【精品】2017年山东省临沂市临沭县青云中学九年级上学期期中数学试卷带解析答案
山东省临沂市临沭县青云中学2017届九年级第一学期学科素养大赛数学试卷(含解析)
2017年山东省临沂市临沭县青云中学九年级学科素养大赛数学试卷一、选择题(共12小题,每小题3分,满分36分)1.已知二次函数y=x2﹣6x+m的最小值是﹣3,那么m的值等于()A.10 B.4 C.5 D.62.用配方法解下列方程时,配方有错误的是()A.x2﹣2x﹣99=0化为(x﹣1)2=100 B.x2+8x+9=0化为(x+4)2=25C.2t2﹣7t﹣4=0化为(t﹣)2=D.3x2﹣4x﹣2=0化为(x﹣)2=3.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()A.b=﹣1 B.b=2 C.b=﹣2 D.b=04.如图⊙O是△ABC的外接圆,OD⊥AB于点D,交⊙O于点E,∠C=60°,若⊙O的半径为2,则下列结论错误的是()A.AD=BD B.AE=BE C.AB=D.OD=15.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.136.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,连接AE,∠E=36°,则∠ADC的度数是()A.44° B.54° C.72° D.53°7.已知点P(a,a+3)在抛物线y=x2﹣7x+19图象上,则点P关于原点O的对称点P′的坐标是()A.(4,7)B.(﹣4,﹣7)C.(4,﹣7)D.(﹣4,7)8.若A(﹣,y1),B(,y2),C(,y3)为二次函数y=x2+4x﹣5的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y29.下列图形中阴影部分面积相等的是()A.①② B.②③ C.①④ D.③④10.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表,从下表可知:下列说法:①抛物线与x轴的另一个交点为(3,0),②函数的最大值为6,③抛物线的对称轴是直线x=,④在对称轴的左侧,y随x的增大而增大,正确的有()A.1个B.2个C.3个D.4个11.y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论①abc>0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()。
(完整)2017年山东省临沂市中考数学试卷(含答案解析版)(2),推荐文档
2017年山东省临沂市中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.﹣的相反数是()A.B.﹣C.2017 D.﹣20172.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.50°B.60°C.70°D.80°3.下列计算正确的是()A.﹣(a﹣b)=﹣a﹣b B.a2+a2=a4 C.a2•a3=a6 D.(ab2)2=a2b44.不等式组中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.5.如图所示的几何体是由五个小正方体组成的,它的左视图是()A.B.C. D.6.小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()A.B.C.D.7.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形8.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A.=B.=C.=D.=9.某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示:部门人数每人创年利润(万元)A110B38C75D43这15名员工每人所创年利润的众数、中位数分别是()A.10,5 B.7,8 C.5,6.5 D.5,510.如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是()A.2 B.﹣πC.1 D. +π11.将一些相同的“○”按如图所示摆放,观察每个图形中的“○”的个数,若第n 个图形中“○”的个数是78,则n的值是()A.11 B.12 C.13 D.1412.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形13.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…h08141820201814…下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是()A.1 B.2 C.3 D.414.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点,△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6 B.10 C.2D.2二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:m3﹣9m=.16.已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO=.17.计算:÷(x﹣)=.18.在▱ABCD中,对角线AC,BD相交于点O,若AB=4,BD=10,sin∠BDC=,则▱ABCD的面积是.19.在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n).已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是(填上所有正确答案的符号).三、解答题(本大题共7小题,共63分)20.计算:|1﹣|+2cos45°﹣+()﹣1.21.为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计9要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:学生最喜爱的节目人数统计表百分比节目人数(名)最强大脑510%朗读者15b%中国诗词大会a40%出彩中国人1020%根据以上提供的信息,解答下列问题:(1)x=,a=,b=;(2)补全上面的条形统计图;(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.22.如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度.23.如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.24.某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40cm3(二月份用水量不超过25cm3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?25.数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.26.如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.2017年山东省临沂市中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.﹣的相反数是()A.B.﹣C.2017 D.﹣2017【考点】14:相反数.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:A.2.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.50°B.60°C.70°D.80°【考点】JA:平行线的性质;IL:余角和补角.【分析】首先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【解答】解:∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选A.3.下列计算正确的是()A.﹣(a﹣b)=﹣a﹣b B.a2+a2=a4 C.a2•a3=a6 D.(ab2)2=a2b4【考点】47:幂的乘方与积的乘方;44:整式的加减;46:同底数幂的乘法.【分析】根据去括号、同底数幂的乘法底数不变指数相加,积的乘方,可得答案.【解答】解:A、括号前是负号,去括号全变号,故A不符合题意;B、不是同底数幂的乘法指数不能相加,故B不符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、积的乘方等于乘方的积,故D符合题意;故选:D.4.不等式组中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x<1,解不等式②,得:x≥﹣3,则不等式组的解集为﹣3≤x<1,故选:B.5.如图所示的几何体是由五个小正方体组成的,它的左视图是()A.B.C. D.【考点】U2:简单组合体的三视图.【分析】根据三视图定义分别作出三视图即可判断.【解答】解:该几何体的三视图如下:主视图:;俯视图:;左视图:,故选:D.6.小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小华获胜的情况数,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,小华获胜的情况数是3种,∴小华获胜的概率是:=.故选C.7.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形【考点】L3:多边形内角与外角.【分析】此题可以利用多边形的外角和和内角和定理求解.【解答】解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.8.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A.=B.=C.=D.=【考点】B6:由实际问题抽象出分式方程.【分析】根据甲乙的效率,可设未知数,根据甲乙的工作时间,可列方程.【解答】解:设乙每小时做x个,甲每小时做(x+6)个,根据甲做90个所用时间与乙做60个所用时间相等,得=,故选:B.9.某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示:部门人数每人创年利润(万元)A110B38C75D43这15名员工每人所创年利润的众数、中位数分别是()A.10,5 B.7,8 C.5,6.5 D.5,5【考点】W5:众数;W4:中位数.【分析】根据表格中的数据可以将这组数据按照从小到大的顺序排列起来,从而可以找到这组数据的中位数和众数.【解答】解:由题意可得,这15名员工的每人创年利润为:10、8、8、8、5、5、5、5、5、5、5、3、3、3、3,∴这组数据的众数是5,中位数是5,故选D.10.如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是()A.2 B.﹣πC.1 D. +π【考点】MC:切线的性质;MO:扇形面积的计算.【分析】设AC交⊙O于D,连结BD,先根据圆周角定理得到∠ADB=90°,则可判断△ADB、△BDC都是等腰直角三角形,所以AD=BD=CD=AB=,然后利.用弓形AD的面积等于弓形BD的面积得到阴影部分的面积=S△BTD【解答】解:∵BT是⊙O的切线;设AT交⊙O于D,连结BD,∵AB是⊙O的直径,∴∠ADB=90°,而∠ATB=45°,∴△ADB、△BDT都是等腰直角三角形,∴AD=BD=TD=AB=,∴弓形AD的面积等于弓形BD的面积,=××=1.∴阴影部分的面积=S△BTD故选C.11.将一些相同的“○”按如图所示摆放,观察每个图形中的“○”的个数,若第n 个图形中“○”的个数是78,则n的值是()A.11 B.12 C.13 D.14【考点】38:规律型:图形的变化类.【分析】根据小圆个数变化规律进而表示出第n个图形中小圆的个数,进而得出答案.【解答】解:第1个图形有1个小圆;第2个图形有1+2=3个小圆;第3个图形有1+2+3=6个小圆;第4个图形有1+2+3+4=10个小圆;第n个图形有1+2+3+…+n=个小圆;∵第n个图形中“○”的个数是78,∴78=,解得:n1=12,n2=﹣13(不合题意舍去),故选:B.12.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形【考点】LC:矩形的判定;L9:菱形的判定.【分析】由矩形的判定和菱形的判定即可得出结论.【解答】解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A 错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.13.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…h08141820201814…下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】HE:二次函数的应用.【分析】由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,可得y=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判断.【解答】解:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误.∴正确的有②③,故选B.14.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点,△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6 B.10 C.2D.2【考点】G5:反比例函数系数k的几何意义;PA:轴对称﹣最短路线问题.【分析】由正方形OABC的边长是6,得到点M的横坐标和点N的纵坐标为6,求得M(6,),N(,6),根据三角形的面积列方程得到M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,根据勾股定理即可得到结论.【解答】解:∵正方形OABC的边长是6,∴点M的横坐标和点N的纵坐标为6,∴M(6,),N(,6),∴BN=6﹣,BM=6﹣,∵△OMN的面积为10,∴6×6﹣×6×﹣6×﹣×(6﹣)2=10,∴k=24,∴M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,∵AM=AM′=4,∴BM′=10,BN=2,∴NM′===2,故选C.二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:m3﹣9m=m(m+3)(m﹣3).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式,再根据平方差公式进行二次分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:m3﹣9m,=m(m2﹣9),=m(m+3)(m﹣3).故答案为:m(m+3)(m﹣3).16.已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO=4.【考点】S4:平行线分线段成比例.【分析】根据平行线分线段成比例定理列出比例式,计算即可.【解答】解:∵AB∥CD,∴==,即=,解得,AO=4,故答案为:4.17.计算:÷(x﹣)=.【考点】6C:分式的混合运算.【分析】先算括号内的减法,把除法变成乘法,再根据分式的乘法法则进行计算即可.【解答】解:原式=÷=•=,故答案为:.18.在▱ABCD中,对角线AC,BD相交于点O,若AB=4,BD=10,sin∠BDC=,则▱ABCD的面积是24.【考点】L5:平行四边形的性质;T7:解直角三角形.【分析】作OE⊥CD于E,由平行四边形的性质得出OA=OC,OB=OD=BD=5,CD=AB=4,由sin∠BDC=,证出AC⊥CD,OC=3,AC=2OC=6,得出▱ABCD的面积=CD•AC=24.【解答】解:作OE⊥CD于E,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD=BD=5,CD=AB=4,∵sin∠BDC==,∴OE=3,∴DE==4,∵CD=4,∴点E与点C重合,∴AC⊥CD,OC=3,∴AC=2OC=6,∴▱ABCD的面积=CD•AC=4×6=24;故答案为:24.19.在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n).已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是①③④(填上所有正确答案的符号).【考点】LM:*平面向量;6E:零指数幂;T7:解直角三角形.【分析】根据向量垂直的定义进行解答.【解答】解:①因为2×(﹣1)+1×2=0,所以与互相垂直;②因为cos30°×1+tan45°•sin60°=×1+1×=≠0,所以与不互相垂直;③因为(﹣)(+)+(﹣2)×=3﹣2﹣1=0,所以与互相垂直;④因为π0×2+2×(﹣1)=2﹣2=0,所以与互相垂直.综上所述,①③④互相垂直.故答案是:①③④.三、解答题(本大题共7小题,共63分)20.计算:|1﹣|+2cos45°﹣+()﹣1.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】根据绝对值的意义、特殊角的三角函数值、二次根式的化简和负指数幂的运算,分别求得每项的值,再进行计算即可.【解答】解:|1﹣|+2cos45°﹣+()﹣1=﹣1+2×﹣2+2=﹣1+﹣2+2=1.21.为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计9要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:学生最喜爱的节目人数统计表百分比节目人数(名)最强大脑510%朗读者15b%中国诗词大会a40%出彩中国人1020%根据以上提供的信息,解答下列问题:(1)x=50,a=20,b=30;(2)补全上面的条形统计图;(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.【考点】VC:条形统计图;V5:用样本估计总体;VA:统计表.【分析】(1)根据最强大脑的人数除以占的百分比确定出x的值,进而求出a与b的值即可;(2)根据a的值,补全条形统计图即可;(3)由中国诗词大会的百分比乘以1000即可得到结果.【解答】解:(1)根据题意得:x=5÷10%=50,a=50×40%=20,b=×100=30;故答案为:50;20;30;(2)中国诗词大会的人数为20人,补全条形统计图,如图所示:(3)根据题意得:1000×40%=400(名),则估计该校最喜爱《中国诗词大会》节目的学生有400名.22.如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度.【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】延长CD,交AE于点E,可得DE⊥AE,在直角三角形ABC中,由题意确定出AB的长,进而确定出EC的长,在直角三角形AED中,由题意求出ED的长,由EC﹣ED求出DC的长即可.【解答】解:延长CD,交AE于点E,可得DE⊥AE,在Rt△AED中,AE=BC=30m,∠EAD=30°,∴ED=AEtan30°=10m,在Rt△ABC中,∠BAC=30°,BC=30m,∴AB=30m,则CD=EC﹣ED=AB﹣ED=30﹣10=20m.23.如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.【考点】MA:三角形的外接圆与外心.【分析】(1)由角平分线得出∠ABE=∠CBE,∠BAE=∠CAD,得出,由圆周角定理得出∠DBC=∠CAD,证出∠DBC=∠BAE,再由三角形的外角性质得出∠DBE=∠DEB,即可得出DE=DB;(2)由(1)得:,得出CD=BD=4,由圆周角定理得出BC是直径,∠BDC=90°,由勾股定理求出BC==4,即可得出△ABC外接圆的半径.【解答】(1)证明:∵BE平分∠BAC,AD平分∠ABC,∴∠ABE=∠CBE,∠BAE=∠CAD,∴,∴∠DBC=∠CAD,∴∠DBC=∠BAE,∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,∴∠DBE=∠DEB,∴DE=DB;(2)解:连接CD,如图所示:由(1)得:,∴CD=BD=4,∵∠BAC=90°,∴BC是直径,∴∠BDC=90°,∴BC==4,∴△ABC外接圆的半径=×4=2.24.某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40cm3(二月份用水量不超过25cm3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?【考点】FH:一次函数的应用.【分析】(1)根据函数图象可以分别设出各段的函数解析式,然后根据函数图象中的数据求出相应的函数解析式;(2)根据题意对x进行取值进行讨论,从而可以求得该用户二、三月份的用水量各是多少m3.【解答】解:(1)当0≤x≤15时,设y与x的函数关系式为y=kx,15k=27,得k=1.8,即当0≤x≤15时,y与x的函数关系式为y=1.8x,当x>15时,设y与x的函数关系式为y=ax+b,,得,即当x>15时,y与x的函数关系式为y=2.4x﹣9,由上可得,y与x的函数关系式为y=;(2)设二月份的用水量是xm3,当15<x≤25时,2.4x﹣9+2.4(40﹣x)﹣9=79.8,解得,x无解,当0<x≤15时,1.8x+2.4(40﹣x)﹣9=79.8,解得,x=12,∴40﹣x=28,答:该用户二、三月份的用水量各是12m3、28m3.25.数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.【考点】RB:几何变换综合题.【分析】(1)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再得出∠AEC=45°,即可得出等腰直角三角形,即可;(判断∠ADE=∠ABC也可以先判断出点A,B,C,D四点共圆)(2)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再用三角函数即可得出结论.【解答】解:(1)BC+CD=AC;理由:如图1,延长CD至E,使DE=BC,∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,∵∠ACB=∠ACD=45°,∴∠ACB+∠ACD=45°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=45°,AC=AE,∴△ACE是等腰直角三角形,∴CE=AC,∵CE=CE+DE=CD+BC,∴BC+CD=AC;(2)BC+CD=2AC•cosα.理由:如图2,延长CD至E,使DE=BC,∵∠ABD=∠ADB=α,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2α,∵∠ACB=∠ACD=α,∴∠ACB+∠ACD=2α,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=α,AC=AE,∴∠AEC=α,过点A作AF⊥CE于F,∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC•cos∠ACD=AC•cosα,∴CE=2CF=2AC•cosα,∵CE=CD+DE=CD+BC,∴BC+CD=2AC•cosα.26.如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)待定系数法即可得到结论;(2)连接AC,作BF⊥AC交AC的延长线于F,根据已知条件得到AF∥x轴,得到F(﹣1,﹣3),设D(0,m),则OD=|m即可得到结论;(3)设M(a,a2﹣2a﹣3),N(1,n),①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴y于E,AF⊥x轴于F,于是得到△ABF≌△NME,证得NE=AF=3,ME=BF=3,得到M(4,5)或(﹣2,11);②以AB为对角线,BN=AM,BN∥AM,如图3,则N在x轴上,M与C重合,于是得到结论.【解答】解:(1)由y=ax2+bx﹣3得C(0.﹣3),∴OC=3,∵OC=3OB,∴OB=1,∴B(﹣1,0),把A(2,﹣3),B(﹣1,0)代入y=ax2+bx﹣3得,∴,∴抛物线的解析式为y=x2﹣2x﹣3;(2)设连接AC,作BF⊥AC交AC的延长线于F,∵A(2,﹣3),C(0,﹣3),∴AF∥x轴,∴F(﹣1,﹣3),∴BF=3,AF=3,∴∠BAC=45°,设D(0,m),则OD=|m|,∵∠BDO=∠BAC,∴∠BDO=45°,∴OD=OB=1,∴|m|=1,∴m=±1,∴D1(0,1),D2(0,﹣1);(3)设M(a,a2﹣2a﹣3),N(1,n),①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴y于E,AF ⊥x轴于F,则△ABF≌△NME,∴NE=AF=3,ME=BF=3,∴|a﹣1|=3,∴a=3或a=﹣2,∴M(4,5)或(﹣2,11);②以AB为对角线,BN=AM,BN∥AM,如图3,则N在x轴上,M与C重合,∴M(0,﹣3),综上所述,存在以点A,B,M,N为顶点的四边形是平行四边形,M(4,5)或(﹣2,11)或(0,﹣3).。
