求以AB ,AC 为邻边的平行四边形面积.分析:已知三点A ,B ,C 的坐标,先求AB ,AC ,|AB |,|AC |,AB ·AC ,再求cos 〈AB ,AC 〉,sin 〈AB ,AC 〉,从而得到结论.反思:运用空间向量的坐标运算解决立体几何问题的基本思路是: ①建立空间坐标系;②求出相关点的坐标和向量坐标; ③结合公式进行计算;④将计算的向量结果转化为几何结论.1.若A (2,-4,-1),B (-1,5,1),C (3,-4,1),令a =CA ,b =CB ,则a +b 对应的坐标为( )A .(5,-9,2)B .(-5,9,-2)C .(5,9,-2)D .(5,-9,-2)2.下面各组向量不平行的是( ) A .a =(1,0,0),b =(-3,0,0) B .c =(0,1,0),d =(1,0,1) C .e =(0,1,-1),f =(0,-1,1) D .g =(1,0,0),h =(0,0,0) 3.(2010·广东高考,理10)已知a =(1,1,x ),b =(1,2,1),c =(1,1,1)且(c -a )·2b =-2,则x 的值为( )A .3B .4C .2D .1 4.若A (2,0,1),B (3,4,-2),则|AB |=__________.5.向量a =(2,-3,3),b =(1,0,0),则cos 〈a ,b 〉=__________. 6.已知向量a =(-2,2,0),b =(-2,0,2),求向量n 使n ⊥a 且n ⊥b . 答案:基础知识·梳理1.(1)单位 垂直 坐标向量 【做一做1-1】3(2)唯一 (a 1,a 2,a 3) (a 1,a 2,a 3) 【做一做1-2】(0,0,0)2.(1)(a 1+b 1,a 2+b 2,a 3+b 3) (a 1-b 1,a 2-b 2,a 3-b 3) (λa 1,λa 2,λa 3) a 1b 1+a 2b 2+a 3b 3【做一做2】(3,5,7)3.(1)a =λb a 1=λb 1,a 2=λb 2,a 3=λb 3 a 1b 1=a 2b 2=a 3b 3(2)a ·b =0 a 1b 1+a 2b 2+a 3b 3=0 【做一做3】134.a ·a =a 21+a 22+a 23 b ·b =b 21+b 22+b 23a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23b 21+b 22+b 23x 2-x 12+y 2-y 12+z 2-z 12【做一做4】322 典型例题·领悟【例1】解:3a -2b =3(3,5,-4)-2(2,1,8)=(9,15,-12)-(4,2,16)=(9-4,15-2,-12-16)=(5,13,-28);a +b =(3,5,-4)+(2,1,8)=(3+2,5+1,-4+8)=(5,6,4);a -b =(3,5,-4)-(2,1,8)=(3-2,5-1,-4-8)=(1,4,-12),(a +b )·(a -b )=(5,6,4)·(1,4,-12)=5×1+6×4+4×(-12)=5+24-48=-19.【例2】解:(1)①当x =0时,a =(1,0,1),b =(1,0,1),a =b ,满足a ∥b . ②当x =1时,a =(1,1,0),b =(0,-3,2),不满足a ∥b , ∴x ≠1.③当x ≠0,x ≠1时,由a ∥b ⇔1-x 21=-3x x =x +11-x ⇔⎩⎪⎨⎪⎧1-x 2=-3,x +11-x=-3⇔x =2.综上所述,当x =0,或x =2时,a ∥b .(2)a ⊥b ⇔a ·b =0,∴(1,x,1-x )·(1-x 2,-3x ,x +1)=0⇔1-x 2-3x 2+1-x 2=0,解得x =±105. ∴当x =±105时,a ⊥b . 【例3】解:∵A (0,2,3),B (-2,1,6),C (1,-1,5), ∴AB =(-2,1,6)-(0,2,3)=(-2,-1,3),AC =(1,-1,5)-(0,2,3)=(1,-3,2).∴|AB |=-2+-2+32=14,|AC |=12+-2+22=14,AB ·AC =(-2,-1,3)·(1,-3,2)=-2+3+6=7.∴cos 〈AB ,AC 〉=A B →·A C →|AB →||AC →|=12,∴sin 〈AB ,AC 〉=32, 以AB ,AC 为邻边的平行四边形的面积S =|AB →||AC →|sin 〈AB ,AC 〉=7 3.随堂练习·巩固1.B a =CA →=(2,-4,-1)-(3,-4,1)=(-1,0,-2),b =CB →=(-1,5,1)-(3,-4,1)=(-4,9,0),故a +b =(-5,9,-2).2.B A 项中b =-3a ,a ∥b ,C 项中f =-e ,f ∥e ,D 项中h =0, ∴h ∥g .3.C ∵(c -a )·2b =(0,0,1-x )·(2,4,2)=-2, ∴2(1-x )=-2,x =2. 4.26 |AB →|=-2+-2+-2-2=26.5.12 cos 〈a ,b 〉=a ·b |a ||b | =2×1+0+022+-2+3212+02+02=12. 6.解:设n =(x ,y ,z ),则n ·a =(x ,y ,z )·(-2,2,0)=-2x +2y =0, n ·b =(x ,y ,z )·(-2,0,2)=-2x +2z =0.解方程组⎩⎪⎨⎪⎧-2x +2y =0,-2x +2z =0,可得y =x ,z =x .于是向量n =(x ,x ,x )=x (1,1,1),x ∈R .。

高中数学必修知识点空间向量知识点

高中数学必修知识点空间向量知识点

高中数学必修知识点空间向量知识点高中数学必修知识点:空间向量知识点一、空间向量的概念与表示空间向量是指具有大小、方向和作用线的量,可以用一个有向线段来表示。

设 A、B 是空间中的两点,用线段 AB 表示的向量称为向量AB,记作⃗AB 或 AB。

二、向量的加法与减法1. 向量的加法:设向量⃗AB 与向量⃗BC 共线,则向量⃗AC 称为向量⃗AB 和向量⃗BC 的和,记作⃗AB + ⃗BC = ⃗AC。

2. 向量的减法:设向量⃗AB 与向量⃗BC 共线,则向量⃗AC 称为向量⃗AB 和向量⃗BC 的差,记作⃗AB - ⃗BC = ⃗AC。

三、数量积与向量积1. 数量积的定义:设向量⃗a = (x₁, y₁, z₁) 与向量 ⃗b = (x₂, y₂, z₂),则向量⃗a 和向量⃗b 的数量积为 a·b = x₁x₂ + y₁y₂ + z₁z₂。

