【名师解析】湖南省长沙市重点中学2014届高三上学期第四次月考数学(文)试题 Word版含解析

合集下载

湖南省长沙市重点中学2014届高三第七次月考数学理试卷Word版含答案

湖南省长沙市重点中学2014届高三第七次月考数学理试卷Word版含答案

湖南省长沙市重点中学2014届高三第七次月考数学理试题考试时间:120分钟 满分:150分一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合要求的。

1、若集合{1234}A =,,,,{2478}{1,3,4,5,9}B C ==,,,,,则集合()A B C 等于( D )A. {2,4}B. {1,2,3,4}C. {2,4,7,8}D. {1,3,4}2、复数i z +=31,i z -=12,则复数12z z 在复平面内对应的点位于( A ) A .第一象限B .第二象限C .第三象限D .第四象限3、若向量(12)=,a ,(3,4)-b =,则()()⋅a b a +b 等于( B ) A.20 B.(10,30)- C.54D.(8,24)-4、若3tan 4α=,且sin cot 0αα⋅<,则sin α等于(A ) A. 35- B. 35C. 45-D. 455、已知命题1,:;25sin ,:2>++∈∀=∈∃x x R x q x R x p 都有命题使R ,.01:;25sin ,:2>++∈∀=∈∃x x R x q x R x p 都有命题使01:5sin ,:2>++∀=∈∃x x q x R x p 都有命题使,.0,:;25sin ,:2+∀=∈∃x x x q x R x p 都有命题使给出下列结论:①命题“q p ∧”是真命题 ②命题“q p ⌝∧”是假命题③命题“q p ∨⌝”是真命题 ④命题“q p ⌝∨⌝”是假命题 其中正确的是( B )A .②④B .②③C .③④D .①②③6. 分配4名水暖工去3个不同的居民家里检查暖气管道. 要求4名水暖工都分配出去,并每名水暖工只去一个居民家,且每个居民家都要有人去检查,那么分配的方案共有(C )A. 34A 种B. 3133A A 种 C. 2343C A 种D. 113433C C A 种7、设F 1,F 2是椭圆1649422=+y x 的两个焦点,P 是椭圆上的点,且3:4:21=PF PF ,则21F PF ∆的面积为 ( D )A .4B .24C .22D . 6 8、若nxx )1(+展开式的二项式系数之和为64,则展开式的常数项为( B ) A .10 B .20C .30D .1209、数列{}n a 满足2113,1()2n n n a a a a n N ++==-+∈,则122014111m a a a =+++的整数部分是( )BA. 0B. 1C. 2D. 310、在平面直角坐标系中,(){}(){}22,1,,4,0,340A x y xy B x y x y x y =+≤=≤≥-≥则()()(){}12121122,,,,,,P x y x x x y y y x y A x y B ==+=+∈∈所表示的区域的面积为( )D A .6 B .6π+ C .12π+ D .18π+二.填空题:共25分。

14年第四次月考.doc

14年第四次月考.doc

长沙市六中2014届高三第四次月考数学试题文 科 数 学总分150分 时量120分钟一、选择题(本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有 一 项是符合题目要求的).1.复数1iz i=+(i 为虚数单位)在复平面上对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知集合{}21|()1,|6802xA xB x x x ⎧⎫=≤=-+≤⎨⎬⎩⎭,则“x A ∈”是“x B ∈”的( )A 充分而不必要条件B 必要而不充分条件C 充要条件D 既不充分也不必要条件3. 已知某几何体的三视图(单位:dm )如图所示,则该几何体的体积(dm 3)是( )A .3464π+ B π+1664 C .π+464 D π+4324.曲线sin x xy e=在0x =处的切线斜率为( ) A 0 B 1 C12D 1- 5.要得到函数cos(2)3y x π=-的图像,只需将函数sin 2y x =的图像( )A 向左平移12π个单位长度 B 向右平移12π个单位长度 C 向左平移6π个单位长度 D 向右平移6π个单位长度(第3题图)侧视图俯视图 正视图6.已知点(,)P x y 是不等式组02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩表示的平面区域内一动点,且(1,1)A -,O 为坐标原点,则1t OA OP =∙+的最小值是 ( )A .2-B .3-C .12-D .1 7. 在ABC ∆中,角 A B C 、、所对的边长分别为a b c 、、,若sin cos a B C +1sin cos 2c B A b =,且a b >,则B ∠=( ) A6π B 3πC 23πD 56π8. 数列{}n a 中,1(1)(43)n n a n +=--,其前n 项和为n S ,则2211S S -=( )A 85-B 85C 65-D 659.已知函数1)(2--=bx ax x f ,其中] 2 , 0 (∈a ,] 2 , 0 (∈b ,在其取值范围内任取实数a 、b ,则函数)(x f 在区间) , 1 [∞+上为增函数的概率为( ) A .21 B .31 C .32 D .43二、填空题(本大题共6小题,每小题5分,共30分,把答案填在题中横线上)10.设全集U=R ,A={x ∈N |110x ≤≤},B={x ∈R |260x x +-=},则右图中阴影部分表示的集合为11.已知等差数列{}n a 的前n 项和为n S ,若32,4,a 成等比数列, 则5S =12.已知向量(2,4)a =,(1,1)b =,若向量()b a b λ⊥+,则实数λ=12.如右图若某算法框图如图所示,则输出的结果为 ;14.若正数,x y 满足3x y xy +=,则34x y +的最小值为15. 已知函数()|2|f x x x m =--仅有3个零点分别为123,,x x x ,则(1) m 的取值范围是 ; (2)123x x x ++ 的取值范围是 。

湖南省长沙市雅礼中学高三上学期月考(四)数学(文)试题含解析bybao.docx

湖南省长沙市雅礼中学高三上学期月考(四)数学(文)试题含解析bybao.docx

炎德•英才大联考雅礼中学2017届高三月考试卷(四》数学(文)第I卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.若集合B二{x|xn0},且Ar\B = A f则集合A可能是A. {1,2}B. {x\x<\}C. {-1,0,1}D. R2.命题的否定是A. V XG R,x2 <0B. 3x0G R,X Q > 0C. 3x0G R, x02 < 0D. 3x0G R, x02 < 03.以仏1)为圆心,且与两条直线2兀-y + 4二0与2x-y-6 = 0同时相切的圆的标准方程为A. (x-1)2 4-(y-l)2 =5B.(兀+1),+(y + l)2 =5C. (x-1)2 + y2 =5D.兀2+(》,_i)2 =54.函数y = lg(x2 - 2X + G)的值域不可能是A. (-8,o]B. [0,+x)C. [l,4-oo)D. R5.已知向W:a =(2,-4),& = (-3,m),若dA+d•庁=0,则实数加二A. -6B. 3C. 6D. 8(丄、6.若偶函数/(x)在(-8,0]上单调递减,a = /(log23\b = /(log45\c = f V ,则a,b,c满\丿足A. a<b<cB. b<a<cC. c<a<bD. c<b<a7.在AABC 中,若h = l,c = V3,A = ~> 则cos5B =6A. B. 丄C. 丄或T D.——或02 2 2 2&“牟合方盖”是我国古代数学家刘徽在研究球的体积过程中构造的一个和谐优美的几何体, 它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟 合)在一起的方形伞(方盖)•其直观图如下左图,图中四边形是为体现其直观性所作的辅助 线,其实际直观图中四边形不存在,当其正视图和俯视图完全相同时,它的正视图和俯视图 分别可能是PM\-\PN\ = 6 ,则称该直线为'B 型直线”,给出下列直线:y = x +1 ; ④y = 2X.其中为“B型直线”的是A. B. ④ C. D.④10.函数y = x 5 -兀/的图象大致是・If♦rf >I T\ 2r \ |1■4^ 1 I ■ \ | L 1 | r■ ■、 1■ f MX 1 J ► 1【\(A)■ • • JIr ■/ /> A \ 1B)•小 I 口 1 / uK 1 2 ■ iv /i5\ n1/ *1 1 1 \(C)(D)11 .在正方体ABCD-^QD.中,E,F 分别为棱的中点,0是AC 与BD 的交点,面OEF 与面BCC }相交于加,面与面BCC X 相交于斤,则直线加,刃的夹角为A71 厂 兀门 71厂门A. —B. —C. —D. 026312.设a,be R.ce [0,2^)>若对任意实数兀都有2sin 3x-— =asin (bx + c ),则满足条件 \ 3丿的ci,b,c 的组数为A. 1组B. 2组C. 3组D.4组二、填空题:本大题共4小题,每小题5分,共20分.13.已知直线3兀+ 4y-3 = 0与平6兀+ __________ +14 = 0行,则它们之间的距离为4 = 3X :9.已知两点M (-5,0),N (5,0),若直线上存在点P,使14. ___________________________________________________________________ 已知抛物线/=2px(p>0)±一点M(1,771)到其焦点的距离为5,则加= ___________________________________ 15. ___________________________________________________________________ 已知函数f(x)= x^ax 2^bx + a 2在x = l 处的极值为10,则/⑵的值为 ____________________________________取值范围为 ________________ .三、解答题:本大题共6小题,共70分•解答应写出必要的文字说明或推理、验算过程.17.(本题满分:L0分)在等差数列仏}中,其前"项和为S”,等比数列畅讣的各项均为正数,勺=1,公比为 g(gHl),且花+S? =12,q = 乂・'_b 2(1) 求a “与乞;/、"口 I 」 1 1 2(2) 证明:一5 ------ 1 --- ---- ------ <—.3 S[ 52 S “ 318.(本题满分12分)如图,在三棱锥P-ABC 中,AB 丄BC,AB=BC=kPA,点O 为AC 的中点,D 是BC ±一点,19. (本题满分12分)甲乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中 得0分,两人4局的得分情况如下:16. 定义 max{a,b} =a, a >h b, a <b设实数乙y 满足约束条件J|x| < 2bl"则 max{4x + y,3x 一 y}的(1) 如果在乙的4局比赛中随机选取1局时,此局得分小于6分的概率不为零,且在4 局中乙的平均得分高于甲的平均得分,求兀+y 的值;(2) 如果x = 6,y = 10,从甲乙两人的4局比赛中随机各选取1局,并将其得分分别记为a,b,求a'b 的概率;(3) 在4局比赛中,若甲乙两人的平均得分相同,且乙的发挥更加稳定,写出x 的所有可能 的取值.(结论不要求证明)20. (本题满分12分)(1)求椭圆的标准方程;(2)点M 在圆x 2-^-y 2=b 2上,且M 在第一象限,过M 作» +〉,2=戻的切线交椭圆于 P,Q 两点,问:APQF 2的周长是否为定值?若是,求岀定值,若不是,请说明理由.21. (本题满分12分)( 1 \已知函数 /(x) = a x —— -b\nx(a,be R\g(x) = x 2.\兀丿(1) 若a = l f 曲线y = /(x)在点(1,/(1))处的切线与丿轴垂直,求b 的值;(2) 若b = 2f 试探究函数/(x)与g(x)的图象在其公共点处是否存在切线,若存在,研 究a 值得个数,若不存在,请说明理由.请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22. (本题满分10分)选修4—1;坐标系与参数方程在直角坐标系兀©中,圆G 和C?的参数方程分别是]X = 2+2COS °为参数)和[y = 2sin^9已知椭圆二+二= a"l(d>b>0)的右焦点为F 2(1,0),点H 2,在椭圆上.兀—cos u{- c (0为参数),以0为极点,X轴的正半轴为极轴建立极坐标系.y = l + sin0(1)求圆G和C2的极坐标方程;(2)射线OM{0 = a与圆G的交点为0, P,与圆C2的交点为o,Q,求|OP|•|OQ|的最大值・23 (本题满分10分)选修4—5;不等式选讲已知a,b,cw R,ab + bc + ac = L,且(1)求证:« + /? + cj > V3;(2)若3XG R,使得对一切实数a,b,c不等式加+卜一1| +卜+ 1| 5 (d + b + cF恒成立, 求加的取值范围.皿•矣彳M 扌雅礼中学2017届高三月考试卷(四)数学(文科)命题人:陈朝阳审题人:常 君本试卷分第1卷(选择题)和第II 卷(IE 选择题)两部分,共8页•时lit 120分仲.满分13()分.第I 卷一、选择题:本大题共12小题,每小题5分■在每小题给出的四个选项中•只有一项是符合题目要 求的.(1)若集合B= {工|毎0}, ft AfU3=A ・则集合A 可能是(A){1>2}(B){X |T <D(CX-hOJ}⑵命题・・J€Rd>0”的否定是(A)W€R,工WO (B )3xo€R.^>O (CT^GR,云VO (D) 3^6【解析】依题意,全称命题的否定是特称金題•故选D ・⑶以(a ,l )为圆心•且与两条直线2a->4-4=0与2工一,一6 = 0同时相切的圆的标准方程为(A)(=— 1尸+(,—】)'=5 (B) (x+1V + (>+1 )2 =5 (C)(x~l)2+y=5(DX? + (y-l)2 = 5座=2±牡=座尸1 .解得“ =1山=尽 V5 V 5 ⑷函数,=山(工2 — 2工+a)的值域不町能是(A )(一8,0] (B)[0,+oo)(C)[l,+oo)(DIR【解析】设尸/一2工+“,则函数为开口向上的抛物线,若判别式此时屈敛》=1肛*一2工+。

湖南省长沙市2024届高三上学期月考(一)数学试题(解析版)

湖南省长沙市2024届高三上学期月考(一)数学试题(解析版)

