【高一数学试题精选】2018年重庆一中高一数学下学期期末试卷(附答案)
2018-2019学年重庆市区县高一下学期期末数学试题(解析版)
2018-2019学年重庆市区县高一下学期期末数学试题一、单选题1.已知向量(2,3)a =r,(,4)b m =r ,若a r ,b r 共线,则实数m =( )A .6-B .83-C .83D .6【答案】C【解析】利用向量平行的性质直接求解. 【详解】Q 向量(2,3)a =r ,(,4)b m =r ,,a b rr 共线,∴423m =, 解得实数83m =.故选:C . 【点睛】本题主要考查向量平行的性质等基础知识,考查运算求解能力,是基础题.2.已知,a b ∈R ,若关于x 的不等式20x ax b ++<的解集为()1,3,则a b +=( ) A .7- B .1-C .1D .7【答案】B【解析】由韦达定理列方程求出a ,b 即可得解. 【详解】由已知及韦达定理可得,13a -=+,13b =⨯, 即4a =-,3b =, 所以1a b +=-. 故选:B . 【点睛】本题考查一元二次方程和一元二次不等式的关系、韦达定理的应用等,属于一般基础题. 3.已知等差数列{}n a 的前n 项和为n S ,且24S =,416S =,则56a a +=( ) A .11 B .16C .20D .28【答案】C【解析】可利用等差数列的性质2S ,42S S -,64S S -仍然成等差数列来解决.【详解】{}n a Q 为等差数列,前n 项和为n S ,2S ∴,42S S -,64S S -成等差数列,422642()()S S S S S ∴-=+-,又24S =,416S =,64562444S S a a ∴=+-=++,5620a a ∴+=. 故选:C . 【点睛】本题考查等差数列的性质,关键在于掌握“等差数列中n S ,2n n S S -,32n n S S -⋯仍成等差数列”这一性质,属于基础题.4.某高中三个年级共有3000名学生,现采用分层抽样的方法从高一、高二、高三年级的全体学生中抽取一个容量为30的样本进行视力健康检查,若抽到的高一年级学生人数与高二年级学生人数之比为3∶2,抽到高三年级学生10人,则该校高二年级学生人数为( ) A .600 B .800C .1000D .1200【答案】B【解析】根据题意可设抽到高一和高二年级学生人数分别为3k 和2k ,则321030k k ++=,继而算出抽到的各年级人数,再根据分层抽样的原理可以推得该校高二年级的人数. 【详解】根据题意可设抽到高一和高二年级学生人数分别为3k 和2k ,则321030k k ++=,即4k =,所以高一年级和高二年级抽到的人数分别是12人和8人, 则该校高二年级学生人数为8300080030⨯=人. 故选:B . 【点睛】本题考查分层抽样的方法,属于容易题. 5.已知变量x ,y 的取值如下表:由散点图分析可知y 与x 线性相关,且求得回归直线的方程为$3y bx=-$,据此可预测:当8x =时,y 的值约为( ) A .63 B .74C .85D .96【答案】C【解析】由已知求得样本点的中心的坐标,代入线性回归方程求得ˆb ,取8x =求得y 值即可. 【详解】 由题得1234535x ++++==,1015304550305y ++++==. 故样本点的中心的坐标为(3,30), 代入ˆˆ3ybx =-,得303ˆ113b +==. ∴ˆ113yx =-,取8x =,得ˆ118385y =⨯-=. 故选:C . 【点睛】本题考查线性回归方程的求法,明确线性回归方程恒过样本点的中心是关键,是基础题. 6.已知非零实数a ,b 满足a b >,则下列不等关系一定成立的是( ) A .11a b< B .ab a b >+ C .22a b >D .3223a ab a b b +>+【答案】D【解析】根据不等式的基本性质,一一进行判断即可得出正确结果. 【详解】 A.11a b<,取11a b =>=-,显然不成立,所以该选项错误; B. ab a b >+,取1,1a b ==-,显然不成立,所以该选项错误; C. 22a b >,取2,3a b ==-,显然不成立,所以该选项错误;D. 3223a ab a b b +>+,由已知220a b +>且a b >,所以2222()()a a b b a b +>+, 即3223a ab a b b +>+.所以该选项正确. 故选:D . 【点睛】本题考查不等式的基本性质,属于容易题.7.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若4A π=,5a =,4c =,则满足条件的ABC ∆的个数为( ) A .0 B .1C .2D .无数多个【答案】B【解析】直接由正弦定理分析判断得解. 【详解】4,sinC sin ,sin 2A C AC =∴==∴<, 所以C 只有一解,所以三角形只有一解. 故选:B 【点睛】本题主要考查正弦定理的应用,意在考查学生对这些知识的理解掌握水平. 8.已知等比数列{}n a 的前n 项和为n S ,若33S =,621S =-,则1a =( ) A .2- B .1-C .1D .2【答案】C【解析】利用等比数列{}n a 的前n 项和公式列出方程组,能求出首项. 【详解】Q 等比数列{}n a 的前n 项和为n S ,33S =,621S =-,∴313616(1)31(1)211a q S q a q S q ⎧-==⎪-⎪⎨-⎪==-⎪-⎩, 解得11a =,2q =-. 故选:C . 【点睛】本题考查等比数列的首项的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.9.某校统计了1000名学生的数学期末考试成绩,已知这1000名学生的成绩均在50分到150分之间,其频率分布直方图如图所示,则这1000名学生中成绩在130分以上的人数为( )A .10B .20C .40D .60【答案】C【解析】由频率分布直方图求出这1000名学生中成绩在130分以上的频率,由此能求出这1000名学生中成绩在130分以上的人数. 【详解】由频率分布直方图得这1000名学生中成绩在130分以上的频率为: 1(0.0060.0140.020.008)200.04-+++⨯=,则这1000名学生中成绩在130分以上的人数为10000.0440⨯=人. 故选:C . 【点睛】本题考查频数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.10.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若22cos a b c B =+,则C =( ) A .2π B .3π C .4π D .6π 【答案】B【解析】由题意和余弦定理可得222a b c ab +-=,再由余弦定理可得cos C ,可得角C 的值.【详解】Q 在ABC ∆中,2cos 2c B a b =-,∴由余弦定理可得222222a c b c a b ac+-⨯=-,222a b c ab ∴+-=,2221cos 22a b c C ab +-∴==,又(0,)C π∈,3C π∴=.故选:B . 【点睛】本题考查利用余弦定理解三角形,考查了转化思想,属基础题. 11.已知1a >-,0b >,21a b +=,则121a b++的最小值为( ) A .72B .92C .7D .9【答案】B【解析】根据条件可知10a +>,0b >,122a b ++=,从而得出121222(1)2()(12)()149111b a a b a b a b a b ++=+++=++++++…,这样便可得出121a b++的最小值. 【详解】1a >-Q ;10a ∴+>,且0b >,21a b +=;122a b ∴++=;∴121222(1)2()(12)()1459111b a a b a b a b a b ++=+++=++++=+++…,当且仅当213a b +==时等号成立; ∴12912a b ++…; ∴121a b ++的最小值为92. 故选:B . 【点睛】考查基本不等式在求最值中的应用,注意应用基本不等式所满足的条件及等号成立的条件.12.已知,R λμ∈,ABC ∆所在平面内一点P 满足||||||||AB BC AC CB AP AB AC AB BC AC CB λμ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r u u u r ,则||||BP CP =u u u ru u u r ( ) A .sin2sin2BC B .cos 2cos2BC C .sin 2sin 2C BD .cos2cos2C B 【答案】D【解析】由平面向量基本定理及单位向量可得点P 在ABC ∠的外角平分线上,且点P 在ACB ∠的外角平分线上,2BPBC π-∠=,2CPCB π-∠=,在PBC ∆中,由正弦定理得cos||sin 2sin ||cos 2C BP PCB B PBC CP ∠==∠u u u r u u u r 得解.【详解】因为||||||||AB BC AC CB AP AB AC AB BC AC CB λμ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u ru u u r u u u r u u u r u u u r u u u r u u u r u u u r 所以,||||||||AB BC AC CB BP CP AB BC AC CB λμ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u ru u u r u u u r u u ur u u u r u u u r u u u r , 因为||||AB BC AB BC +u u u r u u u r u u ur u u u r 方向为ABC ∠外角平分线方向, 所以点P 在ABC ∠的外角平分线上, 同理,点P 在ACB ∠的外角平分线上,2BPBC π-∠=,2CPCB π-∠=,在PBC ∆中,由正弦定理得cos||sin 2sin ||cos 2C BP PCB BPBC CP ∠==∠u u u r u u u r , 故选:D . 【点睛】本题考查了平面向量基本定理及单位向量,考查向量的应用,意在考查学生对这些知识的理解掌握水平.二、填空题13.不等式210x x+>的解集为_________. 【答案】1,(0,)2⎛⎫-∞-⋃+∞ ⎪⎝⎭【解析】利用两个数的商是正数等价于两个数同号;将已知的分式不等式转化为整式不等式,求出解集. 【详解】210x x+>同解于(21)0x x +> 解得21x <-或0x >故答案为:1(,)(0,)2-∞-+∞U【点睛】本题考查解分式不等式,利用等价变形转化为整式不等式是解题的关键.14.甲、乙两人要到某地参加活动,他们都随机从火车、汽车、飞机三种交通工具中选择一种,则他们选择相同交通工具的概率为_________. 【答案】13【解析】利用古典概型的概率求解. 【详解】甲、乙两人选择交通工具总的选择有339⨯=种,他们选择相同交通工具有3种情况, 所以他们选择相同交通工具的概率为3193=. 故答案为:13. 【点睛】本题考查古典概型,要用计数原理进行计数,属于基础题.15.当实数a 变化时,点()2,1P --到直线():1120l a x y a -++-=的距离的最大值为_______.【答案】【解析】由已知直线方程求得直线所过定点,再由两点间的距离公式求解. 【详解】由直线:(1)120l a x y a -++-=,得(2)10a x x y --++=,联立2010x x y -=⎧⎨-++=⎩,解得21x y =⎧⎨=⎩.∴直线l 恒过定点(2,1),P ∴到直线l 的最大距离d =故答案为: 【点睛】本题考查点到直线距离最值的求法,考查直线的定点问题,是基础题.16.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若ABC ∆cos A ,则cos sin B C +的最大值为________.【解析】先求得A 的值,再利用两角和差的三角公式和正弦函数的最大值,求得cos sin B C +的最大值.【详解】ABC ∆中,若ABC ∆1cos sin 2A bc A =g ,tan 3A ∴=,6A π∴=.11cos sin cos sin()cos sin()cos cos sin )622B C B A B B B B B B B B π+=++=++=++)3B π=+…当且仅当6B π=时,取等号,故cos sin B C +【点睛】本题主要两角和差的三角公式的应用和正弦函数的最大值,属于基础题.三、解答题17.学生会有A B C D E F 、、、、、共6名同学,其中4名男生2名女生,现从中随机选出2名代表发言.求:()1A 同学被选中的概率;()2至少有1名女同学被选中的概率.【答案】(1)13(2)35【解析】(1)用列举法列出所有基本事件,得到基本事件的总数和A 同学被选中的,然后用古典概型概率公式可求得;(2)利用对立事件的概率公式即可求得. 【详解】解:() 1选两名代表发言一共有()()()(),,,,,,,A B A C A D A E ,()()(),,,,,A F B C B D ,()()()(),,,,,,,,B E B F C D C E ()()()(),,,,,,,C F D E D F E F 共15种情况,其中.A 被选中的情况是()()()()(),,,,,,,,,A B A C A D A E A F 共5种. 所以A 被选中的概本为51153=. ()2不妨设, , , A B C D 四位同学为男同学,则没有女同学被选中的情况是:()()(),,,,,,A B A C A D ()()(),,,,,B C B D C D 共6种,则至少有一名女同学被选中的概率为631155-=. 【点睛】本题考查了古典概型的概率公式和对立事件的概率公式,属基础题. 18.设等差数列{}n a 的前n 项和为n S ,77S =,2128a a +=. (1)求n a ;(2)设2n an b =,求数列{}n b 的前n 项和.【答案】(1)3n a n =-(2)2124n n T -=-【解析】(1)在等差数列{}n a 中根据77S =,2128a a +=,可求得其首项与公差,从而可求得n a ;(2)可证明{}n b 为等比数列,利用等比数列的求和公式计算即可. 【详解】(1)172127784772a a a a a S ++=⇒===Q g 711216a a a d -∴=-∴== 213n a n n ∴=-+-=-;(2)3n a n =-Q ,2n an b =32n n b -∴= 所以()2112142124n n n T --==--. 【点睛】本题考查等比数列的前n 项和,着重考查等差数列的性质与通项公式及等比数列的前n 项和公式,属于基础题.19.近年来,某地大力发展文化旅游创意产业,创意维护一处古寨,几年来,经统计,古寨的使用年限x (年)和所支出的维护费用y (万元)的相关数据如图所示,根据以往资料显示y 对x 呈线性相关关系.(1)求出y 关于x 的回归直线方程y bx a =+$$$;(2)试根据(1)中求出的回归方程,预测使用年限至少为几年时,维护费用将超过10万元?参考公式:对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归方程y bx a =+$$$的斜率和截距的最小二乘估计分别为$1221,n ii i x y nx b ay bx x ynx =--==--∑∑$$. 【答案】(1)ˆ0.70.35yx =+(2)使用年限至少为14年时,维护费用将超过10万元 【解析】(1)由已知图形中的数据求得ˆb 与ˆa 的值,则线性回归方程可求;(2)直接由ˆ0.70.3510yx =+>求得x 的范围得答案. 【详解】(1)3456 4.54x +++==, 2.534 4.5 3.54y +++==, 222223 2.543546 4.54 4.5 3.5ˆ0.73456445b ⨯+⨯+⨯+⨯-⨯⨯==+++-⨯g , ˆ 3.50.7 4.50.35a=-⨯=. 故线性回归方程为ˆ0.70.35yx =+;(2)由ˆ0.70.3510y x =+>,解得111314x >. 故使用年限至少为14年时,维护费用将超过10万元.【点睛】本题考查线性回归方程的求法,考查计算能力,是基础题.20.如图,在ABC ∆中,90ABC ∠=︒,D 为AC 延长线上一点,且23AD =,6BD =,1in 3s ADB ∠=.(1)求AB 的长度;(2)求ABC ∆的面积. 【答案】(1)2AB =(22 【解析】(1)求得cos D ,在ABD ∆中运用余弦定理可得所求值;(2)在ABD ∆中,求得cos A ,sin A ,AC ,再由三角形的面积公式,可得所求值.【详解】(1)由题意可得222cos 13D sin D =-=, 在ABD ∆中,由余弦定理可得2222cos AB AD BD AD BD D =+-g2212622362=+-⨯=,则2AB =(2)在ABD ∆中,2226cos 22223AB AD BD A AB AD +-==g g , 23sin 1A cos A -,3cos AB AC A==, ABC ∆的面积为1132sin 23222S AB AC A ===g g g g. 【点睛】本题考查三角形的余弦定理和正弦定理、面积公式的运用,考查方程思想和运算能力.21.在平面直角坐标系中,ABC ∆的顶点()1,3A -、()3,4B -,边AC 上的高线所在的直线方程为2360x y ++=,边BC 上的中线所在的直线方程为2370x y +-=. (1)求点B 到直线AC 的距离;(2)求ABC ∆的面积.【答案】(1)2)13【解析】(1)由题意求得AC 所在直线的斜率再由直线方程点斜式求AC 的方程,然后利用点到直线的距离公式求解;(2)设C 的坐标,由题意列式求得C 的坐标,再求出||AC ,代入三角形面积公式求解.【详解】(1)由题意,32AC k =,直线AC 的方程为33(1)2y x -=+,即3290x y -+=. 点B 到直线AC的距离d ==(2)设(,)C m n ,则BC 的中点坐标为34(,)22m n +-, 则329034237022m n m n -+=⎧⎪⎨+-⨯+⨯-=⎪⎩,解得16m n =⎧⎨=⎩,即C(1,6),||AC ∴=ABC ∆∴的面积1||132S AC d ==g .【点睛】本题考查点到直线的距离公式的应用,考查点关于直线的对称点的求法,是基础题. 22.已知数列{}n a 的前n 项和为n S ,115a =,123n n n n a a a +=+. (1)证明:数列13n n a ⎧⎫-⎨⎬⎩⎭为等比数列;(2)证明:n S <【答案】(1)证明见解析(2)证明见解析【解析】(1)将已知递推式取倒数得1123n n na a +=+,,再结合等比数列的定义,即可得证;(2)由(1)得132n n na =+,再利用基本不等式以及放缩法和等比数列的求和公式,结合不等式的性质,即可得证.【详解】(1)115a =,123n n n n a a a +=+, 可得1123n n na a +=+, 即有111132(3)n n n na a ++-=-, 可得数列1{3}n na -为公比为2,首项为2的等比数列; (2)由(1)可得132n n na -=, 即132n n n a =+,由基本不等式可得32n n n +>,n a <,即有12112211n n S a a a =++⋯+<<=- 【点睛】本题考查等比数列的定义和通项公式、求和公式、考查构造数列法以及放缩法的运用,考查化简运算能力和推理能力,属于中档题.。
2018学年高一下学期期末考试数学试题含答案
