Acids+&+Bases+(AP+MC)

合集下载

Chapter16AcidsandBases

Chapter16AcidsandBases
a) H2SO4 b) HSO4c) H3O+ d) NH4+
19
Problem
What is the conjugate acid of each of the following Brønsted- Lowry bases? a) HCO3b) CO32c) OHd) H2PO4-
20
Problem
Ka
CH 3COO H3O CH 3COOH
1.8 x 10-5 at 25 C
12
BL acid strength
We give the equilibrium constant a special name for reactions like these – the acid dissociation (or ionization) constant Ka. Since the value of the constant is less than one, the acetic acid does not dissociate to a great extent – it is a weak acid!
Ka
Cl H3O
HCl
1 x106 at 25 C
14
Hydrated protons and hydronium ions
What is the strongest Brønsted-Lowry acid there is? The strongest Brønsted-
Lowry acid is H+. The ultimate proton-donor is a proton itself!
Chapter 16
Acids and Bases

不相容的化学物品文档

不相容的化学物品文档
不相容的化学物品
不相容的化学物品,即:当两种化学物品以上在一起时发生化学反应后会造成危险,但如果单独存放则不会造成危险。发生化学反应后所造成的危险,如:造成产生易燃物品、毒气、或造成产生易爆物品等。因此,为了安全,与化学物品有关的操作者应该知道、了解哪些化学物品是属于不相容的。下面所列的是有关“不相容的化学物品”的说明表,以便能安全地使用和存放各种化学物品。
汽油(benzene),和细碎金属(and finely divided metals).
碳化钙(Calcium carbide)
水(Water),氯(Chlorine),溴(bromine),铜(copper),
银(silver),氟(fluorine),汞(mercury).
氧化钙(Calcium oxide)
铬酸(Chromic acid)
乙酸(Acetic acid),萘(naphthalene),樟脑(camphor),
甘油(glycerin),松节油(turpentine),酒精(alcohol),和其他易燃液体(and other flammable liquids),纸(paper)或纤维素(or cellulose).
金属粉末(metal powders),硫磺(sulfur),细碎有机物(finely divided organics)或可燃物(or combustibles).
高氯酸钾(Potassium perchlorates)
酸类(Acids),乙酸酐(Acetic anhydride),铋和铋合金(bismuth and its alloys),酒精(alcohol),纸(paper),木(wood),润滑油(grease),油(oils),有机胺类(organic amines)或抗氧化剂(or antioxidants).

常用命名

常用命名

allyl-
烯丙基
-CH2CH=CH2
CH2
benzylvinylcyclohexylphenylformylacetylbenzoyl-
苄基
乙烯基 环己基 苯基
-CH=CH2
O
甲酰基
O
C
H
乙酰基
O
C
CH3
苯甲酰基
C
Exercise
1 SO3H NH2 COOH COOCH2CH3 OH O C NH2 O C NH2 CHO 5 O C NH2 COOH COOH CH2OH COOH NO NO 4 8 O2N HO CH2OH 2
-I(OH)2
-N2 -N3 -NO -NO2
dihydroxyiodo
diazo azido nitroso nitro
-I
-IO
iodo
iodosyl
-OR
-SR
R-oxy
R-thio
主要官能团作词头和词尾时的应用名称
Class
Carboxylic acid sulfonic acid salts esters
一些作词头的常见官能团
Characteristic group -Br prefix bromo Characteristic group -IO2 prefix iodyl
-Cl
-ClO -ClO2 -ClO3 -F
chloro
chlorosyl chloryl perchloryl fluoro
6
3
7
1 2 3 4 5
CH2=CHCHCH2CH2OH NH2 HOOCCCH2CH2COOH O ClCHCH2CH2NH2 CH3 CH3CCH2CN O

化学基础英文17羧酸_carboxylic_acids

化学基础英文17羧酸_carboxylic_acids

The following formulas are examples of other naturally occurring carboxylic acids. The molecular structures range from simple to complex, often incorporate a variety of other functional groups, and many are chiral.
As shown in the following table, tacids are usually referred to by their common names, which in most cases reflect their sources. A mnemonic phrase for the C10 to C20 natural fatty acids capric, lauric, myristic, palmitic, stearic and arachidic is: "Curly, Larry & Moe Perform Silly Antics" (note that the names of the three stooges are in alphabetical order).
Chapter 17 Carboxylic Acids 羧酸
Chapter 17 Carboxylic Acids
The carboxyl functional group that characterizes the carboxylic acids is unusual in that it is composed of two functional groups described earlier in this text. As may be seen in the formula, the carboxyl group is made up of a hydroxyl group bonded to a carbonyl group. It is often written in condensed form as –CO2H or –COOH. Other combinations of functional groups were described previously, and significant changes in chemical behavior as a result of group interactions were described (e.g. phenol & aniline). In this case, the change in chemical and physical properties resulting from the interaction of the hydroxyl and carbonyl group are so profound that the combination is customarily treated as a distinct and different functional group.

生物化学名词解释

生物化学名词解释

生物化学名词解释《生物化学》——名词解释氨基酸(amino acids):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连接在α-碳上。

氨基酸是肽和蛋白质的构件分子。

必需氨基酸(essential amino acids):指人(或其它脊椎动物)自己不能合成,需要从饮食中获得的氨基酸,例如赖氨酸、苏氨酸等氨基酸。

非必需氨基酸(nonessential amino acids):指人(或其它脊椎动物)自己能由简单的前体合成的,不需要由饮食供给的氨基酸,例如甘氨酸、丙氨酸等氨基酸。

等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的净电荷为零)的pH值。

茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。

肽键(peptide bond):一个氨基酸的羧基与另一个氨基酸的氨基缩合,除去一分子水形成的酰胺键。

肽(peptides):两个或两个以上氨基酸通过肽键共价连接形成的聚合物。

蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。

层析(chromatography):按照在移动相(可以是气体或液体)和固定相(可以是液体或固体)之间的分配比例将混合成分分开的技术。

离子交换层析(ion-exchange column chromatography):使用带有固定的带电基团的聚合树脂或凝胶层析柱分离离子化合物的层析方法。

透析(dialysis):通过小分子经半透膜扩散到水(或缓冲液)的原理将小分子与生物大分子分开的一种分离纯化技术。

凝胶过滤层析(gel filtration chromatography):也叫做分子排阻层析(molecular-exclusion chromatography)。