大联考2024届高三月考试卷(一)数学(答案在最后)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}2|log 4M x x =<,{}|21N x x =≥,则M N ⋂=()A.{}08x x ≤< B.182xx ⎧⎫≤<⎨⎬⎩⎭C.{}216x x ≤< D.1162xx ⎧⎫≤<⎨⎬⎩⎭【答案】D 【解析】【分析】直接解出集合,M N ,再求交集即可.【详解】{}{}2|log 4|016M x x x x =<=<<,1|2N x x ⎧⎫=≥⎨⎩⎭,则1162M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭.故选:D.2.记等差数列{a n }的前n 项和为S n .若a 6=16,S 5=35,则{a n }的公差为()A.3 B.2C.-2D.-3【答案】A 【解析】【分析】由题得a 3=7,设等差数列的公差为d ,解方程组11+27516a d a d =⎧⎨+=⎩即得解.【详解】解:由等差数列性质可知,S 5=152a a +×5=5a 3=35,解得a 3=7,设等差数列的公差为d ,所以11+27516a d a d =⎧⎨+=⎩,解之得3d =.故选:A.3.已知1z ,2z 是关于x 的方程2220x x +=-的两个根.若11i z =+,则2z =()A.2B.1C.D.2【答案】C 【解析】【分析】由1z ,2z 是关于x 的方程2220x x +=-的两个根,由韦达定理求出2z ,再由复数的模长公式求解即可.【详解】法一:由1z ,2z 是关于x 的方程2220x x +=-的两个根,得122z z +=,所以()21221i 1i z z =-=-+=-,所以21i z =-=法二:由1z ,2z 是关于x 的方程2220x x +=-的两个根,得122z z ⋅=,所以21221i z z ==+,所以2221i 1i z ====++.故选:C .4.函数sin exx x y =的图象大致为()A.B.C.D.【答案】D 【解析】【分析】分析函数sin exx x y =的奇偶性及其在()0,π上的函数值符号,结合排除法可得出合适的选项.【详解】令()sin exx x f x =,该函数的定义域为R ,()()()sin sin eexxx x x x f x f x ----===,所以,函数sin exx x y =为偶函数,排除AB 选项,当0πx <<时,sin 0x >,则sin 0exx x y =>,排除C 选项.故选:D.5.已知220x kx m +-<的解集为()(),11t t -<-,则k m +的值为()A.1B.2C.-1D.-2【答案】B 【解析】【分析】由题知=1x -为方程220x kx m +-=的一个根,由韦达定理即可得出答案.【详解】因为220x kx m +-<的解集为()(),11t t -<-,所以=1x -为方程220x kx m +-=的一个根,所以2k m +=.故选:B .6.古代数学家刘徽编撰的《重差》是中国最早的一部测量学著作,也为地图学提供了数学基础,根据刘徽的《重差》测量一个球体建筑的高度,已知点A 是球体建筑物与水平地面的接触点(切点),地面上B ,C 两点与点A 在同一条直线上,且在点A 的同侧,若在B ,C 处分别测量球体建筑物的最大仰角为60°和20°,且BC =100m ,则该球体建筑物的高度约为()(cos10°≈0.985)A.45.25mB.50.76mC.56.74mD.58.60m【答案】B 【解析】【分析】数形结合,根据三角函数解三角形求解即可;【详解】设球的半径为R ,,tan10R AB AC ==,100tan10RBC =-=- ,25250.760.985R R ==故选:B.7.已知定义域是R 的函数()f x 满足:x ∀∈R ,()()40f x f x ++-=,()1f x +为偶函数,()11f =,则()2023f =()A.1B.-1C.2D.-3【答案】B 【解析】【分析】根据对称性可得函数具有周期性,根据周期可将()()()2023311f f f ==-=-.【详解】因为()1f x +为偶函数,所以()f x 的图象关于直线1x =对称,所以()()2=f x f x -,又由()()40f x f x ++-=,得()()4f x f x +=--,所以()()()846f x f x f x +=---=-+,所以()()2f x f x +=-,所以()()4f x f x +=,故()f x 的周期为4,所以()()()2023311f f f ==-=-.故选:B .8.如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD 棱长为,则模型中九个球的表面积和为()A.6πB.9πC.31π4D.21π【答案】B 【解析】【分析】作出辅助线,先求出正四面体的内切球半径,再利用三个球的半径之间的关系得到另外两个球的半径,得到答案.【详解】如图,取BC 的中点E ,连接DE ,AE ,则CE BE ==,AE DE ===,过点A 作AF ⊥底面BCD ,垂足在DE 上,且2DF EF =,所以DF EF ==4AF ===,点O 为最大球的球心,连接DO 并延长,交AE 于点M ,则DM ⊥AE ,设最大球的半径为R ,则OF OM R ==,因为Rt AOM △∽Rt AEF ,所以AO OMAE EF ==1R =,即1OM OF ==,则413AO =-=,故1sin 3OM EAF AO ∠==设最小球的球心为J ,中间球的球心为K ,则两球均与直线AE 相切,设切点分别为,H G ,连接,HJ KG ,则,HJ KG 分别为最小球和中间球的半径,长度分别设为,a b ,则33,33AJ HJ a AK GK b ====,则33JK AK AJ b a =-=-,又JK a b =+,所以33b a a b -=+,解得2b a =,又33OK R b AO AK b =+=-=-,故432b R =-=,解得12b =,所以14a =,模型中九个球的表面积和为2224π4π44π44π4ππ9πR b a +⨯+⨯=++=.故选:B【点睛】解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列命题为真命题的是()A.若2sin 23α=,则21cos 46πα⎛⎫+= ⎪⎝⎭B.函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位长度得到函数()2sin 26g x x π⎛⎫=+ ⎪⎝⎭的图象C.函数()2sin cos cos 26f x x x x π⎛⎫=+- ⎪⎝⎭的单调递增区间为(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦D.()22tan 1tan xf x x =-的最小正周期为2π【答案】AC 【解析】【分析】利用二倍角公式和诱导公式可求得2cos 4πα⎛⎫+⎪⎝⎭,知A 正确;根据三角函数平移变换可求得()2sin 2g x x =,知B 错误;利用三角恒等变换公式化简得到()f x 解析式,利用整体对应的方式可求得单调递增区间,知C 正确;利用特殊值判断D 错误.【详解】对于A ,21cos 21sin 212cos 4226παπαα⎛⎫++ ⎪-⎛⎫⎝⎭+=== ⎪⎝⎭,A 正确;对于B ,()f x 向右平移6π个单位长度得:2sin 26f x x π⎛⎫-= ⎪⎝⎭,即()2sin 2g x x =,B 错误;对于C ,()13sin 2cos 2sin 222222226f x x x x x x x π⎛⎫=++=+=+ ⎪⎝⎭,则由222262k x k πππππ-+≤+≤+,Z k ∈得:36k x k ππππ-+≤≤+,Z k ∈,()f x \的单调递增区间为(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,C 正确;对于D ,()π002f f ⎛⎫= ⎪⎝⎭,无意义,∴2π不是函数的周期,D 错误.故选:AC.10.如图所示,该几何体由一个直三棱柱111ABC A B C -和一个四棱锥11D ACC A -组成,12AB BC AC AA ====,则下列说法正确的是()A.若AD AC ⊥,则1AD A C⊥B.若平面11AC D 与平面ACD 的交线为l ,则AC //l C.三棱柱111ABC A B C -的外接球的表面积为143πD.当该几何体有外接球时,点D 到平面11ACC A 的最大距离为3-【答案】BD 【解析】【分析】根据空间线面关系,结合题中空间几何体,逐项分析判断即可得解.【详解】对于选项A ,若AD AC ⊥,又因为1AA ⊥平面ABC ,但是D 不一定在平面ABC 上,所以A 不正确;对于选项B ,因为11//A C AC ,所以//AC 平面11AC D ,平面11AC D ⋂平面ACD l =,所以//AC l ,所以B 正确;对于选项C ,取ABC ∆的中心O ,111A B C ∆的中心1O ,1OO 的中点为该三棱柱外接球的球心,所以外接球的半径3R ==,所以外接球的表面积为22843R ππ=,所以C 不正确;对于选项D ,该几何体的外接球即为三棱柱111ABC A B C -的外接球,1OO 的中点为该外接球的球心,该球心到平面11ACC A 的距离为3,点D 到平面11ACC A 的最大距离为33R -=,所以D 正确.故选:BD11.同学们,你们是否注意到,自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深洞的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()e e x x f x a b -=+(其中a ,b 是非零常数,无理数e 2.71828=⋅⋅⋅),对于函数()f x 以下结论正确的是()A.a b =是函数()f x 为偶函数的充分不必要条件;B.0a b +=是函数()f x 为奇函数的充要条件;C.如果0ab <,那么()f x 为单调函数;D.如果0ab >,那么函数()f x 存在极值点.【答案】BCD 【解析】【分析】根据奇偶函数的定义、充分条件和必要条件的定义即可判断AB ;利用导数,分类讨论函数的单调性,结合极值点的概念即可判断CD.【详解】对于A ,当a b =时,函数()f x 定义域为R 关于原点对称,()()e e =x x f x a b f x --=+,故函数()f x 为偶函数;当函数()f x 为偶函数时,()()=0f x f x --,故()()0e e x xa b b a --+-=,即()()2e =xa b a b --,又2e 0x >,故a b =,所以a b =是函数()f x 为偶函数的充要条件,故A 错误;对于B ,当0a b +=时,函数()f x 定义域为R 关于原点对称,()()=e e ()()=0x x f x f x a b a b -+-+++,故函数()f x 为奇函数,当函数()f x 为奇函数时,()()=e e ()()=0xxf x f x a b a b -+-+++,因为e 0x >,e 0x ->,故0a b +=.所以0a b +=是函数()f x 为奇函数的充要条件,故B 正确;对于C ,()=e e x xa f xb --',因为0ab <,若0,0a b ><,则()e e0=xxa xb f -->'恒成立,则()f x 为单调递增函数,若0,0a b <>则()e e0=xxa xb f --<'恒成立,则()f x 为单调递减函数,故0ab <,函数()f x 为单调函数,故C 正确;对于D ,()2e e e ==e x xxxa ba b f x ---',令()=0f x '得1=ln 2bx a,又0ab >,若0,0a b >>,当1,ln 2b x a ⎛⎫∈-∞ ⎪⎝⎭,()0f x '<,函数()f x 为单调递减.当1ln ,2b x a ⎛⎫∈+∞⎪⎝⎭,()0f x ¢>,函数()f x 为单调递增.函数()f x 存在唯一的极小值.若0,0a b <<,当1ln2b x a ⎛⎫∈-∞ ⎪⎝⎭,,()0f x ¢>,函数()f x 为单调递增.当1ln ,2b x a ⎛⎫∈+∞⎪⎝⎭,()0f x '<,函数()f x 为单调递减.故函数()f x 存在唯一的极大值.所以函数存在极值点,故D 正确.故答案为:BCD.12.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,且满足条件11a >,202220231a a >⋅,()()20222023110a a -⋅-<,则下列选项正确的是()A.{}n a 为递减数列B.202220231S S +<C.2022T 是数列{}Tn 中的最大项D.40451T >【答案】AC 【解析】【分析】根据题意先判断出数列{}n a 的前2022项大于1,而从第2023项开始都小于1.再对四个选项一一验证:对于A :利用公比的定义直接判断;对于B :由20231a <及前n 项和的定义即可判断;对于C :前n 项积为nT 的定义即可判断;对于D :先求出4045T 40452023a =,由20231a <即可判断.【详解】由()()20222023110a a -⋅-<可得:20221a -和20231a -异号,即202220231010a a ->⎧⎨-<⎩或202220231010a a -<⎧⎨->⎩.而11a >,202220231a a >⋅,可得2022a 和2023a 同号,且一个大于1,一个小于1.因为11a >,所有20221a >,20231a <,即数列{}n a 的前2022项大于1,而从第2023项开始都小于1.对于A :公比202320221a q a =<,因为11a >,所以11n n a a q -=为减函数,所以{}n a 为递减数列.故A 正确;对于B :因为20231a <,所以2023202320221a S S =-<,所以202220231S S +>.故B 错误;对于C :等比数列{}n a 的前n 项积为n T ,且数列{}n a 的前2022项大于1,而从第2023项开始都小于1,所以2022T 是数列{}Tn 中的最大项.故C 正确;对于D :40451234045T a a a a = ()()()240441111a a q a q a q = 404512340441a q +++= 4045202240451a q ⨯=()404520221a q =40452023a =因为20231a <,所以404520231a <,即40451T <.故D 错误.故选:AC第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.已知(2,),(3,1)a b λ=-=,若()a b b +⊥ ,则a = ______.【答案】【解析】【分析】根据题意求得(1,1)a b λ+=+,结合向量的数量积的运算公式求得λ的值,得到a的坐标,利用向量模的公式,即可求解.【详解】因为(2,),(3,1)a b λ=-= ,可得(1,1)a b λ+=+,又因为()a b b +⊥,可得()(1,1)(3,1)310b b a λλ=+⋅=++=⋅+ ,解得4λ=-,所以(2,4)a =--,所以a ==故答案为:14.已知函数51,2()24,2xx f x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪->⎩,则函数()()g x f x =-的零点个数为______.【答案】3【解析】【分析】令()0g x =得()f x =,根据分段函数性质可在同一直角坐标系中作出()f x,y =的大致图象,由图象可知,函数()y f x =与y =的图象有3个交点,即可得出答案.【详解】令()0g x =得()f x =,可知函数()g x 的零点个数即为函数()f x与y =的交点个数,在同一直角坐标系中作出()f x,y =由图象可知,函数()y f x =与y =的图象有3个交点,即函数()g x 有3个零点,故答案为:3.15.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则平面α截此正方体所得截面面积的最大值为______.【答案】4【解析】【分析】利用正方体的结构特征,判断平面α所在的位置,然后求得截面面积的最大值即可.【详解】根据相互平行的直线与平面所成的角是相等的,可知在正方体1111ABCD A B C D -中,平面11AB D 与直线1AA ,11A B ,11A D 所成的角是相等的,所以平面11AB D 与平面α平行,由正方体的对称性:要求截面面积最大,则截面的位置为过棱的中点的正六边形(过正方体的中心),边长为2,所以其面积为26424S ⎛⎫=⨯= ⎪ ⎪⎝⎭.故答案为:4.16.如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(n ∈N ,从左数首根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线l :1y x =+交于点(),n n n A x y 和(),n n n B x y '',则20n n n y y ='=∑______.(参考数据:取221.18.14=.)【答案】914【解析】【分析】根据题意可得1, 1.1n n n y n y '=+=,进而利用错位相减法运算求解.