专题整合高频突破 专题五 立体几何与空间向量 专题能力训练13 Word版含答案答案

合集下载

9.6 立体几何与空间向量专项训练(原卷版)

9.6 立体几何与空间向量专项训练(原卷版)

☆注:请用Microsoft Word2016以上版本打开文件进行编辑,用WPS 等其他软件可能会出现乱码等现象.第9章 立体几何与空间向量9.6 立体几何与空间向量专项训练一.选择题(共8小题)1.设α是空间中的一个平面,l ,m ,n 是三条不同的直线,则( ) A .若m ⊂α,n ⊂α,l ⊥m ,l ⊥n ,则l ⊥α B .若l ∥m ,m ∥n ,l ⊥α,则n ⊥α C .若l ∥m ,m ⊥α,n ⊥α,则l ⊥nD .若m ⊂α,n ⊥α,l ⊥n ,则l ∥m2.在棱长为a 的正方体ABCD ﹣A 1B 1C 1D 1中,M 为AB 的中点,则点C 到平面A 1DM 的距离为( )A .√63a B .√66a C .√22a D .12a3.一个圆锥的体积为π6,当这个圆锥的侧面积最小时,其母线与底面所成角的正切值为( ) A .√33B .√22C .√63D .√24.粽子,古时北方也称“角黍”,是由粽叶包裹糯米、泰米等馅料蒸煮制成的食品,是中国汉族传统节庆食物之一.端午食粽的风俗,千百年来在中国盛行不衰.粽子形状多样,馅料种类繁多,南北方风味各有不同.某四角蛋黄粽可近似看成一个正四面体,蛋黄近似看成一个球体,且每个粽子里仅包裹一个蛋黄.若粽子的棱长为9cm ,则其内可包裹的蛋黄的最大体积约为( ) (参考数据:√6≈2.45,π≈3.14)A .20cm 3B .22cm 3C .26cm 3D .30cm 35.已知三棱锥S ﹣ABC 中,SC ⊥平面ABC ,∠ABC =90°,且AB =2BC =2SC ,D ,E 分别为SA ,BC 的中点,则异面直线DE 与AC 所成角的余弦值为( ) A .35B .45C .√1010D .3√10106.已知在三棱锥S ﹣ABC 中,SA =SB =SC =AB =2,AC ⊥BC ,则该三棱锥外接球的体积为( ) A .32√3π27B .4√3π9C .32π3D .16π37.如图,四棱锥P ﹣ABCD 中,PB ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,AB ⊥BC ,AB =AD =PB =3,点E 在棱P A 上,且PE =2EA ,则平面ABE 与平面BED 的夹角的余弦值为( )A .√23B .√66C .√33D .√638.如图,直三棱柱ABC ﹣A 1B 1C 1中,AA 1=2,AB =BC =1,∠ABC =90°,外接球的球心为O ,点E 是侧棱BB 1上的一个动点.有下列判断: ①直线AC 与直线C 1E 是异面直线; ②A 1E 一定不垂直AC 1;③三棱锥E ﹣AA 1O 的体积为定值; ④AE +EC 1的最小值为2√2. 其中正确的个数是( )A .1B .2C .3D .4二.多选题(共4小题)(多选)9.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,下列四个命题中真命题是( )A .若m ⊥α,m ⊥β,则α∥βB .若α⊥γ,β⊥α,则γ∥βC .若m ∥α,n ∥β,m ∥n ,则α∥βD .若m 、n 是异面直线,m ⊥α,m ∥β,n ⊥β,n ∥α,则α⊥β(多选)10.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 在线段BC 1上运动,则下列判断中正确的有( )A .平面PB 1D ⊥平面ACD 1 B .A 1P ∥平面ACD 1C .异面直线A 1P 与AD 1所成角的取值范围是(0,π3]D .三棱锥D 1﹣APC 的体积不变(多选)11.如图,四边形ABCD 是边长为1的正方形,ED ⊥平面ABCD ,FB ⊥平面ABCD ,且ED =FB =1,G 为线段EC 上的动点,则下列结论中正确的是( )A .EC ⊥AFB .该几何体外接球的表面积为3πC .若G 为EC 中点,则GB ∥平面AEFD .AG 2+BG 2的最小值为3(多选)12.如图,将一副三角板拼成平面四边形,将等腰直角△ABC 沿BC 向上翻折,得三棱锥A ﹣BCD .设CD =2,点E ,F 分别为棱BC ,BD 的中点,M 为线段AE 上的动点.下列说法正确的是( )A .存在某个位置,使AB ⊥CD B .存在某个位置,使AC ⊥BDC .当三棱锥A ﹣BCD 体积取得最大值时,AD 与平面ABC 成角的正切值为√63D .当AB =AD 时,CM +FM 的最小值为√4+2√2 三.填空题(共4小题)13.长方体ABCD ﹣A 1B 1C 1D 1中,AB =1,AD =2,AA 1=2,P 是棱DD 1上的动点,则△P A 1C 的面积最小值是 .14.如图所示,在等腰直角三角形ABC 中,∠C 为直角,BC =2,EF ∥BC ,沿EF 把面AEF 折起,使面AEF ⊥面EFBC ,当四棱锥A ﹣CBFE 的体积最大时,EF 的长为 .15.已知三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ﹣ABC 的体积为9,则球O 的表面积为 . 16.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,M 是A 1B 1的中点,则下列四个命题: ①直线BC 与平面ABC 1D 1所成的角等于45°;②四面体ABCD 1在正方体六个面内的投影图形面积的最小值为12;③点M 到平面ABC 1D 1的距离是12;④BM 与CD 1所成的角为arcsin √1010 其中真命题的序号是 .四.解答题(共6小题)17.在四棱锥P﹣ABCD中,平面P AD⊥平面ABCD,P A=PD=2,四边形ABCD是边长为2的菱形,∠A=60°,E是AD的中点.(1)求证:BE⊥平面P AD;(2)求平面P AB与平面PBC所成角的余弦值.18.如图1,直角梯形ABCD中,AB∥CD,AB⊥AD,AB=2AD=2DC=6√2;如图2,将图1中△DAC沿AC折起,使得点D在面ABC上的正投影G在△ABC内部,点E为AB 的中点,连接DB,DE,三棱锥D一ABC的体积为12√2.对于图2的几何体:(1)求证:DE⊥AC;(2)求DB与面DAC所成角的余弦值.19.如图所示,半圆弧AD̂所在平面与平面ABCD垂直,且M是AD̂上异于A,D的点,AB ∥CD,∠ABC=90°,AB=2CD=2BC.(1)求证:AM⊥平面BDM;(2)若M为AD的中点,求二面角B﹣MC﹣D的余弦值.20.在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,AD⊥AB,侧面P AB⊥底面ABCD,P A=PB=AD=12BC=2,且E,F分别为PC,CD的中点.(1)证明:DE ∥平面P AB ;(2)若直线PF 与平面P AB 所成的角为60°,求平面P AB 与平面PCD 所成锐二面角的余弦值.21.如图,已知矩形ABCD 所在平面垂直于直角梯形ABPE 所在平面,且AB =BP =2,AD =AE =1,AE ⊥AB ,且AE ∥BP .(1)设点M 为棱PD 中点,求证:EM ∥平面ABCD ;(2)线段PD 上是否存在一点N ,使得直线BN 与平面PCD 所成角的正弦值等于2√10535?若存在,试求出线段PN 的长度;若不存在,请说明理由.22.如图1,四边形ABCD 是梯形,AB ∥CD ,AD =DC =CB =12AB =4,M 是AB 的中点,将△ADM 沿DM 折起至△A ′DM ,如图2,点N 在线段A 'C 上.(1)若N 是A 'C 的中点,求证:平面DNM ⊥平面A 'BC ; (2)若A ′C =2√6,平面DNM 与平面CDM 夹角的余弦值为2√55,求A′NNC .。

数学高三立体几何与空间向量专题复习检测(含答案)

数学高三立体几何与空间向量专题复习检测(含答案)

数学高三立体几何与空间向量专题复习检测(含答案)平面几何是3维欧氏空间的几何的传统称号,下面是平面几何与空间向量专题温习检测,请考生练习。

一、选择题1.(2021武汉调研)一个几何体的三视图如下图,那么该几何体的直观图可以是()解析 A、B、C与仰望图不符.答案 D2.将长方体截去一个四棱锥,失掉的几何体如下图,那么该几何体的侧(左)视图为()解析抓住其一条对角线被遮住应为虚线,可知正确答案在C,D中,又结合直观图知,D正确.答案 D3.(2021安徽卷)一个多面体的三视图如下图,那么该多面体的外表积为()A.21+3B.18+3C.21D.18解析由三视图知,该多面体是由正方体割去两个角所成的图形,如下图,那么S=S正方体-2S三棱锥侧+2S三棱锥底=24-231211+234(2)2=21+3.答案 A4.S,A,B,C是球O外表上的点,SA平面ABCD,ABBC,SA=AB=1,BC=2,那么球O的外表积等于()A.4B.3C.2解析如下图,由ABBC知,AC为过A,B,C,D四点小圆直径,所以ADDC.又SA平面ABCD,设SB1C1D1-ABCD为SA,AB,BC为棱长结构的长方体,得体对角线长为12+12+22=2R,所以R=1,球O的外表积S=4.故选A.答案 A5.(2021湖南卷)一块石材表示的几何体的三视图如下图.将该石材切削、打磨,加工成球,那么能失掉的最大球的半径等于()A.1B.2C.3D.4解析由三视图可得原石材为如下图的直三棱柱A1B1C1-ABC,且AB=8,BC=6,BB1=12.假定要失掉半径最大的球,那么此球与平面A1B1BA,BCC1B1,ACC1A1相切,故此时球的半径与△ABC内切圆的半径相等,故半径r=6+8-102=2.应选B.答案 B6.点A,B,C,D均在同一球面上,其中△ABC是正三角形,AD平面ABC,AD=2AB=6,那么该球的体积为()A.323B.48C.643D.163解析如下图,O1为三角形ABC的外心,过O做OEAD,OO1面ABC,AO1=33AB=3.∵OD=O A,E为DA的中点.∵AD面ABC,AD∥OO1,EO=AO1=3.DO=DE2+OE2=23.R=DO= 23.V=43(23)3=323.答案 A二、填空题7.某四棱锥的三视图如下图,该四棱锥的体积是________. 解析由三视图可知,四棱锥的高为2,底面为直角梯形ABCD.其中DC=2,AB=3,BC=3,所以四棱锥的体积为132+3322=533. 答案 5338.如图,在三棱柱A1B1C1-ABC中,D,E,F区分是AB,AC,AA1的中点,设三棱锥F-ADE的体积为V1,三棱柱A1B1C1-ABC 的体积为V2,那么V1V2=________.解析设三棱柱A1B1C1-ABC的高为h,底面三角形ABC的面积为S,那么V1=1314S12h=124Sh=124V2,即V1V2=124. 答案 1249.在四面体ABCD中,AB=CD=6,AC=BD=4,AD=BC=5,那么四面体ABCD的外接球的外表积为________.解析结构一个长方体,使得它的三条面对角线区分为4、5、6,设长方体的三条边区分为x,y,z,那么x2+y2+z2=772,而长方体的外接球就是四面体的外接球,所以S=4R2=772. 答案 772三、解答题10.以下三个图中,左边是一个正方体截去一个角后所得多面体的直观图.左边两个是其正(主)视图和侧(左)视图. (1)请在正(主)视图的下方,依照画三视图的要求画出该多面体的仰望图(不要求表达作图进程).(2)求该多面体的体积(尺寸如图).解 (1)作出仰望图如下图.(2)依题意,该多面体是由一个正方体(ABCD-A1B1C1D1)截去一个三棱锥(E-A1B1D1)失掉的,所以截去的三棱锥体积VE-A1B1D1=13S△A1B1D1A1E=1312221=23,正方体体积V正方体AC1=23=8,所以所求多面体的体积V=8-23=223.11.(2021安徽卷)如图,四棱柱ABCD-A1B1C1D1中,A1A底面ABCD.四边形ABCD为梯形,AD∥BC,且AD=2BC.过 A1,C,D三点的平面记为,BB1与的交点为Q.(1)证明:Q为BB1的中点;(2)求此四棱柱被平面所分红上下两局部的体积之比.解 (1)证明:由于BQ∥AA1,BC∥AD,BCBQ=B,ADAA1=A,所以平面QBC∥平面A1AD.从而平面A1CD与这两个平面的交线相互平行,即QC∥A1D.故△QBC与△A1AD的对应边相互平行,于是△QBC∽△A1AD.所以BQBB1=BQAA1=BCAD=12,即Q为BB1的中点.(2)如图,衔接QA,QD.设AA1=h,梯形ABCD的高为d,四棱柱被平面所分红上下两局部的体积区分为V上和V下,BC=a,那么AD=2a.VQ-A1AD=13122ahd=13ahd,VQ-ABCD=13a+2a2d12h=14ahd,所以V下=VQ-A1AD+VQ-ABCD=712ahd,又V四棱柱A1B1C1D1-ABCD=32ahd,所以V上=V四棱柱A1B1C1D1-ABCD-V下=32ahd-712ahd=1112ahd.故V上V下=117.B级才干提高组1.(2021北京卷)在空间直角坐标系Oxyz中,A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,2).假定S1,S2,S3区分是三棱锥D-ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,那么()A.S1=S2=S3B.S2=S1且S2S3C.S3=S1且S3 S2D.S3=S2且S3S1解析作出三棱锥在三个坐标平面上的正投影,计算三角形的面积.如下图,△ABC为三棱锥在坐标平面xOy上的正投影,所以S1=1222=2.三棱锥在坐标平面yOz上的正投影与△DE F(E,F 区分为OA,BC的中点)全等,所以S2=1222=2.三棱锥在坐标平面xOz上的正投影与△DGH(G,H区分为AB,OC 的中点)全等,所以S3=1222=2.所以S2=S3且S1S3.应选D. 答案 D2.(2021山东卷)三棱锥P-ABC中,D,E区分为PB,PC的中点,记三棱锥D-ABE的体积为V1,P-ABC的体积为V2,那么V1V2=________.解析由于VP-ABE=VC-ABE,所以VP-ABE=12VP-ABC,又因VD-ABE=12VP-ABE,所以VD-ABE=14VP-ABC,V1V2=14.答案 143.(理)(2021课标全国卷Ⅱ)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60,AP=1,AD=3,求三棱锥E-ACD的体积.解 (1)衔接BD交AC于点O,衔接EO.由于ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.EO平面AEC,PB平面AEC,所以PB∥平面AEC.(2)由于PA平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直.如图,以A为坐标原点,AB的方向为x轴的正方向,|PA|为单位长,树立空间直角坐标系A-xyz.那么D(0,3,0),E0,32,12, AE=0,32,12.设B(m,0,0)(m0),那么C(m,3,0),AC=(m,3,0),设n1=(x,y,z)为平面ACE的法向量,那么n1AC=0,n1AE=0,即mx+3y=0,32y+12z=0,可取n1=3m,-1,3.又n2=(1,0,0)为平面DAE的法向量,由题设|cos〈n1,n2〉|=12,即 33+4m2=12,解得m=32.由于E为PD的中点,所以三棱锥E-ACD的高为12.三棱锥E-ACD的体积V=131233212=38.3.(文)如图,在Rt△ABC中,AB=BC=4,点E在线段AB上.过点E作EF∥BC交AC于点F,将△AEF沿EF折起到△PEF 的位置(点A与P重合),使得PEB=30.(1)求证:EF(2)试问:当点E在何处时,四棱锥P-EFCB的正面PEB的面积最大?并求此时四棱锥P-EFCB的体积.解 (1)证明:∵AB=BC,BCAB,又∵EF∥BC,EFAB,即EFBE,EFPE.又BEPE=E,EF平面PBE,EFPB.(2)设BE=x,PE=y,那么x+y=4.S△PEB=12BEPEsinPEB=14xy14x+y22=1.当且仅当x=y=2时,S△PEB的面积最大.此时,BE=PE=2.由(1)知EF平面PBE,平面PBE平面EFCB,在平面PBE中,作POBE于O,那么PO平面EFCB.即PO为四棱锥P-EFCB的高.又PO=PEsin30=212=1.S梯形EFCB =12(2+4)2=6.VP-BCFE=1361=2.平面几何与空间向量专题温习检测及答案的全部内容就是这些,查字典数学网预祝考生可以取得更好的效果。

高三立体几何大题专题(用空间向量解决立体几何类问题).docx

高三立体几何大题专题(用空间向量解决立体几何类问题).docx

【知识梳理】一、空间向量的概念及相关运算1、空间向量基本定理r r rur rr r 如果三个向量 a, b, c 不共面,那么对空间任一向量 p xaybzcr r r a, b, c 称为基向量。

2、空间直角坐标系的建立分别以互相垂直的三个基向量i , j , k 的方向为正方向建立三条数轴:x 轴, y 轴和 z 轴。

则r r r ra xi y j zk ( x,y,z )称为空间直角坐标。

注:假如没有三条互相垂直的向量,需要添加辅助线构造,在题目中找出互相垂直的两个面,通过做垂线等方法来建立即可。

3、空间向量运算的坐标表示rrrr (1)若 ax 1 , y 1, z 1 , b x 2 , y 2 , z 2 ,则: abx 1 x 2 , y 1 y 2 , z 1 z 2rr ra x 1 , y 1, z 1 ab x 1 x 2y 1 y 2 z 1 z 2r rr r1 x 2y 1y 2 z 1 z 2 0a b a bx 0r r r r x 1x 2 , y 1y 2 , z 1z 2a //b a b r r r 222aa ax 1 y 1 z 1 .r r r rr r r r rraba b = a b cos a,b . cos a ,br ra br rrrx 1 x 2y 1 y 2z 1z 2a bcos a,br r222222 a bx 1y 1z 1 x 2 y 2 z 2uuurr r(2)设 A x 1 , y 1, z 1 , Bx 2 , y 2 , z 2 则 ABOB OA x 2x 1 , y 2 y 1 , z 2z 1(3) x 1 , y 1, z 1 ,x 2 , y 2 , z 2 ,则 duuurx 2222x 1y 2 y 1z 2 z 1二、应用:平面的法向量的求法:1、建立恰当的直角坐标系2、设平面法向量 n=( x , y , z )3、在平面内找出两个不共线的向量,记为a=(a1, a2, a3) b=( b1,b2, b3) 4、根据法向量的定义建立方程组 ① n*a =0②n*b =05、解方程组,取其中一组解即可。

空间向量在立体几何中的应用知识点大全、经典高考题带解析、练习题带答案.docx

空间向量在立体几何中的应用知识点大全、经典高考题带解析、练习题带答案.docx

空间向量在立体几何中的应用【考纲说明】1. 能够利用共线向量、共血向量、空间向量基本定理证明共线、共面、平行及垂直问题;2. 会利用空间向量的处标运算、两点间的距离公式、夹角公式等解决平行、垂直、长度、角、距离等问题;3. 培养用向量的相关知识思考问题和解决问题的能力;【知识梳理】一、空间向量的运算1、向量的几何运算(1)向量的数量积:已知向量〜匸,贝U |〜| | r | 〜f 叫做f f 的数量积,记作一],即〜工| 1 | Hi 十工a.b | 幺 | • |・cos <a,b > a.b a ・b a ・b =|纠・|纠・ccs <a,b空间向量数量积的性质:①乳汨W|cos<N@>;f f ② 丄bo /・D = 0.③ 问“怎(2)向量共线定理:向量万(&工0)与方共线,当且仅当有唯一一个实数2,使b=Aa ・2、向量的坐标运算(])若4(兀1,乃,习),直(兀2丿2,?2),则=(兀2 一兀1‘尹2 一乃‘习一习)一个向暈在肓 •角处标系小的朋标等于表示这个向量的有向线段的终点的处标减去起点的处标。

°)十若纟=(鬥卫2,他)乜=($』2,鸟)'」、":+ 了=(两+$卫2+玄,色±劣a-b-(两一对卫2 —玄,他一鸟) Aa =(兄知兄勺,兄色)(久e R ) a ・b = + a 2b 2 +a 现 a H b V 》a 】--JI 对,a? —=丸鸟(久 w 氏)a 丄b O + a 2b 2 + a 曲=0 | a |= +拧 +_ ab _丨引•丨纠侷+勺? +宓2 J 辭+鸟2 +鸟2a 禹 + a 2b 2 + (3)夹角公式:二、空间向量在立体几何中的应用2.利用空间向量证明平行问题对于平行问题,一般是利用共线向量和共面向量定理进行证明・3 •利用空间向量证明垂直问题f f f f对于垂直问题,一般是利用“丄b^a-b=O 进行证明;4. 利用空间向量求角度(1) 线线角的求法: _ _设直线AB 、CD 对应的方向向量分别为s 、b,则直线AB 耳CD 所成的角为 打“代 山恳丨(线线角的范围[0: 90°]) wTC COS —=F -- =F —Ml I 纠(2) 线面角的求法:- 是直线'的方向向量,则直线/与平面°所成的角为 .|殛.;| arc sin 二=——亠\AB\-\n\5. 利用空间向量求距离(1)平面的法向量的求法:设n =(x,y, z ),利川n 与平面内的两个不共线的向a, b 垂直,其数量积为零,列出两个三元一次方程,联立后取 其一组解,即得到平面°的一个法向量(如图)。