一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。

HardandSoftAcidsandBases

HardandSoftAcidsandBases

Hard and Soft Acids and Bases.We have already pointed out that the affinity that metal ions have for ligands is controlled by size, charge and electronegativity. This can be refined further by noting that for some metal ions, their chemistry is dominated by size and charge, while for others it is dominated by their elctronegativity. These two categories of metal ions have been termed by Pearson as hard metal ions and soft metal ions. Their distribution in the periodic table is as follows:Figure 1. Table showing distribution of hard, soft, and intermediate Lewis Acids in the Periodic Table, largely after Pearson.Pearson’s Principle of Hard and Soft Acids and Bases (HSAB) can be stated as follows: Hard Acids prefer to bond with Hard Bases, and Soft Acids prefer to bond with Soft Bases. This can be illustrated by the formation constants (log K1) for a hard metal ion, a soft metal ion, and an intermediate metal ion, with the halide ions in Table 1:Table 1. Formation constants with halide ions for a representative hard, soft, and intermediate metal ion .________________________________________________________________________ Log K1F-Cl-Br-I- classification________________________________________________________________________ Ag+0.4 3.3 4.7 6.6 softPb2+ 1.3 0.9 1.1 1.3 intermediateFe3+ 6.0 1.4 0.5 - hard________________________________________________________________________What one sees in Table 1 is that the soft Ag+ ion strongly prefers the heavier halide ions Cl-, Br-, and I- to the F- ion, while the hard Fe3+ ion prefers the lighter F- ion to the heavier halide ions. The intermediate Pb2+ ion shows no strong preferences either way. The distribution of hardness/softness of ligand donor atoms in the periodic Table is as follows:Figure 2. Distribution of hardness and softness for potential donor atoms for ligands in the Periodic Table. The diagram shows that hardness increases toward F-, and softness increases away from F-. However, this is not a smooth transition. There is, as shown, a major discontinuity between the lighter members of each group, namely, F-, O, and N, and their heavier congeners. Thus, Cl-, Br-, and I- are far more like each other, and far different from F-, in their bonding preferences, as can be seen in Table 1.The hardness of ligands tends to show, as seen in Figure 2, a discontinuity between the lightest member of each group, and the heavier members. Thus, one finds that the metal ion affinities of NH3 are very different from metal ion affinities for phosphines such as PPh3 (Ph = phenyl), but that the complexes of PPh3 are very similar to those of AsPh3. A selection of ligands classified according to HSAB ideas are:HARD: H2O, OH-, CH3COO-, F-,NH3, oxalate ( -OOC-COO-), en.SOFT: Br-, I-, SH-, (CH3)2S, S=C(NH2)2 (thiourea), P(CH3)3, PPh3, As(CH3)3, CN--S-C≡N (thiocyanate S-bound)INTERMEDIATE: C6H5N (pyridine), N3- (azide), -N=C=S (thiocyanate, N-bound), Cl-The softest metal ion is the Au+(aq) ion. It is so soft that the compounds AuF and Au2O are unknown. It forms stable compounds with soft ligands such as PPh3 and CN-. The affinity for CN- is so high that it is recovered in mining operations by grinding up the ore and then suspending it in a dilute solution of CN-, which dissolves the Au on bubbling air through the solution:4 Au(s) + 8 CN-(aq) + O2(g) + 2 H2O = 4 [Au(CN)2]-(aq) + 4 OH- [1]The aurocyanide ion is linear, with two-coordinate Au(I). This is typical for Au(I), that it prefers linear two-coordination. This coordination geometry is seen in other complexes of Au(I), such as [AuPPh3Cl], for example. Neighboring metal ions such as Ag(I) and Hg(II) are also very soft, and show the unusual preference for two-coordination.An example of a very hard metal ion is Al(III). It has a high log K1 with F- of 7.0, and a reasonably high log K1(OH-) of 9.0. It has virtually no affinity in solution for heavier halides such as Cl-. Its solution chemistry is dominated by its affinity for F- and for ligands with negative O-donors.One can rationalize HSAB in terms of the idea that soft-soft interactions are more covalent, while hard-hard interactions are ionic. The covalence of the soft metal ions relates to their higher electronegativity, which in turns depends on relativistic effects. What one needs to be able to comment on is sets of formation constants such as the following:Metal ion: Ag+Ga3+ Pb2+Log K1(OH-): 2.0 11.3 6.0Log K1(SH-): 11.0 8.0 6.0What is obvious here is that the soft Ag+ ion prefers the soft SH- ligand to the hard OH-ligand, whereas for the hard Ga3+ ion the opposite is true. The intermediate Pb2+ ion has no strong preference. Another set of examples is given by:Metal ion: Ag+H+Log K1(NH3): 3.3 9.2Log K1 (PPh3): 8.2 0.6Again, the soft Ag+ ion prefers the soft phosphine ligand, while the hard H+ prefers the hard N-donor.Thiocyanate (SCN-) is a particularly interesting ligand. It can bind to metal ions either through the S or the N. Obviously, it prefers to bind to soft metal ions through the S, and to hard metal ions through the N. This can be seen in the structures of [Au(SCN)2]- and [Fe(NCS)6]3- in Figure 3 below:Figure 3. Thiocyanate complexes showing a) N-bonding in the [Fe(NCS)6]3- complex with the hard Fe(III) ion, and b) S-bonding in the [Au(SCN)2]- complex (CSD: AREKOX) with the soft Au(I) ion.In general, intermediate metal ions also tend to bond to thiocyanate through its N-donors.A point of particular interest is that Cu(II) is intermediate, but Cu(I) is soft. Thus, as seen in Figure 4, [Cu(NCS)4]2- with the intermediate Cu(II) has N-bonded thiocyanates, but in [Cu(SCN)3]2-, with the soft Cu(I), S-bonded thiocyanates are present.Figure 4. Thiocyanate complexes of the intermediate Cu(II) ion and soft Cu(I) ion. Note that at a) the thiocyanates are N-bonded in [Cu(NCS)4]2- with the intermediate Cu(II), but at b) the thiocyanates in [Cu(SCN)3]2-, with the soft Cu(I), are S-bonded (CSD: PIVZOJ).。

苯丙素类

苯丙素类

1' O 2' 3' 4' O O
邪蒿内酯 角型: 7,8-吡喃骈香豆素型
O O O O
O OR 2
O
在 花佛 佛 (细细花病病) 细 R 1O OR 2
OR 1 顺顺顺佛佛(普普具有普 普 脉脉脉病病, 有有活活 ,OR 为顺顺) 的的:OR 1 2
O O O 线 线二 线 线 线线 线 欧 (有铁有铁Ca 2+拮有病 有 病 , 对 对抗 对 对 病对 疗 有疗 在 疗 疗)
1. 以游离香豆素形式存在; 以游离香豆素形式存在; 2. 以香豆素苷形式存在。 以香豆素苷形式存在。
O O
COOH
[
COOH OH
]
O
O
一 结构分类
1.简单香豆素:只在苯环上有取代基 简单香豆素 只在苯环上有取代基
gluO HO O O HO O O
伞 键 在 佛佛 (umbelliferon)
双键
20%NaOH, 20℃ ℃ O 50%NaOH, 热
O
COOH 顺顺异 O
不可逆
OMe COOH O O 对顺异
的构佛佛
反应特点: 反应特点
4) C5上有羟基的香豆素,碱水解后酸化重新内酯 上有羟基的香豆素, 有二种可能性, 化 , 有二种可能性 , 反应结果趋向于生成稳定性 大的异构体。 如 C8 位有C=O 的香豆素致C8 酰基 大的异构体 。 位有 C=O的香豆素致 C=O 的香豆素致 取代转化为C6酰基取代 取代转化为
形成环的大小决定于中间体阳碳离子的稳定性: 形成环的大小决定于中间体阳碳离子的稳定性: 中间体阳碳离子的稳定性 稳定→ 稳定→ 叔阳碳离子 > 仲阳碳离子 > 伯阳碳离子 ←不稳定 注意:不宜使用浓酸,否则会发生重排反应