【详解】由题意可知:1, 1.1n n n y n y '=+=,则()202011920011.111.12 1.120 1.1211.1n n n n n y y n =='=+=⨯+⨯++⨯+⨯∑∑L ,可得2012202101.111.12 1.120 1.1211.1nn n yy ='⨯=⨯+⨯++⨯+⨯∑L ,两式相减可得:2120120212101 1.10.1 1.1 1.1 1.1211.1211.11 1.1n n n y y =-'-⨯=+++-⨯=-⨯-∑L 2121221 1.10.1211.11 1.118.1491.40.10.10.1-+⨯⨯++====----,所以20914nn n yy ='=∑.故答案为:914.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17.如图,在直三棱柱111ABC A B C -中,2CA CB ==,AB =13AA =,M 为AB 的中点.(1)证明:1//AC 平面1B CM ;(2)求点A 到平面1B CM 的距离.【答案】(1)证明见解析(2)11【解析】【分析】(1)利用线面平行的判定定理证明;(2)利用等体积法求解.【小问1详解】连接1BC 交1B C 于点N ,连接MN ,则有N 为1BC 的中点,M 为AB 的中点,所以1//AC MN ,且1AC ⊄平面1B CM ,MN ⊂平面1B CM ,所以1//AC 平面1B CM .【小问2详解】连接1AB ,因为2CA CB ==,所以CM AB ⊥,又因为1AA ⊥平面ABC ,CM ⊂平面ABC ,所以1AA CM ⊥,1AB AA A ⋂=,所以CM ⊥平面11ABB A ,又因为1MB ⊂平面11ABB A ,所以1CM MB ⊥,又222CA CB AB +=,所以ABC是等腰直角三角形,112CM AB MB ====,所以1112222CMB S CM MB =⋅=△,1111222ACM ACB S S CA CB ==⨯⋅=△△,设点A 到平面1B CM 的距离为d ,因为11A B CM B ACM V V --=,所以111133B CM ACM S d S AA ⨯⨯=⨯⨯ ,所以1132211ACM B CM S AA d S ⨯== .18.记锐角ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin()sin()cos cos A B A C B C--=.(1)求证:B C =;(2)若sin 1a C =,求2211a b+的最大值.【答案】(1)见解析;(2)2516.【解析】【分析】(1)运用两角和与差正弦进行化简即可;(2)根据(1)中结论运用正弦定理得sin 2sin sin 12b a C R A b A R === ,然后等量代换出2211a b+,再运用降次公式化简,结合内角取值范围即可求解.【小问1详解】证明:由题知sin()sin()cos cos A B A C B C--=,所以sin()cos sin()cos A B C A C B -=-,所以sin cos cos cos sin cos sin cos cos cos sin cos A B C A B C A C B A C B -=-,所以cos sin cos cos sin cos A B C A C B =因为A 为锐角,即cos 0A ≠,所以sin cos sin cos B C C B =,所以tan tan =B C ,所以B C =.【小问2详解】由(1)知:B C =,所以sin sin B C =,因为sin 1a C =,所以1sin C a=,因为由正弦定理得:2sin ,sin 2b a R A B R==,所以sin 2sin sin 12ba C R Ab A R===,所以1sin A b=,因为2A B C C ππ=--=-,所以1sin sin 2A C b==,所以222211sin sin 2a bC C +=+221cos 2(1cos 2)213cos 2cos 222CC C C -=+-=--+因为ABC 是锐角三角形,且B C =,所以42C ππ<<,所以22C ππ<<,所以1cos 20C -<<,当1cos 24C =-时,2211a b+取最大值为2516,所以2211a b+最大值为:2516.19.甲、乙足球爱好者为了提高球技,两人轮流进行点球训练(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,一人踢球另一人扑球,甲先踢,每人踢一次球,两人有1人进球另一人不进球,进球者得1分,不进球者得1-分;两人都进球或都不进球,两人均得0分,设甲、乙每次踢球命中的概率均为12,甲扑到乙踢出球的概率为12,乙扑到甲踢出球的概率13,且各次踢球互不影响.(1)经过1轮踢球,记甲的得分为X ,求X 的分布列及数学期望;(2)求经过3轮踢球累计得分后,甲得分高于乙得分的概率.【答案】(1)分布列见解析;期望为112(2)79192【解析】【分析】(1)先分别求甲、乙进球的概率,进而求甲得分的分布列和期望;(2)根据题意得出甲得分高于乙得分的所有可能情况,结合(1)中的数据分析运算.【小问1详解】记一轮踢球,甲进球为事件A ,乙进球为事件B ,A ,B 相互独立,由题意得:()1111233P A ⎛⎫=⨯-= ⎪⎝⎭,()1111224P B ⎛⎫=⨯-= ⎪⎝⎭,甲的得分X 的可能取值为1,0,1-,()()()()11111346P X P AB P A P B ⎛⎫=-===-⨯= ⎪⎝⎭,()()()()()()()11117011343412P X P AB P AB P A P B P A P B ⎛⎫⎛⎫==+=+=⨯+-⨯-=⎪ ⎪⎝⎭⎝⎭()()()()11111344P X P AB P A P B ⎛⎫====⨯-= ⎪⎝⎭,所以X 的分布列为:X 1-01p1671214()1711101612412E X =-⨯+⨯+⨯=.【小问2详解】经过三轮踢球,甲累计得分高于乙有四种情况:甲3轮各得1分;甲3轮中有2轮各得1分,1轮得0分;甲3轮中有2轮各得1分,1轮得1-分;甲3轮中有1轮得1分,2轮各得0分,甲3轮各得1分的概率为3111464P ⎛⎫== ⎪⎝⎭,甲3轮中有2轮各得1分,1轮得0分的概率为2223177C 41264P ⎛⎫=⨯= ⎪⎝⎭,甲3轮中有2轮各得1分,1轮得1-分的概率为2233111C 4632P ⎛⎫=⨯= ⎪⎝⎭,甲3轮中有1轮得1分,2轮各得0分的概率为21431749C 412192P ⎛⎫=⨯⨯= ⎪⎝⎭,所以经过三轮踢球,甲累计得分高于乙的概率1714979646432192192P =+++=.20.已知数列{}n a 中,10a =,()12n n a a n n N*+=+∈.(1)令11n n n b a a +=-+,求证:数列{}n b 是等比数列;(2)令3nn n a c =,当n c 取得最大值时,求n 的值.【答案】(1)证明见解析;(2)3n =.【解析】【分析】(1)求得21a =,12b =,利用递推公式计算得出12n n b b +=,由此可证得结论成立;(2)由(1)可知112nn n a a +-+=,利用累加法可求出数列{}n a 的通项公式,可得出213n n nn c --=,利用定义法判断数列{}n c 的单调性,进而可得出结论.【详解】(1)在数列{}n a 中,10a =,12n n a a n +=+,则21211a a =+=,11n n n b a a +=-+ ,则12112b a a =-+=,则()()()111112211212n n n n n n n n b a a a n a n a a b ++--=-+=+-+-+=-+=,所以,数列{}n b 为等比数列,且首项为2,所以,1222n n n b -=⨯=;(2)由(1)可知,2nn b =即121n n n a a +-=-,可得2123211212121n n n a a a a a a ---=-⎧⎪-=-⎪⎨⎪⎪-=-⎩,累加得()()()()1211212222112112n n n n a a n n n ----=+++--=--=--- ,21n n a n ∴=--.213n n n n c --∴=,()111112112233n n n n n n n c +++++-+---==,11112221212333n n nn n n n n n n n c c ++++----+-∴-=-=,令()212nf n n =+-,则()11232n f n n ++=+-,所以,()()122nf n f n +-=-.()()()()1234f f f f ∴=>>> ,()()1210f f ==> ,()310f =-<,所以,当3n ≥时,()0f n <.所以,123c c c <<,345c c c >>> .所以,数列{}n c 中,3c 最大,故3n =.【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第n 1-项的差是个有规律的数列,就可以利用这种方法;(5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第n 1-项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1b m k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n N *∈)型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可.21.已知双曲线2222:1(0,0)x y E a b a b-=>>的焦距为10,且经过点M .A ,B 为双曲线E 的左、右顶点,P 为直线2x =上的动点,连接PA ,PB 交双曲线E 于点C ,D (不同于A ,B ).(1)求双曲线E 的标准方程.(2)直线CD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【答案】(1)221169x y -=(2)直线CD 过定点,定点坐标为(8,0).【解析】【分析】(1)方法一:将M 代入方程,结合222+=a b c 求得,a b 得双曲线方程;方法二:根据双曲线定义求得a 得双曲线方程.(2)方法一:设CD 的方程为x my t =+,与双曲线联立,由A 点与C 点写出AC 方程,求出p y ,由B 点与D 点写出BD 方程,求出p y ,利用两个p y 相等建立关系式,代入韦达定理可求得t 为定值.方法二:设CD 的方程为,(2,)x my t P n =+,与双曲线联立,由P 点与A 点写出AC 方程,由P 点与B 点写出BD 方程,将()()1122,,,C x y D x y 代入以上两方程,两式相比消去n 建立关系式,代入韦达定理可求得t 为定值.【小问1详解】法一.由222225,64271,a b ab ⎧+=⎪⎨-=⎪⎩解得2216,9a b ==,∴双曲线E 的标准方程为221169x y -=.法二.左右焦点为()()125,0,5,0F F -,125,28c a MF MF ∴==-=,22294,a b c a ∴===-,∴双曲线E 的标准方程为221169x y -=.【小问2详解】直线CD 不可能水平,故设CD 的方程为()()1122,,,,x my t C x y D x y =+,联立221169x my t x y =+⎧⎪⎨-=⎪⎩消去x 得()()2222916189144=0,9160m y mty t m -++--≠,12218916mt y y m -∴+=-,21229144916t y y m -=-,122916y y m -=±-,AC 的方程为11(4)4y y x x =++,令2x =,得1164p y y x =+,BD 的方程为22(4)4y y x x =--,令2x =,得2224p y y x -=-,1221112212623124044y y x y y x y y x x -∴=⇔-++=+-()()21112231240my t y y my t y y ⇔+-+++=()()1212431240my y t y t y ⇔+-++=()()()()12121242480my y t y y t y y ⇔+-++--=()222249144(24)1824(8)9160916916916m t t mt t t m m m m ---⇔-±=---3(8)(0m t t ⇔-±-=(8)30t m ⎡⇔-=⎣,解得8t =3m =±,即8t =或4t =(舍去)或4t =-(舍去),∴CD 的方程为8x my =+,∴直线CD 过定点,定点坐标为(8,0).方法二.直线CD 不可能水平,设CD 的方程为()()1122,,,,,(2,)x my t C x y D x y P n =+,联立22,1,169x my t x y =+⎧⎪⎨-=⎪⎩,消去x 得()2229161891440m y mty t -++-=,2121222189144,916916mt t y y y y m m --∴+==--,AC 的方程为(4)6n y x =+,BD 的方程为(4)2n y x =--,,C D 分别在AC 和BD 上,()()11224,462n n y x y x ∴=+=--,两式相除消去n 得()211211223462444x y y y x x x y ---=⇔+=+-,又22111169x y -=,()()211194416x x y ∴+-=.将()2112344x y x y --+=代入上式,得()()1212274416x x y y ---=⇔()()1212274416my t my t y y -+-+-=()()221212271627(4)27(4)0m y y t m y y t ⇔++-++-=⇔()22222914418271627(4)27(4)0916916t mt m t m t m m --++-+-=--.整理得212320t t +=-,解得8t =或4t =(舍去).∴CD 的方程为8x my =+,∴直线CD 过定点,定点坐标为(8,0).【点睛】圆锥曲线中直线过定点问题通法,先设出直线方程y kx m =+,通过韦达定理和已知条件若能求出m 为定值可得直线恒过定点,若得到k 和m 的一次函数关系式,代入直线方程即可得到直线恒过定点.22.设函数()()2cos 102x f x x x =-+≥.(1)求()f x 的最值;(2)令()sin g x x =,()g x 的图象上有一点列()*11,1,2,...,,22i i i A g i n n ⎛⎫⎛⎫=∈ ⎪ ⎪⎝⎭⎝⎭N ,若直线1i i A A +的斜率为()1,2,...,1i k i n =-,证明:1217 (6)n k k k n -+++>-.【答案】(1)()f x 在[)0,∞+上的最小值为()00f =,()f x 在[)0,∞+上无最大值.(2)见解析【解析】【分析】(1)求出原函数的二阶导数后可判断二阶导数非负,故可判断导数非负,据此可求原函数的最值.(2)根据(1)可得3sin (0)6x x x x ≥-≥,结合二倍角的正弦可证:2271162i i k +>-⨯,结合等比数列的求和公式可证题设中的不等式.【小问1详解】()sin f x x x '=-+,设()sin s x x x =-+,则()cos 10s x x '=-+≥(不恒为零),故()s x 在()0,∞+上为增函数,故()()00s x s >=,所以()0f x ¢>,故()f x 在[)0,∞+上为增函数,故()f x 在[)0,∞+上的最小值为()00f =,()f x 在[)0,∞+上无最大值.【小问2详解】先证明一个不等式:3sin (0)6x x x x ≥-≥,证明:设()3sin ,06x u x x x x =-+≥,则()2cos 1()02x u x x f x '=-+=≥(不恒为零),故()u x 在[)0,∞+上为增函数,故()()00u x u ≥=即3sin (0)6x x x x ≥-≥恒成立.当*N i ∈时,11111111222sin sin 112222i i i i i i i i g g k ++++⎛⎫⎛⎫- ⎪ ⎪⎛⎫⎝⎭⎝⎭==- ⎪⎝⎭-11111111111122sin cos sin 2sin 2cos 122222i i i i i i i +++++++⎛⎫⎛⎫=-=⨯- ⎪ ⎪⎝⎭⎝⎭由(1)可得()2cos 102x x x ≥->,故12311cos 1022i i ++≥->,故111112311112sin 2cos 12sin 2112222i i i i i i ++++++⎡⎤⎛⎫⎛⎫⨯-≥-- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦1112213322111112sin121222622i i i i i i i +++++++⎛⎫⎛⎫⎛⎫=⨯-≥-- ⎪ ⎪⎪⨯⎝⎭⎝⎭⎝⎭2222224422117111711111622626262i i i i i +++++⎛⎫⎛⎫=--=-⨯+⨯>-⨯ ⎪⎪⨯⎝⎭⎝⎭,故1214627111...16222n n k k k n -⎛⎫+++>--+++ ⎪⎝⎭ 41111771112411166123414n n n n -⎛⎫- ⎪⎛⎫⎝⎭=--⨯=--⨯ ⎪⎝⎭-771797172184726n n n n =--+⨯>->-.。