2. 数量积的性质:- 交换律:⃗a·⃗b = ⃗b·⃗a- 结合律:(k⃗a)·⃗b = k(⃗a·⃗b) = ⃗a·(k⃗b) (k 为常数)- 分配律:⃗a·(⃗b + ⃗c) = ⃗a·⃗b + ⃗a·⃗c- ⃗a·⃗a ≥ 0,当且仅当⃗a = ⃗0 时,⃗a·⃗a = 03. 向量积的定义:设向量⃗a = (x₁, y₁, z₁) 与向量⃗b = (x₂, y₂,z₂),则向量⃗a 和向量⃗b 的向量积为⃗a × ⃗b = (y₁z₂ - z₁y₂, z₁x₂ - x₁z₂, x₁y₂ - y₁x₂)。

4. 向量积的性质:- ⃗a × ⃗b = -⃗b × ⃗a- (k⃗a) × ⃗b = ⃗a × (k⃗b) = k(⃗a × ⃗b) (k 为常数)- ⃗a × ⃗b = ⃗0,当且仅当⃗a 与 ⃗b 共线或其中一个为⃗0 时,⃗a × ⃗b = ⃗0四、平面与空间向量的关系1. 平面方程的向量表示:设平面过点 A(x₁, y₁, z₁),且法向量为 ⃗n = (A, B, C),则平面上任意一点 M(x, y, z) 满足向量⃗AM·⃗n = 0。

高中数学第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算

高中数学第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算

5.平行(共线)向量与共面向量
平行(共线)向量
共面向量
表示空间向量的有向线段所
位置
在的直线的位置关系:
定 关系
_____互_相__平_行__或_重__合____ 义
平行于同一个__平__面____的向量
特征 方向___相_同__或_相__反_____
特例 零向量与__任__意_向__量_____共线
• (2)能用向量语言表述线线、线面、面面的垂直、平行关系.
• (3)能用向量方法证明有关线面位置关系的一些定理(包括三垂线定 理).
• (4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角 计算问题,了解向量方法在研究立体几何问题中的应用.
• 本章重点
• 空间向量的基本概念和基本运算;以空间向量为工具判断或证明立 体几何中的位置关系;求空间角和空间的距离.
2.几类常见的空间向量
名称
方向
零向量 单位向量
___任__意___ 任意
相反向量
____相_反___
相等向量
相同
模 ___0___ ___1___
相等
___相_等____
记法 ___0___
a 的相反向量:___-__a__ A→B的相反向量:_B_→_A___ a=b
3.空间向量的加减法和运算律 (1)加法:O→B=__O_→_A_+__A→_B____=a+b. (2)减法:C→A=___O→_A_-__O_→_C_=a-b. (3)加法运算律:
• 1987年11月台湾开放台胞来大陆探亲,开始时要从香港绕道,比 如从台北到上海的路径是:台北→香港→上海.2008年7月开始两岸 直航后,从台北到上海的路径是:台北→上海.如果把台北→香港 的位移记为向量a,香港→上海的位移记为向量b,台北→上海的位 移记为向量c,那么a+b与c有怎样的关系呢?

高中数学第三章空间向量与立体几何3.1.1空间向量及其加减运算课件新人教A版选修

高中数学第三章空间向量与立体几何3.1.1空间向量及其加减运算课件新人教A版选修

表 示
字母表 法
示法
用一个字母表示,如图,此向量的起点是 A,终点


是 B,可记作 a,也可记作 A B ,其模记为|a|或|AB|
特殊向量
理解特殊向量应注意的几个问题 (1)零向量和单位向量均是从向量模的角度进行定义的,|0| =0,单位向量e的模|e|=1. (2)零向量不是没有方向,它的方向是任意的. (3)注意零向量的书写,必须是0这种形式. (4)两个向量不能比较大小.
第 三 章 空间向量与立体几何
3.1 空间向量及其运算
3.1.1 空间向量及其加减运算
自主学习 新知突破
1.经历向量及其运算由平面向空间推广的过程,了解空 间向量的概念.
2.掌握空间向量的加法、减法运算法则及其表示. 3.理解并掌握空间向量的加、减法的运算律.
李老师下班回家,先从学校大门口骑自行车向北行驶1 000 m,再向东行驶1 500 m,最后乘电梯上升15 m到5楼的住 处,在这个过程中,李老师从学校大门口回到住处所发生的总 位移就是三个位移的合成(如右图所示),它们是不在同一平面 内的位移,如何刻画这样的位移呢?
D.4个
解析: 共四个:AB,A1B1,CD,C1D1. 答案: D
3.两向量共线是两向量相等的________条件. 解析: 两向量共线就是两向量同向或反向,包含相等的 情况. 答案: 必要不充分
4.已知平行六面体 ABCD-A′B′C′D′,化简下列 表达式:
(1)A→B+BB→′-D→A′+D′ →D-B→C; (2)AC→′-A→C+A→D-AA→′. 解析: 根据平行六面体的性质. (1)原式=A→B+A′→D′+D′ →D+C→B=A→B+A′→D+C→B =D→C+D→A+A′→D=D→B+A′→D=A→′B; (2)原式=CC→′+A′→D=AA→′+A′→D=A→D.

高一数学新授课课时安排表

高一数学新授课课时安排表

高一数学新授课课时安排表课程内容:高一(上)普通高中课程标准实验教科书数学必修1第一章集合与函数概念 8课时(包含习题课)1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ) 6课时(包含习题课)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用 4课时(包含习题课)3.1 函数与方程3.2函数模型及其应用小结:总结+习题 2课时普通高中课程标准实验教科书数学必修2第一章空间几何体 4课时(包含习题课)1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系 4课时(包含习题课)2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程 6课时(包含习题课)3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程 6课时(包含习题课)4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结:总结+习题 2课时高一(下)普通高中课程标准实验教科书数学必修3第一章算法初步 4课时(包含习题课)1.1 算法与程序框图1.2 基本算法语句1.3 算法案例第二章统计 4课时(包含习题课)2.1 随机抽样2.2 用样本估计总体2.3 变量间的相关关系第三章概率 6课时(包含习题课)3.1 随机事件的概率3.2 古典概型3.3 几何概型小结+习题 4课时普通高中课程标准实验教科书数学必修4第一章三角函数 8课时(包含习题课)1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量 8课时(包含习题课)2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换 4课时(包含习题课)3.1 两角和与差的正弦、余弦和正切公式3.2简单的三角恒等变换小结+习题 4课时。