石油工程专业英语单词

石油工程专业英语单词

石油工程专业英语单词Aabnormal pressure 异常高压absolute open flow potential 绝对敞喷流量absolute permeability 绝对渗透率acetic acids 乙酸acid-fracturing treatment 酸化压裂处理acidize 酸化acidizing 酸化additives 添加剂Alkali/Surfactant/Polymer(ASP) tertiary combination flooding 三元复合驱anhydrite 无水石膏annular space 环形空间appraisal well 估计井,评价井aquifer 含水层areal sweep efficiency 面积波及系数artificial lift methods 人工举升方法Bbeam pumps 游梁式抽油机bitumen 沥青blast joint 耐磨钻头block and tackle 滑轮组blowout preventes 防喷器blowout 井喷bone strength 胶结强度borehole 井筒,井眼bottomhole/wellhead pressure 井底/井口压力bottorm water 底水breakthrough 突破,穿透bubble point 泡点bubble point pressure 泡点压力Ccable tool drilling 顿钻钻井capillary action 毛细管作用carbonate reservoirs 碳酸盐储层casing hanger 套管悬挂器casing head 套管头casing collapse 套管损坏casing corrosion 套管腐蚀casing leak 套管漏失casing pressure 套管压力casing string 套管柱casing 套管casing-tubing configuration 套管组合casing-tubing configuration 油套管井身结构caustic flooding 碱水驱油cavings 坍塌cement additive 水泥浆添加剂cement job 固井作业cement plug 水泥塞cement slurry 水泥浆cementation 固井,胶结cementing practices 注水泥施工centralizer 扶正器chemical flooding 化学驱油chock 节流器choke 油嘴,阀门christmas tree 采油树combustion engines 内燃机compatibility 兼容性compatibility 兼容性,配伍性completion interval 完井层段compressibility 压缩系数compression coefficient 压缩系数compressive strength 抗压强度cone bit 牙轮钻头connate water 共生水,原生水continuous gas lift 连续气举core sample 岩心样品cost-per-day basis 每天成本基价cost-per-foot basis 每英尺成本基价crank 曲柄crown block 天车crude oil 原油cumulative production 累计产量Ddamage well/zone 污染井/带darcy 达西darcy‘s law 达西定律dead line 死绳dehydration 脱水deposit 沉积,贮存n,矿床,蕴藏量derrick 井架derrick 钻塔,井架development well 开发井development well 生产井dewpoint 露点diesel fuel 柴油discovery well 资料井displacement efficiency 驱油效率displacement efficiency 驱替效率displacement rate 驱替效率displacing fluid 驱替液displacing medium 驱替介质dissolved-gas drive reservoir溶解气驱油藏downhole assembly 井下装置downhole equipment 井下装置downhole 井底,井下downsroke 下行冲程drainage areas/radius 泄油面积/半径drill collar 钻铤drill collars 钻铤drill 钻井driller 司钻,钻工drilling floor 钻台drilling line 大绳drilling slot 井槽drilling contract 钻井合同drilling fluid 钻井液drilling location 井位drilling rate 钻速drillpipe 钻杆drillship 钻井船drillsite 井场drillstring 钻柱dry forward combustion 干式正向燃烧Eeffective displacement 有效驱替effective permeability 有效渗透率effective wellbore vadius 有效井筒半径electric submersible centrifugal pumps 电泵embrittlement 脆裂emulsion 乳化剂encroachment 水侵enhanced oil recover(EOR)提高采收率ethane 乙烷Ffault 断层fishing tool 打捞工具flow efficiency 完善系数flow regime 流动类型/方式flowing tubing pressure 井口流压flowing well 自喷井fluid loss agent 降滤失剂fluid loss control 防液体漏失foam flooding 泡沫驱油、foam-type drilling fluid 泡沫钻井液formation volume factor 地层体积系数formic acids 甲酸fractional flow 分相流动fracture acidizing 酸化压裂fracture fluid 压裂液fracture pressure 破裂压力fracture 裂缝,断裂free gas 游离气Ggas cap 气顶gas condensate reservoir 凝析气藏gas lift 气举gas-lift valve 气举阀gas-liquid ratio 气液比gas-oil ratio 汽油比gasoline 汽油gear reducer 齿轮减速器geothermal gradient 地温梯度gravity drainage 重力泄油gravity segregation 重力分离gum bed 地蜡gusher 自喷井,喷油井Hheavy oil 重油heterogeneous reservoir 非均质储层heterogeneous 非均质的high gravity 高API度,轻质的hole angle 井斜角horizontal well 水平井hreaded coupling 螺纹接口huff and puff 蒸汽吞吐hydraulic fracture 水力压裂hydrocarbon 碳氢化合物hydrogen sulfide 硫化氢hydrostatic head 静水压头hydrostatic pressure 静液压力Iindividual well 单井inhibitor 抑制剂initial completion 初次完井injection rate 注入速度/量interfacial tension 表面张力intermediate casing string 技术套管intermediate casing 中间套管intermittent gas lift 间歇气举Jjackknife derrick 折叠式井架jelly 胶状物,凝胶物joints 根数junction box 接线匣Kkelly 方钻杆kerosene 煤油kick 井涌kill corrosion 压力液kill line 压井管线kill the well 关井Llanding nipple 坐放短节leading edge 前缘leakoff rate 漏失速率load-bearing capacity 承重能力logger 测试仪器logging 测井lost circulation 漏失lost circulation additive 堵漏剂lubricant 润滑油Mmaking a trip 起下钻making a connection 接单根massive hydraulic fracturing 大型水力压裂material balance calculations 物质平衡方程matrix acidizing 基质酸化mechanical efficiency 机械效率methane 甲烷microbial enhanced oil recovery 微生物强化采油microemulsion flooding 微乳液驱油mobility rate 流度比mobility 流度,流动性mud pump 泥浆泵mud thinner 降粘剂mud 泥浆mud/section pit 泥浆池multipay reservoir 多油层油田Nnatural fissure 天然裂缝nature gas 天然气net thickness 有效厚度net thickness 有效厚度nogo nipple 不过端短节nozzle 喷油嘴numerical simulation 数值模拟Ooffset well 补偿井oil formation volume factor 原油地层体积系数oil saturation 残余油饱和度oil seeps 油苗oil spill 油漏open-hole completion 裸眼完井organic acids 有机酸overburden 地层表土overburden pressure 上覆岩层压力overload protection 过载保护Ppacker 封隔器pad fluid 前置液paraffin 石蜡,链烷烃paraffin base 石蜡基pay zone 生产层,产油层pay sand 产油层,生产层peak load 最大载荷,峰值负值penetration rate 进尺速度penetration rate 渗入速度,机械钻速percussion 顿钻perforating job 射孔作业performance velationship 动态关系permeability 渗透率permeability anisotropy 渗透率各向异性petroleum 石油petroleum engineer 石油工程师petroleum industry 石油工业petroleum jelly 石油膏phase diagram 相态图piston stroke 活塞冲程pitman 联杆泵plate tectonics 板块构造理论plunger lift 活塞气举polished rod 光杆polymer flooding 聚合物驱油pore volume 有限孔隙体积porosity 孔隙度porous medium 多孔介质porous rock 多孔岩石positive-displacement position 容积式驱替活塞power fluid 传动液preflush 前置液preflush fluid 前置液,冲洗液pressure build up test 压力恢复试井pressure differential 压差pressure drawdown 压降,压差pressure gradient 压力梯度primary recovery 一次开采primary cementing 固井,初次注水泥primary porosity 原生孔隙度prime mover 原动机produced fluid 产出液producing rate 开采速度producting formation 生产层production technology 采油技术production casing 生产套管production platform 采油平台production string 生产(油层)套管productivity 生产率productivity index 生产指数proposed well 资料井proppant 支撑剂pseudo-steady-state flow 拟稳定流动put back on production 恢复生产Rradial area 径向面积radical flow 径向流recoverable reserve 可采储量recovery rates 回采收率,开采速度relative permeability 相对渗透率remaining oil 剩余油remedial work 修井作业reservoir drive mechanism 油藏驱油机理reservoir heterogeneous 储层非均质性reservoir 储层,储集层,油层residual oil saturation 残余油饱和度resistivity curre 电阻率曲线reverse combustion 反向燃烧rig 钻机riser 隔水管rodless pumping system 无杆泵系统roller bit 牙轮钻头rotary drilling 旋转钻井rotary hose 水龙带rotary system 旋转钻井系统rotary table 转盘rotary table 转盘rotary 旋转钻井Ssafety valve 安全阀salinity 矿化度salinity 矿化度sand control 含沙量控制sand production 油井出砂sandstore 砂岩secondary recovery 二次开采secondary porosity 次生孔隙度seep 漏出,渗出n,(油气)苗seepage n,渗出,流出seismic interpretation 地震解释separator 分离器setting time 凝固时间shale 页岩,泥岩shear rate 剪贴速率shut-in well pressure 关井压力skin effect 表皮效应slotted liner 割裂衬管sloughing 坍塌性的slurry density 水泥浆密度slurry viscosity 水泥浆粘度sonic bond log 声波测井spontaneous potential(SP)自然电位stabilizer 稳定器standpipe 立管stands 立管static reservoir pressure 油层静压steam flooding 蒸汽驱油stimulation 增产措施stricking problem 卡钻stripper well 低产井stroke length 冲程长度stuffing box 填料盒submersible rig 坐底式钻井平台substructure 井架底座subsurfance unit 地下单位subsurfance pump 井下泵sucker rod 抽油杆sulfide embrittlement 硫化氢脆裂sulfur 硫磺superficial velocity 表观粘度surface casing 表层套管surface flow line 地面流动管线surface tesion 表面张力surface unit 抽油机,地面装置surfactant flooding 表面积活性剂驱油switchboard 配电盒swivel 旋转钻头Ttensile strength 抗拉强度thickening time 稠化时间tool pusher 钻井队长torque rating 扭矩测定transformer 变压器,转换器transient flow 瞬变流动tubing string 油管柱turbulent flow 紊流Uunswept zone 未波及区upstroke 上行冲程Vvalve 阀门,阀vertical flow 垂直流vertical sweep efficiency 纵向波及系数vertical well 垂直井vibrating screens 振动筛viscosity 粘度void space 孔隙volume factor 体积系数volumetic sweep efficiency 体积波及系数volumetric efficiency 容量效率vug 孔洞,溶洞Wwait on cement(WOC)侯水泥凝固water flood recovery 注水采油water flooding 水驱water injection 注水量water-oil ratio 油水比water-sensitive 水敏性的wax 石蜡well bore 井眼well completion 完井well deliverability equation 油井产能方程well intake pressure 井口注入压力well-killing fluid 压裂液wet combustion 湿式燃烧wettability 润湿性wildcat well 预探井wildcatter 勘探者withdrawal 产出,采出workover 油井维修汉译英原油 crude oil天然气 natural gas方钻杆 kelly钻杆 drillpipe泥浆泵 mud pump转盘 rotary table封隔器 packer旋转钻井 rotary drilling固井 cementing裸眼完井 openhole completion井口 well head扶正器 centralizer三次采油 tertiary recovery射孔 perforating油管 tubing油井流入动态 inflow performance relationship 井底流压 bottom hole flowing pressure采油指数 productivity index增产增注措施 stimulation近井地带 near-well bore region含水率 water cut最终采收率 ultimate recovery剩余油 remaining oil提高采收率 IOR水驱 water flooding原始地质储量 OOPI(original oil in place)流度比 mobility ratio有效渗透率 effective permeability孔隙体积 pore volume上冲程 upstroke下冲程 downstroke润湿性 wettability聚合物驱 polymer flooding11。