湖南省长沙市湖南师范大学附属中学2024-2025学年高三上学期月考(一)数学试题及答案

湖南省长沙市湖南师范大学附属中学2024-2025学年高三上学期月考(一)数学试题及答案

大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选选选:本选共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}Axx x B x x =+−≤=−<∣∣,则A B = ( )A. {}32xx −≤≤∣ B. {32}x x −≤<∣ C. {12}x x <≤∣D. {12}x x <<∣2. 若复数z 满足()1i 3i z +=−+(i 是虚数单位),则z 等于( )A.B.54C.D.3. 已知平面向量()()5,0,2,1ab ==−,则向量a b +在向量b上投影向量为( )A. ()6,3−B. ()4,2−C. ()2,1−D. ()5,04. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( ) A. 21B. 19C. 12D. 425. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nµσ∼,记()()p k P k X k µσµσ=−≤≤+,则()()0.750.547,10.683p p ≈≈.A 136人 B. 272人C. 328人D. 820人6. 已知()π5,0,,cos ,tan tan 426αβαβαβ∈−=⋅=,则αβ+=( ) A.π6 B.π4C.π3D.2π37. 已知12,F F 是双曲线22221(0)x y a b a b−=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条的.渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A.B.C. (D. (8. 已知函数()220log 0x a x f x x x ⋅≤= > ,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( ) A. ()0,1B. ()(),00,1−∞∪C. [)1,+∞D. ()()0,11,+∞二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D −中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN10. 已知函数()5π24f x x=+,则( )A. ()f x 的一个对称中心为3π,08B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象 C. ()f x 在区间5π7π,88上单调递增 D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m∈11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++−=,则( )A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =−=∑ 三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +−的展开式中2x y 的系数为______.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x ′−>,且()10f =,则不等式()0f x >的解集为__________.14. 已知点C 为扇形AOB 弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λµλµ=+∈,则λµ+的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=. (1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB =,求CD 的长.16. 已知1ex =为函数()ln af x x x =的极值点. (1)求a 的值; (2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x −≥,求k 的取值范围. 17. 已知四棱锥P ABCD −中,平面PAB ⊥底面,ABCD AD∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥==为AB 的中点,F 为棱PC 上异于,P C 的点.的(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C ypx p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r −+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值; (2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况. 日期t 12345678910销售量千张 1.9 1.98 2.2 2.36 2.43 2.59 2.68 2.76 2.7 04经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t ======∑∑∑ (1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ; (3)记(2)中所得概率n P 的值构成数列{}()N n P n ∗∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε−<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛...参考公式: ()()()1122211ˆˆ,n ni ii ii i n n i i i i x x y y x y nx yay bx x xx nx====−−−==−−−∑∑∑∑.大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选选选:本选共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}Axx x B x x =+−≤=−<∣∣,则A B = ( )A. {}32xx −≤≤∣ B. {32}x x −≤<∣ C. {12}x x <≤∣ D. {12}x x <<∣【答案】D 【解析】【分析】通过解一元二次不等式和对数函数的定义域,求出集合,A B ,再求交集. 【详解】集合{}()32,{lg 10}{12}A x x B x x x x =−≤≤=−<=<<∣∣∣,则{12}A B xx ∩=<<∣, 故选:D .2. 若复数z 满足()1i 3i z +=−+(i 是虚数单位),则z 等于( )A.B.54C.D.【答案】C 【解析】【分析】由复数的除法运算计算可得12i z =−+,再由模长公式即可得出结果. 【详解】依题意()1i 3i z +=−+可得()()()()3i 1i 3i 24i12i 1i 1i 1i 2z −+−−+−+====−+++−,所以z =. 故选:C3. 已知平面向量()()5,0,2,1a b ==−,则向量a b +在向量b上的投影向量为( )A. ()6,3−B. ()4,2−C. ()2,1−D. ()5,0【答案】A 【解析】【分析】根据投影向量的计算公式即可求解.【详解】()()7,1,15,a b a b b b +=−+⋅==所以向量a b +在向量b 上的投影向量为()()236,3||a b b b bb +⋅==− .故选:A4. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( ) A. 21 B. 19C. 12D. 42【答案】A 【解析】【分析】根据等差数列的性质,即可求解公差和首项,进而由求和公式求解.【详解】{}n a 是等差数列,396214a a a ∴+==,即67a =,所以67769,a a a a == 故公差76162,53d a a a a d =−=∴=−=−,()767732212S ×∴=×−+×=, 故选:A5. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nµσ∼,记()()p k P k X k µσµσ=−≤≤+,则()()0.750.547,10.683p p ≈≈.A. 136人B. 272人C. 328人D. 820人【答案】B 【解析】【分析】首先求出平均数,即可得到学生的数学成绩2~(73.5,22)X N ,再根据所给条件求出(5790)P X ≤≤,即可求出(90)P X ≥,即可估计人数.【详解】由题得0.4915073.5,22µσ=×==,()()(),0.750.547p k P k X k p µσµσ=−≤≤+≈ ,()5790P X ∴≤≤ ()0.750.547p ≈,()()900.510.5470.2265P X ≥×−,∴该校及格人数为0.22651200272×≈(人),故选:B . 6. 已知()π5,0,,cos ,tan tan 426αβαβαβ∈−=⋅=,则αβ+=( ) A.π6 B.π4C.π3D.2π3【答案】D 【解析】【分析】利用两角差的余弦定理和同角三角函数的基本关系建立等式求解,再由两角和的余弦公式求解即可.【详解】由已知可得5cos cos sin sin 6sin sin 4cos cos αβαβαβαβ⋅+⋅=⋅ =⋅ , 解得1cos cos 62sin sin 3αβαβ⋅=⋅=,,()1cos cos cos sin sin 2αβαβαβ∴+=⋅−⋅=−,π,0,2αβ∈,()0,παβ∴+∈, 2π,3αβ∴+=,故选:D .7. 已知12,F F 是双曲线22221(0)x y a b a b−=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A.B.C. (D. (【答案】B 【解析】【分析】根据双曲线以及圆的方程可求得弦长AB =,再根据不等式123AB F F >整理可得2259c a <,即可求得双曲线的离心率的取值范围.【详解】设以()2,0F c 为圆心,a 为半径的圆与双曲线的一条渐近线0bx ay −=交于,A B 两点, 则2F 到渐近线0bx ay −=的距离d b,所以AB =, 因为123AB F F >,所以32c ×>,可得2222299a b c a b −>=+, 即22224555a b c a >=−,可得2259c a <,所以2295c a <,所以e <,又1e >,所以双曲线的离心率的取值范围是 .故选:B8. 已知函数()220log 0x a x f x x x ⋅≤= > ,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( ) A. ()0,1 B. ()(),00,1−∞∪C. [)1,+∞D. ()()0,11,+∞【答案】C 【解析】【分析】利用换元法设()u f x =,则方程等价为()0f u =,根据指数函数和对数函数图象和性质求出1u =,利用数形结合进行求解即可. 【详解】令()u f x =,则()0f u =.�当0a =时,若()0,0u f u ≤=;若0u >,由()2log 0f u u==,得1u =. 所以由()()0ff x =可得()0f x ≤或()1f x =.如图所示,满足()0f x ≤的x 有无数个,方程()1f x =只有一个解,不满足题意;�当0a ≠时,若0≤u ,则()20uf u a =⋅≠;若0u >,由()2log 0f u u==,得1u =. 所以由()()0ff x =可得()1f x =,当0x >时,由()2log 1f x x==,可得2x =, 因为关于x 的方程()()0f f x =有且仅有两个实数根,则方程()1f x =在(,0∞−]上有且仅有一个实数根,若0a >且()(]0,20,xx f x a a ≤=⋅∈,故1a ≥; 若0a <且()0,20xx f x a ≤=⋅<,不满足题意.综上所述,实数a 的取值范围是[)1,+∞, 故选:C .二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D −中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN【答案】BD 【解析】【分析】可得过,,E F M 三点的平面为一个正六边形,判断A ;分别连接,E F 和1,B C ,截面1C BEF 是等腰梯形,判断B ;分别取11,BB CC 的中点,G Q ,易证EF 显然不平行平面QGMN ,可判断C ;EM ⊥平面PMN ,可判断D.【详解】对于A :如图经过,,E F M 三点的平面为一个正六边形EFMHQK ,点P 在平面外,,,,E F M P ∴四点不共面,∴选项A 错误;对于B :分别连接,E F 和1,B C ,则平面PEF 即平面1C BEF ,截面1C BEF 是等腰梯形,∴选项B 正确;对于C :分别取11,BB CC 的中点,G Q ,则平面PMN 即为平面QGMN , 由正六边形EFMHQK ,可知HQ EF ,所以MQ 不平行于EF ,又,EF MQ ⊂平面EFMHQK ,所以EF MQ W = ,所以EF I 平面QGMN W =, 所以EF 不平行于平面PMN ,故选项C 错误;对于D :因为,AEM BMG 是等腰三角形,45AME BMG ∴∠=∠=°, 90EMG ∴∠=°,EMMG ∴⊥,,M N 是,AB CD 的中点,易证MN AD ∥,由正方体可得AD ⊥平面11ABB A ,MN ∴⊥平面11ABB A ,又ME ⊂平面11ABB A ,EM MN ∴⊥,,MG MN ⊂ 平面PMN ,EM ∴⊥平面GMN ,EM ⊂ 平面MEF ,∴平面MEF ⊥平面,PMN 故选项D 正确.���BD .10. 已知函数()5π24f x x=+,则( )A. ()f x 的一个对称中心为3π,08B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象 C. ()f x 在区间5π7π,88上单调递增 D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m∈【答案】BD 【解析】【分析】代入即可验证A ,根据平移可得函数图象,即可由正弦型函数的奇偶性求解B ,利用整体法即可判断C ,由5πcos 24x+求解所以根,即可求解D.【详解】对于A ,由35π3π2π0848f =+×=≠,故A 错误;对于B ,()f x 的图象向右平移3π8个单位长度后得: 3π3π5ππ228842y f x x x x=−−++,为奇函数,故B 正确; 对于C ,当5π7π,88x∈时,则5π5π2,3π42x +∈ ,由余弦函数单调性知,()f x 在区间5π7π,88 上单调递减,故C 错误;对于D ,由()1f x =,得5πcos 24x+ππ4x k =+或ππ,2k k +∈Z , ()y f x =在区间()0,m 上与1y =有且只有6个交点,其横坐标从小到大依次为:ππ5π3π9π5π,,,,,424242, 而第7个交点的横坐标为13π4, 5π13π24m ∴<≤,故D 正确. 故选:BD11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++−=,则( )A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =−=∑ 【答案】ABC 【解析】【分析】根据函数奇偶性以及所满足的表达式构造方程组可得()()222f x f x ++−=,即可判断A 正确;利用对称中心表达式进行化简计算可得B 正确,可判断()g x 也是以8为周期的周期函数,即C 正确;根据周期性以及()()42f x f x ++=计算可得20241(42)2024k f k =−=∑,可得D 错误. 【详解】由题意()()()(),f x f x g x g x −=−=−,且()()()00,21g f x g x =++−=, 即()()21f x g x +−=①, 用x −替换()()21f x g x ++−=中的x ,得()()21f x g x −+=②, 由①+②得()()222f x f x ++−=, 所以()f x 的图象关于点(2,1)对称,且()21f =,故A 正确;由()()222f x f x ++−=,可得()()()()()42,422f x f x f x f x f x ++−=+=−−=−, 所以()()()()82422f x f x f x f x +=−+=−−= , 所以()f x 是以8为周期的周期函数,故B 正确; 由①知()()21g x f x =+−,则()()()()882121g x f x f x g x +=++−=+−=,故()()8g x g x +=,因此()g x 也是以8为周期的周期函数, 所以()()202400g g ==,C 正确;又因为()()42f x f x ++−=,所以()()42f x f x ++=, 令2x =,则有()()262f f +=,令10x =,则有()()10142,f f +=…, 令8090x =,则有()()809080942f f +=, 所以1012(2)(6)(10)(14)(8090)(8094)2222024f f f f f f ++++++=+++=个所以20241(42)(2)(6)(10)(14)(8090)(8094)2024k f k f f f f f f =−=++++++=∑ ,故D 错误.故选:ABC【点睛】方法点睛:求解函数奇偶性、对称性、周期性等函数性质综合问题时,经常利用其中两个性质推得第三个性质特征,再进行相关计算.三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +−的展开式中2x y 的系数为______. 【答案】180− 【解析】【分析】根据题意,由条件可得展开式中2x y 的系数为213643C C (1)⋅−,化简即可得到结果. 【详解】在6(31)x y +−的展开式中, 由()2213264C C 3(1)180x y x y ⋅⋅−=−,得2x y 的系数为180−. 故答案为:180−.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x ′−>,且()10f =,则不等式()0f x >的解集为__________.【答案】()()1,01,−∪+∞ 【解析】【分析】根据函数奇偶性并求导可得()()f x f x ′′−=,因此可得()()2f x f x ′>,可构造函数()()2xf x h x =e并求得其单调性即可得()f x 在()1,+∞上大于零,在()0,1上小于零,即可得出结论. 【详解】因为()f x 为奇函数,定义域为R ,所以()()f x f x −=−,两边同时求导可得()()f x f x ′′−−=−,即()()f x f x ′′−=且()00f =,又因为当0x >时,()()2f x f x ′−>,所以()()2f x f x ′>. 构造函数()()2xf x h x =e,则()()()22x f x f x h x ′−′=e , 所以当0x >时,()()0,h x h x ′>在()0,∞+上单调递增,又因为()10f =,所以()()10,h h x =在()1,+∞上大于零,在()0,1上小于零, 又因为2e 0x >,所以()f x 在()1,+∞上大于零,在()0,1上小于零, 因为()f x 为奇函数,所以()f x 在(),1∞−−上小于零,在()1,0−上大于零, 综上所述,()0f x >的解集为()()1,01,−∪+∞. 故答案为:()()1,01,−∪+∞14. 已知点C 为扇形AOB 的弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λµλµ=+∈,则λµ+的取值范围是__________.【答案】【解析】【分析】建系设点的坐标,再结合向量关系表示λµ+,最后应用三角恒等变换及三角函数值域求范围即可. 【详解】方法一:设圆O 的半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,过O 点作x 轴垂线为y 轴建立直角坐标系,其中()()1,1,0,cos ,sin 2A B C θθ ,其中π,0,3BOC θθ ∠=∈ , 由(),R OC OA OB λµλµ=+∈,即()()1cos ,sin 1,02θθλµ =+,整理得1cos sin 2λµθθ+=,解得cos λµθ=,则ππcos cos ,0,33λµθθθθθ+=++=+∈,ππ2ππ,,sin 3333θθ+∈+∈所以λµ +∈ . 方法二:设k λµ+=,如图,当C 位于点A 或点B 时,,,A B C 三点共线,所以1k λµ=+=; 当点C 运动到AB的中点时,k λµ=+,所以λµ +∈故答案为:四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=. (1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB =,求CD 的长.【答案】(1)2π3C = (2)3CD = 【解析】【分析】(1)利用正弦定理及两角和的正弦定理整理得到()2cos 1sin 0C B +=,再利用三角形的内角及正弦函数的性质即可求解;(2)利用正弦定理得出3b a =,再由余弦定理求出4a =,12b =,再根据三角形的面积建立等式求解. 【小问1详解】 由22cos a b c B +=,根据正弦定理可得2sin sin 2sin cos A B C B +=,则()2sin sin 2sin cos B C B C B ++=,所以2sin cos 2cos sin sin 2sin cos B C B C B C B ++=,整理得()2cos 1sin 0C B +=, 因为,B C 均为三角形内角,所以(),0,π,sin 0B C B ∈≠, 因此1cos 2C =−,所以2π3C =. 【小问2详解】因为CD 是角C的平分线,AD DB=所以在ACD 和BCD △中,由正弦定理可得,,ππsin sin sin sin 33AD CD BD CDA B ==, 因此sin 3sin BADA BD==,即sin 3sin B A =,所以3b a =, 又由余弦定理可得2222cos c a b ab C =+−,即222293a a a =++, 解得4a =,所以12b =.又ABCACD BCD S S S =+△△△,即111sin sin sin 222ab ACB b CD ACD a CD BCD ∠∠∠=⋅⋅+⋅⋅, 即4816CD =,所以3CD =. 16. 已知1ex =为函数()ln af x x x =的极值点. (1)求a 的值; (2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x −≥,求k 的取值范围. 【答案】(1)1a = (2)(]()10,−∞−+∞ , 【解析】【分析】(1)直接根据极值点求出a 的值;(2)先由(1)求出()f x 的最小值,由题意可得是求()g x 的最小值,小于等于()f x 的最小值,对()g x 求导,判断由最小值时的k 的范围,再求出最小值与()f x 最小值的关系式,进而求出k 的范围. 【小问1详解】()()111ln ln 1a a f x ax x x x a x xα−−==′+⋅+,由1111ln 10e e e a f a −=+=′,得1a =, 当1a =时,()ln 1f x x =′+,函数()f x 在10,e上单调递减,在1,e∞ +上单调递增, 所以1ex =为函数()ln af x x x =的极小值点, 所以1a =. 【小问2详解】由(1)知min 11()e ef x f ==−. 函数()g x 的导函数()()1e xg x k x −=−′ �若0k >,对()1210,,x x k ∞∀∈+∃=−,使得()()12111e 1e k g x g f x k=−=−<−<−≤,即()()120f x g x −≥,符合题意. �若()0,0kg x =,取11ex =,对2x ∀∈R ,有()()120f x g x −<,不符合题意.�若0k <,当1x <时,()()0,g x g x ′<在(),1∞−上单调递减;当1x >时,()()0,g x g x ′>在(1,+∞)上单调递增,所以()min ()1ekg x g ==, 若对()120,,x x ∞∀∈+∃∈R ,使得()()120f x g x −≥,只需min min ()()g x f x ≤, 即1e ek ≤−,解得1k ≤−. 综上所述,k 的取值范围为(](),10,∞∞−−∪+.17. 已知四棱锥P ABCD −中,平面PAB ⊥底面,ABCD AD ∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥==为AB 的中点,F 为棱PC 上异于,P C 的点.(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD【答案】(1)证明见解析 (2)F 位于棱PC 靠近P 的三等分点 【解析】【分析】(1)连接,,PE EC EC 交BD 于点G ,利用面面垂直的性质定理和三角形全等,即可得证; (2)取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立,利用线面角公式代入即可求解.小问1详解】如图,连接,,PE EC EC 交BD 于点G .因为E 为AB 的中点,PA PB =,所以PE AB ⊥.因为平面PAB ⊥平面ABCD ,平面PAB ∩平面,ABCD AB PE =⊂平面PAB , 所以PE ⊥平面ABCD ,因为BD ⊂平面ABCD ,所以PE BD ⊥.因为ABD BCE ≅ ,所以CEB BDA ∠∠=,所以90CEB ABD ∠∠+= , 所以BD EC ⊥,因为,,PE EC E PE EC ∩=⊂平面PEC , 所以BD ⊥平面PEC .因为EF ⊂平面PEC ,所以BD EF ⊥. 【小问2详解】如图,取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立空间直角坐标系,【设2AB =,则2,1,BC AD PA PB ====则()()()()0,0,1,1,2,0,1,1,0,0,0,0P C D E −,设(),,,(01)F x y z PF PC λλ=<<, 所以()(),,11,2,1x y z λ−=−,所以,2,1x y z λλλ===−,即(),2,1F λλλ−.则()()()2,1,0,1,2,1,,2,1DC PC EF λλλ==−=−,设平面PCD 的法向量为(),,m a b c =,则00DC m PC m ⋅=⋅=,,即2020a b a b c += +−= ,,取()1,2,3m =−− , 设EF 与平面PCD 所成的角为θ,由cos θ=sin θ=.所以sin cos ,m EF m EF m EF θ⋅===整理得2620λλ−=,因为01λ<<,所以13λ=,即13PF PC = ,故当F 位于棱PC 靠近P 的三等分点时,EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C ypx p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r −+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.【答案】(1(2)证明见解析【解析】【分析】(1)根据椭圆的短轴可得抛物线方程2y x =,进而根据两点斜率公式,结合三角形的三边关系,即可由二次函数的性质求解,(2)根据两点坐标可得直线,MN DM 的直线方程,由直线与圆相切可得,a b 是方程()()()2222124240r x r x r −+−+−=的两个解,即可利用韦达定理代入化简求解定点. 【小问1详解】 由题意得椭圆的方程:221116y x +=,所以短半轴14b = 所以112242p b ==×=,所以抛物线1C 的方程是2y x =. 设点()2,P t t ,则111222PQ PE ≥−=−=≥, 所以当232ι=时,线段PQ . 【小问2详解】()1,D t 是抛物线1C 上位于第一象限的点,21t ∴=,且()0,1,1t D >∴设()()22,,,M a a N b b ,则: 直线()222:b a MN y a x a b a −−=−−,即()21y a x a a b −=−+,即()0x a b y ab −++=. 直线()21:111a DM y x a −−=−−,即()10x a y a −++=. 由直线DMr =,即()()()2222124240r a r a r −+−+−=..同理,由直线DN 与圆相切得()()()2222124240r b r b r −+−+−=. 所以,a b 是方程()()()2222124240r x r x r −+−+−=的两个解, 22224224,11r r a b ab r r −−∴+==−− 代入方程()0x a b y ab −++=得()()222440x y r x y +++−−−=, 220,440,x y x y ++= ∴ ++= 解得0,1.x y = =− ∴直线MN 恒过定点()0,1−.【点睛】圆锥曲线中定点问题的两种解法(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.技巧:若直线方程为()00y y k x x −=−,则直线过定点()00,x y ;若直线方程为y kx b =+ (b 为定值),则直线过定点()0,.b 19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况. 日期t 1 2 3 4 5 6 7 8 9 10 销售量千张 1.9 1.98 2.2 2.36 2.43 259 2.68 2.76 2.7 0.4经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t ======∑∑∑. (1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;..(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()Nn P n ∗∈. ①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε−<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛.参考公式: ()()()1122211ˆˆ,n ni ii i i i n n ii i i x x y y x y nx y ay bx x x x nx ====−−−==−−−∑∑∑∑. 【答案】(1)673220710001200y t + (2)433774n n P =+⋅−(3)①最大值为1316,最小值为14;②证明见解析 【解析】 【分析】(1)计算出新数据的相关数值,代入公式求出 ,ab 的值,进而得到y 关于t 的回归方程; (2)由题意可知1213,(3)44n n n P P P n −−=+≥,其中12113,416P P ==,构造等比数列,再利用等比数列的通项公式求解;(3)①分n 为偶数和n 为奇数两种情况讨论,结合指数函数的单调性求解;②利用数列收敛的定义,准确推理、运算,即可得证. 【小问1详解】 解:剔除第10天的数据,可得2.2100.4 2.49y ×−==新, 12345678959t ++++++++=新, 则9922111119.73100.4114,73,38510285i i i i t y t = =−×==−= ∑∑新新,所以912922119114,7395 2.4673ˆ2859560009i i i i t y t y b t t == − −×× ==−× − ∑∑新新新新新, 可得6732207ˆ 2.4560001200a =−×=,所以6732207ˆ60001200y t +. 【小问2详解】 解:由题意知1213,(3)44n n n P P P n −−=+≥,其中12111313,444416P P ==×+=, 所以11233,(3)44n n n n P P P P n −−−+=+≥,又由2131331141644P P ++×, 所以134n n P P − +是首项为1的常数列,所以131,(2)4n n P P n −+=≥ 所以1434(),(2)747n n P P n −−=−−≥,又因为1414974728P −=−=−, 所以数列47n P − 是首项为928−,公比为34−的等比数列, 故1493()7284n n P −−=−−,所以1934433()()2847774n n n P −=−−+=+−. 【小问3详解】 解:①当n 为偶数时,19344334()()28477747n n n P −=−−+=+⋅>单调递减, 最大值为21316P =; 当n 为奇数时,19344334()()28477747n n n P −=−−+=−⋅<单调递增,最小值为114P =, 综上可得,数列{}n P 的最大值为1316,最小值为14. ②证明:对任意0ε>总存在正整数0347[log ()]13N ε=+,其中 []x 表示取整函数, 当 347[log ()]13n ε>+时,347log ()34333333()()()7747474n n n P εε−=⋅−=⋅<⋅=, 所以数列{}n P 收敛.【点睛】知识方法点拨:与新定义有关的问题的求解策略:1、通过给出一个新的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.方法点拨:与数列有关的问题的求解策略:3、若新定义与数列有关,可得利用数列的递推关系式,结合数列的相关知识进行求解,多通过构造的分法转化为等差、等比数列问题求解,求解过程灵活运用数列的性质,准确应用相关的数列知识.。