高考数学压轴专题新备战高考《空间向量与立体几何》全集汇编及答案

高考数学压轴专题新备战高考《空间向量与立体几何》全集汇编及答案

【高中数学】数学《空间向量与立体几何》复习知识要点一、选择题1.已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点).设SE 与BC 所成的角为α,SE 与平面ABC D 所成的角为β,二面角S-AB-C 的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .a βγ≤≤D .γβα≤≤【答案】C 【解析】 【分析】根据题意,分别求出SE 与BC 所成的角α、SE 与平面ABC D 所成的角β、二面角S-AB-C 的平面角γ的正切值,由正四棱锥的线段大小关系即可比较大小. 【详解】四棱锥S ABCD -的底面是正方形,侧棱长均相等, 所以四棱锥为正四棱锥,(1)过E 作//EF BC ,交CD 于F ,过底面中心O 作ON EF ⊥交EF 于N ,连接SN ,取AB 中点M ,连接OM ,如下图(1)所示:则tan SN SN NE OMα==;(2)连接,OE 如下图(2)所示,则tan SO OEβ=;(3)连接OM ,则tan SOOMγ=,如下图(3)所示:因为,,SN SO OE OM ≥≥ 所以tan tan tan αγβ≥≥, 而,,αβγ均为锐角, 所以,αγβ≥≥ 故选:C. 【点睛】本题考查了异面直线夹角、直线与平面夹角、平面与平面夹角的求法,属于中档题.2.在三棱锥P ABC -中,PA ⊥平面ABC ,且ABC ∆为等边三角形,2AP AB ==,则三棱锥P ABC -的外接球的表面积为( ) A .272π B .283π C .263π D .252π 【答案】B 【解析】 【分析】计算出ABC ∆的外接圆半径r,利用公式R =可得出外接球的半径,进而可得出三棱锥P ABC -的外接球的表面积. 【详解】ABC ∆的外接圆半径为2sin3AB r π==PA ⊥Q 底面ABC ,所以,三棱锥P ABC -的外接球半径为3R ===, 因此,三棱锥P ABC -的外接球的表面积为2228443R πππ=⨯=⎝⎭. 故选:B. 【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,选择合适的公式计算外接球的半径,考查计算能力,属于中等题.3.已知圆锥SC 的高是底面半径的3倍,且圆锥SC 的底面直径、体积分别与圆柱OM 的底面半径、体积相等,则圆锥SC 与圆柱OM 的侧面积之比为( ). AB .3:1C .2:1D2【答案】A 【解析】 【分析】设圆锥SC 的底面半径为r ,可求得圆锥的母线长,根据圆锥侧面积公式求得侧面积;由圆锥体积与圆柱体积相等可构造方程求得圆柱的高,进而根据圆柱侧面积公式求得圆柱侧面积,从而求得比值. 【详解】设圆锥SC 的底面半径为r ,则高为3r ,∴圆锥SC的母线长l ==,∴圆锥SC的侧面积为2rl r π=;圆柱OM 的底面半径为2r ,高为h , 又圆锥的体积23133V r r r ππ=⋅=,234r h r ππ∴=,4rh ∴=, ∴圆柱OM 的侧面积为2224rh rh r πππ⋅==,∴圆锥SC 与圆柱OM22:r r π=.故选:A . 【点睛】本题考查圆锥和圆柱侧面积的求解问题,涉及到圆锥和圆柱体积公式的应用,属于基础题.4.如图,在底面边长为4,侧棱长为6的正四棱锥P ABCD -中,E 为侧棱PD 的中点,则异面直线PB 与CE 所成角的余弦值是( )A .3417B .23417C .51717D .31717【答案】D 【解析】 【分析】首先通过作平行的辅助线确定异面直线PB 与CE 所成角的平面角,在PCD ∆中利用余弦定理求出cos DPC ∠进而求出CE ,再在GFH ∆中利用余弦定理即可得解. 【详解】如图,取PA 的中点F ,AB 的中点G ,BC 的中点H ,连接FG ,FH ,GH ,EF ,则//EF CH ,EF CH =,从而四边形EFHC 是平行四边形,则//EC FH , 且EC FH =.因为F 是PA 的中点,G 是AB 的中点,所以FG 为ABP ∆的中位线,所以//FG PB ,则GFH ∠是异面直线PB 与CE 所成的角.由题意可得3FG =,1222HG AC ==. 在PCD ∆中,由余弦定理可得2223636167cos 22669PD PC CD DPC PD PC +-+-∠===⋅⨯⨯,则2222cos 17CE PC PE PC PE DPC =+-⋅∠=,即17CE =在GFH ∆中,由余弦定理可得222cos 2FG FH GH GFH FG FH +-∠=⋅9178317172317+-==⨯⨯. 故选:D 【点睛】本题考查异面直线所成的角,余弦定理解三角形,属于中档题.5.棱长为2的正方体被一个平面所截,得到几何体的三视图如图所示,则该截面的面积为( )A .92B .922C .32D .3【答案】A 【解析】 【分析】由已知的三视图可得:该几何体是一个正方体切去一个三棱台,其截面是一个梯形,分别求出上下底边的长和高,代入梯形面积公式可得答案. 【详解】由已知的三视图可得:该几何体是一个正方体切去一个三棱台ABC DEF -,所得的组合体,其截面是一个梯形BCFE , 22112+=22222+=高为:222322()2+=, 故截面的面积1329(222)222S =+⨯=, 故选:A . 【点睛】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.6.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF=12.则下列结论中正确的个数为①AC ⊥BE ; ②EF ∥平面ABCD ;③三棱锥A ﹣BEF 的体积为定值; ④AEF ∆的面积与BEF ∆的面积相等, A .4 B .3C .2D .1【答案】B 【解析】试题分析:①中AC ⊥BE ,由题意及图形知,AC ⊥面DD1B1B ,故可得出AC ⊥BE ,此命题正确;②EF ∥平面ABCD ,由正方体ABCD-A1B1C1D1的两个底面平行,EF 在其一面上,故EF 与平面ABCD 无公共点,故有EF ∥平面ABCD ,此命题正确;③三棱锥A-BEF 的体积为定值,由几何体的性质及图形知,三角形BEF 的面积是定值,A 点到面DD1B1B 距离是定值,故可得三棱锥A-BEF 的体积为定值,此命题正确;④由图形可以看出,B 到线段EF 的距离与A 到EF 的距离不相等,故△AEF 的面积与△BEF 的面积相等不正确 考点:1.正方体的结构特点;2.空间线面垂直平行的判定与性质7.设m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列四个命题: ①若m α⊥,//n α,则m n ⊥; ②若//αβ,m α⊥,则m β⊥; ③若//m α,//n α,则//m n ; ④若m α⊥,αβ⊥,则//m β. 其中真命题的序号为( )A .①和②B .②和③C .③和④D .①和④【答案】A 【解析】 【分析】逐一分析命题①②③④的正误,可得出合适的选项. 【详解】对于命题①,若//n α,过直线n 作平面β,使得a αβ⋂=,则//a n ,m α⊥Q ,a α⊂,m a ∴⊥,m n ∴⊥,命题①正确;对于命题②,对于命题②,若//αβ,m α⊥,则m β⊥,命题②正确; 对于命题③,若//m α,//n α,则m 与n 相交、平行或异面,命题③错误; 对于命题④,若m α⊥,αβ⊥,则m β⊂或//m β,命题④错误. 故选:A. 【点睛】本题考查有关线面、面面位置关系的判断,考查推理能力,属于中等题.8.如图,在直三棱柱111ABC A B C -中,4AC BC ==,AC BC ⊥,15CC =,D 、E 分别是AB 、11B C 的中点,则异面直线BE 与CD 所成的角的余弦值为( )A 3B .13C 58D 387【答案】C 【解析】 【分析】取11A C 的中点F ,连接DF 、EF 、CF ,推导出四边形BDFE 为平行四边形,可得出//BE DF ,可得出异面直线BE 与CD 所成的角为CDF ∠,通过解CDF V ,利用余弦定理可求得异面直线BE 与CD 所成的角的余弦值. 【详解】取11A C 的中点F ,连接DF 、EF 、CF .易知EF 是111A B C △的中位线,所以11//EF A B 且1112EF A B =. 又11//AB A B 且11AB A B =,D 为AB 的中点,所以11//BD A B 且1112BD A B =,所以//EF BD 且EF BD =.所以四边形BDFE 是平行四边形,所以//DF BE ,所以CDF ∠就是异面直线BE 与CD 所成的角.因为4AC BC ==,AC BC ⊥,15CC =,D 、E 、F 分别是AB 、11B C 、11A C 的中点, 所以111122C F AC ==,111122B E BC ==且CD AB ⊥. 由勾股定理得22442AB =+=2242AC BC CD AB ⋅=== 由勾股定理得2222115229CF CC C F =+=+=2222115229DF BE BB B E ==+=+=.在CDF V 中,由余弦定理得((22229222958cos 22922CDF +-∠==⨯⨯.故选:C. 【点睛】本题考查异面直线所成角的余弦值的计算,一般利用平移直线法找出异面直线所成的角,考查计算能力,属于中等题.9.如图是正方体的平面展开图,则在这个正方体中: ①BM 与ED 平行 ②CN 与BE 是异面直线 ③CN 与BM 成60︒角 ④DM 与BN 是异面直线 以上四个命题中,正确命题的个数是( )A .1B .2C .3D .4【答案】B 【解析】 【分析】把平面展开图还原原几何体,再由棱柱的结构特征及异面直线定义、异面直线所成角逐一核对四个命题得答案. 【详解】把平面展开图还原原几何体如图:由正方体的性质可知,BM 与ED 异面且垂直,故①错误;CN 与BE 平行,故②错误;连接BE ,则BE CN P ,EBM ∠为CN 与BM 所成角,连接EM ,可知BEM ∆为正三角形,则60EBM ∠=︒,故③正确;由异面直线的定义可知,DM 与BN 是异面直线,故④正确. ∴正确命题的个数是2个. 故选:B . 【点睛】本题考查棱柱的结构特征,考查异面直线定义及异面直线所成角,是中档题.10.如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1B P P 平面1A BM ,则1C P 的最小值是( )A .30B .230C .27D .47【答案】B 【解析】 【分析】在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD ,根据面面平行的判定定理可知平面1//B QDN 平面1A BM ,从而可得P 的轨迹是DN (不含,D N 两点);由垂直关系可知当CP DN ⊥时,1C P 取得最小值;利用面积桥和勾股定理可求得最小值. 【详解】如图,在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD//DN BM Q ,1//DQ A M 且DN DQ D =I ,1BM A M M =I∴平面1//B QDN 平面1A BM ,则动点P 的轨迹是DN (不含,D N 两点)又1CC ⊥平面ABCD ,则当CP DN ⊥时,1C P 取得最小值此时,22512CP ==+ 2212230255C P ⎛⎫∴≥+= ⎪⎝⎭本题正确选项:B 【点睛】本题考查立体几何中动点轨迹及最值的求解问题,关键是能够通过面面平行关系得到动点的轨迹,从而找到最值取得的点.11.已知m ,l 是两条不同的直线,α,β是两个不同的平面,则下列可以推出αβ⊥的是( )A .m l ⊥,m β⊂,l α⊥B .m l ⊥,l αβ=I ,m α⊂C .//m l ,m α⊥,l β⊥D .l α⊥,//m l ,//m β【答案】D 【解析】 【分析】A ,有可能出现α,β平行这种情况.B ,会出现平面α,β相交但不垂直的情况.C ,根据面面平行的性质定理判断.D ,根据面面垂直的判定定理判断. 【详解】对于A ,m l ⊥,m β⊂,l α⊥,则//αβ或α,β相交,故A 错误; 对于B ,会出现平面α,β相交但不垂直的情况,故B 错误;对于C ,因为//m l ,m α⊥,则l α⊥,由因为l βαβ⊥⇒∥,故C 错误; 对于D ,l α⊥,m l m α⇒⊥∥,又由m βαβ⇒⊥∥,故D 正确. 故选:D 【点睛】本题考查空间中的平行、垂直关系的判定,还考查学生的空间想象能力和逻辑推理能力,属于中档题.12.已知,m l 是两条不同的直线,,αβ是两个不同的平面,则下列可以推出αβ⊥的是( )A .,,m l m l βα⊥⊂⊥B .,,m l l m αβα⊥⋂=⊂C .//,,m l m l αβ⊥⊥D .,//,//l m l m αβ⊥【答案】D 【解析】 【分析】A ,有可能出现α,β平行这种情况.B ,会出现平面α,β相交但不垂直的情况.C ,根据面面平行的性质定理判断.D ,根据面面垂直的判定定理判断. 【详解】对于A ,m l ⊥,m β⊂,若l β⊥,则//αβ,故A 错误; 对于B ,会出现平面α,β相交但不垂直的情况,故B 错误;对于C ,因为//m l ,m α⊥,则l α⊥,又因为l βαβ⊥⇒∥,故C 错误; 对于D ,l α⊥,m l m α⇒⊥∥,又由m βαβ⇒⊥∥,故D 正确. 故选:D 【点睛】本题考查空间中的平行、垂直关系的判定,还考查学生的空间想象能力和逻辑推理能力,属于中档题.13.若圆锥的高等于底面直径,则它的底面积与侧面积之比为 A .1∶2 B .1∶3 C .1∶5 D .3∶2【答案】C 【解析】 【分析】由已知,求出圆锥的母线长,进而求出圆锥的底面面积和侧面积,可得答案 【详解】设圆锥底面半径为r ,则高h =2r ,∴其母线长l =r .∴S 侧=πrl =πr 2,S 底=πr 故选C . 【点睛】本题考查的知识点是旋转体,圆锥的表面积公式,属于基础题.14.若a ,b 是不同的直线,α,β是不同的平面,则下列四个命题:①若a P α,b β∥,a b ⊥r r,则αβ⊥;②若a P α,b β∥,a b ∥,则αβ∥;③若a α⊥,b β⊥,a b ∥,则αβ∥;④若a P α,b β⊥,a b ⊥r r,则αβ∥.正确的个数为( ) A .0 B .1C .2D .3【答案】B 【解析】 【分析】对每一个选项逐一分析得解. 【详解】命题①中α与β还有可能平行或相交; 命题②中α与β还有可能相交; 命题④中α与β还有可能相交;∵a b P ,a α⊥,∴b α⊥,又b β⊥,∴αβP .故命题③正确. 故选B . 【点睛】本题主要考查空间直线平面位置关系的判断,意在考查学生对这些知识的理解掌握水平和空间想象能力.15.设,为两条不同的直线,,为两个不同的平面,下列命题中,正确的是( ) A .若,与所成的角相等,则B .若,,则C .若,,则D .若,,则【答案】C 【解析】试题分析:若,与所成的角相等,则或,相交或,异面;A 错. 若,,则或,B 错. 若,,则正确. D .若,,则,相交或,异面,D 错考点:直线与平面,平面与平面的位置关系16.已知底面是等腰直角三角形的三棱锥P -ABC 的三视图如图所示,俯视图中的两个小三角形全等,则( )A .PA ,PB ,PC 两两垂直 B .三棱锥P -ABC 的体积为83C .||||||6PA PB PC ===D .三棱锥P -ABC 的侧面积为35【答案】C 【解析】 【分析】根据三视图,可得三棱锥P -ABC 的直观图,然后再计算可得. 【详解】解:根据三视图,可得三棱锥P -ABC 的直观图如图所示,其中D 为AB 的中点,PD ⊥底面ABC . 所以三棱锥P -ABC 的体积为114222323⨯⨯⨯⨯=, 2AC BC PD ∴===,2222AB AC BC ∴=+=,||||||2DA DB DC ∴===,()22||||||226,PA PB PC ∴===+=222PA PB AB +≠Q ,PA ∴、PB 不可能垂直,即,PA ,PB PC 不可能两两垂直,1222222PBAS ∆=⨯⨯=Q ,()22161252PBC PAC S S ∆∆==⨯-⨯=Q .∴三棱锥P -ABC 的侧面积为2522+.故正确的为C. 故选:C. 【点睛】本题考查三视图还原直观图,以及三棱锥的表面积、体积的计算问题,属于中档题.17.在四面体ABCD 中,AB ,BC ,BD 两两垂直,4AB BC BD ===,E 、F 分别为棱BC 、AD 的中点,则直线EF 与平面ACD 所成角的余弦值( ) A .13B .3 C .22D .6 【答案】C 【解析】 【分析】因为AB ,BC ,BD 两两垂直,以BA 为X 轴,以BD 为Y 轴,以BC 为Z 轴建立空间直角坐标系,求出向量EF u u u r 与平面ACD 的法向量n r ,再根据cos ,||||EF nEF n EF n ⋅〈〉=u u u r ru u u r r u u u r r ,即可得出答案. 【详解】因为在四面体ABCD 中,AB ,BC ,BD 两两垂直,以BA 为X 轴,以BD 为Y 轴,以BC 为Z 轴建立空间直角坐标系, 又因为4AB BC BD ===;()4,0,0,(0,0,0),(0,4,0),(0,0,4)A B D C ,又因为E 、F 分别为棱BC 、AD 的中点所以(0,0,2),(2,2,0)E F故()2,2,2EF =-u u u r ,(4,4,0)AD =-u u u r ,(4,0,4)AC =-u u u r.设平面ACD 的法向量为(,,)n x y z =r,则00n AD n AC ⎧⋅=⎨⋅=⎩u u u v v u u u v v 令1,x = 则1y z ==;所以(1,1,1)n =r1cos ,3||||EF n EF n EF n ⋅〈〉===u u u r ru u u r r u u u r r 设直线EF 与平面ACD 所成角为θ ,则sin θ= cos ,EF n 〈〉u u u r r所以cos 3θ== 故选:C 【点睛】本题主要考查线面角,通过向量法即可求出,属于中档题目.18.已知平面α,β和直线1l ,2l ,且2αβl =I ,则“12l l P ”是“1l α∥且1l β∥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B 【解析】 【分析】将“12l l P ”与“1l α∥且1l β∥”相互推导,根据能否推导的情况判断充分、必要条件. 【详解】当“12l l P ”时,1l 可能在α或β内,不能推出“1l α∥且1l β∥”.当“1l α∥且1l β∥”时,由于2αβl =I ,故“12l l P ”.所以“12l l P ”是“1l α∥且1l β∥”的必要不充分条件. 故选:B. 【点睛】本小题主要考查充分、必要条件的判断,考查空间直线、平面的位置关系,属于基础题.19.如图1,已知正方体ABCD-A 1B 1C 1D 1的棱长为2,M ,N ,Q 分别是线段AD 1,B 1C ,C 1D 1上的动点,当三棱锥Q-BMN 的正视图如图2所示时,三棱锥俯视图的面积为A .2B .1C .32 D .52【答案】C 【解析】 【分析】判断俯视图的形状,利用三视图数据求解俯视图的面积即可. 【详解】由正视图可知:M 是1AD 的中点,N 在1B 处,Q 在11C D 的中点, 俯视图如图所示:可得其面积为:1113222111122222⨯-⨯⨯-⨯⨯-⨯⨯=,故选C . 【点睛】本题主要考查三视图求解几何体的面积与体积,判断它的形状是解题的关键,属于中档题.20.一个各面均为直角三角形的四面体有三条棱长为2,则该四面体外接球的表面积为( ) A .6π B .12πC .32πD .48π【答案】B 【解析】 【分析】先作出几何图形,确定四个直角和边长,再找到外接球的球心和半径,再计算外接球的表面积. 【详解】由题得几何体原图如图所示,其中SA⊥平面ABC,BC⊥平面SAB,SA=AB=BC=2,所以2,3SC=设SC中点为O,则在直角三角形SAC中,3,在直角三角形SBC中,OB=13 2SC=所以3所以点O3所以四面体外接球的表面积为43=12ππ.故选:B【点睛】本题主要考查四面体的外接球的表面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理的能力.。

(完整word版)高三数学空间向量专题复习附答案

(完整word版)高三数学空间向量专题复习附答案

一、利用向量处理平行与垂直问题例1、 在直三棱柱111C B A ABC -中,090=∠ACB , 030=∠BAC ,M A A BC ,6,11==是1CC 得中点。

求证:AM B A ⊥1练习:棱长为a 的正方体ABCD —A 1B 1C 1D 1中,在棱DD 1上是否存在点P 使B 1D ⊥面P AC ?例2 如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点N M ,分别在对角线AE BD ,上,且AE AN BD BM 31,31==,求证://MN 平面CDE练习1、在正方体1111D C B A ABCD -中,E,F 分别是BB 1,,CD 中点,求证:D 1F ⊥平面ADE2、如图,在底面是菱形的四棱锥P —ABCD 中, ︒=∠60ABC ,,2,a PD PB a AC PA ====点E 在PD 上,且PE :ED = 2: 1.在棱PC 上是否存在一点F, 使BF ∥平面AEC?证明你的结论.二、利用空间向量求空间的角的问题例1 在正方体1111D C B A ABCD -中,E 1,F 1分别在A 1B 1,,C 1D 1上,且E 1B 1=41A 1B 1,D 1F 1=41D 1C 1,求BE 1与DF 1所成的角的大小。

例2 在正方体1111D C B A ABCD -中, F 分别是BC 的中点,点E 在D 1C 1上,且=11E D 41D 1C 1,试求直线E 1F 与平面D 1AC例3 在正方体1111D C B A ABCD -中,求二面角1C BD A --的大小。

zx1CFD CBA例4 已知E,F分别是正方体1111DCBAABCD-的棱BC和CD的中点,求:(1)A1D与EF所成角的大小;(2)A1F与平面B1EB所成角的大小;(3)二面角BBDC--11的大小。

三、利用空间向量求空间的距离的问题例1 直三棱柱AB C-A1B1C1的侧棱AA1,底面ΔAB C求点B1到平面A1B C的距离。

(完整word版)空间向量与立体几何测试题及答案

(完整word版)空间向量与立体几何测试题及答案

高中 数学选修(2-1)空间向量与立体几何测试题、选择题1 •若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是()A. —个圆E. —个点 C.半圆 D.平行四边形答案:AUUJU2 .在长方体 ABCD A 1B 1C 1D 1中,下列关于 AC ,的表达中错误的一个是( )C. 一定共面D. 肯定不共面A. UUL T AA LUUIT AB UUU TA D C.UUL T AD UUUU CC 1 ULU U D 1C 1 B. D. UUU UlUULUJUJAB DD D G1 uma ujun uuuir-(AB 1 CD 1) AC 13.若 A. B. a , (a (a b, c 为任意向量, b) c a b )・c F 列等式不一定成立的是( a-c C. D.m(a b) (a-b)-c 答案:Dma a-(b-c)(b c) b-cmb4.若二点A B, C 共线,P 为空1 间任意一占八、且 PAPB A. 1B. 1C.- 1D. 22答案:B5.设 a (x,4,3), b (3,2, z),且 a II b , 则xz:等于()A. 4B. 9C. 9D. 649答案:B6 .已: 知非 零向量 e 〔,e2不共线,如果UJUAB UUT e e 2, AC 2A B, C , D ()uuuPC ,则UULT8©,, AD3e 的值为则四点答案: B uni uu mA. —定共圆B. 恰是空间四边形的四个顶点心答案:C7.如图1,空间四边形 ABCD 的四条边及对 角线长都是a ,点E , 的中点,贝U a 2等于( uuu uurA. 2BA AC F , G 分别是 AB, AD , CDB. uuu UJU 2AD-BD uur uuuC. 2FG-CAD. uuu UJU 2EF-CB答案:B &若a则 x, y , e 1 e 2 e ® z 的值分别为 b e 1 e2e3,c e1)e2e3, e i2e 2 3是,且 d xa ybzc ,A. 5 2, 答案:AB.C.D. 2 J'19.若向量a (1 ,2)与 b (2, 1,2)的夹角的余弦值为 8,则 9A. 2B. 2C. 2或— 55D.2或—55答案:C 10 •已知ABCD 为平行四边形,且A(413), ” 7A. —,4, 1 2答案:D B. (2,4,1) B(2, 5,1), C(3,7,C. ( 214,1) 11 .在正方体ABCD AB 1C 1D1 中, 5),则顶点D 的坐标为(D. (513, 3)A. 60°B. 90° O 为AC , BD 的交点,则 C 43C. arccos -3 GO 与AD 所成角的(arccos 6 D. 答案:D 12.给出下列命题: b ,贝U a-(b ①已知a c) c ・(b a) b-c ; ② A, B, uuu uuuu uuirM , N 为空间四点,若BABM ,BN 不构成空间的一个基底, 那么A , B, M , N 共面; b ,则a , b 与任何向量都不构成空间的一个基底; ④若a, b 共线,则a, 正确的结论的个数为( A. 1 B. 2 答案:C ③已知a b 所在直线或者平行或者重合. ) C. 3D. 4二、填空题 13.已知 a (3,15), b(1,2, 3),向量c 与z 轴垂直,且满足c-a 9, c-b4,则c所成的角. 解:建立如图所示的空间直角坐标系,则 A(0,0,0, B(0, a ,0, A(0,0,&a), G — a<a 虽a 2 2 由于n ( 1,0,0)是面ABB 1A ]的法向量,答案:22 21,05 5 UlU 1 UUU 2 UUU 14.已知A B, C 三点不共线,O 为平面ABC 外一点,若由向量OP OA OB 5 3 LULT ” OC 确 定的点P 与A, B, C 共面,那么 _______________ 答案:- 15 15.已知线段 AB 面,BC ,CD BC ,DF 面 于点F ,在平面 的同侧,若 AB BC CD 2,则AD 的长为 _________________ . DCF 30°,且 D , A 答案:2 2 16 .在长方体ABCD A 1B 1C 1D 1中,BQ 和CQ 与底面所成的角分别为 线BC 和CQ 所成角的余弦值为 _______________ . 60°和45° ,则异面直 答案: 17 .设 a 1 2i j k , a 2 i 3j 2k , a a 2i j 3k , a 4 3i 2j 5k ,试问是否存在实 数,, ,a 4 a 1 a 2 a 3成立? 如果存在,求出 ,,;如果不存在,请写出 证明. 答案:解: 假设 a 4 a 1 a 2 a 3成立. ••• a 1 (2, 1,1), a 2(13, 2) , a 3 ( 21, 3) , a 4 (3,2,5),•- (2 2 ,3 , 2 3 ) (3,2,5).2 232 ,32,解得1,2 3 5,3.所以存在 2, 1, v3使得a 4 2a 1 a 2 3a 3.三、解答题 理由即为解答过程. 18.如图2,正三棱柱ABC A 1B 1C 1的底面边长为 a ,侧棱长为 2a ,求AC 1与侧面ABB 1AI ;20.已知正方体 ABCD AB1GD 1的棱长为2 , P, Q 分别是BC , CD 上的动点,且PQ 2 , 确定P, Q 的位置,使QB 1 PD 1 . 解:建立如图所示的空间直角坐标系,设BP t ,得 CQ 2 (2 t)2 , DQ 2 2 (2 t)2 ..uuuu cos AG , nUJIHAC/nJJUIAG n故AC i 与侧面ABB i A 所成的角为30°.19 •如图 3,直三棱柱 ABC ABQ i 中,底面是等腰直角三角形, ACB 90°,侧棱AA 2,D ,E 分别是CC i 与AB 的中点,点 E 在平面 ABD 上的射影是 求点A 到平面AED 的距离.解:建立如图所示的空间直角坐标系,设CA 2a ,'""2a 2a 1 则 A(2a,0,0, B(0,2a,0, D(0,0,1), A(2a,0,2) E(a, a,1), G 一,一,-. 33 3切 a a 2 uuu从而 GE — _ ,BD (0, 2a,1).3 3 3 uuu uur△ ABD 的重心G ,则 A !(2,0,2) A(2,0,0) E(1,1,1).自A 作AH 面AED 于M ,并延长交xOy 面于H ,设H (x, y ,0), uuuu则 AH (x 2, y ,2).uuu uuu 又 AD ( 2,0,) , AE ( 1,1,1).A 1H AD , A 1H AE2(x22) 220 0 % 1,得 H(1,1,0) (x 2) y 2 0y 1 ,又AMA 1A 'cos JUTULULTA A AMjUULT LULU. AA ・cos A 1A AH2 4 22.6那么 B(2,0,2) D(0,2 -2, P(2 , , 0) Q(22 (2 t)2 ,2 - 0),从而QR ( 2 (2 t)2 - 2 -2),PD 1 (2,2 t , 2),由 QB PD 1 uuuu uuuuQB/PD ! 0,1 21 图X即 2 2 (2 t)22(2 t) 4 0 t 1 .故P, Q 分别为BC , CD 的中点时,QB i PD i .21.如图4,在底面是直角梯形的四棱锥 S ABCD 中, ABC 90°,SA 面 ABCD , 1 SA AB BC 1, AD ,求面SCD 与面SBA 所成二面角的正切 2 值. 解:建立如图所示的空间直角坐标系, 戸, 1 则 A(0,0,0, B( 1,0, 0, C( 1,1,0) D 0,0 , S(0,0,1). 延长CD 交x 轴于点F ,易得F(1,0, 0), 作AE SF 于点E ,连结DE , 则 DEA 即为面SCD 与面SBA 所成二面角的平面角. 1 1 又由于 SA AF 且 SA AF ,得 E - , 0 ,-, 2 2uur 1 那么EA 2,01 uur ED 2从而 uuu uuu.EA ,.uu u UUUI. ED |1 1 2,2 6 3uur umr.因此 tan EAF , ED 故面SCD 与面SBA 所成二面角的正切值为 22 .平行六面体 ABCD A 1B 1C 1D 1的底面ABCD 是菱形,且 GCB GCD BCD ,试问:CD当一一的值为多少时, AQ 面GBD ?请予以证明. CG 解:欲使AQ 面GBD ,只须AC C 1D ,且AC GB . uuir uuun欲证AC GD ,只须证CAGD 0 , uur uur uuu uuur 即(CA AA )• (CD CG ) 0 , uur uuu 也就是(CD CB ujuu uur uuur CC)(CD CCJ 0,uuu 2 .uuuu 2 uuu u uu 即 CD ICC 1CB CD cos BCD uuu uuui CB CC 1 cos 由于 C 1CB BCD , C 1CB 0.显然,uur CDuuuuCC 1时,上式成立; 同理可得,当 因此,当CDCC 1uur CD iuuu CC 1AC1 时,AC 面 GBD ..选择题:(10小题共40分)ABC 外的任一点 O,下列条件中能确定点 M 与点A B C定共面的是()A. OM OA OB ' OCB . OM2OA OB OCC. OMOA 1 ^OB1 ^OCD. OM^OA ^OB -OC233 3 3 2.直三棱柱ABC-A 1B 1G 中, 若CAa,CB bgC,则 AB()A. a b— c B. a ■ — b cC. a■ — b cD. a b c3.若向量m 垂直向量a 和b ,向量n—» a b(,R 且、0)则(能4.以下四个命题中,正确的是—1 —1 —-A.若OP OA OB ,则P 、A 、E 三点共线2 3B.设向量{a,b,c }是空间一个基底,则{ a + b , b +c , c + a }构成空间的另一个基底—► —*—► fC . (a b )c a b cA 1B 1 a, A 1D 1 b, AA c ,则下列向量中与B 1M 相等的是 ()1.已知A B C 三点不共线,对平面 A. m 〃 n B. mn C.qp •*m 不平行于n,m 也不垂直于D.以上三种情况都可D. △ ABC 是直角三角形的充要条件是 AB AC 0 5.对空间任意两个向量 a,b (bo ),a//b 的充要条件是A . a bB . aC. b aD. a6.已知向量a(0,2,1),b ( 1,1, 2),则a 与b 的夹角为A.0 °B.45C.90o.D.1807.在平行六面体 ABCD A 1B 1C 1D 1中,M 为 AC 与 BD2B.5C.35 D 」10二.填空题:(4 小题共16分)11.若 A(m+1,n-1,3),B(2m,n,m-2n),c(m+3,n-3,9)三点共线,则 m+n=12.已知 A( 0,2,3),B( -2,1 , 6), C( 1,-1 ,5),若 |a| 3,且a AB,a AC,则向量a的坐标为13.已知a,b 是空间二向量,若|a| 3,|b| 2,| a b| 7,则a 与b 的夹角为 14.已知点 G 是厶ABC 的重心,O 是空间任一点,若OA OB OC OG,则 的值为.三.解答题:(10+8+12+14=44 分)15.如图:ABCD 为矩形,PAL 平面 ABCD PA=AD M N 分别是PC AB 中点, (1)求证:MNL 平面PCD (2)求NM 与平面 ABCD 所成的角的大小.16. 一条线段夹在一个直二面角的两个面内,它和两个面所成的角都是 300,求这条线段与这个二面角的棱所成的角的大小 .10.在棱长为1的正方体ABC —A 1B 1CD 中,M 和N 分别为AB 和BB 的中点,那么直线 AM 与CN所成角的余弦值是A.1 1「 1 11 11111 a b C B. a b -C C. a b c D.- a b c2 2 22 2 2 2 22 28.已知a (1,0,2 ),b(6,21,2),若 a//b,则的值分别为A.1,jB.5, 2D.-5 , -29.已知 a 3i 2j k,b iA.-15B.-5C.-3D.-1C. 117.正四棱锥S—ABCD中,所有棱长都是2, P为SA的中点,如图•(1)求二面角B—SC- D的大小;(2)求DP与SC所成的角的大小•518.如图,直三棱柱ABC-A1B1C1,底面△ ABC中,CA=CB=1 / BCA=90,棱AA=2, M N分别是A1B1, AA的中点;(1)求BN的长;⑵求cos BA,CB1的值;(3)求证:AB C1M .(4)求CB与平面AABB所成的角的余弦值高中数学选修2-1测试题(10)—空间向量 ⑴ 参考答案•-1 BN |= (1 0)2 (0 1)2 (1 0)2 3.DDBB DCDA AB 11.0 12.(1 ,1 , 1)13.6014.315.(1) 略⑵4516.4517.(1)1 3⑵18.(1)3(2)30 (3) 略(4)3 10101018.如图,建立空间直角坐标系O — xyz.(1 )依题意得B ( 0,(2)依题意得 A 1 (1, 0, 2)、B ( 0, 1 , 0)、 • BA ={ —1 , — 1 , 2} , CB 1 ={0 , 1 , 2, }, C (0, 0, 0)、B (0, 1 , 2)BA| • CB 1 =3, | BA |=4 g1J齐■二4 Z图1,0)、N (1,0,1)I CB i |= 5二cos<BA i ,CB i >=BA CB1—-:'30 .IBA i I |CB i|10(3)证明:依题意,得G(0, 0, 2)、M( 1,1,22 2 ),A>{ -1,1,2}, C j M={-,-,1 2 20}. • A B • C i M =—11+0=0,••• AB 丄CM ,••• A i B丄CM.评述:本题主要考查空间向量的概念及运算的基本知识.考查空间两向量垂直的充要条件。

2023-2024学年高考数学空间向量与立体几何专项练习题(附答案)

2023-2024学年高考数学空间向量与立体几何专项练习题(附答案)