高考数学总复习 94空间向量及其运算课件

高考数学总复习 94空间向量及其运算课件
(1)证明:PE⊥BC; (2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.
解析: 以H为原点,HA,HB,HP分别为x,y、z轴,线段HA的长为 单位长度,建立空间直角坐标系(如图),则A(1,0,0),B(0,1,0).
(1)证明:设C(m,0,0),P(0,0,n)(m<0,n>0),
(12分)(2010·安徽卷)如图, 在多面体ABCDEF中,四边形ABCD是 正方形,EF∥AB,EF⊥FB,AB=2EF ,∠BFC=90°,BF=FC,H为BC的中 点.
(1)求证:FH∥平面EDB; (2)求证:AC⊥平面EDB; (3)求二面角B-DE-C的大小.
规范解答: (1)证明:∵四边形ABCD为正方形, ∴AB⊥BC.又EF∥AB,∴EF⊥BC. ∵EF⊥FB,∴EF⊥平面BFC. ∴EF⊥FH,∴AB⊥FH. 又BF=FC,H为BC的中点, ∴FH⊥BC. ∴FH⊥平面ABC.
want to be _______.
A. anybody; myself
B. somebody; myself
C. everybody; me
D. anybody; me
13. Don’t be kidding! I think you should take the question
___D___ .
A3演示文稿设计与制作 信息技术2.0 高考数学总复习 9.4空间向量及其运算课件 微能力认证作业
.第4课时 空间向量及其运算(9B)
1.空间向量的有关定理 (1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存 在实数λ,使得a=λb. (2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共 面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.

高中数学第3章空间向量与立体几何3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算课件新人教A版选修2_1

高中数学第3章空间向量与立体几何3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算课件新人教A版选修2_1
对于②,根据相反向量的定义知|a|=|b|,故②正确; 对于③,根据相等向量的定义知,A→C=A→1C1,故③正确; 对于④,根据相等向量的定义知正确.] (2)根据相等向量的定义知,与向量 A→A′ 相等的向量有 B→B′ , C→C′,D→D′.与向量A→′B′相反的向量有B→′A′,B→A,C→D,C→′D′.]
[解] O→G=O→M+M→G =12O→A+23M→N =12O→A+23(M→A+A→B+B→N) =12O→A+2312O→A+O→B-O→A+21B→C =12O→A+23O→B-12O→A+12(O→C-O→B) =16O→A+13O→B+13O→C=16a+13b+13c.
②字母表示法:用字母 a,b,c,…表示;若向量 a 的起点是 A, 终点是 B,也可记作: A→B ,其模记为 |a| 或 |A→B| .
2.几类常见的空间向量
名称
方向
零向量
_任__意__
单位向量
任意
相反向量
_相__反__
相等向量
相同
模 _0__ _1 _
相等
相__等__
记法 _0 _
a 的相反向量:__-__a__ A→B的相反向量:_B→_A_ a=b
2.利用数乘运算进行向量表示的技巧 (1)数形结合:利用数乘运算解题时,要结合具体图形,利用三 角形法则、平行四边形法则,将目标向量转化为已知向量. (2)明确目标:在化简过程中要有目标意识,巧妙运用中点性 质.
2.如图,已知空间四边形OABC,M,N分别 是边OA,BC的中点,点G在MN上,且MG= 2GN,设O→A=a,O→B=b,O→C=c,试用a,b,c表 示向量O→G.
空间向量的线性运算 【例2】 (1)如图所示,在正方体ABCD-A1B1C1D1中,下列各式

人教A版高中数学选修2-1课件:3-2立体几何中的向量方法 第4课时 空间向量的平行、垂直关系

人教A版高中数学选修2-1课件:3-2立体几何中的向量方法 第4课时 空间向量的平行、垂直关系

探究 1:求平面的法向量 【例 1】
如图,已知四边形 ABCD 是直角梯形,∠ABC=90°,SA⊥平面 ABCD,SA=AB=BC=1,AD= ,试建立适当的坐标系,求: (1)平面 ABCD 与平面 SAB 的一个法向量; (2)平面 SCD 的一个法向量.
1 2
【方法指导】一般情况下,使用待定系数法求平面的法向量 的步骤:①设出平面的法向量为 n=(x,y,z);②找出(求出)平面内 的两个不共线的向量 a=(a1,b1,c1),b=(a2,b2,c2);③根据法向量的 定义建立关于 x,y,z 的方程组 一个解,即得法向量. n·a = 0, n·b = 0; ④解方程组,取其中的
【解析】不妨设正方体的边长为 a,建立空间直角坐标系 Dxyz(如图),则 E(a,2,0),F(2,a,0),G(a,0,2). 设平面 EFG 的法向量为 n=(x,y,z), GE=(0,2,-2),
a a FE=( ,- ,0), 2 2 1 1 a a a a a
n ⊥ GE,⇒ 1 1 n ⊥ FE n·FE = x- y = 0,
2
2
2
2
(法二)以CD,CB,CE为正交基底,建立空间直角坐标系,则 E(0,0,1),D( 2,0,0),B(0, 2,0),A( 2, 2,0),M( , ,1),DE= (- 2,0,1),BE=(0,- 2,1),AM=(- 2 ,- 2 ,1). 设平面 BDE 的法向量为 n=(a,b,c),∴n⊥DE,n⊥BE, n·DE = 0, - 2a + c = 0, ∴ ∴ n·BE = 0, - 2b + c = 0, 令 c=1,则 a= 2 ,b= 2 ,n=( 2 , 2 ,1),∴n·AM=0.