湖南省长沙市2024-2025学年高三上学期11月月考数学检测试卷(含解析)

湖南省长沙市2024-2025学年高三上学期11月月考数学检测试卷(含解析)

1. 若复数z 满足一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有湖南省长沙市2024-2025学年高三上学期11月月考数学检测试卷一项是符合题目要求的)1i34i z +=-,则z =()A.B.25C.D.【答案】C 【解析】【分析】根据复数除法运算求出复数z ,计算其模,即得答案.【详解】由1i34i z+=-可得()()()()1i 34i 1i 17i 34i 34i 34i 25z+++-+===--+,则z =故选:C2. 已知数列{}n a 的前n 项和22n S n n =-,则345a a a ++等于( )A. 12B. 15C. 18D. 21【答案】B 【解析】【分析】利用52S S -即可求得345a a a ++的值.【详解】因为数列{}n a 的前n 项和22n S n n =-,所以34552=a a a S S ++-()2252522215=-⨯--⨯=.故选:B.3. 抛物线24y x =的焦点坐标为( )A. (1,0)B. (1,0)-的C. 1(0,)16-D. 1(0,)16【答案】D 【解析】【分析】先将抛物线方程化为标准方程,从而可求出其焦点坐标【详解】解:由24y x =,得214x y =,所以抛物线的焦点在y 轴的正半轴上,且124p =,所以18p =,1216p =,所以焦点坐标为1(0,16,故选:D4. 如图是函数()sin y x ωϕ=+的部分图象,则函数的解析式可为( )A. πsin 23y x ⎛⎫=- ⎪⎝⎭B. πsin 3y x ⎛⎫=+ ⎪⎝⎭C. πsin 26y x ⎛⎫=+ ⎪⎝⎭ D. 5πcos 26y x ⎛⎫=-⎪⎝⎭【答案】A 【解析】【分析】观察图象,确定函数()sin y x ωϕ=+的周期,排除B ,由图象可得当5π12x =时,函数取最小值,求ϕ由此判断AC ,结合诱导公式判断D.【详解】观察图象可得函数()sin y x ωϕ=+的最小正周期为2ππ2π36T ⎛⎫=-=⎪⎝⎭,所以2ππω=,故2ω=或2ω=-,排除B ;观察图象可得当π2π5π63212x +==时,函数取最小值,当2ω=时,可得5π3π22π+122k ϕ⨯+=,Z k ∈,所以2π2π+3k ϕ=,Z k ∈,排除C ;当2ω=-时,可得5ππ22π122k ϕ-⨯+=-,Z k ∈,所以π2π+3k ϕ=,Z k ∈,取0k =可得,π3ϕ=,故函数的解析式可能为πsin 23y x ⎛⎫=-⎪⎝⎭,A 正确;5ππππcos 2cos 2sin 26233y x x x ⎛⎫⎛⎫⎛⎫=-=+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,D 错误故选:A.5. 1903年,火箭专家、航天之父康斯坦丁・齐奥尔科夫斯基就提出单级火箭在不考虑空气阻力和地球引力的理想情况下的最大速度v 满足公式:1201lnm m v v m +=,其中12,m m 分别为火箭结构质量和推进剂的质量,0v 是发动机的喷气速度.已知某单级火箭结构质量是推进剂质量的2倍,火箭的最大速度为8km /s ,则火箭发动机的喷气速度为( )(参考数据:ln20.7≈,ln3 1.1,ln4 1.4≈≈)A. 10km /s B. 20km /sC.80km /s 3D. 40km /s【答案】B 【解析】【分析】根据实际问题,运用对数运算可得.【详解】由题意122m m =,122200122lnln 82m m m m v v v m m ++===,得03ln 82v =,故0888203ln3ln 2 1.10.7ln 2v ==≈=--,故选:B6.若83cos 5αβ+=,63sin 5αβ-=,则()cos αβ+的值为( )A. B.C.D.【答案】C 【解析】【分析】已知两式平方相加,再由两角和的余弦公式变形可得.【详解】因为83cos 5αβ=,63sin 5αβ=,所以25(3cos 4)62αβ=,2(3sin )2536αβ=,即所以2259cos co 6s 1042cos ααββ++=,229sin sin +10sin 2536ααββ-=,两式相加得9)104αβ+++=,所以cos()αβ+=,故选:C .7. 如图,一个质点从原点O 出发,每隔一秒随机向左或向右移动一个单位长度,向左的概率为23,向右的概率为13,共移动4次,则该质点共两次到达1的位置的概率为( )A.427B.827C.29D.49【答案】A 【解析】【分析】根据该质点共两次到达1的位置的方式有0101→→→和0121→→→,且两种方式第4次移动向左向右均可以求解.【详解】共移动4次,该质点共两次到达1的位置的方式有0101→→→和0121→→→,且两种方式第4次移动向左向右均可以,所以该质点共两次到达1的位置的概率为211124333332713⨯⨯+⨯⨯=.故选:A.8. 设n S 为数列{a n }的前n 项和,若121++=+n n a a n ,且存在*N k ∈,1210k k S S +==,则1a 的取值集合为( )A. {}20,21-B. {}20,20-C. {}29,11-D. {}20,19-【答案】A 【解析】【分析】利用121++=+n n a a n 可证明得数列{}21n a -和{}2n a 都是公差为2的等差数列,再可求得()2=21n S n n +,有了这些信息,就可以从k 的取值分析并求解出结果.【详解】因为121++=+n n a a n ,所以()()()()()()212342123+41=++++++37+41=212n n n n n S a a a a a a n nn --⋅⋅⋅=++⋅⋅⋅-=+,假设()2=21=210n S n n +,解得=10n 或21=2n -(舍去),由存*N k ∈,1210k k S S +==,所以有19k =或20k =,由121++=+n n a a n 可得,+1223n n a a n ++=+,两式相减得:22n n a a +-=,当20k =时,有2021210S S ==,即210a =,根据22n n a a +-=可知:数列奇数项是等差数列,公差为2,所以()211+11120a a =-⨯=,解得120a =-,当19k =时,有1920210S S ==,即200a =,根据22n n a a +-=可知:数列偶数项也是等差数列,公差为2,所以()202+10120a a =-⨯=,解得218a =-,由已知得123a a +=,所以121a =.故选:A.二、选择题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,至少有两项是符合题目要求,若全部选对得6分,部分选对得部分分,选错或不选得0分)9. 如图,在正方体1111ABCD A B C D -中,点E ,F 分别为1AD ,DB 的中点,则下列说法正确的是( )在A. 直线EF 与11D B 为异面直线B. 直线1D E 与1DC 所成的角为60oC. 1D F AD ⊥D. //EF 平面11CDD C 【答案】ABD 【解析】【分析】直接根据异面直线及其所成角的概念可判断AB ,利用反证法可判断C ,利用线面平行判定定理可判断D.【详解】如图所示,连接AC ,1CD ,EF ,由于E ,F 分别为1AD ,DB 的中点,即F 为AC 的中点,所以1//EF CD ,EF ⊄面11CDD C ,1CD ⊆面11CDD C ,所以//EF 平面11CDD C ,即D 正确;所以EF 与1CD 共面,而1B ∉1CD ,所以直线EF 与11D B 为异面直线,即A 正确;连接1BC ,易得11//D E BC ,所以1DC B ∠即为直线1D E 与1DC 所成的角或其补角,由于1BDC 为等边三角形,即160DC B ∠=,所以B 正确;假设1D F AD ⊥,由于1AD DD ⊥,1DF DD D = ,所以AD ⊥面1D DF ,而AD ⊥面1D DF 显然不成立,故C 错误;故选:ABD.10. 已知P 是圆22:4O x y +=上的动点,直线1:cos sin 4l x y θθ+=与2:sin cos 1l x y θθ-=交于点Q ,则( )A. 12l l ⊥ B. 直线1l 与圆O 相切C. 直线2l 与圆O截得弦长为 D. OQ的值为【答案】ACD 【解析】【分析】选项A 根据12l l ⊥,12120A A B B +=可判断正确;选项B 由圆心O 到1l 的距离不等半径可判断错误;选项C 根据垂直定理可得;选项D 先求出()4sin cos ,4cos sin Q θθθθ-+,根据两点间的距离公式可得.【详解】选项A :因()cos sin sin cos 0θθθθ+-=,故12l l ⊥,A 正确;选项B :圆O 的圆心O 的坐标为()0,0,半径为2r =,圆心O 到1l的距离为14d r ==>,故直线1l 与圆O 相离,故B 错误;选项C :圆心O 到1l 的距离为21d ==,故弦长为l==,故C 正确;选项D :由cos sin 4sin cos 1x y x y θθθθ+=⎧⎨-=⎩得4cos sin 4sin cos x y θθθθ=+⎧⎨=-⎩,故()4cos sin ,4sin cos Q θθθθ+-,故OQ ==,故D 正确故选:ACD11. 已知三次函数()32f x ax bx cx d =+++有三个不同的零点1x ,2x ,()3123x x x x <<,函数()()1g x f x =-也有三个零点1t ,2t ,()3123t t t t <<,则( )A. 23b ac>B. 若1x ,2x ,3x 成等差数列,则23bx a=-C. 1313x x t t +<+D. 222222123123x x x t t t ++=++【答案】ABD 【解析】【分析】对于A ,由题意可得()0f x '=有两个不同实根,则由0∆>即可判断;对于B ,若123,,x x x 成等差数列,则(x 2,f (x 2))为()f x 的对称中心,即可判断;对于C ,结合图象,当0a >和0a <时,分类讨论即可判断;对于D ,由三次函数有三个不同的零点,结合韦达定理,即可判断.【详解】因为()32f x ax bx cx d =+++,则()232f x ax bx c '=++,0a ≠,对称中心,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,对于A ,因为()f x 有三个不同零点,所以()f x 必有两个极值点,即()2320f x ax bx c =++='有两个不同的实根,所以2Δ4120b ac =->,即23b ac >,故A 正确;对于B ,由123,,x x x 成等差数列,及三次函数的中心对称性,可知(x 2,f (x 2))为()f x 的对称中心,所以23bx a=-,故B 正确;对于C ,函数()()1g x f x =-,当g (x )=0时,()1f x =,为则1y =与y =f (x )的交点的横坐标即为1t ,2t ,3t ,当0a >时,画出()f x 与1y =的图象,由图可知,11x t <,33x t <,则1313x x t t +<+,当0a <时,则1313x x t t +>+,故C 错误;对D ,由题意,得()()()()()()32123321231a x x x x x x ax bx cx da x t x t x t ax bx cx d ⎧---=+++⎪⎨---=+++-⎪⎩,整理,得123123122331122331b x x x t t t ac x x x x x x t t t t t t a ⎧++=++=-⎪⎪⎨⎪++=++=⎪⎩,得()()()()2212312233112312233122x x x x x x x x x t t t t t t t t t ++-++=++-++,即222222123123x x x t t t ++=++,故D 正确.故选:ABD.【点睛】关键点点睛:本题D 选项的关键是利用交点式得到三次方程的韦达定理式再计算即可.三、填空题(本大题共3个小题,每小题5分,共15分)12. 已知随机变量X 服从二项分布(),B n p ,若()3E X =,()2D X =,则n =_____.【答案】9【解析】【分析】根据二项分布的期望、方差公式,即可求得答案.【详解】由题意知随机变量X 服从二项分布(),B n p ,()3E X =,()2D X =,则()3,12np np p =-=,即得1,93p n ==,故答案为:913. 已知平面向量a ,b 满足2a = ,1= b ,且b 在a上投影向量为14a - ,则ab + 为______.的【解析】【分析】由条件结合投影向量公式可求a b ⋅ ,根据向量模的性质及数量积运算律求a b +.【详解】因为b 在a上的投影向量为14a - ,所以14b a a a aa ⋅⋅=- ,又2a =,所以1a b ⋅=-,又 1= b ,所以a b +====14. 如图,已知四面体ABCD 体积为32,E ,F 分别为AB ,BC 的中点,G ,H 分别在CD ,AD 上,且G ,H 是靠近D 点的四等分点,则多面体EFGHBD 的体积为_____.【答案】11【解析】【分析】连接,EG ED ,将多面体EFGHBD 被分成三棱锥G EDH -和四棱锥E BFGD -,利用题设条件找到小棱锥底面面积与四面体底面面积的数量关系,以及小棱锥的高与四面体的高的数量关系,结合四面体的体积即可求得多面体EFGHBD 的体积.【详解】如图,连接,EG ED ,则多面体EFGHBD 被分成三棱锥G EDH -和四棱锥E BFGD -.因H 是AD 上靠近D 点的四等分点,则14DHE AED S S = ,又E 是AB 的中点,故11114428DHE AED ABD ABD S S S S ==⨯= ,因G 是CD 上靠近D 点的四等分点,则点G 到平面ABD 的距离是点C 到平面ABD的距离的14,的故三棱锥G EDH -的体积1113218432G EDH C ABD V --=⨯=⨯=;又因点F 是BC 的中点,则133248CFGBCD BCD S S S =⨯= ,故58BFGD BCD S S = ,又由E 是AB 的中点知,点E 到平面BCD 的距离是点A 到平面BCD 的距离的12,故四棱锥E BFGD -的体积51532108216E BFGD A BCD V V --=⨯=⨯=,故多面体EFGHBD 的体积为11011.G EDH E BFGD V V --+=+=故答案为:11.【点睛】方法点睛:本题主要考查多面体的体积求法,属于较难题.一般的求法有两种:(1)分割法:即将多面体通过连线,作面的垂线等途径,将其分成若干可以用公式求解;(2)补形法:即将多面体通过辅助线段构造柱体,锥体或台体,利用整体体积减去个体体积等间接方法求解.