2017-2018学年甘肃省定西市临洮县九年级上第一次月考数学试卷含解析
人教版九年级数学上册第一次月考答案(新)
人教版九年级数学试题2017-2018学年第一学期 九年级数学第一次月考答案一、选择题 (本大题共6小题,每小题3分,共18分)1 2 3 4 5 6 DACCBC二、填空题 (本大题共6个小题,每小题3分,共18分)7. 4 , —3 , —7 ; 8.260x x +-=; 9.1m >; 10. 4 ; 11. 4 ; 12. (1)(3)(4) .三、解答题(本大题共4小题,13题12分,14、15、16题每题6分,共30分) 13.(12分) ()2(1)225x -= ()22430x x --=127,3x x ==- 1272,72x x =+=-+()()()33121x x x -=- ()245140x x --=122,13x x == 127,2x x ==-14.(6分)解:(1)由题意可知:10m -≠① 210m -=②所以=1m -.(2)将=1m -带入方程()012122=-++-m x x m 整理有:20x x -=即()10x x -=,所以该方程的另外一个根是1x =. 15.(6分)解:(1)根据二次函数的图象可以知道:()()()1,04,003A B C --、、, 对称轴方程为143.22x -+== (2)把()()()1,04,003A B C --、、,代入2y ax bx c =++可得:0a b c -+= ①1640a b c ++=②15题图3c =- ③, 计算得出39,, 3.44a b c ==-=-即二次函数的解析式为239344y x x =--.(也可以设抛物线顶点式进行求解)16.(6分)解:设道路为x 米宽, 由题意得()()32220570x x --=,整理得:236350x x -+=,解得:12=135x x =,,经检验是原方程的解,但是3520x =>,因此35x =不合题意舍去. 答:道路为1m 宽.四.(本大题共3小题,每小题8分,共24分) 17.(8分)解:(1) ∵关于x 的方程()222110x k x k +-+-=有两个实数根12x x 、. ∴()()22=2141450k k k ∆---=-+≥解得:54k ≤. (2) ∵关于x 的方程()222110x k x k +-+-=有两个实数根12x x 、.∴2121212,1x x k x x k +=-⋅=-,()()()()()()222121212121222212+=16+2161216314120620,6,2;51, 2.4x x x x x x x x x x k k k k k k k k k k +-=+-=+---=-+===-≤=-,即代入有,整理可得:解得:由知所以,18.(8分) 解:(1)将点()()1,0,3,0A B -带入抛物线2y x bx c =++有10b c -+=①和9+30b c +=②解得:2,3b c =-=-.(2)由(1)可知抛物线解析式为()2223=14y x x x =----,即抛物线对称轴为1x =,所以当1x =时,min 4y =-;当4x =时,max 5y =; 而由已知知: 04x <<,所以此时y 的范围为45y -≤<.32m20m(3)当点P 在抛物线顶点()1,4-时PAB S ∆最大, 最大面积为11=44822PAB p S AB y ∆⋅⋅=⨯⨯=. 19.(8分)解:(1)()10160080,y x x x =+<<为偶数.(2)()()2805016010101404800W x x x x =--+=-++,即()21075290W x =--+.由函数图象的性质可知,抛物线开口向下,对称轴为7x =, 又x 为偶数,∴W 在6x =或8x =时取得最大值, 即max 5280W =,此时销售单价为807472x -=或.所以,当销售单价定为72或74元时,每周销售利润最大,为5280元. 五.(本大题共2小题,每小题9分,共18分) 20.(9分)解:(1)若一元二次方程230x x c -+=是“倍根方程”,则c= 2 ; (2)∵()()20x mx n --=是倍根方程,且122,n x x m ==,∴14n nm m==或, ∴4n m n m ==或,∵()()22454m mn n m n m n -+=--,∴22450.m mn n -+= (3)∵方程()200ax bx c a ++=≠是倍根方程,不妨设12=2,x x∵相异两点()()1,,4,M t s N t s +-都在抛物线2y ax bx c =++上,∴由抛物线的对称轴12145222x x t t x +++-===可知:125x x += 又∵12=2,x x ∴2225x x +=,即253x =,∴1103x =即()200ax bx c a ++=≠的两根分别为1103x =,253x =.21. (9分)解:(1)∵点P,Q 在抛物线上且纵坐标相同,∴P 、Q 关于抛物线对称轴对称并且到对称轴距离相等.∴抛物线对称轴31,42b x -+=-=∴b=4. (2)由(1)可知,关于x 的一元二次方程为22410x x ++=,∵2=416880b ac ∆-=-=> ∴方程有两个不相等的实数根,由求根公式可得:42221b x -±∆-±===-. (3)由题意将抛物线2241y x x =++的图象向上平移k(k 是正整数)个单位,使平移后的图象与x 轴无交点,∴设平移后的抛物线为2241y x x k =+++,∵方程22410x x k +++=没根,∴()16810k ∆=-+<,即1k >,又∵k 是正整数,∴k 的最小值是2. 六.(本大题共12分)解:(1)抛物线21y x =-+的勾股点的坐标为()0,1;(2)抛物线2y ax bx =+过原点,即点()0,0A , 如图,作PG x ⊥轴于点G,∵点P 的坐标为(3,, ∴()221,3,13 2.AG PG PA ===+=∴3060APG PAG ∠=∠=,, ∴在Rt PAB ∆中, 30PBA ∠=, ∴223PB PG ==,()()22222234,4,0AB PA PB B =+=+=即点的坐标为.∴不妨设抛物线解析式为()4y ax x =-,将点(13P ,代入得: 33a =,即抛物线解析式为23333y x x =-+. (3)①当点Q 在x 轴上方时,由ABQ ABP S S ∆∆=知点Q 的纵坐标为3, 则有233333x x -+=, 计算得出: 123,1x x ==(与P 点重合,不符合题意,舍去), ∴点Q 的坐标为()33,;②当点Q 在x 轴下方时,由ABQ ABP S S ∆∆=知点Q 的纵坐标为3-, 则有23433x x +=, 计算得出: 122+7,27x x ==-, ∴点Q 的坐标为()+732,-或()732-,-; 综上,满足条件的点Q 有3个: ()33,或()+732,-或()732-,-.习题试解预习法检验预习效果的最佳途径数学学科有别于其他学科的一大特点就是直接用数学知识解决问题。
2017-2018学年甘肃省定西市临洮县九年级上第一次月考数学试卷含解析
此时,D 选项符合,
故选 D.
【点评】本题考查二次函数与一次函数的图象的性质,要求学生理解系数与图象的关系.
5页
6.(3 分)已知二次函数 y=2x2+8x+7 的图象上有三点 A(﹣2,y1),B
,C(﹣3,y3)
则 y1、y2、y3 的大小关系为( ) A.y1>y2>y3 B.y2>y1>y3 C.y2>y3>y1 D.y3>y2>y1 【分析】函数 y=2x2+8x+7 化成顶点式,得到对称轴 x=﹣2,则 A、B、C 的横坐标离对称轴越近,
2017-2018 学年甘肃省定西市临洮县九年级(上)第一次月考数学试卷
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分) 1.(3 分)下列关于 x 的方程中,一定是一元二次方程的为( ) A.ax2+bx+c=0 B.x2﹣2=(x+3)2 C.x2+3x﹣5=0 D.x﹣1=0 2.(3 分)已知 x=1 是关于 x 的一元二次方程 x2+mx﹣2=0 的一个根,则 m 的值是( ) A.﹣1 B.0 C.1 D.0 或 1 3.(3 分)将抛物线 y=3x2 向左平移 2 个单位,再向下平移 1 个单位,所得抛物线为( ) A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1 C.y=3(x+2)2﹣1 D.y=3(x+2)2+1 4.(3 分)若关于 x 的一元二次方程(k﹣1)x2+2x﹣2=0 有不相等实数根,则 k 的取值范围是( ) A.k> B.k≥ C.k> 且 k≠1 D.k≥ 且 k≠1
甘肃省定西市九年级上学期数学第一次月考考试试卷
甘肃省定西市九年级上学期数学第一次月考考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共22分)1. (2分)下列各运算中,正确的运算是()A .B . (﹣2a3)2=4a6C . a6÷a2=a3D . (a﹣3)2=a2﹣92. (2分) (2019八上·石家庄期中) 使式子有意义的x的取值范围是()A .B .C . 且D . 且3. (2分)(2020·杭州) (1+y)(1-y)=()A . 1+y²B . -1-y²C . 1-y²D . -1+y4. (2分)已知2a﹣b=2,那么代数式4a2﹣b2﹣4b的值是()A . 6B . 4C . 2D . 05. (2分)已知a+b=3,ab=2,则a2+b2的值为()A . 3B . 4C . 5D . 66. (2分)(2018·东营) 下列运算正确的是()A . ﹣(x﹣y)2=﹣x2﹣2xy﹣y2B . a2+a2=a4C . a2•a3=a6D . (xy2)2=x2y47. (2分)直角三角形两直角边和为7,面积为6,则斜边长为()A .B .C .D .8. (2分)(2018·邯郸模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,则Rt△ABC的中线CD 的长为()A . 5B . 6C . 8D . 109. (2分) (2020八上·吴兴期中) 如图,在△ABC中,AB=AC=5,BC=6,若点P在边AC上移动,则BP 的最小值是()A . 5B . 6C . 4D . 4.810. (2分) (2018八下·瑶海期中) 一个三角形的三边分别是3、4、5,则它的面积是()A . 6B . 12C . 7.5D . 1011. (2分) (2019八上·射阳期末) 如图,△ABC中,AB=AC,AB=5,BC=8,AD是∠BAC的平分线,则AD 的长为()A . 5B . 4C . 3D . 2二、填空题 (共9题;共9分)12. (1分) (2019八上·黑山期中) 在平面直角坐标系中,点A(0,-4)到x轴的距离为________.13. (1分) (2019八上·昌平期中) 与是同类二次根式,则可能是________(不与2相同)14. (1分)(2019·下城模拟) 如图,在直角△ABC中,∠ACB=90°,AC=3,BC=4,且点D,E分別在BC,AB上,连结AD和CE交于点H.若=2,=1,则BE的长为________.15. (1分) (2019八上·黔西期中) 写出一个大于3且小于4的无理数:________.16. (1分)已知分式,当y=-3时无意义,当y=2时分式的值为0,则当y=5时,分式的值为________.17. (1分) (2019八上·大田期中) 如图,OB是边长为1的正方形的对角线,且OA=OB,数轴上A点对应的数是:________.18. (1分) (2015八下·深圳期中) 在直角坐标系中,O为坐标原点,已知点A(1,2),在y轴的正半轴上确定点P,使△AOP为等腰三角形,则点P的坐标为________.19. (1分)(2017·保康模拟) 如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为________m(结果保留根号).20. (1分) (2019八上·靖远月考) 如果三条线段的长分别为,,,这三条线段恰好能组成一个直角三角形,那么以为边长的正方形面积是________ .三、解答题 (共7题;共40分)21. (5分) (2020八上·石景山期末) 计算:22. (10分)计算:(1)(2a+b﹣3c)(2a﹣b+3c);(2)(a﹣2b+3c)2 .23. (5分)如图,已知:在中,,AC=70,AB=30. 求:BC的长.24. (5分)若a=1﹣,试求代数式a2﹣2a+2013的值.25. (5分)26. (5分) (2019九上·乡宁期中) 一块直角三角形木料板的一条直角边长,面积为,现要把它加工成一个面积较大的正方形桌面,甲、乙两位同学的加工方法分别如图甲、乙,请你用学过的知识说明哪位同学的加工方法更好(加工损耗忽略不计,结果可保留分数)27. (5分) (2018八上·洛宁期末) 如图,在△ABC中,∠CAB的平分线AD与BC垂直平分线DE交于点D,DM⊥AB于点M,DN⊥AC,交AC的延长线于点N,求证:BM=CN.参考答案一、单选题 (共11题;共22分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:二、填空题 (共9题;共9分)答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、解答题 (共7题;共40分)答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、考点:解析:答案:24-1、考点:解析:答案:25-1、考点:解析:答案:26-1、考点:解析:答案:27-1、考点:解析:。