A .B .223.若直线的方向向量为,平面l bA .()(1,0,0,2,0,0b n ==-()(0,2,1,1,0,1b n ==--A .B .5136.如图,在平行六面体ABCDA.1122a b c -++C.1122a b c --+7.如图,在四面体OABC中,1-16.已知四棱锥P ABCDPC棱上运动,当平面1.C【分析】根据已知结合向量的坐标运算可得出,且.然后根据向量的数量积a b a +=- 14a = 运算求解,即可得出答案.【详解】由已知可得,且.()1,2,3a b a+=---=-14a =又,()7a b c +⋅= 所以,即有,7a c -⋅= cos ,14cos ,7a c a c a c -⋅=-=所以,.1cos ,2a c =-又,所以.0,180a c ≤≤ ,120a c =︒ 故选:C.2.C【分析】利用中点坐标公式求出中点的坐标,根据空间两点间的距离公式即可得出中线BC 长.【详解】由图可知:,,,(0,0,1)A (2,0,0)B (0,2,0)C 由中点坐标公式可得的中点坐标为,BC (1,1,0)根据空间两点间距离公式得边上的中线的长为.BC 22211(1)3++-=故选:C 3.D【分析】若直线与平面平行,则直线的方向向量与平面的法向量垂直,利用向量数量积检验.【详解】直线的方向向量为,平面的法向量为,l bαn 若可能,则,即.//l αb n ⊥r r 0b n ⋅=r r A 选项,;()1220b n =⨯-⋅=-≠B 选项,;11305160b n =⨯⨯⋅+⨯+=≠C 选项,;()()01201110b n =⨯-+⨯+⨯-⋅=-≠D 选项,;()1013310b n =⨯+-⨯=⋅+⨯因为,,3AB =4BC =2PA =所以()()(0,0,2,3,0,0,0,0,1P B Q 设平面的法向量为BQD (m x =()(),,3,0,1m BQ x y z ⎧设,2AB AD AS ===则()()()0,0,0,0,0,2,2,2,0,A S C P 设,()0,,2M t t -(1,1,2OM t =--所以1120OM AP t t ⊥=-+-+-=点到平面与平面的距离和为为定值,D 选项正确.M ABCD SAB 22t t -+=,,()2,0,0B ()()2,0,2,0,2,0SB BC =-=设平面的法向量为,SBC (),,n x y z =则,故可设,22020n SB x z n BC y ⎧⋅=-=⎪⎨⋅==⎪⎩()1,0,1n = 要使平面,又平面,//OM SBC OM ⊄SBC 则,()()1,1,21,0,11210OM n t t t t ⋅=---⋅=-+-=-=解得,所以存在点,使平面,B 选项正确.1t =M //OM SBC 若直线与直线所成角为,又,OM AB 30︒()2,0,0AB =则,()()222213cos3022661122OM ABOM ABt t t t ⋅-︒====⋅-++-+-⨯ 整理得,无解,所以C 选项错误.23970,8143730t t -+=∆=-⨯⨯=-<故选:ABD.10.BCD【分析】根据向量的多边形法则可知A 正确;根据向量的三角不等式等号成立条件可知,B 错误;根据共线向量的定义可知,C 错误;根据空间向量基本定理的推论可知,D 错误.【详解】对A ,四点恰好围成一封闭图形,根据向量的多边形法则可知,正确;对B ,根据向量的三角不等式等号成立条件可知,同向时,应有,即必要,a b a b a b+=+ 性不成立,错误;对C ,根据共线向量的定义可知,所在直线可能重合,错误;,a b对D ,根据空间向量基本定理的推论可知,需满足x +y +z =1,才有P 、A 、B 、C 四点共面,错误.故选:BCD .11.AB【分析】以,,作为空间的一组基底,利用空间向量判断A ,C ,利用空间向量法ABAD AA 可得面,再用向量法表示,即可判断B ,利用割补法判断D ;1AC ⊥PMN AH【详解】依题意以,,作为空间的一组基底,ABAD AA 则,,11AC AB AD AA =++ ()1122MN BD AD AB ==-因为棱长均为2,,11π3A AD A AB ∠=∠=所以,,224AB AD == 11π22cos 23AA AD AA AB ⋅=⋅=⨯⨯= 所以()()1112D A A C MN AD A A B AA B++⋅⋅=- ,()2211102AB AD AB AD AB AD AA AD AA AB ⋅-+-⋅+==⋅+⋅故,即,故A 正确;1AC MN ⊥1AC MN ⊥同理可证,,面,面,PN AC ⊥MN PN N ⋂=MN ⊂PMN PN ⊂PMN 所以面,即面,即为正三棱锥的高,1AC ⊥PMN AH ⊥PMN AH A PMN -所以()()1133AH AN NH AN NP NM AN AP AN AM AN=+=++=+-+- ,()13AP AM AN =++又,,分别是,,的中点,,P M N 1AA AB AD π3PAM PAN MAN ∠=∠=∠=所以,则三棱锥是正四面体,1PA AM AN PM MN PN ======P AMN -所以()11111133222AH AP AM AN AA AB AD ⎛⎫=++=⨯++ ⎪⎝⎭ ,()111166AA AB AD AC =++=所以,故B 正确;116AH AC =因为()211AC AB AD AA =++ ()()()222111222AB ADAA AB AD AB AA AD AA =+++⋅+⋅+⋅ ,2426==()21111111=AC AA AB AD AA AA AB AA AD AA AA ⋅=++⋅⋅+⋅+ ,11222222=822=⨯⨯+⨯⨯+⨯设直线和直线所成的角为,1AC 1BB θ则,故C 错误;1111111186cos cos ,cos ,3262AC AA AC BB AC AA AC AA θ⋅=====⨯ ,11111111111111A B D C ABCD A B C D A B D A C B D A B ABC D ADCV V V V V V ------=----其中,1111111111116ABCD A B C D A B D A C B D C B ABC D ADC V V V V V -----====所以,故D 错误.1111113A B D C ABCD A B C D V V --=故选:AB.关键点睛:本题解决的关键点是利用空间向量的基底法表示出所需向量,利用空间向量的数量积运算即可得解.12.AC【分析】对于A ,根据即可算出的值;对于B ,根据计算;对于C ,根据||2a = m a b ⊥ m 计算即可;对于D ,根据求出,从而可计算出.a b λ= 1a b ⋅=- m a b + 【详解】对于A ,因为,所以,解得,故A 正确;||2a = 2221(1)2m +-+=2m =±对于B ,因为,所以,所以,故B 错误;a b ⊥ 2120m m -+-+=1m =对于C ,假设,则,a b λ= (1,1,)(2,1,2)m m λ-=--所以,该方程组无解,故C 正确;()12112m m λλλ=-⎧⎪-=-⎨⎪=⎩对于D ,因为,所以,解得,1a b ⋅=- 2121m m -+-+=-0m =所以,,所以,故D 错误.(1,1,0)a =- (2,1,2)b =-- (1,2,2)+=-- a b 故选:AC.13.15【分析】根据线面垂直,可得直线的方向向量和平面的法向量共线,由此列式计算,即得答案.【详解】∵,∴,∴,解得,l α⊥u n ∥ 3123a b ==6,9a b ==∴,15a b +=故1514.2【分析】根据垂直得到,得到方程,求出.()0a a b λ⋅-= 2λ=【详解】,()()()2,1,31,2,12,12,3a b λλλλλ-=---=--- 因为,所以,()a a b λ⊥- ()0a a b λ⋅-= 即,()()2,12,3241293702,1,134λλλλλλλ----=-++-+-=+⋅-=解得.2λ=故215.17【分析】利用向量的加法,转化为,直接求模长即可.CD CA AB BD =++ 【详解】因为.CD CA AB BD =++ 所以()22CD CA AB BD =++ 222222CA CA AB AB AB BD BD CA BD=+⋅++⋅++⋅ 222132022042342⎛⎫=+⨯++⨯++⨯⨯⨯- ⎪⎝⎭17=所以.17CD = 故答案为.1716.33【分析】首先建立空间直角坐标系,分别求平面和平面的法向量,利用法向量垂MBD PCD 直求点的位置,并利用向量法求异面直线所成角的余弦值,即可求解正弦值.M 【详解】如图,以点为原点,以向量为轴的正方向,建立空间直角坐标A ,,AB AD AP ,,x y z 系,设,2AD AP ==,,,,()2,0,0B ()0,2,0D ()002P ,,()2,2,0C 设,()()()0,2,22,2,22,22,22DM DP PM DP PC λλλλλ=+=+=-+-=-- ,,,()2,2,0BD =-u u u r ()2,0,0DC =u u u r ()0,2,2DP =- 设平面的法向量为,MBD ()111,,m x y z =r ,()()11111222220220DM m x y z DM m x y λλλ⎧⋅=+-+-=⎪⎨⋅=-+=⎪⎩33故。