2017-2018年山东省临沂市临沭县青云中心中学九年级上学期期中数学模拟试卷及参考答案
2017-2018学年山东省临沂市临沭县青云中心中学九年级(上)期中数学模拟试卷(一)一、选择题:(每小题3分,本题满分共36分,)下列每小题中有四个备选答案,其中只有一个是符合题意的,把正确答案前字母序号填在下面表格相应的题号下.1.(3分)一元二次方程x(x﹣2)=2﹣x的根是()A.﹣1 B.2 C.1和2 D.﹣1和22.(3分)下列图形中,中心对称图形有()A.4个 B.3个 C.2个 D.1个3.(3分)关于x的方程x2+2kx﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个不相等的实数根C.k为任何实数,方程都有两个相等的实数根D.k取值不同实数,方程实数根的情况有三种可能4.(3分)关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,则a的值是()A.1 B.﹣1 C.1或﹣1 D.25.(3分)如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.115°B.120°C.125° D.145°6.(3分)2011年向阳村农民人均收入为7200元,到2013年增长至8712元.这两年中,该村农民人均收入平均每年的增长率为()7.(3分)抛物线y=ax2+bx+c与x轴的两个交点为(﹣1,0),(3,0),其形状与抛物线y=﹣2x2相同,则y=ax2+bx+c的函数关系式为()A.y=﹣2x2﹣x+3 B.y=﹣2x2+4x+5 C.y=﹣2x2+4x+8 D.y=﹣2x2+4x+6 8.(3分)如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140° D.120°9.(3分)如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB 与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30°B.45°C.60°D.40°10.(3分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点11.(3分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()12.(3分)如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙O上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为()A.4个 B.3个 C.2个 D.1个二、填空题:(每题4分,共24分)13.(4分)若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是.14.(4分)已知一元二次方程x2﹣3x﹣3=0的两根为a与b,则的值是.15.(4分)如图,点A、B、P在⊙O上,∠APB=50°,若M是⊙O上的动点,则等腰△ABM顶角的度数为.16.(4分)如图所示,在△ABC中,∠B=40°,将△ABC绕点A逆时针旋转至△ADE处,使点B落在BC延长线上的D点处,∠BDA=45°,则∠BDE=.17.(4分)如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为.18.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0.其中结论正确的是.(填正确结论的序号)19.(4分)如图,两条抛物线,与分别经过点(﹣2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为.三、解答下列各题(共60分)20.解方程(1)x2﹣2x﹣1=0.(2)(x﹣1)2+2x(x﹣1)=0.21.如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,若AF=4.AB=7.(1)旋转中心为;旋转角度为;(2)求DE的长度;(3)指出BE与DF的关系如何?并说明理由.22.如图所示,△ABC与点O在10×10的网格中的位置如图所示(1)画出△ABC绕点O逆时针旋转90°后的图形;(2)画出△ABC绕点O逆时针旋转180°后的图形;(3)若⊙M能盖住△ABC,则⊙M的半径最小值为.23.某花圃用花盆培育某种花苗,经过实验发现每盆的盈利于每盆的株数构成一定的关系,每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆没增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?24.如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,∠CAB=30°,求⊙O的半径.25.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.26.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标.27.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置=8,并求出此时P点的坐标.时,满足S△PAB28.如图,抛物线y=x2+bx+c经过点(1,﹣4)和(﹣2,5),请解答下列问题:(1)求抛物线的解析式;(2)若与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由.29.如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C(3,0).(1)求A、B的坐标;(2)求抛物线的解析式;(3)在抛物线的对称轴上求一点P,使得△PAB的周长最小,并求出最小值;(4)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.2017-2018学年山东省临沂市临沭县青云中心中学九年级(上)期中数学模拟试卷(一)参考答案与试题解析一、选择题:(每小题3分,本题满分共36分,)下列每小题中有四个备选答案,其中只有一个是符合题意的,把正确答案前字母序号填在下面表格相应的题号下.1.(3分)一元二次方程x(x﹣2)=2﹣x的根是()A.﹣1 B.2 C.1和2 D.﹣1和2【解答】解:x(x﹣2)+(x﹣2)=0,∴(x﹣2)(x+1)=0,∴x﹣2=0或x+1=0,∴x1=2,x2=﹣1.故选:D.2.(3分)下列图形中,中心对称图形有()A.4个 B.3个 C.2个 D.1个【解答】解:第四个图只是轴对称图形,第1、第2和第3个是中心对称图形.中心对称图形有3个.故选:B.3.(3分)关于x的方程x2+2kx﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个不相等的实数根C.k为任何实数,方程都有两个相等的实数根D.k取值不同实数,方程实数根的情况有三种可能【解答】解:△=4k2﹣4×(﹣1)=4k2+4,∵4k2≥0,∴4k2+4>0∴方程有两个不相等的实数根.故选:B.4.(3分)关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,则a的值是()A.1 B.﹣1 C.1或﹣1 D.2【解答】解:依题意△>0,即(3a+1)2﹣8a(a+1)>0,即a2﹣2a+1>0,(a﹣1)2>0,a≠1,∵关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1﹣x1x2+x2=1﹣a,∴x1﹣x1x2+x2=1﹣a,∴x1+x2﹣x1x2=1﹣a,∴﹣=1﹣a,解得:a=±1,又a≠1,∴a=﹣1.故选:B.5.(3分)如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.115°B.120°C.125° D.145°【解答】解:∵∠B=30°,∠C=90°,∴∠BAC=60°,∵Rt△ABC绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,∴∠BAB1等于旋转角,且∠BAB1=180°﹣∠BAC=120°,∴旋转角等于120°.故选:B.6.(3分)2011年向阳村农民人均收入为7200元,到2013年增长至8712元.这两年中,该村农民人均收入平均每年的增长率为()A.10% B.15% C.20% D.25%【解答】解:设该村人均收入的年平均增长率为x,由题意得:7200(1+x)2=8712,解得:x1=﹣2.1(不合题意舍去),x2=0.1=10%.答:该村人均收入的年平均增长率为10%.故选:A.7.(3分)抛物线y=ax2+bx+c与x轴的两个交点为(﹣1,0),(3,0),其形状与抛物线y=﹣2x2相同,则y=ax2+bx+c的函数关系式为()A.y=﹣2x2﹣x+3 B.y=﹣2x2+4x+5 C.y=﹣2x2+4x+8 D.y=﹣2x2+4x+6【解答】解:根据题意a=﹣2,所以设y=﹣2(x﹣x1)(x﹣x2),求出解析式y=﹣2(x+1)(x﹣3),即是y=﹣2x2+4x+6.故选:D.8.(3分)如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140° D.120°【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.9.(3分)如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB 与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30°B.45°C.60°D.40°【解答】解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∵∠AOB=∠C+∠OBC,而∠C=∠OBC,∴∠C=AOB=30°.故选:A.10.(3分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点【解答】解:二次函数y=(x﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.故选:C.11.(3分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个 B.3个 C.2个 D.1个【解答】解:(1)由图表中数据可得出:x=1时,y=5,所以二次函数y=ax2+bx+c 开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故(1)正确;(2)∵二次函数y=ax2+bx+c开口向下,且对称轴为x==1.5,∴当x≥1.5时,y的值随x值的增大而减小,故(2)错误;(3)∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一个根,故(3)正确;(4)∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2+(b﹣1)x+c>0,故(4)正确.故选:B.12.(3分)如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙O上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为()A.4个 B.3个 C.2个 D.1个【解答】解:(1)连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故(1)正确;(2)由(1)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故(2)正确;(3)连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴AC=CO,∴AC=CO=AO,∴∠COA=60°,∴∠CPO=30°,∴CO=PO=AB,∴PO=AB,故(3)正确;(4)∵四边形PCBD是菱形,∠CPO=30°,∴DP=DB,则∠DPB=∠DBP=30°,∴∠PDB=120°,故(4)正确;正确个数有4个,故选:A.二、填空题:(每题4分,共24分)13.(4分)若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是k<﹣1.【解答】解:∵一元二次方程x2﹣2x﹣k=0没有实数根,∴△=(﹣2)2﹣4×1×(﹣k)=4+4k<0,∴k的取值范围是k<﹣1;故答案为:k<﹣1.14.(4分)已知一元二次方程x2﹣3x﹣3=0的两根为a与b,则的值是﹣1.【解答】解:根据题意得a+b=3,ab=﹣3,所以原式===﹣1.故答案为﹣1.15.(4分)如图,点A、B、P在⊙O上,∠APB=50°,若M是⊙O上的动点,则等腰△ABM顶角的度数为50°或80°或130°.【解答】解:连接AM,BM,①若点M在优弧APB上,∴∠M=∠APB=50°,若AM=BM,则等腰△ABM顶角的度数为50°;若AM=AB或BM=AB,则等腰△ABM顶角的度数为:180°﹣2∠M=80°;②若点M在劣弧AB上,则∠M=180°﹣∠APB=130°,此时∠M是顶角.∴等腰△ABM顶角的度数为:50°或80°或130°.故答案为:50°或80°或130°.16.(4分)如图所示,在△ABC中,∠B=40°,将△ABC绕点A逆时针旋转至△ADE处,使点B落在BC延长线上的D点处,∠BDA=45°,则∠BDE=85°.【解答】解:∵△ABC绕点A逆时针旋转至△ADE处,使点B落在BC延长线上的D点处,∴∠ADE=∠B=40°,∴∠BDE=∠BDA+∠ADE=45°+40°=85°.故答案为85°.17.(4分)如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为1或5.【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故答案为:1或5.18.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0.其中结论正确的是①②⑤.(填正确结论的序号)【解答】解:①由图知:抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,∴b2>4ac,故①正确;②抛物线开口向上,得:a>0;抛物线的对称轴为x=﹣=1,b=﹣2a,故b<0;抛物线交y轴于负半轴,得:c<0;所以abc>0;故②正确;③∵抛物线的对称轴为x=﹣=1,b=﹣2a,∴2a+b=0,故2a﹣b=0错误;④根据②可将抛物线的解析式化为:y=ax2﹣2ax+c(a≠0);由函数的图象知:当x=﹣2时,y>0;即4a﹣(﹣4a)+c=8a+c>0,故④错误;⑤根据抛物线的对称轴方程可知:(﹣1,0)关于对称轴的对称点是(3,0);当x=﹣1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确;所以这结论正确的有①②⑤.故答案为:①②⑤.19.(4分)如图,两条抛物线,与分别经过点(﹣2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为8.【解答】解:如图,过y2=﹣x2﹣1的顶点(0,﹣1)作平行于x轴的直线与y1=﹣x2+1围成的阴影,同过点(0,﹣3)作平行于x轴的直线与y2=﹣x2﹣1围成的图形形状相同,故把阴影部分向下平移2个单位即可拼成一个矩形,因此矩形的面积为4×2=8.故填8.三、解答下列各题(共60分)20.解方程(1)x2﹣2x﹣1=0.(2)(x﹣1)2+2x(x﹣1)=0.【解答】解:(1)∵x2﹣2x=1,∴x2﹣2x+1=1+1,即(x﹣1)2=2,则x﹣1=±,∴x=1±;(2)∵(x﹣1)(x﹣1+2x)=0,即(x﹣1)(3x﹣1)=0,∴x﹣1=0或3x﹣1=0,解得:x=1或x=21.如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,若AF=4.AB=7.(1)旋转中心为点A;旋转角度为90°;(2)求DE的长度;(3)指出BE与DF的关系如何?并说明理由.【解答】解:(1)旋转中心为点A,旋转角为∠BAD=90°;(2)∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴AE=AF=4,AD=AB=7,∴DE=AD﹣AE=7﹣4=3;(3)BE、DF的关系为:BE=DF,BE⊥DF.理由如下:∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴△ABE≌△ADF,∴BE=DF,∠ABE=∠ADF,∵∠ADF+∠F=180°﹣90°=90°,∴∠ABE+∠F=90°,∴BE⊥DF,∴BE、DF的关系为:BE=DF,BE⊥DF.22.如图所示,△ABC与点O在10×10的网格中的位置如图所示(1)画出△ABC绕点O逆时针旋转90°后的图形;(2)画出△ABC绕点O逆时针旋转180°后的图形;(3)若⊙M能盖住△ABC,则⊙M的半径最小值为.【解答】解:(1)如图,△A′B′C′为所作;(2)如图,△A″B″C″为所求;(3)如图,当点M为AC的中点时,此时⊙M是能盖住△ABC的最小的圆,⊙M的半径为.故答案为.23.某花圃用花盆培育某种花苗,经过实验发现每盆的盈利于每盆的株数构成一定的关系,每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆没增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?【解答】解:设每盆花苗增加x株,则每盆花苗有(x+3)株,平均单株盈利为:(3﹣0.5x)元,由题意得:(x+3)(3﹣0.5x)=10.化简,整理,得x2﹣3x+2=0.解这个方程,得x1=1,x2=2,则3+1=4,2+3=5,答:要使每盆的盈利达到10元,每盆应植4株或者5株.24.如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=2,∠CAB=30°,求⊙O的半径.【解答】(1)证明:连接OC,如图,∵=,∴∠BAC=∠FAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴AD∥OC,∵CD⊥AD,∴OC⊥CD,∴CD是⊙O的切线;(2)解:作OH⊥AD于H,如图,易得四边形OCBH为矩形,∴OH=CD=2,∵∠FAC=∠CAB=30°,∴∠OAH=60°,在Rt△AOH中,∵sin∠OAH=,∴OA===4,即⊙O的半径为4.25.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.【解答】(1)证明:∵AD为直径,AD⊥BC,∴由垂径定理得:∴根据圆心角、弧、弦之间的关系得:BD=CD.(2)解:B,E,C三点在以D为圆心,以DB为半径的圆上.理由:由(1)知:,∴∠1=∠2,又∵∠2=∠3,∴∠1=∠3,∴∠DBE=∠3+∠4,∠DEB=∠1+∠5,∵BE是∠ABC的平分线,∴∠4=∠5,∴∠DBE=∠DEB,∴DB=DE.由(1)知:BD=CD∴DB=DE=DC.∴B,E,C三点在以D为圆心,以DB为半径的圆上.(7分)26.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标.【解答】解:(1)把(0,0)代入得k+1=0,解得k=﹣1,所以二次函数解析式为y=x2﹣3x;(2)当y=0时,x2﹣3x=0,解得x1=0,x2=3,则A(3,0),抛物线的对称轴为直线x=,设B(x,x2﹣3x),因为△AOB的面积等于6,所以•3•|x2﹣3x|=6,当x2﹣3x=4时,解得x1=﹣1,x2=4,则B点坐标为(4,4);当x2﹣3x=﹣4时,方程无实数解.所以点B的坐标为(4,4).27.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S=8,并求出此时P点的坐标.△PAB【解答】解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴方程x2+bx+c=0的两根为x=﹣1或x=3,∴﹣1+3=﹣b,﹣1×3=c,∴b=﹣2,c=﹣3,∴二次函数解析式是y=x2﹣2x﹣3.(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴x=1,顶点坐标(1,﹣4).(3)设P的纵坐标为|y P|,=8,∵S△PAB∴AB•|y P|=8,∵AB=3+1=4,∴|y P|=4,∴y P=±4,把y P=4代入解析式得,4=x2﹣2x﹣3,解得,x=1±2,把y P=﹣4代入解析式得,﹣4=x2﹣2x﹣3,解得,x=1,∴点P在该抛物线上滑动到(1+2,4)或(1﹣2,4)或(1,﹣4)时,满足S=8.△PAB28.如图,抛物线y=x2+bx+c经过点(1,﹣4)和(﹣2,5),请解答下列问题:(1)求抛物线的解析式;(2)若与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=x2+bx+c经过点(1,﹣4)和(﹣2,5),∴,解得:.故抛物线的解析式为:y=x2﹣2x﹣3.(2)存在.∵抛物线y=x2﹣2x﹣3的对称轴为:x=﹣=1,∴根据轴对称的性质,点C关于x=1的对称点D即为所求,此时,AC=BD,BC=AD,在△ABC和△BAD中,∵,∴△ABC≌△BAD(SSS).在y=x2﹣2x﹣3中,令x=0,得y=﹣3,则C(0,﹣3),D(2,﹣3).29.如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C(3,0).(1)求A、B的坐标;(2)求抛物线的解析式;(3)在抛物线的对称轴上求一点P,使得△PAB的周长最小,并求出最小值;(4)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.【解答】解:(1)对于直线y=3x+3,令x=0,得到y=3;令y=0,得到x=﹣1,则A(﹣1,0),B(0,3);(2)由A(﹣1,0),C(3,0),设抛物线解析式为y=a(x+1)(x﹣3),把B(0,3)代入得:3=﹣3a,即a=﹣1,则抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3;(3)连接BC,与抛物线对称轴交于点P,连接AP,由对称性得AP=CP,如图1所示,此时△ABP周长最小,由抛物线解析式y=﹣x2+2x+3=﹣(x﹣1)2+4,得到对称轴为直线x=1,设直线BC解析式为y=mx+n,将B(0,3),C(3,0)代入得:,解得:m=﹣1,n=3,即直线BC解析式为y=﹣x+3,联立得:,解得:,即P(1,2),根据两点间的距离公式得:AB==,BC==3,则P(1,2),周长为AB+BP+AP=AB+BP+PC=AB+BC=3+;(4)在抛物线的对称轴上存在点Q,使△ABQ是等腰三角形,如图2所示,分四种情况考虑:当AB=AQ1==时,在Rt△AQ1Q3中,AQ3=2,AQ1=,根据勾股定理得:Q1Q3==,此时Q1(1,);由对称性可得Q2(1,﹣);当AB=BQ3时,可得OQ3=OA=1,此时Q3(1,0);当AQ4=BQ4时,Q4为线段AB垂直平分线与对称轴的交点,∵A(﹣1,0),B(0,3),∴直线AB斜率为=3,中点坐标为(﹣,),∴线段AB垂直平分线方程为y﹣=﹣(x+),令x=1,得到y=1,此时Q4(1,1),综上,Q的坐标为(1,)或(1,﹣)或(1,0)或(1,1).赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。