四、解答题(本大题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤)15. 设ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin cos 0a B A =.(1)求A ;(2)若sin sin 2sin B C A +=,且ABC V ,求a 的值.【答案】(1)π3A = (2)2a =【解析】【分析】(1)利用正弦定理的边角变换得到tan A =,从而得解;(2)利用正弦定理的边角变换,余弦定理与三角形面积公式得到关于a 的方程,解之即可得解.【小问1详解】因为sin cos 0a B A =,即sin cos a B A =,由正弦定理得sin sin cos A B B A ⋅=⋅,因为sin 0B ≠,所以sin A A =,则tan A =,又()0,πA ∈,所以π3A =.【小问2详解】因为sin sin 2sin B C A +=,由正弦定理得2b c a +=,因为π3A =,所以11sin 22ABC S bc A bc === 4bc =,由余弦定理2222cos a b c bc A =+-⋅,得224b c bc +-=,所以()234b c bc +-=,则()22344a -⨯=,解得2a =.16. 设()()221ln 2f x x ax x x =++,a ∈R .(1)若0a =,求()f x 在1x =处的切线方程;(2)若a ∈R ,试讨论()f x 的单调性.【答案】(1)4230--=x y (2)答案见解析【解析】【分析】(1)由函数式和导函数式求出(1)f 和(1)f ',利用导数的几何意义即可写出切线方程;(2)对函数()f x 求导并分解因式,根据参数a 的取值进行分类讨论,由导函数的正负推得原函数的增减,即得()f x 的单调性.【小问1详解】当0a =时,()221ln 2f x x x x =+,()2(ln 1)f x x x '=+,因1(1),(1)22f f '==,故()f x 在1x =处的切线方程为12(1)2y x -=-,即4230--=x y ;【小问2详解】因函数()()221ln 2f x x ax x x =++的定义域为(0,)+∞,()(2)ln 2(2)(ln 1)f x x a x x a x a x '=+++=++,① 当2a e ≤-时,若10e x <<,则ln 10,20x x a +<+<,故()0f x '>,即函数()f x 在1(0,)e上单调递增;若1e x >,由20x a +=可得2a x =-.则当1e 2a x <<-时,20x a +<,ln 10x +>,故()0f x '<,即函数()f x 在1(,)e 2a-上单调递减;当2a x >-时,ln 10,20x x a +>+>,故()0f x '>,即函数()f x 在(,)2a-+∞上单调递增;② 当20e a -<<时,若1e x >,则ln 10,20x x a +>+>,故()0f x '>,即函数()f x 在1(,)e+∞上单调递增;若12e a x -<<,则ln 10,20x x a +<+>,故()0f x '<,即函数()f x 在1(,)2ea -上单调递减;若02a x <<-,则ln 10,20x x a +<+<,故()0f x '>,即函数()f x 在(0,)2a-上单调递增,③当2ea =-时,()0f x '≥恒成立,函数()f x 在()0,∞+上单调递增,④当0a ≥时,若1e x >,则ln 10,20x x a +>+>,故()0f x '>,即函数()f x 在1(,)e+∞上单调递增;若10e x <<,则ln 10,20x x a +<+>,故()0f x '<,即函数()f x 在1(0,e上单调递减;综上,当2e a <-时,函数()f x 在1(0,)e上单调递增,在1(,)e 2a -上单调递减,在(,)2a -+∞上单调递增;当2ea =-时,函数()f x 在()0,∞+上单调递增;当20e a -<<时,函数()f x 在(0,2a -上单调递增,在1(,2e a -上单调递减,在1(,)e+∞上单调递增;当0a ≥时,函数()f x 在1(0,e 上单调递减,在1(,)e+∞上单调递增.17. 已知四棱锥P ABCD -,底面ABCD 为菱形,,PD PB H =为PC 上的点,过AH 的平面分别交,PB PD 于点,M N ,且BD ∥平面AMHN .(1)证明:MN PC ⊥;(2)当H 为PC 的中点,,PA PC PA ==与平面ABCD 所成的角为60︒,求平面PAM 与平面AMN 所成的锐二面角的余弦值.【答案】(1)证明见详解(2【解析】【分析】(1)根据线面垂直可证BD ⊥平面PAC ,则BD PC ⊥,再根据线面平行的性质定理可证BD ∥MN ,进而可得结果;(2)根据题意可证⊥PO 平面ABCD ,根据线面夹角可知PAC 为等边三角形,建立空间直角坐标系,利用空间向量求面面夹角.【小问1详解】设AC BD O = ,则O 为,AC BD 的中点,连接PO ,因为ABCD 为菱形,则ACBD ⊥,又因为PD PB =,且O 为BD 的中点,则PO BD ⊥,AC PO O = ,,AC PO ⊂平面PAC ,所以BD ⊥平面PAC ,且PC ⊂平面PAC ,则BD PC ⊥,又因为BD ∥平面AMHN ,BD ⊂平面PBD ,平面AMHN 平面PBD MN =,可得BD ∥MN ,所以MN PC ⊥.【小问2详解】因为PA PC =,且O 为AC 的中点,则PO AC ⊥,且PO BD ⊥,AC BD O = ,,AC BD ⊂平面ABCD ,所以⊥PO 平面ABCD ,可知PA 与平面ABCD 所成的角为60PAC ∠=︒,即PAC 为等边三角形,设AH PO G =I ,则,G AH G PO ∈∈,且AH ⊂平面AMHN ,PO ⊂平面PBD ,可得∈G 平面AMHN ,∈G 平面PBD ,且平面AMHN 平面PBD MN =,所以G MN ∈,即,,AH PO MN 交于一点G ,因为H 为PC 的中点,则G 为PAC 的重心,且BD ∥MN ,则23PM PN PG PB PD PO ===,设2AB =,则11,32PA PC OA OC AC OB OD OP ========,如图,以,,OA OB OP 分别为,,x y z 轴,建立空间直角坐标系,则)()22,0,0,3,0,,1,0,,133AP M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,可得()24,1,0,,0,33AM NM AP ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u uu r ,设平面AMN 的法向量()111,,x n y z =,则1111203403n AM y z n NM y ⎧⋅=++=⎪⎪⎨⎪⋅==⎪⎩,令11x =,则110,y z ==,可得(n =,设平面PAM 的法向量()222,,m x y z =,则2222220330m AM y z mAP z ⎧⋅=++=⎪⎨⎪⋅=+=⎩,令2x =,则123,1y z ==,可得)m =u r,可得cos ,n m n m n m⋅===⋅r u rr u r r u r ,所以平面PAM 与平面AMN.18. 已知双曲线22:13y x Γ-=的左、右焦点为1F ,2F ,过2F 的直线l 与双曲线Γ交于A ,B 两点.(1)若AB x ⊥轴,求线段AB 的长;(2)若直线l 与双曲线的左、右两支相交,且直线1AF 交y 轴于点M ,直线1BF 交y 轴于点N .(i )若11F AB F MN S S = ,求直线l 的方程;(ii )若1F ,2F 恒在以MN 为直径的圆内部,求直线l 的斜率的取值范围.【答案】(1)线段AB 的长为6; (2)(i )直线l的方程为2x y =±+;(ii )直线l的斜率的取值范围为33()(44- .【解析】【分析】(1)直接代入横坐标求解纵坐标,从而求出的值;(2)(i )(ii )先设直线和得到韦达定理,在分别得到两个三角形的面积公式,要求相等,代入韦达定理求出参数的值即可.【小问1详解】由双曲线22:13y x Γ-=的方程,可得221,3a b ==,所以1,2a b c ====,所以1(2,0)F -,2(2,0)F ,若AB x ⊥轴,则直线AB 的方程为2x =,代入双曲线方程可得(2,3),(2,3)A B -,所以线段AB 的长为6;【小问2详解】(i )如图所示,若直线l 的斜率为0,此时l 为x 轴,,A B 为左右顶点,此时1,,F A B 不构成三角形,矛盾,所以直线l 的斜率不为0,设:2l x ty =+,1122()A x y B x y ,,(,),联立22132y x x ty ⎧-=⎪⎨⎪=+⎩,消去x 得22(31)1290t y ty -++=,t 应满足222310Δ14436(31)0t t t ⎧-≠⎨=-->⎩,由根与系数关系可得121222129,3131t y y y y t t +=-=--,直线1AF 的方程为110(2)2y y x x -=++,令0x =,得1122y y x =+,点112(0,2y M x +,直线1BF 的方程为220(2)2y y x x -=++,令0x =,得2222y y x =+,点222(0,2y N x +,121122221111|||||2||2|F F F B A A F B F S y F S S F y y y -=⨯-==-,111212221||||||222F M N M F MN N S y y x y y y y x x =-=-=-++ 12122112212121212222(4)2(4)8()||||||44(4)(4)4()16y y y ty y ty y y ty ty ty ty t y y t y y +-+-=-==+++++++,由11F AB F MN S S = ,可得1212212128()||2||4()16y y y y t y y t y y -=-+++,所以21212|4()16|4t y y t y y +++=,所以222912|4()16|43131tt t t t ⨯+-+=--,解得22229484816||431t t t t -+-=-,22916||431t t -=-,解得22021t =,经检验,满足222310Δ14436(31)0t t t ⎧-≠⎨=-->⎩,所以t =所以直线l的方程为2x y =±+;(ii )由1F ,2F 恒在以MN 为直径的圆内部,可得2190F MF >︒∠,所以110F F N M < ,又112211,22(2,)(2,22F y y N x x M F =+=+ ,所以1212224022y y x x +⨯<++,所以121210(2)(2)y y x x +<++,所以1221212104()16y y t y y t y y +<+++,所以2222931109124()163131t t t t t t -+<⨯+-+--,所以22970916t t -<-,解得271699t <<43t <<或43t -<<,经检验,满足222310Δ14436(31)0t t t ⎧-≠⎨=-->⎩,所以直线l的斜率的取值范围为33((44- .【点睛】方法点睛:圆锥曲线中求解三角形面积的常用方法:(1)利用弦长以及点到直线的距离公式,结合12⨯底⨯高,表示出三角形的面积;(2)根据直线与圆锥曲线的交点,利用公共底或者公共高的情况,将三角形的面积表示为12211||||2F F y y ⨯-或121||||2AB x x ⨯-.19. 已知{}n a 是各项均为正整数的无穷递增数列,对于*k ∈N ,设集合{}*k i B i a k =∈<N ∣,设k b 为集合k B 中的元素个数,当k B =∅时,规定0k b =.(1)若2n a n =,求1b ,2b ,17b 的值;(2)若2n n a =,设n b 的前n 项和为n S ,求12n S +;(3)若数列{}n b 是等差数列,求数列{}n a 的通项公式.【答案】(1)12170,1,4b b b === (2)1(1)22n n +-⨯+ (3)n a n =【解析】【分析】(1)根据集合新定义,利用列举法依次求得对应值即可得解;(2)根据集合新定义,求得12,b b ,121222i i i b b b i +++==== ,从而利用分组求和法与裂项相消法即可得解.(3)通过集合新定义结合等差数列性质求出11a =,然后利用反证法结合数列{}n a 的单调性求得11n n a a +-=,利用等差数列定义求解通项公式即可;【小问1详解】因为2n a n =,则123451,4,9,16,25a a a a a =====,所以{}*11i B i a =∈<=∅N ∣,{}*22{1}i B i a =∈<=N ∣,{}*1717{1,2,3,4}i B i a =∈<=N ∣,故12170,1,4b b b ===.【小问2详解】因为2n n a =,所以123452,4,8,16,32a a a a a =====,则**12{|1},{|2}i i B i a B i a =∈<=∅=∈<=∅N N ,所以10b =,20b =,当122i i k +<≤时,则满足i a k <的元素个数为i ,故121222i i i b b b i +++==== ,所以()()()1112345672122822n n n n S b b b b b b b b b b b ++++=++++++++++++ 1212222n n =⨯+⨯++⨯ ,注意到12(1)2(2)2n n n n n n +⨯=-⨯--⨯,所以121321202(1)21202(1)2(2)2n n nS n n ++=⨯--⨯+⨯-⨯++-⨯--⨯ 1(1)22n n +=-⨯+.【小问3详解】由题可知11a ≥,所以1B =∅,所以10b =,若12a m =≥,则2B =∅,1{1}m B +=,所以20b =,11m b +=,与{}n b 是等差数列矛盾,所以11a =,设()*1n n n d a a n +=-∈N,因为{}n a 是各项均为正整数的递增数列,所以*n d ∈N ,假设存在*k ∈N 使得2k d ≥,设k a t =,由12k ka a +-≥得12k a t++≥,由112k k a t t t a +=<+<+≤得t b k <,21t t b b k ++==,与{}n b 是等差数列矛盾,所以对任意*n ∈N 都有1n d =,所以数列{}n a 是等差数列,1(1)n a n n =+-=.【点睛】方法点睛:求解新定义运算有关的题目,关键是理解和运用新定义的概念以及元算,利用化归和转化的数学思想方法,将不熟悉的数学问题,转化成熟悉的问题进行求解.。