九年级第一次月考答案(新).docx
2017-2018学年第一学期九年级数学第一次月考答案一、选择题(本大题共6小题,每小题3分,共18分)123456D A C C B C二、填空题(本大题共6个小题,每小题3分,共18分)7. 4 , —3 , —7 : 8・ %2 + % — 6 = 0 :9. m > 1 :10. 4 ;11. 4 ;三、解答题(本大题共4小题,13题12分,13. (12 分)(1)(兀一2『=25旺=7,X2 = —3(3)3x(x-l) = 2(x-l)12. (1) (3) (4)・14、15、16题每题6分,共30分)(2)X2-4X-3=0X] = 5/7 4- 2, X-)—+ 2(4)X2-5X-14=0x, =7,X2 = -214. (6 分)解:(1)由题意可知:加—1工m2 -1 = 0 ②所以m- -1.⑵将m=一1带入方程(m一1)兀2 + 2兀+ m2-1 = 0整理有:x2-x =即x(x-l) = 0,所以该方程的另外一个根是% =i.15.(6 分)解:⑴根据二次函数的图象可以知道:A(-1,0)、3(4,0)、C(0,-3)一1 + 4 3对称轴方程为x = ------ =2 2⑵把A(-1,0)、3(4,0)、C(0,-3)代入y = ax2+bx + c可得: a-b+c=0①16。
+ 4b + c = 0 ②39c = -3 ③,计算得出a = — ,b =—,c = -33 0即二次函数的解析式为=八广3.(也可以设抛物线顶点式进行求解)16. (6分)解:设道路为x 米宽,由题意得(32 - 2兀)(20-兀)= 570,整理得:F_36X + 35 = 0,解得:x,=l, X 2=35,经检验是原方程的解,但是X = 35〉20,因此X = 35不合题意舍去. 答:道路为lm 宽. 四. (本大题共3小题,每小题8分,共24分〉17. (8 分)解:(1)・・•关于兀的方程干+(2£-1)兀+ 2-1 = 0有两个实数根西、x 2.・・・ A=(2jt-l)2-4(Jt 2-l) = -4jt + 5>0 解得:k<~.4⑵・・•关于兀的方程++(2R —1)兀+疋一 1 = 0有两个实数根召、%2,:、x x +x 2 =1-2k, Xy-x 2=k 2 - l fX 124-X ;=16+X ,X 2,即(兀]+ 兀2)~ _2兀]兀2 = 16 +兀]七 代入有(1-2約$ =16 + 3阻一1),整理可得:k 2-4k-l2 = 0 (比一6)伙 + 2) = 0,解得:心=6山2=-2; , 由(1)知£5寸,所以k = -2.18. (8 分)解:(1) 将点4(一1,0),3(3,0)带入抛物线),=兀2+加 +。
2017至2018学年上学期九年级月考数学试卷
2017至2018学年上学期九年级月考数学试卷(一)班级: 姓名: 得分一、填空题(本大题共6个小题,每小题3分,满分18分) 1、一元二次方程05232=-+x x 的二次项系数是 ,一次项系数是 , 常数项是 。
2、已知方程032=++px x 的一个根为-3,则p = 。
3、一元二次方程01522=+-x x 的根的情况是 。
4、如果函数()723--=m x m y 是二次函数,那么m = 。
5、抛物线142-=x y 与y 轴的交点坐标是 。
6、已知抛物线()3122-+-=x y ,如果y 随x 的增大而增大,那么x 的取值范围是 。
二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7、方程的根为( )A.=1,=2B. =0,=1C. =0,=2D. =,=2 8、抛物线()322+-=x y 的对称轴是( )220x x -=1x 2x 1x 2x 1x 2x 1x 122xA 、直线2-=xB 、直线2=xC 、直线3-=xD 、直线3=x 9、二次函数()212+--=x y 的图象的顶点坐标是( )A 、(1,2)B 、(-1,2)C 、(-1,-2)D 、(1,-2) 10、用配方法解方程0582=--x x ,则配方结果正确的是( ) A 、()1142=+x B 、()2142=-x C 、()1682=-x D 、()6982=+x 11、一元二次方程0652=+-x x 的两根分别是1x 、2x 则=+21x x ( ) A 、 5 B 、6 C 、-5 D 、-6 12、将抛物线221x y =向左平移3个单位长度,再向下平移2个单位长度后,所得的抛物线是( )A 、()232--=x yB 、()232++=x yC 、()23212+-=x y D 、()23212-+=x y13、某商品原价为200元,连续两次降价00a 后售价为148元,下列方程中正确的是( )A 、()1481200200=+aB 、()14821200200=-aC 、()14812002002=+a D 、()1481200200=-a14、如图,已知抛物线c bx x y ++=2的对称轴为2=x ,点A 、B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为( ) A 、(2,3) B 、(3,2) C 、(3,3) D 、(4,3)三、解答题(本大题共9个小题,满分70分) 15、用适当方法解下列方程(每小题3分,共12分) (1)0812=-x (2)0422=-+x x(3)()22-=-x x x (4)01422=--x x (用配方法)16、关于x 的一元二次方程()011222=++++k x k x 有两个不相等的实数根1x ,2x (6分)(1)求实数k 的取值范围;(2)若方程两个实数根1x ,2x 满足2121x x x x -=+,求k 的值。
2017-2018九年级数学(上)月考试卷(一)
2017-2018学年度第一学期九年级数学月考试卷(一)一、选择题(本大题10小题,每小题3分,共30分) 1.在下列命题中,正确的是( )A .一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形C .有一组邻边相等的平行四边形是菱形D .对角线互相垂直平分的四边形是正方形 2. 已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( )A .B .C . D3. 如图,将矩形ABCD 纸片沿对角线BD 折叠,使点C 落在C '处,BC '交AD 于E ,若2.5DB C ∠=°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有( ) A .6个 B .5个 C .4个 D .3个4. 如图,在菱形ABCD 中,对角线AC BD ,相交于点O E ,为AB 的中点,且OE a =,则菱形ABCD的周长为( ) A .16a B .12aC .8aD .4a5、方程x x =2的根是( )(A )01=x (B )11=x (C )01=x ,12=x (D )01=x ,12-=x6. 方程()()1132=-+x x 的解的情况是( )(A )有两个不相等的实数根 (B )没有实数根 (C )有两个相等的实数根 (D )有一个实数根7、若方程07532=--x x 的两根为21x x 、,下列表示根与系数关系的等式中,正确的是( )(A )121257x x x x +=⋅=-, (B )12125733x x x x +=-⋅=, (C )12125733x x x x +=⋅=, (D )12125733x x x x +=⋅=-,8、关于x 的方程0132=-+x kx 有实数根,则k 的取值范围是( )(A )49-≤k (B )904k k ≥-≠且 (C )94k ≥- (D )904k k >-≠且B C ' B AC 1 2 B AD C B A C 1 2D 1 2 BA D C9、茂名市2015年平均房价为每平方米5500元.连续两年增长后,2017年平均房价达到每平方米7500元,10、若αβ,是方程2220050x x +-=的两个实数根,则23ααβ++的值为( )(A )2005 (B )2003 (C )-2005 (D )4010二、填空题(本大题6小题,每小题4分,共24分)11、边长为5cm 的菱形,一条对角线长是6cm ,则另一条对角线的长是 . 12、当m 时,方程()05122=+--mx x m 不是一元二次方程.13、如果()51222+++-m x m x 是一个完全平方式,则=m _____. 14、已知方程022=-+kx x 的一个根是1,则另一个根是 ,k 的值是 .15、如图,已知P 是正方形ABCD 对角线BD 上一点,且BP = BC ,则∠ACP 度数是 .16、如图:矩形纸片ABCD ,AB =2,点E 在BC 上,且AE=EC .若将纸片沿AE 折叠,点B 恰好落在AC上,则AC 的长是 .第15题第16题 三、解答题(一)(本大题3小题,每小题6分,共18分) 17、解方程:(1)x x 4)1(2=+ (2)01072=+-x x18、已知:如图,正方形ABCD 中,对角线的交点为O ,E 是OB 上的一点,DG ⊥AE 于G ,DG 交OA于F .求证:OE=OF .BC D A P AB CDE19、如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC ,DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20、某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,商店为适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x 元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?21、如图,矩形中,是与的交点,过点的直线与的延长线分别交于.(1)求证:;(2)当与满足什么关系时,以为顶点的四边形是菱形?证明你的结论.22、已知关于x 的一元二次方程()241210x m x m +++-=.(1)求证:不论m 为任何实数,方程总有两个不相等的实数根. (2)若方程两根为21x x 、,且满足121112x x +=-,求m 的值.ABCD O AC BD O EF AB CD ,E F ,BOE DOF △≌△EF AC A E C F ,,,FDOC B EA五、解答题(三)(本大题3小题,每小题9分,共27分)23、在△ABC 中,∠B=90º,AB=6cm ,BC=8cm ,点P 从点A 开始沿AB 边向终点B 以1cm/s 的速度移动,与此同时,点Q 从点C 开始沿CB 边向终点B 以2cm/s 的速度移动,如果P ,Q 分别从A ,C 同时出发。
甘肃省定西市九年级上学期数学第一次月考试卷
甘肃省定西市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2015八下·伊宁期中) 当a<0,b<0时把化为最简二次根式是()A .B . ﹣C . ﹣D . a2. (2分)已知m=8﹣,估算m的值所在的范围是()A . 1<m<2B . 2<m<3C . 3<m<4D . 4<m<53. (2分) (2017七上·深圳期中) 若(a+3)2+∣b-2∣=0,则ab的值是()A . 6B . 9C . 8D . -64. (2分) (2019八上·巴州期末) 下列因式分解正确的是()A . m2+n2=(m+n)(m-n)B . x2C . a2D . a25. (2分) (2020八下·建平期末) 若分式中的、的值都变为原来的3倍,则此分式的值()A . 不变B . 是原来的3倍C . 是原来的D . 是原来的6. (2分)如图是由八个相同小正方体组合而成的几何体,则其俯视图是()A .B .C .D .7. (2分)已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A .B .C .D .8. (2分)下列命题不正确的是()A . 0是整式B . x=0是一元一次方程C . (x+1)(x﹣1)=x2+x是一元二次方程D . 是二次根式9. (2分)(2020·孟津模拟) 若关于x的一元二次方程有两个不相等的实数根,则实数k的取值范围是()A .B . 且C .D . 且10. (2分) (2020八下·郑州月考) 下列多项式能用公式法分解因式的有()①x2﹣2x﹣1;② ﹣x+1;③﹣a2﹣b2;④﹣a2+b2;⑤x2﹣4xy+4y2 ;⑥m2﹣m+1A . 1个B . 2个C . 3个D . 4个11. (2分) (2019八下·西湖期末) 方程x2+x﹣1=0的一个根是()A . 1﹣B .C . ﹣1+D .12. (2分)若x2-4x+m2是完全平方式,则m的值是()A . 2B . -2C . ±2D . 以上都不对13. (2分)若是一元二次方程的根,则判别式和完全平方式的关系是()A .B .C .D . 大小关系不能确定14. (2分) (2020九上·青神期中) 一元二次方程4x2﹣3x+ =0根的情况是()A . 没有实数根B . 只有一个实数根C . 有两个相等的实数根D . 有两个不相等的实数根15. (2分)已知方程x2+2x﹣3=0的解是x1=1,x2=﹣3,则另一个方程(x+3)2+2(x+3)﹣3=0的解是()A . x1=﹣1,x2=3B . x1=1,x2=﹣3C . x1=2,x2=6D . x1=﹣2,x2=﹣6二、填空题 (共11题;共11分)16. (1分) (2017七下·无棣期末) 定义新运算:对于任意实数a,b都有:a⊕b=a(a+b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2+5)+1=2×7+1=15,那么不等式-3⊕x<13的解集为________17. (1分)(2017·玄武模拟) 计算 =________.18. (1分)(2017·河西模拟) 若y= ,则5x+6y的值为________.19. (1分) (2020七上·兴县期末) 如果把6.48712保留两位小数可近似为________.20. (1分) (2016九上·淮安期末) 分解因式:3x2-12=________.21. (1分) (2017八下·金堂期末) 若关于有增根,则 =________;22. (1分)(2020·韶关期末) 已知a是方程2x2=x+4的一个根,则代数式4a2-2a的值是________。