2018学年高一下学期期末考试数学试题含答案一、选择题:本大题共12个小题,每小题5分,共60分、在每小题给出的四个选项中,只有一项是符合题目要求的、1、的值为()A、B、C、D、2、已知向量(),(),则与()A、垂直B、不垂直也不平行C、平行且同向D、平行且反向3、下列各式中,值为的是()A、B、C、D、4、某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为()A、19,13B、13,19C、19,18D、18,195、从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是()A、B、C、D、6、函数在一个周期内的图像是()A、B、C、D、7、设单位向量,的夹角为60,则向量与向量的夹角的余弦值是()A、B、C、D、8、如果下面程序框图运行的结果,那么判断框中应填入()A、B、C、D、9、甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是()A、B、C、D、10、已知函数的图像关于直线对称,则可能取值是()A、B、C、D、11、如图所示,点,,是圆上的三点,线段与线段交于圈内一点,若,,则()A、B、C、D、12、已知平面上的两个向量和满足,,,,若向量,且,则的最大值是()A、B、C、D、第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13、已知,,则、14、已知样本7,8,9,,的平均数是8,标准差是,则、15、已知的三边长,,,为边上的任意一点,则的最小值为、16、将函数的图像向左平移个单位,再向下平移2个单位,得到的图像,若,且,,则的最大值为、三、解答题(本大题共6小题,共70分、解答应写出文字说明、证明过程或演算步骤、)17、已知向量,、(I)求向量与向量夹角的余弦值(II)若,求实数的值、18、某同学用“五点法”画函数在某一个周期内的图像时,列表并填入了部分数据,如下表:(I)请将上表数据补充完整,并直接写出函数的解析式(II)将的图像上所有点向左平行移动个单位长度,得到的图像,求的图像离轴最近的对称中心、19、某商场经营某种商品,在某周内获纯利(元)与该周每天销售这种商品数之间的一组数据关系如表:(I)画出散点图;(II)求纯利与每天销售件数之间的回归直线方程;(III)估计当每天销售的件数为12件时,每周内获得的纯利为多少?附注:,,,,,、20、在矩形中,点是边上的中点,点在边上、(I)若点是上靠近的四等分点,设,求的值;(II)若,,当时,求的长、21、某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示、(I)若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数;(II)若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率、22、已知函数(),的图象与直线相交,且两相邻交点之间的距离为、(I)求函数的解析式;(II)已知,求函数的值域;(III)求函数的单调区间并判断其单调性、试卷答案一、选择题1-56-1011、12:二、填空题13、14、6015、16、三、解答题17、解:(1),设与的夹角为,所以,(2),∴ ,解得18、解:(1)根据表中已知数据,解得,,、数据补全如下表:0272-32且函数表达式为、(2)由(1)知,因此、因为的对称中心为,,令,,解得,,即图象的对称中心为,,其中离轴最近的对称中心为、19、解:(1)(2)回归方程为:(3)当时所以估计当每天销售的简述为12件时,周内获得的纯利润为99、7元、20、解:(1),因为是边的中点,点是上靠近的四等分点,所以,在矩形中,,所以,,即,,则、(2)设,则,,,又,所以,解得,所以的长为1、21、解:(1)由直方图可知,样本中数据落在的频率为,则估计全校这次考试中优秀生人数为、(2)由分层抽样知识可知,成绩在,,间分别抽取了3人,2人,1人、记成绩在的3人为,,,成绩在的2人为,,成绩在的1人为,则从这6人中抽取3人的所有可能结果有,,,,,,,,,,,,,,,,,,共20种,其中恰好抽中1名优秀生的结果有,,,,,,,共9种,所以恰好抽中1名优秀生的概率为、22、解:(1)与直线的图象的两相邻交点之间的距离为,则,所以(2)的值域是(3)令,则,所以函数的单调减区间为令则,所以函数的单调增区间为。
2017-2018学年重庆市高一(下)期末考试数学试卷Word版含解析
2017-2018学年重庆市高一(下)期末试数学试卷一、选择题(共12小题,每小题3分,满分36分)1.已知等差数列{a n}中,a2+a8=2,a5+a11=8,则其公差是()A.6 B.3 C.2 D.12.学校为了解学生在课外读物方面的支出情况,抽取了n个同学进行调查,结果显示这些同学的支出都在上的运动员人数是()A.3 B.4 C.5 D.64.如图所示的程序的输出结果为S=132,则判断框中应填()A.i≥10?B.i≥11?C.i≤11?D.i≥12?5.已知点P(x,y)在不等式组表示的平面区域上运动,则z=x﹣y的取值范围是()A.B.C.D.6.已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B.42 C.63 D.847.设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0C.若若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>08.在△ABC中,a=4,b=5,c=6,则=()A.1 B.2 C.3 D.49.袋内装有6个球,每个球上都记有从1到6的一个号码,设号码为n的球重n2﹣6n+12克,这些球等可能地从袋里取出(不受重量、号码的影响).若任意取出1球,则其重量大于号码数的概率为()A.B.C.D.10.某企业生产甲乙两种产品均需用A,B两种原料,已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()甲乙原料限额A(吨) 3 2 12B(吨) 2 2 8A.12万元B.16万元C.17万元D.18万元11.若实数a,b满足+=,则ab的最小值为()A.B.2 C.2D.412.锐角三角形ABC中,内角A,B,C的对边分别为a,b,c,若B=2A,则的取值范围是()A.B.C.D.二、填空题:(本大题共4个小题,每小题5分,共20分)各题答案必须填写在答题卡相应的位置上. 13.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=3,B=60°.则b=.14.在区间内随机地取出一个数a,使得1∈{x|2x2+ax﹣a2>0}的概率为.15.若变量x,y满足约束条件,则z=2x﹣y的最小值为.16.在△ABC中,内角A,B,C的对边分别为a,b,c,若C=60°,且3ab=25﹣c2,则△ABC的面积最大值为.三、解答题:(本大题6个小题,共70分)各题解答必须答在答题卡上相应题目指定的方框内(必须写出必要的文字说明、演算步骤或推理过程).17.在等比数列{a n}中,a1=1,且4a1,2a2,a3成等差数列.(Ⅰ)求a n;(Ⅱ)令b n=log2a n,求数列{b n}的前n项和S n.18.在△ABC中,角A,B,C对的边分别为a,b,c,且c=2,C=60°.(1)求的值;(2)若a+b=ab,求△ABC的面积S△ABC.19.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数学为茎,个位数学为叶得到的茎叶图如图所示,已知甲、乙两组数据的平均数都为10.(Ⅰ)求m,n的值;(Ⅱ)别求出甲、乙两组数据的方差S甲2和S乙2,并由此分析两组技工的加工水平;(Ⅲ)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率.(注:为数据x1,x2,…x n的平均数,方差S2=)20.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)记数列{}的前n项和为T n,求使得|T n﹣1|成立的n的最小值.21.已知函数f(x)=(a、b为常数).(1)若b=1,解不等式f(x﹣1)<0;(2)若a=1,当x∈时,f(x)>恒成立,求b的取值范围.22.已知各项均为正数的数列{a n},其前n项和为S n,且满足2S n=a n2+a n.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{}的前n项和为T n,求证:当n≥3时,T n>+.2017-2018学年重庆市高一(下)期末试数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.已知等差数列{a n}中,a2+a8=2,a5+a11=8,则其公差是()A.6 B.3 C.2 D.1考点:等差数列的通项公式.专题:等差数列与等比数列.分析:利用等差数列的通项公式求解.解答:解:等差数列{a n}中,∵a2+a8=2,a5+a11=8,∴,解得a1=﹣3,d=1.故选:D.点评:本题考查等差数列的公差的求法,解题时要认真审题,是基础题.2.学校为了解学生在课外读物方面的支出情况,抽取了n个同学进行调查,结果显示这些同学的支出都在上的运动员人数是()A.3 B.4 C.5 D.6考点:茎叶图.专题:概率与统计.分析:对各数据分层为三个区间,然后根据系数抽样方法从中抽取7人,得到抽取比例为,然后各层按照此比例抽取.解答:解:由已知,将个数据分为三个层次是,,,根据系数抽样方法从中抽取7人,得到抽取比例为,所以成绩在区间中共有20名运动员,抽取人数为20×=4;故选B.点评:本题考查了茎叶图的认识以及利用系统抽样抽取个体的方法;关键是正确分层,明确抽取比例.4.如图所示的程序的输出结果为S=132,则判断框中应填()A.i≥10?B.i≥11?C.i≤11?D.i≥12?考点:程序框图.专题:操作型.分析:由框图可以得出,循环体中的运算是每执行一次s就变成了s乘以i,i的值变为i﹣2,故S的值是从12开始的逐渐减小的若干个整数的乘积,由此规律解题计算出循环体执行几次,再求出退出循环的条件,对比四个选项得出正确答案.解答:解:由题意,S表示从12开始的逐渐减小的若干个整数的乘积,由于12×11=132,故此循环体需要执行两次所以每次执行后i的值依次为11,10由于i的值为10时,就应该退出循环,再考察四个选项,B符合题意故选B点评:本题考查循环结构,解答本题,关键是根据框图得出算法,计算出循环次数,再由i的变化规律得出退出循环的条件.本题是框图考查常见的形式,较多见,题后作好总结.5.已知点P(x,y)在不等式组表示的平面区域上运动,则z=x﹣y的取值范围是()A.B.C.D.考点:简单线性规划.专题:计算题;不等式的解法及应用.分析:作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=x﹣y对应的直线进行平移,观察x轴上的截距变化,得出目标函数的最大、最小值,即可得到z=x﹣y的取值范围.解答:解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(2,0),B(2,1),C(0,1)设z=F(x,y)=x﹣y,将直线l:z=x﹣y进行平移,观察x轴上的截距变化,可得当l经过点C时,z达到最小值;l经过点A时,z达到最大值∴z最小值=F(0,1)=﹣1,z最大值=F(2,0)=2即z=x﹣y的取值范围是故选:A点评:本题给出二元一次不等式组,求目标函数z=x﹣y的范围,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.6.已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B.42 C.63 D.84考点:等比数列的通项公式.专题:计算题;等差数列与等比数列.分析:由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.解答:解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7==3×(2+4+8)=42.故选:B点评:本题主要考查了等比数列通项公式的应用,属于基础试题.7.设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0C.若若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:对选项分别进行判断,即可得出结论.解答:解:若a1+a2>0,则2a1+d>0,a2+a3=2a1+3d>2d,d>0时,结论成立,即A不正确;若a1+a3<0,则a1+a2=2a1+2d<0,a2+a3=2a1+3d<2d,d<0时,结论成立,即B不正确;{a n}是等差数列,0<a1<a2,2a2=a1+a3>2,∴a2>,即C正确;若a1<0,则(a2﹣a1)(a2﹣a3)=﹣d2<0,即D不正确.故选:C.点评:本题考查等差数列的通项,考查学生的计算能力,比较基础.8.在△ABC中,a=4,b=5,c=6,则=()A.1 B.2 C.3 D.4考点:余弦定理;正弦定理.专题:三角函数的求值.分析:利用余弦定理求出cosC,cosA,即可得出结论.解答:解:∵△ABC中,a=4,b=5,c=6,∴cosC==,cosA==,∴sinC=,sinA=,∴===1.故选:A.点评:本题考查余弦定理,考查学生的计算能力,比较基础.9.袋内装有6个球,每个球上都记有从1到6的一个号码,设号码为n的球重n2﹣6n+12克,这些球等可能地从袋里取出(不受重量、号码的影响).若任意取出1球,则其重量大于号码数的概率为()A.B.C.D.考点:等可能事件的概率.专题:概率与统计.分析:任意取出1球,共有6种等可能的方法,要求其重量大于号码数的概率,根据号码为n的球的重量为n2﹣6n+12克,构造关于n的不等式,解不等式即可得到满足条件的基本事件的个数,代入古典概型公式即可求解.解答:解:由题意,任意取出1球,共有6种等可能的方法.由不等式n2﹣6n+12>n,得n>4或n<3,所以n=1或2,n=5或6,于是所求概率P==故选D.点评:本题考查古典概型概率公式,考查学生的计算能力,属于基础题.10.某企业生产甲乙两种产品均需用A,B两种原料,已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()甲乙原料限额A(吨) 3 2 12B(吨) 2 2 8A.12万元B.16万元C.17万元D.18万元考点:简单线性规划的应用.专题:不等式的解法及应用.分析:设每天生产甲乙两种产品分别为x,y顿,利润为z元,然后根据题目条件建立约束条件,得到目标函数,画出约束条件所表示的区域,然后利用平移法求出z的最大值解答:解:设每天生产甲乙两种产品分别为x,y顿,利润为z元,则,目标函数为z=3x+4y.作出二元一次不等式组所表示的平面区域(阴影部分)即可行域由z=3x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A时,直线y=﹣x+的截距最大,此时z最大,解方程组,解得,即A的坐标为x=4,y=0,∴z max=3x+4y=12.即每天生产甲乙两种产品分别为2,3顿,能够产生最大的利润,最大的利润是12万元,故选:A.点评:本题主要考查线性规划的应用,建立约束条件和目标函数,利用数形结合是解决本题的关键11.若实数a,b满足+=,则ab的最小值为()A.B.2 C.2D.4考点:基本不等式.专题:计算题;不等式的解法及应用.分析:由+=,可判断a>0,b>0,然后利用基础不等式即可求解ab的最小值解答:解:∵+=,∴a>0,b>0,∵(当且仅当b=2a时取等号),∴,解可得,ab,即ab的最小值为2,故选:C.点评:本题主要考查了基本不等式在求解最值中的简单应用,属于基础试题12.锐角三角形ABC中,内角A,B,C的对边分别为a,b,c,若B=2A,则的取值范围是()A.B.C.D.考点:正弦定理;二倍角的正弦.专题:计算题;解三角形.分析:由题意可得0<2A<,且<3A<π,解得A的范围,可得cosA的范围,由正弦定理求得=2cosA,解得所求.解答:解:锐角△ABC中,角A、B、C所对的边分别为a、b、c,B=2A,∴0<2A<,且B+A=3A,∴<3A<π.∴<A<,∴<cosA<.由正弦定理可得==2cosA,∴<2cosA<,故选B.点评:本题考查正弦定理,二倍角的正弦公式,判断<A<,是解题的关键和难点.二、填空题:(本大题共4个小题,每小题5分,共20分)各题答案必须填写在答题卡相应的位置上.13.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=3,B=60°.则b=.考点:余弦定理.专题:解三角形.分析:利用余弦定理列出关系式,将a,c及cosB代入计算即可求出b的值.解答:解:∵a=2,c=3,B=60°,∴由余弦定理得:b2=a2+c2﹣2accosB=4+9﹣6=7,则b=.故答案为:点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.14.在区间内随机地取出一个数a,使得1∈{x|2x2+ax﹣a2>0}的概率为0.3.考点:几何概型.专题:计算题;转化思想.分析:由1∈{x|2x2+ax﹣a2>0}代入得出关于参数a的不等式,解之求得a的范围,再由几何的概率模型的知识求出其概率.解答:解:由题意1∈{x|2x2+ax﹣a2>0},故有2+a﹣a2>0,解得﹣1<a<2由几何概率模型的知识知,总的测度,区间的长度为10,随机地取出一个数a,使得1∈{x|2x2+ax﹣a2>0}这个事件的测度为3故区间内随机地取出一个数a,使得1∈{x|2x2+ax﹣a2>0}的概率为0.3故答案为0.3点评:本题考查几何概率模型,求解本题的关键是正确理解1∈{x|2x2+ax﹣a2>0}的意义,即得到参数a所满足的不等式,从中解出事件所对应的测度15.若变量x,y满足约束条件,则z=2x﹣y的最小值为﹣1.考点:简单线性规划.专题:不等式的解法及应用.分析:由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.解答:解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得A(0,1).∴z=2x﹣y的最小值为2×0﹣1=﹣1.故答案为:﹣1.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.16.在△ABC中,内角A,B,C的对边分别为a,b,c,若C=60°,且3ab=25﹣c2,则△ABC的面积最大值为.考点:基本不等式;余弦定理.专题:计算题;解三角形.分析:根据余弦定理结合C=60°,算出c2=a2+b2﹣ab,结合题中的等式得a2+b2﹣ab=25﹣3ab,整理得(a+b)2=25,解出a+b=5.由基本不等式,得当且仅当a=b=时ab的最大值为,由此结合正弦定理的面积公式,即可算出△ABC的面积的最大值.解答:解:∵△ABC中,C=60°,∴c2=a2+b2﹣2abcosC=a2+b2﹣ab又∵3ab=25﹣c2,得c2=25﹣3ab∴a2+b2﹣ab=25﹣3ab,移项得(a+b)2=25,可得a+b=5∵△ABC的面积S=absinC=ab,且ab≤=∴当且仅当a=b=时,ab的最大值为,此时△ABC的面积的最大值为故答案为:点评:本题给出三角形ABC的角C和边之间的关系式,求三角形面积的最大值.着重考查了用基本不等式求最值、三角形的面积公式和余弦定理等知识,属于中档题.三、解答题:(本大题6个小题,共70分)各题解答必须答在答题卡上相应题目指定的方框内(必须写出必要的文字说明、演算步骤或推理过程).17.在等比数列{a n}中,a1=1,且4a1,2a2,a3成等差数列.(Ⅰ)求a n;(Ⅱ)令b n=log2a n,求数列{b n}的前n项和S n.考点:等差数列与等比数列的综合;数列的求和.专题:计算题;等差数列与等比数列.分析:(I)设{a n}的公比为q,根据等比数列的通项公式与等差中项的定义,建立关于q的等式解出q=2,即可求出{a n}的通项公式.(II)根据(I)中求出的{a n}的通项公式,利用对数的运算法则算出b n=n﹣1,从而证出{b n}是首项为0、公差为1的等差数列,再利用等差数列的前n项和公式加以计算,可得数列{b n}的前n项和S n的表达式.解答:解:(Ⅰ)设{a n}的公比为q,∵4a1,2a2,a3成等差数列,∴4a1+a3=4a2.又∵{a n}的公比为q,首项a1=1,∴4+q2=4q,解之得q=2.∴数列{a n}的通项公式为(n∈N*).(Ⅱ)∵,∴,由此可得b n+1﹣b n=n﹣(n﹣1)=1,b1=0,∴{b n}是首项为0、公差为1的等差数列,因此,数列{b n}的前n项和.点评:本题给出等比数列{a n}满足的条件,求它的通项公式并依此求数列{b n}的前n项和.着重考查了等差、等比数列的通项与性质,等差数列的前n项之积公式与对数的运算法则等知识,属于中档题.18.在△ABC中,角A,B,C对的边分别为a,b,c,且c=2,C=60°.(1)求的值;(2)若a+b=ab,求△ABC的面积S△ABC.考点:余弦定理;正弦定理.专题:解三角形.分析:(1)根据正弦定理求出,然后代入所求的式子即可;(2)由余弦定理求出ab=4,然后根据三角形的面积公式求出答案.解答:解:(1)由正弦定理可设,所以,所以.…(6分)(2)由余弦定理得c2=a2+b2﹣2abcosC,即4=a2+b2﹣ab=(a+b)2﹣3ab,又a+b=ab,所以(ab)2﹣3ab﹣4=0,解得ab=4或ab=﹣1(舍去)所以.