高考立体几何与空间向量含(易中难)含详解

高考立体几何与空间向量含(易中难)含详解

高考立体几何与空间向量(易中难)专项训练目录一、异面直线所成角二、直线与平面所成角三、二面角问题四、面面夹角五、存在性问题与折叠问题(综合)一、异面直线所成角注意向量的夹角与异面直线所成的角的区别:当异面直线的方向向量的夹角为锐角或直角时,就是此异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.1、如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,90BAD ∠= ,PA ⊥底面ABCD ,且2PA AD AB BC ===,M 为PC 的中点.(1)求证:PB DM ⊥;(2)求AC 与PD 所成角的余弦值.2、如图(1)是将一副直角三角尺拼成的平面图形,已知=BC 45ACB ∠=︒,60D ∠=︒,现将ABC 沿着BC 折起使之与BCD △构成二面角,如图(2).(1)当三棱锥A BCD -体积最大时,求三棱锥A BCD -的体积;(2)在(1)的情况下,求AC 与BD 所成角的余弦值.3、如图,在三棱锥P ­ABC 中,PA ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,PA =AC =4,AB =2.(1)求证:MN ∥平面BDE ;(2)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长.4、如图,在几何体ABCDE 中,底面ABC 为以AC 为斜边的等腰直角三角形.已知平面ABC ⊥平面ACD ,平面ABC ⊥平面,BCE DE 平面,ABC AD DE ⊥.(1)证明:DE ⊥平面ACD ;(2)若22AC CD ==,设M 为棱BE 的中点,求当几何体ABCDE 的体积取最大值时AM 与CD 所成角的正切值.5、如图,在四棱锥P ABCD -PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,π2∠=∠=ABC BAD ,2PA AD ==,1AB BC ==.(1)证明:AB PD ⊥;(2)线段CP 上是否存在一点M ,使得直线AM 垂直平面PCD ,若存在,求出线段AM 的长,若不存在,说明理由;(3)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.二、直线与平面所成角利用向量求直线与平面所成的角有两个思路:①分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);②通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.注意夹角的取值范围:若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2.1、已知四棱锥P ABCD -(如图),四边形ABCD 为正方形,面PAB ⊥面ABCD ,2PA PB AB ===,M 为AD 中点.(1)求证:PC BM ⊥;(2)求直线PC 与平面PBM 所成角的余弦值.2、如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PD =PB ,H 为PC 上的点,过AH 的平面分别交PB ,PD 于点M ,N ,且BD ∥平面AMHN .(1)证明:MN ⊥PC ;(2)设H 为PC 的中点,PA =PC =3AB ,PA 与平面ABCD 所成的角为60°,求AD 与平面AMHN 所成角的正弦值.3、如图,在三陵锥P ABC -中,PAC ∆为等腰直角三角形,,2PA PC AC ==,ABC ∆为正三角形,D 为AC 的中点.(1)证明:平面PDB ⊥平面PAC ;(2)若二面角P AC B --的平面角为锐角,且棱锥P ABC -的体积为6,求直线PA 与平面PCB 所成角的正弦值.4、已知在直三棱柱111ABC A B C -中,E ,F 分别为棱1BB 和11A C 的中点,若π4BAC ∠=,AC =3AB =.(1)证明:平面CEF ⊥平面11ACC A ;(2)若直线1EC 与平面CEF 所成角的正弦值为3且13AA <,求直三棱柱111ABC A B C -的体积.5、如图,在正三棱柱111ABC A B C -中,D 为棱1AA 上的点,E ,F ,G 分别为AC ,11AC ,1BB 的中点,12AC AA ==.(1)求证:ACFG ⊥(2)若直线FG 与平面BCD AD 的长.6、在直四棱柱1111ABCD A B C D -中,底面ABCD 是菱形,AC 交BD 于点O ,60,BAD AB ︒∠==.(1)若13AA =,求证:平面11AO D ⊥平面1BDC ;(2)若直线1OD 与平面11A OB 所成角的正弦值为7,求四棱柱1111ABCD A B C D -的高.7、如图,在直三棱柱111ABC A B C -中,AB AC =,点F 是11B C 的中点,点E 满足()1101C E C C λλ=<< .(1)求证:11A F B E ⊥;(2)若AB AC ⊥,112AB AA =,直线1A F 与平面1AB E 所成的角为60︒,求λ的值.三、二面角问题利用向量法计算二面角大小的常用方法找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两注意:求余弦值时需加绝对值,再判断是钝二面角还是锐二面角1、如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求二面角A ­MA 1­N 的正弦值.2、如图,已知圆锥-P ABC ,AB 是底面圆О的直径,且长为4,C 是圆O 上异于A ,B 的一点,PA =P AC B --与二面角P BC A --的大小分别为α与β.(1)求2211tan tan αβ+的值;(2)若tan βα=,求二面角A PC B --的余弦值.3、如图所示,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,平面PAD ⊥平面ABCD ,△PAD 是边长为4的等边三角形,BC ⊥PB ,E 是AD 的中点.(1)求证:BE ⊥PD ;(2)若直线AB 与平面PAD 所成角的正弦值为154,求平面PAD 与平面PBC 所成的锐二面角的余弦值.4、如图,四棱锥P ABCD -中,底面ABCD 为梯形,PD ⊥底面ABCD,//AB CD ,AD CD ⊥,1AD AB ==,BC =(1)求证:平面PBD ⊥平面PBC;(2)设H 为CD 上一点,满足2CH HD = ,若直线PC 与平面PBD 所成的角的正切值为63,求二面角H PB C --的余弦值.5、如图,四边形ABCD 是圆柱底面的内接四边形,AC 是圆柱的底面直径,PC 是圆柱的母线,E 是AC 与BD 的交点,AB AD =,60BAD ∠=︒.(1)记圆柱的体积为1V ,四棱锥P ABCD -的体积为2V ,求12V V ;(2)设点F 在线段AP 上,4,4PA PF PC CE ==,求二面角F CD P --的余弦值.6、如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在平面垂直,M 是 CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.7、如图,在四棱锥P ABCD -中,四边形ABCD 是直角梯形,AD AB ⊥,//AB CD ,22PB CD AB AD ===,PD =,PC DE ⊥,E 是棱PB 的中点.(1)证明:PD ⊥平面ABCD ;(2)若AF AB λ= ,求平面DEF 与平面PAD 所成的锐二面角的余弦值的最大值.8、如图,在等腰直角ABC 中,90,BAC DB ∠= 和EC 都垂直于平面ABC ,且.36,EC BC DB F ===为线段AE 上一点,设(01)AF AE λλ=<<.(1)当λ为何值时,DF //平面ABC ;(2)当二面角E DF C --的余弦值为11时,求四棱锥F BCED -的体积.四、面面夹角问题:设平面与平面的夹角为θ,则1212cos n n n n θ⋅=⋅ 代入求解,与求二面角不同不需要观察,公式中一定有绝对值.1.如图,在多面体ABCDE 中,已知AB DE ∥,AB BD ⊥,AE CE =,22AB BD DE ===,BCD △为等边三角形.(1)求证:AC BE ⊥;(2)求平面ACE 与平面BCE 夹角的余弦值.2、如图在几何体11ABC ABO -中,ABC 是等边三角形,直线OC ⊥平面11A B O ,平面1AAOC ⊥平面1BB OC ,11////AA BB OC ,112AA BB OC ==.(1)证明:11OA OB ⊥;(2)在“①//OM 平面ABC ;②CM ⊥平面1BB OC ”两个条件中任选一个,补充到下面问题中,并解答.点M 为线段1AA 上的一点,满足__________,直线OM 与平面11A B O 所成角的大小为30 ,求平面ABC 与平面1MB O 的夹角的余弦值.(请在答题纸上注明你选择的条件序号................)3、如图,在正三棱柱111ABC A B C -中,2AB =,D 是棱AB 的中点.(1)证明:平面1A CD ⊥平面11ABB A ;(2)若[]11,2AA ∈,求平面1ACD 与平面11A CC 的夹角余弦值的取值范围.4、如图,直角梯形ABCD 中,22CD AB BC ==,AB BC ⊥,AB CD ∥,点E 为CD 的中点,ADE V 沿着AE 翻折至APE V ,点M 为PC 的中点,点N 在线段BC 上.(1)证明:EM ⊥平面PBC ;(2)若平面PAE ⊥平面ABCE ,平面EMN 与平面PAB 的夹角为30 ,求BN BC的值.五、存在性问题与折叠问题(综合)存在性问题:在设存在性问题过程中,要学会减少未知数个数,学会用向量的共线方法去设折叠性问题:要注意在折叠翻转过程中的不变量1、已知在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,PAD △是正三角形,CD ⊥平面PAD ,E,F,G,O 分别是PC,PD,BC,AD 的中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求平面EFG 与平面ABCD 所成锐二面角的大小;(Ⅲ)线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角为π6,若存在,求线段PM 的长度;若不存在,说明理由.2、已知如图1直角梯形ABCD ,///AB CD ,90DAB ∠=︒,4AB =,2AD CD ==,E 为AB 的中点,沿EC 将梯形ABCD 折起(如图2),使平面BED ⊥平面AECD .(1)证明:BE ⊥平面AECD ;(2)在线段CD 上是否存在点F ,使得平面FAB 与平面EBC 所成的锐二面角的余弦值为23,若存在,求出点F 的位置;若不存在,请说明理由.3、如图1,在ABC 中,ACB ∠是直角,CA CB ==P 是斜边AB 的中点,M N ,分别是,PB PC 的中点.沿中线CP 将CAP 折起,连接AB ,点Q 是线段AC 上的动点,如图2所示.(1)求证://MN 平面ABC ;(2)从条件①、条件②这两个条件中选择一个条件作为已知,当二面角Q MN C --的余弦值为3时.求AQ AC 的值.条件①:BP AC ⊥;条件②:AB AC =.4、已知矩形ABCD 中,4AB =,2BC =,E 是CD 的中点,如图所示,沿BE 将BCE 翻折至BFE △,使得平面BFE ⊥平面ABCD .(1)证明:BF AE ⊥;(2)若(01)DP DB λλ=<< 是否存在λ,使得PF 与平面DEF ?若存在,求出λ的值;若不存在,请说明理由.5、如图①,已知正方形ABCD 的边长为4,E ,F 分别为AD ,BC 的中点,将正方形ABCD 沿EF 折成如图②所示的二面角,且二面角的大小为60°,点M 在线段AB 上(包含端点),连接AD .(1)若M 为AB 的中点,直线MF 与平面ADE 的交点为O ,试确定点O 的位置,并证明直线OD ∥平面EMC ;(2)是否存在点M ,使得直线DE 与平面EMC 所成的角为60°?若存在,求此时二面角M ­EC ­F 的余弦值;若不存在,说明理由.6、如图(1),边长为2的正方形ABEF 中,D ,C 分别为EF 、AF 上的点,且ED CF =,现沿DC 把CDF ∆剪切、拼接成如图(2)的图形,再将BEC ∆,CDF ∆,ABD ∆沿BC ,CD ,BD 折起,使E 、F 、A 三点重合于点A ',如图(3).(1)求证:'⊥BA CD ;(2)求二面角'--B CD A 最小时的余弦值.7、如图①,△ABC 中,AB =BC =2,∠ABC =90°,E ,F 分别为边AB ,AC 的中点,以EF 为折痕把△AEF 折起,使点A 到达点P 的位置(如图②),且PB =BE .(1)证明:EF ⊥平面PBE ;(2)设N 为线段PF 上的动点(包含端点),求直线BN 与平面PCF 所成角的正弦值的最大值.8、如图,正三棱柱ABC DEF -中,2AB AD ==,点G 为线段BE 上一点(含端点).(1)当G 为BE 的中点时,求证:CD ⊥平面AFG(2)是否存在一点G ,使平面AFG 与平面ABC 请求出BG BE 的值,若不存在,请说明理由.9、图1是直角梯形ABCD ,AB CD ∥,90D Ð=°,四边形ABCE 是边长为4的菱形,并且60BCE ∠=︒,以BE 为折痕将BCE 折起,使点C 到达1C 的位置,且1AC =,如图2.(1)求证:平面1BC E ⊥平面ABED ;(2)在棱1DC 上是否存在点P ,使得P 到平面1ABC 的距离为5?若存在,求出直线EP 与平面1ABC 所成角的正弦值.高考立体几何与空间向量(易中难)专项训练参考答案一、异面直线所成角1、【分析】以AB ,AD ,AP 为基底,利用向量法求解.(1)两条直线垂直可转化为两个向量垂直,利用两个非零向量数量积为零可得两向量垂直;(2)两条直线的夹角可转化为两个向量的夹角,利用向量数量积求夹角.【详解】(1)证明:结合图形,知PB AB AP =- ,,()111113222224DM DP DC AP AD AB AD AP AB AD ⎛⎫=+=-+-=+- ⎪⎝⎭ 因为PA ⊥底面ABCD ,所以PA AB ⊥,PA AD ⊥,有0PA AB ⋅= ,0PA AD ⋅= .又90BAD ∠=︒,所以0AB AD ⋅=uu u r uuu r .所以()113224PB DM AP AB A AB A D P ⎛⎫⋅=⋅+- ⎪⎝-⎭221122AB AP =- .又AB AP =,所以22AB AP = ,0PB DM ⋅= .所以PB DM ⊥.(2)设22PA AD AB BC a ====,因为PD AD AP =- ,12AC AB AD=+ 所以222228PD AD AP AD AD AP AP a =-=-⋅+=,PD = .22211524AC AB AD AB AB AD AD a =+=+⋅+=,AC = ()2211222PD AC AD AP AB AD a ⎛⎫⋅=-⋅+== ⎪⎝⎭ 记直线AC 和PD 所成角为θ,则2cos AC PD AC PDθ⋅= 所以直线AC 和PD2、【分析】(1)作AO BC ⊥,根据题意先求得CD ,AO 的值,折起过程中,BCD △面积不变,当AO 为三棱锥A BCD -的高时,三棱锥A BCD -体积最大,再根据三棱锥的体积公式求解即可;(2)在(1)的情况下建立空间直角坐标系,利用空间向量夹角公式进行求解即可.【详解】(1)如图,作AO BC ⊥,由题意2CD ,6AO =,折起过程中,BCD △面积不变,当AO 为三棱锥A BCD -的高时,三棱锥A BCD -体积最大,11626233222A BCD BCD V S AO -⋅=⋅== .(2)如图,建立空间直角坐标系,则62A ⎛⎫ ⎪ ⎪⎝⎭,62B ⎫⎪⎪⎝⎭,62C ⎛⎫ ⎪ ⎪⎝⎭,62,02D ⎛⎫ ⎪ ⎪⎝⎭,66,0,22AC ⎛=- ⎝⎭ ,()6,2,0BD = ,设AC ,BD 所成的角为θ,则6cos cos ,4322AC BD θ==⋅ ,∴AC 与BD 643、解:如图,以A 为原点,分别以AB →,AC →,AP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE →=(0,2,0),DB →=(2,0,-2).设n =(x ,y ,z )为平面BDE 的法向量,n ·DE →=0,n ·DB →=0,2y =0,2x -2z =0.不妨设z =1,可取n =(1,0,1).又MN →=(1,2,-1),可得MN →·n =0.因为MN ⊄平面BDE ,所以MN ∥平面BDE .(2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ),进而可得NH →=(-1,-2,h ),BE →=(-2,2,2).由已知,得|cos〈NH →,BE →〉|=|NH →·BE →||NH →||BE →|=|2h -2|h 2+5×23=721,整理得10h 2-21h +8=0,解得h =85或h =12.所以,线段AH 的长为85或12.4、【分析】(1)先做一条辅助线,再通过面面垂直的性质得到DO ⊥平面ABC ,再根据DE 平面ABC ,可得DO DE ⊥,进而根据线面垂直的判定定理即可证明.(2)过点E 作EN BC ⊥交BC 与点N ,连接ON ,通过题目条件和小问1结论证明四边形ODEN 为平行四边形,然后把多面体ABCDE 分为两个三棱锥求体积,令()01DE x x =≤≤,把求体积的最大值转化为求关于x 的函数的最大值.构造函数()f x ,通过导函数判断其单调性,进而得到()f x 的最大值,求出此时的x 值.然后以点O 为原点建立空间直角坐标系O xyz -,通过向量法求AM 与CD 所成角的正切值.【详解】(1)过点D 作DO AC ⊥交AC 与点O ,平面ABC ⊥平面ACD ,且两平面的交线为ACDO ∴⊥平面ABC 又DE 平面ABCDO DE∴⊥又AD DE ⊥ 且AD DO D ⋂=DE ∴⊥平面ACD(2)过点E 作EN BC ⊥交BC 与点N ,连接ON平面ABC ⊥平面BCE ,且两平面的交线为BCEN ∴⊥平面ABC又DE 平面ABC,D E ∴到平面ABC 的距离相等DO EN ∴ 且DO EN =,ON ⊥平面ACD ,CO ON DE ON∴==()11111=+133333ABCDE E ABC E ACD ABC ACD V V V EN S DE S EN DE DO DO DE--∴=+=⋅+⋅⋅=+ 又222221DO DE DO CO CD +=+==,令()01DE x x =≤≤则()())11133ABCDEx V f x DO DE +==+=,())12f x x '-.所以()f x 在102⎛⎫⎪⎝⎭,上单调递增,在112⎛⎫ ⎪⎝⎭上单调递减,即12ABCDE V f ⎛⎫≤ ⎪⎝⎭1=2DE 时取得最大值.如图所示,以点O 为原点建立空间直角坐标系O xyz -,则311,0,0,,0,,,,0,0,0,022221A B EC D ⎛⎛⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以1531,,,,444423M AM CD ⎛⎫⎛⎫⎛⎫-==- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.设AM 与CD 所成角为α,则cos AM CD AM CDα⋅==⋅ tan 6α=,即当几何体ABCDE 体积最大时,AM 与CD 所成角的正切值为6.5、【分析】(1)通过定义法证明线面垂直,即可证出两线垂直.(2)通过建立空间直角坐标系,表达坐标点,进而根据线面垂直的性质,证明直线AM 与CD和PD都垂直,求出点M 的坐标,进而求出线段AM 的长.(3)通过向量关系表达出BQ ,再表达出CQ,列出直线CQ 与DP 所成的角的表达式,求出最值和最值成立的条件,进而求出线段BQ 的长.【详解】(1)由题意,在四棱锥P ABCD -中,PA ⊥面ABCD ,AB ABCD ⊂面,AD ABCD ⊂面,∴PA AB ⊥,PA AD⊥在直角梯形ABCD 中,AB AD ⊥,π2∠=∠=ABC BAD ∵AD ADP ⊂面,AP ADP ⊂面∴AB ADP ⊥面∵PD ADP ⊂面∴AB PD⊥(2)由题意及(1)得,存在一点M ,使得直线AM 垂直平面PCD ,在四棱锥P ABCD -中,2PA AD ==,1AB BC ==作出空间直角坐标系如下图所示:由几何知识得,()0,0,0A ,()1,0,0B ,()1,1,0C ,()0,2,0D ,()002P ,,,∴()1,1,2PC =- ,()1,1,0CD =- ,()0,2,2PD =- ,设()111,,M x y z ,则()111,,2PM x y z =-,∴1112112x y z t -===-∴(),,22M t t t -+,(),,22AM t t t =-+若AM ⊥面PCD ()00022220AM CD t t AM PD t t ⎧⋅=-++=⎪⎨⋅=+--+=⎪⎩ 解得:23t =∴222,,333M ⎛⎫⎪⎝⎭AM =(3)由题意及(1)(2)得,()0,2,2DP =- ,()0,1,0CB =- ,()1,0,2BP =-设()(),0,201BQ BP λλλλ==-≤≤∴(),1,2CQ CB BQ λλ=+=--,cos ,CQ DP DP CQ DP ⋅==设12λμ+=,13μ≤≤,∴22229cos ,101520999DP μ==≤⎛⎫-+⎪⎝⎭当且仅当95μ=即2=5λ时,cos ,CQ DP最大,为10,在cos y x =中,π0,2⎛⎫ ⎪⎝⎭上是减函数,∴cos ,CQ DP最大时,直线CQ 与DP 所成的角最小,∵BP ==,∴255BQ BP ==,∴当直线CQ 与DP 所成的角最小时,求线段BQ.二、直线与平面所成角1、【分析】(1)运用面面垂直性质定理证得PO ⊥面ABCD ,以O 为原点建立空间直角坐标系,运用空间向量坐标法证明线线垂直.(2)运用空间向量坐标法求线面角的正弦值,再运用同角三角函数的平方关系可得其余弦值.【详解】(1)证明:取AB 中点O ,连接OP ,并过点O 作BC 的平行线OE ,交CD 于E ,则OE AB ⊥,∵PA PB AB ==,∴PAB 为等边三角形,又∵O 为AB 中点,∴PO AB ⊥,又∵面PAB ⊥面ABCD ,面PAB ⋂面ABCD AB =,PO ⊂面PAB ,∴PO ⊥面ABCD ,∴PO OE ⊥,以O 为原点,OB ,OE ,OP 所在直线分别为x ,y ,z 轴建立如图空间直角坐标系,因为2PA AB ==.则()1,0,0B ,(3P ,()1,1,0M -,()1,2,0C ,(1,2,3PC =- ,()2,1.0BM =-,所以()(1221300PC BM ⋅=⨯-+⨯+-⨯=,所以PC BM ⊥.(2)(1,1,3PM =-- ,(1,2,3PC =-,设平面PBM 的一个法向量为(),,n x y z = ,则有00PM n BM n ⎧⋅=⎪⎨⋅=⎪⎩,即3020x y z x y ⎧-+-=⎪⎨-+=⎪⎩,令1x =,则2y =,33z =,所以31,2,3n ⎛= ⎝⎭,设直线PC 与平面PBM 所成角为θ,则4sin 31122(3)36114143os ,3c PC n PC n PC nθ+⋅⨯+⨯+⨯-=⋅⨯++=+= ,因为π[0,]2θ∈,所以22610cos 1sin 144θθ⎛⎫=-=-= ⎪ ⎪⎝⎭,所以直线PC 平面PBM 所成角的余弦值为104.2、解:(1)证明:如图①,连接AC 交BD 于点O ,连接PO .因为四边形ABCD 为菱形,所以BD ⊥AC ,且O 为BD 的中点.因为PD =PB ,所以PO ⊥BD ,因为AC ∩PO =O ,且AC ,PO ⊂平面PAC ,所以BD ⊥平面PAC .因为PC ⊂平面PAC ,所以BD ⊥PC .因为BD ∥平面AMHN ,且平面AMHN ∩平面PBD =MN ,所以BD ∥MN ,所以MN ⊥PC .(2)由(1)知BD ⊥AC 且PO ⊥BD ,因为PA =PC ,且O 为AC 的中点,所以PO ⊥AC ,所以PO ⊥平面ABCD ,因为PA 与平面ABCD 所成的角为∠PAO ,所以∠PAO =60°,所以AO =12PA ,PO =32PA .因为PA =3AB ,所以BO =3PA .以O 为坐标原点,OA →,OD →,OP →的方向分别为x 轴,y 轴,z 轴的正方向,建立如图②所示的空间直角坐标系,记PA =2,则O (0,0,0),A (1,0,0),B 0,-33,0C (-1,0,0),D0,33,0,P (0,0,3),H -12,0,32所以BD →0,233,0AH →-32,0,AD →-1,33,0设平面AMHN 的法向量为n =(x,y ,z ·BD →=0,·AH →=0,=0,+32z =0,令x =2,解得y =0,z =23,所以n =(2,0,23)是平面AMHN 的一个法向量.记AD 与平面AMHN 所成角为θ,则sin θ=|cos〈n ,AD →〉|=|n ·AD →|n ||AD →||=34.所以AD 与平面AMHN 所成角的正弦值为34.3、【解析】(1)证明:∵PA PC =,D 为AC 中点,∴AC PD ⊥,又ABC ∆为等边三角形,BA BC =,∴AC BD ⊥,BD PD D = ,∴AC ⊥平面PDB ,AC ⊂平面PAC ,∴平面PAC ⊥平面PDB ;(2)由(1)知点P 在平面ABC 内的射影O 在直线BD 上,又二面角P AC B --的平面角为锐角,∴O 在射线DB 上,344ABC S ∆=⨯=1336P ABC ABC V S PO -∆==,∴12PO =,又1PD =,∴32OD =,即O 为中点,取AB 中点E ,连接OE ,则//OE AD ,∴OE ⊥平面POB ,∴,,OE OB OP 两两互相垂直,以O 为坐标原点,,,OE OB OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则()10,0,0,,0,1,,0,1,,0,0,0,2222O B A C P ⎛⎫⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()10,,,1,22PB BC ⎛⎫=-=- ⎪ ⎪⎝⎭设平面PCB 的法向量为(),,n x y z =由00n PB n BC ⎧⋅=⎨⋅=⎩得10220y z x -=⎪⎨⎪-=⎩令1y =,得平面PCB的一个法向量为(=n ,又11,,22PA ⎛⎫=-- ⎪ ⎪⎝⎭,设PA 与平面PCB 所成角为α,则42sin cos ,7n PAn PA n PAα⋅===⋅,∴直线PA 与平面PCB 所成角的正弦值为427.4、【分析】(1)建立空间直角坐标系,利用向量法证得平面EFC ⊥平面11A ACC ;(2)利用直线1EC 与平面EFC 所成角的正弦值求得1AA ,再根据柱体的体积公式即可得解.【详解】(1)如图所示,以A 为原点1,AB AA为y 轴和z 轴的正方向在平面ABC 内,过A 作y 轴的垂线为x 轴建立空间直角坐标系,设12AA a =,则11(0,0,0),(2,2,0),(1,1,2),(0,3,),(0,0,2),(2,2,2)A C F a E a A a C a ,所以(2,1,),(1,1,2),(2,2,0)CE a CF a AC =-=--=,1(0,0,2)AA a = ,设平面EFC 的法向量为()111,,x n y z =,则1111112020n CE x y az n CF x y az ⎧⋅=-++=⎪⎨⋅=--+=⎪⎩ ,令11x =,故11,1,n a ⎛⎫= ⎪⎝⎭ ,设平面11A ACC 的法向量为()222,,m x y z =,则221222020m AC x y m AA az ⎧⋅=+=⎪⎨⋅==⎪⎩,令21x =,故()1,1,0m =- ,由于1(1,1,0)(1,1,)0m n a⋅=-⋅= ,所以m n ⊥ ,所以平面EFC ⊥平面11A ACC ;(2)()12,1,EC a =- ,由(1)知平面EFC 的一个法向量为11,1,n a ⎛⎫= ⎪⎝⎭ ,由直线1EC 与平面EFC 所成角的正弦值为23,得112122cos ,3152EC n EC n EC na a ⋅==⋅+⨯+,整理得422750a a -+=,由于13AA <,所以解得1a =,即12AA =,12223322ABC S =⨯⨯= ,所以直三棱柱111ABC A B C -的体积13223V =⨯⨯=.5、【分析】(1)由已知可得//EF BG ,所以E 、F 、B 、G 四点共面,再证明AC ⊥平面EFGB 即可证明;(2)以E 为原点,建立空间直角坐标系E xyz -,设AD m =,求出F G,平面BCD 的一个法向量,由向量的夹角公式建立方程即可求解.【详解】(1)在正三棱柱111ABC A B C -中,1CC ⊥平面ABC ,因为E ,F ,G 分别为AC ,11AC ,1BB 的中点,所以1//EF CC ,又1//BG CC ,所以//EF BG ,所以E 、F 、B 、G 四点共面,EF ⊥平面ABC ,EF AC ∴⊥,又因为BE AC ⊥,且EF BE E = ,又,EF BE ⊂平面EFGB ,所以AC ⊥平面EFGB ,又FG ⊂平面EFGB ,所以FG AC ^.(2)以E 为原点,建立如图所示的空间直角坐标系E xyz -,设AD m =,则()0,0,2F ,()3,1G ,()3,1FG ∴=-.()()()3,0,1,0,0,1,0,B C D m -()()3,0,2,0,CB CD m ∴==设平面BCD 的一个法向量为(),,n x y z = ,则0,0n CB n CD ⎧⋅=⎪⎨⋅=⎪⎩即020x x mz ⎧+=⎪⎨+=⎪⎩,令x,则,y m z =-=-,,,n m ∴=-- 设直线FG 与平面BCD 所成角的大小为θ,所以sin cos ,4FG n FG n FG n θ⋅===⋅,1=,22(2)3m m ∴-+=+,解得14m =故AD 的长14.6、【分析】(1)由线面垂直性质定理证得1AA BD ⊥,由线面垂直判定定理及性质定理证得1BD AO ⊥,由平面几何知识证得11AO OC ⊥,进而证得1A O ⊥平面1BDC ,再由面面垂直判定定理证得结果.(2)以O 【详解】(1)证明:连接1OC ,因为底面ABCD 是菱形,所以AC BD ⊥,又1AA ⊥平面,ABCD BD ⊂平面ABCD ,所以1AA BD ⊥,又1AA AC A = ,所以BD ⊥平面1AOA ,又1AO ⊂平面1AOA ,所以1BD AO ⊥,又60AB AD BAD ==∠=︒,所以ABD △是等边三角形,所以3AO =,在1Rt AOA 中,又13A O A A ==,所以145AOA ∠=︒,同理145COC ∠=︒,所以1190AOC ∠=︒,即11A O OC ⊥,又1BD O C O = ,所以1A O ⊥平面1BDC ,又1AO ⊂平面11A OD ,所以平面11AO D ⊥平面1BDC .(2)以O 为坐标原点,向量1,,OA OB AA的方向分别为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系O xyz -,设1AA h =,则111(0,0,0),(3,0,),3,),(0,3,)O A h B h D h -,所以1111(3,0,),(3,0),(0,3,)OA h AB OD h ==-=- .设平面11A OB 的一个法向量为(,,)m x y z =,由11100m A B m OA ⎧⋅=⎪⎨⋅=⎪⎩ 得330,30,x x hz ⎧-+=⎪⎨+=⎪⎩取3y =33,m h ⎛⎫=- ⎪⎝⎭ .设直线1OD 与平面11A OB 所成的角为θ,则1121242sin cos ,7||343m OD m OD m OD h h θ⋅====⎛⎫+-⋅+ ⎪⎝⎭,解得3h =32,即四棱柱1111ABCD A B C D -332.7、【分析】(1)通过证明1A F ⊥平面11BCC B 得证11A F B E ⊥;(2)建立空间直角坐标系求得向量1A F与面1AB E 的法向量,用线面角公式求得λ的值.【详解】(1)因为三棱柱111ABC A B C -是直三棱柱,所以1CC ⊥平面111A B C ,因为1A F ⊂平面111A B C ,所以11CC A F ⊥.因为1111A B AC =,点F 是11B C 的中点,所以111A F B C ⊥,1111B C CC C = ,11B C ⊂平面11BCC B ,1CC ⊂平面11BCC B ,所以1A F ⊥平面11BCC B ,因为点E 是棱1CC 上异于端点的动点,所以1B E ⊂平面11BCC B ,所以11A F B E ⊥.(2)不妨设1AB =,则12AA =.因为三棱柱111ABC A B C -是直三棱柱,所以1AA ⊥平面111A B C ,因为11A B ⊂平面111A B C ,11AC ⊂平面111A B C ,所以111111AA A B AA AC ⊥⊥,.又AB AC ⊥,所以1111A B AC ⊥,如图,以1A 为坐标原点,直线11A B ,11A C ,1AA 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则()10,0,0A ,()11,0,0B ,()10,1,0C ,11,,022F ⎛⎫⎪⎝⎭,()0,0,2A ,()0,1,2E λ,则111,,022A F ⎛⎫= ⎪⎝⎭,()11,1,2B E λ=- ,()11,0,2B A =-.设平面1AB E 的法向量为(),,m x y z = ,则112020m B A x z m B E x y z λ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩ ,令2x =,则()2,22,1m λ=-.所以111sin 60cos ,2m A F m A F m A F⋅︒===,整理得24850λλ+-=,解得12λ=或25λ=-(舍去),所以12λ=.三、二面角问题1、【解】(1)证明:连接B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME=12B 1C .又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1═∥DC ,可得B 1C ═∥A 1D ,故ME ═∥ND ,因此四边形MNDE 为平行四边形,MN ∥ED .又MN ⊄平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥DA .以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D ­xyz ,则A (2,0,0),A 1(2,0,4),M (1,3,2),N (1,0,2),A 1A →=(0,0,-4),A 1M →=(-1,3,-2),A 1N →=(-1,0,-2),MN →=(0,-3,0).设m =(x ,y ,z )为平面A 1MA 的法向量,·A 1M →=0,·A 1A →=0.x +3y -2z =0,z =0.可取m =(3,1,0).设n =(p ,q ,r )为平面A 1MN ·MN →=0,·A 1N →=0.-3q =0,p -2r =0.可取n =(2,0,-1).于是cos〈m ,n 〉=m ·n |m ||n |=232×5=155,所以二面角A ­MA 1­N 的正弦值为105.2、【分析】(1)作出,αβ,从而求得2211tan tan αβ+的值.(2)建立空间直角坐标系,利用平面PAC 和平面PBC 的法向量,计算出二面角A PC B --的余弦值.【详解】(1)连结PO .因为点P 为圆锥的顶点,所以PO ⊥平面ABC .分别取AC ,BC 的中点M ,N ,连接PM ,OM ,PN ,ON ,则在圆O 中,OM AC ⊥.由PO ⊥平面ABC ,得PO AC ⊥.又PO OM O = ,故AC ⊥平面PMO ,所以AC PM ⊥.所以∠=PMO α.同理,∠=PNO β.于是22222222111tan tan 2⎛⎫⎛⎫⎛⎫+=+=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭OM ON OC OC OP OP OP AP OA αβ.(2)因为tan βα,即OP ON =所以,OM即,BC222,2AC BC AB BC AC +=∴== .在圆O 中,CA CB ⊥,以点C 为坐标原点,CA 所在直线为x 轴,CB 所在直线为y 轴,过C 且垂直于平面ABC 的直线为z 轴建立空间直角坐标系C xyz -.则(0,0,0)C ,(2,0,0)A ,(0,3,0)B .又因为PO ⊥平面ABC ,所以OP//z轴,从而P .则(2,0,0)CA =,= CB,=CP .设平面PAC 的法向量为(,,)m x y z =,则00m CA m CP ⎧⋅=⎨⋅=⎩,即200x x =⎧⎪⎨+=⎪⎩,不妨取y =0x =,z =,此时(0,m =.设平面PBC 的法向量为(,,)n m n t =,则00n CB n CP ⎧⋅=⎨⋅=⎩,即00m ⎧=⎪⎨+=⎪⎩不妨取m =,则0n =,1t =-,此时1)n =-.所以cos ,33||||m n m n m n ⋅<>=⋅.又二面角A PC B --为钝二面角,所以二面角A PC B --的余弦值为【点睛】方法点睛:几何法求解二面角,要根据二面角的定义来求解;向量法求解二面角,关键是求得二面角的两个半平面的法向量,并且要注意二面角是锐角还是钝角.3、解:(1)证明:因为△PAD 是等边三角形,E 是AD 的中点,所以PE ⊥AD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PE ⊂平面PAD ,所以PE ⊥平面ABCD ,所以PE ⊥BC ,PE ⊥BE .又BC ⊥PB ,PB ∩PE =P ,所以BC ⊥平面PBE ,所以BC ⊥BE .又BC ∥AD ,所以AD ⊥BE .又AD ∩PE =E 且AD ,PE ⊂平面PAD ,所以BE ⊥平面PAD ,所以BE ⊥PD .(2)由(1)得BE ⊥平面PAD ,所以∠BAE 就是直线AB 与平面PAD 所成的角.因为直线AB 与平面PAD 所成角的正弦值为154,即sin∠BAE =154,所以cos∠BAE =14.所以cos∠BAE =AE AB =2AB =14,解得AB =8,则BE =AB 2-AE 2=215.由(1)得EA ,EB ,EP 两两垂直,所以以E 为坐标原点,EA ,EB ,EP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则点P (0,0,23),A (2,0,0),D (-2,0,0),B (0,215,0),C (-4,215,0),所以PB →=(0,215,-23),PC →=(-4,215,-23).设平面PBC 的法向量为m =(x ,y ,z ),·m =0,·m =0,215y -23z =0,x +215y -23z =0,=0,=5y .令y =1,可得平面PBC 的一个法向量为m =(0,1,5).易知平面PAD 的一个法向量为n =(0,1,0),设平面PAD 与平面PBC 所成的锐二面角的大小为θ,则cos θ=|m ·n|m ||n ||=|(0,1,5)·(0,1,0)6×1|=66.所以平面PAD 与平面PBC 所成的锐二面角的余弦值为66.4、【解析】(I)由,//,1AD CDAB CD AD AB ⊥==,可得BD =,又,.4BC BC BD π=∠=∴⊥从而2CD =,PD ⊥ 底面ABCD ,BC PD∴⊥PD BD D ⋂= ,BC ∴⊥平面,PBD 所以平面PBD ⊥平面PBC .(II)由(I)可知BPC ∠为PC 与底面PBD 所成角.所以6tan 3BPC ∠=,所以1PB PD ==又23CH HD =及2CD =,可得64,55CH DH ==,以D 点为坐标原点,,,DA DC 分别,,x y z 轴建立空间直角坐标系,则()()()41,1,0,0,0,1,0,2,0,0,,05B P C H ⎛⎫ ⎪⎝⎭.设平面HPB 的法向量(),,n x y z =.则由00n PB n PB ⎧⋅=⎨⋅=⎩ 得4050y z x y z ⎧-+=⎪⎨⎪+-=⎩取()1,5,4n =--同理平面PBC 的法向量为()1,1,2m =所以cos ,7m n m n m n ⋅==-又二面角H PB C--为锐角.所以二面角H PB C --余弦值为7.5、【分析】(1)利用平面几何的知识推得AC BD ⊥,进而得到BD =与4AC EC =,从而利用柱体与锥体的体积公式求得12,V V 关于,EC PC 的表达式,由此得解;(2)根据题意建立空间直角坐标系,设1CE =,结合(1)中结论与(2)中所给条件得到所需向量的坐标表示,从而求得平面FCD 与平面PCD 的法向量n 与m,由此利用空间向量夹角余弦的坐标表示即可得解.【详解】(1)因为ABD ∠与ACD ∠是底面圆弧 AD 所对的圆周角,所以ABD ACD ∠=∠,因为AB AD =,所以在等腰ABD △中,ABD ADE ∠=∠,所以ADE ACD ∠=∠,因为AC 是圆柱的底面直径,所以90ADC ∠=︒,则90CAD ACD ∠+∠=︒,所以90CAD ADE ∠+∠=︒,则90AED ∠=︒,即AC BD ⊥,所以在等腰ABD △,BE DE =,AC 平分BAD ∠,则1302CAD BAD ∠=∠=︒,所以60ADE ∠=︒,则30∠=︒CDE ,故在Rt CED 中,2CD EC =,DE ,则2BD DE ==,在Rt ACD △中,24AC CD EC ==,因为PC 是圆柱的母线,所以PC ⊥面ABCD ,所以()22211ππ24π2V AC CP EC PC EC PC ⎛⎫=⋅⋅=⋅⋅=⋅⋅ ⎪⎝⎭,221114326V AC BD PC EC PC PC =⨯⋅⋅=⨯⨯⋅=⋅,所以12V V =.(2)以C 为坐标原点,CA的方向为x 轴正方向,建立如图所示的空间直角坐标系C xyz -,不妨设1CE =,则44AC EC ==,DE =44PC CE ==,则()()()()0,0,0,4,0,0,1,,0,0,4C A D P ,所以()CD = ,()0,0,4CP = ,()4,0,4PA =-,因为4PA PF =,所以()11,0,14PF PA ==-,则()()01,0,1(1,0,3,0,4)CF CP PF ==+=-+,设平面FCD 的法向量(,,)n x y z = ,则00n CF n CD ⎧⋅=⎪⎨⋅=⎪⎩,即300x z x +=⎧⎪⎨=⎪⎩,令3x =-,则1y z ==,故(n =-,设平面PCD 的法向量(,,)m p q r = ,则00m CP m CD ⎧⋅=⎪⎨⋅=⎪⎩,即400r p =⎧⎪⎨=⎪⎩,令3p =-,则0q r ==,故(m =-,设二面角F CD P --的平面角为θ,易知π02θ<<,所以cos cos ,||||n m n m n m θ⋅===⋅因此二面角F CD P --.6、【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA轴正方向,建立如图所示的空间直角坐标系D −xyz .当三棱锥M −ABC 体积最大时,M 为CD的中点.由题设得()()()()()0,0,0,2,0,0,2,2,0,0,2,0,0,1,1D A B C M ,()()()2,1,1,0,2,0,2,0,0AM AB DA =-==设(),,n x y z =是平面MAB 的法向量,则0,0.n AM n AB ⎧⋅=⎨⋅=⎩即20,20.x y z y -++=⎧⎨=⎩可取()1,0,2n =.DA是平面MCD 的法向量,因此5cos ,5n DA n DA n DA ⋅==,sin ,5n DA = ,所以面MAB 与面MCD 所成二面角的正弦值是255.7、【分析】(1)由线面垂直判定可证得DE ⊥平面PBC ,进而得到DE BC ⊥;利用勾股定理和线面垂直的判定得到BC ⊥平面PBD ,从而得到BC PD ⊥;利用勾股定理可证得PD BD ⊥,由此可得结论;(2)以D 为坐标原点建立空间直角坐标系,设2AB =,由二面角的向量求法可求得cos θ=cos θ的最大值.【详解】(1)连接BD,AB AD = ,AB AD ⊥,BD ∴=,又PD =,PD BD ∴=,E 为棱PB 中点,DE PB ∴⊥,又PC DE ⊥,PC PB P = ,,PC PB ⊂平面PBC ,DE ∴⊥平面PBC ,又BC ⊂平面PBC ,DE BC ∴⊥;在直角梯形ABCD 中,取CD 中点M ,连接BM,2CD AB = ,DM AB ∴=,又//DM AB ,AB AD =,AB AD ⊥,∴四边形ABMD 为正方形,BM AD ∴=,BM CD ⊥,BC ∴==,又BD ,222BD BC CD ∴+=,BC BD ∴⊥,BD DE D = ,,BD DE ⊂平面PBD ,BC ∴⊥平面PBD ,PD ⊂ 平面PBD ,BC PD ∴⊥;PD BD = ,2PB AB =,222PD BD PB ∴+=,PD BD ∴⊥,又BC BD B = ,,BC BD ⊂平面ABCD ,PD ∴⊥平面ABCD .(2)以D 为坐标原点,,,DA DC DP正方向为,,x y z轴,可建立如图所示空间直角坐标系,设2AB =,则()2,0,0A ,()2,2,0B ,()0,0,0D,(E,(0,0,P,(DE ∴=,(2,0,PA =-,(2,2,PB =- ,()0,2,0AB =;()0,2,0AF AB λλ== ,()2,2,0F λ∴,()2,2,0DF λ∴=;设平面DEF 的法向量为(),,n x y z =,则0220n DE x y n DF x y λ⎧⋅=++=⎪⎨⋅=+=⎪⎩,令x =,解得:y =1z λ=-,),n λ∴=-;y 轴⊥平面PAD ,∴平面PAD 的一个法向量()0,1,0m =,设平面DEF 与平面PAD 所成的锐二面角为θ,则cos cos ,m n m n m n θ⋅=<>==⋅ 当13λ=时,()m n2i 32383λλ-+=,()max cos θ∴即平面DEF 与平面PAD 所成的锐二面角余弦值的最大值为2.8、【分析】(1)作出辅助线,证明出DBHF 为平行四边形,得到//DF BH ,从而证明出线面平行;(2)建立空间直角坐标系,设AF AE λ=,利用空间向量列出方程,求出14λ=,从而得到四棱锥的体积.【详解】(1)当13λ=时,F 为AE 上靠近点A 的三等分点,取AC 上靠近点A 的三等分点H ,连接,FH BH ,则//FH EC ,且123FH EC ==,又因为DB ⊥面,ABC EC ⊥面ABC ,所以//DB EC ,又因为36EC BD ==,所以2BD =,于是//BD FH 且BD FH =,所以四边形DBHF 为平行四边形,所以//DF BH ,又DF ⊄平面,ABC BH ⊂平面ABC ,所以DF //平面ABC ,故当13λ=时,DF //平面ABC .(2)如图,以点B 为原点,Bx Bx 垂直于平面DBCE )为x 轴,,BC BD 所在直线为y 轴和z 轴建立空间直角坐标系B xyz -,则()()()()3,3,0,0,0,2,0,6,0,0,6,6A D C E ,设(),,F m n t ,AF AE λ=,故()()3,3,3,3,6m n t λ--=-,解得:33,33,6m n t λλλ=-=+=,由可得:()33,33,6F λλλ-+,()()()33,33,62,0,6,4,0,6,2DF DE DC λλλ=-+-==- 设平面FDC 的法向量为(),,n x y z =r,则()()()3333620620n DF x y z n DC y z λλλ⎧⋅=-+++-=⎪⎨⋅=-=⎪⎩,令1y =,则3z =,171x λλ-=-,故17,1,31n λλ-⎛⎫=⎪-⎝⎭,取平面EDC 的法向量为()1,0,0m =,当二面角E DF C --cos ,11m m nn m n ⋅==⋅,解得:14λ=,此时()33112663184432F BCED A BCED V V --==⨯⨯+⨯⨯=.四、面面夹角问题1.【分析】(1)解法一,取AC 中点M ,BC 中点F ,连ME ,DF ,以F 为坐标原点,建立空间直角坐标系,利用0AC BE ⋅证明即可;解法二,利用线面垂直和面面垂直的判定定理和性质定理求解即可;(2)解法一:利用空间向量法求解即可;解法二:作AG CE ⊥于,G BH CE ⊥于H ,连接MH ,由勾股定理可得BHM ∠即为所求二面角.【详解】(1)解法一:取AC 中点M ,连ME ,因为AE CE =,所以ME AC ⊥,在等边三角形BCD △中,取BC 中点F ,连接DF ,则DF BC ⊥,因为MF AB DE ∥∥,且MF DE =,所以四边形MFDE 为平行四边形.故DF ME ∥,所以DF AC ⊥,由,DF BC DF AC ⊥⊥,BC AC C ⋂=,,BC AC ⊂平面ABC ,得DF ⊥平面ABC ,因为AB ⊂平面ABC ,所以DF AB ⊥,又因为DF BD D = ,,DF BD ⊂平面BCD ,所以AB ⊥平面BCD ,。

专题5 空间向量与立体几何(分层练)(解析版)

专题5   空间向量与立体几何(分层练)(解析版)