新人教版2017-2018学年九年级上第一次月考数学试题含答案
新人教版2017-2018学年九年级上第一次月考数学试题含答案2017—2018学年度(上)学期9月份阶段验收九年级数学试卷2017.9.29一、选择题(每小题3分,共计30分)1.点M(-1,2)关于x轴对称的点的坐标为()(A)(-1,-2)(B)(-1,2)(C)(1,-2)(D)(2,-1)2.下列计算正确的是()(A)235a a a+=(B)()326a a=(C)326aaa=÷(D)aaa632=⨯3.下列图案中,既是轴对称图形又是中心对称图形的是()4.抛物线()2345y x=-+的顶点坐标是()(A)(4,5)(B)(-4,5)C、(4,-5)(D)(-4,5)5.等腰三角形的一边长为4cm,另一边长为9cm,则它的周长为()(A)13cm(B)17cm(C)22cm(D)17cm或22cm6.已知反比例函数kyx=的图象经过点P(-l,2),则这个函数的图象位于()(A)第二、三象限(B)第一、三象限(C)第三、四象限(D)第二、四象限7.某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到l210辆,则该厂四、五月份的月平均增长率为()(A)12.1%(B)20%(C)21%(D)10%8.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△ADE可以由△ABC绕点A顺时针旋转900得到,点D与点B是对应点,点E与点C是对应点),连接CE,则∠CED的度数是()(A)45°(B)30°(C)25°(D)15°9.如图,矩形ABCD中,对角线AC、BD相交于点O,∠AOB=600,AB=5,则AD的长是()(A)53(B)52(C)5(D)1010.甲乙两车分别从M、N两地相向而行,甲车出发1小时后,乙车出发,并以各自的速度匀速行驶,(A)(B)(C)(D)(第8题图)(第9题图)(第10题图)两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的路程S(千米)与甲车所用时间t(小时)之间的函数图象,其中D 点表示甲车到达N 地停止运行,下列说法中正确的是()(A )M 、N 两地的路程是1000千米;(B )甲到N 地的时间为4.6小时;(C )甲车的速度是120千米/小时;(D )甲乙两车相遇时乙车行驶了440千米.二、填空题(每小题3分,共计30分)11.将2580000用科学记数法表示为.12.函数12y x =-的自变量x 的取值范围是.13.计算:82+=.14.分解因式:322_____________x x x ---=.15.抛物线223y x bx =-+的对称轴是直线1x =-,则b 的值为.16.如图,CD 为⊙O 的直径,AB ⊥CD 于E ,DE =8cm ,CE =2cm ,则AB =cm.17.不等式组⎩⎨⎧-≤--14352x x >的解集是.18.如图,在⊙O 中,圆心角∠BOC=60°,则圆周角∠BAC 的度数为度.19.在ΔABC 中,若AB=34,AC=4,∠B=30°,则ABC S ∆=.20.如图,△ABC ,AB=AC ,∠BAC=90°,点D 为BC 上一点,CE ⊥BC ,连接AD 、DE ,若CE=BD ,DE=4,则AD 的长为.三、解答题(其中21-22题各7分.23-24题各8分.25-27题各l0分.共计60分)21.先化简,再求值:2211121x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x=12+.22.如图,图1和图2都是7×4正方形网格,每个小正方形的边长是1,请按要求画出下列图形,所(第16题图)(第18题图)(第20题图)画图形的各个顶点均在所给小正方形的顶点上.(1)在图1中画出一个等腰直角△ABC ;(2)在图2中画出一个钝角△ABD ,使△ABD 的面积是3.图1图223.某中学为了丰富校园文化生活.校学生会决定举办演讲、歌唱、绘画、舞蹈四项比赛,要求每位学生都参加.且只能参加一项比赛.围绕“你参赛的项目是什么?(只写一项)”的问题,校学生会在全校范围内随机抽取部分学生进行问卷调查.将调查问卷适当整理后绘制成如图所示的不完整的条形统计图.其中参加舞蹈比赛的人数与参加歌唱比赛的人数之比为1:3,请你根据以上信息回答下列问题:(1)通过计算补全条形统计图;(2)在这次调查中,一共抽取了多少名学生?(3)如果全校有680名学生,请你估计这680名学生中参加演讲比赛的学生有多少名?24.已知:BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE=AF.(1)如图1,求证:四边形ADEF 是平行四边形;(2)如图2,若AB=AC ,∠A=36°,不添加辅助线,请你直接写出与DE 相等的所有线段(AF 除外).图1图225.哈尔滨地铁“二号线”正在进行修建,现有大量的残土需要运输.某车队有载重量为8吨、10吨的卡车共12台,全部车辆运输一次可以运输110吨残土.(1)求该车队有载重量8吨、10吨的卡车各多少辆?(2)随着工程的进展,该车队需要一次运输残土不低于165吨,为了完成任务,该车队准备再新购进这两种卡车共6辆,则最多购进载重量为8吨的卡车多少辆?26.如图,在⊙O 中,AB 、CE 是直径,BD ⊥CE 于G ,交⊙O 于点D ,连接CD 、CB.(1)如图1,求证:∠DCO=90°-21∠COB ;(2)如图2,连接BE ,过点G 作BE 的垂线分别交BE 、AB 、CD 于点F 、H 、M ,求证:MC=MD ;(3)在(2)的条件下,连接AC 交MF 于点N ,若MN=1,NH=4,求CG 的长.(第26题图1)(第26题图2)(第26题图3)27.已知:如图,抛物线y=-x 2+bx+c 与x 轴负半轴交于点A ,与x 轴正半轴交于点B ,与y 轴正半轴交于点C ,OA=3,O B=1,点M 为点A 关于y 轴的对称点.(1)求抛物线的解析式;(2)点P 为第三象限抛物线上一点,连接PM、PA,设点P 的横坐标为t,△PAM 的面积为S,求S 与t 的函数关系式;(3)在(2)的条件下,PM 交y 轴于点N,过点A 作PM 的垂线交过点C 与x 轴平行的直线于点G,若ON∶CG=1∶4,求点P 的坐标.答案一、ABCACDDDAC二、11、2.58×10612、x ≠213、2314、-x(x+1)215、-416、817、x ≥518、3019、34或3820、22三、21、(7分)原式=2211=-x 22、(1)(3分)(2)(4分)23、(1)30%;(2分)(2)100-30-35-5=30,补图略;(3分)(3)(5÷100)×2000=100人(3分)24、(1)(4分)EB=ED=AF ,ED ∥AF∴四边形ADEF 为平行四边形;(2)(4分)CD 、BE 、BG 、FG25、(1)(4分)设89吨卡车有x 辆8x+10(12-x)=110解得:x=5,∴12-x=7;(2)(4分)设购进载重量8吨a 辆8(a+5)+10(6+7-a)≥165a≤2.5∵a 为整数,∴a 的最大值为226、(1)略(2)略(3)AC ∥BE ,△CNG≌△BFH,设GN=x,CE=x+1,BC=2x+2=FN=x+4,x=2CN=22,CG=3227、(1)322+--=x x y (2)963S 2-+=x x (3)过点A 作CG 的垂线,垂足为E ,四边形CEAO 为正方形△AGE ≌△MNO ,ON=EG ,CE=3ON=3,N (0,-1)直线MP 解析式为131-=x y ,⎪⎩⎪⎨⎧+--=-=321312x x y x y解得P (6193-7-,18193-25-)。
数学:九年级第一次月考答案(新)
2017-2018学年第一学期九年级数学第一次月考答案一、选择题 (本大题共6小题,每小题3分,共18分) 1 2 3 4 5 6 DACCBC二、填空题 (本大题共6个小题,每小题3分,共18分) 7. 4 , —3 , —7 ; 8.260x x +-=; 9.1m >; 10. 4 ; 11. 4 ; 12. (1)(3)(4) .三、解答题(本大题共4小题,13题12分,14、15、16题每题6分,共30分) 13.(12分) ()2(1)225x -= ()22430x x --=127,3x x ==- 1272,72x x =+=-+()()()33121x x x -=- ()245140x x --=122,13x x == 127,2x x ==-14.(6分)解:(1)由题意可知:10m -≠① 210m -=②所以=1m -.(2)将=1m -带入方程()012122=-++-m x x m 整理有:20x x -= 即()10x x -=,所以该方程的另外一个根是1x =. 15.(6分)解:(1)根据二次函数的图象可以知道:()()()1,04,003A B C --、、,对称轴方程为143.22x -+== (2)把()()()1,04,003A B C --、、,代入2y ax bx c =++可得:0a b c -+= ① 1640a b c ++=②15题图3c =- ③, 计算得出39,, 3.44a b c ==-=-即二次函数的解析式为239344y x x =--.(也可以设抛物线顶点式进行求解)16.(6分)解:设道路为x 米宽, 由题意得()()32220570x x --=,整理得:236350x x -+=,解得:12=135x x =,,经检验是原方程的解,但是3520x =>,因此35x =不合题意舍去. 答:道路为1m 宽.四.(本大题共3小题,每小题8分,共24分) 17.(8分)解:(1) ∵关于x 的方程()222110x k x k +-+-=有两个实数根12x x 、. ∴()()22=2141450k k k ∆---=-+≥解得:54k ≤. (2) ∵关于x 的方程()222110x k x k +-+-=有两个实数根12x x 、. ∴2121212,1x x k x x k +=-⋅=-,()()()()()()222121212121222212+=16+2161216314120620,6,2;51, 2.4x x x x x x x x x x k k k k k k k k k k +-=+-=+---=-+===-≤=-,即代入有,整理可得:解得:由知所以,18.(8分) 解:(1)将点()()1,0,3,0A B -带入抛物线2y x bx c =++有10b c -+=①和9+30b c +=②解得:2,3b c =-=-.(2)由(1)可知抛物线解析式为()2223=14y x x x =----,即抛物线对称轴为1x =,所以当1x =时,min 4y =-;当4x =时,max 5y =; 而由已知知: 04x <<,所以此时y 的范围为45y -≤<.32m20m(3)当点P 在抛物线顶点()1,4-时PAB S ∆最大,最大面积为11=44822PAB p S AB y ∆⋅⋅=⨯⨯=.19.(8分)解:(1)()10160080,y x x x =+<<为偶数.(2)()()2805016010101404800W x x x x =--+=-++,即()21075290W x =--+.由函数图象的性质可知,抛物线开口向下,对称轴为7x =, 又x 为偶数,∴W 在6x =或8x =时取得最大值, 即max 5280W =,此时销售单价为807472x -=或.所以,当销售单价定为72或74元时,每周销售利润最大,为5280元. 五.(本大题共2小题,每小题9分,共18分) 20.(9分)解:(1)若一元二次方程230x x c -+=是“倍根方程”,则c= 2 ; (2)∵()()20x mx n --=是倍根方程,且122,n x x m ==,∴14n nm m==或, ∴4n m n m ==或,∵()()22454m mn n m n m n -+=--,∴22450.m mn n -+= (3)∵方程()200ax bx c a ++=≠是倍根方程,不妨设12=2,x x ∵相异两点()()1,,4,M t s N t s +-都在抛物线2y ax bx c =++上,∴由抛物线的对称轴12145222x x t t x +++-===可知:125x x += 又∵12=2,x x ∴2225x x +=,即253x =,∴1103x =即()200ax bx c a ++=≠的两根分别为1103x =,253x =.21. (9分)解:(1)∵点P,Q 在抛物线上且纵坐标相同,∴P 、Q 关于抛物线对称轴对称并且到对称轴距离相等.∴抛物线对称轴31,42b x -+=-=∴b=4. (2)由(1)可知,关于x 的一元二次方程为22410x x ++=,∵2=416880b ac ∆-=-=>∴方程有两个不相等的实数根,由求根公式可得:42221242b x a -±∆-±===-±. (3)由题意将抛物线2241y x x =++的图象向上平移k(k 是正整数)个单位,使平移后的图象与x 轴无交点,∴设平移后的抛物线为2241y x x k =+++,∵方程22410x x k +++=没根, ∴()16810k ∆=-+<,即1k >,又∵k 是正整数,∴k 的最小值是2. 六.(本大题共12分)解:(1)抛物线21y x =-+的勾股点的坐标为()0,1;(2)抛物线2y ax bx =+过原点,即点()0,0A , 如图,作PG x ⊥轴于点G, ∵点P 的坐标为()13,, ∴()221,3,13 2.AG PG PA ===+=∴3060APG PAG ∠=∠=,, ∴在Rt PAB ∆中, 30PBA ∠=,∴223PB PG ==,()()22222234,4,0AB PA PB B =+=+=即点的坐标为.∴不妨设抛物线解析式为()4y ax x =-, 将点()13P ,代入得: 33a =-,即抛物线解析式为234333y x x =-+. (3)①当点Q 在x 轴上方时,由ABQ ABP S S ∆∆=知点Q 的纵坐标为3, 则有2343333x x -+=,计算得出: 123,1x x ==(与P 点重合,不符合题意,舍去), ∴点Q 的坐标为()33,; ②当点Q 在x 轴下方时,由ABQ ABP S S ∆∆=知点Q 的纵坐标为3-, 则有2343333x x -+=-, 计算得出: 122+7,27x x ==-, ∴点Q 的坐标为()+732,-或()732-,-; 综上,满足条件的点Q 有3个: ()33,或()+732,-或()732-,-.。