…(14分)点评:本题考查了正弦定理、余弦定理等知识.在解三角形问题中常涉及正弦定理、余弦定理、三角形面积公式及同角三角函数基本关系等问题,故应综合把握.19.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数学为茎,个位数学为叶得到的茎叶图如图所示,已知甲、乙两组数据的平均数都为10.(Ⅰ)求m,n的值;(Ⅱ)别求出甲、乙两组数据的方差S甲2和S乙2,并由此分析两组技工的加工水平;(Ⅲ)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率.(注:为数据x1,x2,…x n的平均数,方差S2=)考点:列举法计算基本事件数及事件发生的概率;茎叶图;极差、方差与标准差.专题:概率与统计.分析:(Ⅰ)由题意根据平均数的计算公式分别求出m,n的值.(Ⅱ)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差S甲2和S乙2,再根据它们的平均值相等,可得方差较小的发挥更稳定一些.(Ⅲ)用列举法求得所有的基本事件的个数,找出其中满足该车间“待整改”的基本事件的个数,即可求得该车间“待整改”的概率.解答:解:(I)由题意可得=(7+8+10+12+10+m)=10,解得m=3.再由=(n+9+10+11+12)=10,解得n=8.(Ⅱ)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差,S甲2==5.2,S乙2==2,并由,S甲2<S乙2,可得两组的整体水平相当,乙组的发挥更稳定一些.(Ⅲ)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,设两人加工的合格零件数分别为(a,b),则所有的(a,b)有(7,8)、(7,9)、(7,10)、(7,11)、(7,12)、(8,8)、(8,9)、(8,10)、(8,11)、(8,12)、(10,8)、(10,9)、(10,10)、(10,11)、(10,12)、(12,8)、(12,9)、(12,10)、(12,11)、(12,12)、(13,8)、(13,9)、(13,10)、(13,11)、(13,12),共计25个,而满足a+b≤17的基本事件有(7,8)、(7,9)、(7,10)、(8,8)、(8,9),共计5个基本事件,故满足a+b>17的基本事件个数为25﹣5=20,即该车间“待整改”的基本事件有20个,故该车间“待整改”的概率为P==.点评:本题主要考查方差的定义和求法,古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,列举法,是解决古典概型问题的一种重要的解题方法,属于中档题.20.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)记数列{}的前n项和为T n,求使得|T n﹣1|成立的n的最小值.考点:数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)由已知数列递推式得到a n=2a n﹣1(n≥2),再由已知a1,a2+1,a3成等差数列求出数列首项,可得数列{a n}是首项为2,公比为2的等比数列,则其通项公式可求;(Ⅱ)由(Ⅰ)求出数列{}的通项公式,再由等比数列的前n项和求得T n,结合求解指数不等式得n的最小值.解答:解:(Ⅰ)由已知S n=2a n﹣a1,有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n≥2),即a n=2a n﹣1(n≥2),从而a2=2a1,a3=2a2=4a1,又∵a1,a2+1,a3成等差数列,∴a1+4a1=2(2a1+1),解得:a1=2.∴数列{a n}是首项为2,公比为2的等比数列.故;(Ⅱ)由(Ⅰ)得:,∴.由,得,即2n>1000.∵29=512<1000<1024=210,∴n≥10.于是,使|T n﹣1|成立的n的最小值为10.点评:本题考查等差数列与等比数列的概念、等比数列的通项公式与前n项和公式等基础知识,考查运算求解能力,是中档题.21.已知函数f(x)=(a、b为常数).(1)若b=1,解不等式f(x﹣1)<0;(2)若a=1,当x∈时,f(x)>恒成立,求b的取值范围.考点:函数恒成立问题;其他不等式的解法.专题:综合题;函数的性质及应用;不等式的解法及应用.分析:(1)f(x﹣1)<0即,按照1﹣a与0的大小关系分三种情况讨论可解不等式;(2)a=1时不等式可化为(※),由x≠﹣b可知b∉,分离出参数b后化为函数的最值即可,由基本不等式可求最值;解答:解:(1)f(x﹣1)<0即,①当1﹣a>0,即a<1时,不等式的解集为:(0,1﹣a);②当1﹣a=0,即a=1时,不等式的解集为:x∈ϕ;③当1﹣a<0,即a>1时,不等式的解集为:(1﹣a,0).(2)a=1时,f(x)>即(※)且x≠﹣b,不等式恒成立,则b∉;又当x=﹣1时,不等式(※)显然成立;当﹣1<x≤2时,,故b>﹣1.综上所述,b>﹣1.∵x+b≠0,∴b≠﹣x,又x∈,∴﹣x∈,综上,b∈(1,+∞)为所求.点评:该题考查函数恒成立、分式不等式的解法,考查分类讨论思想,考查学生对问题的转化能力.22.已知各项均为正数的数列{a n},其前n项和为S n,且满足2S n=a n2+a n.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{}的前n项和为T n,求证:当n≥3时,T n>+.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)由已知条件推导出,化简得(a n﹣a n﹣1﹣1)(a n+a n﹣1)=0,由此能求出a n=n.(Ⅱ)当n≥3时,利用放缩法和裂项求和法能证明T n>+.解答:解:(Ⅰ)∵…①,∴,解得a1=1或0(舍),且…②,①﹣②得,化简得(a n﹣a n﹣1﹣1)(a n+a n﹣1)=0,∵数列{a n}各项均为正数,∴a n﹣a n﹣1﹣1=0,即a n=a n﹣1+1,∴{a n}为等差数列,a n=n,经检验,a1=1也符合该式,∴a n=n.…(5分)(Ⅱ)当n≥3时,∴当n≥3时,T n>+.…(12分)点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意放缩法和裂项求和法的合理运用.。
2018学年重庆市学高一下学期期末考试数学试题 (12)
下学期期末考试高一数学(文)试题一.选择题1. 若长方体的一个顶点上三条棱长分别为3,4,5.则长方体外接球的表面积为()A. B. C. D.2. 已知正实数满足,则的最大值为()A. B. C. D.3. 在等差数列中,若则()A . 10 B. 11 C. 12 D. 144. 已知不等式的解集为,则( )A. -6B. 6C. -25D. 255. 已知m,n为不同的直线,α,β为不同的平面,则下列说法正确的是()A. m⊂α,n∥m⇒n∥αB. m⊂α,n⊥m⇒n⊥αC. m⊂α,n⊂β,m∥n⇒α∥βD. n⊂β,n⊥α⇒α⊥β6. 下列命题正确的是()A. B.C. D.7. 已知数列的前项和为,,,,则()A. B. C. D.8. 某几何体的三视图如下图所示,且该几何体的体积是3,则正视图中的的值()A. 2B. 3C.D.9. 在斜三棱柱ABCA1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在A. 直线AC上B. 直线BC上C. 直线AB上D. △ABC内部10. 已知三棱锥中,,且直线与成角,点、分别是、的中点,则直线与所成的角为( )A. B. C. D. 或11. 已知,且,若恒成立,则实数m的取值范围是()A. B. C. D.12. 在正四棱锥中,,,分别是,,的中点,动点在线段上运动时,下列四个结论:①;②;③;④中恒成立的为()A. ①③B. ③④C. ①②D. ②③④二填空题13. 已知一个圆锥的侧面展开图是一个半径为,圆心角为的扇形,则此圆锥的体积为__________.14. 不等式的解集为__________.15. 在三棱锥S-ABC中,∠ABC=90°,AC中点为点O,AC=2,SO⊥平面ABC,SO=,则三棱锥外接球的表面积为__________.16. 底面为正三角形的直三棱柱ABC-A1B1C1的各棱长都为1,M,N分别为CC1,BB1的中点,则点N到面A1BM 的距离为__________.三.解答题17. 如图,在四棱锥中,M为AD的中点.(1).若AD平行BC,AD=2BC,求证:直线BM平行平面PCD;(2).求证:.18. 已知函数(1).求不等式的解集;(2)若关于x的不等式恒成立,求实数a的取值范围.19. 已知三棱柱ABC-A1B1C1中,侧棱垂直于底面,AC=BC,点D是AB的中点.(1)求证:BC1∥平面CA1D;(2)若底面ABC为边长为2的正三角形,BB1=求三棱锥B1-A1DC的体积.20. 已知数列是公差大于的等差数列,,且,,成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.21. 在△ABC中,a,b,c分别是角对边,且,(1)求角B;(2), 求.22. 在如图所示的几何体中,四边形ABCD为正方形,为直角三角形,,且.(1)证明:平面平面;(2)若AB=2AE,求异面直线BE与AC所成角的余弦值.高一数学(文)试题解析一.选择题1. 若长方体的一个顶点上三条棱长分别为3,4,5.则长方体外接球的表面积为()A. B. C. D.【答案】C【解析】设球的半径为R,由题意,球的直径即为长方体的体对角线的长,则(2R)2=32+42+52=50,∴R= .∴S球=4π×R2=50π.故选C.2. 已知正实数满足,则的最大值为()A. B. C. D.【答案】A【解析】根据题意,正实数x,y满足2x+y=1,则xy=(2x)y≤,当且仅当2x=y=,时等号成立,即xy的最大值为;故选A.点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.3. 在等差数列中,若则()A. 10B. 11C. 12D. 14【答案】A【解析】由,易得,根据等差数列性质,得,即,故选A.4. 已知不等式的解集为,则( )A. -6B. 6C. -25D. 25【答案】A【解析】∵ax2﹣5x+b>0的解集为{x|﹣3<x<2},∴ax2﹣5x+b=0的根为﹣3、2,即﹣3+2=﹣3×2=解得a=﹣5,b=30,故选D点睛:注意“三个二次”的关系:二次不等式解集的端点是相应的二次方程的根,是相应的二次函数与x 轴交点的横坐标.在本题中,﹣3、2是ax2﹣5x+b=0的两个不等实根,借助维达定理易得a=﹣5,b=30,.5. 已知m,n为不同的直线,α,β为不同的平面,则下列说法正确的是()A. m⊂α,n∥m⇒n∥αB. m⊂α,n⊥m⇒n⊥αC. m⊂α,n⊂β,m∥n⇒α∥βD. n⊂β,n⊥α⇒α⊥β【答案】D【解析】在A选项中,可能有n⊂α,故A错误;在B选项中,可能有n⊂α,故B错误;在C选项中,两平面有可能相交,故C错误;在D选项中,由平面与平面垂直的判定定理得D正确.故选:D.6. 下列命题正确的是()A. B.C. D.【答案】D【解析】试题分析:A中当时才成立;B中若,则;C中时才成立;D中命题成立考点:不等式性质7. 已知数列的前项和为,,,,则()A. B. C. D.【答案】D【解析】∵,∴数列{S n}是等比数列,公比为,首项为1.则,故选D.8. 某几何体的三视图如下图所示,且该几何体的体积是3,则正视图中的的值()A. 2B. 3C.D.【答案】B【解析】原几何体为四棱锥,底面为直角梯形,,,平面,,.选B.【点睛】三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.9. 在斜三棱柱ABCA1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在( )A. 直线AC上B. 直线BC上C. 直线AB上D. △ABC内部【答案】C【解析】∵AC⊥AB,AC⊥BC1,∴AC⊥平面ABC1,AC⊂平面ABC,∴平面ABC1⊥平面ABC,∴C1在平面ABC上的射影H必在两平面的交线AB上.故选C.10. 已知三棱锥中,,且直线与成角,点、分别是、的中点,则直线与所成的角为( )A. B. C. D. 或【答案】D【解析】取AC中点E,连结NE、ME,如图,∵三棱锥A﹣BCD中,AB=CD,且点M,N分别是BC,AD的中点,∴ME 平行且等于AB,NE平行且等于CD ,∴NE=ME,∠EMN是直线AB和MN所成的角,∵直线AB与CD所成的角为60°,∴∠MEN=60°或120°,∴∠EMN=或.故选:D.11. 已知,且,若恒成立,则实数m的取值范围是()A. B. C. D.【答案】A【解析】∵,∴x+2y=(x+2y))=4++≥4+2=8∵x+2y>m2+2m恒成立,∴m2+2m<8,求得﹣4<m<2故选A.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误12. 在正四棱锥中,,,分别是,,的中点,动点在线段上运动时,下列四个结论:①;②;③;④中恒成立的为()A. ①③B. ③④C. ①②D. ②③④【答案】A二填空题13. 已知一个圆锥的侧面展开图是一个半径为,圆心角为的扇形,则此圆锥的体积为__________.【答案】【解析】试题分析:由,得,即,∴.考点:圆锥的侧面图与体积.14. 不等式的解集为__________.【答案】【解析】不等式等价于,解得:,即解集为:.故答案为:15. 在三棱锥S-ABC中,∠ABC=90°,AC中点为点O,AC=2,SO⊥平面ABC,SO=,则三棱锥外接球的表面积为__________.【答案】【解析】由AC中点为点O,AC=2,SO⊥平面ABC,SO=,易知:△SAC为等边三角形,外接球的球心应该是等边三角形的中心,故R= ,故外接球的表面积为.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.16. 底面为正三角形的直三棱柱ABC-A1B1C1的各棱长都为1,M,N分别为CC1,BB1的中点,则点N到面A1BM 的距离为__________.【答案】【解析】易证平面BB1A1⊥平面A1BM,故点N到面A1BM的距离即点N到直线A1B的距离,易得点N到面A1BM 的距离为,故答案为.三.解答题17. 如图,在四棱锥中,M为AD的中点.(1).若AD平行BC,AD=2BC,求证:直线BM平行平面PCD;(2).求证:.【答案】(1)详见解析;(2)详见解析.【解析】试题分析:(1)欲证线面平行,即证线线平行;(2)欲证线线垂直,即证线面垂直.试题解析:(1)因为,,为中点,所以,且,所以四边形为平行四边形故,又平面,平面,所以平面.(2)因为,为中点,所以,又平面平面,平面平面,平面,所以平面,又平面,所以.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.18. 已知函数(1).求不等式的解集;(2)若关于x的不等式恒成立,求实数a的取值范围.【答案】(1) ;(2) .【解析】试题分析:(1)利用零点分段法求绝对值不等式的解集;(2) 不等式恒成立问题转化为最值问题,解不等式即可.试题解析:(1)原不等式等价于或解得或或即不等式的解集为(2)当且仅当即时等号成立。
重庆一中高一数学下学期期末考试.doc
重庆一中高期末考试数 学 试 题 卷数学试题共3页。
满分150分。
考试时间1。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
一.选择题.(每小题5分,共50分)1. 已知1e 、2e 是两单位向量,下列命题中正确的是 ( )A . 121e e ⋅=B .12e e ⊥C .12//e eD .2212e e =2. 下列能使11a b>成立的一个条件是 ( )A .0>>b aB . b a >>0C .b a >>0D .a b >>03. 下列各式中,值为12的是 ( )A .sin15cos15︒︒B .22cossin 1212ππ-C .2tan 22.51tan 22.5︒︒- D4. 若02sin >α,则下列各式正确的是 ( )A .0sin >αB .0cos >αC .0tan >αD .02cos >α5. 若点34P AB A BP 分向量的比为,则点分向量的比为 ( )A .73-B .73C .34-D .346. 海上两小岛A 、B 到海洋观察站C 的距离都是a km ,小岛A 在观察站C 北偏东小岛B在观察站C 南偏东40°,则A 与B 的距离是 ( )A .a km Bkm Ckm D . 2a km 7. 函数1sin )(-+=x x x f 的图像不经过的象限是 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 8. 下列不等式中,解集是R 的是 ( )A .01tan tan 2>++x x B .0sin 212cos 212sin 2>+++x x x C .0)cos(sin >x D .0)sin 2lg(>+x9. 已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则 ( )A .e ⊥(a -e )B .a ⊥(a -e )C .a ⊥eD .(a +e )⊥(a -e ) 10. 定义max{a,b,c}为a 、b 、c 中的最大者,令M=max }2,21,21{b b a b a +-+++,则对任意实数a ,b ,M 的最小值是 ( ) A .1 B .34 C .23D .2二.填空题.(每小题5分,共25分)11. 已知0,0a b >>,且32=+b a ,则b a 222+的最小值是 . 12. 已知(1,3),(1,1),()()a m b m a b a b =+-=-+⊥-向量向量若,则实数m = . 13. 函数x x x x f 2cos cos sin 3)(+=)(R x ∈按向量),(n m =)2(π<m 平移后得到函数x x g 2sin )(=,则=a .14. 关于x 的不等式02>++c bx ax 的解集是}131|{><x x x 或,则关于x 的不等式02<++a bx cx 的解集为 .15. 过)1,2(P 作直线L 与x 轴正半轴、y 轴的正半轴分别交于A 、B 两点,设α2=∠BAO (O 为坐标原点),当AOB ∆的周长的最小时,αcot = .三.解答题.(共75分)16. 在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,已知9·=,C A B sin cos sin =,(I )求边AC 的长度; (II )若BC=4,求角B 的大小.17. 已知)3,2(-=a , ),1(m b = (R m ∈),)5,2(=c (I )若1)(=⋅+c b a ,求m 的值;(II )若0)()(>+⋅-,求m 的取值范围.18. 已知)sin 2,cos 2(x x a =,)cos 3,(cos x x b =,函数b a x f ⋅=)(; (I )求函数)(x f 的最小正周期; (II )当]245,24[ππ∈x 时,求)(x f 的取值范围.19. 已知函数a xa x x f -+=)( (I ) 若0)(>x f 对任意),1(+∞∈x 恒成立,求实数a 的取值范围; (II )解关于x 的不等式1)(>x f .20. 已知二次函数c bx ax x f ++=2)(,c b a ,,为实数,且当1≤x 时,恒有1)(≤x f ;(I ) 证明:1≤c ; (II ) 证明:2≤a ;(III ) 若b ax x g +=λ)( )1(>λ,求证:当1≤x 时,λ2)(≤x g .21. 设x 轴、y 轴正方向上的单位向量分别是i 、j,坐标平面上点n A 、n B )(*N n ∈分别满足下列两个条件:①OA 41=且1n n A A i -=*(,2)n N n ∈≥; ②112OB i j =+且*11(,2)(1)n n B B j n N n n n -=-∈≥+.(其中O 为坐标原点) (I )求向量n OA 及向量n OB 的坐标;(II )设n n n a OA OB =⋅,求n a 的通项公式并求n a 的最小值;(III )对于(Ⅱ)中的n a ,设数列36)1(2)1(cos 2sin+-+-=n a n n n b n n ππ,n S 为n b 的前n 项和,证明:对所有*n N ∈都有4889<n S .重庆一中高期末考试 数 学 参 考 答 案一:选择题 DCCCA BBCAB二:填空题 11 . 