高二数学 3.1 第4课时第4课时 空间向量运算的坐标表示

高二数学  3.1   第4课时第4课时 空间向量运算的坐标表示

第三章 3.1 第4课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
5 . (2015· 山 东 临 沂 市 高 二 期 末 测 试 ) 已 知 a = (2 , - 1 , 3)、b=(-1,4,-2)、c=(7,7,λ),若a、b、c共面,则实数λ =__________________.
1 课前自主预习
3 易错疑难辨析
2 课堂典例讲练
4 课时作业
第三章 3.1 第4课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
课前自主预习
第三章 3.1 第4课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
向量的坐标表示为我们展示了一幅美丽的画卷,那么将向 量坐标化之后,向量的线性运算、数量积运算及向量平行、垂 直、向量的模、夹角的坐标表示是不是更简化了?
第三章 3.1 第4课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
[点评] 向量平行与垂直的坐标表示是重要知识点,应熟 练掌握.含参数的向量平行,应用比例式求参数值时,要注意 其前提条件.
第三章 3.1 第4课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
第三章 3.1 第4课时
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
向量的夹角与长度 在棱长为 1 的正方体 ABCD-A1B1C1D1 中,E、 F 分别是 D1D、BD 的中点,G 在棱 CD 上,且 CG=14CD,H 为 C1G 的中点,应用空间向量方法求解下列问题. (1)求证:EF⊥B1C; (2)求 EF 与 C1G 所成的角的余弦值. [分析] 根据正方体的特殊性,可考虑建立空间直角坐标 系,写出相关点及向量的坐标,应用数量积、夹角公式即可.

高中数学教材目录(苏教版)

高中数学教材目录(苏教版)

第1章集合1.2子集、全集、补集1.3交集、并集第2章函数概念与基本初等函数Ⅰ函数的概念和图象函数的表示方法函数的简单性质映射的概念分数指数幂指数函数对数对数函数二次函数与一元二次方程用二分法求方程的近似解数学2第1章立体几何初步1.1空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法1.2点、线、面之间的位置关系平面的基本性质空间两条直线的位置关系直线与平面的位置关系平面与平面的位置关系第4章平面解析几何初步直线的斜率直线的方程两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离圆的方程直线与圆的位置关系圆与圆的位置关系空间直角坐标系空间两点间的距离数学3第5章算法初步第6章统计第7章概率数学4第8章三角函数8.1任意角、弧度第9章平面向量第10章三角恒等变换10.3几个三角恒等式数学5第11章解三角形11.1正弦定理11.2余弦定理11.3正弦定理、余弦定理的应用第12章数列12.1等差数列12.2等比数列12.3数列的进一步认识第13章不等式13.1不等关系13.2一元二次不等式13.3二元一次不等式组与简单的线性规划问题13.4基本不等式选修系列11-1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑联结词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线与方程第3章导数及其应用3.1导数的概念3.2导数的运算3.3导数在研究函数中的应用3.4导数在实际生活中的应用1-2第1章统计案例1.1假设检验1.2独立性检验1.3线性回归分析1.4聚类分析第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义第4章框图4.1流程图5.2结构图选修系列22-1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑连接词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线的统一定义2.6曲线与方程第3章空间向量与立体几何3.1空间向量及其运算3.2空间向量的应用2-2第1章导数及其应用1.1导数的概念1.2导数的运算1.3导数在研究函数中的应用1.4导数在实际生活中的应用1.5定积分第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法2.4公理化思想第3章数系的扩充与复数的引入6.1数系的扩充3.2复数的四则运算3.3复数的几何意义2-3第1章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理第2章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.4二项分布2.5离散型随机变量的均值与方差2.6正态分布第3章统计案例3.1假设检验3.2独立性检验3.3线性回归分析4.4聚类分析。

空间向量及其运算数量积运算教案7选修21

空间向量及其运算数量积运算教案7选修21

第四课时3.1.3空间向量的数量积运算教学要求:掌握空间向量夹角和模的概念及表示方法;掌握两个向量数量积的概念、性质和计算方法及运算律;掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题.教学重点:两个向量的数量积的计算方法及其应用.教学难点:向量运算在几何证明与计算中的应用.教学过程:一、复习引入1.复习平面向量数量积定义:2. 平面向量中有两个平面向量的数量积,与其类似,空间两个向量也有数量积.二、新课讲授1. 两个非零向量夹角的概念:已知两个非零向量a 与b ,在空间中任取一点O ,作OA =a ,OB =b ,则∠AOB 叫做向量a 与b 的夹角,记作<a ,b >.说明:⑴规定:0≤<a ,b >π≤. 当<a 、b >=0时,a 与b 同向; 当<a 、b >=π时,a 与b 反向;当<a 、b >=2π时,称a 与b 垂直,记a ⊥b . ⑵ 两个向量的夹角唯一确定且<a ,b >=<b ,a >.⑶ 注意:①在两向量的夹角定义中,两向量必须是同起点的.②<a ,b >≠(a ,b )2. 两个向量的数量积:已知空间两个向量a 与b ,|a ||b |cos <a 、b >叫做向量a 、b 的数量积,记作a ·b ,即 a ·b =|a ||b |cos <a ,b >.说明:⑴零向量与任一向量的数量积为0,即0·a =0;⑵符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.几何意义:已知向量AB =a 和轴l ,e 是l 上和l 同方向的单位向量.作点A 在l 上的射影A ′,点B 在l 上的射影B ′,则''A B 叫做向量AB 在轴l 上或在e 方向上的正射影,简称射影.可以证明:''A B =|AB |cos <a ,e >=a ·e .说明:一个向量在轴上的投影的概念,就是a ·e 的几何意义.3. 空间数量积的性质:根据定义,空间向量的数量积和平面向量的数量积一样,具有以下性质:⑴a ·e =|a |·cos <a ,e >; ⑵a ⊥b ⇔a ·b =0⑶当a 与b 同向时,a ·b =|a |·|b |; 当a 与b 反向时,a ·b =-|a |·|b |.特别地,a·a=|a|2或|a⑷cos<a,b>=a ba b⋅⋅;⑸|a·b|≤|a|·|b|.4. 空间向量数量积的运算律:与平面向量的数量积一样,空间向量的数量积有如下运算律:⑴(λa)·b=λ(a·b)=a·(λb) (数乘结合律);⑵a·b=b·a (交换律);⑶a·(b+c)=a·b+a·c (分配律)说明:⑴(a·b)c≠a(b·с);⑵有如下常用性质:a2=|a|2,(a+b)2=a2+2a·b+b2 5. 教学例题:课本P98例2、例3(略)三、巩固练习作业:课本P101 例4。