甘肃省定西市九年级上学期数学第一次月考试卷
甘肃省定西市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019九上·江北期末) ⊙O与直线l有两个交点,且圆的半径为3,则圆心O到直线l的距离不可能是()A . 0B . 1C . 2D . 32. (2分)如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A . 88°B . 92°C . 106°D . 136°3. (2分)(2018·龙东模拟) 如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A . 92°B . 108°C . 112°D . 124°4. (2分) (2017九上·襄城期末) 用配方法将化成的形式为()A .B .C .D .5. (2分)(2018·罗平模拟) 今年“十一”长假某湿地公园迎来旅游高峰,第一天的游客人数是1.2万人,第三天的游客人数为2.3万人,假设每天游客增加的百分率相同且设为x,则根据题意可列方程为()A . 2.3 (1+x)2=1.2B . 1.2(1+x)2=2.3C . 1.2(1﹣x)2=2.3D . 1.2+1.2(1+x)+1.2(1+x)2=2.36. (2分)如图,PA切⊙O于A,AB⊥OP于B,若PO=8 cm,BO=2 cm,则PA的长为()A . 16cmB . 48cmC . 6 cmD . 4 cm7. (2分)圆内接四边形ABCD中,四个角的度数比可顺次为()A . 4:3:2:1B . 4:3:1:2C . 4:2:3:1D . 4:1:3:28. (2分) (2017·槐荫模拟) 如图,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分别与⊙O相切于E、F、G 三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为()A .B . 2C .D .二、填空题 (共3题;共11分)9. (1分) (2017九上·青龙期末) 若一元二次方程x2﹣3x﹣1=0的两根分别为x1、x2 ,则=________.10. (5分) (2017八上·东台月考) 如图由6个边长等的正方形的组合图形,则∠1+∠2+∠3= ________.11. (5分) (2019八上·诸暨期末) 现在全省各大景区都在流行“真人CS“娱乐项目,其中有一个“快速抢点”游戏,游戏规则:如图,用绳子围成的一个边长为10m的正方形ABCD场地中,游戏者从AB边上的点E处出发,分别先后赶往边BC、CD、DA上插小旗子,最后回到点已知,则游戏者所跑的最少路程是多少________三、解答题 (共10题;共110分)12. (10分)(2017·剑河模拟) 如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D点,O是AB上一点,经过A、D两点的⊙O分别交AB、AC于点E、F.(1)用尺规补全图形(保留作图痕迹,不写作法);(2)求证:BC与⊙O相切;(3)当AD=2 ,∠CAD=30°时,求劣弧AD的长.13. (10分)若代数式2x2+x﹣2与x2+4x的值互为相反数,求出x的值.14. (10分) (2018九上·黄冈月考) 已知关于x的一元二次方程x2-2kx+k2+2=2(1-x)有两个实数根x1、x2.(1)求实数k的取值范围.(2)若方程的两实数根,满足,求的值.15. (10分)(2018·青岛模拟) 某校为美化校园,安排甲、乙两个工程队进行绿化.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在各自独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若绿化区域面积为1800m2,学校每天需付给甲队的绿化费用为0.4万元,每天需付给乙队的绿化费用为0.25万元,设安排甲队工作y天,绿化总费用为W万元.①求W与y的函数关系式;②要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?16. (10分)(2012·泰州) 如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙O相交于点P,AB 与⊙O相切于点B,BP的延长线交直线l于点C.(1)试判断线段AB与AC的数量关系,并说明理由;(2)若PC=2 ,求⊙O的半径和线段PB的长;(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.17. (10分)(2018·港南模拟) 如图,直线l与⊙O相离,OA⊥l于点A,交⊙O于点B,点C是⊙O上一点,连接CB并延长交直线l于点D,使AC=AD.(1)求证:AC是⊙O的切线;(2)若BD=2 ,OA=4,求线段BC的长.18. (10分)(2019·平顶山模拟) 如图,AB是⊙O的直径,点C是⊙O上一点,点D是的中点,过点D 作⊙O的切线,与AB、AC的延长线分别交于点E、F,连接AD.(1)求证:AF⊥EF.(2)直接回答:①已知AB=2,当BE为何值时,AC=CF?②连接BD、CD、OC,当∠E等于多少度时,四边形OBDC是菱形?19. (15分) (2019八上·双台子期末) 如图1,在△ABC中,∠B=60°,点M从点B出发沿射线BC方向,在射线BC上运动.在点M运动的过程中,连结AM,并以AM为边在射线BC上方,作等边△AMN,连结CN.(1)当∠BAM=________°时,AB=2BM;(2)请添加一个条件,使得△ABC为等边三角形;①如图1,当△ABC为等边三角形时,求证:CN+CM=AC;②如图2,当点M运动到线段BC之外(即点M在线段BC的延长线上时),其它条件不变(△ABC仍为等边三角形),请写出此时线段CN、CM、AC满足的数量关系,并证明.20. (10分) (2019八上·泰州月考) 如图所示,在平面直角坐标系xoy中,直线y= x+ 交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°).(1)当直线l与直线y= x+ 平行时,求出直线l的解析式;(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.21. (15分) (2016八上·连州期末) 阅读下列一段文字,然后回答下列问题.已知在平面内两点P1(x1 , y1)、P2(x2 , y2),其两点间的距离,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为﹣1,试求A、B两点间的距离;(3)已知一个三角形各顶点坐标为D(1,6)、E(﹣2,2)、F(4,2),你能判定此三角形的形状吗?说明理由;(4)平面直角坐标中,在x轴上找一点P,使PD+PF的长度最短,求出点P的坐标以及PD+PF的最短长度.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共3题;共11分)9-1、10-1、11-1、三、解答题 (共10题;共110分)12-1、12-2、12-3、13-1、14-1、14-2、15-1、15-2、16-1、16-2、16-3、17-1、17-2、18-1、19-1、20-1、20-2、21-1、21-2、21-3、21-4、。
2017-2018学年上学期九年级月考数学试卷(附答案)
2017-2018学年上学期九年级月考数学试卷(附答案)(满分150分,考试时间120分钟)一、选择题(本大题共8小题,每小题4分,共32分1、下列方程中,是关于x 的一元二次方程为( )A. B. C.x 2-5=0 D..B .C .D .3、抛物线()12212++=x y 的顶点坐标是( )A .(2,1)B .(-2,1)C .(2,-1)D .(-2,-1)4. y=(x -1)2+2的对称轴是直线( )A .x=-1B .x=1C .y=-1D .y=1 5.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为( )A . 0或2B . 0C . 2D .无法确定6. 二次函数y =x 2的图象向右平移3个单位,得到新的图象的函数表达式是( )A. y =x 2+3B. y =x 2-3C. y =(x +3)2D. y =(x -3)2 7、把方程(+(2x-1)2=0化为一元二次方程的一般形式是( ) A 、5x 2-4x-4=0 B 、x 2-5=0 C 、5x 2-2x+1=0 D 、5x 2-4x+6=0 8、已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0; ②a +b +c =2;21>a ③;④b <1.其中正确的结论是( ) A .①② B.②③C.②④ D.③④二、填空题(本大题共8小题,每小题4分,共32分)1、方程的根是.2、点P(-2,1)关天原点对称的点的坐标为P`( , )3、关于x 的方程是(m 2-1)x 2+ (m -1)x -2=0,当m 时,方程为一元二次方程;当m 时,3157x x +=+2110x x+-=)(为常数和b a bx ax 52=-()052=-x方程为一元一次方程.4、 已知x =1是关于x 的一元二次方程2x 2 + kx -1=0的一个根,则实数k =.5、方程(x –1)(2x +1)=2化成一般形式是,它的二次项系数是,一次项是.6、抛物线y =2x 2-bx +3的对称轴是直线x =1,则b 的值为______.7、把y =x 2-6x +4配方成y =a (x -h )2+k 的形式是_______________.8、已知二次函数2(2)(1)y x a a =-+-(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.下图分别是当1,0,1,2a a a a =-===时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是y =.三.解答题:(共86分)17、x 2-4=0 18、x 2+1=2x19、x 2+10x+9=020、22)21()3(x x -=+21、已知抛物线的顶点(-1,-2)且图象经过(1,10),求此抛物线解析式。
新人教版九年级数学上册2017-2018学年甘肃省临夏州九年级上月考数学试卷含答案解析