24 12 . -2 13 . )21,12(-π14 . )3,1( 15 . 3三:解答题16:(1)9cos 9·=⇒=A cb ,又b c A C A B =⋅⇒=cos sin cos sin 代入得3=b ,(2)bca cb bc A A cb 29cos 9cos 222-+==⇒=将BC=4a =,3=b 代入即得5=AB ⇒53arcsin 53sin 222=⇒==⇒+=B c b B a b c17:(1)21)3(561)(=⇒=-+⇒=⋅+m m(2)260)5)(3(30)()(-<<-⇒>+--+⇒>+⋅-m m m c b b a18:(1))(x f =ππ=⇒++=+T x x x x 1)62sin(2cos sin 32cos 22(2)]127,4[)62(]245,24[πππππ∈+⇒∈x x 1)62sin(2++⇒πx ]3,12[+∈19:(1))1()11(xx a x a x a a x a x a x -=-=->⇒>+对任意),1(+∞∈x 恒成立; ),1(+∞∈x ,0)1(>-∴x x ,⇒>-∴a x xx )1(a x x x x >-++-=-112)1(12 44112)1(<⇒>-++-a x x (2)),1()0,(0+∞∈< a x a 时 ),1(0+∞∈=x a 时),1(),0(10+∞∈<< a x a 时 ),1()1,0(1+∞∈= x a 时 ),()1,0(1+∞∈>a x a 时I ) 当1≤x 时,恒有1)(≤x f ;11)0(≤⇒≤∴c f (II )(0), (1), (1)f c f a b c f a b c ==++-=-+ 2(1)(1)2(a f f f ∴=+-- 又|| 1 , |()|1x f x ≤≤时 |(1)|1, |(1)|1, |(0)|1f f f ∴≤-≤≤ |2||(1)(1)2(0)||(1)||(1)|2|(0)|4a f f f f f f ∴=+--≤+-+≤ ||2a ∴≤ (III )(0), (1), (1)f c f a b c f a b c ==++-=-+由1[(1)(1)](0)2(0)1(1)[(1)(1)]2(1)(0)a f f f f c f abc b f f f a b c c f =+--==++=---=-+=⎧⎪⎧⎪⎪⎪⎨⎨⎪⎪⎩⎪⎪⎩得 11(1)[(1)(1)](0)[(1)(1)]22g a b f f f f f λλλ∴=+=⋅+--+--11(1)(1)(0)22f f f λλλ+-=+--11(1)[(1)(1)](0)[(1)(1)]22g a b f f f f f λλλ-=-+=-⋅+-++--11(1)(1)(0)22f f f λλλ-+=--+1, |(1)|1, |(1)|1, |(0)|1f f f λ≥≤-≤≤ 11|(1)||(1)(1)(0)|22g f f f λλλ+-∴=+--11222λλλλ+-≤++=11|(1)||(1)(1)(0)|22g f f f λλλ-+∴-=--+11222λλλλ-+≤++=() g x x 是关于的一次函数,故由一次函数的单调性知:||1, |()|2x g x λ≤≤对一切有21:(I ))4,1(1211-=+++=-n A A A A OA OA n n n112111111()()2231n n n OB OB B B B B i j j n n -=+++=+--++-+11(1,)11i j n n =+=++; (II )141++-=⋅=n n OB OA a n n n ;22141141≥-+++=++-=n n n n a n 即n a 的最小值为21=a (III )当n=1,2,3,···时,2)1(cos2sinππ-n n =1,0,1,0,···· 从而 ++++=7531b b b b S n ,又12266102+==⎪⎩⎪⎨⎧+-=k n k n n n b n,11=b ,313-=b ,15=b 当7≥n 时,)5)(1(156166122--=+-<+-=n n n n n n b n ])1(1)5(1[41---=n n][][17139151175317531 ++++++++++=++++=∴b b b b b b b b b b b b b S n48891618135]161818141[41]101616121[411311=++<+-+-++-+-++-<。
重庆市2017-2018学年高一(下)期末考试数学试卷(理科)Word版含解析
重庆市2017-2018学年高一(下)期末考试数学试卷(理科)一.选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A={1,3,5,6},集合B={2,3,4,5},那么A∩B=()A.{3,5} B.{1,2,3,4,5,6} C.{7} D.{1,4,7}2.已知直线l1:x﹣2y+1=0与直线l2:mx﹣y=0平行,则实数m的值为()A.B.﹣C.2 D.﹣23.在一次实验中,测得(x,y)的四组值为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为()A.=x+1 B.=x+2 C.=2x+1 D.=x﹣14.已知函数f(x)=e x﹣x2+8x,则在下列区间中f(x)必有零点的是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)5.要得到函数的图象,只需要将函数y=sin2x的图象上所有点()A.向左平移个单位长度B.向右平移单位长度C.向左平移个单位长度D.向右平移个单位长度6.在等比数列{a n}中,若a3=4,a7=16,a5的值为()A.±8 B.4 C.8 D.647.阅读如图程序框图,运行相应的程序,则程序运行后输出的结果为()A.7 B.9 C.10 D.118.已知△ABC中,∠A=,AB=3,AC=3,在线段BC上任取一点P,则线段PB的长大于2的概率为()A.B.C.D.9.已知△ABC是腰长为2等腰直角三角形,D点是斜边AB的中点,点P在CD上,且,则=()A.﹣B.﹣C.0 D.410.设a>0,b>1,若a+b=2,则的最小值为()A.B.8 C.D.11.等比数列{a n}中,首项a1=2015,公比q=﹣,记T n为它的前n项之积,则T n最大时,n的值为()A.9 B.11 C.12 D.1312.已知关于x的函数f(x)=x2+2mlog2(x2+2)+m2﹣3,(m>0)有唯一的零点,且正实数a、b满足a2+b2=m,且a3+b3+1=t(a+b+1)3,则t的最小值是()A.B.C.D.二、填空题:本大题共4小题,每小题5分,满分20分.13.已知变量x,y满足,则x+y的最大值是.14.已知sin(α+)=,α∈(﹣,0),则tanα=.15.若非零向量f(x)满足||=||,且,则与的夹角为.16.若c=2,∠C=且△ABC是锐角三角形,则△ABC周长的取值范围.三、解答题:本大题共6小题,共70分.解答应写出文字说明、演算步骤或推证过程.17.已知数列{a n}满足a n+1=3a n+4,(n∈N*)且a1=1,(Ⅰ)求证:数列{a n+2}是等比数列;(Ⅱ)求数列{a n}的前n项和S n.18.某校从参加2015年高考的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到部分频率分布直方图(如图所示).观察图中数据,回答下列问题.(Ⅰ)求分数在[120,130)内的频率;(Ⅱ)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.19.已知=(sinx,cosx),=(cosx,cosx),f(x)=2•+2m﹣1(x,m∈R).(Ⅰ)求f(x)的对称轴方程;(Ⅱ)若x∈[0,]时,f(x)的最小值为5,求m的值.20.设函数f(x)=a x﹣(k﹣1)a﹣x(a>0,a≠1)是定义域为R的奇函数(Ⅰ)若f(1)>0,试求使不等式f(x2+tx)+f(2x+1)>0在定义域上恒成立的t的取值范围;(Ⅱ)若f(1)=,且g(x)=a2x+a﹣2x﹣2mf(x)在[1,+∞)上的最小值为﹣2,求m的值.21.已知数列{a n}的前n项和S n满足S n=1﹣a n(n∈N*).(Ⅰ)试求数列{a n}的通项公式;(Ⅱ)设c n=,求证:数列{c n}的前n项和P n>2n﹣.22.△ABC中,若已知三边为连续正整数,最大内角为钝角,①求最大角的余弦值;②求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积.重庆市2017-2018学年高一(下)期末数学试卷(理科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A={1,3,5,6},集合B={2,3,4,5},那么A∩B=()A.{3,5} B.{1,2,3,4,5,6} C.{7} D.{1,4,7}考点:交集及其运算.专题:集合.分析:由A与B,找出两集合的交集即可.解答:解:∵A={1,3,5,6},B={2,3,4,5},∴A∩B={3,5}.故选:A.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.已知直线l1:x﹣2y+1=0与直线l2:mx﹣y=0平行,则实数m的值为()A.B.﹣C.2 D.﹣2考点:直线的一般式方程与直线的平行关系.专题:直线与圆.分析:由已知条件推导出,由此能求出m的值.解答:解:∵直线l1:x﹣2y+1=0与直线l2:mx﹣y=0平行,∴,解得m=.故选:A.点评:本题考查实数m的求法,是基础题,解题时要认真审题,注意直线的位置关系的合理运用.3.在一次实验中,测得(x,y)的四组值为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为()A.=x+1 B.=x+2 C.=2x+1 D.=x﹣1考点:线性回归方程.专题:计算题.分析:根据所给的这组数据,取出这组数据的样本中心点,把样本中心点代入所给的四个选项中验证,若能够成立的只有一个,这一个就是线性回归方程.解答:解:∵=3.5,∴这组数据的样本中心点是(2.5,3.5)把样本中心点代入四个选项中,只有y=x+1成立,故选A点评:本题考查求线性回归方程,一般情况下是一个运算量比较大的问题,解题时注意平均数的运算不要出错,注意系数的求法,运算时要细心,但是对于一个选择题,还有它特殊的加法.4.已知函数f(x)=e x﹣x2+8x,则在下列区间中f(x)必有零点的是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)考点:函数零点的判定定理.专题:函数的性质及应用.分析:构造函数g(x)=e x,h(x)=x2﹣8x,画出图象判断,交点个数,运用特殊函数值判断区间.解答:解:∵函数f(x)=e x﹣x2+8x,令g(x)=e x,h(x)=x2﹣8x,画出图象判断交点1个数.∵g(0)=1,h(0)=0,g(﹣1)=e﹣1,h(﹣1)=9,∴g(0)>h(0),g(﹣1)<h(﹣1),∴交点在(﹣1,0)内,即函数f(x)=e x﹣x2+8x,则在下列区间中f(x)必有零点的是(﹣1,0)故选:B点评:本题考查了构造函数,运用图象的交点问题求解有关的函数的零点,画出图象判断,利用特殊函数值判断即可.5.要得到函数的图象,只需要将函数y=sin2x的图象上所有点()A.向左平移个单位长度B.向右平移单位长度C.向左平移个单位长度D.向右平移个单位长度考点:函数y=Asin(ωx+φ)的图象变换.专题:计算题.分析:由于将函数y=sin2x的图象上所有点向左平移个单位长度,即可得函数的图象,从而得出结论.解答:解:将函数y=sin2x的图象上所有点向左平移个单位长度,即可得函数的图象,故选C.点评:本题主要考查函数y=Asin(ωx+∅)的图象变换规律,属于基础题.6.在等比数列{a n}中,若a3=4,a7=16,a5的值为()A.±8 B.4 C.8 D.64考点:等比数列的性质;等比数列的通项公式.专题:等差数列与等比数列.分析:利用可知q4=4(q为公比),通过a5=a4•q2计算即得结论.解答:解:∵a3=4,a7=16,∴q4===4(q为公比),∴a5=a4•q2=a4•=4•2=8,故选:C.点评:本题考查等比数列,注意解题方法的积累,属于基础题.7.阅读如图程序框图,运行相应的程序,则程序运行后输出的结果为()A.7 B.9 C.10 D.11考点:程序框图.专题:算法和程序框图.分析:算法的功能是求S=0+lg+lg+lg+…+lg的值,根据条件确定跳出循环的i值.解答:解:由程序框图知:算法的功能是求S=0+lg+lg+lg+…+lg的值,∵S=lg+lg+…+lg=lg>﹣1,而S=lg+lg+…+lg=lg<﹣1,∴跳出循环的i值为9,∴输出i=9.故选:B.点评:本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.8.已知△ABC中,∠A=,AB=3,AC=3,在线段BC上任取一点P,则线段PB的长大于2的概率为()A.B.C.D.考点:几何概型.专题:概率与统计.分析:首先解三角形求出BC,然后利用几何概型求概率.解答:解:在△ABC中,∠A=,AB=3,AC=3,所以BC2=AB2+AC2﹣2AB×AC×cos∠A=27+9﹣18=9,所以BC=3,在线段BC上任取一点P,则线段PB的长大于2的点P在距离C的一端BC的内,由几何概型线段PB的长大于2的概率为;故选:A点评:本题考查了余弦定理的运用,几何概型的概率求法;正确运用余弦定理求出BC长度是关键.9.已知△ABC是腰长为2等腰直角三角形,D点是斜边AB的中点,点P在CD上,且,则=()A.﹣B.﹣C.0 D.4考点:平面向量数量积的运算.专题:平面向量及应用.分析:以CB,CA两直线分别为x,y轴,建立坐标系,根据条件可求出C,A,B,D几点的坐标,设P (x,y),而根据即可求出点P的坐标,从而得出向量的坐标,然后进行数量积的坐标运算即可.解答:解:如图,分别以边CB,CA所在直线为x,y轴,建立平面直角坐标系,则:C(0,0),A(0,2),B(2,0),D(1,1);设P(x,y),∵;(x,y)=(1﹣x,1﹣y);∴;解得;∴,,;∴.故选B.点评:考查建立平面直角坐标系,利用向量坐标求数量积的方法,由点的坐标可求向量的坐标,向量坐标的数乘、数量积的运算.10.设a>0,b>1,若a+b=2,则的最小值为()A.B.8 C.D.考点:基本不等式.专题:不等式的解法及应用.分析:变形利用基本不等式的性质即可得出.解答:解:∵设a>0,b>1,a+b=2,∴=(a+b﹣1)=4+=4+2,当且仅当a=(b﹣1)=时取等号,∴的最小值为4+2.故选:D.点评:本题考查了基本不等式的性质,属于基础题.11.等比数列{a n}中,首项a1=2015,公比q=﹣,记T n为它的前n项之积,则T n最大时,n的值为()A.9 B.11 C.12 D.13考点:等比数列的前n项和.专题:等差数列与等比数列.分析:先判断|T n+1|与|T n|的大小关系,结合等比数列的性质进行比较即可.解答:解:∵=||=|a n+1|=2015•()n,∵210=1024,211=2048∴当n≤10时,|T n+1|>|T n|,当n≥11时,|T n+1|<|T n|,故|T n|max=|T11|,又T10<0,T11<0,T9>0,T12>0,∴T n的最大值是T9和T12中的较大者,∵=a10a11a12=[2015()10]3>1,∴T12>T9因此当n=12时,T n最大.故选:C点评:本题主要考查等比数列的应用,根据等比数列的通项公式是解决本题的关键.12.已知关于x的函数f(x)=x2+2mlog2(x2+2)+m2﹣3,(m>0)有唯一的零点,且正实数a、b满足a2+b2=m,且a3+b3+1=t(a+b+1)3,则t的最小值是()A.B.C.D.考点:函数零点的判定定理.专题:函数的性质及应用.分析:由偶函数f(x)=有唯一的零点.可得:f(0)=0,进而求出m=1;进而令a=cosθ,b=sinθ,,根据三角函数的图象和性质及常数分离法和反比例函数的和性质,可得t的最小值.解答:解:∵f(x)是偶函数,且f(x)=有唯一的零点.∴f(0)=0,解得,m=1或﹣3,又∵m>0,∴m=1,∴a2+b2=1,令a=cosθ,b=sinθ,,则由a3+b3+1=t(a+b+1)3得:.令x=cosθ+sinθ,则,且.于是.因为函数在上单调递减,因此,t的最小值为.故选:A点评:本题考查的知识点是函数零点的判定定理,偶函数的图象和性质,三角函数的图象和性质,常数分离法和反比例函数的和性质,是函数图象和性质的综合应用,难度较大.二、填空题:本大题共4小题,每小题5分,满分20分.13.已知变量x,y满足,则x+y的最大值是4.考点:简单线性规划.专题:不等式的解法及应用.分析:画出不等式组表示的平面区域.设z=x+y,则y=﹣x+z,此方程可看作是斜率为﹣1的直线系方程,z为直线的纵截距,只需找到直线y=﹣x+z经过此区域,且纵截距最大的位置即可得到x+y的最大值.解答:解:作出直线x=1,y=2,x﹣y=0,从而得到不等式组表示的平面区域,如右图所示的阴影部分.设z=x+y,则y=﹣x+z,此方程可表示一系列斜率为﹣1的平行直线,当直线经过点A时,直线在y轴上的截距z最大,此时,由,得,即A(2,2),从而z max=x+y=2+2=4,即x+y的最大值是4.故答案为:4.点评:本题主要考查了数形结合思想及转化与化归思想的运用,考查了利用不等式组表示的平面区域解决最值问题.求解此类问题的一般步骤是:1.正确画出不等式组表示的平面区域;2.根据目标函数的几何意义进行处理.14.已知sin(α+)=,α∈(﹣,0),则tanα=﹣2.考点:运用诱导公式化简求值;同角三角函数间的基本关系.专题:计算题;三角函数的求值.分析:由α∈(﹣,0)sin(α+)=,利用诱导公式可求得cosα,从而可求得sinα与tanα.解答:解:∵sin(α+)=cosα,sin(α+)=,∴cosα=,又α∈(﹣,0),∴sinα=﹣,∴tanα==﹣2.故答案为:﹣2.点评:本题考查运用诱导公式化简求值,考查同角三角函数间的基本关系,属于中档题.15.若非零向量f(x)满足||=||,且,则与的夹角为.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由,便得到,进行数量积的运算,并带入即可得到,从而得出.解答:解:根据条件,=;∴;∴;∴与的夹角为.故答案为:.点评:考查数量积的运算及其计算公式,向量夹角的概念及范围,以及已知三角函数值求角.16.若c=2,∠C=且△ABC是锐角三角形,则△ABC周长的取值范围(2+2,6].考点:余弦定理.专题:计算题;解三角形.分析:通过角的范围,利用正弦定理推出a+b的关系,利用两角和的正弦函数,化简函数的表达式,求出a+b的取值范围,从而可求周长的取值范围.解答:解:由∠C=且三角形是锐角三角形可得,由正弦定理得,∴a=×sinA=sinA,b=sinB=sin(﹣A),∴a+b=[sinA+sin(﹣A)]=(sinA+cosA)=4sin(A+),∴<A+<,∴<sin(A+)≤1,即2<a+b≤4∴△ABC周长l=a+b+c∈(2+2,6].故答案为:(2+2,6].点评:本题考查两角和的正弦函数、正切函数以及正弦定理的应用,考查计算能力,属于基本知识的考查.三、解答题:本大题共6小题,共70分.解答应写出文字说明、演算步骤或推证过程.17.已知数列{a n}满足a n+1=3a n+4,(n∈N*)且a1=1,(Ⅰ)求证:数列{a n+2}是等比数列;(Ⅱ)求数列{a n}的前n项和S n.考点:数列的求和;等比关系的确定.专题:等差数列与等比数列.分析:(Ⅰ)利用a n+1=3a n+4计算即得结论;(Ⅱ)通过a1=1可知a1+2=3,进而a n=3n﹣2,利用等比数列的求和公式计算即得结论.解答:(Ⅰ)证明:∵a n+1=3a n+4,∴,∴{a n+2}是公比为3等比数列;(Ⅱ)解:∵a1=1,∴a1+2=1+2=3,∴a n+2=3•3n﹣1=3n,∴a n=3n﹣2,∴.点评:本题考查等比数列的判定、数列的通项及前n项和,注意解题方法的积累,属于中档题.18.某校从参加2015年高考的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到部分频率分布直方图(如图所示).观察图中数据,回答下列问题.(Ⅰ)求分数在[120,130)内的频率;(Ⅱ)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.考点:列举法计算基本事件数及事件发生的概率;频率分布直方图.专题:概率与统计.