初三数学期中考试试卷上册附答案2017
初三数学期中考试试卷上册附答案2017期中对我们来说是一次考验,又是一次检验,考验学习态度是否端正,检验前半学期学到的成果。
以下是店铺为大家搜索整理的初三数学试卷上册附答案2017,希望能给大家带来帮助!更多精彩内容请及时关注我们应届毕业生!一、选择题(本大题共15个小题,每小题3分,共45分)1.一元二次方程x2-3x+2=0的两根为x1,x2,则x1+x2的值是( )A.2B.-2C.3D.-32.一元二次方程x2-4x+5=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.如果2是方程x2-3x+c=0的一个根,那么c的值是( )A.4B.-4C.2D.-24.下列说法中正确的个数是( )①不可能事件发生的概率为0;②一个对象在试验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.A.1B.2C.3D.45.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为( )A.14B.12C.12或14D.以上都不对6.下列命题正确的是( )A.对角线互相垂直的四边形是菱形B.一组对边相等,另一组对边平行的四边形是平行四边形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形7.某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为x米,则可列方程为( )A.x(x-11)=180B.2x+2(x-11)=180C.x(x+11)=180D.2x+2(x+11)=1808.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是( )A.34B.15C.25D.359.关于x的一元二次方程(m-2)x2+2x+1=0有实数根,则m的取值范围是( )A.m≤3B.m<3C.m<3且m≠2D.m≤3且m≠210.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是( )A.4B.6C.8D.1011.暑假快到了,父母打算带兄妹俩去某个景点旅游一次,长长见识,可哥哥坚持去黄山,妹妹坚持去泰山,争执不下,父母为了公平起见,决定设计一款游戏,若哥哥赢了就去黄山,妹妹赢了就去泰山.下列游戏中,不能选用的是( )A.掷一枚硬币,正面向上哥哥赢,反面向上妹妹赢B.同时掷两枚硬币,两枚都正面向上,哥哥赢,一正一反向上妹妹赢C.掷一枚骰子,向上的一面是奇数则哥哥赢,反之妹妹赢D.在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球则哥哥赢,是红球则妹赢12.将进货单价为40元的商品按50元出售时,售出500个,经市场调查发现:该商品每涨价1元,其销量减少10个,为了赚8 000元,则售价应定为( )A.60元B.80元C.60元或80元D.70元13.如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是( )A.70°B.75°C.80°D.95°14.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使平行四边形ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )A.①②B.②③C.①③D.②④15.如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;④EG=12(BC-AD);⑤四边形EFGH是菱形,其中正确的个数是( )A.1个B.2个C.3个D.4个二、填空题(本大题共5小题,每小题5分,共25分)16.一元二次方程x2+x=0的解是________________.17.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=________.18.若x1、x2是方程2x2-3x-4=0的两个根,则x1x2+x1+x2的值为________.19.某班要从甲、乙、丙、丁四位班干部(两男两女)中任意两位参加学校组织的志愿者服务活动,则恰好选中一男一女的概率是________.20.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值是________.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)用适当的方法解方程:(1)x2-4x+3=0; (2)(x-2)(3x-5)=1.22.(8分)如图,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB.23.(10分)某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.24.(12分)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率为________;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图法或列表法求出他恰好买到雪碧和奶汁的概率.25.(12分)如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD交BC于点E,作MF∥BC交CD于点F.求证:AM=EF.26.(14分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.(1)填表(不需化简):时间第一个月第二个月清仓时单价(元) 80 40销售量(件) 200(2)如果批发商希望通过销售这批T恤获利9 000元,那么第二个月的单价应是多少元?27.(16分)已知: ABCD的两边AB,AD的长是关于x的方程x2-mx+m2-14=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么 ABCD的周长是多少?参考答案1.C2.D3.C4.C5.B6.D7.C8.C9.D 10.C 11.B12.C 13.C 14.B 15.C 16.x1=0,x2=-1 17.5 18.-12 19.2320.2221.(1)x1=1,x2=3.(2)x1=11+136,x2=11-136.22.证明:∵四边形ABCD为矩形,∴∠A=∠B=90°,AD=BC.∵∠AOC=∠BOD,∴∠AOC-∠DOC=∠BOD-∠DOC,即∠AOD=∠BOC.∴△AOD≌△BOC(AAS).∴AO=OB.23.设这个增长率为x.依题意得20(1+x)2-20(1+x)=4.8.解得x1=0.2,x2=-1.2(不合题意,舍去).0.2=20%.答:这个增长率是20%.24.(1)14(2)画树状图:由树状图可知,所有等可能的结果共有12种,满足条件的结果有2种,所以他恰好买到雪碧和奶汁的概率为212=16. 25.证明:连接MC.∵在正方形ABCD中,AD=CD,∠ADM=∠CDM,又∵DM=DM,∴△ADM≌△CDM.∴AM=CM.∵ME∥CD,MF∥BC,∴四边形CEMF是平行四边形.又∵∠ECF=90°,∴ CEMF是矩形.∴EF=MC。
山东省临沭县青云镇中心中学九年级上学期期末考试数学考试卷(解析版)(初三)期末考试.doc
山东省临沭县青云镇中心中学九年级上学期期末考试数学考试卷(解析版)(初三)期末考试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】方程的根是A.B.C.D.【答案】D.【解析】试题分析:两边直接开平方,得,所以原方程的解为,.故选D.考点:解一元二次方程.【题文】二次函数图象的顶点坐标是A.(1,-2) B.(-1,-2) C.(-1,2) D.(1,2)【答案】A.【解析】试题分析:由二次函数的顶式可知,二次函数图象的顶点坐标是(1,-2).故选A.考点:二次函数的性质.【题文】若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为A.1:2 B.1:4 C.2:1 D.4:1【答案】B.【解析】试题分析:因为相似三角形的面积比等于相似比的平方,△ABC与△A′B′C′,相似比为1:2,所以△ABC 与△A′B′C′的面积的比为1:4.故选B.考点:相似三角形的性质.【题文】已知一元二次方程2x2﹣5x+3=0,则该方程根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定根的情况【答案】A.【解析】试题分析:因为a=2,b=-5,c=3,△==1>0,所以方程有两个不相等的实数根.故选A.考点:一元二次方程根的判别式.【题文】计算:A.1 B. C.2 D.【答案】C.【解析】试题分析:原式===2.考点:特殊角三角函数值.【题文】将两个长方体如图放置,则所构成的几何体的左视图可能是【答案】C.【解析】试题分析:从左面看下面是一个矩形,上面是一个等宽的矩形,上面的矩形中间有一条棱.故选C.考点:三视图.【题文】如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为A.50° B.80° C.100° D.130°【答案】D.【解析】试题分析:∵∠BOD=100°,∴∠BAD=100°÷2=50°,∴∠BCD=180°-∠BAD=180°-50°=130°.故选D .考点:①圆周角定理;②圆内接四边形的性质.【题文】如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高(杆的宽度忽略不计)A.12m B.8m C.6m D.4m【答案】C.【解析】试题分析:设长臂端点升高x米,根据题意,得,解得x=8.故选C.考点:相似三角形的应用.【题文】如图,△ABC的三个顶点都在方格纸的格点上,其中点A的坐标是(﹣1,0).现将△ABC绕点A 顺时针旋转90°,则旋转后点C的坐标是A.(2,1) B.(1,2) C.(-2,-1) D.(-2,1) 【答案】A.【解析】试题分析:如图所示,将△ABC绕点A顺时针旋转90°,旋转后得,点(2,1),所以旋转后点C的坐标是(2,1).故选A.考点:坐标与图形的变换—旋转.【题文】边长为2的正六边形的边心距是A.1 B.2 C. D.【答案】C.【解析】试题分析:如图,在Rt△AOG中,OA=AB=2,∠AOG=30°,所以OG===.故选C.考点:正多边形和圆.【题文】如图,已知△ABC,则下列四个三角形中,与△ABC相似的是【答案】D.【解析】试题分析:由图形可知△ABC为等腰三角形,∠A=30°,根据两边对应成比例且夹角相等的两个三角形相似,可知只有D选项中的图形与△ABC相似.故选D.考点:相似三角形的判定.【题文】如图,在菱形ABCD中,DE⊥AB,cosA=,BE=2,则的值A. B. C. D.【答案】A.【解析】试题分析:设菱形ABCD的边长为x,∵BE=2,∴AE=x-2,∵cosA=,∴,∴,∴x=5,AE=5-2=3,∴DE===4,∴=.故选A.考点:①解直角三角形;②菱形的性质.【题文】已知函数的图象如图所示,以下结论:①;②在每个分支上y随x的增大而增大;③若点、点在图象上,则;④若点在此函数图象上,则点也在此图象上.其中正确的个数是A.4个 B.3个 C.2个 D.1个【答案】B.【解析】试题分析:①根据反比例函数的图象的两个分支分别位于二、四象限,可得k<0,故正确;②在每个分支上y随x的增大而增大,故正确;③若点A(-1,a)、B(2,b)在图象上,则a<b,故错误;④若点P(m,n)在此函数图象上,则点(-m,-n)也在此图象上,故正确.故选B.考点:①反比例函数的性质;②反比例函数图象上点的坐标特征.【题文】如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=,EC=.则在下面函数图象中,大致能反应与之间函数关系的是【答案】C.【解析】试题分析:根据题意可知,BF=1-x,BE=y-1,且△EFD∽△EDC,所以,即,所以,该函数图象是位于第一象限的双曲线的一部分,A、D选项的图象都是直线的一部分,故错误,B选项的图象是抛物线的一部分,故错误,C选项的图象是双曲线的一部分,故正确.故选C.考点:动点问题的函数图象.【题文】平面直角坐标系内一点,关于原点对称的点的坐标为____________.【答案】(-5,3).【解析】试题分析:关于原点对称的点的坐标横、纵坐标均互为相反数,所以P(5,-3)关于原点对称点的坐标是(-5,3).故答案为(-5,3).考点:关于原点对称点的坐标.【题文】在Rt△ABC中,∠C=90°,AC=8,BC=6,则sinB的值等于_______.【答案】.【解析】试题分析:∵△ABC中,∠C=90°,AC=8,BC=6,∴AB===10,∴sinB===.故答案为.考点:锐角三角函数的定义.【题文】某校开展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选2名进行督查,恰好选中2名男学生的概率是________.【答案】.【解析】试题分析:根据题意画树状图如图所示:∵共有6种等可能的结果,恰好选中两名男学生的有2种情况,∴P(恰好选中两名男学生)==.故答案为.考点:列表法与树状图法求概率.【题文】从地面竖直向上抛出一个小球,小球的高度h(米)与运动时间t(秒)之间的关系式为,那么小球抛出秒后达到最高点.【答案】3.【解析】试题分析:=-5+45,因为a=-5<0,所以图象的开口向下,有最大值,当t=3时,=45,即小球抛出3秒后达到最高点.故答案为3.考点:二次函数的应用.【题文】如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使得两个直角的顶点重合于对角线BD上一点P,EF、GH分别是折痕(如图2).设AE=x(0<x<2),给出下列判断:①当x=1时,点P是正方形ABCD的中心;②当x=时,EF+GH>AC;③当0<x<2时,六边形AEFCHG面积的最大值是;④当0<x<2时,六边形AEFCHG周长的值不变.其中正确的是________(填序号).【答案】①④.【解析】试题分析:①正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,∴△BEF和△DGH是等腰直角三角形,∴当AE=1时,重合点P是BD的中点,∴点P是正方形ABCD的中心;故①结论正确;②正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,∴△BEF∽△BAC,∵x=,∴BE=2-=,∴,即,∴EF=AC,同理,GH=AC,∴EF+GH=AC,故②结论错误;③六边形AEFCHG面积=正方形ABCD的面积-△EBF的面积-△GDH的面积.∵AE=x,∴六边形AEFCHG面积=BE•BF-GD•HD=4-×(2-x)•(2-x)-x•x==,∴六边形AEFCHG面积的最大值是3,故③结论错误;④当0<x<2时,∵EF+GH=AC,六边形AEFCHG周长=AE+EF+FC+CH+HG+AG=(AE+CH)+(FC+AG)+(EF+GH)=2+2+2=4+2,故六边形AEFCHG周长的值不变,故④结论正确.考点:几何变换综合题.【题文】已知是关于x的方程的一个根,求a的值.【答案】=2, =.【解析】试题分析:把x=-2代入关于x的方程,得到关于a的一元二次方程,解这个方程即可得到a的值.试题解析:当x=-2时,,即:,∴=,∴=2, =.考点:①一元二次方程的根;②解一元二次方程.【题文】经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)请用“树形图”或“列表法”列举出这两辆汽车行驶方向所有可能的结果;(2)求这两辆汽车都向左转的概率.【答案】(1)见解析表格;(2).【解析】试题分析:(1)利用树形图”或“列表法”即可求出两辆汽车行驶方向所有可能的结果;(2)根据(1)中的列表情况即可求出这两辆汽车都向左转的概率.试题解析:(1)两辆汽车所有9种可能的行驶方向如下:甲汽车乙汽车左转右转直行左转(左转,左转)(右转,左转)(直行,左转)右转(左转,右转)(右转,右转)(直行,右转)直行(左转,直行)(右转,直行)(直行,直行)(2)由上表知:两辆汽车都向左转的概率是:.考点:列表法或树形图法求概率.【题文】如图是一次“测量旗杆高度”的活动场景抽象出的平面几何图形.活动中测得的数据如下:①小明的身高DC=1.5m②小明的影长CE=1.7m③小明的脚到旗杆底部的距离BC=9m④旗杆的影长BF=7.6m⑤从D点看A点的仰角为30°你可以根据需要选出其中某几个数据,求出旗杆的高度.(计算结果保留到0.1,参考数据≈1.414,≈1.732)解:要想求旗杆的高度,你准备选择上面所给数据__________________(填序号);并写出求解过程.【答案】选用①②④,旗杆高度是6.7m.【解析】试题分析:本题的解法不唯一,如果选用①②④,由AB⊥FC,CD⊥FC,得∠ABF=∠DCE=90°,由AF∥DE,得∠AFB=∠DEC,进而得△ABF∽△DCE,所以,代入数值即可求出AB.试题解析:选用①②④,∵AB⊥FC,CD⊥FC,∴∠ABF=∠DCE=90°,又∵AF∥DE,∴∠AFB=∠DEC,∴△ABF∽△DCE,∴,又∵DC=1.5m,FB=7.6m,EC=1.7m,∴AB=6.7m.即旗杆高度是6.7m.考点:相似三角形的应用.【题文】在平面直角坐标系中,已知反比例函数y=的图象经过点A,点O是坐标原点,OA=2且OA与x 轴的夹角是.(1)试确定此反比例函数的解析式;(2)将线段OA绕O点顺时针旋转30°得到线段OB,判断点B是否在此反比例函数的图象上,并说明理由.【答案】(1)y=;(2)点B在此反比例函数的图象上,理由见解析.【解析】试题分析:(1)过A点作AM x轴,由OA=2,,得A点的坐标为(1,),把A(1,)代入y=,求得k的值即可得到反比例函数的解析式;(2)过点B作x轴的垂线交x轴于点D,由线段OA绕O点顺时针旋转30°得到线段OB,所以∠BOD=30°,在Rt△BOD中,BD =1,OD=,所以B点坐标为(,1),代入反比例函数解析式进行验证即可得到结论.试题解析:(1)过A点作AMx轴,垂足为M,由OA=2,,所以A点的坐标为(1,),把A(1,)代入y=,得k=1×=,∴反比例函数的解析式为y=;(2)点B在此反比例函数的图象上.理由如下:过点B作x轴的垂线交x轴于点D,∵线段OA绕O点顺时针旋转30°得到线段OB,∴∠AOB=30°,OB=OA=2,∴∠BOD=30°,在Rt△BOD中,BD=OB=1,OD=BD=,∴B点坐标为(,1),∵当x=时,y==1,∴点B(,1)在反比例函数y=的图象上.考点:①用待定系数法求反比例函数解析式;②反比例函数的图象和性质.【题文】为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求利润S(元)与销售单价x(元)之间的关系式;(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?【答案】(1)S=﹣10+1600x﹣48000;(2)当销售单价定为80元时,工厂每天获得的利润最大,最大利润是16000元.【解析】试题分析:(1)根据利润=销售单价×销售量,即可列出函数关系式;(2)列出二次函数关系式后配方即可确定最大利润值.试题解析:(1)S=y(x﹣40)=(x﹣40)(﹣10x+1200)=﹣10+1600x﹣48000;(2)S=﹣10+1600x﹣48000=﹣10+16000,当销售单价定为80元时,工厂每天获得的利润最大,最大利润是16000元.考点:二次函数的应用.【题文】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为8,∠CDF=22.5°,求阴影部分的面积.【答案】(1)见解析证明;(2)16π﹣16.【解析】试题分析:(1)连接OD,可证∠ODB=∠ACB,所以OD∥AC,DF是⊙O的切线,可得DF⊥OD,进而得出结论;(2)连接OE,由DF⊥AC,∠CDF=22.5°,得∠BAC=45°,由OA=OE,可知∠AOE=90°,由⊙O的半径为4,可得和,进一步可得阴影部分的面积.试题解析:(1)连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD ∥AC,∵DF是⊙O的切线,∴DF⊥OD,∴DF⊥AC.(2)连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,∴=16π,=16,∴=16π﹣16.考点:①切线的性质;②扇形的面积.【题文】如图,直线与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)连接AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.【答案】(1)y=;(2)存在,Q点的坐标是(0,0)或(,0).【解析】试题分析:(1)(1)直接利用待定系数法求二次函数解析式即可;(2)分当时,△ABC∽△PBQ,当时,△ABC∽△QBP,两种情况讨论,求出Q点的坐标即可.试题解析:(1)由已知,得B(3,0),C(0,3),∴,解得,∴抛物线解析式为y=;(2)存在,由(1),得A(1,0),连接BP,∵∠CBA=∠ABP=45°,∴当时,△ABC∽△PBQ,∴BQ=3,∴(0,0),∴当时,△ABC∽△QBP,∴BQ=,∴,0);∴Q点的坐标是(0,0)或(,0).考点:二次函数综合题.。
山东省临沂市九年级上学期数学期中试卷附答案解析
的度数为〔 〕
A. 25°
B. 30°
C. 40°
D. 55°
7.今年“十一〞长假某湿地公园迎来旅游顶峰,第一天的游客人数是 1.2 万人,第三天的游客人数为 2.3 万
人,假设每天游客增加的百分率相同且设为 x,那么根据题意可列方程为〔 〕
A. 2.3 〔1+x〕2=1.2
B. 1.2〔1+x〕2=2.3
A.