2017-2018学年甘肃省临夏州九年级(上)月考数学试卷一、选择题(每小题3分,共36分)1.(3分)下列方程中,是关于x的一元二次方程的是()A.3(x+1)2=2(x+1) B.C.ax2+bx+c=0 D.2x=12.(3分)一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根 D.没有实数根3.(3分)若函数y=a是二次函数且图象开口向上,则a=()A.﹣2 B.4 C.4或﹣2 D.4或34.(3分)关于函数y=x2的性质表达正确的一项是()A.无论x为任何实数,y值总为正B.当x值增大时,y的值也增大C.它的图象关于y轴对称D.它的图象在第一、三象限内5.(3分)一元二次方程x2+3x=0的解是()A.x=﹣3 B.x1=0,x2=3 C.x1=0,x2=﹣3 D.x=36.(3分)方程2x(x﹣3)=5(x﹣3)的根为()A.x=2.5 B.x=3 C.x=2.5或x=3 D.非上述答案7.(3分)如果x=4是一元二次方程x2﹣3x=a2的一个根,那么常数a的值是()A.2 B.﹣2 C.±2 D.±48.(3分)三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长是()A.9 B.11 C.13 D.149.(3分)一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为()A.25 B.36 C.25或36 D.﹣25或﹣3610.(3分)从正方形铁片,截去2cm宽的一条长方形,余下的矩形的面积是48cm2,则原来的正方形铁片的面积是()A.8cm B.64cm C.8cm2D.64cm211.(3分)某经济开发区今年一月份工业产值达50亿元,第一季度总产值为175亿元,问2、3月份平均每月的增长率是多少?设平均每月的增长率为x,根据题意得方程为()A.50(1+x)2=175 B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175 D.50+50(1+x)+50(1+x)2=17512.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(每小题3分,共24分)13.(3分)把一元二次方程(x﹣3)2=4化为一般形式为:,二次项为,一次项系数为,常数项为.14.(3分)已知2是关于x的一元二次方程x2+4x﹣p=0的一个根,则该方程的另一个根是.15.(3分)已知x1,x2是方程x2﹣2x+1=0的两个根,则+=.16.(3分)若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是.17.(3分)已知函数y=(m﹣2)x2+mx﹣3(m为常数).(1)当m时,该函数为二次函数;(2)当m时,该函数为一次函数.18.(3分)抛物线y=2x2﹣bx+3的对称轴是直线x=﹣1,则b的值为.19.(3分)抛物线y=﹣2x2向左平移1个单位,再向上平移7个单位得到的抛物线的解析式是.20.(3分)如图,已知二次函数y=ax2+bx+c的图象与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3),则二次函数的图象的顶点坐标是.三、解答题(共60分)21.(10分)用适当的方法解下列方程:(1)2x2﹣3x﹣5=0(2)x2﹣4x+4=0.22.(10分)已知x=1是一元二次方程(m+1)x2﹣m2x﹣2m﹣1=0的一个根.求m的值,并写出此时的一元二次方程的一般形式.23.(10分)汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2013年盈利1500万元,到2015年盈利2160万元,且从2013年到2015年,每年盈利的年增长率相同.(1)求该公司2014年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2016年盈利多少万元?24.(10分)已知二次函数y=x2.(1)求出抛物线的顶点坐标、对称轴、最小值;(2)求出抛物线与x轴、y轴交点坐标.25.(10分)如图,在一幅矩形地毯的四周镶有宽度相同的花边.如图,地毯中央的矩形图案长8米、宽6米,整个地毯的面积是80平方分米.求花边的宽.26.(10分)已知抛物线y=﹣x2+bx+c的部分图象如图所示.(1)求b、c的值;(2)求y的最大值;(3)写出当y<0时,x的取值范围.2017-2018学年甘肃省临夏州九年级(上)月考数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)下列方程中,是关于x的一元二次方程的是()A.3(x+1)2=2(x+1) B.C.ax2+bx+c=0 D.2x=1【分析】根据一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数进行分析即可.【解答】解:A、符合一元二次方程的定义,正确;B、不是整式方程,故错误;C、方程二次项系数可能为0,故错误;D、方程未知数的次数为1次,故不是一元二次方程,故错误.故选A.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.(3分)一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根 D.没有实数根【分析】把a=1,b=﹣4,c=5代入△=b2﹣4ac进行计算,根据计算结果判断方程根的情况.【解答】解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.(3分)若函数y=a是二次函数且图象开口向上,则a=()A.﹣2 B.4 C.4或﹣2 D.4或3【分析】根据二次函数的定义得到a2﹣2a﹣6=2,由抛物线的开口方向得到a>0,由此可以求得a的值.【解答】解:∵函数y=a是二次函数且图象开口向上,∴a2﹣2a﹣6=2,且a>0,解得a=4.故选:B.【点评】本题考查了二次函数的定义.二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a 是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.4.(3分)关于函数y=x2的性质表达正确的一项是()A.无论x为任何实数,y值总为正B.当x值增大时,y的值也增大C.它的图象关于y轴对称D.它的图象在第一、三象限内【分析】根据形如y=ax2(a≠0)的二次函数的性质直接判断即可.【解答】解:二次函数y=x2的图象开口向上,对称轴为y轴.故选C.【点评】本题考查了二次函数的性质,牢记二次函数y=ax2的性质是解答本题的关键.5.(3分)一元二次方程x2+3x=0的解是()A.x=﹣3 B.x1=0,x2=3 C.x1=0,x2=﹣3 D.x=3【分析】分解因式得到x(x+3)=0,转化成方程x=0,x+3=0,求出方程的解即可.【解答】解:x2+3x=0,x(x+3)=0,x=0,x+3=0,x1=0,x2=﹣3,故选:C.【点评】本题主要考查对解一元二次方程,解一元一次方程,因式分解等知识点的理解和掌握,能把一元二次方程转化成一元一次方程是解此题的关键.6.(3分)方程2x(x﹣3)=5(x﹣3)的根为()A.x=2.5 B.x=3 C.x=2.5或x=3 D.非上述答案【分析】此题用因式分解法比较简单,先移项,再提取公因式,可得方程因式分解的形式,即可求解.【解答】解:移项得:2x(x﹣3)﹣5(x﹣3)=0,∴(x﹣3)(2x﹣5)=0,解得x﹣3=0或2x﹣5=0,∴x1=3,x2=2.5.故选C.【点评】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法,此题方程两边公因式较明显,所以本题运用的是因式分解法.7.(3分)如果x=4是一元二次方程x2﹣3x=a2的一个根,那么常数a的值是()A.2 B.﹣2 C.±2 D.±4【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【解答】解:把x=4代入方程x2﹣3x=a2可得16﹣12=a2,解得a=±2,故选:C.【点评】本题考查的是一元二次方程的根即方程的解的定义.8.(3分)三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长是()A.9 B.11 C.13 D.14【分析】易得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【解答】解:解方程x2﹣6x+8=0得,x=2或4,∴第三边长为2或4.边长为2,3,6不能构成三角形;而3,4,6能构成三角形,∴三角形的周长为3+4+6=13,故选:C.【点评】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯.9.(3分)一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为()A.25 B.36 C.25或36 D.﹣25或﹣36【分析】可设这个数的个位数为x,那么十位数字应该是x﹣3,由一个两位数等于它的个位数的平方,列出一元二次方程求解.【解答】解:设这个两位数的个位数字为x,那么十位数字应该是x﹣3,由题意得10(x﹣3)+x=x2,解得x1=5,x2=6;那么这个两位数就应该是25或36.故选C【点评】本题要注意两位数的表示方法,然后根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.10.(3分)从正方形铁片,截去2cm宽的一条长方形,余下的矩形的面积是48cm2,则原来的正方形铁片的面积是()A.8cm B.64cm C.8cm2D.64cm2【分析】可设正方形的边长是xcm,根据“余下的面积是48cm2”,余下的图形是一个矩形,矩形的长是正方形的边长,宽是x﹣2,根据矩形的面积公式即可列出方程求解.【解答】解:设正方形的边长是xcm,根据题意得x(x﹣2)=48,解得x1=﹣6(舍去),x2=8,那么原正方形铁片的面积是8×8=64cm2.故选D.【点评】本题考查了一元二次方程的应用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.解题过程中要注意根据实际意义进行值的取舍.11.(3分)某经济开发区今年一月份工业产值达50亿元,第一季度总产值为175亿元,问2、3月份平均每月的增长率是多少?设平均每月的增长率为x,根据题意得方程为()A.50(1+x)2=175 B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175 D.50+50(1+x)+50(1+x)2=175【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可先用x 表示出二月份的产值,再根据题意表示出三月份的产值,然后将三个月的产值相加,即可列出方程.【解答】解:二月份的产值为:50(1+x),三月份的产值为:50(1+x)(1+x)=50(1+x)2,故第一季度总产值为:50+50(1+x)+50(1+x)2=175.故选:D.【点评】本题考查的是由实际问题抽象出一元二次方程,解此类题目时常常要按顺序列出接下来几年的产值,再根据题意列出方程即可.12.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个【分析】利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.【解答】解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x=﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把x=1代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵﹣=﹣1,∴b=2a,∴3b+2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选:B.【点评】此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法,同时注意特殊点的运用.二、填空题(每小题3分,共24分)13.(3分)把一元二次方程(x﹣3)2=4化为一般形式为:x2﹣6x+5=0,二次项为x2,一次项系数为﹣6,常数项为5.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:把一元二次方程(x﹣3)2=4化为一般形式为:x2﹣6x+5=0,二次项为x2,一次项系数为﹣6,常数项为5.【点评】去括号的过程中要注意符号的变化,以及注意不能漏乘,移项时要注意变号.注意在说明二次项系数,一次项系数,常数项时,一定要带上前面的符号.14.(3分)已知2是关于x的一元二次方程x2+4x﹣p=0的一个根,则该方程的另一个根是﹣6.【分析】根据根与系数的关系:x1+x2=﹣,x1•x2=,此题选择两根和即可求得.【解答】解:∵2是关于x的一元二次方程x2+4x﹣p=0的一个根,∴2+x1=﹣4,∴x1=﹣6,∴该方程的另一个根是﹣6.【点评】此题主要考查了一元二次方程的根与系数的关系.15.(3分)已知x1,x2是方程x2﹣2x+1=0的两个根,则+=2.【分析】根据根与系数的关系得到x1+x2=2,x1•x2=1,再变形+得到,然后利用代入法计算即可.【解答】解:∵一元二次方程x2﹣2x+1=0的两根是x1、x2,∴x1+x2=2,x1•x2=1,∴+==2.故答案为:2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.16.(3分)若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是k≤4且k≠0.【分析】首先根据非负数的性质求得a、b的值,再由二次函数的根的判别式来求k 的取值范围.【解答】解:∵|b﹣1|+=0,∴b﹣1=0,=0,解得,b=1,a=4;又∵一元二次方程kx2+ax+b=0有两个实数根,∴△=a2﹣4kb≥0且k≠0,即16﹣4k≥0,且k≠0,解得,k≤4且k≠0;故答案为:k≤4且k≠0.【点评】本题主要考查了非负数的性质、根的判别式.在解答此题时,注意关于x的一元二次方程的二次项系数不为零.17.(3分)已知函数y=(m﹣2)x2+mx﹣3(m为常数).(1)当m≠2时,该函数为二次函数;(2)当m=2时,该函数为一次函数.【分析】(1)根据二次函数的定义可得出m﹣2≠0,解之即可得出结论;(2)根据一次函数的定义可得出m﹣2=0、m≠0,解之即可得出结论.