分析:(Ⅰ)根据频率分布直方图的各小长方形的面积之和为1,求出分数在[120,130)内的频率;(Ⅱ)计算出[110,120)与[120,130)分数段的人数,用分层抽样的方法在各分数段内抽取的人数组成样本,求出“从样本中任取2人,至多有1人在分数段[120,130)内”概率即可.解答:解:(Ⅰ)[120,130)内的频率为:1﹣(0.1+0.15+0.15+0.25+0.05)=1﹣0.7=0.3;…(5分)(Ⅱ)由题意,[110,120)分数段的人数为60×0.15=9(人).[120,130)分数段的人数为60×0.3=18(人).…(7分)∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,∴需在[110,120)分数段内抽取2人,并分别记为m、n;…(8分)在[120,130)分数段内抽取4人,并分别记为a、b、c、d;…(9分)设“从样本中任取2人,至多有1人在分数段[120,130)内”为事件A,则基本事件共有(m,n),(m,a),…,(m,d),(n,a),…,(n,d),(a,b),…,(c,d)共15种.…(10分)则事件A包含的基本事件有(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d)共9种.…(11分)∴.…(12分)点评:本题考查了频率分布直方图的应用以及分层抽样和古典概型的计算问题,解题时应用列举法求出基本事件的个数,从而求出概率问题,是综合题.19.已知=(sinx,cosx),=(cosx,cosx),f(x)=2•+2m﹣1(x,m∈R).(Ⅰ)求f(x)的对称轴方程;(Ⅱ)若x∈[0,]时,f(x)的最小值为5,求m的值.考点:三角函数中的恒等变换应用;平面向量数量积的运算.专题:三角函数的图像与性质;平面向量及应用.分析:(Ⅰ)先进行数量积的坐标运算,并应用二倍角的正余弦公式及两角和的正弦公式便可求得,从而得出f(x)=2sin(2x)+2m,根据函数y=sinx的对称轴为x=,令2x+=,解出x即得f(x)的对称轴方程;(Ⅱ)由x的范围便可求出2x+的范围:,从而得到f(x)的最小值﹣1+2m=5,解出m即可.解答:解:(Ⅰ)==;∴;令2x=,k∈Z;∴f(x)的对称轴方程为:x=,k∈Z;(Ⅱ)x∈;∴;∴2x=时,f(x)min=2+2m=5;∴m=3.点评:考查数量积的坐标运算,二倍角的正余弦公式,两角和的正弦公式,以及正弦函数的对称轴,正弦函数在闭区间上的最.20.设函数f(x)=a x﹣(k﹣1)a﹣x(a>0,a≠1)是定义域为R的奇函数(Ⅰ)若f(1)>0,试求使不等式f(x2+tx)+f(2x+1)>0在定义域上恒成立的t的取值范围;(Ⅱ)若f(1)=,且g(x)=a2x+a﹣2x﹣2mf(x)在[1,+∞)上的最小值为﹣2,求m的值.考点:函数恒成立问题;函数奇偶性的性质.专题:函数的性质及应用.分析:(Ⅰ)根据函数的奇偶性求出k的值,根据f(1)>0求出a的值,根据函数的单调性将不等式进行转化即可,(Ⅱ)由f(1)=,求出a的值,利用换元法结合一元二次函数的最值性质进行求解.解答:解:(Ⅰ)∵f(x)是定义域为R的奇函数,∴f(0)=0,∴1﹣(k﹣1)=0,∴k=2.∵函数f(x)=a x﹣a﹣x(a>0且a≠1),∵f(1)>0,∴a﹣>0,又a>0,∴a>1.由于y=a x单调递增,y=a﹣x单调递减,故f(x)在R上单调递增.不等式化为:f(x2+tx)>f(﹣2x﹣1).∴x2+tx>﹣2x﹣1,即x2+(t+2)x+1>0 恒成立,∴△=(t+2)2﹣4<0,解得﹣4<t<0.(Ⅱ)∵f(1)=,,即3a2﹣8a﹣3=0,∴a=3,或a=﹣(舍去).∴g(x)=32x+3﹣2x﹣2m(3x﹣3﹣x)=(3x﹣3﹣x)2﹣2m(3x﹣3﹣x)+2.令t=f(x)=3x﹣3﹣x,由(1)可知k=2,故f(x)=3x﹣3﹣x,显然是增函数.∵x≥1,∴t≥f(1)=,令h(t)=t2﹣2mt+2=(t﹣m)2+2﹣m2(),若,当t=m时,,∴m=2(舍去)若,当t=时,,解得m=<,综上可知m=.点评:本题主要考查指数函数的性质,利用函数的奇偶性和单调性求出参数,利用换元法转化为一元二次函数是解决本题的关键.21.已知数列{a n}的前n项和S n满足S n=1﹣a n(n∈N*).(Ⅰ)试求数列{a n}的通项公式;(Ⅱ)设c n=,求证:数列{c n}的前n项和P n>2n﹣.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(I)利用递推关系、等比数列的通项公式即可得出;(II)由已知得:当n=1时,,结论成立,当n≥2时,,化简利用“放缩法”即可证明.解答:(Ⅰ)解:∵S n=1﹣a n(n∈N*),∴S n+1=1﹣a n+1,作差得:,又当n=1时,,故.(Ⅱ)证明:由已知得:当n=1时,,结论成立,当n≥2时,==,结论也成立,综上知,对∀n∈N*,都成立.点评:本题考查了递推关系、等比数列的通项公式、“分组求和”、“放缩法”不等式的性质,考查了推理能力与计算能力,属于中档题.22.△ABC中,若已知三边为连续正整数,最大内角为钝角,①求最大角的余弦值;②求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积.考点:余弦定理.专题:计算题;解三角形.分析:(1)设△ABC的三边a、b、c的长度分别为n﹣1、n、n+1(n∈N*且n>1),根据两边之和大于第三边和C为钝角,建立不等式并解之可得2<n<4,因此n=3可得△ABC三边长分别为2,3,4.最后根据余弦定理即可算出最大角的余弦值;(2)由(1)得最大角是角C,利用同角三角函数的关系算出sinC=,设平行四边形两边分别为m、n,可得它的面积为S=mnsinC=mn,再根据m+n=4用基本不等式求最值,即可得到当且仅当m=n=2时平行四边形面积最大值为.解答:解:(1)设△ABC的三边a、b、c的长度分别为n﹣1、n、n+1(n∈N*且n>1),∵(n﹣1)+n>n+1,∴n>2,得n是大于3的整数∵△ABC是钝角三角形,可得∠C为钝角,有cosC<0,由余弦定理得:(n+1)2=(n﹣1)2+n2﹣2n(n﹣1)•cosC>(n﹣1)2+n2,即(n﹣1)2+n2<(n+1)2⇒n2﹣4n<0⇒0<n<4,因此,整数n的值为3,可得△ABC三边长分别为2,3,4.∵cosC===﹣∴最大角的余弦值为﹣(2)由(1)得,最大角C的正弦为sinC==,设夹角C的平行四边形两边分别为m、n,∵m+n=4,∴mn≤=4,当且仅当m=n=2时,mn的最大值为4因此,平行四边形的面积S=mnsinC=mn≤×4=∴当平行四边形两边都等于2时,夹角C的平行四边形面积最大值为.点评:本题给出三边长为连续整数的三角形,且最大角为钝角时求最大角的余弦之值,并依此求一个平行四边形的面积最大值,着重考查了利用正余弦定理解三角形、用基本不等式求最值和平行四边形面积公式等知识,属于中档题.。
2018-2019学年重庆市区县高一(下)期末数学试卷
2018-2019学年重庆市区县高一(下)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)已知向量(2,3)a =r,(,4)b m =r ,若,a b r r 共线,则实数(m = )A .6-B .83-C .83D .62.(5分)已知a ,b R ∈,若关于x 的不等式20x ax b ++<的解集为(1,3),则(a b += )A .7-B .1-C .1D .73.(5分)已知等差数列{}n a 的前n 项和为n S ,且24S =,416S =,则56(a a += ) A .11B .16C .20D .284.(5分)某高中三个年级共有3000名学生,现采用分层抽样的方法从高一、高二、高三年级的全体学生中抽取一个容量为30的样本进行视力健康检查,若抽到的高一年级学生人数与高二年级学生人数之比为3:2,抽到高三年级学生10人,则该校高二年级学生人数为( )A .600B .800C .1000D .12005.(5分)已知变量x ,y 的取值如表:由散点图分析可知y 与x 线性相关,且求得回归直线的方程为ˆˆ3y bx =-,据此可预测:当8x =时,y 的值约为( )A .63B .74C .85D .966.(5分)已知非零实数a ,b 满足a b >,则下列不等关系一定成立的是( ) A .11a b< B .ab a b >+ C .22a b >D .3223a ab a b b +>+7.(5分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若4A π=,5a =,4c =,则满足条件的ABC ∆的个数为( ) A .0B .1C .2D .无数多个8.(5分)已知等比数列{}n a 的前n 项和为n S ,若33S =,621S =-,则1(a = ) A .2-B .1-C .1D .29.(5分)某校统计了1000名学生的数学期末考试成绩,已知这1000名学生的成绩均在50分到150分之间,其频率分布直方图如图所示,则这1000名学生中成绩在130分以上的人数为( )A .10B .20C .40D .6010.(5分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,已知22cos a b c B -=,则角C 的大小为( ) A .6πB .3π C .23π D .56π 11.(5分)已知1a >-,0b >,21a b +=,则121a b ++的最小值为( ) A .72B .92C .7D .912.(5分)已知λ,R μ∈,ABC ∆所在平面内一点P 满足()()ABBCACCBAP AB AC AB BC AC CBλμ=++=++,则||(||BP CP =u u u r u u u r ) A .sin 2sin2BC B .cos 2cos2B C C .sin 2sin2C BD .cos2cos2C B 二、填空题:本大题共4小题,每小题5分,共20分 13.(5分)关于x 的不等式210x x+>的解集为 . 14.(5分)甲、乙两人要到某地参加活动,他们都随机从火车、汽车、飞机三种交通工具中选择一种,则他们选择相同交通工具的概率为 .15.(5分)当实数a 变化时,点(2,1)P --到直线:(1)120l a x y a -++-=的距离的最大值为16.(5分)在ABC ∆中,角A ,B ,C 所对的边分别为,b ,c ,若ABC ∆的面积为3cos bc A ,则cos sin B C +的最大值为三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)学生会6名同学,其中4名男同学2名女同学.现要从中随机选出2名代表发言.求:(1)A 同学被选中的概率是多少?(2)至少有1名女同学被选中的概率是多少?18.(12分)设等差数列{}n a 的前n 项和为n S ,77S =,2128a a +=. (1)求n a ;(2)设2n a n b =,求数列{}n b 的前n 项和n T .19.(12分)近年来,某地大力发展文化旅游创意产业创意维护一处古寨,几年来,经统计,古寨的使用年限x (年)和所支出的维护费用y (万元)的相关数据如图所示,根据以往资料显示y 对x 呈线性相关关系(1)求出y 关于x 的回归直线方程ˆˆˆybx a =+; (2)试根据(1)中求出的回归方程,预测使用年限至少为几年时,维护费用将超过10万元?参考公式:对于一组数据1(x ,1)y ,2(x ,2)y ,⋯,(n x ,)n y ,其回归方程ˆˆˆybx a =+的斜率和截距的最小二乘估计分别为1221ˆˆˆ,ni ii nii x ynxy bay bx xnx ==-==--∑∑. 20.(12分)如图,在ABC ∆中,90ABC ∠=︒,D 为AC 延长线上一点,且23AD =6BD =,1sin 3ADB ∠=. (1)求AB 的长度; (2)求ABC ∆的面积.21.(12分)在平面直角坐标系中,ABC ∆的顶点(1,3)A -、(3,4)B -,边AC 上的高线所在的直线方程为2360x y ++=,边BC 上的中线所在的直线方程为2370x y +-=. (1)求点B 到直线AC 的距离; (2)求ABC ∆的面积.22.(12分)已知数列{}n a 的前n 项和为n S ,115a =,123n n n n a a a +=+.(1)证明:数列1{3}n na -为等比数列; (2)证明:2(61)n S <-.2018-2019学年重庆市区县高一(下)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)已知向量(2,3)a =r,(,4)b m =r ,若,a b r r 共线,则实数(m = )A .6-B .83-C .83D .6【解答】解:Q 向量(2,3)a =r,(,4)b m =r ,,a b r r 共线, ∴423m =, 解得实数83m =.故选:C .2.(5分)已知a ,b R ∈,若关于x 的不等式20x ax b ++<的解集为(1,3),则(a b += )A .7-B .1-C .1D .7【解答】解:由已知及韦达定理可得,13a -=+,13b =⨯, 即4a =-,3b =, 所以1a b +=-. 故选:B .3.(5分)已知等差数列{}n a 的前n 项和为n S ,且24S =,416S =,则56(a a += ) A .11B .16C .20D .28【解答】解:{}n a Q 为等差数列,前n 项和为n S ,2S ∴,42S S -,64S S -成等差数列,422642()()S S S S S ∴-=+-,又24S =,416S =,64562444S S a a ∴=+-=++,5620a a ∴+=. 故选:C .4.(5分)某高中三个年级共有3000名学生,现采用分层抽样的方法从高一、高二、高三年级的全体学生中抽取一个容量为30的样本进行视力健康检查,若抽到的高一年级学生人数与高二年级学生人数之比为3:2,抽到高三年级学生10人,则该校高二年级学生人数为()A .600B .800C .1000D .1200【解答】解:根据题意可设抽到高一和高二年级学生人数分别为3k 和2k ,则 321030k k ++=,即4k =,所以高一年级和高二年级抽到的人数分别是12人和8人, 则该校高二年级学生人数为8300080030⨯=人. 故选:B .5.(5分)已知变量x ,y 的取值如表:由散点图分析可知y 与x 线性相关,且求得回归直线的方程为ˆˆ3y bx =-,据此可预测:当8x =时,y 的值约为( )A .63B .74C .85D .96【解答】解:1234535x ++++==,1015304550305y ++++==.故样本点的中心的坐标为(3,30), 代入ˆˆ3ybx =-,得303ˆ113b +==. ∴ˆ113yx =-,取8x =,得ˆ118385y =⨯-=. 故选:C .6.(5分)已知非零实数a ,b 满足a b >,则下列不等关系一定成立的是( ) A .11a b< B .ab a b >+ C .22a b >D .3223a ab a b b +>+【解答】解:由已知220a b +>且a b >, 所以2222()()a a b b a b +>+, 即3223a ab a b b +>+. 故选:D .7.(5分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若4A π=,5a =,4c =,则满足条件的ABC ∆的个数为( ) A .0B .1C .2D .无数多个【解答】解:4A π=Q,5a =,4c =,∴由余弦定理2222cos a b c bc A =+-,可得:22251624b b =+-⨯⨯⨯,可得:24290b b --=,(*)∴由△24680b ac =-=>,且两根之和为正、两根之积为负数,∴方程(*)有两个不相等的实数根,且只有一个正实数根,即有一个边b 满足题中的条件,由此可得满足条件的ABC ∆有一个解. 故选:B .8.(5分)已知等比数列{}n a 的前n 项和为n S ,若33S =,621S =-,则1(a = ) A .2-B .1-C .1D .2【解答】解:Q 等比数列{}n a 的前n 项和为n S ,33S =,621S =-, ∴313616(1)31(1)211a q S q a q S q ⎧-==⎪-⎪⎨-⎪==-⎪-⎩, 解得11a =,2q =-. 故选:C .9.(5分)某校统计了1000名学生的数学期末考试成绩,已知这1000名学生的成绩均在50分到150分之间,其频率分布直方图如图所示,则这1000名学生中成绩在130分以上的人数为( )A .10B .20C .40D .60【解答】解:由频率分布直方图得:这1000名学生中成绩在130分以上的频率为: 1(0.0060.0140.020.008)200.04-+++⨯=,则这1000名学生中成绩在130分以上的人数为10000.0440⨯=人. 故选:C .10.(5分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,已知22cos a b c B -=,则角C 的大小为( ) A .6πB .3π C .23π D .56π 【解答】解:Q 在ABC ∆中,2cos 2c B a b =-,∴由余弦定理可得:222222a c b c a b ac +-⨯=-,222a b c ab ∴+-=,2221cos 22a b c C ab +-∴==,又(0,)C π∈,3C π∴=.故选:B .11.(5分)已知1a >-,0b >,21a b +=,则121a b ++的最小值为( ) A .72B .92C .7D .9【解答】解:1a >-Q ;10a ∴+>,且0b >,21a b +=; 122a b ∴++=;∴121222(1)2()(12)()1459111b a a b a b a b a b ++=+++=++++=+++…,当且仅当213a b +==时等号成立; ∴12912a b ++…; ∴121a b ++的最小值为92. 故选:B .12.(5分)已知λ,R μ∈,ABC ∆所在平面内一点P 满足()()AB BC AC CBAP AB AC AB BC AC CBλμ=++=++,则||(||BP CP =u u u r u u u r ) A .sin 2sin2BC B .cos 2cos2B C C .sin 2sin2C BD .cos2cos2C B 【解答】解:由||||AB BC AB BC +u u u r u u u r u u ur u u u r 方向为ABC ∠外角平分线方向, 所以点P 在ABC ∠的外角平分线上, 同理,点P 在ACB ∠的外角平分线上,2BPBC π-∠=,2CPCB π-∠=,在PBC ∆中,由正弦定理得: cos||sin 2sin ||cos 2C BP PCB BPBC CP ∠==∠u u u r u u u r , 故选:D .二、填空题:本大题共4小题,每小题5分,共20分 13.(5分)关于x 的不等式210x x +>的解集为 1(,)(0,)2-∞-+∞U . 【解答】解:210x x+>同解于 2100x x +>⎧⎨>⎩或2100x x +<⎧⎨<⎩解得12x <-或0x >故答案为:1(,)(0,)2-∞-+∞U14.(5分)甲、乙两人要到某地参加活动,他们都随机从火车、汽车、飞机三种交通工具中选择一种,则他们选择相同交通工具的概率为13. 【解答】解:甲、乙两人选择交通工具总的选择有339⨯=种,他们选择相同交通工具有3种情况,所以他们选择相同交通工具的概率为3193=.故答案为:13.15.(5分)当实数a 变化时,点(2,1)P --到直线:(1)120l a x y a -++-=的距离的最大值为【解答】解:由直线:(1)120l a x y a -++-=,得(2)10a x x y --++=, 联立2010x x y -=⎧⎨-++=⎩,解得21x y =⎧⎨=⎩.∴直线l 恒过定点(2,1),P ∴到直线l的最大距离d ==故答案为:16.(5分)在ABC ∆中,角A ,B ,C 所对的边分别为,b ,c ,若ABC ∆cos A ,则cos sin B C +【解答】解:ABC ∆中,若ABC ∆1cos sin 2A bc A =g ,tan A ∴=,6A π∴=.则11cos sin cos sin()cos sin()cos cos sin ))6223B C B A B B B B B B B B B ππ+=++=++=+++…,当且仅当6B π=时,取等号,故cos sin B C +三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)学生会6名同学,其中4名男同学2名女同学.