专题验收评价专题5 空间向量与立体几何内容概览A ·常考题不丢分题型一 多面体结构及表面积体积问题题型二多面体内接外切问题题型三 空间几何体角度问题题型四空间几何体动点问题C ·挑战真题争满分一、单选题A .π3立方米B .C .5π2立方米D .【答案】D【分析】根据圆柱和圆锥的体积公式可得.故该正四棱台的体积为()22221242463++⨯⨯=故选:B3.(2024上·重庆沙坪坝·高三重庆八中校考阶段练习)小的正四棱台,现有“方斗”容器如图所示,已知AB 高度的一半时,用米38kg ,则该“方斗”可盛米的总质量为(易知四边形11AA B B 为等腰梯形,因为线段则112242322AB A B A B ++===,设棱台11112222A B C D A B C D -的高为A .120064B .40977由题意知56AB QA ==,28OP =,则则在等边三角形QBC 中,有3sin 60562832QM QB =︒=⨯=,又QPN QOM ~V V ,得QP PN QO OM =,即A .72B .8【答案】D【详解】如图所示,过点1A作1A H AC⊥于点H,因为所以322AH=,则四棱台的高为解得132 2A H=,所以侧棱长为过1D F AD⊥于点F,AG所以39622AF=-=,而DD由题意在菱形ABCD AB BC CD DA ===由勾股定理得BE DE =所以2BD BE CD ==设点1O 为BCD △外接圆的圆心,设三棱锥A BCD -'的外接球的球心、半径分别为点而,CE A E '均垂直平分BD ,过点不妨设点O 在面BDC ,面BDA 由题意,BD CE BD A E '⊥⊥,且二面角所以A E EC '⊥,即1FE EO ⊥二、填空题一、单选题则AOC α∠=,6400r OE ==,CE 则64008cos 64003600053OA OC α===+,地球表面积为所以222π(1cos )1cos 4π2S r S r αα--==='5.(2024·河北·高三联考)的外接球,3BC =,AB 值是( )A .3π4B .1O 是A 在底面的射影,由正弦定理得,由勾股定理得棱锥的高AO 则()2211R R =-+,解得所以10OO =,即1O 与O 二、多选题6.(2024上·江苏苏州·高三校考期末)下列物体,能够被半径为2m 的球体完全容纳的有( )A .所有棱长均为3m 的四面体B .底面棱长为1m ,高为3.6m 的正六棱锥对于B,底面棱长为1m的正六棱锥的底面外接圆的半径为并设此时的外接球的半径为则由球的性质可知22=+21此时正六棱锥的高的最大值为对于C,圆柱的底面半径为所以22R0.8 1.9 4.25=+=当球心在下底面上或下方时,球心到下底面的距离为则()()2222222232d t d t ⎧⎛⎫⎪+= ⎪⎪ ⎪⎝⎭⎨⎪-+=⎪⎩,解得 一、单选题1.(2024·浙江·高三模拟)在正四面体ABCD 中,E ,F 是棱BC ,AB 的中点,则异面直线 DE 与CF 所成角的余弦值是( )题型三2.(2024上·甘肃武威·高三统考期末)如图,在棱长都相等的正三棱柱AB与直线BP所成的角为(则直线1A.30︒B【答案】D【详解】,F 分别为棱AB ,1BB 分别为棱AB ,1BB 的中点,所以为棱1CC 的中点,所以1C P 所以四边形1C PBF 为平行四边形,所以1EFC (或其补角)为直线二、多选题3.(2024上·黑龙江牡丹江·高三牡丹江市第二高级中学校联考期末)如图,在正方体1111ABCD A B C D -中,14AA =,点,M N 分别在棱AB 和1BB 上运动(不含端点),若1D M MN ⊥,则下列说法正确的是( )【详解】1111ABCD A B C D -中,以C 为原点,角坐标系,)()()(110,0,0,4,0,0,4,4,4,0,4,D A B )()(),,4,0,0,4,M x N z ,其中x ()(14404MN x x z z x =---=⇒=故选:BD.4.(2024上·黑龙江哈尔滨·高三哈尔滨市第六中学校校联考期末)如图,在正四棱柱1111ABCD A B C D -中,1AA AB λ=,点,,E F G 分别是1,,BC CD CC 的中点,点M 是线段1A D 上的动点,则下列说法正确的是()A .存在M ,使得AM P 平面EFGB .当1λ>时,存在M ,使得CM ⊥平面EFGC .存在M ,使得平面1MBC P 平面EFGD .存在λ,使得平面1MB C ⊥平面EFG 【答案】ACD【详解】以D 为原点,1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,如图:设2AB =,则12AA λ=,则()()()2,0,0,2,2,0,0,2,0A B C ,又点,,E F G 分别是1,,BC CD CC 的中点,所以()()()1,2,0,0,1,0,0,2,E F G λ,A :设平面EFG 的一个法向量为(),,n x y z =,()()1,1,0,1,0,EF EG λ=--=- ,所以00n EF x y n EG x z λ⎧⋅=--=⎪⎨⋅=-+=⎪⎩ ,取1z =,解得(),,1n λλ=- ,:M 与D 重合时,因为//EG BC 1BDC ,此时平面()1M D BC P :延用A 中的解答,(2,0,M k 设平面1MB C 的法向量为(m x =三、解答题5.(2024上·黑龙江牡丹江·高三牡丹江市第二高级中学校联考期末)如图,矩形ABCD 中24,AB AD E ==为边AB 的中点,将ADE V 沿直线DE 翻折成1A DE △,使1DA EC ⊥,若M 为线段1A C 的中点,(1)求证://BM 平面1A DE (2)求证:平面1A DE ⊥平面BCDE (3)求二面角1C A B E --夹角的正弦值【答案】(1)证明见解析(2)证明见解析因为M 和H 分别是1,A C CD 的中点,所以1//MH A D ,又MH ⊄平面因为E 是AB 的中点,所以DH 所以四边形DEBH 为平行四边形,()()()(12,4,0,0,4,0,2,2,0,1,1,B C E A 设平面1A CB 的法向量为(),,n x y z =,则100n A B n BC ⎧⋅=⎪⎨⋅=⎪⎩ ,即32020x y z x ⎧+-=⎪⎨-=⎪⎩,令所以()0,2,3n =,(1)求证:PQ P 平面BCD (2)若,BC CD AD ⊥⊥平面【答案】(1)证明见解析)P AD 交BD 于点E ,过点的中点,P 是BM 的中点,所以QC ,所以14QF AD =,则PEFQ 为平行四边形,所以(1)证明:1C O ⊥平面ABCD ;(2)求二面角1B AA D --的正弦值.【答案】(1)证明见解析;(2)223))由题知正方形ABCD 中AC BD ⊥,1C O ⊥平面ABCD )()()(0,2,0,0,2,0,2,0,0,2,0,0D A C --()112,0,2CC == ,()()2,2,0,2,2,0AD -=-- ,1BAA 的法向量为()111,,m x y z = ,面1DAA 的法向量为11122000220x z AA m AB m x y ⎧+=⋅=⎪⇒⎨⋅=-+=⎪ ,取11x =,则一、解答题(1)求证:平面ADE⊥平面(2)若,3,CA AB BE ==若存在,请求出AF AC的值;若不存在,请说明理由⎩设()2,23,0AF AC λλλ== ,所以记EF 与平面ACD 所成的角为所以sin cos ,n EF n EF n EF θ⋅==⋅ 1(1)求证:1AC BB ⊥;(2)过点C 作1//Cz C B ,由由(1)知AC ⊥平面1BB C 以点C 为原点,直线,CA 由12AC BC BC ===,得E F P Q四点共面,并证明(1)求证:,,,(2)是否存在点P使得二面角由.【答案】(1)证明见解析(2)【详解】(1)如图:在棱CP易知四边形MNQP是平行四边形,所以=,且AE P ND则AE ND同理,FM P BC P AD且所以EF P MN,所以EFE F P Q四点共面;故,,,PQ EF⊄平面BPQ又EF P,由已知,()()2,0,0,0,1,0,A B 设()2,0,E b ,因为,BF DQ =则()()0,1,1,0,1,1,Q b F b -++平面EFPQ 中向量(2,1,1EF =- 设平面EFPQ 的一个法向量为一、单选题30 ABO= ∠,3,232OC AB BC===解得332PC=,于是2PO PC OC=-211πV OA PO=⨯⨯=因为底面ABCD 为正方形,AB =又3PC PD ==,PO OP =,所以又3PC PD ==,42AC BD ==,所以在PAC △中,3,42,PC AC ==因为底面ABCD 为正方形,AB =在PAC △中,3,45PC PCA =∠=则由余弦定理可得22PA AC PC =+所以22cos 2PA PC AC APC PA PC +-∠=⋅则()()11,1,0,0,1,2EF EB =-= ,()()12,2,0,2,0,2DB DA ==,()()()1110,0,2,2,2,0,2,2,0,AA AC AC ==-=- 设平面1B EF 的法向量为()111,,m x y z =,则有11111020m EF x y m EB y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,可取()2,2,1m =- ,同理可得平面1A BD 的法向量为()11,1,1n =--,平面1A AC 的法向量为()21,1,0n = ,平面11AC D 的法向量为()31,1,1n =-,则122110m n ⋅=-+=≠,所以平面1B EF 与平面1A BD 不垂直,故B 错误;因为m 与2n uu r 不平行,所以平面1B EF 与平面1A AC 不平行,故C 错误;因为m 与3n不平行,所以平面1B EF 与平面11AC D 不平行,故D 错误,故选:A.选项BCD 解法二:解:对于选项B ,如图所示,设11A B B E M = ,EF BD N = ,则MN 为平面1B EF 与平面1A BD 的交线,在BMN V 内,作BP MN ⊥于点P ,在EMN V 内,作GP MN ⊥,交EN 于点G ,连结BG ,则BPG ∠或其补角为平面1B EF 与平面1A BD 所成二面角的平面角,由勾股定理可知:222PB PN BN +=,222PG PN GN +=,底面正方形ABCD 中,,E F 为中点,则EF BD ⊥,由勾股定理可得222NB NG BG +=,从而有:()()2222222NB NG PB PN PG PN BG +=+++=,据此可得222PB PG BG +≠,即90BPG ∠≠ ,据此可得平面1B EF ⊥平面1A BD 不成立,选项B 错误;对于选项C ,取11A B 的中点H ,则1AH B E P ,由于AH 与平面1A AC 相交,故平面1∥B EF 平面1A AC 不成立,选项C 错误;对于选项D ,取AD 的中点M ,很明显四边形11A B FM 为平行四边形,则11A M B F P ,由于1A M 与平面11AC D 相交,故平面1∥B EF 平面11AC D 不成立,选项D 错误;故选:A.4.(2022·全国乙卷)已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为( )6.(2021·全国·乙卷)在正方体ABCD-A.π2B.π3【答案】D【详解】如图,连接11,,BC PC PB ,因为1AD ∥BC 1PBC 或其补角为直线PB 与1AD 所成的角,⊥平面1111D C B A ,所以1BB PC ⊥⊥平面1P B B ,所以1PC PB ⊥,设正方体棱长为2,则1122,BC PC ==因为该四棱台上下底面边长分别为所以该棱台的高(2222h =--下底面面积116S =,上底面面积所以该棱台的体积(1V h S S =+二、多选题11.(2022·全国·Ⅱ卷)如图,四边形棱锥E ACD -,F ABC -,F -A .322V V =C .312V V V =+【答案】CD【详解】22ED FB a ==,因为ED ⊥平面()231122323ABC FB S a a a ⋅=⋅⋅⋅=V ,连接平面ABCD ,AC ⊂平面ABCD【详解】P 在矩形11BCC B 内部(含边界),当1λ=时,BP BC =+ ,当1μ=时,BP BC λ= ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故,当12λ=时,12BP BC =....【答案】BC 【详解】设正方体的棱长为,如图(1)所示,连接AC ,则,POC (或其补角)为异面直线OP 所成的角,在直角三角形OPC ,2OC =,CP 1222POC ∠==,对于B ,如图(2)所示,取NT 的中点为由正方体SBCM NADT -可得SN ⊥平面故SN OQ ⊥,而SN MN N = ,故OQ 又MN ⊂平面SNTM ,OQ MN ⊥,而所以MN ⊥平面O PQ ,而PO ⊂平面对于C ,如图(3),连接BD ,则BD 故OP MN ⊥,故C 正确.对于D ,如图(4),取AD 的中点Q 则//AC MN ,因为DP PC =,故//PQ AC ,故//PQ MN 所以QPO ∠或其补角为异面直线PO 因为正方体的棱长为2,故1PQ =三、解答题EF平面ADO;(1)证明://(2)证明:平面ADO⊥平面BEF--的正弦值(3)求二面角D AO C(3)法一:过点O 作//OH BF 交由AO BF ⊥,得HO AO ⊥,且FH 又由(2)知,OD AO ⊥,则DOH ∠因为,D E 分别为,PB PA 的中点,因此即有11,33DG AD GE BE ==,又FH法二:平面ADO 的法向量为n 平面ACO 的法向量为(30,0,1n = 所以1313133cos ,12n n n n n n ⋅==+⋅ 因为[],0,πn n ∈ ,所以sin ,n n (1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点弦值.【答案】(1)证明过程见解析(2)CF 与平面ABD 所成的角的正弦值为-16.(2022·全国·甲卷)在四棱锥P ABCD(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.【答案】(1)证明见解析;(2)5【详解】(1)证明:在四边形因为//,CD AB AD CD CB ===所以四边形ABCD 为等腰梯形,所以17.(2022·全国Ⅰ卷)如图,直三棱柱(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面【答案】(1)2(2)32【详解】(1)在直三棱柱111ABC A B C -中,设点则11112233A A BC A A ABC BC V S h h V --=⋅===V 解得2h =,所以点A 到平面1A BC 的距离为由(1)得2AE =,所以12AA AB ==,1A B =则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以A 则()1,1,1BD = ,()()0,2,0,2,0,0BA BC == ,设平面ABD 的一个法向量(),,m x y z = ,则m BD m BA ⎧⋅⎨⋅⎩可取()1,0,1m =- ,设平面BDC 的一个法向量n 可取()0,1,1n =-r ,则1cos ,22m n m n m n⋅==⨯⋅(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,【答案】(1)证明见解析(2)1113【详解】(1)证明:连接BO 并延长交(2)解:过点A 作//Az OP ,如图建立空间直角坐标系,因为3PO =,5AP =,所以OA AP =又30OBA OBC ∠=∠=︒,所以BD =所以12AC =,所以()23,2,0O ,B。

空间向量与立体几何强化训练专题练习(五)含答案人教版新高考分类汇编

空间向量与立体几何强化训练专题练习(五)含答案人教版新高考分类汇编
10.
11.;因为.
12.p=3,q=2
13.或.
14.0或1;
评卷人
得分
三、解答题
15.本题考查平面图形与空间图形的转化,空间直线与直线、直线与平面、平面与平面的位置关系的判定。空间线段长度和空间角的余弦值的计算等基础知识和基本技能,考查空间想象能力,推理论证能力和求解能力。
【解析】(综合法)
( )取 的中点为点 ,连接 ,
A. B. C. D.
2.正方体ABCD-A1B1C1D1的棱长为1,M是棱A1A的中点,O是BD1的中点,则MO的长为( )
(A) (B) (C) (D)
3.平面的法向量为m,若向量 ,则直线AB与平面的位置关系为( )
(A)AB (B)AB∥(C)AB 或AB∥(D)不确定
4.已知空间中三点A(0,2,3),B(-2,1,6),C(1,-1,5),若向量a分别与 都垂直,且 ,则a=( )
求不规则的几何体体积或表面积,通常采用分割或补齐成规则几何体即可。求解过程要坚持“一找二证三求”的顺序和原则防止出错。
17.如图:三棱锥P-ABC中,PA⊥底面ABC,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为 。若M是BC的中点,求:
(1)三棱锥P-ABC的体积;
(2)异面直线PM与AC所成角的大小 (结果用反三角函数值表示)
(A) (B)
(C) (D)
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
9.(5分)直三棱柱ABC﹣A1B1C1中,若 = , = , =,则 =﹣ ﹣ + .
10.已知 则平面ABC的单位法向量为_____________________

(新课标)高考数学二轮复习专题能力训练13空间向量与立体几何理(2021学年)

(新课标)高考数学二轮复习专题能力训练13空间向量与立体几何理(2021学年)

(新课标)2018届高考数学二轮复习专题能力训练13空间向量与立体几何理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((新课标)2018届高考数学二轮复习专题能力训练13 空间向量与立体几何理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(新课标)2018届高考数学二轮复习专题能力训练13 空间向量与立体几何理的全部内容。

专题能力训练13 空间向量与立体几何(时间:60分钟满分:100分)一、选择题(本大题共8小题,每小题5分,共40分)1。

直三棱柱ABC—A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=,M是CC1的中点,则异面直线AB1与A1M所成的角为()A.60°ﻩB.45°ﻩC。

30°ﻩ D.90°2.已知平面α内有一点M(1,-1,2),平面α的一个法向量为n=(6,—3,6),则下列点P 中,在平面α内的是()A.P(2,3,3) B。

P(—2,0,1)C.P(-4,4,0)ﻩD。

P(3,—3,4)3。

在正方体ABCD-A1B1C1D1中,E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为()A B CﻩD4。

(2017浙江金华联盟联考)已知斜四棱柱ABCD—A1B1C1D1的各棱长均为2,∠A1AD=60°,∠BAD=90°,平面A1ADD1⊥平面ABCD,则直线BD1与平面ABCD所成的角的正切值为()A Bﻩ C D5.在棱长为1的正方体ABCD—A1B1C1D1中,M是BC的中点,P,Q是正方体内部或面上的两个动点,则的最大值是()A B.1ﻩCﻩD6。

高考数学压轴专题乌鲁木齐备战高考《空间向量与立体几何》技巧及练习题附答案解析

高考数学压轴专题乌鲁木齐备战高考《空间向量与立体几何》技巧及练习题附答案解析

新数学复习题《空间向量与立体几何》专题解析一、选择题1.如图,在正方体1111ABCD A B C D -,点P 在线段1BC 上运动,则下列判断正确的是( )①平面1PB D ⊥平面1ACD ②1//A P 平面1ACD③异面直线1A P 与1AD 所成角的取值范围是0,3π⎛⎤ ⎥⎝⎦④三棱锥1D APC -的体积不变 A .①② B .①②④C .③④D .①④【答案】B 【解析】 【分析】由面面垂直的判定定理判断①,由面面平行的性质定理判断②,求出P 在特殊位置处时异面直线所成的角,判断③,由换底求体积法判断④. 【详解】正方体中易证直线AC ⊥平面11BDD B ,从而有1AC B D ⊥,同理有11B D AD ^,证得1B D ⊥平面1ACD ,由面面垂直判定定理得平面1PB D ⊥平面1ACD ,①正确;正方体中11//A B CD ,11//BC AD ,从而可得线面平行,然后可得面面平行,即平面11A BC //平面1ACD ,而1A P ⊂平面11A BC ,从而得1//A P 平面1ACD ,②正确;当P 是1BC 中点时,1A P 在平面11A B CD 内,正方体中仿照上面可证1AD ⊥平面11A B CD ,从而11AD A P ⊥,1A P 与1AD 所成角为90︒.③错;∵11D APC P AD C V V --=,由1//BC 平面1ACD ,知P 在线段1BC 上移动时,P 到平面1ACD 距离相等,因此1P AD C V -不变,④正确. 故选:B . 【点睛】本题考查面面垂直的判定定理、面面平行的性质定理、异面直线所成的角、棱锥的体积等知识,考查学生的空间想象能力,属于中档题.2.《九章算术》是中国古代的数学瑰宝,其第五卷商功中有如下问题:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺,问积几何?”翻译成现代汉语就是:今有三面皆为等腰梯形,其他两侧面为直角三角形的五面体的隧道,前端下宽6尺,上宽一丈,深3尺,末端宽8尺,无深,长7尺(注:一丈=十尺).则该五面体的体积为( )A .66立方尺B .78立方尺C .84立方尺D .92立方尺【答案】C 【解析】 【分析】如图,在DC ,EF 上取G ,H ,使得DG EH AB ==,连接BG ,BH ,GH ,CH ,ADE BGH B CGHF V V V --=+,计算得到答案.【详解】如图,在DC ,EF 上取G ,H ,使得DG EH AB ==,连接BG ,BH ,GH ,CH ,故多面体的体积11()7332ADE BGH B CGHF V V V S AB CG HF --=+=⋅+⨯+⨯⨯直截面 111736(42)7384232=⨯⨯⨯+⨯⨯⨯⨯=, 故选:C .【点睛】本题考查了几何体体积的计算,意在考查学生的计算能力和空间想象能力.3.已知正方体1111ABCD A B C D -中,M ,N 分别为AB ,1AA 的中点,则异面直线1C M 与BN 所成角的大小为( )A .30°B .45︒C .60︒D .90︒【答案】D 【解析】 【分析】根据题意画出图形,可将异面直线转化共面的相交直线,再进行求解 【详解】 如图:作AN 的中点'N ,连接'N M ,1'C N 由题设可知'N M BN P ,则异面直线1C M 与BN 所成角为1'N MC ∠或其补角,设正方体的边长为4,由几何关系可得,'5N M = ,16C M =,1'41C N =,得21122''N M M C N C =+,即1'90N MC ∠=︒故选D 【点睛】本题考查异面直线的求法,属于基础题4.已知正方体1111ABCD A B C D -的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体1111ABCD A B C D -被平面α截得的截面面积为( )A .36B .6C .5D 53【答案】B 【解析】【分析】先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解. 【详解】 如图所示:1,,A P C 确定一个平面α,因为平面11//AA DD 平面11BB CC , 所以1//AQ PC ,同理1//AP QC , 所以四边形1APC Q 是平行四边形. 即正方体被平面截的截面. 因为12B P PC =, 所以112C B PC =, 即1PC PB ==所以115,23AP PC AC ===由余弦定理得:22211111cos 25AP PC AC APC AP PC +-∠==⨯ 所以126sin APC ∠=所以S 四边形1APQC 1112sin 262AP PC APC =⨯⨯⨯∠=故选:B 【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.5.四面体ABCD 的四个顶点都在球O 的表面上,AB BCD ⊥平面,BCD V 是边长为3的等边三角形,若2AB =,则球O 的表面积为( )A .16πB .323π C .12π D .32π【答案】A 【解析】 【分析】先求底面外接圆直径,再求球的直径,再利用表面积2S D π=求解即可. 【详解】BCD V外接圆直径sin CD d CBD ===∠ ,故球的直径平方22222216D AB d =+=+=,故外接球表面积216S D ππ== 故选:A 【点睛】本题主要考查侧棱垂直底面的锥体外接球表面积问题,先利用正弦定理求得底面直径d ,再利用锥体高h ,根据球直径D =.属于中等题型.6.已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误的是( ) A .若m ∥β,则m ∥l B .若m ∥l ,则m ∥β C .若m ⊥β,则m ⊥l D .若m ⊥l ,则m ⊥β【答案】D 【解析】 【分析】A 由线面平行的性质定理判断.B 根据两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面判断.C 根据线面垂直的定义判断.D 根据线面垂直的判定定理判断. 【详解】A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面; 故选:D. 【点睛】本题主要考查线线关系和面面关系,还考查了推理论证的能力,属于中档题.7.棱长为2的正方体被一个平面所截,得到几何体的三视图如图所示,则该截面的面积为( )A .92B .922C .32D .3【答案】A 【解析】 【分析】由已知的三视图可得:该几何体是一个正方体切去一个三棱台,其截面是一个梯形,分别求出上下底边的长和高,代入梯形面积公式可得答案. 【详解】由已知的三视图可得:该几何体是一个正方体切去一个三棱台ABC DEF -,所得的组合体,其截面是一个梯形BCFE , 22112+=22222+=222322()2+=故截面的面积1329(222)222S =⨯=, 故选:A . 【点睛】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.8.在以下命题中:①三个非零向量a r ,b r ,c r 不能构成空间的一个基底,则a r ,b r ,c r共面;②若两个非零向量a r ,b r 与任何一个向量都不能构成空间的一个基底,则a r ,b r共线;③对空间任意一点O 和不共线的三点A ,B ,C ,若222OP OA OB OC =--u u u r u u u r u u u u r u u u u r,则P ,A ,B ,C 四点共面④若a r ,b r是两个不共线的向量,且(,,,0)c a b R λμλμλμ=+∈≠r r r ,则{},,a b c r r r 构成空间的一个基底⑤若{},,a b c r r r 为空间的一个基底,则{},,a b b c c a +++r r r r r r构成空间的另一个基底;其中真命题的个数是( ) A .0 B .1C .2D .3【答案】D 【解析】 【分析】根据空间向量的运算法则,逐一判断即可得到结论. 【详解】①由空间基底的定义知,三个非零向量a r ,b r ,c r 不能构成空间的一个基底,则a r ,b r,c r共面,故①正确;②由空间基底的定义知,若两个非零向量a r ,b r与任何一个向量都不能构成空间的一个基底,则a r ,b r共线,故②正确;③由22221--=-≠,根据共面向量定理知,,,P A B C 四点不共面,故③错误;④由c a b λμ=+r r r ,当1λμ+=时,向量c r 与向量a r ,b r构成的平面共面,则{},,a b c r r r 不能构成空间的一个基底,故④错误;⑤利用反证法:若{},,a b b c c a +++r r r r r r不构成空间的一个基底, 设()()()1a b x b c x c a +=++-+r r r r r r ,整理得()1c xa x b =+-r r r ,即,,a b c r r r共面,又因{},,a b c r r r 为空间的一个基底,所以{},,a b b c c a +++r r r r r r能构成空间的一个基底,故⑤正确.综上:①②⑤正确. 故选:D. 【点睛】本题考查空间向量基本运算,向量共面,向量共线等基础知识,以及空间基底的定义,共面向量的定义,属于基础题.9.如图,在正三棱柱111ABC A B C -中,2AB =,1AA =D ,F 分别是棱AB ,1AA 的中点,E 为棱AC 上的动点,则DEF ∆的周长的最小值为()A .222+B .232+C .62+D .72+【答案】D 【解析】 【分析】根据正三棱柱的特征可知ABC ∆为等边三角形且1AA ⊥平面ABC ,根据1AA AD ⊥可利用勾股定理求得2DF =;把底面ABC 与侧面11ACC A 在同一平面展开,可知当,,D E F 三点共线时,DE EF +取得最小值;在ADF ∆中利用余弦定理可求得最小值,加和得到结果. 【详解】Q 三棱柱111ABC A B C -为正三棱柱 ABC ∆∴为等边三角形且1AA ⊥平面ABCAD ⊂Q 平面ABC 1AA AD ∴⊥ 132DF ∴=+=把底面ABC 与侧面11ACC A 在同一平面展开,如下图所示:当,,D E F 三点共线时,DE EF +取得最小值 又150FAD ∠=o ,3AF =1AD =()22min32cos 42372DE EF AF AD AF AD FAD ⎛⎫∴+=+-⋅∠=-⨯-= ⎪ ⎪⎝⎭DEF ∴∆72+本题正确选项:D本题考查立体几何中三角形周长最值的求解问题,关键是能够将问题转化为侧面上两点间最短距离的求解问题,利用侧面展开图可知三点共线时距离最短.10.如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1B P P 平面1A BM ,则1C P 的最小值是( )A .305B .2305C .27D .47【答案】B 【解析】 【分析】在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD ,根据面面平行的判定定理可知平面1//B QDN 平面1A BM ,从而可得P 的轨迹是DN (不含,D N 两点);由垂直关系可知当CP DN ⊥时,1C P 取得最小值;利用面积桥和勾股定理可求得最小值. 【详解】如图,在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD//DN BM Q ,1//DQ A M 且DN DQ D =I ,1BM A M M =I∴平面1//B QDN 平面1A BM ,则动点P 的轨迹是DN (不含,D N 两点)又1CC ⊥平面ABCD ,则当CP DN ⊥时,1C P 取得最小值此时,22512CP ==+ 221223025C P ⎛⎫∴≥+= ⎪⎝⎭本题正确选项:B本题考查立体几何中动点轨迹及最值的求解问题,关键是能够通过面面平行关系得到动点的轨迹,从而找到最值取得的点.11.在ABC ∆中,设BAC α∠=,CA 与CB 所成的角是β,绕直线AC 将AB 旋转至AB ',则在所有旋转过程中,关于AB '与BC 所成的角γ的说法正确的是( )A .当4παβ-≥时,[],γαβαβ∈-+B .当4παβ-<-时,[],γβααβ∈-+C .当4παβ+≥时,[],γαβαβ∈-+D .当4παβ+<时,,γαβαβ∈⎡-+⎤⎣⎦ 【答案】D 【解析】 【分析】首先理解异面直线所成的角的范围是0,2πγ⎛⎤∈ ⎥⎝⎦,排除选项A,B,C,对于D 可根据AB 绕AC 旋转,形成以AC 为轴的圆锥,AB '是母线,再将异面直线所成的角,转化为相交直线所成的角,判断最大值和最小值. 【详解】因为γ是异面直线所成的角,所以0,2πγ⎛⎤∈ ⎥⎝⎦A.当4παβ-≥时,αβ+的范围有可能超过2π,比如,3,46ππαβ==,所以不正确; B.当4παβ-<-时,当3,46ππβα==,此时[],γβααβ∈-+,也不正确; C.当4παβ+≥,当3,46ππαβ==,此时[],γαβαβ∈-+,故也不正确; D. 4παβ+<时,AB 绕AC 旋转,形成以AC 为轴的圆锥,AB '是母线,如图,过点A 作BC 的平行线AD ,且CAD β∠=,'AB 与BC 所成的角γ转化为AB '与AD 所成的角,由图象可知,当AB '是AB 时,角最大,为αβ+,当AB '在平面ABC 内时,不与AB 重合时,角最小,此时为αβ-故选:D【点睛】本题考查异面直线所成的角,重点考查轨迹,数形结合分析问题的能力,属于中档题型,本题的关键是判断,并画出AB 绕AC 旋转,形成以AC 为轴的圆锥.12.设m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列四个命题: ①若m α⊥,//n α,则m n ⊥;②若//αβ,m α⊥,则m β⊥;③若//m α,//n α,则//m n ;④若m α⊥,αβ⊥,则//m β.其中真命题的序号为( )A .①和②B .②和③C .③和④D .①和④ 【答案】A【解析】【分析】逐一分析命题①②③④的正误,可得出合适的选项.【详解】对于命题①,若//n α,过直线n 作平面β,使得a αβ⋂=,则//a n ,m α⊥Q ,a α⊂,m a ∴⊥,m n ∴⊥,命题①正确;对于命题②,对于命题②,若//αβ,m α⊥,则m β⊥,命题②正确;对于命题③,若//m α,//n α,则m 与n 相交、平行或异面,命题③错误; 对于命题④,若m α⊥,αβ⊥,则m β⊂或//m β,命题④错误.故选:A.【点睛】本题考查有关线面、面面位置关系的判断,考查推理能力,属于中等题.13.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( )A.169πB.89πC.1627πD.827π【答案】A【解析】【分析】根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可.【详解】解:设圆柱的半径为r,高为x,体积为V,则由题意可得323r x-=,332x r∴=-,∴圆柱的体积为23()(3)(02)2V r r r rπ=-<<,则33333163331616442()(3)()9442939r r rV r r r rπππ++-=-=g g g g….当且仅当33342r r=-,即43r=时等号成立.∴圆柱的最大体积为169π,故选:A.【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.14.设三棱锥V﹣ABC的底面是A为直角顶点的等腰直角三角形,VA⊥底面ABC,M是线段BC上的点(端点除外),记VM与AB所成角为α,VM与底面ABC所成角为β,二面角A﹣VC﹣B为γ,则()A.2παββγ+<,>B.2παββγ+<,<C.2παββγ+>,>D .2παββγ+>,<【答案】C【解析】【分析】 由最小角定理得αβ>,由已知条件得AB ⊥平面VAC ,过A 作AN VC ⊥,连结BN ,得BNA γ=∠,推导出BVA γ>∠,由VA ⊥平面ABC ,得VMA β=∠,推导出MVA γ>∠,从而2πβγ+>,即可得解.【详解】 由三棱锥V ABC -的底面是A 为直角顶点的等腰直角三角形,VA ⊥平面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A VC B --为γ, 由最小角定理得αβ>,排除A 和B ;由已知条件得AB ⊥平面VAC ,过A 作AN VC ⊥,连结BN ,得BNA γ=∠,∴tan tan AB BNA AN γ=∠=, 而tan AB BVA AV∠=,AN AV <,∴tan tan BNA BVA ∠>∠, ∴BVA γ>∠,∵VA ⊥平面ABC ,∴VMA β=∠,∴2MVA πβ+∠=, ∵tan AM MVA AV∠=,AB AM >,∴tan tan BVA MVA ∠>∠, ∴MVA γ>∠,∴2πβγ+>.故选:C .【点睛】本题查了线线角、线面角、二面角的关系与求解,考查了空间思维能力,属于中档题.15.已知底面是等腰直角三角形的三棱锥P -ABC 的三视图如图所示,俯视图中的两个小三角形全等,则( )A .PA ,PB ,PC 两两垂直B .三棱锥P -ABC 的体积为83 C .||||||6PA PB PC ===D .三棱锥P -ABC 的侧面积为35【答案】C 【解析】 【分析】 根据三视图,可得三棱锥P -ABC 的直观图,然后再计算可得.【详解】 解:根据三视图,可得三棱锥P -ABC 的直观图如图所示,其中D 为AB 的中点,PD ⊥底面ABC .所以三棱锥P -ABC 的体积为114222323⨯⨯⨯⨯=, 2AC BC PD ∴===,2222AB AC BC ∴=+=,||||||2DA DB DC ∴===()22||||||226,PA PB PC ∴===+=222PA PB AB +≠Q ,PA ∴、PB 不可能垂直,即,PA ,PB PC 不可能两两垂直, 1222222PBA S ∆=⨯=Q ()22161252PBC PAC S S ∆∆==-=Q∴三棱锥P -ABC 的侧面积为2522故正确的为C.故选:C.【点睛】本题考查三视图还原直观图,以及三棱锥的表面积、体积的计算问题,属于中档题.16.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .B .12πC .D .10π【答案】B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积.详解:根据题意,可得截面是边长为的圆,且高为,所以其表面积为22212S πππ=+=,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.17.在空间中,下列命题为真命题的是( ).A .对于直线,,a b c ,若,a c b c ⊥⊥则//a bB .对任意直线a ,在平面α中必存在一条直线b 与之垂直C .若直线a ,b 与平面α所成的角相等,则a ∥bD .若直线a ,b 与平面α所成的角互余,则a ⊥b【答案】B【解析】【分析】通过空间直线与直线的位置关系判断选项的正误即可。