Biochemistry-Amino Acids-生物化学 氨基酸

Biochemistry-Amino Acids-生物化学 氨基酸

氨基酸(Amino Acid)目前已发现22种氨基酸,其中20种以不同比例存在于大多数蛋白质中。

一、氨基酸的结构和分类二、氨基酸的构型三、氨基酸的物理性质性四、氨基酸的化学性质五、氨基酸的分离与分析To hold, as’t were,the mirror up toNature.所有的物体皆有镜像。

像许多生物分子一样,氨基酸存在镜像形式(对映体),自然界中普遍存在的是L-型的氨基酸。

一、氨基酸的结构和分类可变部分α-氨基酸的通式可变部分α-氨基酸的通式生物分子中一些常见的官能团(一)甲基苯基乙基官能团决定化学性质 有机化学复习:羰基(醛基) 羰基(酮基) 羧基羟基(醇)醚酯酐(两个羧酸缩合而成)生物分子中一些常见的官能团(二)氨基酰胺基胍基咪唑基生物分子中一些常见的官能团(三)巯基二硫基硫酯生物分子中一些常见的官能团(四)磷酰基磷酸酐混合酐(酰基磷酸,由羧酸和磷酸分子缩合而成)生物分子中一些常见的官能团(五)咪唑基乙酰-辅酶A一个生物分子中的几种常见官能团氨基酸的分类:(一)常用氨基酸22种天然氨基酸按侧链(R)的理化性质分为四大类 1: 非极性的(疏水)氨基酸Ala(A)、 Val(V)、Leu(L)、Ile(I)、 Pro(P)、Phe(F)、 Trp(W)、Met(M)丙氨酸Ala(A) 缬氨酸Val(V)亮氨酸Leu(L) 异亮氨酸 Ile(I)*亚氨基 带吡咯环 带苯环苯丙氨酸Phe(F) 脯氨酸Pro(P)带吲哚环 色氨酸Trp(W) 含硫原子蛋氨酸或甲硫氨酸Met(M)2: 极性的(亲水)、不带电荷的氨基酸Gly(G)、 Ser(S)、Thr(T)、 Cys(C)、Tyr(Y) Asn(N)、Gln(Q)、Sec(U)、Pyl(?)甘氨酸Gly(G)苏氨酸 Thr(T) 丝氨酸 Ser(S) 带羟基 带羟基 带酚环酪氨酸 Tyr(Y)含硫原元素半胱氨酸 Cys(C)天冬酰氨Asn(N)谷胺酰氨 Gln(Q) 带酰氨基带酰氨基含硒半胱氨酸Sec(U)吡咯赖氨酸Pyl(?) 只存在于含硒蛋白中仅存在于一些真细菌或古细菌中,作为与产甲烷代谢有关的某些酶的组分3: 酸性氨基酸( R基为极性,带负电荷)一个氨基,两个羧基Asp(D)、Glu(E)谷氨酸Glu(E)天冬氨酸Asp(D) α-羧基β-羧基γ-羧基4: 碱性氨基酸( R基为极性,带正电荷)一个羧基,两个氨基或侧链带正电基团 Lys(K)、Arg(R)、His(H)α赖氨酸Lys(K)ε带咪唑环组氨酸His(H) 精氨酸Arg(R) 带胍基 δ另一种分类: 非极性的、脂肪族的R基团极性的、不带电荷的R基团(二) 必需氨基酸(essential amino acids, EAA)植物和某些微生物可以合成各种氨基酸,而人和动物则不同。