现要从中随机选出2名代表发言.求:(1)A 同学被选中的概率是多少?(2)至少有1名女同学被选中的概率是多少?【解答】解:(1)所有的选法有26C 种,A 同学被选中的方法有1115C C 种,故A 同学被选中的概率是 152613C P C ==.(2)所有的选法有26C 种,至少有1名女同学包括两种情况:1个男同学与1个女同学,2个女同学,这两种情况分别有1142C C 和22C 种选法, 故至少有1名女同学被选中的概率是1124222635C C C P C +==. 18.(12分)设等差数列{}n a 的前n 项和为n S ,77S =,2128a a +=.(1)求n a ;(2)设2n a n b =,求数列{}n b 的前n 项和n T .【解答】解:(1)172127784772a a a a a S ++=⇒===Q g 711216a a a d -∴=-∴== 213n a n n ∴=-+-=-;(2)3n a n =-Q ,2n a n b =32n n b -∴=则111(12)14(21)124n n n T ---==--. 19.(12分)近年来,某地大力发展文化旅游创意产业创意维护一处古寨,几年来,经统计,古寨的使用年限x (年)和所支出的维护费用y (万元)的相关数据如图所示,根据以往资料显示y 对x 呈线性相关关系(1)求出y 关于x 的回归直线方程ˆˆˆybx a =+; (2)试根据(1)中求出的回归方程,预测使用年限至少为几年时,维护费用将超过10万元?参考公式:对于一组数据1(x ,1)y ,2(x ,2)y ,⋯,(n x ,)n y ,其回归方程ˆˆˆybx a =+的斜率和截距的最小二乘估计分别为1221ˆˆˆ,n i ii n ii x y nxyb a y bx x nx ==-==--∑∑. 【解答】解:(1)3456 4.54x +++==, 2.534 4.5 3.54y +++==, 222223 2.543546 4.54 4.5 3.5ˆ0.73456445b ⨯+⨯+⨯+⨯-⨯⨯==+++-⨯g , ˆ 3.50.7 4.50.35a=-⨯=. 故线性回归方程为ˆ0.70.35yx =+; (2)由ˆ0.70.3510y x =+>,解得111314x >. 故使用年限至少为14年时,维护费用将超过10万元. 20.(12分)如图,在ABC ∆中,90ABC ∠=︒,D 为AC 延长线上一点,且23AD =,6BD =,1sin 3ADB ∠=. (1)求AB 的长度;(2)求ABC ∆的面积.【解答】解:(1)由题意可得222cos 1D sin D =-= 在ABD ∆中,由余弦定理可得2222cos AB AD BD AD BD D =+-g 2212622362=+-⨯=,则2AB = (2)在ABD ∆中,2226cos 22223AB AD BD A AB AD +-===g g , 23sin 1A cos A =-=3cos AB AC A == ABC ∆的面积为1132sin 2322S AB AC A ===g g g g 21.(12分)在平面直角坐标系中,ABC ∆的顶点(1,3)A -、(3,4)B -,边AC 上的高线所在的直线方程为2360x y ++=,边BC 上的中线所在的直线方程为2370x y +-=.(1)求点B 到直线AC 的距离;(2)求ABC ∆的面积.【解答】解:(1)由题意,32AC k =,直线AC 的方程为33(1)2y x -=+,即3290x y -+=. 点B 到直线AC的距离d == (2)设(,)C m n ,则BC 的中点坐标为34(,)22m n +-, 则329034237022m n m n -+=⎧⎪⎨+-⨯+⨯-=⎪⎩,解得16m n =⎧⎨=⎩,即(1,6)C ,||AC ∴= ABCd ∴∆的面积1||132S AC d ==g . 22.(12分)已知数列{}n a 的前n 项和为n S ,115a =,123n n n n a a a +=+. (1)证明:数列1{3}n n a -为等比数列; (2)证明:n S <. 【解答】证明:(1)115a =,123n n n n a a a +=+, 可得1123n n n a a +=+, 即有111132(3)n n n na a ++-=-, 可得数列1{3}n na -为公比为2,首项为2的等比数列; (2)由(1)可得132n n n a -=, 即132n n na =+,由基本不等式可得32n n n +>,n a <,即有12112211n n S a a a =++⋯+<<=--.。
2018-2019学年重庆一中高一(下)期末数学试卷
2018-2019学年重庆一中高一(下)期末数学试卷一、选择题:(本大题共12小题,每小题5分,每小题只有一项符合题目要求) 1.(5分)设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5(S = ) A .5B .7C .9D .102.(5分)某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为( ) A .40B .36C .30D .203.(5分)已知向量(1,2)a =r ,(3,)b m =r ,m R ∈,则“6m =”是“//()a a b +r r r ”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4.(5分)已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//m α,//n α,则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥5.(5分)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则(EB =u u u r) A .3144AB AC -u u ur u u u rB .1344AB AC -u u ur u u u rC .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r6.(5分)在ABC ∆中,60A =︒,2AB =,且ABC ∆,则BC 的长为( )A B C .D .27.(5分)某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( )(注:结余=收入-支出)A .收入最高值与收入最低值的比是3:1B .结余最高的月份是7月C .1至2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元8.(5分)《莱因德纸草书》是世界上最古老的数学著作只之一,书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,问最小一份为( )A .53B .103C .56D .1169.(5分)若42log (34)log a b ab +=,则a b +的最小值是( ) A .623+B .723+C .643+D .743+10.(5分)如图,四棱锥P ABCD -的底面ABCD 为平行四边形,2NB PN =,则三棱锥N PAC -与三棱锥D PAC -的体积比为( )A .1:2B .1:8C .1:6D .1:311.(5分)已知四棱锥P 一ABCD 中,平面PAD ⊥平面ABCD ,其中ABCD 为正方形,PAD ∆为等腰直角三角形,2PA PD ==,则四棱锥P ABCD -外接球的表面积为( ) A .10πB .4πC .16πD .8π12.(5分)在ABC ∆中,已知9AB AC =u u u r u u u r g ,sin cos sin B A C =g ,6ABC S ∆=,P 为线段AB 上的点,且||||CA CBCP x y CA CB =+u u u r u u u ru u u r u u u r u u u r g ,则xy 的最大值为( ) A .1 B .2 C .3 D .4二、填空题:(本大题共4小题,每小题5分)13.(5分)(文科)某校女子篮球队7名运动员身高(单位:厘米)分布的茎叶图如图,已知记录的平均身高为175cm ,但记录中有一名运动员身高的末位数字不清晰,如果把其末尾数记为x ,那么x 的值为 .14.(5分)在各项均为正数的等比数列{}n a 中,321a =-,521a =+,则2326372a a a a a ++等于 .15.(5分)如图所示,在正三棱柱111ABC A B C -中,D 是AC 的中点,1:2:1AA AB =,则异面直线1AB 与BD 所成的角为 .16.(5分)在ABC ∆中,若3cos 3cos 2a B b A b +=,点E ,F 分别是AC ,AB 的中点,则BECF的取值范围为 . 三、解答题:(解答应写出文字说明、证明过程或演算步骤)17.(10分)已知数列{}n a 的前n 项和是n S ,且11()2nn S a n N ++=∈(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设113log (1)()n bn S n N ++=-∈,令12231111n n n T b b b b b b +=++⋯+,求n T . 18.(12分)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,E 、F 分别为11A C 和BC 的中点.(1)求证:平面ABE ⊥平面11B BCC ; (2)求证:1//C F 平面ABE .19.(12分)某网站推出了关于扫黑除恶情况的调查,调查数据表明,扫黑除恶仍是百姓最为关心的热点,参与调查者中关注此问题的约占80%.现从参与关注扫黑除恶的人群中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示.(1)求出a 的值;(2)求这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);20.(12分)如图所示,平面ABCD ⊥平面BCE ,四边形ABCD 为矩形,BC CE =,点F 为CE 的中点.(1)若2BE BC CD ===,求三棱锥D BFC -的体积;(2)点M 为CD 上任意一点,在线段AE 上是否存在点P ,使得PM BE ⊥?若存在,确定点P 的位置,并加以证明;若不存在,请说明理由.21.(12分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,(sin ,sin sin )m A B C =-r,(3n a b =r ,)b c +,且m n ⊥r r .(1)求角C 的值;(2)若ABC ∆为锐角三角形,且1c =3a b -的取值范围.22.(12分)已知数列{}n a ,11a =,28a =,且*21442()n n n a a a n N ++=--∈ (1)设12n n n b a a +=-,证明数列{2}n b -是等比数列,并求数列{}n a 的通项; (2)若1n n c a =,并且数列{}n c 的前n 项和为n T ,不等式45364n kT „对任意正整数n 恒成立,求正整数k 的最小值.(注:当4n …时,则122)n n -…2018-2019学年重庆一中高一(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,每小题只有一项符合题目要求) 1.(5分)设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5(S = ) A .5B .7C .9D .10【解答】解:由等差数列{}n a 的性质,及1353a a a ++=, 333a ∴=, 31a ∴=,15535()552a a S a +∴===. 故选:A .2.(5分)某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为( ) A .40B .36C .30D .20【解答】解:每个个体被抽到的概率等于9013602701809=++,甲社区有360户低收入家庭,故应从甲社区中抽取低收入家庭的户数为1270309⨯=,故选:C .3.(5分)已知向量(1,2)a =r,(3,)b m =r ,m R ∈,则“6m =”是“//()a a b +r r r ”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【解答】解:Q 向量(1,2)a =r,(3,)b m =r ,∴(4,2)a b m +=+rr,若“//()a a b +r r r ”则2240m +-⨯=,解得:6m =,故“6m =”是“//()a a b +rr r ”的充分必要条件,故选:A .4.(5分)已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//m α,//n α,则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥【解答】解:A .若//m α,//n α,则m ,n 相交或平行或异面,故A 错;B .若m α⊥,n α⊂,则m n ⊥,故B 正确;C .若m α⊥,m n ⊥,则//n α或n α⊂,故C 错;D .若//m α,m n ⊥,则//n α或n α⊂或n α⊥,故D 错.故选:B .5.(5分)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则(EB =u u u r )A .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u r D .1344AB AC +u u ur u u u r 【解答】解:在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,12EB AB AE AB AD =-=-u u u r u u u r u u u r u u u r u u u r11()22AB AB AC =-⨯+u u u r u u u r u u u r3144AB AC =-u u ur u u u r , 故选:A .6.(5分)在ABC ∆中,60A =︒,2AB =,且ABC ∆,则BC 的长为( )A B C .D .2【解答】解:Q 在ABC ∆中,60A =︒,2AB =,且ABC ∆,∴1sin 2AB AC A =g g ,即122AC ⨯⨯=, 解得:1AC =,由余弦定理得:2222cos 1423BC AC AB AC AB A =+-=+-=g g ,则BC = 故选:B .7.(5分)某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( )(注:结余=收入-支出)A.收入最高值与收入最低值的比是3:1B.结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D.前6个月的平均收入为40万元【解答】解:由图可知,收入最高值为90万元,收入最低值为30万元,其比是3:1,故A 正确,由图可知,结余最高为7月份,为802060-=,故B正确,由图可知,1至2月份的收入的变化率为与4至5月份的收入的变化率相同,故C正确,由图可知,前6个月的平均收入为1(406030305060)456+++++=万元,故D错误,故选:D.8.(5分)《莱因德纸草书》是世界上最古老的数学著作只之一,书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,问最小一份为()A.53B.103C.56D.116【解答】解:设五个人所分得的面包为2a d-,a d-,a,a d+,2a d+,(其中0)d>;则,(2)()()(2)5100a d a d a a d a d a-+-+++++==,20a∴=;由1(2)27a a d a d a d a d++++=-+-,得337(23)a d a d+=-;2411d a∴=,55/6d∴=;所以,最小的1分为110522063a d-=-=.故选:A .9.(5分)若42log (34)log a b ab +=,则a b +的最小值是( ) A .623+B .723+C .643+D .743+【解答】解:340a b +>Q ,0ab >, 0a ∴>.0b >42log (34)log a b ab +=Q , 44log (34)log ()a b ab ∴+=34a b ab ∴+=,4a ≠,0a >.0b >∴304ab a =>-, 4a ∴>,则33(4)121212123(4)72(4)743744444a a ab a a a a a a a a a a -++=+=+=++=-++-+=+-----g …,当且仅当423a =+取等号. 故选:D .10.(5分)如图,四棱锥P ABCD -的底面ABCD 为平行四边形,2NB PN =,则三棱锥N PAC -与三棱锥D PAC -的体积比为( )A .1:2B .1:8C .1:6D .1:3【解答】解:Q 四边形ABCD 是平行四边形,ABC ACD S S ∆∆∴=. D PAC P ACD P ABC V V V ---∴==. 2NB PN =Q ,23NB PB ∴=,23N ABC P ABCV V --∴=,13N PAC P ABC N ABC P ABC V V V V ----∴=-=.∴13N ABC D PAC V V --=. 故选:D .11.(5分)已知四棱锥P 一ABCD 中,平面PAD ⊥平面ABCD ,其中ABCD 为正方形,PAD ∆为等腰直角三角形,2PA PD ==,则四棱锥P ABCD -外接球的表面积为( ) A .10πB .4πC .16πD .8π【解答】解:取AD 的中点E ,Q 平面PAD ⊥平面ABC ,其中ABCD 为正方形,PAD ∆ 为等腰直角三角形,∴四棱锥P ABCD -的外接球的球心为正方形ABCD 的中心O ,设半径为R ,则OE AD ⊥Q ,1PE = 112R ∴=+=,∴四棱锥P ABCD -的外接球的表面积为8π.故选:D .12.(5分)在ABC ∆中,已知9AB AC =u u u r u u u r g ,sin cos sin B A C =g ,6ABC S ∆=,P 为线段AB 上的点,且||||CA CBCP x y CA CB =+u u u r u u u ru u u r u u u r u u u r g ,则xy 的最大值为( ) A .1 B .2 C .3 D .4【解答】解:ABC ∆中设AB c =,BC a =,AC b =sin cos sin B A C =Q g ,sin()sin cos A C C A +=,即sin cos sin cos sin cos A C C A C A += sin cos 0A C ∴=sin 0cos 0A C ≠∴=Q 90C =︒Q 9AB AC =u u u r u u u rg ,6ABC S ∆=cos 9bc A ∴=,1sin 62bc A =4tan 3A ∴=,根据直角三角形可得4sin 5A =,3cos 5A =,15bc =5c ∴=,3b =,4a =以AC 所在的直线为x 轴,以BC 所在的直线为y 轴建立直角坐标系可得(0C ,0)(3A ,0)(0B ,4)P 为线段AB 上的一点,则存在实数λ使得(1)(3CP CA CB λλλ=+-=u u u r u u u r u u u r ,44)(01)λλ-剟 设1||CAe CA =u u u r u r u u ur ,2||CB e CB =u u u ru u r u u u r 则12||||1e e ==u r u u r , 1(1,0)e =u r ,2(0,1)e =u u r,∴(||||CA CBCP x y x CA CB =+=u u u r u u u ru u u r u u u r u u u r g ,0)(0+,)(y x =,)y 可得3x λ=,44y λ=-则4312x y +=, 1243212x y xy =+…,3xy „故所求的xy 最大值为:3. 故选:C .二、填空题:(本大题共4小题,每小题5分)13.(5分)(文科)某校女子篮球队7名运动员身高(单位:厘米)分布的茎叶图如图,已知记录的平均身高为175cm ,但记录中有一名运动员身高的末位数字不清晰,如果把其末尾数记为x ,那么x 的值为 2 .【解答】解:根据茎叶图中的数据知,1170(12451011)1757x +⨯++++++=,即1(33)57x ⨯+=, 即3335x +=, 解得2x =. 故答案为:2.14.