B.
C.
D.
11.把一副三角板如图〔1〕放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边 AB=4,CD=5.把
三角板 DCE 绕着点 C 顺时针旋转 15°得到△D1CE1〔如图 2〕,此时 AB 与 CD1 交于点 O,那么线段 AD1 的长 度为〔 〕
A.
B.
C.
D. 4
A. 1
B. 2
C. 3
D. 4
二、填空题
15.点 A〔2,﹣1〕关于原点对称的点 B 的坐标为 .
16.如图,⊙O 的半径为 6,点 A、B、C 在⊙O 上,且∠ACB=45°,那么弦 AB 的长是 .
17.如图,边长为 2 的正方形 ABCD 中心与半径为 3 的⊙O 的圆心重合,E、F 是 AD、BA 的延长线与⊙O 的 交点,那么阴影面积是 . 〔结果保存 π〕
所以答案选:C。 【分析】分别找出两抛物线的顶点坐标,然后根据点的坐标与平移的规律:“横坐标左减右加,纵坐标上 加下减〞即可得出平移的方向及距离,从而即可得出答案。 6.【答案】 C 【解析】【解答】解:∵四边形 ABCD 是圆内接四边形, ∴∠BCF=∠A=55°, ∵∠CBF 是△ABE 的一个外角, ∴∠CBF=∠A+∠E=85°, ∴∠F=180°−∠BCF−∠CBF=40°, 故答案为:C.
山东省临沂市临沭县青云中学2017届九年级第一学期10月月考数学试卷(含解析)
2016-2017学年山东省临沂市临沭县青云中学九年级(上)月考数学试卷(10月份)一.认真选一选1.下列方程,是一元二次方程的是( )①3x 2+x=20,②2x 2﹣3xy+4=0,③x 2﹣=4,④x 2=0,⑤x 2﹣+3=0.A .①②B .①②④⑤C .①③④D .①④⑤2.方程(x ﹣3)2=(x ﹣3)的根为( )A .3B .4C .4或3D .﹣4或3 3.用配方法解方程x 2+8x+7=0,则配方正确的是( )A .(x ﹣4)2=9B .(x+4)2=9C .(x ﹣8)2=16D .(x+8)2=57 4.关于x 的一元二次方程(a ﹣1)x 2+x+a 2﹣1=0的一个根是0,则a 的值为( )A .1B .﹣1C .1或﹣1D .5.将二次函数y=x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )A .y=(x ﹣1)2+2B .y=(x+1)2+2C .y=(x ﹣1)2﹣2D .y=(x+1)2﹣2 6.抛物线y=ax 2+bx+c 上部分点的横坐标x ,纵坐标y 的对应值如下表,从下表可知:下列说法:①抛物线与x 轴的另一个交点为(3,0),②函数的最大值为6,③抛物线的对称轴是直线x=,④在对称轴的左侧,y 随x 的增大而增大,正确的有( )A .1个B .2个C .3个D .4个7.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )A .B .C .D .8.三角形两边长分别是8和6,第三边长是一元二次方程x 2﹣16x+60=0一个实数根,则该三角形的面积是( )A .24B .48C .24或8D .89.已知二次函数y=ax2+bx+c的图象如图所示,则点(ac,bc)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.某市2004年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2006年底增加到363公顷.设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A.300(1+x)=363 B.300(1+x)2=363 C.300(1+2x)=363 D.363(1﹣x)2=300二、填空题(本大题共有10小题,每小题3分,共30分.)11.y=﹣2(x﹣1)2+5的图象开口向,顶点坐标为,当x>1时,y值随着x值的增大而.12.将抛物线y=x2先向左平移1个单位,再向上平移2个单位,得到y= .13.某矩形的长为a,宽为b,且(a+b)(a+b+2)=8,则a+b的值为.14.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc<0;②b>a+c;③2a﹣b=0;④b2﹣4ac<0.其中正确的结论有个.15.抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为.16.已知关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则实数k的取值范围是.17.已知x2+3x+5的值为9,则代数式3x2+9x﹣2的值为.18.参加一次足球联赛的每两队之间都进行两次比赛,共要比赛90场.设共有x个队参加比赛,则依题意可列方程为.19.如果一条抛物线的形状与y=﹣2x2+2的形状相同,且顶点坐标是(4,﹣2),则它的解析式是.20.已知抛物线y=﹣2(x+1)2﹣3,如果y随x的增大而减小,那么x的取值范围是.三、解答题(本大题共有5小题,共60分.)。
山东省2017届九年级上学期期中考试数学试卷
文刚僧边倂可学荤巴学期磋期単考讲数学试题一、选择题:本大题共12小题,每小题选对得3分,共36分。
1.下列方程中,是关于x的一元二次方程的为()A. 2x-—0 B・ 4x~=3yC. x' + ——— 1D. x~= (x—1)(x — 2)x2.用配方法解一元二次方程X?・6x+4二0,下列变形正确的是()A. (X・6)2=・4+36B. (x・ 6)2 =4+36C. (x・3) 2二・ 4+9D. (x・3)2 =4+93.—元二次方程x2 - x - 2 = 0的解是()A. x t = 1,x2 = 2B. x, = 1,x2 = —2C. = — l,x2 = —2D.旺=—1, x2 = 24.若5k + 20v0,则关于x的一元二次方程x'+4x-k = °的根的悄况是A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断5.若州,花是方程-6.¥+10 = 0的两根,则x, +x2的值是()A. 10B. 6C.-6D.以上都不对6.如果关于x的二次方程“(1+/)+2办之(1一工)有两个相等的实根,那么以正数a, b, c为边长的三角形是().A.锐角三角形B.钝角三角形C.直角三角D.任意三角形7.若函数y= ax a2~2a~b是二次函数且图像开口向上,则&= ()A. -2B. 4C. 4 或一2D. 4 或38.已知二次函数y = o/+bx + c(“工0)的最大值为0,则()A・ d>0, b2 -4ac = 0B・ « > 0 , b2 -4ac<0C・a <0, b2 -4ac = 0D・a <09 b2 -4«c>09.如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=l.®b2>4ac;②4a+2b+c<0:③不等式ax2+bx+c>0 的解集是x>3.5;④若(・2,刃),(5, y2)是抛物线上的两点,则yi<y2.上述4个判断中,正确的是()A. (D® B.①②④ C.①③④ D.②③④10.在下面的网格图中,每个小正方形的边长均为1, AABC的三个顶点都是网格线的交点,已知B, C两点的坐标分别为(・1, - 1), (1,・2),将AABC绕点C顺时针旋转90°,则点A的对应点的坐标为()A. (4, 1)B. (4,・ 1)C. (5, 1)D. (5, - 1) 11 •下列图形中,是中心图形乂是轴对称图形的有()①平行四边形;②菱形;③矩形;④正方形;⑤等腰梯形;⑥线段;⑦角;A.2个B.3个C.4个D.5个;12.如图,将/XABC绕着点C顺时针旋转50°后得到ZiA' B r C‘ •若ZA=40° •二. 填空题:本大题共5小题,每小题4分,共20分13._________________________________________________________ 已知方程2x2-mx-\0 = 0的一根是一5,求方程的另一根为_____________________14 .若方程伙-1)工—石7x+;=0有两个实数根,则k的取值范围4是 __________ O13.—个二次函数的图象顶点坐标为(2, 1),形状与抛物线y= - 2x2相同,其解析式为____________________________________ o16.如果抛物线y=ax2 +bx^c与妙轴交于点A(0,2),它的对称轴是x=2, 那么兰=b -------------17.如图,AABC是直角三角形,BC是斜边,现将AABP绕点A逆时针旋转后,能与ZXACP'重合,已知AP二5,则PP'的长度为________ 。
2017年山东省临沂市临沭县青云中学九年级学科素养大赛数学试卷和解析答案
2017年山东省临沂市临沭县青云中学九年级学科素养大赛数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)已知二次函数y=x2﹣6x+m地最小值是﹣3,那么m地值等于()A.10 B.4 C.5 D.62.(3分)用配方法解下列方程时,配方有错误地是()A.x2﹣2x﹣99=0化为(x﹣1)2=100 B.x2+8x+9=0化为(x+4)2=25C.2t2﹣7t﹣4=0化为(t﹣)2= D.3x2﹣4x﹣2=0化为(x﹣)2=3.(3分)已知命题“关于x地一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题地一个反例可以是()A.b=﹣1 B.b=2 C.b=﹣2 D.b=04.(3分)如图⊙O是△ABC地外接圆,OD⊥AB于点D,交⊙O于点E,∠C=60°,若⊙O地半径为2,则下列结论错误地是()A.AD=BD B.AE=BE C.AB=D.OD=15.(3分)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC地中点,连接DE,则△CDE地周长为()A.20 B.12 C.14 D.136.(3分)如图,▱ABCD地顶点A、B、D在⊙O上,顶点C在⊙O地直径BE上,连接AE,∠E=36°,则∠ADC地度数是()A.44°B.54°C.72°D.53°7.(3分)已知点P(a,a+3)在抛物线y=x2﹣7x+19图象上,则点P关于原点O 地对称点P′地坐标是()A.(4,7) B.(﹣4,﹣7)C.(4,﹣7)D.(﹣4,7)8.(3分)若A(﹣,y1),B(,y2),C(,y3)为二次函数y=x2+4x﹣5地图象上地三点,则y1,y2,y3地大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y29.(3分)下列图形中阴影部分面积相等地是()A.①②B.②③C.①④D.③④10.(3分)抛物线y=ax2+bx+c上部分点地横坐标x,纵坐标y地对应值如下表,从下表可知:下列说法:①抛物线与x轴地另一个交点为(3,0),②函数地最大值为6,③抛物线地对称轴是直线x=,④在对称轴地左侧,y随x地增大而增大,正确地有()A.1个 B.2个 C.3个 D.4个11.(3分)y=ax2+bx+c+2地图象如图所示,顶点为(﹣1,0),下列结论①abc>0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论地个数是()A.1 B.2 C.3 D.412.(3分)如图,抛物线y=﹣2x2﹣8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方地部分记作C1,将C1向左平移得C2,C2与x轴交于点B,D.若直线y=﹣x+m与C1,C2共有3个不同地交点,则m地取值范围是()A.﹣3<m<﹣B.C.﹣2<m<D.﹣3<m<﹣2二、填空题(每小题4分,共24分)13.(4分)如果关于x地方程mx2﹣2x+1=0有两个实数根,那么m地取值范围是.14.(4分)已知圆地一条弦AB把圆分成1:4地两部分,则此弦所对地圆周角等于.15.(4分)如图,AB、CD是半径为5地⊙O地两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上地任意一点,则PA+PC地最小值为.16.(4分)已知f(x)=1+,其中f(a)表示当x=a时代数式地值,如f(1)=1+,f(2)=1+,f(3)=1+,f(a)=1+,则f(1)•f(2)•f(3)•f(4)•…•f(2015)•f(2016)=.17.(4分)对于实数a,b,定义运算“⊗”:,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=6.若x1,x2是一元二次方程x2﹣6x+8=0地两个根,则x1⊗x2=.18.(4分)如图,在△ABC中,AB=CB,以AB为直径地⊙O交AC于点D,过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE,对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O地切线,一定正确地结论选项是.三、解答题(本题共3个小题,满分40分)19.(12分)如图,AB是⊙O地直径,点C、D为半圆O地三等分点,过点C作CE⊥AD,交AD地延长线于点E.(1)求证:CE是⊙O地切线;(2)判断四边形AOCD是否为菱形?并说明理由.20.(12分)阅读下面地材料:解方程x4﹣7x2+12=0这是一个一元四次方程,根据该方程地特点,它地解法通常是:设x2=y,则x4=y2,∴原方程可化为:y2﹣7y+12=0,解得y1=3,y2=4,当y=3时,x2=3,x=±,当y=4时,x2=4,x=±2.∴原方程有四个根是:x1=,x2=﹣,x3=2,x4=﹣2,以上方法叫换元法,达到了降次地目地,体现了数学地转化思想,运用上述方法解答下列问题.(1)解方程:(x2+x)2﹣5(x2+x)+4=0;(2)已知实数a,b满足(a2+b2)2﹣3(a2+b2)﹣10=0,试求a2+b2地值.21.(16分)如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点地横坐标为2.(1)求A、B两点地坐标及直线AC地函数表达式;(2)P是线段AC上地一个动点,过P点作y轴地平行线交抛物线于E点,求线段PE长度地最大值;(3)点G抛物线上地动点,在x轴上是否存在点F,使A、C、F、G这样地四个点为顶点地四边形是平行四边形?如果存在,求出所有满足条件地F点坐标;如果不存在,请说明理由.2017年山东省临沂市临沭县青云中学九年级学科素养大赛数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)已知二次函数y=x2﹣6x+m地最小值是﹣3,那么m地值等于()A.10 B.4 C.5 D.6【解答】解:原式可化为:y=(x﹣3)2﹣9+m,∵函数地最小值是﹣3,∴﹣9+m=﹣3,m=6.故选:D.2.(3分)用配方法解下列方程时,配方有错误地是()A.x2﹣2x﹣99=0化为(x﹣1)2=100 B.x2+8x+9=0化为(x+4)2=25C.2t2﹣7t﹣4=0化为(t﹣)2= D.3x2﹣4x﹣2=0化为(x﹣)2=【解答】解:A、∵x2﹣2x﹣99=0,∴x2﹣2x=99,∴x2﹣2x+1=99+1,∴(x﹣1)2=100,故A选项正确.B、∵x2+8x+9=0,∴x2+8x=﹣9,∴x2+8x+16=﹣9+16,∴(x+4)2=7,故B选项错误.C、∵2t2﹣7t﹣4=0,∴2t2﹣7t=4,∴t2﹣t=2,∴t2﹣t+=2+,∴(t﹣)2=,故C选项正确.D、∵3x2﹣4x﹣2=0,∴3x2﹣4x=2,∴x2﹣x=,∴x2﹣x+=+,∴(x﹣)2=.故D选项正确.故选:B.3.(3分)已知命题“关于x地一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题地一个反例可以是()A.b=﹣1 B.b=2 C.b=﹣2 D.b=0【解答】解:△=b2﹣4,由于当b=﹣1时,满足b<0,而△<0,方程没有实数解,所以当b=﹣1时,可说明这个命题是假命题.故选:A.4.(3分)如图⊙O是△ABC地外接圆,OD⊥AB于点D,交⊙O于点E,∠C=60°,若⊙O地半径为2,则下列结论错误地是()A.AD=BD B.AE=BE C.AB=D.OD=1【解答】解:∵OD⊥AB,∴AE=BE,AD=BD,∠AOD=∠BOD=∠C=60°.∴AD=AOsin60°=,OD=OAsin∠AOD=OAsin60°=1.∴AB=2.∴A,B,D均正确,C错误.故选C.5.(3分)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC地中点,连接DE,则△CDE地周长为()A.20 B.12 C.14 D.13【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC地中点,∴DE=CE=AC=5,∴△CDE地周长=CD+DE+CE=4+5+5=14.故选:C.6.(3分)如图,▱ABCD地顶点A、B、D在⊙O上,顶点C在⊙O地直径BE上,连接AE,∠E=36°,则∠ADC地度数是()A.44°B.54°C.72°D.53°【解答】解:∵BE是直径,∴∠BAE=90°,∵四边形ABCD是平行四边形,∠E=36°,∴∠BEA=∠DAE=36°,∴∠BAD=126°,∴∠ADC=54°,故选:B.7.(3分)已知点P(a,a+3)在抛物线y=x2﹣7x+19图象上,则点P关于原点O 地对称点P′地坐标是()A.(4,7) B.(﹣4,﹣7)C.(4,﹣7)D.(﹣4,7)【解答】解:把点P(a,a+3)代入函数y=x2﹣7x+19得:a+3=a2﹣7a+19,解得:a=4,∴点P地坐标是(4,7),∴点A关于原点地对称点A′地坐标为(﹣4,﹣7).故选B.8.(3分)若A(﹣,y1),B(,y2),C(,y3)为二次函数y=x2+4x﹣5地图象上地三点,则y1,y2,y3地大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2【解答】解:∵y=x2+4x﹣5=(x+2)2﹣9,∴对称轴是x=﹣2,开口向上,距离对称轴越近,函数值越小,比较可知,B(,y2)离对称轴最近,C(,y3)离对称轴最远,即y2<y1<y3.故选:B.9.(3分)下列图形中阴影部分面积相等地是()A.①②B.②③C.①④D.③④【解答】解:①中直线y=x+2与坐标轴地交点为(0,2)、(2,0).∴三角形地底边长和高都为2则三角形地面积为×2×2=2;②中三角形地底边长为1,当x=1时,y=3∴三角形地高为3则面积为×1×3=;③中三角形地高为1,底边长正好为抛物线与x轴两交点之间地距离∴底边长=|x1﹣x2|==2则面积为×2×1=1;④设A地坐标是(x,y),代入解析式得:xy=2,则面积为×2=1∴阴影部分面积相等地是③④.故选D.10.(3分)抛物线y=ax2+bx+c上部分点地横坐标x,纵坐标y地对应值如下表,从下表可知:下列说法:①抛物线与x轴地另一个交点为(3,0),②函数地最大值为6,③抛物线地对称轴是直线x=,④在对称轴地左侧,y随x地增大而增大,正确地有()A.1个 B.2个 C.3个 D.4个【解答】解:根据图表,当x=﹣2,y=0,根据抛物线地对称性,当x=3时,y=0,即抛物线与x轴地交点为(﹣2,0)和(3,0);∴抛物线地对称轴是直线x==,根据表中数据得到抛物线地开口向下,∴当x=时,函数有最大值,而不是x=0,或1对应地函数值6,并且在直线x=地左侧,y随x增大而增大.所以①③④正确,②错.故选:C.11.(3分)y=ax2+bx+c+2地图象如图所示,顶点为(﹣1,0),下列结论①abc>0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论地个数是()A.1 B.2 C.3 D.4【解答】解:∵抛物线开口向上,∴a>0,∵对称轴在y轴左边,∴b>0,∵抛物线与y轴地交点在x轴地上方,∴c+2>2,∴c>0,∴abc>0,∴结论①正确;∵二次函数y=ax2+bx+c+2地图象与x轴只有一个交点,∴△=0,即b2﹣4a(c+2)=0,∴b2﹣4ac=8a>0,∴结论②不正确;∵对称轴x=﹣=﹣1,∴b=2a,∵b2﹣4ac=8a,∴4a2﹣4ac=8a,∴a=c+2,∵c>0,∴a>2,∴结论③正确;∵对称轴是x=﹣1,而且x=0时,y>2,∴x=﹣2时,y>2,∴4a﹣2b+c+2>2,∴4a﹣2b+c>0.∴结论④正确.综上,可得正确结论地个数是3个:①③④.故选C.12.(3分)如图,抛物线y=﹣2x2﹣8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方地部分记作C1,将C1向左平移得C2,C2与x轴交于点B,D.若直线y=﹣x+m与C1,C2共有3个不同地交点,则m地取值范围是()A.﹣3<m<﹣B.C.﹣2<m<D.﹣3<m<﹣2【解答】解:令y=﹣2x2﹣8x﹣6=0,即x2+4x+3=0,解得x=﹣1或﹣3,则点A(﹣1,0),B(﹣3,0),由于将C1向左平移2个长度单位得C2,则C 2解析式为y=﹣2(x+4)2+2(﹣5≤x≤﹣3),当y=﹣x+m1与C2相切时,令y=﹣x+m1=y=﹣2(x+4)2+2,即2x2+15x+30+m1=0,△=﹣8m1﹣15=0,解得m1=﹣,当y=﹣x+m2过点B时,即0=3+m2,m2=﹣3,当﹣3<m<﹣时直线y=﹣x+m与C1、C2共有3个不同地交点,故选:A.二、填空题(每小题4分,共24分)13.(4分)如果关于x地方程mx2﹣2x+1=0有两个实数根,那么m地取值范围是m≤1且m≠0.【解答】解:mx2﹣2x+1=0有两个实数根,当m=0时,方程化为﹣2x+1=0,解得:x=,不合题意;解得:m≤1,则m地取值范围是m≤1且m≠0.故答案为:m≤1且m≠014.