【解答】解:(1)∵函数y=(m﹣2)x2+mx﹣3为二次函数,∴m﹣2≠0,∴m≠2.(2)∵函数y=(m﹣2)x2+mx﹣3为一次函数,∴m﹣2=0,m≠0,∴m=2.故答案为:(1)≠2;(2)=2.【点评】本题考查了一次函数的定义以及二次函数的定义,牢记二次(一次)函数的定义是解题的关键.18.(3分)抛物线y=2x2﹣bx+3的对称轴是直线x=﹣1,则b的值为﹣4.【分析】根据对称轴方程,列出关于b的方程即可解答.【解答】解:∵﹣=﹣1,∴b=﹣4,故答案为:﹣4.【点评】本题考查了二次函数的性质,熟悉对称轴公式是解题的关键.19.(3分)抛物线y=﹣2x2向左平移1个单位,再向上平移7个单位得到的抛物线的解析式是y=﹣2x2﹣4x+5.【分析】先得到抛物线y=﹣2x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后的对应点的坐标为(﹣1,7),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=﹣2x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向上平移7个单位得到的对应点的坐标为(﹣1,7),所以平移后的抛物线的解析式为y=﹣2(x+1)2+7=﹣2x2﹣4x+5.故答案为y=﹣2x2﹣4x+5.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.20.(3分)如图,已知二次函数y=ax2+bx+c的图象与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3),则二次函数的图象的顶点坐标是(2,﹣1).【分析】已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.【解答】解:设解析式为:y=a(x﹣x1)(x﹣x2)(a≠0),即y=a(x﹣1)(x﹣3)把点C(0,3),代入得a=1.则y=(x﹣1)(x﹣3)=x2﹣4x+3.所以图象的顶点坐标是(2,﹣1).【点评】主要考查了用待定系数法求二次函数的解析式.三、解答题(共60分)21.(10分)用适当的方法解下列方程:(1)2x2﹣3x﹣5=0(2)x2﹣4x+4=0.【分析】(1)方程利用因式分解法求出解即可;(2)方程利用因式分解法求出解即可.【解答】解:(1)分解因式得:(x+1)(2x﹣5)=0,可得x+1=0或2x﹣5=0,解得:x1=﹣1,x2=2.5;(2)分解因式得:(x﹣2)2=0,开方得:x1=x2=2.【点评】此题考查了解一元二次方程﹣因式分解法,配方法,熟练掌握运算法则是解本题的关键.22.(10分)已知x=1是一元二次方程(m+1)x2﹣m2x﹣2m﹣1=0的一个根.求m的值,并写出此时的一元二次方程的一般形式.【分析】把x=1代入一元二次方程(m+1)x2﹣m2x﹣2m﹣1=0,求出m的值,并写出此时的一元二次方程的一般形式即可.【解答】解:∵x=1是一元二次方程(m+1)x2﹣m2x﹣2m﹣1=0的一个根,∴m+1﹣m2﹣2m﹣1=0,∴m2+m=0,解得m=0或﹣1,∵m+1≠0,∴m≠﹣1,∴m=0,∴此时的一元二次方程的一般形式是:x2﹣1=0.【点评】此题主要考查了一元二次方程的解,要熟练掌握,解答此题的关键是要明确:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.23.(10分)汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2013年盈利1500万元,到2015年盈利2160万元,且从2013年到2015年,每年盈利的年增长率相同.(1)求该公司2014年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2016年盈利多少万元?【分析】(1)需先算出从2013年到2015年,每年盈利的年增长率,然后根据2013年的盈利,算出2014年的利润;(2)相等关系是:2016年盈利=2015年盈利×(1+每年盈利的年增长率).【解答】解:(1)设每年盈利的年增长率为x,根据题意得1500(1+x)2=2160,解得x1=0.2,x2=﹣2.2(不合题意,舍去),则1500(1+x)=1500(1+0.2)=1800.答:该公司2014年盈利1800万元.(2)2160×(1+0.2)=2592(万元).答:预计2016年盈利2592万元.【点评】本题的关键是需求出从2013年到2015年,每年盈利的年增长率.等量关系为:2013年盈利×(1+年增长率)2=2015.24.(10分)已知二次函数y=x2.(1)求出抛物线的顶点坐标、对称轴、最小值;(2)求出抛物线与x轴、y轴交点坐标.【分析】(1)首先把已知函数解析式配方,然后利用抛物线的顶点坐标、对称轴的公式即可求解;(2)根据抛物线与x轴、y轴交点坐标特点和函数解析式即可求解.【解答】解:(1)∵y=x2=(x+2)2﹣,∴顶点坐标(﹣2,﹣),对称轴:直线x=﹣2;因为二次项系数大于0,所以函数有最小值﹣;(2)令y=0,则x2+2x﹣=0,解得x=﹣5,x=1.所以抛物线与x轴的交点坐标为(﹣5,0),(1,0);令x=0,则y=﹣.所以抛物线与y轴的交点坐标为(0,﹣).【点评】此题主要考查了抛物线与x轴的交点、函数图象的性质、最值、及二次函数的三种形式,都是二次函数的基础知识,要求学生熟练掌握.25.(10分)如图,在一幅矩形地毯的四周镶有宽度相同的花边.如图,地毯中央的矩形图案长8米、宽6米,整个地毯的面积是80平方分米.求花边的宽.【分析】首先设花边的宽为x米,根据题意可得等量关系为:(矩形图案的长+两个花边的宽)×(矩形图案的宽+两个花边的宽)=地毯的面积,根据等量关系列出方程,再解即可.【解答】解:设花边的宽为x米,根据题意得(2x+8)(2x+6)=80,解得x1=1,x2=﹣8,x2=﹣8不合题意,舍去.答:花边的宽为1米.【点评】此题主要考查了一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系,再设出未知数,列出方程.26.(10分)已知抛物线y=﹣x2+bx+c的部分图象如图所示.(1)求b、c的值;(2)求y的最大值;(3)写出当y<0时,x的取值范围.【分析】已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解.顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标.还考查了二次函数的对称轴x=﹣.【解答】解:(1)由图象知此二次函数过点(1,0),(0,3)将点代入函数解析式得解得.(2)解析式为y=﹣x2﹣2x+3,即为y=﹣(x+1)2+4所以y的最大值为4.(3)与x轴的交点坐标为(1,0),(﹣3,0)所以当y<0时,x的取值范围为x<﹣3或x>1.【点评】本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法等知识,还有数形结合思想.。
2017—2018学年第一学期九上第一次月考试题(含答案)
2017—2018学年第一学期 九年级数学第一次月考试题卷一、填空题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列方程中,是一元二次方程的是( )A . 2)3(2+=-x x xB . 02=++c bx axC . 02132=+-xx D . 122=x 2.一元二次方程0562=--x x 配方可变形为( )A .14)3(2=-xB .4)3(2=-xC .14)3(2=+xD .4)3(2=+x3.某商品原价为200元,连续两次降价a %后售价为148元,下列方程正确的是( )2.200(1%)148A a +=.200(12%)148B a +=2.200(1%)148C a -= .200(12%)148D a -=4.已知抛物线22y x x =+上三点()15,A y -,()21,B y ,()312,C y ,则1y ,2y ,3y 满足的关系式为( )A .1y <2y <3yB .3y <2y <1yC .2y <1y <3yD .3y <1y <2y5.当0b <时,函数y ax b =+与2y ax bx c =++在同一坐标系内的图象可能是( )(3)顶点坐标为()1,3-; (4)当1x >时,y 随x 的增大而减小。
其中正确结论的个数为( )。
A . 1B . 2C . 3D . 4二、填空题(本大题共6小题,每小题3分,共18分)7.方程2437x x =+的二次项系数是 ,一次项系数是 ,常数项是 . 8. 以3-和2为根的一元二次方程是___________ .9.抛物线()21y m x =-开口向上,则m 的取值范围是 . 10.若方程23520x x --=有一根是a ,则2610a a -= .12.如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于A B、两点,与y 轴交于点C ,且OA OC =,则下列结论:其中正确的结论是_____ .(只填写序号)三、(本大题共4小题,13题12分,14、15、16题每题6分,共30分)13.用适当的方法解下列方程:()2(1)225x -= ()22430x x --=()()()33121x x x -=- ()245140x x --=14.关于x 的一元二次方程()012122=-++-m x x m 有一个根是0=x ,求:(1)m 的值;(2)该一元二次方程的另一根.15题图12题图11题图15.如图,二次函数2y ax bx c =++的图象与x 轴交于点A B 、,与y 轴交于点C .(1)写出A B C 、、三点的坐标和对称轴方程; (2)求出二次函数的解析式16.如图,在宽为20m ,长为32m 的矩形耕地上,修筑同样宽的三条道路(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为2570m ,道路应为多宽? 四.(本大题共3小题,每小题8分,共24分)17.关于x 的方程()222110x k x k +-+-=有两个实数根12x x 、.(1)求实数k 的取值范围;(2)若12x x 、满足221212+=16+x x x x ,求实数k 的值18.如图,已知抛物线2y x bx c =++经过()()1,0,3,0A B -两点.(1)求b 和c ;(2)当04x <<时,求y 的取值范围;(3)点P 为x 轴下方抛物线上一点,试说明P 点运动到哪个位置时PAB S ∆最大,并求出最大面积.19.某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个.若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x 元(x 为偶数),每周销售量为y 个. (1)直接写出销售量y 个与降价x 元之间的函数关系式;(2)设商户每周获得的利润为W 元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?五.(本大题共2小题,每小题9分,共18分)20.如果关于x 的一元二次方程()200ax bx c a ++=≠有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程2680x x -+=的两个根是2和4,则方程2680x x -+=就是“倍根方程”.(1)若一元二次方程230x x c -+=是“倍根方程”,则c= ;(2)若()()()200x mx n m --=≠是“倍根方程”,求代数式2245m mn n -+的值;(3)若方程()200ax bx c a ++=≠是倍根方程,且相异两点()1,M t s +,()4,N t s -都在抛物线2y ax bx c =++上,求一元二次方程()200ax bx c a ++=≠的根.21.已知()3,P m -和()1,Q m 是抛物线221y x bx =++上的两点.(1)求b 的值;(2)判断关于x 的一元二次方程221=0x bx ++是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值. 六.(本大题共12分)22.定义:如图1,抛物线()20y ax bx c a =++≠与x 轴交于A B 、两点,点P 在抛物线上(点P 与A B 、两点不重合),如果ABP ∆的三边满足222AP BP AB +=,则称点P 为抛物线()20y ax bx c a =++≠的勾股点。
甘肃省临夏州2017-2018学年九年级上月考数学试卷含答案解析
A.2 B.﹣2 C.±2 D.±4 8.(3 分)三角形的两边长分别为 3 和 6,第三边的长是方程 x2﹣6x+8=0 的一个根,则这个三 角形的周长是( ) A.9 B.11 C.13 D.14 9.(3 分)一个两位数等于它的个位数的平方,且个位数字比十位数字大 3,则这个两位数为 ()
A.25 B.36 C.25 或 36 D.﹣25 或﹣36
A.x=﹣3 B.1x =0,2 x =3 C1.x =20,x =﹣3 D. x=3 6.(3 分)方程 2x(x﹣3)=5(x﹣3)的根为( )
A.x=2.5 B.x=3 C.x=2.5 或 x=3 D.非上述答案
7.(3 分)如果 x=4 是一元二次方程 x2﹣3x=a2 的一个根,那么常数 a 的值是( )
5页
C.ax2+bx+c=0 D.