(5分)在各项均为正数的等比数列{}n a 中,321a =,521a ,则2326372a a a a a ++等于 8 .【解答】解:在各项均为正数的等比数列{}n a 中, 321a Q ,521a =,2326372a a a a a ∴++2233552a a a a =++235()a a =+2(2121)= 8=.故答案为:8.15.(5分)如图所示,在正三棱柱111ABC A B C -中,D 是AC 的中点,1:2AA AB =,则异面直线1AB 与BD 所成的角为 60︒ .【解答】解:取11A C 的中点1D ,连接11B D ,D Q 是AC 的中点,11//B D BD ∴,11AB D ∴∠即为异面直线1AB 与BD 所成的角.连接1AD ,设AB a =,则12AA a =,13AB a ∴=,113B D ,2213242a AD a a =+=. 22211393144cos 23232a a a AB D a a+-∴∠==⨯⨯, 1160AB D ∴∠=︒.故答案为:60︒16.(5分)在ABC ∆中,若3cos 3cos 2a B b A b +=,点E ,F 分别是AC ,AB 的中点,则BE CF 的取值范围为 1(4,7)8. 【解答】解:设AB c =,AC b =,BC a =, 由题意得,3cos 3cos 2a B b A b +=,则由正弦定理可得:3sin cos 3sin cos 2sin A B B A B +=,即3sin()3sin 2sin A B C B +==,由正弦定理得,32c b =,即32b c =,Q 点E ,F 分别是AC ,AB 的中点,∴由中线长定理得,222221112()2224BE a c b a c =+-=- 222221172()2222CF a b c a c =+-+∴BE CF ==a b c <+Q 且a c b +>,∴1522c a c <<,则1522a c <<, ∴2125()44a c <<, 2742()162a c ∴<+<,则1748, 则BF CF 的取值范围是1(4,7)8. 故答案为:1(4,7)8.三、解答题:(解答应写出文字说明、证明过程或演算步骤)17.(10分)已知数列{}n a 的前n 项和是n S ,且11()2n n S a n N ++=∈(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设113log (1)()n bn S n N ++=-∈,令12231111n n n T b b b b b b +=++⋯+,求n T . 【解答】解:(Ⅰ)当1n =时,11a S =,由111111122S a a a +=+=,得:123a =.当2n …时,11111,122n n n n S a S a --=-=-.则111()2n n n n S S a a ---=-,即11()2n n n a a a -=-,所以11(2)3n n a a n -=….Q 1203a =≠,∴113n n a a -=.故数列{}n a 是以23为首项,13为公比的等比数列.故11*1211()2()()333n n n n a a q n N --===∈g g .(Ⅱ)Q 112n n S a +=,∴112n n S a -=.∴1111331(1)()13n n n b log Slog n ++=-==+.∴11111(1)(2)12n n b b n n n n +==-++++. 所以,1223111111111111()()()233412222(2)n n n nT b b b b b b n n n n +=++⋯+=-+-+⋯+-=-=++++. 18.(12分)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,E 、F 分别为11A C 和BC 的中点.(1)求证:平面ABE ⊥平面11B BCC ; (2)求证:1//C F 平面ABE .【解答】证明:(1)1BB ⊥Q 平面ABC ,AB ⊂平面ABC , 1AB BB ∴⊥又AB BC ⊥,1BB BC B =I ,AB ∴⊥平面11B BCC而AB ⊂平面ABE ,∴平面ABE ⊥平面11B BCC(2)取AC 的中点G ,连结1C G 、FG ,F Q 为BC 的中点,//FG AB ∴又E 为11A C 的中点1//C E AG ∴,且1C E AG =∴四边形1AEC G 为平行四边形,1//AE C G ∴∴平面1//C GF 平面EAB ,而1C F ⊂平面1C GF ,1//C F∴平面EAB.19.(12分)某网站推出了关于扫黑除恶情况的调查,调查数据表明,扫黑除恶仍是百姓最为关心的热点,参与调查者中关注此问题的约占80%.现从参与关注扫黑除恶的人群中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示.(1)求出a的值;(2)求这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);【解答】解:(1)由频率分布直方图的性质得:10(0.0100.0150.0300.010)1a++++=,解得0.035a=.(2)平均数为;200.1300.15400.35500.3600.141.5⨯+⨯+⨯+⨯+⨯=岁,设中位数为x,则100.010100.015(35)0.0350.5x⨯+⨯+-⨯=,解得42.1x=岁.20.(12分)如图所示,平面ABCD⊥平面BCE,四边形ABCD为矩形,BC CE=,点F为CE的中点.(1)若2BE BC CD===,求三棱锥D BFC-的体积;(2)点M 为CD 上任意一点,在线段AE 上是否存在点P ,使得PM BE ⊥?若存在,确定点P 的位置,并加以证明;若不存在,请说明理由.【解答】解:(1)Q 平面ABCD ⊥平面BCE ,四边形ABCD 为矩形,DC BC ⊥,DC ∴⊥平面BCE ,2BE BC CD ===Q ,∴1113(13)2332D BFC BFC V S DC -==⨯⨯⨯⨯=g ; (2)当P 为AE 中点时,有PM BE ⊥.证明如下:取BE 中点H ,连接DP ,PH ,CH ,P Q 为AE 的中点,H 为BE 的中点,//PH AB ∴,又//AB CD ,//PH CD ∴,则P ,H ,C ,D 四点共面. Q 平面ABCD ⊥平面BCE ,平面ABCD ⋂平面BCE BC =, CD ⊂平面ABCD ,CD BC ⊥,CD ∴⊥平面BCE ,又BE ⊂平面BCE ,CD BE ∴⊥,BC CE =Q ,H 为BE 的中点,CH BE ∴⊥,又CD CH C =I ,BE ∴⊥平面DPHC ,又PM ⊂平面DPHC ,BE PM ∴⊥,即PM BE ⊥.21.(12分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,(sin ,sin sin )m A B C =-r,(n a =r ,)b c +,且m n ⊥r r .(1)求角C 的值;(2)若ABC ∆为锐角三角形,且1c =b -的取值范围.【解答】解:(1)Q (sin ,sin sin )m A B C =-r,(n a =-r ,)b c +,且m n ⊥r r,sin ()(sin sin )()0A a B C b c ∴+-+=,利用正弦定理化简得:()()()0a a b c b c ++-=,即222a b c +-=,222cos 22a b c C ab +-∴==, (0,)C π∈Q ,6C π∴=;(2)由(1)得56A B π+=,即56B A π=-, 又ABC ∆为锐角三角形, ∴506202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩,解得:32A ππ<<,1c =Q ,∴由正弦定理得:12sin sin sin sin 6a b c A B C π====, 2sin a A ∴=,2sin b B =,∴2sin 2sin()2sin cos 2cos sin cos 2sin()6666b A B A A A A A A A A ππππ-=-=-+=---=-, Q32A ππ<<,∴663A πππ<-<,∴1sin()26A π<-<12sin()6A π<-<b -的取值范围为.22.(12分)已知数列{}n a ,11a =,28a =,且*21442()n n n a a a n N ++=--∈ (1)设12n n n b a a +=-,证明数列{2}n b -是等比数列,并求数列{}n a 的通项; (2)若1n n c a =,并且数列{}n c 的前n 项和为n T ,不等式45364n kT „对任意正整数n 恒成立,求正整数k 的最小值.(注:当4n …时,则122)n n -…【解答】解:(1)证明:121111222244222222n n n n n n n n n n b a a a a b a a a a ++++++-----===-----, 而124b -={2}n b ∴-是以4为首项2为公比的等比数列,112222n n n n b b ++-==+即11222n n n a a ++-=+,1111222n n n n n a a ++-=+累加法可求出111()222n n n a n -=+- ∴1(21)22n n a n -=+-;(2)111(21)22n n n c a n -==+-, 123111,,826c c c ===1458.09364k T k ⇒剠,2459.1364k T k ⇒剠,3459.41364kT k ⇒剠由条件知当4n …时,122n n -…, 即121111111()(21)22422(22)(21)(21)(21)22121n n c n n n n n n n n n -==<=-+-+-+-+--+„ ∴123451121111899189945()()9.910427217282(21)728364n n n kT c c c c c c c k n n -=+++++⋯++<+-=-<⇒++剠而*k N ∈综上所述k 的最小值为10.。
2018学年重庆市高一下学期期末联考数学试题(文科)8
高一下学期期末考试数学试题一、选择题1.ABC 的内角,,A B C 的对边分别为,,a b c ,若c = 120b B =,则边a 等于( )A.B. C. D. 22.在ABC ∆中,内角,,A B C 的对边分别是,,a b c ,若2c a =,1sin sin sin 2b B a A a C -=,则sin B 为( )A .B. 34C.D. 133.各项均为正数的等比数列{}n a ,其前n 项和为n S .若25378,13a a S -=-=,则数列{}n a 的通项公式为n a =( ) A. 2n B. 12n - C. 3n D. 13n -4.已知数列{}n a 的通项为()()143nn a n =--,则数列{}n a 的前50项和50T =( )A. 98B. 99C. 100D. 1015.设n S 是公差不为零的等差数列{}n a 的前n 项和,且10a >,若59S S =,则当n S 最大时,n=( ) A. 6 B. 7 C. 10 D. 96.某空间组合体的三视图如图所示,则该组合体的体积为( )A. 48B. 56C. 64D. 727.设0,0a b >>,若2是4a 和2b 的等比中项,则21a b+的最小值为( )A. B. 4 C. 92D. 58.大衍数列,来源于《乾坤普》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两翼数量总和.是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0248121824324050......、、、、、、、、、,则此数列第20项为( )A. 180B. 200C. 128D. 1629.已知等差数列{}n a 的前n 项和为n S ,若M N P 、、三点共线, O 为坐标原点,且156ON a OM a OP =+(直线MP 不过点O ),则20S 等于( ) A. 20 B. 10 C. 40 D. 1510.已知a b >,一元二次不等式220ax x b ++≥对于一切实数x 恒成立,由又0x R ∃∈,使20020ax x b ++=,则222a b +的最小值为( )A. 1B.C. 2D. 11.若实数()0,1a b ∈、,且满足()114a b ->,则a b 、的大小关系是( ) A. a b > B. a b < C. a b ≤ D. a b ≥12.()()3,1,1,3,(0,0)OA OB OC mOA nOB m n ==-=->>若[]1,2m n +∈则OC 的取值范围是( )A. B. C.D.二、填空题13.已知向量,a b 满足()5a a b ⋅+=,且2,1a b ==,则向量a 与b 夹角余弦值为__________.14.在ABC ∆中,角,,A B C 的对边分别是,,a b c 且2cos 2c B a b =+,若ABC ∆的面积S =,则ab 的值为__________.156、4的长方体的体积相等,则长方体的表面积为_____.16.设等比数列{}n a 满足公比*q N ∈, *n a N ∈,且{}n a 中的任意两项之积也是该数列中的一项,若8112a =,则q 的所有可能取值的集合为 .三、解答题17.请推导等比数列的前n 项和公式.18.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为()1,3,(1)若方程()60f x a +=有两个相等的实根,求()f x 的解析式; (2)若()f x 的最大值为正数,求a 的取值范围.19.已知函数f (x )=226xx +. (1)若f (x )>k 的解集为{x |x <-3,或x >-2},求k 的值; (2)对任意x >0,f (x )≤t 恒成立,求t 的取值范围.20.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c)(a -b +c)=ac . (Ⅰ)求B ;(Ⅱ)若sinAsinC C .21.已知一四面体的三组对边分别相等,且长度依次为. (1)求该四面体的体积; (2)求该四面体外接球的表面积.22.设数列{}n a 的前n 项和为n S ,已知()*22n nn S a n N =-∈. (1)求1a 的值,若2n n n a c =,证明数列{}n c 是等差数列;(2)设()22log log 1n n b a n =-+,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n B ,若存在整数m ,使对任意*n N ∈且2n ≥,都有320n n mB B ->成立,求m 的最大值.高一下学期期末考试数学试题一、选择题1.ABC 的内角,,A B C 的对边分别为,,a b c ,若c = 120b B =,则边a 等于( )A.B. C. D. 2【答案】C【解析】试题分析:根据题意中给定了两边以及一边的对角可知那么结合余弦定理可知222212cos 622b a c ac B a a ⎛⎫=+-∴=+-⨯-∴= ⎪⎝⎭故答案为C. 【考点】解三角形点评:主要是考查了余弦定理的运用,求解边,属于基础题。
【高一数学试题精选】2018年高一下学期数学期末试卷(附答案)
2018年高一下学期数学期末试卷(附答案)
5
考生须知
1 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。
2 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。
3 答题卡上第I卷(选择题)必须用2B铅笔作答,第II卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B铅笔。
请按照题号顺序在各题目的答题区内域作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。
4 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。
保持答题卡整洁,不要折叠、折皱、破损。
不得在答题卡上做任何标记。
5 考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。
(样本标准差式)
第Ⅰ卷(选择题共50分)
一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.)
(1) 若,则下列各式中一定成立的是
A B c D
(2) 不等式的解集是
A B c D
(3) 的值是
A B c D
(4) 在一次对年龄和人体脂肪含量关系的研究中,研究人员获得了一组样本数据,并制作成如图所示的年龄和人体脂肪含量关系的散。
2018-2019学年重庆市高一下学期期末联考数学试题(文科)
2018-2019学年重庆市高一下学期期末联考数学试题(文科)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列0,1,0,1,0,1,0,1,…的一个通项公式是()A.B.C.D.2.向量=(5,2),=(﹣4,﹣3),=(x,y),若3﹣2+=,则=()A.(23,12) B.(7,0)C.(﹣7,0) D.(﹣23,﹣12)3.已知向量,不共线, =k+,(k∈R),=﹣如果∥那么()A.k=﹣1且与反向B.k=1且与反向C.k=﹣1且与同向D.k=1且与同向4.在等差数列{an }中,a3=0,a7﹣2a4=﹣1,则公差d等于()A.﹣2 B.C.2 D.﹣5.在△ABC中,a=3,b=5,sinA=,则sinB=()A.B.C. D.16.已知等差数列{an }的公差为3,若a1,a3,a4成等比数列,则a2等于()A.9 B.3 C.﹣3 D.﹣97.在△ABC中,若b=asinC,c=acosB,则△ABC的形状为()A.等腰三角形 B.直角三角形C.等腰直角三角形D.等腰或直角三角形8.若点M是△ABC的重心,则下列向量中与共线的是()A.B.C.D.9.在△ABC中,A=60°,b=1,S△ABC=,则=()A.B.C.D.210.已知公差不为零的等差数列{an }与公比为q的等比数列{bn}有相同的首项,同时满足a1,a 4,b3成等比,b1,a3,b3成等差,则q2=()A.B.C.D.11.设Sn 表示等差数列{an}的前n项和,已知,那么等于()A.B.C.D.12.已知数列{an }的通项an=10n+5,n∈N *,其前n项和为Sn,令,若对一切正整数n,总有Tn≤m成立,则实数m的最小值是()A.4 B.3 C.2 D.不存在二、填空题(本大题共4小题,每小题5分,共20分)13.在△ABC中,若sinA:sinB:sinC=7:8:13,则C= 度.14.三个正数成等差数列,它们的和为15,如果它们分别加上1,3,9,就成为等比数列,求这个三个数.15.若,则= .16.设等比数列{an }满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)平面内给定三个向量=(1,3),=(﹣1,2),=(2,1).(1)求满足=m+n的实数m,n;(2)若(+k)∥(2﹣),求实数k.18.(12分)已知等差数列{an }的首项为a1,公差为d,前n项和为Sn,且a11=﹣26,a51=54,求an 和S20的值.19.(12分)已知△ABC的角A,B,C所对的边分别是a,b,c,向量=(a,b),=(b﹣2,a﹣2),若⊥,边长c=2,角C=,则△ABC的面积是.20.(12分)已知数列{an }满足a1=2,an+1=4an+3,求数列{an}的通项公式.21.(12分)等差数列{an }的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960.(1)求an 与bn;(2)求和:.22.(12分)在等差数列{an }中,a10=30,a20=50.(1)求数列{an }的通项an;(2)令 bn =2,证明数列{bn}为等比数列;(3)求数列{(2n﹣1)bn }的前n项和Tn.2018-2019学年重庆市高一下学期期末联考数学试题(文科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列0,1,0,1,0,1,0,1,…的一个通项公式是()A.B.C.D.【考点】82:数列的函数特性.【分析】通过观察可得:奇数项为0,偶数项为1,即可得出通项公式.=.【解答】解:0,1,0,1,0,1,0,1,…的一个通项公式是an故选:A.