(4分)已知圆地一条弦AB把圆分成1:4地两部分,则此弦所对地圆周角等于36°或144°.【解答】解:∵弦AB把⊙O分成1:4两部分,∴∠AOB=×360°=72°,∴∠ACB=∠AOB=36°,∵四边形ADBC是⊙O地内接四边形,∴∠ADB=180°﹣∠ACB=144°.∴这条弦所对地圆周角地度数是:36°或144°,故答案为:36°或144°.15.(4分)如图,AB、CD是半径为5地⊙O地两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上地任意一点,则PA+PC地最小值为.【解答】解:连接OB,OC,作CH垂直AB于H.根据垂径定理,得到BE=AB=4,CF=CD=3,∴OE===3,∴CH=OE+OF=3+4=7,BH=BE+EH=BE+CF=4+3=7,在直角△BCH中根据勾股定理得到BC=7,则PA+PC地最小值为.故答案为:16.(4分)已知f(x)=1+,其中f(a)表示当x=a时代数式地值,如f(1)=1+,f(2)=1+,f(3)=1+,f(a)=1+,则f(1)•f(2)•f(3)•f(4)•…•f(2015)•f(2016)=2017.【解答】解:f(x)=,则原式=×××…××=2017,故答案为:201717.(4分)对于实数a,b,定义运算“⊗”:,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=6.若x1,x2是一元二次方程x2﹣6x+8=0地两个根,则x1⊗x2=±4.【解答】解:x2﹣6x+8=0,解得:x=4或2,当x1=2,x2=4时,x1⊗x2=22﹣2×4=﹣4;当x1=4,x2=2时,x1⊗x2=4×2﹣22=4;故答案为:±4.18.(4分)如图,在△ABC中,AB=CB,以AB为直径地⊙O交AC于点D,过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE,对于下列结论:①AD=DC;②④.【解答】解:∵AB为直径,∴∠ADB=90°,∴BD⊥AC,而AB=CB,∴AD=DC,所以①正确;∵AB=CB,∴∠1=∠2,而CD=ED,∴∠3=∠4,∵CF∥AB,∴∠1=∠3,∴∠1=∠2=∠3=∠4,∴△CBA∽△CDE,所以②正确;∵△ABC不能确定为直角三角形,∴∠1不能确定等于45°,∴和不能确定相等,所以③错误;∵DA=DC=DE,∴点E在以AC为直径地圆上,∴∠AEC=90°,∴CE⊥AE,而CF∥AB,∴AB⊥AE,∴AE为⊙O地切线,所以④正确.故答案为①②④.三、解答题(本题共3个小题,满分40分)19.(12分)如图,AB是⊙O地直径,点C、D为半圆O地三等分点,过点C作CE⊥AD,交AD地延长线于点E.(1)求证:CE是⊙O地切线;(2)判断四边形AOCD是否为菱形?并说明理由.【解答】解:(1)连接AC,∵点CD是半圆O地三等分点,∴==,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠OCE+∠E=180°,∵CE⊥AD,∴∠OCE=90°,∴OC⊥CE,∴CE是⊙O地切线;(2)四边形AOCD为菱形.∵=,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形.20.(12分)阅读下面地材料:解方程x4﹣7x2+12=0这是一个一元四次方程,根据该方程地特点,它地解法通常是:设x2=y,则x4=y2,∴原方程可化为:y2﹣7y+12=0,解得y1=3,y2=4,当y=3时,x2=3,x=±,当y=4时,x2=4,x=±2.∴原方程有四个根是:x1=,x2=﹣,x3=2,x4=﹣2,以上方法叫换元法,达到了降次地目地,体现了数学地转化思想,运用上述方法解答下列问题.(1)解方程:(x2+x)2﹣5(x2+x)+4=0;(2)已知实数a,b满足(a2+b2)2﹣3(a2+b2)﹣10=0,试求a2+b2地值.【解答】解:(1)设y=x2+x,则y2﹣5y+4=0,整理,得(y﹣1)(y﹣4)=0,解得y1=1,y2=4,当x2+x=1即x2+x﹣1=0时,解得:x=;当当x2+x=4即x2+x﹣4=0时,解得:x=;=,x3,4=;综上所述,原方程地解为x1,2(2)设x=a2+b2,则x2﹣3x﹣10=0,(x﹣5)(x+2)=0,解得y1=5,y2=﹣2(舍去),故a2+b2=5.21.(16分)如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点地横坐标为2.(1)求A、B两点地坐标及直线AC地函数表达式;(2)P是线段AC上地一个动点,过P点作y轴地平行线交抛物线于E点,求线段PE长度地最大值;(3)点G抛物线上地动点,在x轴上是否存在点F,使A、C、F、G这样地四个点为顶点地四边形是平行四边形?如果存在,求出所有满足条件地F点坐标;如果不存在,请说明理由.【解答】解:(1)令y=0,解得x1=﹣1或x2=3∴A(﹣1,0)B(3,0)将C点地横坐标x=2代入y=x2﹣2x﹣3得y=﹣3∴C(2,﹣3)∴直线AC地函数解析式是y=﹣x﹣1;(2)设P点地横坐标为x(﹣1≤x≤2)则P、E地坐标分别为:P(x,﹣x﹣1)E(x,x2﹣2x﹣3)∵P点在E点地上方,PE=(﹣x﹣1)﹣(x2﹣2x﹣3)=﹣x2+x+2=﹣(x﹣)2+,∴当时,PE地最大值=;(3)存在4个这样地点F,分别是F1(1,0),F2(﹣3,0),F3(4+,0),F4(4﹣,0).①如图,连接C与抛物线和y轴地交点,那么CG∥x轴,此时AF=CG=2,因此F 点地坐标是(﹣3,0);②如图,AF=CG=2,A点地坐标为(﹣1,0),因此F点地坐标为(1,0);③如图,此时C,G两点地纵坐标互为相反数,因此G点地纵坐标为3,代入抛同,因此可设直线GF 地解析式为y=﹣x +h ,将G 点代入后可得出直线地解析式为y=﹣x +4+.因此直线GF 与x 轴地交点F 地坐标为(4+,0);④如图,同③可求出F 地坐标为(4﹣,0).综合四种情况可得出,存在4个符合条件地F 点.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
山东省临沭县青云镇中心中学2017届九年级一轮复习验收考试数学(解析版)
山东省临沭县青云镇中心中学2017届九年级一轮复习验收考试数学试题一、选择题:(每小题3分,本题满分共42分,)在每小题所给的四个选选项中,只有一项....是符合题目要求的.1. 在-4,2,-1,3这四个数中,比-2小的数是()A. -4B. 2C. -1D. 3【答案】A【解析】试题分析:∵正数和0大于负数,∴排除2和3.∵|﹣2|=2,|﹣1|=1,|﹣4|=4,∴4>2>1,即|﹣4|>|﹣2|>|﹣1|,∴﹣4<﹣2<﹣1.故选:A.考点:有理数大小比较2. 下列计算正确的是()A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
【答案】B【解析】试题分析:根据合并同类项的法则,可知错误!未找到引用源。
,故A不正确;根据同底数幂的除法,知错误!未找到引用源。
,故B正确;根据幂的乘方,知错误!未找到引用源。
,故C不正确;根据完全平方公式,知错误!未找到引用源。
,故D不正确.故选:B.点睛:此题主要考查了整式的混合运算,解题关键是灵活应用合并同类项法则,同底数幂的乘除法法则,幂的乘方,乘法公式进行计算.3. 如图,直线l1∥l2,CD⊥AB于点D,∠1=50°.则∠BCD的度数为()A. 50°B. 45°C. 40°D. 30°【答案】C【解析】试题解析:根据平行线的性质,可知∠1=∠B=50°,然后根据直角三角形的两锐角互余,可得∠BCD=90°-50°=40°.故选:C.4. 如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2.从这3个条件中选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是()A. 0B. 1C. 错误!未找到引用源。
D. 错误!未找到引用源。
【答案】B【解析】试题分析:根据题意找出组成命题的所有等可能的情况数,找出组成的命题是真命题的情况数,即可求出所求的概率.试题解析:所有等可能的情况有3种,分别为①②→③;①③→②;②③→①,其中组成命题是真命题的情况有:①②→③;①③→②;②③→①,则P=1,故选D.考点:1.平行线的判定与性质;2.等腰三角形的判定与性质;3.概率公式.5. 如右图,由五个同样大小的立方体组成的几何体,则关于此几何体三种视图叙述正确的是A. 左视图与俯视图相同B. 三种视图都相同C. 主视图与俯视图相同D. 左视图与主视图相同【答案】D考点:简单组合体的三视图.6. 不等式组错误!未找到引用源。
山东省临沂市 九年级(上)期中数学试卷(含答案)
九年级(上)期中数学试卷一、选择题(本大题共14小题,共42.0分)1.下列关于x的方程中,是一元二次方程的是()A. B. C. D.2.下列图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.3.若关于x的一元二次方程x2-mx-2=0的一个根为-1,则另一个根为()A. 1B.C. 2D.4.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A.B.C.D.5.抛物线y=x2+4x+1可以由抛物线y=x2平移得到,则下列平移过程正确的是()A. 先向左平移2个单位,再向上平移3个单位B. 先向左平移2个单位,再向下平移3个单位C. 先向右平移2个单位,再向下平移3个单位D. 先向右平移2个单位,再向上平移3个单位6.已知三角形的两边长分别为2和4,第三边的长是方程x2-4x+3=0的解,则这个三角形的周长为()A. 3B. 9C. 7或9D. 77.已知点P关于x轴的对称点P1的坐标是(2,3),那么点P关于原点的对称点P2的坐标是()A. B. C. D.8.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是()A. B. C. 且 D.9.设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+m上的三点,则y1,y2,y3的大小关系是()A. B. C. D.10.体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,设应邀请x队参加比赛,则可列方程为()A. B. C. D.11.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A. B. C. 且 D. 且12.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.B.C. 且D. 或13.如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()A.B.C.D.14.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac-b2<0;其中正确的结论有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共5小题,共15.0分)15.已知代数式的值x2+3x+5的值为7,则代数式3x2+9x-1的值为______ .16.如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为______.17.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x-1.5x2,该型号飞机着陆后滑行______m才能停下来.18.如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是______.19.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为______.三、计算题(本大题共1小题,共12.0分)20.解方程(1)x2-4x-32=0(2)3x(x+3)=x2-9.四、解答题(本大题共5小题,共51.0分)21.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.22.某地2014年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?23.一个边长为4的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E.(1)求CE的长;(2)求阴影部分的面积.24.某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可多售出20千克.(1)设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;(2)若要平均每天盈利960元,则每千克应降价多少元?25.如图,抛物线y=x2-3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.答案和解析1.【答案】C【解析】解:A、不是一元二次方程,故此选项不符合题意;B、不是一元二次方程,故此选项不符合题意;C、是一元二次方程,故此选项符合题意;D、不是一元二次方程,故此选项不符合题意;故选:C.根据只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.此题主要考查了一元二次方程的定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.【答案】B【解析】解:A、此图形是轴对称图形,不是中心对称图形,故此选项错误;B、此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形是中心对称图形,不是轴对称图形,故此选项错误;D、此图形是中心对称图形,不是轴对称图形,故此选项错误.故选:B.根据中心对称图形的定义:旋转180°后能够与原图形完全重合即是中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.本题考查了中心对称图形与轴对称图形,掌握中心对称图形与轴对称图形的概念即可,属于基础题.3.【答案】C【解析】解:设x1、x2是关于x的一元二次方程x2-mx-2=0的两个根,∴由韦达定理,得x1•x2=-2,即-x2=-2,解得,x2=2.即方程的另一个根是2.故选C.根据一元二次方程的根与系数的关系x1•x2=来求方程的另一个根.此题主要考查了根与系数的关系.在利用根与系数的关系x1+x2=-、x1•x2=时,要注意等式中的a、b、c所表示的含义.4.【答案】A【解析】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=55°,∴∠A=90°-∠ABD=35°,∴∠BCD=∠A=35°.故选A.首先连接AD,由直径所对的圆周角是直角,即可求得∠ADB=90°,由直角三角形的性质,求得∠A的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠BCD的度数.此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意掌握辅助线的作法,注意直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.5.【答案】B【解析】解:∵抛物线y=x2+4x+1可化为y=(x+2)2-3,∴把抛物线y=x2先向左平移2个单位,再向下平移3个单位即可得到抛物线y=(x+2)2-3.故选B.先将抛物线y=x2+4x+1化为y=(x+2)2-3的形式,再根据函数图象平移的法则进行解答.本题考查的是二次函数的图象与几何变换,熟知“上加下减.左加右减”的法则是解答此题的关键.6.【答案】B【解析】解:x2-4x+3=0,(x-1)(x-3)=0,x-1=0或x-3=0,所以x1=1,x2=3,因为1+2<4,所以三角形第三边长为3,所以三角形的周长为2+3+4=9.故选B.先利用因式分解法解方程得到x1=1,x2=3,再根据三角形三边的关系得到三角形第三边长为3,然后计算三角形的周长.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了三角形三边的关系.7.【答案】D【解析】解:∵点P关于x轴的对称点P1的坐标是(2,3),∴点P的坐标是(2,-3).∴点P关于原点的对称点P2的坐标是(-2,3).故选D.平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴的对称点的坐标是(-x,y),关于原点的对称点是(-x,-y).考查了平面内两个点关于坐标轴对称和原点对称的坐标关系.8.【答案】C【解析】解:∵关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,∴,解得:a<2且a≠1.故选C.根据一元二次方程的定义结合根的判别式即可得出关于a的一元一次不等式组,解之即可得出结论.本题考查一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a的一元一次不等式组是解题的关键.9.【答案】A【解析】解:∵二次函数的解析式为y=-(x+1)2+m,∴抛物线的对称轴为直线x=-1,∵A(-2,y1)、B(1,y2)、C(2,y3),∴点C离直线x=-1最远,点A离直线x=-1最近,抛物线开口向下,∴y1>y2>y3.故选:A.先根据二次函数的性质得到抛物线的对称轴为直线x=-1,然后比较三个点离直线x=-1的远近得到y1、y2、y3的大小关系.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.10.【答案】C【解析】解:设邀请x个队,每个队都要赛(x-1)场,但两队之间只有一场比赛,由题意得,x(x+1)=28,故选C.赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数x(x+1),由此可得出方程.本题考查了由实际问题抽象一元二次方程的知识,解决本题的关键是读懂题意,得到总场数与球队之间的关系.11.【答案】B【解析】解:①当k-3≠0时,(k-3)x2+2x+1=0,△=b2-4ac=22-4(k-3)×1=-4k+16≥0,k≤4;②当k-3=0时,y=2x+1,与x轴有交点.故选:B.分为两种情况:①当k-3≠0时,(k-3)x2+2x+1=0,求出△=b2-4ac=-4k+16≥0的解集即可;②当k-3=0时,得到一次函数y=2x+1,与x轴有交点;即可得到答案.本题主要考查对抛物线与x轴的交点,根的判别式,一次函数的性质等知识点的理解和掌握,能进行分类求出每种情况的k是解此题的关键.12.【答案】D【解析】解:由图象得:对称轴是x=2,其中一个点的坐标为(5,0),∴图象与x轴的另一个交点坐标为(-1,0).利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴x<-1或x>5.故选:D.利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出ax2+bx+c<0的解集.此题主要考查了二次函数利用图象解一元二次方程根的情况,很好地利用数形结合,题目非常典型.13.【答案】A【解析】解:∵OB、OC是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-80°)=50°,∴∠BOC=180°-50°=130°.故选A.由三角形内切定义可知:OB、OC是∠ABC、∠ACB的角平分线,利用三角形内角和定理和角平分线的性质可得∠OBC+∠OCB=(∠ABC+∠ACB),把对应数值代入即可求得∠BOC的值.本题通过三角形内切圆,考查切线的性质.14.【答案】C【解析】解:∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0∴①正确;∵x=1时,y<0,∴a+b+c<0,∴②不正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=-,∴-,b<0,∴b=3a,又∵a<0,b<0,∴a>b,∴③正确;∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2-4ac>0,4ac-b2<0,∴④正确;综上,可得正确结论有3个:①③④.故选:C.首先根据二次函数y=ax2+bx+c的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y<0,可得a+b+c<0;再根据图象开口向下,可得a<0,图象的对称轴为x=-,可得-,b<0,所以b=3a,a>b;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得△>0,所以b2-4ac>0,4ac-b2<0,据此解答即可.此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b 异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).15.【答案】5【解析】解:∵x2+3x+5=7,∴x2+3x=2,则3(x2+3x)=6,∴3x2+9x-1=3(x2+3x)-1=5.故答案为:5.根据题意,可先求出x2+3x的值,然后整体代入所求代数式求值即可.此题考查了代数式求值,此题的关键是代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x2+3x的值,然后利用“整体代入法”求代数式的值.16.