高考数学压轴专题大连备战高考《空间向量与立体几何》专项训练及解析答案

高考数学压轴专题大连备战高考《空间向量与立体几何》专项训练及解析答案

【高中数学】《空间向量与立体几何》考试知识点一、选择题1.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF=12.则下列结论中正确的个数为①AC ⊥BE ;②EF ∥平面ABCD ;③三棱锥A ﹣BEF 的体积为定值;④AEF ∆的面积与BEF ∆的面积相等,A .4B .3C .2D .1【答案】B【解析】试题分析:①中AC ⊥BE ,由题意及图形知,AC ⊥面DD1B1B ,故可得出AC ⊥BE ,此命题正确;②EF ∥平面ABCD ,由正方体ABCD-A1B1C1D1的两个底面平行,EF 在其一面上,故EF 与平面ABCD 无公共点,故有EF ∥平面ABCD ,此命题正确;③三棱锥A-BEF 的体积为定值,由几何体的性质及图形知,三角形BEF 的面积是定值,A 点到面DD1B1B 距离是定值,故可得三棱锥A-BEF 的体积为定值,此命题正确;④由图形可以看出,B 到线段EF 的距离与A 到EF 的距离不相等,故△AEF 的面积与△BEF 的面积相等不正确考点:1.正方体的结构特点;2.空间线面垂直平行的判定与性质2.已知某几何体的三视图如图所示,则该几何体的体积为A .273B .276C .274D .272【答案】D【解析】【分析】先还原几何体,再根据锥体体积公式求结果.【详解】 几何体为一个三棱锥,高为33,底为一个直角三角形,直角边分别为333,,所以体积为1127=33333=322V ⨯⨯⨯⨯,选D. 【点睛】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.3.一个几何体的三视图如图所示,其中正视图和俯视图中的四边形是边长为2的正方形,则该几何体的表面积为( )A .132πB .7πC .152πD .8π【答案】B【解析】【分析】画出几何体的直观图,利用三视图的数据求解表面积即可.【详解】由题意可知:几何体是一个圆柱与一个14的球的组合体,球的半径为:1,圆柱的高为2, 可得:该几何体的表面积为:22141212274ππππ⨯⨯+⨯⨯+⨯=.故选:B .【点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.4.四面体ABCD 的四个顶点都在球O 的表面上,AB BCD ⊥平面,BCD V 是边长为3的等边三角形,若2AB =,则球O 的表面积为( )A .16πB .323πC .12πD .32π【答案】A【解析】【分析】先求底面外接圆直径,再求球的直径,再利用表面积2S D π=求解即可.【详解】 BCD V外接圆直径sin CD d CBD ===∠ ,故球的直径平方22222216D AB d =+=+=,故外接球表面积216S D ππ== 故选:A【点睛】本题主要考查侧棱垂直底面的锥体外接球表面积问题,先利用正弦定理求得底面直径d ,再利用锥体高h ,根据球直径D =.属于中等题型.5.已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误的是( ) A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β【答案】D【解析】【分析】A 由线面平行的性质定理判断.B 根据两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面判断.C 根据线面垂直的定义判断.D 根据线面垂直的判定定理判断.【详解】A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;故选:D.【点睛】本题主要考查线线关系和面面关系,还考查了推理论证的能力,属于中档题.6.已知圆锥的母线与底面所成的角等于60°,且该圆锥内接于球O ,则球O 与圆锥的表面积之比等于( )A .4:3B .3:4C .16:9D .9:16 【答案】C【解析】【分析】由圆锥的母线与底面所成的角等于60°,可知过高的截面为等边三角形,设底面直径,可以求出其表面积,根据圆锥内接于球O ,在高的截面中可以求出其半径,可求其表面积,可求比值.【详解】设圆锥底面直径为2r ,圆锥的母线与底面所成的角等于60°,则母线长为2r ,高为3r , 则圆锥的底面积为:2r π,侧面积为1222r r π⋅, 则圆锥的表面积为2212232r r r r πππ+⋅=, 该圆锥内接于球O ,则球在圆锥过高的截面中的截面为圆,即为边长为2r 的等边三角形的内切圆,则半径为323R r =,表面积为221643r R ππ=, 则球O 与圆锥的表面积之比等于2216:316:93r r ππ=, 故选:C .【点睛】本题考查圆锥的性质,以及其外接球,表面积,属于中档题.7.一个几何体的三视图如图所示,则该几何体的体积为A .2383+B .823+C .283D .10【答案】A【解析】【分析】根据三视图可知该几何体为一组合体,是一个棱长为2的正方体与三棱锥的组合体,根据体积公式分别计算即可. 【详解】几何体为正方体与三棱锥的组合体,由正视图、俯视图可得该几何体的体积为311232+2328323V =⨯⨯⨯⨯=+, 故选A.【点睛】本题主要考查了三视图,正方体与三棱锥的体积公式,属于中档题.8.如图,在正三棱柱111ABC A B C -中,2AB =,123AA =,D ,F 分别是棱AB ,1AA 的中点,E 为棱AC 上的动点,则DEF ∆的周长的最小值为()A .222B .232C 62+D 72【答案】D【解析】【分析】 根据正三棱柱的特征可知ABC ∆为等边三角形且1AA ⊥平面ABC ,根据1AA AD ⊥可利用勾股定理求得2DF =;把底面ABC 与侧面11ACC A 在同一平面展开,可知当,,D E F 三点共线时,DE EF +取得最小值;在ADF ∆中利用余弦定理可求得最小值,加和得到结果.【详解】Q 三棱柱111ABC A B C -为正三棱柱 ABC ∆∴为等边三角形且1AA ⊥平面ABC AD ⊂Q 平面ABC 1AA AD ∴⊥ 132DF ∴=+=把底面ABC 与侧面11ACC A 在同一平面展开,如下图所示:当,,D E F 三点共线时,DE EF +取得最小值又150FAD ∠=o ,3AF =1AD =()22min 32cos 42372DE EF AF AD AF AD FAD ⎛⎫∴+=+-⋅∠=-⨯-= ⎪ ⎪⎝⎭DEF ∴∆72+本题正确选项:D【点睛】本题考查立体几何中三角形周长最值的求解问题,关键是能够将问题转化为侧面上两点间最短距离的求解问题,利用侧面展开图可知三点共线时距离最短.9.在三棱锥P ABC -中,PA ⊥平面ABC ,且ABC ∆为等边三角形,2AP AB ==,则三棱锥P ABC -的外接球的表面积为( )A .272πB .283πC .263πD .252π 【答案】B【解析】【分析】计算出ABC ∆的外接圆半径r ,利用公式222PA R r ⎛⎫=+ ⎪⎝⎭可得出外接球的半径,进而可得出三棱锥P ABC -的外接球的表面积.【详解】ABC ∆的外接圆半径为232sin 3ABr π==PA ⊥Q 底面ABC ,所以,三棱锥P ABC -的外接球半径为222223211233PA R r ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, 因此,三棱锥P ABC -的外接球的表面积为2221284433R πππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 故选:B.【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,选择合适的公式计算外接球的半径,考查计算能力,属于中等题.10.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A .2对B .3对C .4对D .5对【答案】C【解析】【分析】 画出该几何体的直观图P ABCD -,易证平面PAD ⊥平面ABCD ,平面PCD ⊥平面PAD ,平面PAB ⊥平面PAD ,平面PAB ⊥平面PCD ,从而可选出答案.【详解】该几何体是一个四棱锥,直观图如下图所示,易知平面PAD ⊥平面ABCD , 作PO ⊥AD 于O ,则有PO ⊥平面ABCD ,PO ⊥CD ,又AD ⊥CD ,所以,CD ⊥平面PAD ,所以平面PCD ⊥平面PAD ,同理可证:平面PAB ⊥平面PAD ,由三视图可知:PO =AO =OD ,所以,AP ⊥PD ,又AP ⊥CD ,所以,AP ⊥平面PCD ,所以,平面PAB ⊥平面PCD ,所以该多面体各表面所在平面互相垂直的有4对.【点睛】本题考查了空间几何体的三视图,考查了四棱锥的结构特征,考查了面面垂直的证明,属于中档题.11.在四面体ABCD 中,AB ,BC ,BD 两两垂直,4AB BC BD ===,E 、F 分别为棱BC 、AD 的中点,则直线EF 与平面ACD 所成角的余弦值( )A .13B .3C .223D .63【答案】C【解析】【分析】因为AB ,BC ,BD 两两垂直,以BA 为X 轴,以BD 为Y 轴,以BC 为Z 轴建立空间直角坐标系,求出向量EF u u u r 与平面ACD 的法向量n r ,再根据cos ,||||EF n EF n EF n ⋅〈〉=u u u r r u u u r r u u u r r ,即可得出答案.【详解】因为在四面体ABCD 中,AB ,BC ,BD 两两垂直,以BA 为X 轴,以BD 为Y 轴,以BC 为Z 轴建立空间直角坐标系,又因为4AB BC BD ===;()4,0,0,(0,0,0),(0,4,0),(0,0,4)A B D C ,又因为E 、F 分别为棱BC 、AD 的中点 所以(0,0,2),(2,2,0)E F故()2,2,2EF =-u u u r ,(4,4,0)AD =-u u u r ,(4,0,4)AC =-u u u r .设平面ACD 的法向量为(,,)n x y z =r ,则00n AD n AC ⎧⋅=⎨⋅=⎩u u u v v u u uv v 令1,x = 则1y z ==; 所以(1,1,1)n =r1cos ,3||||EF n EF n EF n ⋅〈〉===u u u r r u u u r r u u u r r 设直线EF 与平面ACD 所成角为θ ,则sin θ= cos ,EF n 〈〉u u u r r所以cos 3θ==故选:C【点睛】本题主要考查线面角,通过向量法即可求出,属于中档题目.12.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( )A .169πB .89πC .1627πD .827π 【答案】A【解析】【分析】根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可.【详解】解:设圆柱的半径为r ,高为x ,体积为V , 则由题意可得323r x -=, 332x r ∴=-, ∴圆柱的体积为23()(3)(02)2V r r r r π=-<<, 则33333163331616442()(3)()9442939r r r V r r r r πππ++-=-=g g g g …. 当且仅当33342r r =-,即43r =时等号成立. ∴圆柱的最大体积为169π,故选:A .【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.13.如图,正三棱柱(底面是正三角形的直棱柱)111ABC A B C -的底面边长为a ,侧棱长为2a ,则1AC 与侧面11ABB A 所成的角是( )A .30°B .45︒C .60︒D .90︒【答案】A【解析】【分析】 以C 为原点,在平面ABC 中,过点C 作BC 的垂线为x 轴,CB 为y 轴,1CC 为z 轴,建立空间直角坐标系,利用向量法能求出1AC 与侧面11ABB A 所成的角.【详解】解:以C 为原点,在平面ABC 中,过点C 作BC 的垂线为x 轴,CB 为y 轴,1CC 为z 轴,建立空间直角坐标系,则3(a A ,2a ,0),1(0C ,02)a ,13(a A 2a 2)a ,(0B ,a ,0), 13(a AC =u u u u r ,2a -2)a ,3(a AB =u u u r ,2a ,0),1(0AA =u u u r ,02)a , 设平面11ABB A 的法向量(n x =r ,y ,)z , 则13·02·20a a n AB x y n AA az ⎧=+=⎪⎨⎪==⎩u u u v v u u u v v ,取1x =,得(1n =r 3,0),设1AC 与侧面11ABB A 所成的角为θ, 则111||31sin |cos ,|2||||23n AC a n AC n AC a θ=<>===r u u u u r r u uu u r g r u u u u r g , 30θ∴=︒,1AC ∴与侧面11ABB A 所成的角为30°.故选:A .【点睛】本题考查线面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.14.已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点).设SE 与BC 所成的角为α,SE 与平面ABC D 所成的角为β,二面角S-AB-C 的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .a βγ≤≤D .γβα≤≤【答案】C【解析】【分析】 根据题意,分别求出SE 与BC 所成的角α、SE 与平面ABC D 所成的角β、二面角S-AB-C 的平面角γ的正切值,由正四棱锥的线段大小关系即可比较大小.【详解】四棱锥S ABCD -的底面是正方形,侧棱长均相等,所以四棱锥为正四棱锥,(1)过E 作//EF BC ,交CD 于F ,过底面中心O 作ON EF ⊥交EF 于N ,连接SN ,取AB 中点M ,连接OM ,如下图(1)所示:则tan SN SN NE OMα==;(2)连接,OE 如下图(2)所示,则tan SO OEβ=;(3)连接OM ,则tan SO OMγ= ,如下图(3)所示:因为,,SN SO OE OM ≥≥所以tan tan tan αγβ≥≥,而,,αβγ均为锐角,所以,αγβ≥≥故选:C.【点睛】本题考查了异面直线夹角、直线与平面夹角、平面与平面夹角的求法,属于中档题.15.若a ,b 是不同的直线,α,β是不同的平面,则下列四个命题:①若a P α,b β∥,a b ⊥r r ,则αβ⊥;②若a P α,b β∥,a b ∥,则αβ∥;③若a α⊥,b β⊥,a b ∥,则αβ∥;④若a P α,b β⊥,a b ⊥r r ,则αβ∥.正确的个数为( ) A .0B .1C .2D .3 【答案】B【解析】【分析】对每一个选项逐一分析得解.【详解】命题①中α与β还有可能平行或相交;命题②中α与β还有可能相交;命题④中α与β还有可能相交;∵a b P ,a α⊥,∴b α⊥,又b β⊥,∴αβP .故命题③正确.故选B .【点睛】本题主要考查空间直线平面位置关系的判断,意在考查学生对这些知识的理解掌握水平和空间想象能力.16.圆锥SD (其中S 为顶点,D 为底面圆心)的侧面积与底面积的比是2:1,则圆锥SD 与它外接球(即顶点在球面上且底面圆周也在球面上)的体积比为( )A .9:32B .8:27C .9:22D .9:28【答案】A【解析】【分析】根据已知条件求得圆锥母线与底面圆半径r 的关系,从而得到圆锥的高与r 关系,计算圆锥体积,由截面图得到外接球的半径R 与r 间的关系,计算球的体积,作比即可得到答案.【详解】设圆锥底面圆的半径为r,圆锥母线长为l ,则侧面积为πrl , 侧面积与底面积的比为2πrl 2l r r π==,则母线l=2r,圆锥的高为h=223l r r -=, 则圆锥的体积为2313πh 3r r π=, 设外接球的球心为O,半径为R,截面图如图,则OB=OS=R,OD=h-R=3r R -,BD=r, 在直角三角形BOD 中,由勾股定理得222OB OD BD =+,即()2223R r r R =+-, 展开整理得R=,3r 所以外接球的体积为33344333393R r ππ=⨯=, 故所求体积比为33393323293r r ππ= 故选:A【点睛】本题考查圆锥与球的体积公式的应用,考查学生计算能力,属于中档题.17.设三棱锥V ﹣ABC 的底面是A 为直角顶点的等腰直角三角形,VA ⊥底面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A ﹣VC ﹣B 为γ,则( )A .2παββγ+<,>B .2παββγ+<,<C .2παββγ+>,>D .2παββγ+>,<【答案】C【解析】【分析】由最小角定理得αβ>,由已知条件得AB ⊥平面VAC ,过A 作AN VC ⊥,连结BN ,得BNA γ=∠,推导出BVA γ>∠,由VA ⊥平面ABC ,得VMA β=∠,推导出MVA γ>∠,从而2πβγ+>,即可得解.【详解】 由三棱锥V ABC -的底面是A 为直角顶点的等腰直角三角形,VA ⊥平面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A VC B --为γ, 由最小角定理得αβ>,排除A 和B ;由已知条件得AB ⊥平面VAC ,过A 作AN VC ⊥,连结BN ,得BNA γ=∠,∴tan tan AB BNA AN γ=∠=, 而tan AB BVA AV∠=,AN AV <,∴tan tan BNA BVA ∠>∠, ∴BVA γ>∠,∵VA ⊥平面ABC ,∴VMA β=∠,∴2MVA πβ+∠=, ∵tan AM MVA AV∠=,AB AM >,∴tan tan BVA MVA ∠>∠, ∴MVA γ>∠,∴2πβγ+>.故选:C .【点睛】本题查了线线角、线面角、二面角的关系与求解,考查了空间思维能力,属于中档题.18.已知四面体P ABC -的外接球的球心O 在AB 上,且PO ⊥平面ABC ,23AC AB =,若四面体P ABC -的体积为32,求球的表面积( ) A .8πB .12πC .83πD .123π 【答案】B【解析】【分析】 依据题意作出图形,设四面体P ABC -的外接球的半径为R ,由题可得:AB 为球的直径,即可求得:2AB R =,3AC R =, BC R =,利用四面体P ABC -的体积为32列方程即可求得3R =,再利用球的面积公式计算得解。