空间向量及其运算

空间向量及其运算

3.1空间向量及其运算3.1.1空间向量的线性运算教学目标:㈠知识目标:⒈空间向量;⒉相等的向量;⒊空间向量的加减与数乘运算及运算律;㈡能力目标:⒈理解空间向量的概念,掌握其表示方法;⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律;⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题.㈢德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物.教学重点:空间向量的加减与数乘运算及运算律.教学难点:应用向量解决立体几何问题.教学方法:讨论式.教学过程:Ⅰ.复习引入[师]在必修四第二章《平面向量》中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢?[生]既有大小又有方向的量叫向量.向量的表示方法有:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB.[师]数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,由此我们可以得出向量相等的概念,请同学们回忆一下.[生]长度相等且方向相同的向量叫相等向量.[师]学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:⒈向量的加法:⒉向量的减法:⒊实数与向量的积:实数λ与向量a的积是一个向量,记作λa,其长度和方向规定如下:(1)|λa|=|λ||a|(2)当λ>0时,λa与a同向;当λ<0时,λa与a反向;当λ=0时,λa=0.[师]关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢? [生]向量加法和数乘向量满足以下运算律加法交换律:a +b =b +a加法结合律:(a +b )+c =a +(b +c ) 数乘分配律:λ(a +b )=λa +λb[师]今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用.请同学们阅读课本P 26~P 27.Ⅱ.新课讲授[师]如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量.例如空间的一个平移就是一个向量.那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?[生]与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量.起点与重点重合的向量叫做零向量。

高中数学选修2-1-第三章第一节《3.1空间向量及其运算》全套教案

高中数学选修2-1-第三章第一节《3.1空间向量及其运算》全套教案

高中数学选修2-1-第三章第一节《3.1空间向量及其运算》全套教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN空间向量及其运算课时分配:第一课空间向量及其加减运算 1个课时第二课空间向量的数乘运算 1个课时第三课空间向量的数量积运算 1个课时第四课空间向量运算的坐标表示1个课时3. 1.1 空间向量及其加减运算【教学目标】1.了解向量与平面平行、共面向量的意义,掌握向量与平面平行的表示方法;2.理解共面向量定理及其推论;掌握点在已知平面内的充要条件;3.会用上述知识解决立体几何中有关的简单问题。

【教学重点】点在已知平面内的充要条件。

共线、共面定理及其应用。

【教学难点】对点在已知平面内的充要条件的理解与运用。

b a AB OA OB+=+=;b a OB OA BA-=-=;)(R a OP ∈=λλ3.平行六面体:平行四边形ABCD 平移向量a 到D C B A ''''的轨迹所形成的几何体,叫做平行六面体,并记作:ABCD -D C B A ''''它的六个面都是平行四边形,每个面的边叫做平行六面体的棱。

4.平面向量共线定理方向相同或者相反的非零向量叫做平行向量。

由于任何一组平行向量都可以平移到同一条直线上,所以平行向量也叫做共线向量。

向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使b =λa 。

这个定理称为平面向量共线定理,要注意其中对向量a 的非零要求。

条有向线段来表示。

思考:运算律:(1)加法交换律:a b b a+=+ (2)加法结合律:)()(c b a c b a++=++(3)数乘分配律:b a b aλλλ+=+)(C BAOb bb aa a C'B'A'D'DABC数t 满足等式t OA OP +=a。

其中向量a 叫做直线l 的方向向量。

空间向量及其运算4 人教课标版精品课件

空间向量及其运算4 人教课标版精品课件
回忆的老墙,偶尔依靠,黄花总开不败,所有囤积下来的风声雨声,天晴天阴,都是慈悲。时光不管走多远,不管有多老旧,含着眼泪,伴着迷茫,读了一页又一页,一直都在,轻轻一碰,就让内心温软。旧的时光被揉进了岁月的折皱里,藏在心灵的沟壑,直至韶华已远,才知道走过的路不能回头,错过的已不可挽留,与岁月反复交手,沧桑中变得更加坚强。
(2)首尾相接的若干向量若构成一个封闭图 形,则它们的和为零向量。 A1A2 A2 A3 A3 A4 An A1 0
b a
C a+b B
O
A
OB OA AB CA OA OC
空间向量的加减法
B
b
b
Oa A
a
结论:空间任意两个向量都是共面向量,所以 它们可用同一平面内的两条有向线段表示。
A
b
B
c
C
A
b
C
Bc
(空间向量)
b b
a
a
结论:1)空间任意两个向量都是共面向量。
2)涉及空间任意两个向量问题,平 面向量中有关结论仍适用它们。
我们知道平面向量还有数乘运算. 类似地,同样可以定义空间向量的数乘运 算,其运算律是否也与平面向量完全相同呢?
定义: 数乘空间向量的运算法则
与平面向量一样,实数 与空间向量 a 的乘积
时光就是这么不经用,很快自己做了母亲,我才深深的知道,这样的爱,不带任何附加条件,不因万物毁灭而更改。只想守护血浓于水的旧时光,即便峥嵘岁月将容颜划伤,相信一切都是最好的安排。那时的时光无限温柔,当清水载着陈旧的往事,站在时光这头,看时光那头,一切变得分明。执笔书写,旧时光的春去秋来,欢喜也好,忧伤也好,时间窖藏,流光曼卷里所有的宠爱,疼惜,活色生香的脑海存在。