Acids and Bases

Acids and Bases
Acids also react with metal oxides to form water and salt as products. For example, hydrochloric acid produces copper(II) chloride and water when it reacts with copper(II) oxide: CuO(s) + 2HCl (aq) H2O + 2CuCl (aq)
Definitions of acids and bases Arrhenius theory



Acid: generates H+ in solution; Base: generates OH- in solution; Normal Arrhenius equation: Acid + base = salt + water
Water is neutral, since it always produces an equal concentration of OH- and H+ ions. No matter how acidic a solution is, there will always be some OH- ions present, and every very basic solutions always contain some H+ ions.
6.4 Weak Acids and Bases

Weak acids and weak bases do not ionize completely, that is, not every molecule of a weak acid or a weak base dissociates. Equilibrium is established between the molecules of a weak acid or base and the ions that they produce.

氨基酸代谢A

氨基酸代谢A
如羧肽酶A、羧肽酶B、氨基肽酶、 二肽酶等;⑵ 肽链内切酶:如胰基酸。
6
二、氨基酸的吸收
主要在小肠进行,是一种主动转运 过程,需由特殊载体携带。转运氨 基酸进入细胞时,同时转运入Na+。
除此之外,也可经γ-谷氨酰循环进 行。需由γ-谷氨酰基转移酶催化, 利用谷胱甘肽(GSH),合成γ-谷 氨酰氨基酸进行转运。消耗的GSH可 重新再合成。
氨基酸的
分解代谢
脱羧基作用 → CO2 + 胺 一般分解代谢→
酮酸
脱氨基作用 → NH3 + α-
9
一、氨基酸的脱氨基作用
氨基酸主要通过三种方式脱氨基,即
氧化脱氨基,联合脱氨基和非氧化脱 氨基。
(一)氧化脱氨基:反应过程包括脱氢 和水解两步。
-2H
+H2O
R-CCOHC(OONHH2)+ CNOHO3H → R-C(=NH)COOH → R-
41
二、一碳单位的代谢
Metabolism of one carbon unit (一)一碳单位的定义和化学结构: 一碳单位(one carbon unit)是指只含一个
碳原子的有机基团,这些基团通常由其载 体携带参加代谢反应。 常见的一碳单位有甲基(-CH3)、亚甲基或 甲烯基(-CH2-)、次甲基或甲炔基(=CH) 、 甲 酰 基 ( -CHO ) 、 亚 氨 甲 基 ( CH=NH)、羟甲基(-CH2OH)等。
Leu 由于酪氨酸在体内需由苯丙氨酸
为原料来合成,半胱氨酸必需以 蛋氨酸为原料来合成,故这两种 氨基酸被称为半必需氨基酸。
4
第二节 蛋白质的消化、吸收
5
一、蛋白质的消化 (一)胃中的消化: 胃蛋白酶水解食物蛋白质为多肽、

核酸中的碱基(BaseinNucleicAcids)

核酸中的碱基(BaseinNucleicAcids)
第十八章 核酸
(Nucleic Acids)
核酸的背景介绍
1869年由瑞士生物学家米歇尔(Miescher)首先从脓细胞核中分离得 到的核酸,当时被称为“核质”(nuclein) 1889年后,更名为核酸。
核酸的发现为人类提供了解开生命之谜的金钥匙。
1944年,Oswald Avery经实验证实了DNA是遗传的物质基础。 1953年,沃森(Watson)和克里克(Crick)提出了DNA的双螺旋结 构,巧妙地解释了遗传的奥秘,并将遗传学的研究从宏观的观察进入到 分子水平。 1981年底,我国科学工作者用人工方法合成了酵母丙氨酸转移核糖核酸。 我国是唯一参加世界人类基因组研究的发展中国家,这些都标志着我国 在核酸领域研究中,达到了世界先进水平。
第二节 核苷和核苷酸
一、核苷 二、核苷酸 三、ATP的结构与功能
一、核苷(nucleoside)
是一种氮苷化合物
连接部位: 由戊糖C1的β-半缩醛羟基 与嘌呤碱9位或嘧啶碱1位氮原子上的氢 脱水缩合而成的氮苷
DNA中的四种脱氧核糖核苷的结构式及名称
HO 5' CH2
4' H
NH2
N7 5 6 N 1
(原因: DNA是生物遗传的主要物质基础)
RNA分类(三类)
根据蛋白质合成过程中所起的作用不同 1、核蛋白体RNA(ribosomal RNA,rRNA),又称核糖体RNA
分布:细胞内RNA的绝大部分(80-90%)都是核蛋白体组织。 作用:它是蛋白质合成时多肽链的“装配机”。参与蛋白质合成的各种
HO 5 CH2 O
OH
4H
H1
H3 OH
2H H
核酸的结构
核酸的结构、性质与研究

酸碱理论

酸碱理论

§4-3 酸碱理论The Theories of Acids and Bases在化学史上,从早期化学家波义耳(Boyle,1684年)提出酸碱理论,到1963年皮尔逊(Pearson )提出软硬酸碱理论(SHAB )的将近三百年中,酸碱定义名目颇多,我们只能选择其中有代表性的酸碱理论来讨论。

一、水离子论(Ionic Theory)(1887年 Arrhenius )1.定义:在水溶液中,电离出来的阳离子全部是氢离子的化合物,称为酸;电离出来的阴离子全部是氢氧根离子的化合物,称为碱。