高考数学压轴专题临汾备战高考《空间向量与立体几何》技巧及练习题附答案

高考数学压轴专题临汾备战高考《空间向量与立体几何》技巧及练习题附答案

【最新】数学《空间向量与立体几何》专题解析一、选择题1.已知,m l 是两条不同的直线,,αβ是两个不同的平面,则下列可以推出αβ⊥的是( )A .,,m l m l βα⊥⊂⊥B .,,m l l m αβα⊥⋂=⊂C .//,,m l m l αβ⊥⊥D .,//,//l m l m αβ⊥【答案】D 【解析】 【分析】A ,有可能出现α,β平行这种情况.B ,会出现平面α,β相交但不垂直的情况.C ,根据面面平行的性质定理判断.D ,根据面面垂直的判定定理判断. 【详解】对于A ,m l ⊥,m β⊂,若l β⊥,则//αβ,故A 错误; 对于B ,会出现平面α,β相交但不垂直的情况,故B 错误;对于C ,因为//m l ,m α⊥,则l α⊥,又因为l βαβ⊥⇒∥,故C 错误; 对于D ,l α⊥,m l m α⇒⊥∥,又由m βαβ⇒⊥∥,故D 正确. 故选:D 【点睛】本题考查空间中的平行、垂直关系的判定,还考查学生的空间想象能力和逻辑推理能力,属于中档题.2.如图,在长方体1111ABCD A B C D -中,13,1AB AD AA ===,而对角线1A B 上存在一点P ,使得1AP D P +取得最小值,则此最小值为( )A 7B .3C .3D .2【答案】A 【解析】 【分析】把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD 并求出,就 是最小值.【详解】把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD .1MD 就是1||||AP D P +的最小值,Q ||||3AB AD ==,1||1AA =,∴0113tan 3,60AA B AA B ∠==∴∠=.所以11=90+60=150MA D ∠o o o2211111111132cos 13223()72MD A D A M A D A M MA D ∴=+-∠=+-⨯⨯-⋅⨯=故选A . 【点睛】本题考查棱柱的结构特征,考查计算能力,空间想象能力,解决此类问题常通过转化,转化为在同一平面内两点之间的距离问题,是中档题.3.如图,在底面边长为4,侧棱长为6的正四棱锥P ABCD -中,E 为侧棱PD 的中点,则异面直线PB 与CE 所成角的余弦值是( )A .3417B .23417C .51717D .31717【答案】D 【解析】 【分析】首先通过作平行的辅助线确定异面直线PB 与CE 所成角的平面角,在PCD ∆中利用余弦定理求出cos DPC ∠进而求出CE ,再在GFH ∆中利用余弦定理即可得解. 【详解】如图,取PA 的中点F ,AB 的中点G ,BC 的中点H ,连接FG ,FH ,GH ,EF ,则//EF CH ,EF CH =,从而四边形EFHC 是平行四边形,则//EC FH , 且EC FH =.因为F 是PA 的中点,G 是AB 的中点,所以FG 为ABP ∆的中位线,所以//FG PB ,则GFH ∠是异面直线PB 与CE 所成的角.由题意可得3FG =,1222HG AC ==. 在PCD ∆中,由余弦定理可得2223636167cos 22669PD PC CD DPC PD PC +-+-∠===⋅⨯⨯,则2222cos 17CE PC PE PC PE DPC =+-⋅∠=,即17CE =在GFH ∆中,由余弦定理可得222cos 2FG FH GH GFH FG FH +-∠=⋅3172317==⨯⨯. 故选:D 【点睛】本题考查异面直线所成的角,余弦定理解三角形,属于中档题.4.设α、β是两个不同的平面,m 、n 是两条不同的直线,下列说法正确的是( ) A .若α⊥β,α∩β=m ,m ⊥n ,则n ⊥β B .若α⊥β,n ∥α,则n ⊥β C .若m ∥α,m ∥β,则α∥β D .若m ⊥α,m ⊥β,n ⊥α,则n ⊥β 【答案】D 【解析】 【分析】根据直线、平面平行垂直的关系进行判断. 【详解】由α、β是两个不同的平面,m 、n 是两条不同的直线,知:在A 中,若α⊥β,α∩β=m ,m ⊥n ,则n 与β相交、平行或n ⊂β,故A 错误; 在B 中,若α⊥β,n ∥α,则n 与β相交、平行或n ⊂β,故B 错误; 在C 中,若m ∥α,m ∥β,则α与β相交或平行,故C 错误; 在D 中,若m ⊥α,m ⊥β,则α∥β,∴若n ⊥α,则n ⊥β,故D 正确. 故选:D. 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的益关系等基础知识,考查运算求解能力,是中档题.5.已知正方体1111ABCD A B C D -中,M ,N 分别为AB ,1AA 的中点,则异面直线1C M 与BN 所成角的大小为( )A .30°B .45︒C .60︒D .90︒【答案】D 【解析】 【分析】根据题意画出图形,可将异面直线转化共面的相交直线,再进行求解 【详解】 如图:作AN 的中点'N ,连接'N M ,1'C N 由题设可知'N M BN P ,则异面直线1C M 与BN 所成角为1'N MC ∠或其补角,设正方体的边长为4,由几何关系可得,'5N M =,16C M =,1'41C N =21122''N M M C N C =+,即1'90N MC ∠=︒故选D 【点睛】本题考查异面直线的求法,属于基础题6.已知正方体1111ABCD A B C D -的棱长为2,M 为1CC 的中点.若AM ⊥平面α,且B ∈平面α,则平面α截正方体所得截面的周长为( )A .3225B .442+C .2225D .62【答案】A 【解析】 【分析】根据线面垂直确定平面α,再根据截面形状求周长. 【详解】显然在正方体中BD ⊥平面11ACC A ,所以BD ⊥ AM ,取AC 中点E, 取AE 中点O,则11tan tan AOA ACM AO AM ∠=∠∴⊥, 取A 1C 1中点E 1, 取A 1E 1中点O 1,过O 1作PQ//B 1D 1,分别交A 1B 1,A 1D 1于P ,Q 从而AM ⊥平面BDQP ,四边形BDQP 为等腰梯形, 周长为22222123225++⨯+=+,选A. 【点睛】本题考查线面垂直判断以及截面性质,考查综合分析与求解能力,属难题.7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ). A .130 B .140C .150D .160【答案】D 【解析】设直四棱柱1111ABCD A B C D -中,对角线119,15AC BD ==, 因为1A A ⊥平面,ABCD AC Ì,平面ABCD ,所以1A A AC ⊥, 在1Rt A AC ∆中,15A A =,可得221156AC AC A A =-=, 同理可得2211200102BD D B D D =-==,因为四边形ABCD 为菱形,可得,AC BD 互相垂直平分, 所以2211()()1450822AB AC BD =+=+=,即菱形ABCD 的边长为8, 因此,这个棱柱的侧面积为1()485160S AB BC CD DA AA =+++⨯=⨯⨯=, 故选D.点睛:本题考查了四棱锥的侧面积的计算问题,解答中通过给出的直四棱柱满足的条件,求得底面菱形的边长,进而得出底面菱形的底面周长,即可代入侧面积公式求得侧面积,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,其中正确认识空间几何体的结构特征和线面位置关系是解答的关键.8.在正方体1111ABCD A B C D -中,点E ∈平面11AA B B ,点F 是线段1AA 的中点,若1D E CF ⊥,则当EBC V 的面积取得最小值时,EBCABCDS S=△( ) A .25B .12C .5D .5 【答案】D 【解析】 【分析】根据1D E CF ⊥分析出点E 在直线1B G 上,当EBC V 的面积取得最小值时,线段EB的长度为点B 到直线1B G 的距离,即可求得面积关系. 【详解】先证明一个结论P :若平面外的一条直线l 在该平面内的射影垂直于面内的直线m ,则l ⊥m ,即:已知直线l 在平面内的射影为直线OA ,OA ⊥OB ,求证:l ⊥OB . 证明:直线l 在平面内的射影为直线OA ,不妨在直线l 上取点P ,使得PA ⊥OB ,OA ⊥OB ,OA ,PA 是平面PAO 内两条相交直线, 所以OB ⊥平面PAO ,PO ⊂平面PAO , 所以PO ⊥OB ,即l ⊥OB .以上这就叫做三垂线定理. 如图所示,取AB 的中点G ,正方体中:1111A C D B ⊥,CF 在平面1111D C B A 内的射影为11A C , 由三垂线定理可得:11CF D B ⊥,CF 在平面11A B BA 内的射影为FB ,1FB B G ⊥由三垂线定理可得:1CF B G ⊥,1B G 与11D B 是平面11B D G 内两条相交直线, 所以CF ⊥平面11B D G ,∴当点E 在直线1B G 上时,1D E CF ⊥,设BC a =,则1122EBC S EB BC EB a =⨯⨯=⨯⨯△, 当EBC V 的面积取最小值时,线段EB 的长度为点B 到直线1B G 的距离,∴线段EB,EBC ABCDS S ∴==△. 故选:D . 【点睛】此题考查立体几何中的轨迹问题,通过位置关系讨论面积关系,关键在于熟练掌握线面垂直关系的判定和平面图形面积的计算.9.设m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列四个命题: ①若m α⊥,//n α,则m n ⊥; ②若//αβ,m α⊥,则m β⊥; ③若//m α,//n α,则//m n ; ④若m α⊥,αβ⊥,则//m β. 其中真命题的序号为( ) A .①和② B .②和③C .③和④D .①和④【答案】A 【解析】 【分析】逐一分析命题①②③④的正误,可得出合适的选项. 【详解】对于命题①,若//n α,过直线n 作平面β,使得a αβ⋂=,则//a n ,m α⊥Q ,a α⊂,m a ∴⊥,m n ∴⊥,命题①正确;对于命题②,对于命题②,若//αβ,m α⊥,则m β⊥,命题②正确; 对于命题③,若//m α,//n α,则m 与n 相交、平行或异面,命题③错误; 对于命题④,若m α⊥,αβ⊥,则m β⊂或//m β,命题④错误. 故选:A. 【点睛】本题考查有关线面、面面位置关系的判断,考查推理能力,属于中等题.10.如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1B P P 平面1A BM ,则1C P 的最小值是( )A .305B .2305 C .275D .475【答案】B 【解析】 【分析】在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD ,根据面面平行的判定定理可知平面1//B QDN 平面1A BM ,从而可得P 的轨迹是DN (不含,D N 两点);由垂直关系可知当CP DN ⊥时,1C P 取得最小值;利用面积桥和勾股定理可求得最小值. 【详解】如图,在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD//DN BM Q ,1//DQ A M 且DN DQ D =I ,1BM A M M =I∴平面1//B QDN 平面1A BM ,则动点P 的轨迹是DN (不含,D N 两点)又1CC ⊥平面ABCD ,则当CP DN ⊥时,1C P 取得最小值此时,22512CP ==+ 221223025C P ⎛⎫∴≥+= ⎪⎝⎭本题正确选项:B 【点睛】本题考查立体几何中动点轨迹及最值的求解问题,关键是能够通过面面平行关系得到动点的轨迹,从而找到最值取得的点.11.已知三棱锥P ABC -中,PA PB PC ==,APB BPC CPA ∠>>∠,PO ⊥平面ABC 于O ,设二面角P AB O --,P BC O --,P CA O --分别为,,αβγ,则( )A .αβγ>>B .γβα>>C .βαγ>>D .不确定【答案】A 【解析】 【分析】D 为AB 中点,连接,DP DO ,故PD AB ⊥,计算sin cos2POAPB a α=∠,sin cos 2PO CPB a β=∠,sin cos2POCPA a γ=∠,得到大小关系. 【详解】如图所示:设PA PB PC a ===,D 为AB 中点,连接,DP DO ,故PD AB ⊥, PO ⊥平面ABC ,故PDO ∠为二面角P AB O --的平面角.cos 2APB PD a ∠=,sin cos 2PO POAPB PD a α==∠,同理可得:sin cos 2PO CPB a β=∠,sin cos2POCPA a γ=∠, APB BPC CPA ∠>∠>∠,故sin sin sin αβγ>>,故αβγ>>.故选:A .【点睛】本题考查了二面角,意在考查学生的计算能力和空间想象能力.12.如下图,在正方体1111ABCD A B C D -中,点E F 、分别为棱1BB ,1CC 的中点,点O为上底面的中心,过E F O 、、三点的平面把正方体分为两部分,其中含1A 的部分为1V ,不含1A 的部分为2V ,连接1A 和2V 的任一点M ,设1A M 与平面1111D C B A 所成角为α,则sin α的最大值为( ).A .2 B.25C .26D .26【答案】B 【解析】 【分析】连接EF ,可证平行四边形EFGH 为截面,由题意可找到1A M 与平面1111D C B A 所成的角,进而得到sinα的最大值. 【详解】连接EF ,因为EF//面ABCD,所以过EFO 的平面与平面ABCD 的交线一定是过点O 且与EF 平行的直线,过点O 作GH//BC 交CD 于点G,交AB 于H 点,则GH//EF,连接EH ,FG,则平行四边形EFGH 为截面,则五棱柱1111A B EHA D C FGD -为1V ,三棱柱EBH-FCG 为2V ,设M 点为2V 的任一点,过M 点作底面1111D C B A 的垂线,垂足为N ,连接1A N ,则1MA N ∠即为1A M 与平面1111D C B A 所成的角,所以1MA N ∠=α,因为sinα=1MNA M,要使α的正弦最大,必须MN 最大,1A M 最小,当点M 与点H 重合时符合题意,故sinα的最大值为11=MN HN A M A H =25, 故选B【点睛】本题考查空间中的平行关系与平面公理的应用,考查线面角的求法,属于中档题.13.圆锥SD (其中S 为顶点,D 为底面圆心)的侧面积与底面积的比是2:1,则圆锥SD 与它外接球(即顶点在球面上且底面圆周也在球面上)的体积比为( )A .9:32B .8:27C .9:22D .9:28【答案】A【解析】【分析】根据已知条件求得圆锥母线与底面圆半径r 的关系,从而得到圆锥的高与r 关系,计算圆锥体积,由截面图得到外接球的半径R 与r 间的关系,计算球的体积,作比即可得到答案.【详解】设圆锥底面圆的半径为r,圆锥母线长为l ,则侧面积为πrl , 侧面积与底面积的比为2πrl 2l r r π==,则母线l=2r,圆锥的高为h=223l r r -=, 则圆锥的体积为2313πh 3r r π=, 设外接球的球心为O,半径为R,截面图如图,则OB=OS=R,OD=h-R=3r R -,BD=r, 在直角三角形BOD 中,由勾股定理得222OB OD BD =+,即()2223R r r R =+-, 展开整理得R=,3r 所以外接球的体积为33344333393R r ππ=⨯=, 故所求体积比为33393323293r r ππ= 故选:A【点睛】本题考查圆锥与球的体积公式的应用,考查学生计算能力,属于中档题.14.四棱锥P ABCD -所有棱长都相等,M 、N 分别为PA 、CD 的中点,下列说法错误的是( )A .MN 与PD 是异面直线B .//MN 平面PBC C .//MN ACD .MN PB ⊥【答案】C【解析】【分析】画出图形,利用异面直线以及直线与平面平行的判定定理,判断选项A 、B 、C 的正误,由线线垂直可判断选项D .【详解】由题意可知四棱锥P ABCD -所有棱长都相等,M 、N 分别为PA 、CD 的中点,MN 与PD 是异面直线,A 选项正确;取PB 的中点为H ,连接MH 、HC ,四边形ABCD 为平行四边形,//AB CD ∴且AB CD =,M Q 、H 分别为PA 、PB 的中点,则//MH AB 且12MH AB =, N Q 为CD 的中点,//CN MH ∴且CN MH =,则四边形CHMN 为平行四边形, //MN CH ∴,且MN ⊄平面PBC ,CH ⊂平面PBC ,//MN ∴平面PBC ,B 选项正确;若//MN AC ,由于//CH MN ,则//CH AC ,事实上AC CH C ⋂=,C 选项错误; PC BC =Q ,H 为PB 的中点,CH PB ∴⊥,//MN CH Q ,MN PB ∴⊥,D 选项正确.故选:C .【点睛】本题考查命题的真假的判断与应用,涉及直线与平面的平行与垂直的位置关系的判断,是中档题.15.在正四面体A BCD -中,P 是AB 的中点,Q 是直线BD 上的动点,则直线PQ 与AC 所成角可能为( )A .12πB .4πC .512πD .2π 【答案】C【解析】【分析】根据题意,取BC 的中点M ,连接MQ ,则//AC MQ ,所以QPM ∠为异面直线PQ 与AC 所成角,在利用余弦定理可得242MQ x x =+-,易知PQ MQ =,所以在等腰三角形PMQ 中()21cos 0442QPM x x x ∠=≤≤+-,,即可求出33cos 123QPM ⎡⎤∠∈⎢⎥⎣⎦,,进而求出结果. 【详解】取BC 的中点M ,连接MQ ,则//AC MQ ,所以QPM ∠为异面直线PQ 与AC 所成角,如下图所示:设正四面体A BCD -的棱长为4,()04BQ x x =≤≤,,在BMQ ∆中,22222cos 6042MQ BM BQ BM BQ x x =+-⋅︒=+-,在正四面体A BCD -中,易知PQ MQ =,所以在等腰三角形PMQ 中,()2cos 0442QPM x x x ∠=≤≤+-,所以33cos QPM ⎡⎤∠∈⎢⎥⎣⎦,,所以异面直线PQ 与AC 所成角可能为512π. 故选:C.【点睛】 本题主要考查了异面直线成角,余弦定理的应用,考查了空间几何中的动态问题,考查学生的应用能力和空间想象能力,属于中档题.16.如图长方体中,过同一个顶点的三条棱的长分别为2、4、6,A 点为长方体的一个顶点,B 点为其所在棱的中点,则沿着长方体的表面从A 点到B 点的最短距离为( )A 29B .35C 41D .213【答案】C【解析】【分析】由长方体的侧面展开图可得有3种情况如下:①当B 点所在的棱长为2;②当B 点所在的棱长为4;③当B 点所在的棱长为6,分别再求出展开图AB 的距离即可得最短距离.【详解】由长方体的侧面展开图可得:(1)当B 点所在的棱长为2,则沿着长方体的表面从A 到B 的距离可能为=== (2)当B 点所在的棱长为4,则沿着长方体的表面从A 到B 的距离可能为=== (3)当B 点所在的棱长为6,则沿着长方体的表面从A 到B 的距离可能为=== 综上所述,沿着长方体的表面从A 点到B .故选:C .【点睛】本题考查长方体的展开图,考查空间想象与推理能力,属于中等题.17.在三棱锥P ABC -中,PA ⊥平面ABC ,2π,43BAC AP ∠==,AB AC ==P ABC -的外接球的表面积为( ) A .32πB .48πC .64πD .72π 【答案】C【解析】【分析】先求出ABC V 的外接圆的半径,然后取ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==,由于PA ⊥平面ABC ,故点O 为三棱锥P ABC -的外接球的球心,OA 为外接球半径,求解即可.【详解】在ABC V 中,AB AC ==23BAC π∠=,可得6ACB π∠=, 则ABC V的外接圆的半径π2sin 2sin 6AB r ACB ===ABC V 的外接圆的圆心G ,过G 作//GO AP ,且122GO AP ==, 因为PA ⊥平面ABC ,所以点O 为三棱锥P ABC -的外接球的球心,则222OA OG AG =+,即外接球半径()222234R =+=,则三棱锥P ABC -的外接球的表面积为24π4π1664πR =⨯=.故选C.【点睛】本题考查了三棱锥的外接球表面积的求法,考查了学生的空间想象能力,属于中档题.18.如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为( )A .64B .643C .16D .163【答案】D【解析】根据三视图知几何体是:三棱锥D ABC -为棱长为4的正方体一部分,直观图如图所示:B 是棱的中点,由正方体的性质得,CD ⊥平面,ABC ABC ∆的面积12442S =⨯⨯=,所以该多面体的体积1164433V =⨯⨯=,故选D.19.在空间中,下列命题正确的是A .如果一个角的两边和另一角的两边分别平行,那么这两个角相等B .两条异面直线所成的有的范围是0,2π⎡⎤⎢⎥⎣⎦C .如果两个平行平面同时与第三个平面相交,那么它们的交线平行D .如果一条直线和平面内的一条直线平行,那么这条直线和这个平面平行【答案】C【解析】【分析】根据两个角可能互补判断A ;根据两条异面直线所成的角不能是零度,判断B ;根据根据两个平面平行的性质定理知判断C ;利用直线与这个平面平行或在这个平面内判断D.【详解】如果一个角的两边和另一个角的两边分别平行,这两个角相等或互补,故A 不正确; 两条异面直线所成的角不能是零度,故B 不正确;根据两个平面平行的性质定理知C 正确;如果一条直线和一个平面内的一条直线平行,那么这条直线与这个平面平行或在这个平面内,故D 不正确,综上可知只有C 的说法是正确的,故选C.【点睛】本题考查平面的基本性质及推论,考查等角定理,考查两个平面平行的性质定理,考查异面直线所成的角的取值范围,考查直线与平面平行的判断定理,意在考查对基础知识的掌握情况,本题是一个概念辨析问题.20.如图1,已知正方体ABCD-A 1B 1C 1D 1的棱长为2,M ,N ,Q 分别是线段AD 1,B 1C ,C 1D 1上的动点,当三棱锥Q-BMN 的正视图如图2所示时,三棱锥俯视图的面积为A .2B .1C .32D .52【答案】C【解析】【分析】判断俯视图的形状,利用三视图数据求解俯视图的面积即可.【详解】由正视图可知:M 是1AD 的中点,N 在1B 处,Q 在11C D 的中点,俯视图如图所示:可得其面积为:1113222111122222⨯-⨯⨯-⨯⨯-⨯⨯=,故选C . 【点睛】 本题主要考查三视图求解几何体的面积与体积,判断它的形状是解题的关键,属于中档题.。

高考数学压轴专题最新备战高考《空间向量与立体几何》全集汇编附答案

高考数学压轴专题最新备战高考《空间向量与立体几何》全集汇编附答案

【高中数学】数学《空间向量与立体几何》复习知识点一、选择题1.在棱长为1的正方体1111ABCD A B C D -中,点12,P P 分别是线段1,AB BD (不包括端点)上的动点,且线段12PP 平行于平面11A ADD ,则四面体121PP AB 的体积的最大值是 A .124B .112C .16D .12【答案】A 【解析】由题意在棱长为1的正方体1111ABCD A B C D -中,点12,P P 分别是线段1,AB BD 上的动点,且线段12PP 平行于平面11121,AADD PP B AD B ∆~∆, 设1,(0,1)PB x x =∈,即1222,PP x P =到平面11AA B B 的距离为x , 所以四棱锥121PP AB 的体积为2111(1)1()326V x x x x =⨯⨯-⨯⨯=-, 当12x =时,体积取得最大值124,故选A .点睛:本题考查了空间几何体的结构特征,及几何体的体积的计算,其中解答中找出所求四面体的底面面积和四面体的高是解答的关键,着重考查了分析问题和解答问题的能力,对于空间几何体的体积与表面积的计算时,要正确把握几何体的结构特征和线面位置关系在解答中的应用.2.正方体1111ABCD A B C D -的棱长为1,动点M 在线段1CC 上,动点P 在平面..1111D C B A 上,且AP ⊥平面1MBD .线段AP 长度的取值范围为( )A .1,2⎡⎤⎣⎦B .1,3⎡⎤⎣⎦C.3,22⎡⎤⎢⎥⎣ D .6,22⎡⎤⎢⎥⎣ 【答案】D 【解析】 【分析】以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,设(),,1P x y ,()0,1,M t ,由AP ⊥平面1MBD ,可得+11x t y t=⎧⎨=-⎩,然后用空间两点间的距离公式求解即可.【详解】以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系, 则()()()()11,0,0,1,1,0,0,1,,0,0,1A B M t D ,(),,1P x y .()1,,1AP x y =-u u u r ,()11,1,1BD =--u u u u r ,()[]1,0,0,1,BM t t =-∈u u u u r由AP ⊥平面1MBD ,则0BM AP ⋅=u u u u r u u u r且01BD AP ⋅=u u u u r u u u r所以10x t -+=且110x y --+=得+1x t =,1y t =-.所以()2221311222AP x y t ⎛⎫=-++=-+ ⎪⎝⎭u u u r 当12t =时,min 62AP =u u u r ,当0t =或1t =时,max 2AP =u u u r , 所以62AP ≤≤u u ur故选:D【点睛】本题考查空间动线段的长度的求法,考查线面垂直的应用,对于动点问题的处理用向量方法要简单些,属于中档题.3.某四棱锥的三视图如图所示,则该四棱锥的体积等于( )A .23B .13C .12D .34【答案】B 【解析】分析:先还原几何体,再根据锥体体积公式求结果.详解:几何体如图S-ABCD ,高为1,底面为平行四边形,所以四棱锥的体积等于21111=33⨯⨯, 选B.点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断求解.4.若四面体的三视图如图所示,则该四面体的四个面中,直角三角形的面积和为( )A .2B .25C .425+D .4【答案】B【分析】根据四面体的三视图可知:一侧面垂直于底面,且底面是以该侧面与底面的交线为直角边的直角三角形,然后根据面面垂直的性质定理,得到与底面的另一直角边为交线的侧面为直角三角形求解. 【详解】由四面体的三视图可知:平面PAB ⊥平面ABC ,BC AB ⊥, 所以BC ⊥平面PAB ,所以BC PB ⊥, 所以,ABC PBC V V 是直角三角形, 如图所示:所以直角三角形的面积和为:11112252252222ABC PBC S S AB BC PB BC +=⨯⨯+⨯⨯=⨯⨯+⨯⨯=+V V . 故选:B 【点睛】本题主要考查三视图的应用以及线面垂直,面面垂直的关系,还考查了运算求解的能力,属于中档题.5.已知正方体1111ABCD A B C D -的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体1111ABCD A B C D -被平面α截得的截面面积为( )A .36B .6C .5D 53【答案】B【分析】先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解. 【详解】 如图所示:1,,A P C 确定一个平面α,因为平面11//AA DD 平面11BB CC , 所以1//AQ PC ,同理1//AP QC , 所以四边形1APC Q 是平行四边形. 即正方体被平面截的截面. 因为12B P PC =, 所以112C B PC =, 即1PC PB ==所以115,23AP PC AC ===由余弦定理得:22211111cos 25AP PC AC APC AP PC +-∠==⨯ 所以126sin APC ∠=所以S 四边形1APQC 1112sin 262AP PC APC =⨯⨯⨯∠=故选:B 【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.6.《九章算术》卷五商功中有如下问题:今有刍甍(音meng ,底面为矩形的屋脊状的几何体),下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.已知该刍甍的三视图如图所示,则此刍甍的体积等于( )A .3B .5C .6D .12【答案】B 【解析】 【分析】首先由三视图还原几何体,再将刍甍分为三部分求解体积,最后计算求得刍甍的体积. 【详解】由三视图换元为如图所示的几何体,该几何体分为三部分,中间一部分是直棱柱,两侧是相同的三棱锥,并且三棱锥的体积113113⨯⨯⨯=, 中间棱柱的体积131232V =⨯⨯⨯= , 所以该刍甍的体积是1235⨯+=. 故选:B 【点睛】本题考查组合体的体积,重点考查空间想象能力和计算能力,属于中档题型.7.已知平面α⊥平面β,l αβ=I ,a α⊂,b β⊂,则“a l ⊥”是“a b ⊥r r”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】根据面面垂直的性质定理,以及充要条件的判定方法,即可作出判定,得到答案. 【详解】由题意知,平面α⊥平面β,,,l a b αβαβ⋂=⊂⊂, 当a l ⊥时,利用面面垂直的性质定理,可得a b ⊥r r成立,反之当a b ⊥r r时,此时a 与l 不一定是垂直的,所以a l ⊥是a b ⊥r r的充分不必要条件,故选A.【点睛】本题主要考查了充要条件的判定,其中解答中熟记线面位置关系的判定定理与性质定理,以及充要条件的判定方法是解答的关键,着重考查了推理与论证能力,属于基础题.8.在三棱锥P ABC -中,PA ⊥平面ABC ,且ABC ∆为等边三角形,2AP AB ==,则三棱锥P ABC -的外接球的表面积为( ) A .272π B .283π C .263π D .252π 【答案】B 【解析】 【分析】计算出ABC ∆的外接圆半径r,利用公式R =可得出外接球的半径,进而可得出三棱锥P ABC -的外接球的表面积. 【详解】ABC ∆的外接圆半径为32sin3AB r π==,PA ⊥Q 底面ABC ,所以,三棱锥P ABC -的外接球半径为3R ===, 因此,三棱锥P ABC -的外接球的表面积为22284433R πππ⎛=⨯= ⎝⎭. 故选:B. 【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,选择合适的公式计算外接球的半径,考查计算能力,属于中等题.9.一个几何体的三视图如图所示,则该几何体的体积为A .383+B .823+C .283D .10【答案】A 【解析】 【分析】根据三视图可知该几何体为一组合体,是一个棱长为2的正方体与三棱锥的组合体,根据体积公式分别计算即可. 【详解】几何体为正方体与三棱锥的组合体,由正视图、俯视图可得该几何体的体积为311232+2328323V =⨯⨯=+, 故选A.【点睛】本题主要考查了三视图,正方体与三棱锥的体积公式,属于中档题.10.在四面体ABCD 中,AB ,BC ,BD 两两垂直,4AB BC BD ===,E 、F 分别为棱BC 、AD 的中点,则直线EF 与平面ACD 所成角的余弦值( ) A .13B 3C 22D 6 【答案】C 【解析】 【分析】因为AB ,BC ,BD 两两垂直,以BA 为X 轴,以BD 为Y 轴,以BC 为Z 轴建立空间直角坐标系,求出向量EF u u u r 与平面ACD 的法向量n r ,再根据cos ,||||EF nEF n EF n ⋅〈〉=u u u r ru u u r r u u u r r ,即可得出答案. 【详解】因为在四面体ABCD 中,AB ,BC ,BD 两两垂直,以BA 为X 轴,以BD 为Y 轴,以BC 为Z 轴建立空间直角坐标系, 又因为4AB BC BD ===;()4,0,0,(0,0,0),(0,4,0),(0,0,4)A B D C ,又因为E 、F 分别为棱BC 、AD 的中点所以(0,0,2),(2,2,0)E F故()2,2,2EF =-u u u r ,(4,4,0)AD =-u u u r ,(4,0,4)AC =-u u u r.设平面ACD 的法向量为(,,)n x y z =r,则00n AD n AC ⎧⋅=⎨⋅=⎩u u u v v u u u v v 令1,x = 则1y z ==;所以(1,1,1)n =r1cos ,3||||332EF n EF n EF n ⋅〈〉===⨯u u u r ru u u r r u u u r r 设直线EF 与平面ACD 所成角为θ ,则sin θ= cos ,EF n 〈〉u u u r r所以222cos 1sin θθ=-= 故选:C 【点睛】本题主要考查线面角,通过向量法即可求出,属于中档题目.11.已知正方体1111A B C D ABCD -的棱1AA 的中点为E ,AC 与BD 交于点O ,平面α过点E 且与直线1OC 垂直,若1AB =,则平面α截该正方体所得截面图形的面积为( ) A .64B .62C .32D .34【答案】A 【解析】 【分析】根据正方体的垂直关系可得BD ⊥平面11ACC A ,进而1BD OC ⊥,可考虑平面BDE 是否为所求的平面,只需证明1OE OC ⊥即可确定平面α.【详解】如图所示,正方体1111ABCD A B C D -中,E 为棱1AA 的中点,1AB =,则2113122OC =+=,2113424OE =+=,2119244EC =+=,∴22211OC OE EC +=,1OE OC ∴⊥;又BD ⊥平面11ACC A ,1BD OC ∴⊥,且OE BD O =I ,1OC ∴⊥平面BDE ,且113622224BDE S BD OE ∆==⨯⨯=g , 即α截该正方体所得截面图形的面积为64. 故选:A .【点睛】本题考查线面垂直的判定,考查三角形面积的计算,熟悉正方体中线面垂直关系是解题的关键,属于中档题.12.如图,在正三棱柱111ABC A B C -中,2AB =,123AA =,D ,F 分别是棱AB ,1AA 的中点,E 为棱AC 上的动点,则DEF ∆的周长的最小值为()A .222B .232C 62+D 72【答案】D 【解析】 【分析】根据正三棱柱的特征可知ABC ∆为等边三角形且1AA ⊥平面ABC ,根据1AA AD ⊥可利用勾股定理求得2DF =;把底面ABC 与侧面11ACC A 在同一平面展开,可知当,,D E F 三点共线时,DE EF +取得最小值;在ADF ∆中利用余弦定理可求得最小值,加和得到结果.【详解】Q 三棱柱111ABC A B C -为正三棱柱 ABC ∆∴为等边三角形且1AA ⊥平面ABC AD ⊂Q 平面ABC 1AA AD ∴⊥ 132DF ∴=+=把底面ABC 与侧面11ACC A 在同一平面展开,如下图所示:当,,D E F 三点共线时,DE EF +取得最小值又150FAD ∠=o ,3AF =,1AD =()22min 32cos 42372DE EF AF AD AF AD FAD ⎛⎫∴+=+-⋅∠=-⨯-= ⎪ ⎪⎝⎭DEF ∴∆周长的最小值为:72+本题正确选项:D【点睛】本题考查立体几何中三角形周长最值的求解问题,关键是能够将问题转化为侧面上两点间最短距离的求解问题,利用侧面展开图可知三点共线时距离最短.13.如图,在正方体1111ABCD A B C D -,点P 在线段1BC 上运动,则下列判断正确的是( )①平面1PB D ⊥平面1ACD②1//A P 平面1ACD③异面直线1A P 与1AD 所成角的取值范围是0,3π⎛⎤ ⎥⎝⎦④三棱锥1D APC -的体积不变A .①②B .①②④C .③④D .①④ 【答案】B【解析】【分析】由面面垂直的判定定理判断①,由面面平行的性质定理判断②,求出P 在特殊位置处时异面直线所成的角,判断③,由换底求体积法判断④.【详解】正方体中易证直线AC ⊥平面11BDD B ,从而有1AC B D ⊥,同理有11B D AD ^,证得1B D ⊥平面1ACD ,由面面垂直判定定理得平面1PB D ⊥平面1ACD ,①正确;正方体中11//A B CD ,11//BC AD ,从而可得线面平行,然后可得面面平行,即平面11A BC //平面1ACD ,而1A P ⊂平面11A BC ,从而得1//A P 平面1ACD ,②正确; 当P 是1BC 中点时,1A P 在平面11A B CD 内,正方体中仿照上面可证1AD ⊥平面11A B CD ,从而11AD A P ⊥,1A P 与1AD 所成角为90︒.③错;∵11D APC P AD C V V --=,由1//BC 平面1ACD ,知P 在线段1BC 上移动时,P 到平面1ACD 距离相等,因此1P AD C V -不变,④正确.故选:B .【点睛】本题考查面面垂直的判定定理、面面平行的性质定理、异面直线所成的角、棱锥的体积等知识,考查学生的空间想象能力,属于中档题.14.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有( )A .2对B .3对C .4对D .5对【答案】C【解析】【分析】 画出该几何体的直观图P ABCD -,易证平面PAD ⊥平面ABCD ,平面PCD ⊥平面PAD ,平面PAB ⊥平面PAD ,平面PAB ⊥平面PCD ,从而可选出答案.【详解】该几何体是一个四棱锥,直观图如下图所示,易知平面PAD ⊥平面ABCD , 作PO ⊥AD 于O ,则有PO ⊥平面ABCD ,PO ⊥CD ,又AD ⊥CD ,所以,CD ⊥平面PAD ,所以平面PCD ⊥平面PAD ,同理可证:平面PAB ⊥平面PAD ,由三视图可知:PO =AO =OD ,所以,AP ⊥PD ,又AP ⊥CD ,所以,AP ⊥平面PCD ,所以,平面PAB ⊥平面PCD ,所以该多面体各表面所在平面互相垂直的有4对.【点睛】本题考查了空间几何体的三视图,考查了四棱锥的结构特征,考查了面面垂直的证明,属于中档题.15.若a ,b 是不同的直线,α,β是不同的平面,则下列四个命题:①若a P α,b β∥,a b ⊥r r ,则αβ⊥;②若a P α,b β∥,a b ∥,则αβ∥;③若a α⊥,b β⊥,a b ∥,则αβ∥;④若a P α,b β⊥,a b ⊥r r ,则αβ∥.正确的个数为( )A .0B .1C .2D .3【答案】B【解析】【分析】对每一个选项逐一分析得解.【详解】命题①中α与β还有可能平行或相交;命题②中α与β还有可能相交;命题④中α与β还有可能相交;∵a b P ,a α⊥,∴b α⊥,又b β⊥,∴αβP .故命题③正确.故选B .【点睛】本题主要考查空间直线平面位置关系的判断,意在考查学生对这些知识的理解掌握水平和空间想象能力.16.古代数学名著《张丘建算经》中有如下问题:“今有仓,东西袤一丈二尺,南北广七尺,南壁高九尺,北壁高八尺,问受粟几何?”.题目的意思是:“有一粮仓的三视图如图所示(单位:尺),问能储存多少粟米?”已知1斛米的体积约为1.62立方尺,估算粮仓可以储存的粟米约有(取整数)( )A .441斛B .431斛C .426斛D .412斛【答案】A【解析】【分析】 由三视图可知:上面是一个横放的三棱柱,下面是一个长方体.由体积计算公式即可得出.【详解】解:由三视图可知:上面是一个横放的三棱柱,下面是一个长方体.∴体积1171278127142V =⨯⨯⨯+⨯⨯=,∴粮仓可以储存的粟米7144411.62=≈斛.故选:A .17.设,为两条不同的直线,,为两个不同的平面,下列命题中,正确的是( )A .若,与所成的角相等,则B .若,,则C .若,,则D .若,,则 【答案】C【解析】 试题分析:若,与所成的角相等,则或,相交或,异面;A 错. 若,,则或,B 错. 若,,则正确. D .若,,则 ,相交或,异面,D 错考点:直线与平面,平面与平面的位置关系18.已知ABC V 的三个顶点在以O 为球心的球面上,且2cos 3A =,1BC =,3AC =,三棱锥O ABC -的体积为146,则球O 的表面积为( ) A .36πB .16πC .12πD .163π 【答案】B【解析】【分析】 根据余弦定理和勾股定理的逆定理即可判断三角形ABC 是直角三角形,根据棱锥的体积求出O 到平面ABC 的距离,利用勾股定理计算球的半径OA ,得出球的面积.【详解】 由余弦定理得22229122cos 26AB AC BC AB A AB AC AB +-+-==g ,解得22AB = 222AB BC AC ∴+=,即AB BC ⊥.AC ∴为平面ABC 所在球截面的直径.作OD ⊥平面ABC ,则D 为AC 的中点, 11114221332O ABC ABC V S OD OD -∆==⨯⨯⨯⨯=Q g , 7OD ∴=. 222OA OD AD ∴=+=.2416O S OA ππ∴=⋅=球.故选:B .【点睛】 本题考查了球与棱锥的关系,意在考查学生对这些知识的理解掌握水平,判断ABC ∆的形状是关键.19.在直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为4的正方形,15AA =,垂直于1AA 的截面分别与面对角线1D A ,1B A ,1B C ,1D C 相交于四个不同的点E ,F ,G ,H ,则四棱锥1A EFGH -体积的最大值为( ).A .83B .1258C .12825D .64081【答案】D【解析】【分析】由直棱柱的特点和底面为正方形可证得四边形EFGH 为矩形,设点1A 到平面EFGH 的距离为()501t t <<,可表示出,EF FG ,根据四棱锥体积公式将所求体积表示为关于t 的函数,利用导数可求得所求的最大值.【详解】Q 四棱柱1111ABCD A B C D -为直四棱柱,1AA ∴⊥平面ABCD ,1AA ⊥平面1111D C B A ∴平面//EFGH 平面ABCD ,平面//EFGH 平面1111D C B A ,由面面平行性质得:11EF //B D //GH ,EH //AC//FG ,又11B D AC ⊥,EF FG ∴⊥,∴四边形EFGH 为矩形.设点1A 到平面EFGH 的距离为()501t t <<,1142AC B D ==Q )421EF t ∴=-,42FG t =,∴四棱锥1A EFGH -的体积()()231160532133V t t t t t =⨯⨯-=-, ()2160233V t t '∴=-,∴当20,3t ⎛⎫∈ ⎪⎝⎭时,0V '>,当2,13t ⎛⎫∈ ⎪⎝⎭时,0V '<, ∴当23t =时,max 16048640392781V ⎛⎫=⨯-= ⎪⎝⎭. 故选:D .【点睛】本题考查立体几何中的体积最值的求解问题,关键是能够将所求四棱锥的体积表示为关于某一变量的函数的形式,进而利用导数来求解函数最值,从而得到所求体积的最值.20.一个各面均为直角三角形的四面体有三条棱长为2,则该四面体外接球的表面积为( )A .6πB .12πC .32πD .48π【答案】B【解析】【分析】先作出几何图形,确定四个直角和边长,再找到外接球的球心和半径,再计算外接球的表面积.【详解】由题得几何体原图如图所示,其中SA⊥平面ABC,BC⊥平面SAB,SA=AB=BC=2,所以2,3SC=设SC中点为O,则在直角三角形SAC中,3,在直角三角形SBC中,OB=13 2SC=所以3所以点O3所以四面体外接球的表面积为43=12ππ.故选:B【点睛】本题主要考查四面体的外接球的表面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理的能力.。