空间向量及其运算说课稿

空间向量及其运算说课稿

选修2-1《3.1空间向量及其运算》说课稿北京师范大学附属中学罗德建各位专家,各位老师:大家好!我是来自北京师范大学附属中学的罗德建,今天我说课的内容是《空间向量的线性运算》,选自普通高中课程标准实验教科书人教B版选修2-1第三章.下面我就从:教学内容和学生情况分析,教学目标设定,重难点设置,教学方式,教学过程以及教学反思等方面对这节课进行说明.一.教学内容和学生情况分析本节内容是第三章《空间向量与立体几何》的第一节,由于是起始节,所以这节课中也包含了章引言的内容.章引言中提到了本章的主要内容和研究方法,即类比平面向量来研究空间向量的概念和运算.向量是既有大小又有方向的量,它能像数一样进行运算,本身又是一个“图形”,所以它可以作为沟通代数和几何的桥梁,在很多数学问题的解决中有着重要的应用.本章要学习的空间向量,将为解决三维空间中图形的位置关系与度量问题提供一个十分有效的工具.本小节的主要内容可分为两部分:一是空间向量的相关概念;二是空间向量的线性运算.新课标对这节内容的要求是:经历向量及其运算由平面向空间推广的过程,了解空间向量的概念,掌握空间向量的线性运算.这节课的授课班级是高二的一个理科普通班,学生在高一时就学习了平面向量,能利用平面向量解决平面几何的问题.在平面向量的教学中,我始终注重与实数的类比、数形结合等数学思想方法的渗透,不仅让学生清楚学什么,更主要的是帮助学生理解为什么学,怎么学.基于此,我将这节课的教学目标设定为:二.教学目标1.知识与技能:理解空间向量的概念,会用图形说明空间向量的线性运算及其运算律,初步应用空间向量的线性运算解决简单的立体几何问题.2.过程与方法:学生通过类比平面向量的学习过程了解空间向量的研究内容和方法,经历向量及其运算由平面向空间的推广,体验数学概念的形成过程.3.情感,态度与价值观:培养学生的空间观念和系统学习概念的意识.三.教学重点与教学难点这节课的教学重点是空间向量的概念及线性运算.在由平面向量向空间向量的推广过程中,学生对于其相同点与不同点的理解有一定的困难,所以我将这节课的教学难点设置为体会类比的数学方法的应用.四.教学方式我采用的教学方式是通过问题启发引导学生自主完成概念的探究过程,紧紧围绕教学重点展开教学,并从教学过程的每个环节入手,努力突破教学难点.五.教学过程本节课分为6个环节:引入概念,概念形成,概念深化,应用概念,归纳小结和布置作业.其中重点是概念的形成和概念的深化,实际教学时间25分钟1.引入概念在引入概念环节中,我首先通过提问帮助学生回顾平面向量学习的内容,学习的目的和研究方法,让学生对平面向量有个整体的认识,同时也为空间向量的学习做铺垫.接着我以一个生活实例(学生从操场上完操回到教室的过程)引出空间向量的问题,通过追问激发学生学习新概念的兴趣,并给出本节课具体的研究方向.这节课作为《空间向量与立体几何》一章的第一节课,我希望让它也起到章节“导游图”的作用.2.概念形成首先我向学生提出问题:我们应该如何研究空间向量?学生回答:类比平面向量教师引导:接着我给出平面向量概念的PPT,由学生从定义、表示、方向刻画、大小刻画、特殊向量、向量间的特殊关系等方面探究空间向量的概念.师生小结:我通过问题串帮助学生将概念梳理清楚,让他们体会到空间向量与平面向量的概念完全相同,只是所处的环境不同而已.以前研究的向量都位于平面内,现在他们可以在空间中任意平移了.在这个过程中让学生明确空间向量的研究方法,体会数学的严谨性.接着我通过提问让学生类比平面向量去定义空间向量的加法,减法和数乘运算,同时得到多个空间向量求和的多边形法则,让学生进一步体会空间向量与平面向量之间的关系,突出教学重点.3.概念深化为了简化运算就需要研究空间向量线性运算的运算律.我向学生提出以下问题:平面向量中学习过哪些线性运算的运算律?这些运算律是不是也可以推广到空间中去呢?咱们先来看看哪些可以直接由平面结论得到?(PPT给出)学生通过探究发现由于加法交换律和分配律都只涉及到一个或两个向量,可以看作同一平面上的问题,可由平面结论直接得出;而空间中任意三个向量可能不共面,所以加法结合律还需要重新证明.接着由学生自主完成对加法结合律的证明.教师小结:通过结合律的证明能培养学生的空间观念,他们还能进一步体会空间向量中的某些问题与平面向量中相应问题的不同之处.4.应用概念在应用概念环节中,我设置了两道例题(PPT给出).例1的设计意图是让学生初步应用空间向量的概念及其运算解决一些问题,平行六面体是空间向量加法运算的一个重要几何模型,需要加深对平行六面体的理解.同时通过(Ⅱ)让学生进一步猜想空间中任意一个向量是不是都能用这三个向量来表示?是不是空间中任意三个向量都能去表示别的向量?对这三个向量有什么要求?这样为下一节的内容做铺垫.例2的设计意图是帮助学生熟悉多边形法则,进一步巩固空间向量的线性运算.5.归纳小结在归纳小结环节中为了培养学生归纳总结的意识和能力,我首先提问让学生自己总结,接着我根据学生的回答补充完善小结,总结空间向量的概念内容和研究过程,尤其强调在整个研究过程中都使用到的类比的推理方法,进一步突破这节课的教学难点.6.布置作业练习A和练习B的第1,2题可帮助学生巩固基础知识;练习B的第3题是为下一节《空间向量的基本定理》做准备.六.教学反思通过这节课的备课与教学我自己主要获得了以下几方面的收获:1.在概念课教学中教师作用的体现这节课的知识本身是很容易的,对于学习程度好的学生自学应该也没有问题,那么教师在这节课中的作用是什么?我想作为教师,需要帮助学生从整体上把握知识脉络,关注这部分内容在整个数学知识体系中的地位和作用。