2.优点:能简便地解释水溶液中的酸碱反应,酸碱强度的标度很明确。

3.缺点:把酸碱限制在水溶液中,碱限制于氢氧化物中。

二、溶剂论(Solvent Theory )(1905年 Franklin)它是从各种不同溶剂(包括非质子溶剂)中,也同样存在酸碱反应,发展起来的。

1.定义:能离解出溶剂特征正离子的物质,称为该溶剂的酸;能离解出溶剂特征负离子的物质,称为该溶剂的碱。

2.实例:溶剂 酸离子 碱离子 水 H +或H 3O +OH -质子型溶剂NH 3(l) ++43N H (H N H )2N H -CH 3COOH(l)++32C H H C O O H 或CH 3COO -非质子型溶剂N 2O 4(l) NO + 3N O -COCl 2(l) COCl + Cl -SO 2(l)SO2+23S O -典型的中和反应:NH 4NO 3 + NaNH 2 N H 3(l)NaNO 3 + 2NH 3HClO 4 + CH 3COONa C H 3C O O H (l)NaClO 4 + CH 3COOH [COCl] [AlCl 4] + KCl C O C l 2K[AlCl 4] + COCl 2SOCl 2 + Cs 2SO 3 SO 2(l)2CsCl + 2SO 23.优点:将酸碱扩大到非水体系。

Acids and Alkalis

Acids and Alkalis

Litmus Test
• Litmus is an indicator. It changes colour in acid and alkaline solutions. • Litmus is red in an acid. • Litmus is blue in an alkali.
Universal Indicator
Acids and alkalis
When a substance dissolves in water it makes a solution.
Solutions can be sorted by whether they are: acid, alkali or neutral.
When the oxide of some non-metals dissolve in water they make an acid.
• Universal indicator changes colour in acids and alkalis.
Neutral
ACIDS
ALKALIS
Its colour shows the strength of an acid or alkali.
The pH scale
1–6 Acids
Neutralisation
• Acids and alkalis react with each other. The alkali cancels out the acid in the reaction. This is called neutralisation.
A salt is made.
Applications of Neutralisation
• Insect Stings Bee stings are acidic and can be neutralised with baking soda (bicarbonate of soda). Wasp stings are alkaline and can be neutralised with vinegar. • Indigestion: Our stomach carries around hydrochloric acid. Too much of this leads to indigestion. To cure indigestion, you can neutralise the excess acid with baking soda or specialised indigestion tablets.

化学专业英语

化学专业英语
•Class n, 类别 •Classify Vt.分类 • Classification n. 分类
普通化合物分类 我们可以根据化学式按着下面的方法分类许多普
通化合物。
1. Acids, in the conventional sense, may be recognized by noting that the H is written first in the formula and that the rest of the compound is generally nonmetallic. Ex., HCl, H2SO4, HClO.
• become (be) familiar with…熟悉,通晓
例如,盐酸归类为酸,由于已熟悉作为不同类别 的酸的性质,我们就会立即知道这一化合物的一 般性质。
A great many of the compounds we are to study may be classified as acids, bases, salts, metallic oxides, or nonmetallic oxides. Of these five classes of compounds, the first three-acids, bases, and salts-are by far the most important.
• be aware of 知道,意识到……
那么,如果我们能够恰当地将一个化合物归类,我们立 刻就能从这类化合物的性质来了解这个化合物的一般性 质。
For example, HCl is classed as an acid, and by becoming familiar with the behavior of acids as a distinct class, we are at once aware of the general properties of the compound.