【答案】4【解析】解:∵OC⊥AP,OD⊥PB,∴由垂径定理得:AC=PC,PD=BD,∴CD是△APB的中位线,∴CD=AB=×8=4,故答案为:4.根据垂径定理得出AC=PC,PD=BD,根据三角形的中位线推出CD=AB,代入求出即可.本题考查了三角形的中位线和垂径定理的应用,主要考查学生的推理能力,题目比较典型,难度适中.17.【答案】600【解析】解:∵a=-1.5<0,∴函数有最大值.∴y===600,最大值即飞机着陆后滑行600米才能停止.故答案为:600.根据飞机从滑行到停止的路程就是滑行的最大路程,即是求函数的最大值.此题主要考查了二次函数的应用,运用二次函数求最值问题常用公式法或配方法得出是解题关键.18.【答案】60°【解析】解:∵△COD是△AOB绕点O顺时针旋转40°后得到的图形,∴∠AOC=∠BOD=40°,AO=CO,∵∠AOD=90°,∴∠BOC=90°-40°×2=10°,∠ACO=∠A=(180°-∠AOC)=(180°-40°)=70°,由三角形的外角性质得,∠B=∠ACO-∠BOC=70°-10°=60°. 故答案为:60°.根据旋转的性质可得∠AOC=∠BOD=40°,AO=CO ,再求出∠BOC ,∠ACO ,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键. 19.【答案】2【解析】解:连结BE ,设⊙O 的半径为R ,如图, ∵OD ⊥AB ,∴AC=BC=AB=×8=4, 在Rt △AOC 中,OA=R ,OC=R-CD=R-2,∵OC 2+AC 2=OA 2,∴(R-2)2+42=R 2,解得R=5,∴OC=5-2=3, ∴BE=2OC=6, ∵AE 为直径, ∴∠ABE=90°,在Rt △BCE 中,CE===2.故答案为:2.连结BE ,设⊙O 的半径为R ,由OD ⊥AB ,根据垂径定理得AC=BC=AB=4,在Rt △AOC 中,OA=R ,OC=R-CD=R-2,根据勾股定理得到(R-2)2+42=R 2,解得R=5,则OC=3,由于OC 为△ABE 的中位线,则BE=2OC=6,再根据圆周角定理得到∠ABE=90°,然后在Rt △BCE 中利用勾股定理可计算出CE . 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理. 20.【答案】解:(1)(x -8)(x +4)=0,x -8=0或x +4=0所以x1=8,x2=-4;(2)3x(x+3)-(x+3)(x-3)=0,(x+3)(3x-x+3)=0,x+3=0或3x-x+3=0所以x1=-3,x2=-.【解析】(1)利用因式分解法解方程;(2)先变形得到3x(x+3)-(x+3)(x-3)=0,然后利用因式分解法解方程.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.21.【答案】解:(1)如图,△A1B1C1为所作,因为点C(-1,3)平移后的对应点C1的坐标为(4,0),所以△ABC先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),B1点的坐标为(3,-2);(2)因为△ABC和△A1B2C2关于原点O成中心对称图形,所以A2(3,-5),B2(2,-1),C2(1,-3);(3)如图,△A2B3C3为所作,A3(5,3),B3(1,2),C3(3,1);【解析】(1)利用点C和点C1的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点A1,B1的坐标;(2)根据关于原点对称的点的坐标特征求解;(3)利用网格和旋转的性质画出△A2B3C3,然后写出△A2B3C3的各顶点的坐标.本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.22.【答案】解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=-2.5(舍),答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a-1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.【解析】(1)设年平均增长率为x,根据:2014年投入资金给×(1+增长率)2=2016年投入资金,列出方程求解可得;(2)设今年该地有a户享受到优先搬迁租房奖励,根据:前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万,列不等式求解可得.本题主要考查一元二次方程与一元一次不等式的应用,由题意准确抓住相等关系并据此列出方程或不等式是解题的关键.23.【答案】解:(1)如图,过点A作AD⊥BC于点D,∵三角形ABC为等边三角形,且AB=BC=4,∴BD=BC=2,∠ACB=60°,∴AD===2,∵等边三角形ABC与⊙O等高,且⊙O与BC相切于点C,∴OC=AD=,∠OCD=90°,过点O作OF⊥CE于点F,∴∠OCF=∠OCD-∠ACB=30°,∴CF=OC cos∠OCF=×=,则CE=2CF=3;(2)由(1)知OF⊥CE,∠OCF=30°,∴∠COF=60°,OF=OC sin∠OCF=,∴∠COE=120°,则S阴影=S扇形COE-S△COE=-×3×=π-.【解析】(1)作AD⊥BC,由等腰三角形的性质可得BD=2,根据勾股定理得出AD=2,结合等边三角形ABC与⊙O等高且⊙O与BC相切于点C得OC=、∠OCD=90°,作OF⊥CE于点F,从而知∠OCF=30°,利用三角函数求得CF的长,最后根据勾股定理得CE=2CF;(2)由(1)知OF⊥CE、∠OCF=30°从而得∠COF=60°、OF=OCsin∠OCF=,继而知∠COE=120°,根据S阴影=S扇形COE-S△COE可得答案.本题主要考查等边三角形的性质、垂径定理、切线的性质、三角函数的应用、勾股定理及扇形的面积公式,熟练掌握等边三角形的性质及垂径定理得出圆的半径及圆心角的度数是解题的关键.24.【答案】解:(1)根据题意得:y=(200+20x)×(6-x)=-20x2-80x+1200.(2)令y=-20x2-80x+1200中y=960,则有960=-20x2-80x+1200,即x2+4x-12=0,解得:x=-6(舍去),或x=2.答:若要平均每天盈利960元,则每千克应降价2元.【解析】(1)根据“每天利润=每天销售质量×每千克的利润”即可得出y关于x的函数关系式;(2)将y=960代入(1)中函数关系式中,得出关于x的一元二次方程,解方程即可得出结论.本题考查了二次函数的应用,解题的关键是:(1)根据数量关系找出函数关系式;(2)将y=960代入函数关系式得出关于x的一元二次方程.本题属于基础题,难度不大,解决该题型题目时结合数量关系找出函数关系式是关键.25.【答案】解:(1)∵抛物线y=x2-3x+与x轴相交于A、B两点,与y轴相交于点C,∴令y=0,可得x=或x=,∴A(,0),B(,0);令x=0,则y=,∴C点坐标为(0,),设直线BC的解析式为:y=kx+b,则有,,解得:,∴直线BC的解析式为:y=x;(2)设点D的横坐标为m,则坐标为(m,),∴E点的坐标为(m,m),设DE的长度为d,∵点D是直线BC下方抛物线上一点,则d=m+-(m2-3m+),整理得,d=-m2+m,∵a=-1<0,∴当m==时,d最大===,∴D点的坐标为(,).【解析】(1)利用坐标轴上点的特点求出A、B、C点的坐标,再用待定系数法求得直线BC的解析式;(2)设点D的横坐标为m,则纵坐标为(m ,),E点的坐标为(m ,),可得两点间的距离为d=,利用二次函数的最值可得m,可得点D的坐标.此题主要考查了二次函数的性质及其图象与坐标轴的交点,设出D的坐标,利用二次函数最值得D点坐标是解答此题的关键.。
2017年山东省临沂市临沭县青云中心中学数学中考模拟试卷及参考答案PDF(一)
2017年山东省临沂市临沭县青云中心中学中考数学模拟试卷(一)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(3分)的相反数是()A.﹣ B.3 C.﹣3 D.2.(3分)如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°3.(3分)下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4 C.(﹣a2)2=a4D.(a+1)2=a2+14.(3分)不等式组的解集在数轴上表示为()A.B.C.D.5.(3分)下面几个几何体,主视图是圆的是()A.B.C.D.6.(3分)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.B.C.D.7.(3分)某支青年排球队有12名队员,队员年龄情况如图所示,那么球队队员年龄的众数、中位数分别是()A.19,19 B.19,20 C.20,20 D.22,198.(3分)如图,△ABC中,D、E分别在边AB、AC上,DE∥BC,BD=2AD,若DE=2,则BC=()A.3 B.4 C.5 D.69.(3分)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.B.C.D.10.(3分)如图,菱形ABCD对角线AC,BD相交于点O,有下列结论:=AC•BD.①OA=OD,②AC⊥BD,③∠1=∠2,④S菱形ABCD其中正确的序号是()A.①②B.③④C.②④D.②③11.(3分)如图,AB是⊙O的弦,BC与⊙O相切于点B,连接OA,OB,若∠ABC=65°,则∠A等于()A.20°B.25°C.35°D.75°12.(3分)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+113.(3分)如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120m,则这栋楼的高度为()A.160m B.120m C.300 m D.160m14.(3分)反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t<B.t>C.t≤D.t≥二、填空题(本题共5小题,每小题3分,共15分)15.(3分)因式分解:a3﹣ab2=.16.(3分)化简:(+)=.17.(3分)一个多边形的内角和为1080°,则这个多边形的边数是.18.(3分)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.19.(3分)已知:,,,…,观察上面的计算过程,寻找规律并计算C106=.三、解答题(本大题共7小题,共63分)20.(7分)计算:+()﹣2+(π﹣1)0.21.(7分)某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布条形图.最喜爱的传统文化项目类型频数分布表项目类型频数频率书法类18a围棋类140.28喜剧类80.16国画类b0.20根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布条形图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?22.(7分)某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?23.(9分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.24.(9分)甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?25.(11分)如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF 是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.①求证:BD⊥CF;②当AB=2,AD=3时,求线段DH的长.26.(13分)如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.2017年山东省临沂市临沭县青云中心中学中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(3分)的相反数是()A.﹣ B.3 C.﹣3 D.【解答】解:根据相反数的定义,得的相反数是﹣.故选A.2.(3分)如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°【解答】解:如图,∵直线m∥n,∴∠1=∠3,∵∠1=70°,∴∠3=70°,∵∠3=∠2+∠A,∠2=30°,∴∠A=40°,故选C.3.(3分)下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4 C.(﹣a2)2=a4D.(a+1)2=a2+1【解答】解:A、a2•a2=a4,故此选项错误;B、a2+a2=2a2,故此选项错误;C、(﹣a2)2=a4,故此选项正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.4.(3分)不等式组的解集在数轴上表示为()A.B.C.D.【解答】解:,解不等式2x﹣1≥5,得:x≥3,解不等式8﹣4x<0,得:x>2,故不等式组的解集为:x≥3,故选:C.5.(3分)下面几个几何体,主视图是圆的是()A.B.C.D.【解答】解:A、主视图为正方形,故错误;B、主视图为圆,正确;C、主视图为三角形,故错误;D、主视图为长方形,故错误;故选:B.6.(3分)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.B.C.D.【解答】解:可能出现的结果小明打扫社区卫生打扫社区卫生参加社会调查参加社会调查小华打扫社区卫生参加社会调查参加社会调查打扫社区卫生由上表可知,可能的结果共有4种,且他们都是等可能的,其中两人同时选择“参加社会调查”的结果有1种,则所求概率P1=,故选:A.7.(3分)某支青年排球队有12名队员,队员年龄情况如图所示,那么球队队员年龄的众数、中位数分别是()A.19,19 B.19,20 C.20,20 D.22,19【解答】解:由条形统计图可知,某支青年排球队12名队员年龄的众数是19,中位数是19,故选A.8.(3分)如图,△ABC中,D、E分别在边AB、AC上,DE∥BC,BD=2AD,若DE=2,则BC=()A.3 B.4 C.5 D.6【解答】解:∵BD=2AD,DE=2,∴=.∵DE∥BC,∴△ADE∽△ABC,∴=,即=,解得BC=6.故选D.9.(3分)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.B.C.D.【解答】解:设小亮妈妈买了甲种水果x千克,乙种水果y千克,由题意得.故选A.10.(3分)如图,菱形ABCD对角线AC,BD相交于点O,有下列结论:=AC•BD.①OA=OD,②AC⊥BD,③∠1=∠2,④S菱形ABCD其中正确的序号是()A.①②B.③④C.②④D.②③【解答】解:∵四边形ABCD是菱形,∴①OA=OC,故此选项错误;②AC⊥BD,正确;③∠1=∠2,正确;④S=AC•BD,故此选项错误.菱形ABCD故选:D.11.(3分)如图,AB是⊙O的弦,BC与⊙O相切于点B,连接OA,OB,若∠ABC=65°,则∠A等于()A.20°B.25°C.35°D.75°【解答】解:∵BC与⊙O相切于点B,∴OB⊥BC,∴∠OBC=90°,∴∠OBA=90°﹣∠ABC=90°﹣65°=25°,而OA=OB,∴∠A=∠OBA=25°.故选B.12.(3分)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【解答】解:∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,2+22,…,n+2n,∴y=2n+n.故选B.13.(3分)如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120m,则这栋楼的高度为()A.160m B.120m C.300 m D.160m【解答】解:过点A作AD⊥BC于点D,则∠BAD=30°,∠CAD=60°,AD=120m,在Rt△ABD中,BD=AD•tan30°=120×=40(m),在Rt△ACD中,CD=AD•tan60°=120×=120(m),∴BC=BD+CD=160(m).故选A.14.(3分)反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t<B.t>C.t≤D.t≥【解答】解:将y=﹣x+2代入到反比例函数y=中,得:﹣x+2=,整理,得:x2﹣2x+1﹣6t=0.∵反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,∴,解得:t>.故选B.二、填空题(本题共5小题,每小题3分,共15分)15.(3分)因式分解:a3﹣ab2=a(a+b)(a﹣b).【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).16.(3分)化简:(+)=a.【解答】解:原式=•=(a+3)•=a.故答案为:a.17.(3分)一个多边形的内角和为1080°,则这个多边形的边数是8.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.18.(3分)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为3.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD===3;故答案为:3.19.(3分)已知:,,,…,观察上面的计算过程,寻找规律并计算C106=210.【解答】解:;;;…;C106==210.三、解答题(本大题共7小题,共63分)20.(7分)计算:+()﹣2+(π﹣1)0.【解答】解:原式=﹣2+9+1=8.21.(7分)某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布条形图.最喜爱的传统文化项目类型频数分布表项目类型频数频率书法类18a围棋类140.28喜剧类80.16国画类b0.20根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布条形图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?【解答】解:(1)14÷0.28=50(人),a=18÷50=0.36.(2)b=50×0.20=10,如图,(3)1500×0.28=420(人),答:若全校共有学生1500名,估计该校最喜爱围棋的学生大约有420人.22.(7分)某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?【解答】解:(1)设第一批衬衫每件进价是x元,则第二批每件进价是(x﹣10)元,根据题意可得:,解得:x=150,经检验x=150是原方程的解,第一批衬衫每件进价是150元,第二批每件进价是140元,(件),(件),答:第一批衬衫进了30件,第二批进了15件;(2)设第二批衬衫每件售价y元,根据题意可得:30×(200﹣150)+15(y﹣140)≥1950,解得:y≥170,答:第二批衬衫每件至少要售170元.23.(9分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)解:在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt中,∵∠D=30°,△OCD∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD===4,∴S△OCD===8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.24.(9分)甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?【解答】解:(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,∵点C(30,600)在函数y=kx的图象上,∴600=30k,解得k=20,∴y=20x(0≤x≤30);(2)设乙在AB段登山的路程y与登山时间x之间的函数解析式为y=ax+b(8≤x≤20),由图形可知,点A(8,120),B(20,600)所以,,解得,所以,y=40x﹣200,设点D为OC与AB的交点,联立,解得,故乙出发后10分钟追上甲,此时乙所走的路程是200米.25.(11分)如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF 是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.①求证:BD⊥CF;②当AB=2,AD=3时,求线段DH的长.【解答】解:(1)BD=CF.理由如下:由题意得,∠CAF=∠BAD=θ,在△CAF和△BAD中,,∴△CAF≌△BAD,∴BD=CF;(2)①由(1)得△CAF≌△BAD,∴∠CFA=∠BDA,∵∠FNH=∠DNA,∠DNA+∠NDA=90°,∴∠CFA+∠FNH=90°,∴∠FHN=90°,即BD⊥CF;②连接DF,延长AB交DF于M,∵四边形ADEF是正方形,AD=3,AB=2,∴AM=DM=3,BM=AM﹣AB=1,∵△ABC绕点A逆时针旋转45°,∴∠BAD=45°,∴AM⊥DF,∴DB==,∵∠MAD=∠MDA=45°,∴∠AMD=90°,又∠DHF=90°,∠MDB=∠HDF,∴△DMB∽△DHF,∴=,即=,解得,DH=.26.(13分)如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2﹣2x﹣;(2)∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,∵B(5,0),C(0,﹣),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣);(3)存在.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,﹣),∴N1(4,﹣);②当点N在x轴上方时,如图,过点N2作N2D⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC=,即N2点的纵坐标为.∴x2﹣2x﹣=,解得x=2+或x=2﹣,∴N2(2+,),N3(2﹣,);当AC为对角线时,N4(4,﹣).综上所述,符合条件的点N的坐标为(4,﹣),(2+,)或(2﹣,).。