【点评】本题考查了通过观察求数列的通项公式,考查了推理能力与计算能力,属于基础题.2.向量=(5,2),=(﹣4,﹣3),=(x,y),若3﹣2+=,则=()A.(23,12) B.(7,0)C.(﹣7,0) D.(﹣23,﹣12)【考点】9H:平面向量的基本定理及其意义.【分析】根据向量的四则运算法则,即可求得向量.【解答】解:3﹣2+=0,则(15,6)﹣(﹣8,﹣6)+(x+y)=,∴,解得:,则=(x,y)=(﹣23,﹣12),故选D.【点评】本题考查向量的四则运算法则,考查计算能力,属于基础题.3.已知向量,不共线, =k+,(k∈R),=﹣如果∥那么()A.k=﹣1且与反向B.k=1且与反向C.k=﹣1且与同向D.k=1且与同向【考点】96:平行向量与共线向量;9J:平面向量的坐标运算.【分析】根据条件和向量共线的等价条件得,,把条件代入利用向量相等列出方程,求出k和λ的值即可.【解答】解:∵,∴,即k=,得,解得k=λ=﹣1,∴=﹣=﹣,故选A.【点评】本题考查了向量共线的等价条件,向量相等的充要条件应用,属于基础题.4.在等差数列{an }中,a3=0,a7﹣2a4=﹣1,则公差d等于()A.﹣2 B.C.2 D.﹣【考点】84:等差数列的通项公式.【分析】利用等差数列的通项公式即可得出.【解答】解:∵a3=0,a7﹣2a4=﹣1,∴a1+2d=0,a1+6d﹣2(a1+3d)=﹣1,∴a1=1,d=﹣,故选:D.【点评】本题考查了等差数列的通项公式、方程的解法,考查了推理能力与计算能力,属于基础题.5.在△ABC中,a=3,b=5,sinA=,则sinB=()A.B.C.D.1【考点】HP:正弦定理.【分析】由正弦定理列出关系式,将a,b及sinA的值代入即可求出sinB的值.【解答】解:∵a=3,b=5,sinA=,∴由正弦定理得:sinB===.故选B【点评】此题考查了正弦定理,熟练掌握正弦定理是解本题的关键.6.已知等差数列{a n }的公差为3,若a 1,a 3,a 4成等比数列,则a 2等于( ) A .9B .3C .﹣3D .﹣9【考点】8G :等比数列的性质.【分析】先把等差数列{a n }中a 3,a 4用a 1,d 表示,再根据a 1,a 3,a 4成等比数列,得到关于a 1的方程,解出a 1即可.【解答】解;∵等差数列{a n }的公差为3,∴a 3=a 1+6,a 4=a 1+9 又∵a 1,a 3,a 4成等比数列,∴a 32=a 1a 4,即(a 1+6)2=a 1(a 1+9) 解得,a 1=﹣12,∴a 2=a 1+3=﹣12+3=﹣9 故选D【点评】本题主要考查了等差数列的通项公式,以及等比中项的概念,属于数列的基础题.7.在△ABC 中,若b=asinC ,c=acosB ,则△ABC 的形状为( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形 【考点】GZ :三角形的形状判断.【分析】由条件利用正弦定理可得 sinA=1,可得A=.再由sinC=sinB ,利用正弦定理可得c=b ,可得△ABC 的形状为等腰直角三角形. 【解答】解:在△ABC 中,∵b=asinC ,c=acosB , 故由正弦定理可得 sinB=sinAsinC ,sinC=sinAsinB , ∴sinB=sinAsinAsinB ,∴sinA=1,∴A=.∴sinC=sinAsinB 即 sinC=sinB ,∴由正弦定理可得c=b ,故△ABC 的形状为等腰直角三角形, 故选:C .【点评】本题主要考查正弦定理的应用,判断三角型的形状,属于基础题.8.若点M 是△ABC 的重心,则下列向量中与共线的是( )A .B .C .D.【考点】96:平行向量与共线向量;L%:三角形五心.【分析】利用三角形重心的性质,到顶点距离等于到对边中点距离的二倍,利用向量共线的充要条件及向量的运算法则:平行四边形法则将用三边对应的向量表示出.【解答】解:∵点M是△ABC的重心,设D,E,F分别是边BC,AC,AB的中点,∴=,同理,,∴=,∵零向量与任意的向量共线,故选C.【点评】本题考查三角形的重心的性质:分每条中线为1:2;考查向量的运算法则:平行四边形法则.9.在△ABC中,A=60°,b=1,S△ABC=,则=()A.B.C.D.2【考点】HP:正弦定理.【分析】由条件求得c=4,再利用余弦定理求得a,利用正弦定理可得=2R=的值.【解答】解:△ABC中,∵A=60°,b=1,S△ABC==bc•sinA=•,∴c=4.再由余弦定理可得a2=c2+b2﹣2bc•cosA=13,∴a=.∴=2R===,R为△ABC外接圆的半径,故选:B.【点评】本题主要考查正弦定理和余弦定理的应用,属于基础题.10.已知公差不为零的等差数列{an }与公比为q的等比数列{bn}有相同的首项,同时满足a1,a 4,b3成等比,b1,a3,b3成等差,则q2=()A.B.C.D.【考点】84:等差数列的通项公式.【分析】设等差数列{an }的公差为d(d≠0),由a1=b1,结合a1,a4,b3成等比,b1,a3,b3成等差列式求得答案.【解答】解:设等差数列{an }的公差为d(d≠0),且a1=b1,由a1,a4,b3成等比,b1,a3,b3成等差,得①,②,又a1=b1,解得:.故选:C.【点评】本题考查等差数列和等比数列的通项公式,是基础的计算题.11.设Sn 表示等差数列{an}的前n项和,已知,那么等于()A.B.C.D.【考点】8F:等差数列的性质;85:等差数列的前n项和.【分析】先根据等差数列的前n项和公式由可得a1与d的关系,再代入到即可求得答案.【解答】解:根据等差数列的前n项和公式得到=∴a1=3d==故选B.【点评】本题主要考查等差数列的前n项和公式.属基础题.12.已知数列{a n }的通项a n =10n+5,n ∈N *,其前n 项和为S n ,令,若对一切正整数n ,总有T n ≤m 成立,则实数m 的最小值是( ) A .4B .3C .2D .不存在【考点】8E :数列的求和.【分析】数列{a n }的通项a n =10n+5,n ∈N *,其前n 项和为S n =5n 2+10n .可得=,作差T n+1﹣T n ,利用其单调性即可得出.【解答】解:数列{a n }的通项a n =10n+5,n ∈N *, 其前n 项和为S n ==5n 2+10n .=,T n+1﹣T n =﹣=,可得:T 1<T 2>T 3>T 4>…. 可得T n 的最大值为T 2.∵对一切正整数n ,总有T n ≤m 成立,则实数m ≥T 2=2. ∴m 的最小值是2. 故选:C .【点评】本题考查了等差数列的通项公式与求和公式、数列递推关系、作差法、数列的单调性,考查了推理能力与计算能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.在△ABC 中,若sinA :sinB :sinC=7:8:13,则C= 120 度. 【考点】HP :正弦定理.【分析】利用正弦定理可将sinA :sinB :sinC 转化为三边之比,进而利用余弦定理求得cosC ,故∠C 可求.【解答】解:∵由正弦定理可得sinA :sinB :sinC=a :b :c , ∴a :b :c=7:8:13,令a=7k ,b=8k ,c=13k (k >0),利用余弦定理有cosC===,∵0°<C<180°,∴C=120°.故答案为120.【点评】此题在求解过程中,先用正弦定理求边,再用余弦定理求角,体现了正、余弦定理的综合运用.14.三个正数成等差数列,它们的和为15,如果它们分别加上1,3,9,就成为等比数列,求这个三个数.【考点】84:等差数列的通项公式;8G:等比数列的性质.【分析】根据题意设3个数为:a﹣d,a,a+d,根据条件列方程,解之即可(注意取舍).【解答】解:设这三个数为:a﹣d,a,a+d,则,解之得或(舍去)故所求的三个数为3,5,7.【点评】本题考查数列的设法,以及等差数列,等比数列的性质,本题的设法大大减少了运算量!15.若,则= 4037 .【考点】3T:函数的值.【分析】先求出f()+f(x)=2,由此能求出的值.【解答】解:∵,∴f()+f(x)=+==2,∴=2018×2+f(1)=4036+=4037.故答案为:4037.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.16.设等比数列{an }满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为64 .【考点】8I:数列与函数的综合;8G:等比数列的性质.【分析】求出数列的等比与首项,化简a1a2…an,然后求解最值.【解答】解:等比数列{an }满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=.a 1+q2a1=10,解得a1=8.则a1a2…an=a1n•q1+2+3+…+(n﹣1)=8n•==,当n=3或4时,表达式取得最大值: =26=64.故答案为:64.【点评】本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)(2017春•巫溪县校级期中)平面内给定三个向量=(1,3),=(﹣1,2),=(2,1).(1)求满足=m+n的实数m,n;(2)若(+k)∥(2﹣),求实数k.【考点】96:平行向量与共线向量.【分析】(1)利用向量相等即可得出.(2)利用向量共线定理即可得出.【解答】解:(1)=m+n,∴(1,3)=m(﹣1,2)+n(2,1).∴,解得m=n=1.(2)+k=(1+2k,3+k),2﹣=(﹣3,1),∵(+k)∥(2﹣),∴﹣3(3+k)=1+2k,解得k=﹣2.【点评】本题考查了向量共线定理、平面向量基本定理、向量坐标运算性质,考查了推理能力与计算能力,属于基础题.18.(12分)(2017春•巫溪县校级期中)已知等差数列{an }的首项为a1,公差为d,前n项和为Sn ,且a11=﹣26,a51=54,求an和S20的值.【考点】85:等差数列的前n项和.【分析】利用等差数列的通项公式与求和公式即可得出.【解答】解:∵a11=﹣26,a51=54,∴,解得a1=﹣46,d=2.∴an=﹣46+2(n﹣1)=2n﹣48.S20==﹣540.【点评】本题考查了等差数列的通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.19.(12分)(2012•徐汇区一模)已知△ABC的角A,B,C所对的边分别是a,b,c,向量=(a,b),=(b﹣2,a﹣2),若⊥,边长c=2,角C=,则△ABC的面积是.【考点】HX:解三角形;9T:数量积判断两个平面向量的垂直关系.【分析】利用向量垂直数量积为零,写出三角形边之间的关系,结合余弦定理得到求三角形面积所需的两边的乘积的值,由此即可求出三角形的面积.【解答】解:∵ =(a,b),=(b﹣2,a﹣2),⊥,∴a(b﹣2)+b(a﹣2)=0∴a+b=ab由余弦定理4=a2+b2﹣2ab•cos∴4=a2+b2﹣ab=(a+b)2﹣3ab∴ab2﹣3ab﹣4=0∴ab=4或ab=﹣1(舍去)∴S△ABC=absinC=×4×sin=故答案为:【点评】本题考查向量的数量积,考查余弦定理的运用,考查三角形面积的计算,正确运用向量知识是关键.20.(12分)(2017春•巫溪县校级期中)已知数列{an }满足a1=2,an+1=4an+3,求数列{an}的通项公式.【考点】8H:数列递推式.【分析】根据数列递推式,变形可得数列{an+1}是以3为首项,以4为公比的等比数列,由此可得结论.【解答】解:由题意an+1=4an+3可以得到an+1+1=4an+3+1=4(an+1)所以数列{an +1}是以a1+1=3为首项,以4为公比的等比数列.则有an+1=3×4n﹣1,所以an=3×4n﹣1﹣1.【点评】本题考查数列递推式,考查等比数列的判定,考查学生的计算能力,属于中档题.21.(12分)(2008•江西)等差数列{an }的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960.(1)求an 与bn;(2)求和:.【考点】8E:数列的求和;84:等差数列的通项公式;88:等比数列的通项公式.【分析】(1)设{an }的公差为d,{bn}的公比为q,由题设条件建立方程组,解这个方程组得到d和q的值,从而求出an 与bn.(2)由Sn=n(n+2),知,由此可求出的值.【解答】解:(1)设{an }的公差为d,{bn}的公比为q,则d为正整数,an=3+(n﹣1)d,bn=q n﹣1依题意有①解得,或(舍去)故an =3+2(n﹣1)=2n+1,bn=8n﹣1(2)Sn=3+5+…+(2n+1)=n(n+2)∴===【点评】本题考查数列的性质和应用,解题时要认真审题,仔细解答.22.(12分)(2017春•巫溪县校级期中)在等差数列{an }中,a10=30,a20=50.(1)求数列{an }的通项an;(2)令 bn =2,证明数列{bn}为等比数列;(3)求数列{(2n﹣1)bn }的前n项和Tn.【考点】8E:数列的求和.【分析】(1)等差数列{an }中,由a10=30,a20=50.解得a1=12,d=2,由此能求出数列{an}的通项an.(2)由an =2n+10,知bn=═22n=4n,由此能够证明数列{bn}是等比数列.(3)(2n﹣1)bn =(2n﹣1)4n,由此利用错位相减法能求出数列{(2n﹣1)bn}的前n项和Tn .【解答】解:(1)设等差数列{an }的首项为a1,公差为d,由an =a1+(n﹣1)d,a10=30,a20=50,得,解得.∴an=12+2(n﹣1)=2n+10;数列{an }的通项an=2n+10;(2)证明:∵an=2n+10,∴bn==22n=4n,∴∴==4,∴数列{bn }是以首项b1=4,公比为4的等比数列.(3)∵(2n﹣1)bn=(2n﹣1)4n,∴Tn=1•4+3•42+…+(2n﹣1)4n,①4Tn=1•42+3•43+…+(2n﹣3)4n+(2n﹣1)4n+1,②①﹣②,得﹣3Tn=4+2×42+…+2×4n﹣(2n﹣1)4n+1,=﹣4﹣(2n﹣1)4n+1,=(4n+1﹣4)﹣4﹣(2n﹣1)4n+1,=×4n+1﹣,Tn=×4n+1+,数列{(2n﹣1)bn }的前n项和Tn,Tn=×4n+1+.【点评】本题考查数列的通项公式的求法,考查等比数列的证明,考查数列的前n项和的求法.解题时要认真审题,仔细解答,注意错位相减法的合理运用,属于中档题.。
2018年重庆渝高中学高一数学理期末试卷含解析
2018年重庆渝高中学高一数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若经过两点、的直线的倾斜角为,则y等于()A. -1B. 2C. 0D. -3参考答案:D【分析】由直线AB的倾斜角得知直线AB的斜率为-1,再利用斜率公式可求出的值.【详解】由于直线AB的倾斜角为,则该直线的斜率为,由斜率公式得,解得,故选:D.【点睛】本题考查利用斜率公式求参数,同时也涉及了直线的倾斜角与斜率之间的关系,考查计算能力,属于基础题.2. 在△ABC中,设角A,B,C的对边分别为a,b,c.若,则△ABC是()A. 等腰直角三角形B. 直角三角形C. 等腰三角形D. 等腰三角形或直角三角形参考答案:D【分析】根据正弦定理,将等式中的边a,b消去,化为关于角A,B的等式,整理化简可得角A,B的关系,进而确定三角形。
【详解】由题得,整理得,因此有,可得或,当时,为等腰三角形;当时,有,为直角三角形,故选D。
【点睛】这一类题目给出的等式中既含有角又含有边的关系,通常利用正弦定理将其都化为关于角或者都化为关于边的等式,再根据题目要求求解。
3. 等比数列{a n}的前n项和为S n,且成等差数列.若,则()A.15 B.7 C. 8 D.16参考答案:B4. 圆锥的底面半径为,母线长是底面圆周上两动点,过作圆锥的截面,当的面积最大时,截面与底面圆所成的(不大于的)二面角等于(A) (B) (C) (D)参考答案:B略5. 下列函数中,最小值为4的是()A. B.C. D.参考答案:C6. 已知集合,若,则实数的取值范围为()A、B、C、D、参考答案:C略7. 已知等比数列{}的首项为,公比为q,且有,则首项的取值范围是()。
A BC D参考答案:解析:D。
①时,,;②且时且,。
选。
8. 函数y=(﹣1≤x≤1)的最小值为()A.3 B.C.D.参考答案:B【考点】基本不等式.【分析】利用指数函数与反比例函数的单调性即可得出.【解答】解:由于函数y=2x+3x在x∈[﹣1,1]上单调递增,∴在x∈[﹣1,1]上单调递减,∴函数f(x)=的最小值为f(1)=.故选:B.【点评】本题考查了指数函数与反比例函数的单调性,考查了推理能力与计算能力,属于基础题.9. 在平行四边形ABCD中,点E为CD中点,,则等于( )A.﹣ B.﹣ C.D.参考答案:B略10. 已知集合U={x|0≤x≤6,x∈N},A={2,3,6},B={2,4,5},则A∩(?U B)=()A.{2,3,4,5,6} B.{3,6} C.{2} D.{4,5}参考答案:B【考点】交、并、补集的混合运算.【专题】集合思想;综合法;集合.【分析】先把集合U利用列举法表示出来,确定出全集U,根据全集U和集合B,求出集合B的补集,最后求出集合B补集与集合A的交集即可.【解答】解:∵U={x|0≤x≤6,x∈N}={0,1,2,3,4,5,6},B={2,4,5},∴C U B={0,1,3,6},A={2,3,6},则A∩C U B={3,6}.故选B.【点评】此题考查了交集、补集及并集的混合运算,利用列举法表示出集合U,确定出全集U是本题的突破点,学生在求补集时注意全集的范围.二、填空题:本大题共7小题,每小题4分,共28分11. 设函数.已知,且当时,恒成立,则实数的取值范围是_________.参考答案:.12. 设,,,则a,b,c由小到大的顺序为.参考答案:c<a<b【考点】不等关系与不等式;指数函数的图象与性质;对数值大小的比较.【分析】由0<sin,cos,tan<1及幂函数、指数函数、对数函数的图象或性质即可比较出a,b,c的大小.【解答】解:∵,∴0,即c<0;∵,∴0<<1,即0<a<1;∵tan>0,∴,即b>1.故c<a<b.13. 已知集合,则集合M∩N为▲.参考答案:[,4]14. 函数f(x)=lg(1﹣2x)的定义域为.参考答案:(﹣∞,0)【考点】对数函数的定义域.【分析】根据对数函数定义得1﹣2x>0,求出解集即可.【解答】解:∵f(x)=lg(1﹣2x)根据对数函数定义得1﹣2x>0,解得:x<0故答案为:(﹣∞,0)【点评】考查学生理解函数的定义域是指使函数式有意义的自变量x的取值范围.会求不等式的解集.15. 若实数满足,则称是函数的一个次不动点.记函数与函数(其中为自然对数的底数)的所有的次不动点之和为,则.参考答案:16. 不等式的解集是.参考答案:;17. 已知等差数列{a n}的前n项和记为S n,若.,则______;______.参考答案:-12【分析】根据等差数列和项性质求.根据首项与公差求.【详解】因为等差数列中仍成等差数列,所以,因为,所以,【点睛】本题考查等差数列求和公式以及性质,考查基本分析求解能力,属中档题.三、解答题:本大题共5小题,共72分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年重庆一中高一数学下学期期末试卷(附答案)
5 密★启用前
4-3=0;
(Ⅱ)由题意,直线斜率存在且不为0,设其方程是=(x-1),则圆心到直线的距离d= ,
,此时=1或=7,
所以所求直线方程是或
(19)解(Ⅰ)根据频率分布直方图,成绩不低于60分的频率为
1-10×(0005+001)=085由于该校高一年级共有学生640名,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为640×085=544
(Ⅱ)成绩在[40,50)分数段内的人数为40×005=2,成绩在[90,100]分数段内的人数为40×01=4,则记在[40,50)分数段的两名同学为A1,A2,在[90,100]分数段内的同学为B1,B2,B3,B4 若从这6名学生中随机抽取2人,则总的取法共有15种.
如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10;如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10
则所取2名学生的数学成绩之差的绝对值不大于10的取法有(A1,A2),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4)共7种取法,所以所求概率为P=715
(20)解(Ⅰ)解
(Ⅱ)证明,
其前n项和Tn=24+342+…+n+14n,
14Tn=242+343+…+n4n+n+14n+1,。