2020年高中数学第三章3.1空间向量及其运算3.1.4空间向量的正交分解及其坐标表示

2020年高中数学第三章3.1空间向量及其运算3.1.4空间向量的正交分解及其坐标表示

3.1.4 空间向量的正交分解及其坐标表示[课时作业] [A 组 基础巩固]1.下列说法中正确的是( )A .任何三个不共线的向量都可构成空间向量的一个基底B .空间的基底有且只有一个C .两两垂直的三个非零向量可构成空间的一个基底D .基底{a ,b ,c }中的基向量与基底{e ,f ,g }的基向量对应相等解析:只有不共面的三个非零向量才能作空间向量的基底,基底不唯一,因此A ,B ,D 均不正确,C 正确,故选C. 答案:C2.O ,A ,B ,C 为空间四个点,又{OA →,OB →,OC →}为空间的一个基底,则( ) A .O ,A ,B ,C 四点不共线 B .O ,A ,B ,C 四点共面,但不共线 C .O ,A ,B ,C 四点中任意三点不共线 D .O ,A ,B ,C 四点不共面解析:由于{OA →,OB →,OC →}为空间的一个基底, 所以OA →,OB →,OC →不共面,因此,O ,A ,B ,C 四点一定不共面,故选D. 答案:D3.如图所示,空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA →上,且OM →=2MA →,N 为BC 的中点,MN →=xa +yb +zc ,则x ,y ,z 分别为( ) A.12,-23,12 B .-23,12,12C.12,12,-23D.23,23,-12解析:MN →=MA →+AB →+BN → =13OA →+(OB →-OA →)+12BC → =13OA →+(OB →-OA →)+12(OC →-OB →) =-23OA →+12OB →+12OC →,∴x =-23,y =12,z =12,故选B. 答案:B4.在空间直角坐标系O ­xyz 中,下列说法正确的是( ) A .向量AB →的坐标与点B 的坐标相同 B .向量AB →的坐标与点A 的坐标相同 C .向量AB →与向量OB →的坐标相同 D .向量AB →与向量OB →-OA →的坐标相同 解析:因为A 点不一定为坐标原点, 所以A 不正确;B ,C 都不正确; 由于AB →=OB →-OA →, 所以D 正确,故选D. 答案:D5.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于( )A.⎝ ⎛⎭⎪⎫0,14,-1B.⎝ ⎛⎭⎪⎫-14,0,1 C.⎝⎛⎭⎪⎫0,-14,1D.⎝ ⎛⎭⎪⎫14,0,-1 解析:B (1,1,0),E (1,34,1),∴BE →=(1,34,1)-(1,1,0)=(0,-14,1).答案:C6.已知空间的一个基底{a ,b ,c },m =a -b +c ,n =xa +yb +c ,若m 与n 共线,则x =________,y =________.解析:因为m 与n 共线,所以存在实数λ,使m =λn ,即a -b +c =λxa +λyb +λc ,于是有⎩⎪⎨⎪⎧1=λx ,-1=λy ,1=λ,解得⎩⎪⎨⎪⎧x =1,y =-1.答案:1 -17.正方体ABCD ­A 1B 1C 1D 1中,点E ,F 分别是底面A 1C 1和侧面CD 1的中点,若EF →+λA 1D →=0(λ∈R),则λ=________.解析:如图,连接A 1C 1,C 1D ,则E 在A 1C 1上,F 在C 1D 上易知EF 綊12A 1D ,∴EF →=12A 1D →,即EF →-12A 1D →=0,∴λ=-12.答案:-128.已知A ,B ,C 三点共线,则对空间任一点O ,存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.解析:∵A ,B ,C 三点共线,∴存在实数k ,使AB →=kBC →,即OB →-OA →=k (OC →-OB →), 即OA →-(k +1)OB →+kOC →=0,∴1-(k +1)+k =0, 故λ+m +n =0. 答案:09.若{a ,b ,c }是空间的一个基底,判断{a +b ,b +c ,c +a }能否作为该空间的一个基底. 解析:假设a +b ,b +c ,c +a 共面,则存在实数λ,μ使得a +b =λ(b +c )+μ(c +a ),∴a +b =λb +μa +(λ+μ)c . ∵{a ,b ,c }为基底,∴a ,b ,c 不共面,∴⎩⎪⎨⎪⎧1=μ,1=λ,0=λ+μ,此方程组无解.∴a +b ,b +c ,c +a 不共面.∴{a +b ,b +c ,c +a }可以作为空间一个基底.10.棱长为1的正方体ABCD ­A 1B 1C 1D 1中,E ,F ,G 分别为棱DD 1,D 1C 1,BC 的中点,以{AB →,AD →,AA 1→}为基底,求下列向量的坐标:(1)AE →,AG →,AF →; (2)EF →,EG →,DG →.解析:(1)AE →=AD →+DE →=AD →+12DD 1→=AD →+12AA 1→=⎝⎛⎭⎪⎫0,1,12,AG →=AB →+BG →=AB →+12AD →=⎝ ⎛⎭⎪⎫1,12,0,AF →=AA 1→+A 1D 1→+D 1F →=AA 1→+AD →+12AB →=⎝ ⎛⎭⎪⎫12,1,1.(2)EF →=AF →-AE →=(AA 1→+AD →+12AB →)-⎝⎛⎭⎪⎫AD →+12AA 1→=12AA 1→+12AB →=⎝ ⎛⎭⎪⎫12,0,12.EG →=AG →-AE →=⎝ ⎛⎭⎪⎫AB →+12AD →-⎝ ⎛⎭⎪⎫AD →+12AA 1→=AB →-12AD →-12AA 1→=⎝ ⎛⎭⎪⎫1,-12,-12,DG →=AG →-AD →=AB →+12AD →-AD →=AB →-12AD →=⎝⎛⎭⎪⎫1,-12,0.[B 组 能力提升]1.已知{i ,j ,k }为空间的一个单位正交基底,且a =-2i +2j -2k ,b =i +4j -6k ,c =xi -8j +8k ,若向量a ,b ,c 共面,则向量c 的坐标为( )A .(8,-8,8)B .(-8,8,8)C .(-8,-8,-8)D .(-8,8,-8)解析:∵a ,b ,c 共面,∴可设c =λa +μb ,故 ∴xi -8j +8k =λ(-2i +2j -2k )+μ(i +4j -6k ),由此可得⎩⎪⎨⎪⎧x =-2λ+μ,-8=2λ+4μ,8=-2λ-6μ,解得x =8.故向量c 的坐标为(8,-8,8).答案:A2.如图,在平行六面体ABCD ­A1B 1C 1D 1中,M 为AC 和BD 的交点,若AB →=a ,AD →=b ,AA 1→=c ,则B 1M →=( )A.12a +12b -c B .-12a +12b -cC.12a -12b -c D .-12a -12b +c解析:B 1M →=AM →-AB 1→=12(AB →+AD →)-(AB →+AA 1→) =-12AB →+12AD →-AA 1→=-12a +12b -c .答案:B3.如图,在正方体ABCD ­A 1B 1C 1D 1中,用AC →,AB 1→,AD 1→作为基向量,则AC 1→=________.解析:2AC 1→=2AA 1→+2AD →+2AB →=(AA 1→+AD →)+(AA 1→+AB →)+(AD →+AB →) =AD 1→+AB 1→+AC →, ∴AC 1→=12(AD 1→+AB 1→+AC →).答案:12(AD 1→+AB 1→+AC →)4.在平行六面体ABCD -A 1B 1C 1D 1中,若AC 1→=xAB →+2yBC →+3zC 1C →,则x +y +z =________. 解析:∵AC 1→=AB →+BC →+CC 1→, 又AC 1→=xAB →+2yBC →+3zC 1C →, ∴x =1,2y =1,3z =1,即x =1,y =12,z =13,故x +y +z =1+12+13=116.答案:1165.在平行六面体ABCD ­A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点. (1)用向量a ,b ,c 表示D 1B →,EF →;(2)若D 1F →=xa +yb +zc ,求实数x ,y ,z 的值.解析:(1)如图,D 1B →=D 1D →+DB →=-AA 1→+AB →-AD →=a -b -c ,EF →=EA →+AF →=12D 1A →+12AC →=-12(AA 1→+AD →)+12(AB →+AD →)=12(a -c ).(2)D 1F →=12(D 1D →+D 1B →)=12(-AA 1→+AB →-AD 1→) =12(-AA 1→+AB →-AD →-DD 1→) =12(a -c -b -c ) =12a -12b -c , ∴x =12,y =-12,z =-1.6.已知正四面体ABCD 棱长为a ,试建立恰当的坐标系并表示出各个顶点的坐标. 解析:过点A 作AG 垂直于平面BCD ,由于AB =AC =AD , 所以点G 为△BCD 的中心, 过点G 作GF ∥CD ,E 为CD 的中点,以G 为原点,GF →,GE →,GA →的方向分别为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系. 因为△BCD 的边长为a ,则BE =32a ,GE =36a , 又GF CE =23,所以GF =23×12a =13a ,又BG =33a ,所以AG =a 2-a 23=63a , 所以A ⎝ ⎛⎭⎪⎫0,0,63a ,B ⎝ ⎛⎭⎪⎫0,-33a ,0,C ⎝ ⎛⎭⎪⎫a 2,36a ,0,D ⎝ ⎛⎭⎪⎫-a 2,36a ,0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.1.4 空间向量的正交分解及坐标表示
【学情分析】:
本小节首先把平面向量的基本定理推广到空间向量的基本定理这种推广对学生学习已无困难但仍要一步步地进行,学生要时刻牢记,现在研究的范围已由平面扩大到空间
学习了空间向量,另一方面可加深学生的空间观念让学生从二维到三维发现规律,培养学生的探索创新能力。