山东省临沭县青云镇中心中学2017届九年级第一学期第一次月考数学试卷(无答案)
2016-2017上学期第一阶段学情诊测九年级数学试题(满分:100分,时间:60分钟)一、选择题(本大题共10个小题,每小题3分,共30分)1.用配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -= 2.一元二次方程x 2﹣x ﹣2=0的解是( )A .x 1=1,x 2=2B . x 1=1,x 2=﹣2C . x 1=﹣1,x 2=﹣2D . x 1=﹣1,x 2=2 3.一元二次方程x 2﹣4x +5=0的根的情况是( ) 没有4.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,赛程计划安排4天,每天安排7场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A .x (x +1)=28B . x (x ﹣1)=28C . x (x +1)=28D . x (x ﹣1)=285.两个不相等的实数m 、n 满足2264,64m m n n -=-=,则mn 的值( )6. 已知方程20x bx a ++=有一个根是a (0a ≠),则代数式a b +的值是( )A . 1-B .1C .0D .以上答案都不是 7.已知某等腰三角形的三边长都是方程2320x x -+=的解,则此三角形的周长是( )A .3或5B .5或6C .3或6D .3或5或6 8.已知关于x 的方程()0112=--+x k kx ,下列说法正确的是( )A .当0=k 时,方程无解B .当1=k 时,方程有一个实数解C .当1-=k 时,方程有两个相等的实数解D .当0≠k 时,方程总有两个不相等的实数解9.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是( )A .(3+x )(4﹣0.5x )=15B .(x +3)(4+0.5x )=15C .(x +4)(3﹣0.5x )=15D .(x +1)(4﹣0.5x )=1510.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x ,那么x 满足的方程是( )二.填空题(本大题共6小题,每小题3分,共18分)11.把一元二次方程(1)(1)2x x x +-=化成二次项系数大于零的一般式为 ,其中二次项系数是 ,一次项系数是 ,常数项是12. 若x=﹣1是关于x 的一元二次方程x 2+3x+m+1=0的一个解,则m 的值为 ,另一个解是___________13.已知一元二次方程的一个根是-3,则这个方程可以是______________(填上你认为正确的一个方程即可)14.已知方程2231x x -=的两根是1x 、2x ,则1211x x += 。
山东省临沂市临沭县青云中学九年级数学上学期期中试卷
2016-2017学年山东省临沂市临沭县青云中学九年级(上)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)3.下列说法错误的是()A.面积相等的两个圆是等圆B.半径相等的两个半圆是等弧C.直径是圆中最长的弦D.长度相等的两条弧是等弧4.抛物线y=(x+1)2﹣2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)5.若⊙O的半径等于10cm,圆心O到直线l的距离是6cm,则直线l与⊙O位置关系是()A.相交 B.相切 C.相离 D.相切或相交6.用配方法解方程x2+6x﹣5=0时,此方程可变形为()A.(x+3)2=14 B.(x﹣3)2=14 C.(x+3)2=11 D.(x+6)2=147.如图,△ABC中,将△ABC绕点A顺时针旋转40°后,得到△AB′C′,且C′在边BC 上,则∠AC′C的度数为()A.50° B.60° C.70° D.80°8.已知等腰三角形的腰和底的长分别是一元二次方程x2﹣7x+10=0的两个根,则该三角形的周长是()A.9 B.12 C.9或12 D.不能确定9.如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD()A.76° B.62° C.60° D.28°10.将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4 B.6 C.8 D.1011.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.412.如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>B.k>且k≠0 C.k<D.k≥且k≠013.如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D,若AC=4,则AD的长为()A.2 B.3 C.3 D.214.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 …y … 4 0 ﹣2 ﹣2 0 4 …下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣二、填空题:(本题共5小题,每小题3分,共15分)15.已知m是方程x2﹣x﹣2=0的一个根,则代数式m2﹣m+4的值等于.16.如图,AB为⊙O的弦,半径OD⊥AB于点C.若AB=8,CD=2,则⊙O的半径长为.17.抛物线的部分图象如图所示,则当y<0时,x的取值范围是.18.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为m.19.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为米.三、解答题(本题共7个小题,共63分)20.解下列方程:(1)2(x﹣3)2=x2﹣9;(2)2x2﹣3x+1=0.21.已知抛物线y=x2﹣px+﹣.(1)若抛物线与y轴交点的坐标为(0,1),求抛物线与x轴交点的坐标;(2)证明:无论p为何值,抛物线与x轴必有交点.22.“某校要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排9天,每天安排4场比赛.试问比赛组织者要邀请多少个队参加此次比赛?”23.如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD(1)求证:AC是⊙O的切线;(2)若⊙O的半径为4,求△ABC的面积.24.某公司研发了一款成本为60元的保温饭盒,投放市场进行试销售,按物价部门规定,其销售单价不低于成本,但销售利润不高于65%,市场调研发现,保温饭盒每天的销售数量y(个)与销售单价x(元)满足一次函数关系;当销售单价为70元时,销售数量为160个;当销售单价为80元时,销售数量为140个(利润率=)(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,公司每天获得利润最大,最大利润为多少元?25.如图,抛物线y=x2﹣4x﹣5与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E.(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.26.如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.①求证:BD⊥CF.②当AB=2,AD=3时,求线段BD的长.2016-2017学年山东省临沂市临沭县青云中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形.是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,不是中心对称图形,故此选项错误.故选:B.2.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数解答.【解答】解:点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3).故选:D.3.下列说法错误的是()A.面积相等的两个圆是等圆B.半径相等的两个半圆是等弧C.直径是圆中最长的弦D.长度相等的两条弧是等弧【考点】圆的认识.【分析】根据等圆的定义对A进行判断;根据半圆和等弧的定义对B进行判断;根据直径的定义对C进行判断;根据等弧的定义对D进行判断.【解答】解:A、面积相等的两个圆是等圆,正确;B、半径相等的两个半圆是等弧,正确;C、直径是圆中最长的弦,正确;D、等弧指的是在同圆或等圆中,能够互相重合的弧,而不是长度相等,就一定能够重合,故本选项错误;故选D.4.抛物线y=(x+1)2﹣2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【考点】二次函数的性质.【分析】根据顶点式解析式写出顶点坐标即可.【解答】解:抛物线y=(x+1)2﹣2的顶点坐标是(﹣1,﹣2).故选D.5.若⊙O的半径等于10cm,圆心O到直线l的距离是6cm,则直线l与⊙O位置关系是()A.相交 B.相切 C.相离 D.相切或相交【考点】直线与圆的位置关系.【分析】由题意得出d<r,根据直线和圆的位置关系的判定方法判断即可.【解答】解:∴⊙O的半径为10cm,如果圆心O到直线l的距离为6cm,∴6<10,即d<r,∴直线l与⊙O的位置关系是相交.故选A6.用配方法解方程x2+6x﹣5=0时,此方程可变形为()A.(x+3)2=14 B.(x﹣3)2=14 C.(x+3)2=11 D.(x+6)2=14【考点】解一元二次方程-配方法.【分析】先把常数项移到方程右边,再把方程两边加上一次项系数6的一半的平方,然后把方程左边写成完全平方形式即可.【解答】解:∵x2+6x=5,∴x2+6x+9=14,∴(x+3)2=14.故选A.7.如图,△ABC中,将△ABC绕点A顺时针旋转40°后,得到△AB′C′,且C′在边BC 上,则∠AC′C的度数为()A.50° B.60° C.70° D.80°【考点】旋转的性质;三角形内角和定理;等腰三角形的性质.【分析】根据旋转得出∠CAC′=40°,AC=AC′,求出∠AC′C=∠C,根据三角形内角和定理求出即可.【解答】解:∵将△ABC绕点A顺时针旋转40°后,得到△AB′C′,∴∠CAC′=40°,AC=AC′,∴∠AC′C=∠C==70°,故选C.8.已知等腰三角形的腰和底的长分别是一元二次方程x2﹣7x+10=0的两个根,则该三角形的周长是()A.9 B.12 C.9或12 D.不能确定【考点】解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.【分析】方程利用因式分解法求出解,确定出等腰三角形的腰与底,即可求出周长.【解答】解:方程x2﹣7x+10=0,分解因式得:(x﹣2)(x﹣5)=0,解得:x=2或x=5,当底为5,腰为2时,由于2+2<5,不符合三角形三边关系;当底为2,腰为5时,可构成三角形,此时周长为2+5+5=12,故选B9.如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD()A.76° B.62° C.60° D.28°【考点】圆周角定理.【分析】根据直径所对的圆周角是直角得到∠ACB=90°,求出∠ACD,根据圆周角定理解答即可.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACD=90°﹣∠BCD=62°,由圆周角定理得,∠ABD=∠ACD=62°,故选:B.10.将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4 B.6 C.8 D.10【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】抛物线y=x2﹣1向下平移8个单位长度后的到的新的二次函数的解析式为y=x2﹣9,令x2﹣9=0求其解即可知道抛物线与x轴的交点的横坐标,两点之间的距离随即可求.【解答】解:将抛物线y=x2﹣1向下平移8个单位长度,其解析式变换为:y=x2﹣9而抛物线y=x2﹣9与x轴的交点的纵坐标为0,所以有:x2﹣9=0解得:x1=﹣3,x2=3,则抛物线y=x2﹣9与x轴的交点为(﹣3,0)、(3,0),所以,抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为611.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4【考点】由实际问题抽象出一元二次方程.【分析】等量关系为:一月份利润+一月份的利润×(1+增长率)+一月份的利润×(1+增长率)2=34.6,把相关数值代入计算即可.【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.12.如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>B.k>且k≠0 C.k<D.k≥且k≠0【考点】根的判别式.【分析】若一元二次方程有两不等根,则根的判别式△=b2﹣4ac>0,建立关于k的不等式,求出k的取值范围.【解答】解:由题意知,k≠0,方程有两个不相等的实数根,所以△>0,△=b2﹣4ac=(2k+1)2﹣4k2=4k+1>0.又∵方程是一元二次方程,∴k≠0,∴k>且k≠0.故选B.13.如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D,若AC=4,则AD的长为()A.2 B.3 C.3 D.2【考点】旋转的性质;等腰直角三角形.【分析】直接利用等腰直角三角形的性质得出∠CAB=∠B=45°,再利用勾股定理得出AB的长,再利用旋转的性质得出AB′的长,再结合直角三角形的性质求出答案.【解答】解:∵△ABC为等腰直角三角形,∠ACB=90°,∴∠CAB=∠B=45°,∵AC=BC=4,∴AB=4,∵将△ABC绕点A逆时针旋转75°得到△AB′C′,∴∠B′AB=75°,AB′=4,∴∠DAB′=180°﹣75°﹣45°=60°,∵B′D⊥CA,∴∠DB′A=30°,∴AD=AB′=2.故选:A.14.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 …y … 4 0 ﹣2 ﹣2 0 4 …下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣【考点】二次函数的性质.【分析】选出3点的坐标,利用待定系数法求出函数的解析式,再根据二次函数的性质逐项分析四个选项即可得出结论.【解答】解:将点(﹣4,0)、(﹣1,0)、(0,4)代入到二次函数y=ax2+bx+c中,得:,解得:,∴二次函数的解析式为y=x2+5x+4.A、a=1>0,抛物线开口向上,A不正确;B、﹣=﹣,当x≥﹣时,y随x的增大而增大,B不正确;C、y=x2+5x+4=﹣,二次函数的最小值是﹣,C不正确;D、﹣=﹣,抛物线的对称轴是x=﹣,D正确.故选D.二、填空题:(本题共5小题,每小题3分,共15分)15.已知m是方程x2﹣x﹣2=0的一个根,则代数式m2﹣m+4的值等于 6 .【考点】一元二次方程的解.【分析】把x=m代入方程求出m2﹣m的值,即可求出原式的值.【解答】解:把x=m代入方程得:m2﹣m﹣2=0,即m2﹣m=2,则原式=2+4=6,故答案为:616.如图,AB为⊙O的弦,半径OD⊥AB于点C.若AB=8,CD=2,则⊙O的半径长为 5 .【考点】垂径定理;勾股定理.【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,再连接OA,在Rt△OAC中利用勾股定理求出r的值即可.【解答】解:∵⊙O的弦AB=8,半径OD⊥AB,∴AC=AB=×8=4,设⊙O的半径为r,则OC=r﹣CD=r﹣2,连接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r﹣2)2+42,解得r=5.故答案为:5.17.抛物线的部分图象如图所示,则当y<0时,x的取值范围是x>3或x<﹣1 .【考点】二次函数与不等式(组).【分析】由函数图象可知抛物线的对称轴为x=1,从而可得到抛物线与x轴的另一个交点坐标为(3,0),y<0,找出抛物线位于x轴下方部分x的取值范围即可.【解答】解:根据函数图象可知:抛物线的对称轴为x=1,抛物线与x轴一个交点的坐标为(﹣1,0),由抛物线的对称性可知:抛物线与x轴的另一个交点坐标为(3,0).∵y<0,∴x>3或x<﹣1.故答案为:x>3或x<﹣1.18.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为 2 m.【考点】一元二次方程的应用.【分析】设人行道的宽度为x米,根据矩形绿地的面积之和为480米2,列出一元二次方程.【解答】解:设人行道的宽度为x米,根据题意得,(30﹣3x)(24﹣2x)=480,解得x1=20(舍去),x2=2.即:人行通道的宽度是2m.故答案是:2.19.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为2米.【考点】二次函数的应用.【分析】根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:如图,建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度增加到2米,故答案为:2米.三、解答题(本题共7个小题,共63分)20.解下列方程:(1)2(x﹣3)2=x2﹣9;(2)2x2﹣3x+1=0.【考点】解一元二次方程-因式分解法.【分析】(1)先移项,然后利用提取公因式法对等式的左边进行因式分解;(2)利用“十字相乘法”对等式的左边进行因式分解.【解答】解:(1)将方程变形为:2(x﹣3)2﹣(x+3)(x﹣3)=0,(x﹣3)(2x﹣6﹣x﹣3)=0,即(x﹣3)(x﹣9)=0,解得x1=9,x2=3;(2)由原方程得:(x﹣1)(2x﹣1)=0,∴.21.已知抛物线y=x2﹣px+﹣.(1)若抛物线与y轴交点的坐标为(0,1),求抛物线与x轴交点的坐标;(2)证明:无论p为何值,抛物线与x轴必有交点.【考点】抛物线与x轴的交点.【分析】(1)根据二次函数图象上点的坐标特征求出ρ的值,解一元二次方程即可;(2)根据一元二次方程根的判别式以及非负数的性质解答.【解答】解:(1)对于抛物线y=x2﹣px+﹣,将x=0,y=1代入得:1=﹣,解得,ρ=,则抛物线解析式为:y=x2﹣x+1,令y=0,得到x2﹣x+1=0,解得:x1=,x2=2,则抛物线与x轴交点的坐标为(,0)、(2,0);(2)对于一元二次方程x2﹣px+﹣=0,∵△=p2﹣4(﹣)=p2﹣2p+1=(p﹣1)2≥0,∴无论p为何值,抛物线与x轴必有交点.22.“某校要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排9天,每天安排4场比赛.试问比赛组织者要邀请多少个队参加此次比赛?”【考点】一元二次方程的应用.【分析】可设比赛组织者应邀请x队参赛,则每个队参加(x﹣1)场比赛,则共有x(x ﹣1)场比赛,可以列出一个一元二次方程,求解,舍去小于0的值,即可得所求的结果.【解答】解:设组织者要邀请x个队参加此次比赛,根据题意列方程得,解这个方程得:x1=9,x2=﹣8(﹣8不合题意舍去),所以方程的解为x=9.答:组织者要邀请9个队参加此次比赛.23.如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD(1)求证:AC是⊙O的切线;(2)若⊙O的半径为4,求△ABC的面积.【考点】切线的判定.【分析】(1)连接OC,根据等腰三角形的性质:等边对等角,以及直径所对的圆周角是直角,利用等量代换证得∠ACO=90°,据此即可证得;(2)易证∠A=∠B=∠1=∠2=30°,即可求得AC的长,作CE⊥AB于点E,求得CE的长,利用三角形面积公式求解.【解答】(1)证明:如图,连接OC.∵AC=BC,AD=CD,OB=OC,∴∠A=∠B=∠1=∠2.又∵BD是直径,∴∠BCD=90°,∵∠ACO=∠DCO+∠2,∴∠ACO=∠DCO+∠1=∠BCD,∴∠AC O=90°,即AC⊥OC,又C在⊙O上,∴AC是⊙O的切线;(2)解:由题意可得△DCO是等腰三角形,∵∠CDO=∠A+∠2,∠DOC=∠B+∠1,∴∠CDO=∠DOC,即△DCO是等边三角形.∴∠A=∠B=∠1=∠2=30°,CD=AD=OD=4,在直角△BCD中,.作CE⊥AB于点E.在直角△BEC中,∠B=30°,∴CE=BC=,∴S△ABC=AB•CE=×12×2=12.24.