2x=1
【分析】根据一元二次方程必须满足四个条件:(1)未知数的最高次数是 2;(2)二次项
系数不为 0;(3)是整式方程;(4)含有一个未知数进行分析即可.
【解答】解:A、符合一元二次方程的定义,正确;
B、不是整式方程,故错误; C、方程二次项系数可能为 0,故错误;
1页
(2)求 y 的最大值; (3)写出当 y<0 时,x 的取值范围.
4页
2题解析
一、选择题(每小题 3 分,共 36 分)
1.(3 分)下列方程中,是关于 x 的一元二次方程的是( )
A.3(x+1)2=2(x+1) B.
2017-2018 学年甘肃省临夏州九年级(上)月考数学试卷
一、选择题(每小题 3 分,共 36 分)
1.(3 分)下列方程中,是关于 x 的一元二次方程的是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年甘肃省定西市临洮县九年级(上)第一次月考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)下列关于x的方程中,一定是一元二次方程的为()A.ax2+bx+c=0 B.x2﹣2=(x+3)2 C.x2+3x﹣5=0 D.x﹣1=02.(3分)已知x=1是关于x的一元二次方程x2+mx﹣2=0的一个根,则m的值是()A.﹣1 B.0 C.1 D.0或13.(3分)将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1 C.y=3(x+2)2﹣1 D.y=3(x+2)2+14.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1 D.k≥且k≠15.(3分)当ab>0时,y=ax2与y=ax+b的图象大致是()A. B. C.D.6.(3分)已知二次函数y=2x2+8x+7的图象上有三点A(﹣2,y1),B,C(﹣3,y3)则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y2>y17.(3分)关于二次函数y=ax2+bx+c图象有下列命题:(1)当c=0时,函数的图象经过原点;(2)当c>0时,函数的图象开口向下时,方程ax2+bx+c=0必有两个不等实根;(3)当b=0时,函数图象关于原点对称.其中正确的个数有()A.0个B.1个C.2个 D.3个8.(3分)已知二次函数y=kx2﹣7x﹣7的图象与x轴有两个交点,则k的取值范围为()A.k>﹣ B.k>﹣且k≠0C.k≥﹣D.k≥﹣且k≠09.(3分)已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是()A.ab>0,c>0 B.ab>0,c<0 C.ab<0,c>0 D.ab<0,c<010.(3分)用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为()A.x(5+x)=6 B.x(5﹣x)=6 C.x(10﹣x)=6 D.x(10﹣2x)=6二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)填空:x2﹣4x+3=(x﹣)2﹣1.12.(3分)抛物线y=2x2﹣6x+1的顶点坐标是.13.(3分)把函数y=2x2﹣4x﹣1写成y=a(x﹣h)2+k的形式,则h+k=.14.(3分)把方程x2+2x﹣5=0配方后的方程为.15.(3分)关于x的一元二次方程x2﹣5x+k=0有两个不相等的实数根,则k可取的最大整数为.16.(3分)二次函数y=2x2+3x﹣9的图象与x轴交点的横坐标是.17.(3分)已知x1,x2是方程x2﹣2x+1=0的两个根,则+=.18.(3分)某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是.三.解答题(共66分)19.(10分)解方程:(1)x2+2x﹣3=0(2)3x(x﹣2)=2(2﹣x)20.(6分)已知方程x2﹣4x+m=0的一个根为﹣2,求方程的另一根及m的值.21.(6分)已知抛物线y=﹣x2+mx+3与x轴的一个交点A(3,0).求出这条抛物线与x轴的另一个交点B及与y轴的交点C的坐标.22.(6分)已知关于x的方程(m2﹣1)x2﹣(m+1)x+m=0.(1)m为何值时,此方程是一元一次方程?(2)m为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项.23.(6分)已知关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,求k的值.24.(6分)已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式.25.(6分)已知抛物线的对称轴为x=1,且经过点(0,3)和(3,0),求抛物线的关系式.26.(10分)某商场礼品柜台元旦期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?27.(10分)某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米.请通过计算,判断这辆汽车能否顺利通过大门?2017-2018学年甘肃省定西市临洮县九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)下列关于x的方程中,一定是一元二次方程的为()A.ax2+bx+c=0 B.x2﹣2=(x+3)2 C.x2+3x﹣5=0 D.x﹣1=0【分析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.【解答】解:A、a=0时是一元一次方程,故A不符合题意;B、是一元一次方程,故B不符合题意;C、是一元二次方程,故C符合题意;D、是一元一次方程,故D不符合题意;故选:C.【点评】此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.2.(3分)已知x=1是关于x的一元二次方程x2+mx﹣2=0的一个根,则m的值是()A.﹣1 B.0 C.1 D.0或1【分析】把x=1代入已知方程,列出关于m的新方程,通过解该方程来求m的值.【解答】解:∵x=1是关于x的一元二次方程x2+mx﹣2=0的一个根,∴12+m﹣2=0,即m﹣1=0,解得m=1.故乡:C.【点评】本题考查了一元二次方程的解的定义.此题实际上是解关于系数m的一元一次方程.3.(3分)将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1 C.y=3(x+2)2﹣1 D.y=3(x+2)2+1【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.【解答】解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(﹣2,﹣1),所得抛物线为y=3(x+2)2﹣1.故选C.【点评】本题考查了二次函数图象与几何变换,求出平移后的抛物线的顶点坐标是解题的关键.4.(3分)若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1 D.k≥且k≠1【分析】根据判别式的意义得到△=22﹣4(k﹣1)×(﹣2)>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,∴△=22﹣4(k﹣1)×(﹣2)>0,解得k>;且k﹣1≠0,即k≠1.故选:C.【点评】此题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.(3分)当ab>0时,y=ax2与y=ax+b的图象大致是()A. B. C.D.【分析】根据题意,ab>0,即a、b同号,分a>0与a<0两种情况讨论,分析选项可得答案.【解答】解:根据题意,ab>0,即a、b同号,当a>0时,b>0,y=ax2与开口向上,过原点,y=ax+b过一、二、三象限;此时,没有选项符合,当a<0时,b<0,y=ax2与开口向下,过原点,y=ax+b过二、三、四象限;此时,D选项符合,故选D.【点评】本题考查二次函数与一次函数的图象的性质,要求学生理解系数与图象的关系.6.(3分)已知二次函数y=2x2+8x+7的图象上有三点A(﹣2,y1),B,C(﹣3,y3)则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y2>y1【分析】函数y=2x2+8x+7化成顶点式,得到对称轴x=﹣2,则A、B、C的横坐标离对称轴越近,则纵坐标越小,由此判断y1、y2、y3的大小.【解答】解:∵y=2x2+8x+7=2(x+2)2﹣1,∴对称轴x=﹣2,在图象上的三点A(﹣2,y1),B,C(﹣3,y3),|﹣5+2|>|﹣3+2|>|﹣2+2|,则y1、y2、y3的大小关系为y2>y3>y1.故选C.【点评】本题考查了二次函数图象上点的坐标特征,由点的横坐标到对称轴的距离判断点的纵坐标的大小.7.(3分)关于二次函数y=ax2+bx+c图象有下列命题:(1)当c=0时,函数的图象经过原点;(2)当c>0时,函数的图象开口向下时,方程ax2+bx+c=0必有两个不等实根;(3)当b=0时,函数图象关于原点对称.其中正确的个数有()A.0个B.1个C.2个 D.3个【分析】当b=0时,函数解析式缺少一次项,对称轴x=0,是y轴;当c=0时,缺少常数项,图象经过(0,0)点;当c>0时,图形交y轴正半轴,开口向下,即a<0,此时ac<0,方程ax2+bx+c=0的△>0.【解答】解:根据二次函数的性质可知:(1)当c=0时,函数的图象经过原点,正确;(2)当c>0时,函数的图象开口向下时,图象与x轴有2个交点,所以方程ax2+bx+c=0必有两个不等实根,正确;(3)当b=0时,函数图象关于原点对称,错误.有两个正确.故选C.【点评】主要考查了二次函数y=ax2+bx+c中系数a,b,c与图象的关系.8.(3分)已知二次函数y=kx2﹣7x﹣7的图象与x轴有两个交点,则k的取值范围为()A.k>﹣ B.k>﹣且k≠0C.k≥﹣D.k≥﹣且k≠0【分析】根据二次函数的定义得到k≠0,根据.△=b2﹣4ac决定抛物线与x轴的交点个数得到(﹣7)2﹣4k•(﹣7)>0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得,解得k>﹣且k≠0.故选B.【点评】本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.△=b2﹣4ac决定抛物线与x轴的交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.9.(3分)已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是()A.ab>0,c>0 B.ab>0,c<0 C.ab<0,c>0 D.ab<0,c<0【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴在y轴右侧,进而对所得结论进行判断.【解答】解:由图象可知:抛物线开口向下,对称轴在y轴右侧,抛物线与y轴交点在正半轴,∴a<0,b>0,c>0,∴ab<0,故选C.