湖南省长沙市2024-2025学年高三上学期月考(三)数学试题含答案

湖南省长沙市2024-2025学年高三上学期月考(三)数学试题含答案

2025届高三月考试卷(三)数学(答案在最后)命题人:审题人:得分:________本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“存在x ∈Z ,220x x m ++”的否定是A.存在x ∈Z ,220x x m ++>B.不存在x ∈Z ,220x x m ++>C.任意x ∈Z ,220x x m ++D.任意x ∈Z ,220x x m ++>2.若集合{}2341,i ,i ,i A =(i 是虚数单位),{}1,1B =-,则A B ⋂等于A.{}1- B.{}1 C.{}1,1- D.∅3.已知奇函数()()22cos x x f x m x -=+⋅,则m =A.-1B.0C.1D.124.已知m ,l 是两条不同的直线,α,β是两个不同的平面,则下列可以推出αβ⊥的是A.m l ⊥,m β⊂,l α⊥ B.m l ⊥,l αβ⋂=,m α⊂C.m l ,m α⊥,l β⊥ D.l α⊥,m l ,m β5.已知函数()()4cos (0)f x x ωϕω=+>图象的一个最高点与相邻的对称中心之间的距离为5,则6f ϕπ⎛⎫-= ⎪⎝⎭A.0B.2ϕC.4D.2ϕ6.已知M 是圆22:1C x y +=上一个动点,且直线1:30l mx ny m n --+=与直线2:30l nx my m n +--=(m ,n ∈R ,220m n +≠)相交于点P ,则PM 的取值范围为A.1,1⎤-+⎦ B.1⎤-⎦C.1,1⎤-⎦D.1⎤⎦7.P 是椭圆2222:1(0)x y C a b a b+=>>上一点,1F ,2F 是C 的两个焦点,120PF PF ⋅= ,点Q 在12F PF ∠的角平分线上,O 为原点,1OQ PF ,且OQ b =.则C 的离心率为 A.12B.33C.63D.328.设集合(){}{}{}12345,,,,|1,0,1,1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ++++”的元素个数为A.60B.90C.120D.130二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图为某地2014年至2023年的粮食年产量折线图,则下列说法正确的是A.这10年粮食年产量的极差为16B.这10年粮食年产量的第70百分位数为35C.这10年粮食年产量的平均数为33.7D.前5年的粮食年产量的方差小于后5年粮食年产量的方差10.已知函数()f x 满足()()22f x f x ππ+=-,()()0f x f x ππ++-=,并且当()0,x π∈时,()cos f x x =,则下列关于函数()f x 说法正确的是A.302f π⎛⎫=⎪⎝⎭B.最小正周期2T π=C.()f x 的图象关于直线x π=对称D.()f x 的图象关于(),0π-对称11.若双曲线22:145x y C -=,1F ,2F 分别为左、右焦点,设点P 是在双曲线上且在第一象限的动点,点I 为12PF F △的内心,()0,4A ,则下列说法不正确的是A.双曲线C 的渐近线方程为045x y±=B.点I 的运动轨迹为双曲线的一部分C.若122PF PF =,12PI xPF yPF =+ ,则29y x -=D.不存在点P ,使得1PA PF +取得最小值答题卡题号1234567891011得分答案第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.523x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为________.13.ABC △各角的对应边分别为a ,b ,c ,满足1b ca c a b+++,则角A 的取值范围为________.14.对任意的*n ∈N ,不等式11e 1nan n n ⎛⎫⎛⎫+⋅ ⎪⎪+⎝⎭⎝⎭(其中e 是自然对数的底)恒成立,则a 的最大值为________.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设n S 为正项等比数列{}n a 的前n 项和,21332S a a =+,416a =.(1)求数列{}n a 的通项公式;(2)数列{}n b 满足11b =,1222log log n nn n b a b a ++=,求数列{}n b 的前n 项和n T .16.(本小题满分15分)如图,在四棱锥P ABCD -,BC AD ,1AB BC ==,3AD =,点E 在AD 上,且PE AD ⊥,2DE PE ==.(1)若F 为线段PE 的中点,求证:BF平面PCD ;(2)若AB ⊥平面PAD ,求平面PAB 与平面PCD 所成夹角的余弦值.17.(本小题满分15分)已知函数()21ln 2f x x x ax =+-有两个极值点为1x ,()212x x x <,a ∈R .(1)当52a =时,求()()21f x f x -的值;(2)若21e x x (e 为自然对数的底数),求()()21f x f x -的最大值.18.(本小题满分17分)已知抛物线2:2(0)E x py p =>的焦点为F ,H 为E 上任意一点,且HF 的最小值为1.(1)求抛物线E 的方程;(2)已知P 为平面上一动点,且过P 能向E 作两条切线,切点为M ,N ,记直线PM ,PN ,PF 的斜率分别为1k ,2k ,3k ,且满足123112k k k +=.①求点P 的轨迹方程;②试探究:是否存在一个圆心为()0,(0)Q λλ>,半径为1的圆,使得过P 可以作圆Q 的两条切线1l ,2l ,切线1l ,2l 分别交抛物线E 于不同的两点()11,A s t ,()22,B s t 和点()33,C s t ,()44,D s t ,且1234s s s s 为定值?若存在,求圆Q 的方程,不存在,说明理由.19.(本小题满分17分)对于一组向量1a ,2a ,3a ,…,n a(N n ∈且3n ),令123n n S a a a a =++++ ,如果存在{}()1,2,3,,p a p n ∈,使得pn p a S a - ,那么称p a是该向量组的“长向量”.(1)设(),2n a n x n =+,n ∈N 且0n >,若3a是向量组1a,2a,3a的“长向量”,求实数x 的取值范围;(2)若sin,cos 22n n n a ππ⎛⎫= ⎪⎝⎭,n ∈N 且0n >,向量组1a ,2a ,3a ,…,7a 是否存在“长向量”?给出你的结论并说明理由;(3)已知1a ,2a ,3a 均是向量组1a ,2a ,3a 的“长向量”,其中()1sin ,cos a x x = ,()22cos ,2sin a x x =.设在平面直角坐标系中有一点列1P ,2P ,3P ,…,n P ,满足1P 为坐标原点,2P 为3a的位置向量的终点,且21k P +与2k P 关于点1P 对称,22k P +与21k P +(k ∈N 且0k >)关于点2P 对称,求10151016P P 的最小值.参考答案一、二、选择题题号1234567891011答案DCADCBCDACDADABD1.D2.C【解析】集合{}i,1,1,i A =--,{}1,1B =-,{}1,1A B ⋂=-.故选C.3.A 【解析】()f x 是奇函数,()()22cos xxf x m x -=+⋅,()()()2222xx x x f x f x m --⎡⎤∴+-=+++⎣⎦cos 0x =,()()122cos 0x x m x -∴++=,10m ∴+=,1m =-.故选A.4.D【解析】有可能出现α,β平行这种情况,故A 错误;会出现平面α,β相交但不垂直的情况,故B 错误;m l ,m α⊥,l βαβ⊥⇒ ,故C 错误;l α⊥,m l m α⇒⊥ ,又由m βαβ⇒⊥ ,故D 正确.故选D.5.C【解析】设()f x 的最小正周期为T ,函数图象的一个最高点与相邻的对称中心之间的距离为5,则有224254T ⎛⎫+= ⎪⎝⎭,得12T =,则有212πω=,解得6πω=,所以()4cos 6f x x πϕ⎛⎫=+ ⎪⎝⎭,所以664cos 4cos046f ϕϕπϕππ⎛⎫⎛⎫-=-⨯+== ⎪ ⎪⎝⎭⎝⎭.故选C.6.B 【解析】依题意,直线()()1:310l m x n y ---=恒过定点()3,1A ,直线()()2:130l n x m y -+-=恒过定点()1,3B ,显然直线12l l ⊥,因此,直线1l 与2l 交点P 的轨迹是以线段AB 为直径的圆,其方程为:22(2)(2)2x y -+-=,圆心()2,2N ,半径2r =,而圆C 的圆心()0,0C ,半径11r =,如图:12NC r r =>+,两圆外离,由圆的几何性质得:12min1PM NC r r =--=,12max1PMNC r r =++=,所以PM 的取值范围为1⎤-⎦.故选B.7.C【解析】如图,设1PF m =,2PF n =,延长OQ 交2PF 于点A,由题意知1OQ PF ,O 为12F F 的中点,故A 为2PF 中点,又120PF PF ⋅= ,即12PF PF ⊥,则2QAP π∠=,又由点Q 在12F PF ∠的角平分线上得4QPA π∠=,则AQP △是等腰直角三角形,故有2222,4,11,22m n a m n c b n m ⎧⎪+=⎪+=⎨⎪⎪+=⎩化简得2,2,m n b m n a -=⎧⎨+=⎩即,,m a b n a b =+⎧⎨=-⎩代入2224m n c +=得222()()4a b a b c ++-=,即2222a b c +=,又222b ac =-,所以2223a c =,所以223e =,63e =.故选C.8.D 【解析】因为0i x =或1i x =,所以若1234513x x x x x ++++,则在()1,2,3,4,5i x i =中至少有一个1i x =,且不多于3个.所以可根据i x 中含0的个数进行分类讨论.①五个数中有2个0,则另外3个从1,-1中取,共有方法数为2315C 2N =⋅,②五个数中有3个0,则另外2个从1,-1中取,共有方法数为3225C 2N =⋅,③五个数中有4个0,则另外1个从1,-1中取,共有方法数为435C 2N =⋅,所以共有23324555C 2C 2C 2130N =⋅+⋅+⋅=种.故选D.9.ACD 【解析】将样本数据从小到大排列为26,28,30,32,32,35,35,38,39,42,这10年的粮食年产量极差为422616-=,故A 正确;1070%7⨯=,结合A 选项可知第70百分位数为第7个数和第8个数的平均数,即353836.52+=,故B 不正确;这10年粮食年产量的平均数为()13232302835384239263533.710⨯+++++++++=,故C 正确;结合图形可知,前5年的粮食年产量的波动小于后5年的粮食产量波动,所以前5年的粮食年产量的方差小于后5年的粮食年产量的方差,故D 正确.故选ACD.10.AD 【解析】由于()0,x π∈时,()cos f x x =,并且满足()()22f x f x ππ+=-,则函数()f x 的图象关于直线2x π=对称.由于()()0fx f x ππ++-=,所以()()fx f x ππ+=--,故()()()()()22f x f x f x f x ππππ--+=+=--=-,故()()()24f x f x f x ππ=-+=+,故函数的最小正周期为4π,根据()()0fx f x ππ++-=,知函数()f x 的图象关于(),0π对称.由于()0,x π∈时,()cos f x x =,3cos 022222f f ff πππππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=--=-=-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故A 正确,由于函数的最小正周期为4π,故B 错误;由函数()f x 的图象关于(),0π对称,易知()f x 的图象不关于直线x π=对称,故C 错误;根据函数图象关于点(),0π对称,且函数图象关于直线2x π=对称,知函数图象关于点()3,0π对称,又函数的最小正周期为4π,则函数图象一定关于点(),0π-对称,故D 正确.故选AD.11.ABD 【解析】双曲线22:145x y C -=,可知其渐近线方程为02x ±=,A 错误;设1PF m =,2PF n =,12PF F △的内切圆与1PF ,2PF ,12F F 分别切于点S ,K ,T ,可得PS PK =,11F S FT =,22F T F K =,由双曲线的定义可得:2m n a -=,即12122F S F K FT F T a -=-=,又122FT F T c +=,解得2F T c a =-,则点T 的横坐标为a ,由点I 与点T 的横坐标相同,即点I 的横坐标为2a =,故I 在定直线2x =上运动,B 错误;由122PF PF =,且1224PF PF a -==,解得18PF =,24PF =,1226F F c ==,126436167cos 2868PF F ∠+-∴==⨯⨯,则12sin 8PF F ∠==,1215tan 7PF F ∠∴=,同理可得:21tan PF F ∠=,设直线()115:37PF y x =+,直线)2:3PF y x =-,联立方程得(P ,设12PF F △的内切圆的半径为r ,则()12115186846282PF F S r =⨯⨯⨯=⨯++⋅△,解得153r =,即152,3I ⎛⎫⎪ ⎪⎝⎭,2152,3PI ⎛∴=-- ⎝⎭ ,(17,PF =-,(21,PF =- ,由12PI xPF yPF =+,可得27,,3x y -=--⎧⎪⎨-=-⎪⎩解得29x =,49y =,故29y x -=,C 正确;1224PF PF a -== ,12244PA PF PA PF AF ∴+=+++,当且仅当A ,P ,2F 三点共线取等号,易知()1min549PA PF +=+=,故存在P 使得1PA PF +取最小值,D 错误.故选ABD.三、填空题:本题共3小题,每小题5分,共15分.12.90【解析】523x x ⎛⎫+ ⎪⎝⎭展开式的通项公式为()()521031553C C 3rr r rr r r T xx x --+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭,令1034r -=,解得2r =,所以展开式中4x 的系数为225C 310990⋅=⨯=.13.0,3π⎛⎤ ⎥⎝⎦【解析】从所给条件入手,进行不等式化简()()1b cb a bc a c a c a b+⇒+++++()()222a c a b b c a bc ++⇒++,观察到余弦定理公式特征,进而利用余弦定理表示cos A ,由222b c aac +-可得2221cos 22b c a A bc+-=,可得0,3A π⎛⎤∈ ⎥⎝⎦.14.11ln2-【解析】对任意的*n ∈N ,不等式11e 1nan n n ⎛⎫⎛⎫+⋅ ⎪ ⎪+⎝⎭⎝⎭(其中e 是自然对数的底)恒成立,只需11e n an +⎛⎫+ ⎪⎝⎭恒成立,只需()1ln 11n a n ⎛⎫++ ⎪⎝⎭恒成立,只需11ln 1a n n -⎛⎫+ ⎪⎝⎭恒成立,构造()()11ln 1m x x x=-+,(]0,1x ∈,()()()()()22221ln 11ln 1x x x m x x x x ++-=++',(]0,1x ∈.下证()(]22ln 1,0,11x x x x +<∈+,再构造函数()()22ln 11x h x x x=+-+,(]0,1x ∈,()()()2221ln 12(1)x x x xh x x ++-'-=+,(]0,1x ∈,设()()()221ln 12F x x x x x=++--,()()2ln 12F x x x =+-',(]0,1x ∈,令()()2ln 12G x x x =+-,(]0,1x ∈,()21xG x x=-+',(]0,1x ∈,在(]0,1x ∈时,()0G x '<,()G x 单调递减,()()00G x G <=,即()0F x '<,所以()F x 递减,()()00F x F <=,即()0h x '<,所以()h x 递减,并且()00h =,所以有()22ln 11x x x+<+,(]0,1x ∈,所以()0m x '<,所以()m x 在(]0,1x ∈上递减,所以()m x 的最小值为()111ln2m =-.11ln2a ∴-,即a 的最大值为11ln2-.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.【解析】(1)因为{}n a 是正项等比数列,所以10a >,公比0q >,因为21332S a a =+,所以()121332a a a a +=+,即21112320a q a q a --=,则22320q q --=,解得12q =-(舍去)或2q =,······················································(3分)又因为3411816a a q a ===,所以12a =,所以数列{}n a 的通项公式为2n n a =.··············································································(6分)(2)依题意得1222222log log 2log log 22n n n n n n b a nb a n +++===+,························································(7分)当2n 时,()324123112311234511n n b b b b n b b b b n n n --⨯⋅⋅⋅=⨯⨯⨯⨯=++ ,所以()121n b b n n =+,因为11b =,所以()21n b n n =+,当1n =时,1n b =符合上式,所以数列{}n b 的通项公式为()21n b n n =+.····························(10分)因为()211211n b n n n n ⎛⎫==- ⎪++⎝⎭,所以1111112212221223111n n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-=⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭ .··························(13分)16.【解析】(1)设M 为PD 的中点,连接FM ,CM ,因为F 是PE 中点,所以FMED ,且12FM ED =,因为AD BC ,1AB BC ==,3AD =,2DE PE ==,所以四边形ABCE 为平行四边形,BC ED ,且12BC ED =,所以FM BC ,且FM BC =,即四边形BCMF 为平行四边形,所以BFCM ,因为BF ⊄平面,PCD CM ⊂平面PCD ,所以BF 平面PCD .················(6分)(2)因为AB ⊥平面PAD ,所以CE ⊥平面PAD ,又PE AD ⊥,所以EP ,ED ,EC 相互垂直,································································································································(7分)以E为坐标原点,建立如图所示的空间直角坐标系,则()0,0,2P ,()0,1,0A -,()1,1,0B -,()1,0,0C ,()0,2,0D ,所以()1,0,0AB = ,()0,1,2AP = ,()1,0,2PC =- ,()1,2,0CD =-,····························(9分)设平面PAB 的一个法向量为()111,,m x y z =,则1110,20,m AB x m AP y z ⎧⋅==⎪⎨⋅=+=⎪⎩ 取11z =-,则()0,2,1m =- ,·················································(11分)设平面PCD 的一个法向量为()222,,n x y z =,则222220,20,n PC x z n CD x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ 取21z =,则()2,1,1n = ,···················································(13分)设平面PAB 与平面PCD 所成夹角为θ,则cos 30m nm nθ⋅====⋅ .········(15分)17.【解析】(1)函数()21ln 2f x x x ax =+-的定义域为()0,+∞,则()211x ax f x x a x x -+=+-=',当52a =时,可得,()()2152122x x x x f x x x'⎛⎫---+ ⎪⎝⎭==,············································(2分)当10,2x ⎛⎫∈ ⎪⎝⎭或()2,x ∈+∞时,()0f x '>;当1,22x ⎛⎫∈ ⎪⎝⎭时,()0f x '<;所以()f x 在区间10,2⎛⎫ ⎪⎝⎭,()2,+∞上单调递增,在区间1,22⎛⎫ ⎪⎝⎭上单调递减;·······················(4分)所以12x =和2x =是函数()f x 的两个极值点,又12x x <,所以112x =,22x =;所以()()()211115152ln225ln 2ln222848f x f x f f ⎛⎫⎛⎫-=-=+--+-=- ⎪ ⎪⎝⎭⎝⎭,即当52a =时,()()21152ln28f x f x -=-.····································································(6分)(2)易知()()()()22221212111ln2x f x f x x x a x x x -=+---,又()21x ax f x x-+=',所以1x ,2x 是方程210x ax -+=的两个实数根,则2Δ40a =->且120x x a +=>,121x x =,所以2a >,·············································(9分)所以()()()()()()()2222222121212112211111lnln 22x x f x f x x x a x x x x x x x x x x -=+---=+--+-()()222222221212111121121111lnln ln 222x x x x x x x x x x x x x x x x ⎛⎫=--=-⋅-=-- ⎪⎝⎭,···························(11分)设21x t x =,由21e x x ,可得21e x t x =,令()11ln 2g t t t t ⎛⎫=-- ⎪⎝⎭,e t ,··························(13分)则()222111(1)1022t g t t t t -⎛⎫=-+=-< ⎪⎝⎭',所以()g t 在区间[)e,+∞上单调递减,得()()11e 1e 1e 12e 22eg t g ⎛⎫=--=-+ ⎪⎝⎭,故()()21f x f x -的最大值为e 1122e -+.··········(15分)18.【解析】(1)设抛物线E 的准线l 为2py =-,过点H 作1HH ⊥直线l 于点1H ,由抛物线的定义得1HF HH =,所以当点H 与原点O 重合时,1min 12pHH ==,所以2p =,所以抛物线E 的方程为24x y =.···················································································(4分)(2)①设(),P m n ,过点P 且斜率存在的直线():l y k x m n =-+,联立()24,,x y y k x m n ⎧=⎪⎨=-+⎪⎩消去y ,整理得:24440x kx km n -+-=,由题可知()2Δ164440k km n =--=,即20k mk n -+=,所以1k ,2k 是该方程的两个不等实根,由韦达定理可得1212,,k k m k k n +=⎧⎨=⎩··································(6分)又因为()0,1F ,所以31n k m -=,0m ≠,由123112k k k +=,有121232k k k k k +=,所以21m m n n =-,因为0m ≠,12n n -=,1n ∴=-,所以点P 的轨迹方程为()10y x =-≠.②由①知(),1P m -,设()14:1l y k x m =--,()25:1l y k x m =--,1m ≠±且0m ≠,·······(9分)联立()244,1,x y y k x m ⎧=⎪⎨=--⎪⎩消去y ,整理得2444440x k x k m -++=,又()11,A s t ,()22,B s t ,()33,C s t ,()44,D s t ,由韦达定理可得12444s s k m =+,同理可得34544s s k m =+,所以()()()212344515454444161616s s s s k m k m k k m m k k =++=+++,·····························(11分)又因为1l 和以圆心为()0,(0)Q λλ>,半径为1的圆相切,1=,即()()2224412120m k m k λλλ-++++=.同理()()2225512120m k m k λλλ-++++=,所以4k ,5k 是方程()()22212120m k m k λλλ-++++=的两个不等实根,所以由韦达定理可得()452245221,12,1m k k m k k m λλλ⎧++=-⎪⎪-⎨+⎪=⎪-⎩································································(14分)所以()()()22222123445452216161616162221621611m m s s s s k k m m k k m m λλλλ=+++=+--+=-+--,若1234s s s s 为定值,则220λ-=,又因为0λ>,所以λ=,······································(16分)所以圆Q的方程为22(1x y +-=.··········································································(17分)19.【解析】(1)由题意可得:312a a a +40x -.·······································································································································(3分)(2)存在“长向量”,且“长向量”为2a,6a,····························································(5分)理由如下:由题意可得1n a ==,若存在“长向量”p a,只需使1n pS a -,又()()712371010101,01010100,1S a a a a =++++=+-+++--+++-+=-,故只需使71p S a -=== ,即022cos12p π+,即11cos 22p π--,当2p =或6时,符合要求,故存在“长向量”,且“长向量”为2a ,6a.···························(8分)(3)由题意,得123a a a +,22123a a a + ,即()22123a a a +,即222123232a a a a a ++⋅ ,同理222213132a a a a a ++⋅,222312122a a a a a ++⋅,·····················(10分)三式相加并化简,得2221231213230222a a a a a a a a a +++⋅+⋅+⋅,即()21230a a a ++ ,1230a a a ++ ,所以1230a a a ++=,设()3,a u v = ,由1220a a a ++=得sin 2cos ,cos 2sin ,u x x v x x =--⎧⎨=--⎩·················································(12分)设(),n n n P x y ,则依题意得:()()()()()()212111222222222121,2,,,,2,,,k k k k k k k k x y x y x y x y x y x y ++++++⎧=-⎪⎨=-⎪⎩·····························(13分)得()()()()2222221122,2,,,k k k k x y x y x y x y ++⎡⎤=-+⎣⎦,故()()()()2222221122,2,,,k k x y k x y x y x y ++⎡⎤=-+⎣⎦,()()()()2121221122,2,,,k k x y k x y x y x y ++⎡⎤=--+⎣⎦,所以()()()212222212221221112,4,,4k k k k k k P P x x y y k x y x y k PP++++++⎡⎤=--=-=⎣⎦,22212(sin 2cos )(cos 2sin )58sin cos 54sin21PP x x x x x x x =--+--=+=+ ,当且仅当()4x t t ππ=-∈Z 时等号成立,·····································································(16分)故10151016min1014420282P P =⨯= .··············································································(17分)。