某公司研发了一款成本为60元的保温饭盒,投放市场进行试销售,按物价部门规定,其销售单价不低于成本,但销售利润不高于65%,市场调研发现,保温饭盒每天的销售数量y(个)与销售单价x(元)满足一次函数关系;当销售单价为70元时,销售数量为160个;当销售单价为80元时,销售数量为140个(利润率=)(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,公司每天获得利润最大,最大利润为多少元?【考点】二次函数的应用;一元一次不等式组的应用.【分析】(1)根据待定系数法可求y与x之间的函数关系式;(2)利润=销售总价﹣成本总价=单件利润×销售量.据此得表达式,运用性质求最值.【解答】解:(1)设这个一次函数为y=kx+b(k≠0)∵这个一次函数的图象经过(70,160),(80,140)这两点,∴,解得.∴函数关系式是:y=﹣2x+300(60≤x≤99)(2)当销售单价定为x元时,公司每天获得利润最大为W元,依题意得W=(x﹣60)(﹣2x+300)=﹣2(x2﹣210x+9000)=﹣2(x﹣105)2+4050(60≤x≤99),∴当x=99时,W有最大值3978.当销售单价定为99元时,公司每天获得利润最大,最大利润为3978元.25.如图,抛物线y=x2﹣4x﹣5与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E.(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.【考点】抛物线与x轴的交点;二次函数的最值.【分析】(1)解一元二次方程求出A、B的坐标,根据y轴上点的坐标特征求出点C的坐标,利用待定系数法求出直线BC的解析式;(2)设点D的横坐标为m,表示出D点的坐标和E点的坐标,根据二次函数的性质解答即可.【解答】解:(1)由题意令y=0,即x2﹣4x﹣5=0,解得x1=﹣1,x2=5,∴A(﹣1,0),B(5,0)∴C点坐标为(0,﹣5),设直线BC的解析式为:y=kx+b,则解得k=1,b=﹣5,∴直线BC的解析式为:y=x﹣5;(2)设点D的横坐标为m,则D点的坐标为(m,m2﹣4m﹣5),则E点的坐标为(m,m﹣5),∵点D是直线BC下方抛物线上一点,∴DE的长度:m﹣5﹣(m2﹣4m﹣5)=﹣m2+5m=﹣(m﹣)+,∵a=﹣1<0,∴当m=时,线段DE的长度最大,此时D点的坐标为(,﹣).26.如图1,△ABC是等腰直角三角形,∠BA C=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.①求证:BD⊥CF.②当AB=2,AD=3时,求线段BD的长.【考点】四边形综合题.【分析】(1)结论:BD=CF.只要证明△ABD≌△ACF即可.(2)①在利用“8字型”证明∠FHN=∠DAN=90°,即可解决问题.②如图4中,连接DF,延长AB,与DF交于点M.在Rt△BDM中,切线BM、DM,再利用勾股定理即可解决问题.【解答】(l)解:如图2中,BD=CF成立.理由:由旋转得:AC=AB,∠CAF=∠BAD=θ;AF=AD,在△ABD和△ACF中,,∴△ABD≌△ACF,∴BD=CF.(2)①证明:如图3中,由(1)得,△ABD≌△ACF,∴∠HFN=∠ADN,∵∠HNF=∠AND,∠AND+∠AND=90°∴∠HFN+∠HNF=90°∴∠NHF=90°,∴HD⊥HF,即BD⊥CF.②如图4中,连接DF,延长AB,与DF交于点M.∵四边形ADEF是正方形,∴∠MDA=45°,∵∠MAD=45°∴∠MAD=∠MDA,∠AMD=90°,∴AM=DM,∵AD=3,在△MAD中,AM2+DM2=AD2,∴AM=DM=3,∴MB=AM﹣AB=3﹣2=1,在△BMD中,BM2+DM2=BD2,∴BD==.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年山东省临沂市临沭县青云中学九年级(上)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(3分)平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(﹣2,﹣3)D.(2,﹣3)3.(3分)下列说法错误的是()A.面积相等的两个圆是等圆B.半径相等的两个半圆是等弧C.直径是圆中最长的弦D.长度相等的两条弧是等弧4.(3分)抛物线y=(x+1)2﹣2的顶点坐标是()A.(1,2) B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)5.(3分)若⊙O的半径等于10cm,圆心O到直线l的距离是6cm,则直线l与⊙O位置关系是()A.相交B.相切C.相离D.相切或相交6.(3分)用配方法解方程x2+6x﹣5=0时,此方程可变形为()A.(x+3)2=14 B.(x﹣3)2=14 C.(x+3)2=11 D.(x+6)2=147.(3分)如图,△ABC中,将△ABC绕点A顺时针旋转40°后,得到△AB′C′,且C′在边BC上,则∠AC′C的度数为()A.50°B.60°C.70°D.80°8.(3分)已知等腰三角形的腰和底的长分别是一元二次方程x2﹣7x+10=0的两个根,则该三角形的周长是()A.9 B.12 C.9或12 D.不能确定9.(3分)如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD()A.76°B.62°C.60°D.28°10.(3分)将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4 B.6 C.8 D.1011.(3分)某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4 12.(3分)如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>B.k>且k≠0 C.k<D.k≥且k≠013.(3分)如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D,若AC=4,则AD的长为()A.2 B.3 C.3 D.214.(3分)二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣二、填空题:(本题共5小题,每小题3分,共15分)15.(3分)已知m是方程x2﹣x﹣2=0的一个根,则代数式m2﹣m+4的值等于.16.(3分)如图,AB为⊙O的弦,半径OD⊥AB于点C.若AB=8,CD=2,则⊙O的半径长为.17.(3分)抛物线的部分图象如图所示,则当y<0时,x的取值范围是.18.(3分)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?19.(3分)如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为米.三、解答题(本题共7个小题,共63分)20.(8分)解下列方程:(1)2(x﹣3)2=x2﹣9;(2)2x2﹣3x+1=0.21.(8分)已知抛物线y=x2﹣px+﹣.(1)若抛物线与y轴交点的坐标为(0,1),求抛物线与x轴交点的坐标;(2)证明:无论p为何值,抛物线与x轴必有交点.22.(8分)“某校要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排9天,每天安排4场比赛.试问比赛组织者要邀请多少个队参加此次比赛?”23.(8分)如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD(1)求证:AC是⊙O的切线;(2)若⊙O的半径为4,求△ABC的面积.24.(9分)某公司研发了一款成本为60元的保温饭盒,投放市场进行试销售,按物价部门规定,其销售单价不低于成本,但销售利润不高于65%,市场调研发现,保温饭盒每天的销售数量y(个)与销售单价x(元)满足一次函数关系;当销售单价为70元时,销售数量为160个;当销售单价为80元时,销售数量为140个(利润率=)(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,公司每天获得利润最大,最大利润为多少元?25.(10分)如图,抛物线y=x2﹣4x﹣5与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC 相交于点E.(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.26.(12分)如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF 是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.①求证:BD⊥CF.②当AB=2,AD=3时,求线段BD的长.2016-2017学年山东省临沂市临沭县青云中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形.是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,不是中心对称图形,故此选项错误.故选:B.2.(3分)平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(﹣2,﹣3)D.(2,﹣3)【解答】解:点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3).故选:D.3.(3分)下列说法错误的是()A.面积相等的两个圆是等圆B.半径相等的两个半圆是等弧C.直径是圆中最长的弦D.长度相等的两条弧是等弧【解答】解:A、面积相等的两个圆是等圆,正确;B、半径相等的两个半圆是等弧,正确;C、直径是圆中最长的弦,正确;D、等弧指的是在同圆或等圆中,能够互相重合的弧,而不是长度相等,就一定能够重合,故本选项错误;故选:D.4.(3分)抛物线y=(x+1)2﹣2的顶点坐标是()A.(1,2) B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【解答】解:抛物线y=(x+1)2﹣2的顶点坐标是(﹣1,﹣2).故选:D.5.(3分)若⊙O的半径等于10cm,圆心O到直线l的距离是6cm,则直线l与⊙O位置关系是()A.相交B.相切C.相离D.相切或相交【解答】解:∴⊙O的半径为10cm,如果圆心O到直线l的距离为6cm,∴6<10,即d<r,∴直线l与⊙O的位置关系是相交.故选:A.6.(3分)用配方法解方程x2+6x﹣5=0时,此方程可变形为()A.(x+3)2=14 B.(x﹣3)2=14 C.(x+3)2=11 D.(x+6)2=14【解答】解:∵x2+6x=5,∴x2+6x+9=14,∴(x+3)2=14.故选:A.7.(3分)如图,△ABC中,将△ABC绕点A顺时针旋转40°后,得到△AB′C′,且C′在边BC上,则∠AC′C的度数为()A.50°B.60°C.70°D.80°【解答】解:∵将△ABC绕点A顺时针旋转40°后,得到△AB′C′,∴∠CAC′=40°,AC=AC′,∴∠AC′C=∠C=(180°﹣∠CAC′)=70°,故选:C.8.(3分)已知等腰三角形的腰和底的长分别是一元二次方程x2﹣7x+10=0的两个根,则该三角形的周长是()A.9 B.12 C.9或12 D.不能确定【解答】解:方程x2﹣7x+10=0,分解因式得:(x﹣2)(x﹣5)=0,解得:x=2或x=5,当底为5,腰为2时,由于2+2<5,不符合三角形三边关系;当底为2,腰为5时,可构成三角形,此时周长为2+5+5=12,故选:B.9.(3分)如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD()A.76°B.62°C.60°D.28°【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACD=90°﹣∠BCD=62°,由圆周角定理得,∠ABD=∠ACD=62°,故选:B.10.(3分)将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4 B.6 C.8 D.10【解答】解:将抛物线y=x2﹣1向下平移8个单位长度,其解析式变换为:y=x2﹣9而抛物线y=x2﹣9与x轴的交点的纵坐标为0,所以有:x2﹣9=0解得:x1=﹣3,x2=3,则抛物线y=x2﹣9与x轴的交点为(﹣3,0)、(3,0),所以,抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为6故选:B.11.(3分)某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选:D.12.(3分)如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>B.k>且k≠0 C.k<D.k≥且k≠0【解答】解:由题意知,k≠0,方程有两个不相等的实数根,所以△>0,△=b2﹣4ac=(2k+1)2﹣4k2=4k+1>0.又∵方程是一元二次方程,∴k≠0,∴k>且k≠0.故选:B.13.(3分)如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D,若AC=4,则AD的长为()A.2 B.3 C.3 D.2【解答】解:∵△ABC为等腰直角三角形,∠ACB=90°,∴∠CAB=∠B=45°,∵AC=BC=4,∴AB=4,∵将△ABC绕点A逆时针旋转75°得到△AB′C′,∴∠B′AB=75°,AB′=4,∴∠DAB′=180°﹣75°﹣45°=60°,∵B′D⊥CA,∴∠DB′A=30°,∴AD=A B′=2.故选:A.14.(3分)二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣【解答】解:将点(﹣4,0)、(﹣1,0)、(0,4)代入到二次函数y=ax2+bx+c得:,解得:,∴二次函数的解析式为y=x2+5x+4.A、a=1>0,抛物线开口向上,A不正确;B、﹣=﹣,当x≥﹣时,y随x的增大而增大,B不正确;C、y=x2+5x+4=﹣,二次函数的最小值是﹣,C不正确;D、﹣=﹣,抛物线的对称轴是x=﹣,D正确.故选:D.二、填空题:(本题共5小题,每小题3分,共15分)15.(3分)已知m是方程x2﹣x﹣2=0的一个根,则代数式m2﹣m+4的值等于6.【解答】解:把x=m代入方程得:m2﹣m﹣2=0,即m2﹣m=2,则原式=2+4=6,故答案为:616.(3分)如图,AB为⊙O的弦,半径OD⊥AB于点C.若AB=8,CD=2,则⊙O的半径长为5.【解答】解:∵⊙O的弦AB=8,半径OD⊥AB,∴AC=AB=×8=4,设⊙O的半径为r,则OC=r﹣CD=r﹣2,连接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r﹣2)2+42,解得r=5.故答案为:5.17.(3分)抛物线的部分图象如图所示,则当y<0时,x的取值范围是x>3或x<﹣1.【解答】解:根据函数图象可知:抛物线的对称轴为x=1,抛物线与x轴一个交点的坐标为(﹣1,0),由抛物线的对称性可知:抛物线与x轴的另一个交点坐标为(3,0).∵y<0,∴x>3或x<﹣1.故答案为:x>3或x<﹣1.18.(3分)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?【解答】解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30﹣3x)m,宽为(24﹣2x)m,由已知得:(30﹣3x)•(24﹣2x)=480,整理得:x2﹣22x+40=0,解得:x1=2,x2=20,当x=20时,30﹣3x=﹣30,24﹣2x=﹣16,不符合题意,答:人行通道的宽度为2米.19.(3分)如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为2米.【解答】解:如图,建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度增加到2米,故答案为:2米.三、解答题(本题共7个小题,共63分)20.(8分)解下列方程:(1)2(x﹣3)2=x2﹣9;(2)2x2﹣3x+1=0.【解答】解:(1)将方程变形为:2(x﹣3)2﹣(x+3)(x﹣3)=0,(x﹣3)(2x﹣6﹣x﹣3)=0,即(x﹣3)(x﹣9)=0,解得x1=9,x2=3;(2)由原方程得:(x﹣1)(2x﹣1)=0,∴.21.(8分)已知抛物线y=x2﹣px+﹣.(1)若抛物线与y轴交点的坐标为(0,1),求抛物线与x轴交点的坐标;(2)证明:无论p为何值,抛物线与x轴必有交点.【解答】解:(1)对于抛物线y=x2﹣px+﹣,将x=0,y=1代入得:1=﹣,解得,ρ=,则抛物线解析式为:y=x2﹣x+1,令y=0,得到x2﹣x+1=0,解得:x1=,x2=2,则抛物线与x轴交点的坐标为(,0)、(2,0);(2)对于一元二次方程x2﹣px+﹣=0,∵△=p2﹣4(﹣)=p2﹣2p+1=(p﹣1)2≥0,∴无论p为何值,抛物线与x轴必有交点.22.(8分)“某校要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排9天,每天安排4场比赛.试问比赛组织者要邀请多少个队参加此次比赛?”【解答】解:设组织者要邀请x个队参加此次比赛,根据题意列方程得,解这个方程得:x1=9,x2=﹣8(﹣8不合题意舍去),所以方程的解为x=9.答:组织者要邀请9个队参加此次比赛.23.(8分)如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD(1)求证:AC是⊙O的切线;(2)若⊙O的半径为4,求△ABC的面积.【解答】(1)证明:如图,连接OC.∵AC=BC,AD=CD,OB=OC,∴∠A=∠B=∠1=∠2.又∵BD是直径,∴∠BCD=90°,∵∠ACO=∠DCO+∠2,∴∠ACO=∠DCO+∠1=∠BCD,∴∠ACO=90°,即AC⊥OC,又C在⊙O上,∴AC是⊙O的切线;(2)解:由题意可得△DCO是等腰三角形,∵∠CDO=∠A+∠2,∠DOC=∠B+∠1,∴∠CDO=∠DOC,即△DCO是等边三角形.∴∠A=∠B=∠1=∠2=30°,CD=AD=OD=4,在直角△BCD中,.作CE⊥AB于点E.在直角△BEC中,∠B=30°,∴CE=BC=,∴S=AB•CE=×12×2=12.△ABC24.(9分)某公司研发了一款成本为60元的保温饭盒,投放市场进行试销售,按物价部门规定,其销售单价不低于成本,但销售利润不高于65%,市场调研发现,保温饭盒每天的销售数量y(个)与销售单价x(元)满足一次函数关系;当销售单价为70元时,销售数量为160个;当销售单价为80元时,销售数量为140个(利润率=)(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,公司每天获得利润最大,最大利润为多少元?【解答】解:(1)设这个一次函数为y=kx+b(k≠0)∵这个一次函数的图象经过(70,160),(80,140)这两点,∴,解得.∴函数关系式是:y=﹣2x+300(60≤x≤99)(2)当销售单价定为x元时,公司每天获得利润最大为W元,依题意得W=(x﹣60)(﹣2x+300)=﹣2(x2﹣210x+9000)=﹣2(x﹣105)2+4050(60≤x≤99),∴当x=99时,W有最大值3978.当销售单价定为99元时,公司每天获得利润最大,最大利润为3978元.25.(10分)如图,抛物线y=x2﹣4x﹣5与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E.(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.【解答】解:(1)由题意令y=0,即x2﹣4x﹣5=0,解得x1=﹣1,x2=5,∴A(﹣1,0),B(5,0)∴C点坐标为(0,﹣5),设直线BC的解析式为:y=kx+b,则解得k=1,b=﹣5,∴直线BC的解析式为:y=x﹣5;(2)设点D的横坐标为m,则D点的坐标为(m,m2﹣4m﹣5),则E点的坐标为(m,m﹣5),∵点D是直线BC下方抛物线上一点,∴DE的长度:m﹣5﹣(m2﹣4m﹣5)=﹣m2+5m=﹣(m﹣)+,∵a=﹣1<0,∴当m=时,线段DE的长度最大,此时D点的坐标为(,﹣).26.(12分)如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF 是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.①求证:BD⊥CF.②当AB=2,AD=3时,求线段BD的长.【解答】(l)解:如图2中,BD=CF成立.理由:由旋转得:AC=AB,∠CAF=∠BAD=θ;AF=AD,在△ABD和△ACF中,,∴△ABD≌△ACF,∴BD=CF.(2)①证明:如图3中,由(1)得,△ABD≌△ACF,∴∠HFN=∠ADN,∵∠HNF=∠AND,∠AND+∠AND=90°∴∠HFN+∠HNF=90°∴∠NHF=90°,∴HD⊥HF,即BD⊥CF.②如图4中,连接DF,延长AB,与DF交于点M.∵四边形ADEF是正方形,∴∠MDA=45°,∵∠MAD=45°∴∠MAD=∠MDA,∠AMD=90°,∴AM=DM,∵AD=3,在△MAD中,AM2+DM2=AD2,∴AM=DM=3,∴MB=AM﹣AB=3﹣2=1,在△BMD中,BM2+DM2=BD2,∴BD==.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。