【点评】本题考查了抛物线图象与系数的关系,其中a由抛物线的开口方向决定,a与b同号对称轴在y轴左边;a与b异号对称轴在y轴右边,c的符合由抛物线与y轴的交点在正半轴或负半轴有关.10.(3分)用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为()A.x(5+x)=6 B.x(5﹣x)=6 C.x(10﹣x)=6 D.x(10﹣2x)=6【分析】一边长为x米,则另外一边长为:5﹣x,根据它的面积为6平方米,即可列出方程式.【解答】解:一边长为x米,则另外一边长为:5﹣x,由题意得:x(5﹣x)=6,故选:B.【点评】本题考查了由实际问题抽相出一元二次方程,难度适中,解答本题的关键读懂题意列出方程式.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)填空:x2﹣4x+3=(x﹣2)2﹣1.【分析】原式利用完全平方公式化简即可得到结果.【解答】解:x2﹣4x+3=(x﹣2)2﹣1.故答案为:2.【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.12.(3分)抛物线y=2x2﹣6x+1的顶点坐标是(,﹣).【分析】先把抛物线化为顶点式的形式,再求出其顶点坐标即可.【解答】解:∵抛线物y=2x2﹣6x+1可化为y=2(x﹣)2﹣,∴其顶点坐标为(,﹣).故答案为:(,﹣).【点评】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.13.(3分)把函数y=2x2﹣4x﹣1写成y=a(x﹣h)2+k的形式,则h+k=﹣2.【分析】利用配方法把一般式化为顶点式,计算即可.【解答】解:y=2x2﹣4x﹣1=2(x2﹣2x)﹣1=2(x﹣1)2﹣3∴h+k=1﹣3=﹣2,故答案为:﹣2.【点评】本题考查的是二次函数的最值问题,灵活运用配方法把一般式化为顶点式、掌握二次函数的性质是解题的关键.14.(3分)把方程x2+2x﹣5=0配方后的方程为(x+1)2=6.【分析】移项后配方,再变形,即可得出答案.【解答】解:x2+2x﹣5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,故答案为:(x+1)2=6.【点评】本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键,有直接开平方法、因式分解法、配方法、公式法等.15.(3分)关于x的一元二次方程x2﹣5x+k=0有两个不相等的实数根,则k可取的最大整数为6.【分析】根据判别式的意义得到△=(﹣5)2﹣4k>0,解不等式得k<,然后在此范围内找出最大整数即可.【解答】解:根据题意得△=(﹣5)2﹣4k>0,解得k<,所以k可取的最大整数为6.故答案为6.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.16.(3分)二次函数y=2x2+3x﹣9的图象与x轴交点的横坐标是﹣3或.【分析】由二次函数的图象与x轴交点的纵坐标为0,得出一元二次方程,解方程即可.【解答】解:∵二次函数y=2x2+3x﹣9的图象与x轴交点的纵坐标为0,∴2x2+3x﹣9=0,解得:x=﹣3,或x=,∴二次函数y=2x2+3x﹣9的图象与x轴交点的横坐标是﹣3或;故答案为:﹣3或.【点评】本题考查了二次函数的图象与x轴的交点坐标的求法、一元二次方程的解法;由二次函数的图象与x轴交点的纵坐标为0得出方程是解决问题的关键.17.(3分)已知x1,x2是方程x2﹣2x+1=0的两个根,则+=2.【分析】根据根与系数的关系得到x1+x2=2,x1•x2=1,再变形+得到,然后利用代入法计算即可.【解答】解:∵一元二次方程x2﹣2x+1=0的两根是x1、x2,∴x1+x2=2,x1•x2=1,∴+==2.故答案为:2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.18.(3分)某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是50+50×(1+x)+50(1+x)2=182.【分析】等量关系为:四月份生产的零件个数+五月份生产的零件个数+六月份生产的零件个数=182.【解答】解:易得五月份生产的零件个数是在四月份的基础上增加的,所以为50(1+x),同理可得6月份生产的零件个数是在五月份的基础上增加的,为50(1+x)(1+x),那么50+50×(1+x)+50(1+x)2=182.【点评】找到合适的等量关系是解决问题的关键,注意6月份生产的零件个数是在五月份的基础上增加的.三.解答题(共66分)19.(10分)解方程:(1)x2+2x﹣3=0(2)3x(x﹣2)=2(2﹣x)【分析】(1)方程利用因式分解法求出解即可;(2)方程整理后,利用因式分解法求出解即可.【解答】解:(1)分解因式得:(x﹣1)(x+3)=0,可得x﹣1=0或x+3=0,解得:x=1或x=﹣3;(2)方程整理得:3x(x﹣2)+2(x﹣2)=0,分解因式得:(x﹣2)(3x+2)=0,解得:x=2或x=﹣.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.20.(6分)已知方程x2﹣4x+m=0的一个根为﹣2,求方程的另一根及m的值.【分析】把x=﹣2代入方程x2﹣4x+m=0得出4+8+m=0,求出m,得出方程x2﹣4x﹣12=0,设方程的另一个根为a,则a+(﹣2)=4,求出a即可.【解答】解:把x=﹣2代入方程x2﹣4x+m=0得:4+8+m=0,解得:m=﹣12,即方程为x2﹣4x﹣12=0,设方程的另一个根为a,则a+(﹣2)=4,即得:a=6,即方程的另一根为6,m=﹣12.【点评】本题考查了根与系数的关系和一元二方程的解,能熟记根与系数的关系的内容是解此题的关键,已知一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)的两个根为x1和x2,则x1+x2=﹣,x1•x2=.21.(6分)已知抛物线y=﹣x2+mx+3与x轴的一个交点A(3,0).求出这条抛物线与x轴的另一个交点B及与y轴的交点C的坐标.【分析】把A点的坐标代入抛物线的解析式,就可以求出m的值,得到抛物线的解析式.在解析式中令y=0,解方程就可以求出与x轴的交点.【解答】解:因为A(3,0)在抛物线y=﹣x2+mx+3上,则﹣9+3m+3=0,解得m=2.所以抛物线的解析式为y=﹣x2+2x+3.因为B点为抛物线与x轴的交点,求得B(﹣1,0),因为C点为抛物线与y轴的交点,求得C(0,3).【点评】本题主要考查了待定系数法求函数的解析式,抛物线与x轴的交点坐标,属于中档题.22.(6分)已知关于x的方程(m2﹣1)x2﹣(m+1)x+m=0.(1)m为何值时,此方程是一元一次方程?(2)m为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项.【分析】(1)根据一元一次方程的定义可得m2﹣1=0,m+1≠0,解即可;(2)根据一元二次方程的定义可知:m2﹣1≠0,再解不等式即可.【解答】解:(1)根据一元一次方程的定义可知:m2﹣1=0,m+1≠0,解得:m=1,答:m=1时,此方程是一元一次方程;②根据一元二次方程的定义可知:m2﹣1≠0,解得:m≠±1.一元二次方程的二次项系数m2﹣1、一次项系数﹣(m+1),常数项m.【点评】此题主要考查了一元二次方程的概念和一元一次方程的概念,关键是掌握两种方程的定义.23.(6分)已知关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,求k的值.【分析】根据根的判别式令△=0,建立关于k的方程,解方程即可.【解答】解:∵关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,∴△=0,∴[﹣(k﹣1)]2﹣4(k﹣1)×=0,整理得,k2﹣3k+2=0,即(k﹣1)(k﹣2)=0,解得:k=1(不符合一元二次方程定义,舍去)或k=2.∴k=2.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.24.(6分)已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式.【分析】由题意可以设函数的顶点式:y=a(x﹣8)2+9,然后再把点(0,1)代入函数的解析式,求出a值,也可以设出函数的一般式,根据待定系数法求出二次函数的解析式.【解答】解:∵顶点坐标为(8,9),∴设所求二次函数关系式为y=a(x﹣8)2+9.把(0,1)代入上式,得a(0﹣8)2+9=1,∴a=﹣.∴y=﹣(x﹣8)2+9,即y=﹣x2+2x+1.【点评】本题考查了用待定系数法求函数解析式的方法,设解析式时要根据具体情况选择适当形式.25.(6分)已知抛物线的对称轴为x=1,且经过点(0,3)和(3,0),求抛物线的关系式.【分析】根据抛物线的对称轴为x=1,且经过点(0,3)和(3,0),可以求得a、b、c的值,从而可以得到该函数的解析式.【解答】解:设二次函数解析式为y=ax2+bx+c,∵抛物线的对称轴为x=1,且经过点(0,3)和(3,0),∴,解得,,∴抛物线的关系式y=﹣x2+2x+3.【点评】本题考查待定系数法求二次函数解析式,解答本题的关键是明确用待定系数法求二次函数解析式的方法.26.(10分)某商场礼品柜台元旦期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?【分析】等量关系为:(原来每张贺年卡盈利﹣降价的价格)×(原来售出的张数+增加的张数)=120,把相关数值代入求得正数解即可.【解答】解:设每张贺年卡应降价x元,现在的利润是(0.3﹣x)元,则商城多售出100x÷0.1=1000x张.(0.3﹣x)(500+1000x)=120,解得x1=﹣0.3(降价不能为负数,不合题意,舍去),x2=0.1.答:每张贺年卡应降价0.1元.【点评】考查一元二次方程的应用;得到每降价x元多卖出的贺年卡张数是解决本题的难点;根据利润得到相应的等量关系是解决本题的关键.27.(10分)某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米.请通过计算,判断这辆汽车能否顺利通过大门?【分析】本题只要计算大门顶部宽2.4米的部分离地面是否超过2.8米即可.如果设C点是原点,那么A的坐标就是(﹣2,﹣4.4),B的坐标是(2,﹣4.4),可设这个函数为y=kx2,那么将A的坐标代入后即可得出y=﹣1.1x2,那么大门顶部宽2.4m的部分的两点的横坐标就应该是﹣1.2和1.2,因此将x=1.2代入函数式中可得y≈﹣1.6,因此大门顶部宽2.4m部分离地面的高度是4.4﹣1.6=2.8m,因此这辆汽车正好可以通过大门.【解答】解:根据题意知,A(﹣2,﹣4.4),B(2,﹣4.4),设这个函数为y=kx2.将A的坐标代入,得y=﹣1.1x2,∴E、F两点的横坐标就应该是﹣1.2和1.2,∴将x=1.2代入函数式,得y≈﹣1.6,∴GH=CH﹣CG=4.4﹣1.6=2.8m,因此这辆汽车正好可以通过大门.【点评】本题主要结合实际问题考查了二次函数的应用,得出二次函数式进而求出大门顶部宽2.4m部分离地面的高度是解题的关键.。