高考数学压轴专题人教版备战高考《空间向量与立体几何》全集汇编附答案解析

高考数学压轴专题人教版备战高考《空间向量与立体几何》全集汇编附答案解析

新数学《空间向量与立体几何》复习资料一、选择题1.设α为平面,a ,b 为两条不同的直线,则下列叙述正确的是( )A .若//a α,//b α,则//a bB .若a α⊥,//a b ,则b α⊥C .若a α⊥,a b ⊥r r,则//b α D .若//a α,a b ⊥r r,则b α⊥【答案】B 【解析】 【分析】利用空间线线、线面、面面间的关系对每一个选项逐一分析判断得解. 【详解】若//a α,//b α,则a 与b 相交、平行或异面,故A 错误;若a α⊥,//a b ,则由直线与平面垂直的判定定理知b α⊥,故B 正确; 若a α⊥,a b ⊥r r,则//b α或b α⊂,故C 错误;若//a α,a b ⊥r r,则//b α,或b α⊂,或b 与α相交,故D 错误.故选:B . 【点睛】本题考查命题的真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.2.三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ︒∠=∠=,则异面直线1AB 与1BC 所成角的余弦值为( )A .33B .66C .34D 3 【答案】B 【解析】 【分析】设1AA c =u u u v v ,AB a =u u u v v ,AC b =u u u v v,根据向量线性运算法则可表示出1AB u u u v 和1BC u u u u v ;分别求解出11AB BC ⋅u u u v u u u u v 和1AB u u u v ,1BC u u u u v ,根据向量夹角的求解方法求得11cos ,AB BC <>u u u v u u u u v,即可得所求角的余弦值. 【详解】设棱长为1,1AA c =u u u v v ,AB a =u u u v v ,AC b =u u u v v由题意得:12a b⋅=vv,12b c⋅=v v,12a c⋅=v v1AB a c=+u u u v v vQ,11BC BC BB b a c=+=-+u u u u v u u u v u u u v v v v()()22111111122AB BC a c b a c a b a a c b c a c c∴⋅=+⋅-+=⋅-+⋅+⋅-⋅+=-++=u u u v u u u u v v v vv v v v v v v v v v v v又()222123AB a c a a c c=+=+⋅+=u u u v v v v v v v()222212222BC b a c b a c a b b c a c=-+=++-⋅+⋅-⋅=u u u u v v v v vv v v v v v v v1111116cos,6AB BCAB BCAB BC⋅∴<>===⋅u u u v u u u u vu u u v u u u u vu u u v u u u u v即异面直线1AB与1BC所成角的余弦值为:66本题正确选项:B【点睛】本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.3.已知某几何体的三视图如图所示,则该几何体的体积为A.273B.276C.274D.272【答案】D【解析】【分析】先还原几何体,再根据锥体体积公式求结果.【详解】几何体为一个三棱锥,高为33333,,所以体积为1127=33333=322V⨯⨯⨯,选D.【点睛】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.4.正方体1111ABCD A B C D -的棱长为1,动点M 在线段1CC 上,动点P 在平面..1111D C B A 上,且AP ⊥平面1MBD .线段AP 长度的取值范围为( )A .2⎡⎣B .3⎡⎣C .32⎣D .62⎣ 【答案】D 【解析】 【分析】以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,设(),,1P x y ,()0,1,M t ,由AP ⊥平面1MBD ,可得+11x t y t =⎧⎨=-⎩,然后用空间两点间的距离公式求解即可. 【详解】以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,则()()()()11,0,0,1,1,0,0,1,,0,0,1A B M t D ,(),,1P x y .()1,,1AP x y =-u u u r ,()11,1,1BD =--u u u u r ,()[]1,0,0,1,BM t t =-∈u u u u r由AP ⊥平面1MBD ,则0BM AP ⋅=u u u u r u u u r且01BD AP ⋅=u u u u r u u u r所以10x t -+=且110x y --+=得+1x t =,1y t =-.所以()2221311222AP x y t ⎛⎫=-++=-+⎪⎝⎭u u u r当12t =时,min 62AP =u u u r ,当0t =或1t =时,max 2AP =u u u r , 62AP ≤≤u u ur 故选:D【点睛】本题考查空间动线段的长度的求法,考查线面垂直的应用,对于动点问题的处理用向量方法要简单些,属于中档题.5.某四棱锥的三视图如图所示,则该四棱锥的体积等于( )A .23B .13C .12D .34【答案】B 【解析】分析:先还原几何体,再根据锥体体积公式求结果.详解:几何体如图S-ABCD ,高为1,底面为平行四边形,所以四棱锥的体积等于21111=33⨯⨯, 选B.点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断求解.6.在以下命题中:①三个非零向量a r ,b r ,c r 不能构成空间的一个基底,则a r ,b r ,c r共面;②若两个非零向量a r ,b r 与任何一个向量都不能构成空间的一个基底,则a r ,b r共线;③对空间任意一点O 和不共线的三点A ,B ,C ,若222OP OA OB OC =--u u u r u u u r u u u u r u u u u r,则P ,A ,B ,C 四点共面④若a r ,b r是两个不共线的向量,且(,,,0)c a b R λμλμλμ=+∈≠r r r ,则{},,a b c r r r 构成空间的一个基底⑤若{},,a b c r r r 为空间的一个基底,则{},,a b b c c a +++r r r r r r构成空间的另一个基底;其中真命题的个数是( ) A .0 B .1C .2D .3【答案】D 【解析】 【分析】根据空间向量的运算法则,逐一判断即可得到结论. 【详解】①由空间基底的定义知,三个非零向量a r ,b r ,c r 不能构成空间的一个基底,则a r ,b r,c r共面,故①正确;②由空间基底的定义知,若两个非零向量a r ,b r与任何一个向量都不能构成空间的一个基底,则a r ,b r共线,故②正确;③由22221--=-≠,根据共面向量定理知,,,P A B C 四点不共面,故③错误;④由c a b λμ=+r r r ,当1λμ+=时,向量c r 与向量a r ,b r构成的平面共面,则{},,a b c r r r 不能构成空间的一个基底,故④错误;⑤利用反证法:若{},,a b b c c a +++r r r r r r不构成空间的一个基底, 设()()()1a b x b c x c a +=++-+r r r r r r ,整理得()1c xa x b =+-r r r ,即,,a b c r r r共面,又因{},,a b c r r r 为空间的一个基底,所以{},,a b b c c a +++r r r r r r能构成空间的一个基底,故⑤正确.综上:①②⑤正确. 故选:D. 【点睛】本题考查空间向量基本运算,向量共面,向量共线等基础知识,以及空间基底的定义,共面向量的定义,属于基础题.7.若四面体的三视图如图所示,则该四面体的四个面中,直角三角形的面积和为( )A .2B .25C .425+D .4【答案】B 【解析】 【分析】根据四面体的三视图可知:一侧面垂直于底面,且底面是以该侧面与底面的交线为直角边的直角三角形,然后根据面面垂直的性质定理,得到与底面的另一直角边为交线的侧面为直角三角形求解. 【详解】由四面体的三视图可知:平面PAB ⊥平面ABC ,BC AB ⊥, 所以BC ⊥平面PAB ,所以BC PB ⊥, 所以,ABC PBC V V 是直角三角形, 如图所示:所以直角三角形的面积和为:1111225225 2222ABC PBCS S AB BC PB BC+=⨯⨯+⨯⨯=⨯⨯+⨯⨯=+ V V.故选:B【点睛】本题主要考查三视图的应用以及线面垂直,面面垂直的关系,还考查了运算求解的能力,属于中档题.8.在正方体1111ABCD A B C D-中,点E∈平面11AA B B,点F是线段1AA的中点,若1D E CF⊥,则当EBCV的面积取得最小值时,EBCABCDSS=△()A.25B.12C.5D.510【答案】D【解析】【分析】根据1D E CF⊥分析出点E在直线1B G上,当EBCV的面积取得最小值时,线段EB的长度为点B到直线1B G的距离,即可求得面积关系.【详解】先证明一个结论P:若平面外的一条直线l在该平面内的射影垂直于面内的直线m,则l⊥m,即:已知直线l在平面内的射影为直线OA,OA⊥OB,求证:l⊥OB.证明:直线l 在平面内的射影为直线OA ,不妨在直线l 上取点P ,使得PA ⊥OB ,OA ⊥OB ,OA ,PA 是平面PAO 内两条相交直线, 所以OB ⊥平面PAO ,PO ⊂平面PAO , 所以PO ⊥OB ,即l ⊥OB .以上这就叫做三垂线定理. 如图所示,取AB 的中点G ,正方体中:1111A C D B ⊥,CF 在平面1111D C B A 内的射影为11A C , 由三垂线定理可得:11CF D B ⊥,CF 在平面11A B BA 内的射影为FB ,1FB B G ⊥由三垂线定理可得:1CF B G ⊥,1B G 与11D B 是平面11B D G 内两条相交直线, 所以CF ⊥平面11B D G ,∴当点E 在直线1B G 上时,1D E CF ⊥,设BC a =,则1122EBC S EB BC EB a =⨯⨯=⨯⨯△, 当EBC V 的面积取最小值时,线段EB 的长度为点B 到直线1B G 的距离,∴线段EB 5,525EBC ABCDaS S ⨯⨯∴==△. 故选:D . 【点睛】此题考查立体几何中的轨迹问题,通过位置关系讨论面积关系,关键在于熟练掌握线面垂直关系的判定和平面图形面积的计算.9.已知正方体1111ABCD A B C D -中,M ,N 分别为AB ,1AA 的中点,则异面直线1C M 与BN 所成角的大小为( )A .30°B .45︒C .60︒D .90︒【答案】D 【解析】 【分析】根据题意画出图形,可将异面直线转化共面的相交直线,再进行求解 【详解】 如图:作AN 的中点'N ,连接'N M ,1'C N 由题设可知'N M BN P ,则异面直线1C M 与BN 所成角为1'N MC ∠或其补角,设正方体的边长为4,由几何关系可得,'5N M = ,16C M =,1'41C N =,得21122''N M M C N C =+,即1'90N MC ∠=︒故选D 【点睛】本题考查异面直线的求法,属于基础题10.如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1B P P 平面1A BM ,则1C P 的最小值是( )A .305B 230C 27D 47【答案】B 【解析】 【分析】在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD ,根据面面平行的判定定理可知平面1//B QDN 平面1A BM ,从而可得P 的轨迹是DN (不含,D N 两点);由垂直关系可知当CP DN ⊥时,1C P 取得最小值;利用面积桥和勾股定理可求得最小值. 【详解】如图,在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD//DN BM Q ,1//DQ A M 且DN DQ D =I ,1BM A M M =I∴平面1//B QDN 平面1A BM ,则动点P 的轨迹是DN (不含,D N 两点)又1CC ⊥平面ABCD ,则当CP DN ⊥时,1C P 取得最小值此时,22512CP ==+ 221223025C P ⎛⎫∴≥+= ⎪⎝⎭本题正确选项:B 【点睛】本题考查立体几何中动点轨迹及最值的求解问题,关键是能够通过面面平行关系得到动点的轨迹,从而找到最值取得的点.11.一个几何体的三视图如图所示,则该几何体的体积为A .383+B .823+C .283D .10【答案】A 【解析】 【分析】根据三视图可知该几何体为一组合体,是一个棱长为2的正方体与三棱锥的组合体,根据体积公式分别计算即可. 【详解】几何体为正方体与三棱锥的组合体,由正视图、俯视图可得该几何体的体积为311232+2328323V =⨯⨯=+, 故选A.【点睛】本题主要考查了三视图,正方体与三棱锥的体积公式,属于中档题.12.如图,在正三棱柱111ABC A B C -中,2AB =,123AA =,D ,F 分别是棱AB ,1AA 的中点,E 为棱AC 上的动点,则DEF ∆的周长的最小值为()A .222+B .232+C .62+D .72+【答案】D 【解析】 【分析】根据正三棱柱的特征可知ABC ∆为等边三角形且1AA ⊥平面ABC ,根据1AA AD ⊥可利用勾股定理求得2DF =;把底面ABC 与侧面11ACC A 在同一平面展开,可知当,,D E F 三点共线时,DE EF +取得最小值;在ADF ∆中利用余弦定理可求得最小值,加和得到结果. 【详解】Q 三棱柱111ABC A B C -为正三棱柱 ABC ∆∴为等边三角形且1AA ⊥平面ABCAD ⊂Q 平面ABC 1AA AD ∴⊥ 132DF ∴=+=把底面ABC 与侧面11ACC A 在同一平面展开,如下图所示:当,,D E F 三点共线时,DE EF +取得最小值 又150FAD ∠=o ,3AF =1AD =()22min32cos 42372DE EF AF AD AF AD FAD ⎛⎫∴+=+-⋅∠=-⨯-= ⎪ ⎪⎝⎭DEF ∴∆周长的最小值为:72+本题正确选项:D 【点睛】本题考查立体几何中三角形周长最值的求解问题,关键是能够将问题转化为侧面上两点间最短距离的求解问题,利用侧面展开图可知三点共线时距离最短.13.设α,β是两个不同的平面,m 是直线且m α⊂.“m βP ”是“αβP ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 试题分析:,得不到,因为可能相交,只要和的交线平行即可得到;,,∴和没有公共点,∴,即能得到;∴“”是“”的必要不充分条件.故选B .考点:必要条件、充分条件与充要条件的判断.【方法点晴】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念,属于基础题;并得不到,根据面面平行的判定定理,只有内的两相交直线都平行于,而,并且,显然能得到,这样即可找出正确选项.14.如图长方体中,过同一个顶点的三条棱的长分别为2、4、6,A 点为长方体的一个顶点,B 点为其所在棱的中点,则沿着长方体的表面从A 点到B 点的最短距离为( )A 29B .35C 41D .213【答案】C 【解析】 【分析】由长方体的侧面展开图可得有3种情况如下:①当B 点所在的棱长为2;②当B 点所在的棱长为4;③当B 点所在的棱长为6,分别再求出展开图AB 的距离即可得最短距离. 【详解】由长方体的侧面展开图可得:(1)当B 点所在的棱长为2,则沿着长方体的表面从A 到B 的距离可能为()22461101++=;()2241661++=;()2246165++=.(2)当B 点所在的棱长为4,则沿着长方体的表面从A 到B 的距离可能为()22226213++=;()22262217++=;()22262217++=.(3)当B 点所在的棱长为6,则沿着长方体的表面从A 到B 的距离可能为()2223441++=;()2224335++=;()2223453++=.综上所述,沿着长方体的表面从A 点到B 点的最短距离为41. 故选:C . 【点睛】本题考查长方体的展开图,考查空间想象与推理能力,属于中等题.15.已知四面体P ABC -的外接球的球心O 在AB 上,且PO ⊥平面ABC ,23AC AB =,若四面体P ABC -的体积为32,求球的表面积( ) A .8π B .12πC .83πD .123π【答案】B 【解析】 【分析】依据题意作出图形,设四面体P ABC -的外接球的半径为R ,由题可得:AB 为球的直径,即可求得:2AB R =,3AC R =, BC R =,利用四面体P ABC -的体积为32列方程即可求得3R =,再利用球的面积公式计算得解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题能力训练13空间向量与立体几何(时间:60分钟满分:100分)一、选择题(本大题共8小题,每小题5分,共40分)1.直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=,M是CC1的中点,则异面直线AB1与A1M所成的角为()A.60°B.45°C.30°D.90°2.已知平面α内有一点M(1,-1,2),平面α的一个法向量为n=(6,-3,6),则下列点P中,在平面α内的是()A.P(2,3,3)B.P(-2,0,1)C.P(-4,4,0)D.P(3,-3,4)3.在正方体ABCD-A1B1C1D1中,E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为()A B C D4.(2017浙江金华联盟联考)已知斜四棱柱ABCD-A1B1C1D1的各棱长均为2,∠A1AD=60°,∠BAD=90°,平面A1ADD1⊥平面ABCD,则直线BD1与平面ABCD所成的角的正切值为()A B C D5.在棱长为1的正方体ABCD-A1B1C1D1中,M是BC的中点,P,Q是正方体内部或面上的两个动点,则的最大值是()A B.1 C D6.在直三棱柱A1B1C1-ABC中,∠BAC=,AB=AC=AA1=1,已知G和E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点),若GD⊥EF,则线段DF的长度的取值范围为()A BC D7.如图,在四棱锥P-ABCD中,侧面PAD为正三角形,底面ABCD为正方形,侧面PAD⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的轨迹为()8.如图,在棱长为1的正方体ABCD-A1B1C1D1中,P,Q分别是线段CC1,BD上的点,R是直线AD上的点,满足PQ∥平面ABC1D1,PQ⊥RQ,且P,Q不是正方体的顶点,则|PR|的最小值是()A B C D二、填空题(本大题共6小题,每小题5分,共30分)9.如图所示,在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=,则MN 与平面BB1C1C的位置关系是.10.(2017浙江杭州模拟)在长方体ABCD-A1B1C1D1中,AB=2,BC=AA1=1,则D1C1与平面A1BC1所成角的正弦值为.11.过正方形ABCD的顶点A作线段PA⊥平面ABCD,若AB=PA,则平面ABP与平面CDP所成的二面角为.12.如图,正方体ABCD-A1B1C1D1的棱长为3,在面对角线A1D上取点M,在面对角线CD1上取点N,使得MN∥平面AA1C1C,当线段MN长度取到最小值时,三棱锥A1-MND1的体积为.13.已知点E,F分别是正方体ABCD-A1B1C1D1的棱AB,AA1的中点,点M,N分别是线段D1E与C1F 上的点,则与平面ABCD垂直的直线MN有条.A.0B.1C.2D.无数个14.如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,M和N分别是A1B1和BB1的中点,那么直线AM与CN所成角的余弦值为.三、解答题(本大题共2小题,共30分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分15分)在边长为3的正三角形ABC中,E,F,P分别是AB,AC,BC边上的点,满足AE∶EB=CF∶FA=CP∶PB=1∶2(如图(1)),将△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,连接A1B, A1P(如图(2)).(1)求证:A1E⊥平面BEP;(2)求二面角B-A1P-E的余弦值.16.(本小题满分15分)如图,在四棱锥A-EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF ∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(1)求证:AO⊥BE;(2)求二面角F-AE-B的余弦值;(3)若BE⊥平面AOC,求a的值.参考答案专题能力训练13空间向量与立体几何1.D2.A解析逐一验证法,对于选项A,∵=(1, 4,1),∴·n=6-12+6=0,∴⊥n,∴点P在平面α内,同理可验证其他三个点不在平面α内.3.B解析以A为原点建立如图所示的空间直角坐标系A-xyz,设棱长为1,则A1(0,0,1),E,D(0,1,0),∴=(0,1,-1),.设平面A1ED的一个法向量为n1=(1,y,z),∴有解得∴n1=(1,2,2).∵平面ABCD的一个法向量为n2=(0,0,1),∴cos<n1,n2>=,即所成的锐二面角的余弦值为.4.C解析取AD的中点O,连接OA1,易证A1O⊥平面ABCD.建立如图所示的空间直角坐标系,得B(2,-1,0),D1(0,2,),=(-2,3,),平面ABCD的一个法向量为n=(0,0,1),设BD1与平面ABCD所成的角为θ,∴sin θ=,∴tan θ=.5.C解析以A为坐标原点,分别以AD,AB,AA1所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则A(0,0,0),M,所以.设=(x,y,z),由题意可知因为·x+1·y+0·z=x+y,又-1≤x≤1,-1≤y≤1,所以-x≤.所以-x+y≤.故的最大值为.6.A解析建立如图所示的空间直角坐标系,则A(0,0,0),E,G,F(x,0,0),D(0,y,0).由于GD⊥EF,所以x+2y-1=0,DF=.当y=时,线段DF长度的最小值是.当y=1时,线段DF长度的最大值是1.因不包括端点,故y=1不能取,应选A.7.A解析以D为原点,DA,DC分别为x轴、y轴建立坐标系如图:设M(x,y,0),正方形边长为a,则P,C(0,a,0),则|MC|=,由|MP|=|MC|得x=2y,所以点M在正方形ABCD内的轨迹为一条直线y=x.故选A.8.B解析如图,分别以AB,AD,AA1所在直线为x轴、y轴、z轴,建立空间直角坐标系,则B(1,0,0),D(0,1,0),B1(1,0,1),C(1,1,0).设P(1,1,m)(0≤m≤1),=λ(0≤λ≤1),Q(x0,y0,0),则(x0-1,y0,0)=λ(-1,1,0),∴∴Q(1-λ,λ,0),∴=(-λ,λ-1,-m).连接B1C,∵正方体ABCD-A1B1C1D1中,BCC1B1是正方形,AB⊥平面BCC1B1,∴B1C⊥AB,B1C⊥BC1.又AB∩BC1=B,∴B1C⊥平面ABC1D1,∵PQ∥平面ABC1D1,∴B1C⊥PQ.又=(0,1,-1),∴=λ-1+m=0,∴λ=1-m,∴Q(m,1-m,0),=(m-1,-m,-m).设R(0,n,0),则=(m,1-m-n,0),∵PQ⊥RQ,∴=m(m-1)-m(1-m-n)=0,即n=2-2m,∴R(0,2-2m,0),=(-1,1-2m,-m),||=,∴当m=时,|PR|的最小值是.9.MN∥平面BB1C1C 解析以C1为坐标原点建立如图所示的坐标系.∵A1M=AN=,∴.又C1(0,0,0),D1(0,a,0),∴=(0,a,0),∴=0,∴.又∵是平面BB1C1C的法向量,且MN⊄平面BB1C1C,∴MN∥平面BB1C1C.10. 解析以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设n=(x,y,z)为平面A1BC1的法向量,则n·=0,n·=0,即令z=2,则y=1,x=2,于是n=(2,1,2),=(0,2,0).设所求线面角为α,则sin α=|cos<n,>|=.11.45°解析如图,建立空间直角坐标系,设AB=PA=1,则A(0,0,0),D(0,1,0),P(0,0,1),由题意,AD⊥平面PAB,设E为PD的中点,连接AE,则AE⊥PD,又CD⊥平面PAD,∴CD⊥AE,从而AE⊥平面PCD.∴=(0,1,0),分别是平面PAB,平面PCD的法向量,且<>=45°.故平面PAB与平面PCD所成的二面角为45°.12.1解析如图,建立空间直角坐标系,则可设M(t,0,t),N(0,s,3-s),∴=(t,-s,t+s-3),易知平面AA1C1C的法向量n=(1,1,0),由MN∥平面AA1C1C可知,·n=0, ∴(t,-s,t+s-3)·(1,1,0)=0,得t=s.∴||2=2t2+(2t-3)2=6t2-12t+9,故当t=1时,MN长度取到最小值,此时M(1,0,1), N(0,1,2),∴·y N=·3·2·1=1.13.1解析不妨设正方体ABCD-A1B1C1D1的棱长为2,建立如图所示的空间直角坐标系,则D1(2,0,2),E(1,2,0),=(-1,2,-2),C1(0,0,2),F(2,2,1),=(2,2,-1).设=λ=t,则M(2-λ,2λ,2-2λ),N(2t,2t,2-t),=(2t-2+λ,2t-2λ,2λ-t).由于MN与平面ABCD 垂直,所以λ=t=,由于此解唯一,故满足条件的MN只有一条.14.解析以D为坐标原点,为x轴,为y轴,为z轴,建立空间直角坐标系,如图所示.则A(1,0,0),M,C(0,1,0),N,∴.设直线AM与CN所成的角为θ,则cos θ=|cos<>|==.15.(1)证明在图(1)中,取BE的中点D,连接DF,∵AE∶EB=CF∶FA=1∶2,∴AF=AD=2,而∠A=60°,∴△ADF为正三角形.又AE=DE=1,∴EF⊥AD.在图(2)中,A1E⊥EF,BE⊥EF,∴∠A1EB为二面角A1-EF-B的一个平面角.由题设条件知此二面角为直二面角,∴A1E⊥平面BEP.(2)解分别以EB,EF,EA1所在直线为x轴、y轴、z轴建立空间直角坐标系, 则E(0,0,0),B(2,0,0),P(1,,0),A1(0,0,1),=(0,0,1),=(1,,0),=(-2,0,1),=(-1,,0).设面EA1P的法向量为m=(x,y,z),则取y=-1,得m=(,-1,0);设面BA1P的法向量为n=(x,y,z),则取y=1,得n=(,1,2).∴cos<m,n>=.∴二面角B-A1P-E的余弦值为.16.解 (1)因为△AEF是等边三角形,O为EF的中点,所以AO⊥EF.又因为平面AEF⊥平面EFCB,AO⊂平面AEF,所以AO⊥平面EFCB,所以AO⊥BE.(2)取BC中点G,连接OG.由题设知EFCB是等腰梯形,所以OG⊥EF.由(1)知AO⊥平面EFCB,又OG⊂平面EFCB,所以OA⊥OG.如图建立空间直角坐标系O-xyz,则E(a,0,0),A(0,0,a),B(2,(2-a),0),=(-a,0,a),=(a-2,(a-2),0).设平面AEB的法向量为n=(x,y,z),则令z=1,则x=,y=-1.于是n=(,-1,1).平面AEF的法向量为p=(0,1,0).所以cos <n,p>==-.由题知二面角F-AE-B为钝角,所以它的余弦值为-.(3)因为BE⊥平面AOC,所以BE⊥OC,即=0.因为=(a-2,(a-2),0),=(-2,(2-a),0),所以=-2(a-2)-3(a-2)2.由=0及0<a<2,解得a=.11。

相关文档
最新文档