【教学目标】:
(1)知识与技能:掌握空间向量基本定理,会判断空间向量共面
(2)过程与方法:正交分解推导入手,掌握空间向量基本定理
(3)情感态度与价值观:认识将空间向量的正交分解,能够将空间向量在某组基上进行分解
【教学重点】:空间向量正交分解,空间向量的基本定理地使用
【教学难点】:空间向量的分解
【课前准备】:课件
由此定理,若三向量
y
)
,z
解:OG OM MG =+
2
312
()231211
[()]2322111()233111633
OM MN
OA ON OM OA OB OC OA OA OB OC OA OA OB OC =+=+-=++-=++-=++ ∴ 111
633
OG OA OB OC =++
四.练习巩固
1、如图,在正方体///B D CA OADB -中,,点E 是AB 与OD 的交点,M 是OD /与CE 的交点,试分
别用向量
OC OB OA ,,表示OD 和OM
解:OC OB OA OD ++=/
OC OB OA OM 31
3131++=
课本P102 练习1、2、3
五.拓展与提高
1.设A 、B 、C 、D 是空间任意四个点,令
u =AD BC +,v =AB CD +,w =
充分认识基底的特征,即线性无关的三个向量就可以构成空间的一个基底。

A
B
C
O
M
N
G
C.至少有两个相等
E H
练习与测试:
(基础题)
E
M G
D C
B
A
1 如图,在正方体///B D CA OADB -中,,点E 是AB 与OD 的交点,M 是OD /与CE 的交点,试分别用向量OC OB OA ,,表示OD 和OM
解:OC OB OA OD ++=/
3
1
3131++=
2.设向量},,{是空间一个基底,则一定可以与向量
b a q b a p -=+=,构成空间的另一个基底的向量是
( )
A .
B .
C .
D .或
3.设A 、B 、C 、D 是空间任意四个点,令u =AD BC +,v =AB CD +,w =AC BD +,则u 、v 、w 三个向量
( )
A .互不相等
B .至多有两个相等
C .至少有两个相等
D .有且只有两个相等
4.若a 、b 、c 是空间的一个基底,下列各组
①l a 、m b 、n c (lmn ≠0); ②a +2b 、2b +3c 、3a -9c ; ③a +2b 、b +2c 、c +2a ; ④a +3b 、3b +2c 、-2a +4c 中,仍能构成空间基底的是 ( )
A .①②
B .②③
C .①③
D .②④
5.设A ,B ,C ,D 是空间不共面的四点,且满足0=⋅AC AB ,0=⋅AD AC ,0=⋅AD AB ,则△BCD 是 ( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .不确定
6.已知S 是△ABC 所在平面外一点,D 是SC 的中点,若BD =xAB y AC z AS ++, 则x +y +z = . 7.在空间四边形ABCD 中,AC 和BD 为对角线,
G 为△ABC 的重心,E 是BD 上一点,BE =3ED ,
以{AB ,AC ,AD }为基底,则GE = .
(中等题)
8.已知四面体ABCD 中,,,AB AC AD 两两互相垂直,则下列结论中,不一定成立的是( ) (1). ||||AB AC AD AB AC AD ++=+- (2). AB CD AC BD AD BC ⋅=⋅=⋅
(3). ()0AB AC AD BC ++⋅= (4). 2222
||||||||AB AC AD AB AC AD ++=++
不一定成立的是 .
9.已知非零向量21e e 不共线,如果121212,28,33AB e e AC e e AD e e =+=+=-,求证:A 、B 、C 、D 共面。

〖1.2〗函数及其表示
【1.2.1】函数的概念
(1)函数的概念
①设A 、B 是两个非空的数集,如果按照某种对应法则f
,对于集合
A 中任何一个数x ,在集合
B 中都有唯一确定
的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合
A 到
B 的一个函数,
记作
:f A B →.
②函数的三要素:定义域、值域和对应法则.
③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法
①设,a b 是两个实数,且a b <,满足a x b ≤
≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数
x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做
[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <
<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须
a b <.
(3)求函数的定义域时,一般遵循以下原则:
①()f x 是整式时,定义域是全体实数.
②()f x 是分式函数时,定义域是使分母不为零的一切实数.

()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤
tan y x =中,()2
x k k Z π
π≠+
∈.
⑥零(负)指数幂的底数不能为零. ⑦若
()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.
⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不
等式()a g x b ≤
≤解出.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值
求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:
①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数
()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在
()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.
④不等式法:利用基本不等式确定函数的值域或最值.
⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问
题.
⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.。

相关文档
最新文档