Acids, Bases and Salts

Acids, Bases and Salts

Acids, Bases and SaltsAll substances are acidic, neutral or basic (alkaline). How acidic or basic a substance is shown by its pH. There are several other ways by which we could find out whether a substance is acidic, neutral or basic.pH Scale:This is a scale that runs from 0 to 14. Substances with a pH below 7 are acidic. Substances with pH above 7 are basic. And those with pH 7 are neutral.Indicators:Indicators are substances that identify acidity or alkalinity of substances. They cannot be used in solid form.Universal Indicator:This is a substance that changes color when added to another substance depending on its pH. The indicator and the substance should be in aqueous form.Litmus Paper or Solution:This indicator is present in two colors: red and blue. We use blue litmus if we want test a substance for acidity. We use red litmus if we want to test a substance for alkalinity. Its results are:∙Acids: Turns blue litmus paper/ solution red,∙Bases: Turns red litmus paper/ solution blue,∙Neutral: if it is used as paper the color doesn’t change. If it is used as solution it turns purple.Note: use damp litmus paper if testing gases.Phenolphthalein:This is an indicator that is used to test for alkalinity because it is colorless if used with an acidic or neutral substance and it is pink if it is used with a basic substance.Methyl Orange:This indicator gives fire colors: Red with acids, yellow with neutrals and orange with bases.Acids:Acids are substances made of a hydrogen ion and non-metal ions. They have the following properties:∙They dissolve in water producing a hydrogen ion H+,∙They have a sour taste,∙Strong ones are corrosive,∙Their pH is less than 7.All acids must be in aqueous form to be called an acid. For example Hydrochloric acid is hydrogen chloride gas dissolved in water. The most common acids are:∙Hydrochloric acid HCl,∙Sulphuric Acid H2SO4,∙Nitric Acid HNO3,∙Cirtric Acid,∙Carbonic Acid H2CO3.Strength of Acids:One of the most important properties of acids is that it gives hydrogen ion H+ when dissolved in water. This is why the amount of H+ ions the acid can give when dissolved in water is what determines its strength. This is called ionization or dissociation. The more ionized the acid is the stronger it is, the lower its pH. The more H+ ions given when the acid is dissolved in water the more ionized the acid is.Hydrochloric acid is a strong acid. When it is dissolved in water all HCl molecules are ionized into H+ and Cl- ions. It is fully ionized.Ethanoic acid has the formula CH3COOH. It is a weak acid. When it is dissolved in water, only some of the CH3COOH molecules are ionized into CH3COO- and H+ ions. It is partially ionized.Note: Acids with pH 3 or 4 can be considered moderate in strength.Solutions of strong acids are better conductors of electricity than solutions of weak acids. This is because they contain much more free mobile ions to carry the charge.Concentrated acids are not necessarily strong. The concentration of an acid only means the amount of molecules of the acid dissolved in water. Concentrated acids have a large amount of acid molecules dissolved in water. Dilute acids have a small amount of acid molecules dissolved in water. Concentration is not related to strength of the acids. Strong acids are still strong even if they are diluted. And weak acids are still weak even if they are concentrated.Bases:Bases are substances made of hydroxide OH- ions and a metal. Bases can be made of:∙Metal hydroxide (metal ion & OH- ion)∙Metal oxides∙Metal carbonates (metal ion & CO32-)∙Metal hydrogen carbonate (Bicarbonate)∙Ammonium hydroxide (NH4OH)∙Ammonium Carbonate ((NH4)2CO3)Properties of bases:∙Bitter taste∙Soapy feel∙Have pH’s above 7∙Strong ones are corrosiveSome bases are water soluble and some bases are water insoluble. Water soluble bases are also called alkalis.Like acids, alkalis' strength is determined by its ability to be ionized into metal and hydroxide OH- ions. Completely ionized alkalis are the strongest and partially ionizedalkalis are the weakest. Ammonium hydroxide is one of the strongest alkalis while weak alkalis include the hydroxides of sodium, potassium and magnesium.Types of Oxides:Salts:A salt is a neutral ionic compound. Salts are one of the products of a reaction between an acid and a base. Salts are formed in reactions I n which the H+ ion from the acid is replaced by any other metal ion. Some salts are soluble in water and some are insoluble.Preparing Soluble Salts:Displacement Method (Excess Metal Method):Metal + Acid → Salt + HydrogenNote: this type of method is suitable to for making salts of moderately reactive metals because highly reactive metals like K, Na and Ca will cause an explosion. This method is used with the MAZIT (Magnesium, Aluminum, Zinc, Iron and Tin) metals only.Example: set up an experiment to obtain magnesium chloride salt.Mg + 2HCl → MgCl2 + H21. Add 100 cm3 of dilute hydrochloric acid to a beaker2. Add excess mass of powdered magnesium3. When the reaction is done, filter the mixture to get rid of excess magnesium(residue)4. The filtrate is magnesium chloride solution5. To obtain magnesium chloride powder, evaporate the solution till dryness6. To obtain magnesium chloride crystals, heat the solution while continuouslydipping a glass rod in the solution7. When you observe crystals starting to form on the glass rod, turn heat off andleave the mixture to cool down slowly8. When the crystals are obtained, dry them between two filter papersObservations of this type of reactions:∙Bubbles of colorless gas evolve (hydrogen). To test approach a lighted splint if hydrogen is present it makes a pop sound∙The temperature rises (exothermic reaction)∙The metal disappearsYou know the reaction is over when:∙No more gas evolves∙No more magnesium can dissolve∙The temperature stops rising∙The solution becomes neutralProton Donor and Acceptor Theory:When an acid and a base react, water is formed. The acid gives away an H+ ion and the base accepts it to form water by bonding it with the OH- ion. A hydrogen ion is also called a proton this is why an acid can be called Proton Donor and a base can be called Proton Acceptor.Neutralization Method:Acis + Base → Salt + WaterNote: This method is used to make salts of metals below hydrogen in the reactivity series. If the base is a metal oxide or metal hydroxide, the products will be salt and water only. If the base is a metal carbonate, the products will be salt, water and carbon dioxide.Type 1:Acid + Metal Oxide → Salt + WaterTo obtain copper sulfate salt given copper oxide and sulfuric acid:CuO + H2SO4→ CuSO4 + H2O∙Add 100 cm3 of sulfuric acid to a beaker∙Add excess mass of Copper oxide∙When the reaction is over, filter the excess copper oxide off∙The filtrate is a copper sulfate solution, to obtain copper sulfate powder evaporate the solution till dryness∙To obtain copper sulfate crystals, heat the solution white continuously dipping a glass rod in it∙When you observe crystals starting to form on the glass rod, turn heat of and leave the mixture to cool down slowly∙When you obtain the crystals dry them between two filter papersObservations of this reaction:∙The amount of copper oxide decreases∙The solution changes color from colorless to blue∙The temperature rises∙You know the reaction is over when∙No more copper oxide dissolves∙The temperature stops rising∙The solution become neutralType 2:Acid + Metal Hydroxide → Salt + Waterto obtain sodium chloride crystals given sodium hydroxide and hydrochloric acid:HCl + NaOH → NaCl + H2O∙Add 100 cm3of dilute hydrochloric acid to a beaker∙Add excess mass of sodium hydroxide∙When the reaction is over, filter the excess sodium hydroxide off∙The filtrate is sodium chloride solution, to obtain sodium chloride powder, evaporate the solution till dryness∙To obtain sodium chloride crystals, hear the solution while continuously dipping a glass rod in it∙When crystals start to form on the glass rod, turn heat off and leave the mixture to cool down slowly∙When the crystals are obtained, dry them between two filter papers Observations:∙Sodium hydroxide starts disappearing∙Temperature risesYou know the reaction is over when:∙The temperature stops rising∙No more sodium hydroxide can dissolve∙The pH of the solution becomes neutralType 3:Acid + Metal Carbonate → Salt + Water + Carbo n DioxideTo obtain copper sulfate salt given copper carbonate and sulfuric acid:CuCO3 + H2SO4→ CuSO4 + H2O + CO2∙Add 100 cm3 of dilute sulfuric acid to a beaker∙Add excess mass of copper carbonate∙When the reaction is over, filter excess copper carbonate off∙The filtrate is a copper sulfate solution, to obtain copper sulfate powder evaporate the solution till dryness∙To obtain copper sulfate crystals, heat the solution white continuously dipping a glass rod in it∙When you observe crystals starting to form on the glass rod, turn heat of and leave the mixture to cool down slowly∙When you obtain the crystals dry them between two filter papers Observations:∙Bubbles of colorless gas (carbon dioxide) evolve, test by approaching lighted splint, if the CO2 is present the flame will be put off∙Green Copper carbonate starts to disappear∙The temperature rises∙The solution turns blueYou know the reaction is finished when:∙No more bubbles are evolving∙The temperature stops rising∙No more copper carbonate can dissolve∙The pH of the solution becomes neutralTitration Method:This is a method to make a neutralization reaction between a base and anacid producing a salt without any excess. In this method, the experiment ispreformed twice, the first time is to find the amounts of reactants to use, andthe second experiment is the actual one.1st Experiment:∙Add 50 cm3 of sodium hydroxide using a pipette to be accurate toflask∙Add 5 drops of phenolphthalein indicator to the sodium hydroxide.The solution turns pink indicating presence of a base∙Fill a burette to zero mark with hydrochloric acid∙Add drops of the acid to conical flask∙The pink color of the solution becomes lighter∙When the solution turns colorless, stop adding the acid (End point: isthe point at which every base molecule is neutralized by an acidmolecule)∙Record the amount of hydrochloric acid used and repeat theexperiment without using the indicator∙After the 2nd experiment, you will have a sodium chloride solution.Evaporate it till dryness to obtain powdered sodium chloride orcrystalize it to obtain sodium chloride crystalsPreparing Insoluble Salts:Precipitation Method:A precipitation reaction is a reaction between two soluble salts. The products of aprecipitation reaction are two other salts, one of them is soluble and one is insoluble(precipitate).Example: To obtain barium sulfate salt given barium chloride and sodium sulfate:BaCl2 + Na2SO4→ BaSO4 + 2NaClIonic Equation: Ba2+ + SO42-→ BaSO4∙Add the two salt solutions in a beaker∙When the reaction is over, filter and take the residue∙Wash the residue with distilled water and dry it in the ovenObservations:∙Temperature increases∙An insoluble solid precipitate (Barium sulfate) formsYou know the reaction is over when:∙The temperature stops rising∙No more precipitate is being formedControlling Soil pH:If the pH of the soil goes below or above 7, it has to be neutralized using an acid or a base. If the pH of the soil goes below 7, calcium carbonate (lime stone) is used to neutralize it. The pH of the soil can be measured by taking a sample from the soil, crushing it, dissolving in water then measuring the pH of the solution.Colors of Salts:Tests for Gases:Tests for Anions:Tests for aqueous cations:。

碘酸根和酸反应

碘酸根和酸反应

碘酸根和酸反应Iodate ions react with acids.碘酸根与酸发生反应。

This reaction typically involves the transfer of protons from the acid to the iodate ion, resulting in the formation of water and a different iodine-containing species.这种反应通常涉及酸中的质子转移到碘酸根离子,从而生成水和含碘的不同物质。

The specific products of this reaction depend on the nature of the acid involved and the conditions under which the reaction occurs. 这种反应的具体产物取决于所涉及的酸的性质以及反应发生的条件。

For example, when iodate ions react with strong acids like sulfuric acid, they can be reduced to iodine or other lower oxidation state iodine species.例如,当碘酸根离子与硫酸等强酸反应时,它们可以被还原为碘或其他较低氧化态的碘物质。

The study of these reactions is important in chemistry, particularly in the fields of inorganic chemistry and analytical chemistry, as it helps us understand the behavior of iodate ions in different environments.对这些反应的研究在化学中非常重要,特别是在无机化学和分析化学领域,因为它有助于我们理解碘酸根离子在不同环境中的行为。

初中全英化学课程 metals and acids

初中全英化学课程  metals and acids

gala/03
Chemical Reactions
FORMING SALTS
METAL
magnesium iron sodium calcium copper iron sodium calcium magnesium
ACID
hydrochloric acid nitric acid ethanoic acid sulphuric acid nitric acid nitric acid hydrochloric acid ethanoic acid sulphuric acid
gala/03
Chemical Reactions
DISPLACEMENT REACTIONS
Metal ion Iron (III) Magnesium soln nitrate nitrate Metal
Iron
Copper (II) sulphate Zinc sulphate Lead (II) nitrate
ACIDห้องสมุดไป่ตู้
hydrochloric acid
SALT
magnesium chloride iron nitrate sodium ethanoate calcium sulphate
gala/03
Chemical Reactions
FORMING SALTS
METAL
magnesium iron
ACID
hydrochloric acid nitric acid ethanoic acid
SALT
magnesium chloride iron nitrate sodium ethanoate calcium sulphate
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(A) 5.0 x 10−7(B) 2.0 x 10−7(C) 5.0 x 10−6(D) 5.0 x 10−3(E) 2.0 x 10−3
22. HSO4−+ H2O⇄H3O++ SO42−In the equilibrium represented above, the species that act as bases include which of the following?
(A) H2SO4molecules (B) H3O+ions (C) HSO4−ions
(D) SO42−ions (E) All species are in equilibrium and therefore have the same concentrations.
71. Which of the following reactions does NOT proceed significantly to the right in aqueous solutions?
I. HSO4−II. H2O III. SO42−
(A) II only (B) III only (C) I and II (D) I and III (E) II and III
31. H2C2O4+ 2 H2O⇄2 H3O++ C2O42−Oxalic acid, H2C2O4, is a diprotic acid with K1= 5 10−2andK2= 5 x 10−5. Which of the following is equal to the equilibrium constant for the reaction represented above?
H2PO4−+ HBO32−⇄HPO42−+ H2BO3−
Acids
Bases
(A)
H2PO4−> H2BO3−
and
HBO32−> HPO42−
(B)
H2BO3−> H2PO4−
and
HBO32¯ > HPO42−
(C)
H2PO4−> H2BO3−
and
HPO42−> HBO32−
(D)
H2BO3−> H2PO4−
(A) 2.5 x 10−11(B) 2.5 x 10−10(C) 5.0 x 10−10(D) 5.0 x 10−6(E) 5.0 x 10−4
38. A molecule or an ion is classified as a Lewis acid if it…
(A) accepts a proton from water (B) accepts a pair of electrons to form a bond
(A) HNO2+ Na++ OH−NaNO2+ H2O
(B) HNO2+ NaOHNa++ NO2−+ H2O
(C) H++ OH−H2O
(D) HNO2+ H2ONO2−+ H3O+
(E) HNO2+ OH−NO2−+ H2O
16. Commercial vinegar was titrated with NaOH solution to determine the content of acetic acid, HC2H3O2. For 20.0 milliliters of the vinegar, 32.0 milliliters of 0.500-molar NaOH solution was required. What was the concentration of acetic acid in the vinegar if no other acid was present?
(A) 0.08% (B) 0.2% (C) 1% (D) 2% (E) 4%
34. All of the following species can function as Brönsted-Lowry bases in solution EXCEPT…
(A) H2O (B) NH3(C) S2−(D) NH4+(E) HCO3−
(A) K = [HCO3−] / ( [CO32−] [H3O+] ) (B) K = ( [HCO3−] [OH−] ) / [CO32−]
(C) K = ( [CO32−] [OH−] ) / [HCO3−] (D) K = [CO32−] / ( [CO2] [OH−]2)
(E) K = ( [CO32−] [H3O+] ) / [HCO3−]
(A) pure NaH2PO4(B) H3PO4+ H2PO4−(C) H2PO4−+ PO43−
(D) H2PO4−+ HPO42−(E) HPO42−+ PO43−
19. In the titration of a weak acid of unknown concentration with a standard solution of a strong base, a pH meter was used to follow the progress of the titration. Which of the following is true for this experiment?
Name ____________________________
AP Chemistry: Acids & Bases
Multiple Choice
33. The pH of 0.1-molar ammonia is approximately…
(A) 1 (B) 4 (C) 7 (D) 11 (E) 14
48. Which of the following ions is the strongest Lewis acid?
(A) Na+(B) Cl−(C) CH3COO−(D) Mg2+(E) Al3+
49. Each of the following can act as both a Brönsted acid and a Brönsted base EXCEPT…
(B) The acid strength decreases only if X is a nonmetal.
(C) The acid strength decreases only if X is a metal.
(D) The acid strength decreases whether X is a nonmetal or a metal.
55. The equilibrium constant for the reaction represented by the equation below is greater than 1.0. Which of the following gives the correct relative strengths of the acids and bases in the reaction?
(D) The graph of pH versus volume of base added shows no sharp rise.
and
HPO42−> HBO32−
(E)
H2PO4−= H2BO3−
and
HPO42−= HBO32−
56. A 0.20-molar solution of a weak monoprotic acid, HA, has a pH of 3.00. The ionization constant of this acid is…
66. What is the pH of a 1.0 x 10−2-molar solution of HCN? (Ka= 4.0 x 10−10)
(A) 10 (B) Between 7 and 10 (C) 7 (D) Between 4 and 7 (E) 4
45. What is the H+(aq)concentration in 0.05 M HCN(aq)? (The Kafor HCN is 5.0 x 10−10)
(A) 5 x 10−2(B) 5 x 10−5(C) 2.5 x 10−6(D) 5 x 10−7(E) 2.5 x 10−8
61. A 1-molar solution of which of the following salts has the highest pH?
(A) NaNO3(B) Na2CO3(C) NH4Cl (D) NaHSO4(E) Na2SO4
(A) The pH is 7 at the equivalence point.
(B) The pH at the equivalence point depends on the indicator used.
(C) The graph of pH versus volume of base added rises gradually at first and then much more rapidly.
(A) 1.60 M (B) 0.800 M (C) 0.640 M (D) 0.600 M (E) 0.400 M
Acid
Acid Dissociation
Constant, Ka
H3PO4
7 x 10−3
H2PO4−
8 x 10−8
HPO42−
5 x 10−13
63. On the basis of the information above, a buffer with a pH = 9 can best be made by using…
相关文档
最新文档