湖南省长沙市湖南师大附中2024-2025学年高三上学期第三次月考数学试题(含解析)

湖南省长沙市湖南师大附中2024-2025学年高三上学期第三次月考数学试题(含解析)

湖南师大附中2025届高三月考试卷(三)数学时量:120分钟满分:150分得分:________________一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合的真子集个数是( )A.7B.8C.15D.162.“”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知角的终边上有一点的坐标是,其中,则( )A.B.C.D.4.设向量,满足,等于( )A. B.2C.5D.85.若无论为何值,直线与双曲线总有公共点,则的取值范围是( )A. B.C.,且 D.,且6.已知函数的图象关于原点对称,且满足,且当时,,若,则等于( )A.B.C. D.7.已知正三棱台所有顶点均在半径为5的半球球面上,且棱台的高为( )A.1B.4C.7D.1或78.北宋数学家沈括博学多才、善于观察.据说有一天,他走进一家酒馆,看见一层层垒起的酒坛,不禁想到:{}0,1,2,311x -<240x x -<αP ()3,4a a 0a ≠sin2α=4372524252425-a b a b += a b -=a b ⋅ θsin cos 10y x θθ⋅+⋅+=2215x y m -=m 1m ≥01m <≤05m <<1m ≠1m ≥5m ≠()2f x ()()130f x f x ++-=()2,4x ∈()()12log 2f x x m =--+()()2025112f f -=-m 132323-13-111ABC A B C -AB =11A B =“怎么求这些酒坛的总数呢?”经过反复尝试,沈括提出对于上底有个,下底有个,共层的堆积物(如图所示),可以用公式求出物体的总数,这就是所谓的“隙积术”,相当于求数列,的和.若由小球堆成的上述垛积共7层,小球总个数为238,则该垛积最上层的小球个数为()A.2B.6C.12D.20二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若,则下列正确的是()A. B.C. D.10.对于函数和,下列说法中正确的有()A.与有相同的零点B.与有相同的最大值点C.与有相同的最小正周期D.与的图象有相同的对称轴11.过点的直线与抛物线交于,两点,抛物线在点处的切线与直线交于点,作交于点,则()A.B.直线恒过定点C.点的轨迹方程是D.的最小值为选择题答题卡题号1234567891011得分ab cd n()()()2266n nS b d a b d c c a⎡⎤=++++-⎣⎦ab()()()()()()11,22,,11a b a b a n b n cd+++⋅++-+-=2024220240122024(12)x a a x a x a x+=++++2024a=20240120243a a a+++=012320241a a a a a-+-++=12320242320242024a a a a-+--=-()sin cosf x x x=+()sin cos22g x x xππ⎛⎫⎛⎫=---⎪ ⎪⎝⎭⎝⎭()f x()g x()f x()g x()f x()g x()f x()g x()0,2P2:4C x y=()11,A x y()22,B x yC A2y=-N NM AP⊥AB M5OA OB⋅=-MNM()22(1)10y x y-+=≠ABMN答案三、填空题:本题共3小题,每小题5分,共15分.12.已知复数,的模长为1,且,则________.13.在中,角,,所对的边分别为,,已知,,,则________.14.若正实数是函数的一个零点,是函数的一个大于e 的零点,则的值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)现有某企业计划用10年的时间进行技术革新,有两种方案:贷款利润A 方案一次性向银行贷款10万元第1年利润1万元,以后每年比前一年增加的利润B 方案每年初向银行贷款1万元第1年利润1万元,以后每年比前一年增加利润3000元两方案使用期都是10年,贷款10年后一次性还本付息(年末结息),若银行贷款利息均按的复利计算.(1)计算10年后,A 方案到期一次性需要付银行多少本息?(2)试比较A 、B 两方案的优劣.(结果精确到万元,参考数据:,)16.(本小题满分15分)如图,四棱锥中,底面为等腰梯形,.点在底面的射影点在线段上.(1)在图中过作平面的垂线段,为垂足,并给出严谨的作图过程;(2)若.求平面与平面所成锐二面角的余弦值.17.(本小题满分15分)1z 2z 21111z z +=12z z +=ABC ∆A B C a b c 5a =4b =()31cos 32A B -=sin B =1x ()2e e xf x x x =--2x ()()()3e ln 1e g x x x =---()122e ex x -25%10%101.12.594≈101.259.313≈P ABCD -ABCD 222AD AB BC ===P Q AC A PCD H 2PA PD ==PAB PCD已知函数,为的导数.(1)证明:当时,;(2)设,证明:有且仅有2个零点.18.(本小题满分17分)在平面直角坐标系中,已知椭圆的两个焦点为、,为椭圆上一动点,设,当时,.(1)求椭圆的标准方程.(2)过点的直线与椭圆交于不同的两点、(在,之间),若为椭圆上一点,且,①求的取值范围;②求四边形的面积.19.(本小题满分17分)飞行棋是大家熟悉的棋类游戏,玩家通过投掷骰子来决定飞机起飞与飞行的步数.当且仅当玩家投郑出6点时,飞机才能起飞.并且掷得6点的游戏者可以连续投掷骰子,直至显示点数不是6点.飞机起飞后,飞行步数即骰子向上的点数.(1)求甲玩家第一轮投掷中,投郑次数的均值)(2)对于两个离散型随机变量,,我们将其可能出现的结果作为一个有序数对,类似于离散型随机变量的分布列,我们可以用如下表格来表示这个有序数对的概率分布:(记,)()e sin cos x f x x x =+-()f x '()f x 0x ≥()2f x '≥()()21g x f x x =--()g x xOy 2222:1(0)x y C a b a b+=>>1F 2F P C 12F PF θ∠=23πθ=12F PF ∆C ()0,2B l M N M B N Q C OQ OM ON =+ OBMOBNS S OMQN X 11()()lim ()n n k k E X kP k kP k ∞→∞==⎛⎫== ⎪⎝⎭∑∑ξη()()()11,m i i ijj p x p x p x y ξ====∑()()()21,njjiji p y p y p x y η====∑ξη1x 2x ⋯nx 1y ()11,p x y ()21,p x y ⋯()1,n p x y ()21p y 2y ()12,p x y ()22,p x y()2,n p x y ()22p y1若已知,则事件的条件概率为.可以发现依然是一个随机变量,可以对其求期望.(ⅰ)上述期望依旧是一个随机变量(取值不同时,期望也不同),不妨记为,求;(ⅱ)若修改游戏规则,需连续掷出两次6点飞机才能起飞,记表示“甲第一次未能掷出6点”表示“甲第一次掷出6点且第二次未能掷出6点”,表示“甲第一次第二次均掷出6点”,为甲首次使得飞机起飞时抛掷骰子的次数,求.⋯⋯⋯⋯⋯⋯my ()1,m p x y ()2,m p x y ⋯(),n m p x y ()2m p y ()11p x ()12p x()1n p x i x ξ={}j y η={}{}{}()()1,,j i i j jii i P y x p x y Py x P x p x ηξηξξ=======∣i x ηξ=∣{}{}1mi j j i j E x y P y x ηξηξ===⋅==∑∣∣()()111,mj i j i i y p x y p x ==⋅∑ξ{}E ηξ∣{}E E ηξ⎡⎤⎣⎦∣0ξ=1ξ=2ξ=ηE η湖南师大附中2025届高三月考试卷(三)数学参考答案题号1234567891011答案CACBBDABBCACDBC一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 【解析】集合共有(个)真子集.故选C.2.A 【解析】解不等式,得,解不等式,得,所以“”是“”的充分不必要条件.3.C 【解析】根据三角函数的概念,,,故选C.4.B 【解析】.5.B 【解析】易得原点到直线的距离,故直线为单位圆的切线,由于直线与双曲线总有公共点,所以点必在双曲线内或双曲线上,则.6.D 【解析】依题意函数的图象关于原点对称,所以为奇函数,因为,故函数的周期为4,则,而,所以由可得,而,所以,解得.7.A 【解析】上下底面所在外接圆的半径分别为,,过点,,,的截面如图:{}0,1,2,342115-=240x x -<04x <<11x -<02x <<11x -<240x x -<44tan 33y a x a α===22sin cos 2tan 24sin211tan 25ααααα===+()2211()()1911244a b a b a b ⎡⎤⋅=+--=⨯-=⎣⎦ 1d ==2215x y m -=()1,0±01m <≤()f x ()f x ()()()133f x f x f x +=--=-()f x ()()20251f f =()()11f f -=-()()2025112f f -=-()113f =()()13f f =-()121log 323m --=13m =-13r =24r =A 1A 1O 2O,,,故选A.8.B 【解析】由题意,得,,则由得,整理得,所以.因为,为正整数,所以或6.因此有或而无整数解,因此.故选B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.BC 【解析】对于A :令,则,故A 错误;对于B :令,则,故B 正确;对于C :令,则,故C 正确;对于D ,由,两边同时求导得,令,则,故D 错误.故选BC.10.ACD 【解析】,.令,则,;令,则,,两个函数的零点是相同的,故选项A 正确.的最大值点是,,的最大值点是,,两个函数的最大值虽然是相同的,但最大值点是不同的,故选项B 不正确.由正弦型函数的最小正周期为可知与有相同的最小正周期,故选项C 正确.曲线的对称轴为,,曲线的对称轴为,,两个函数的图象有相同的对称轴,故选项D 正确.故选ACD.11.BC 【解析】作图如下:24OO ==13OO ==211h OO OO ∴=-=6c a =+6d b =+()()()772223866b d a b dc c a ⎡⎤++++-=⎣⎦()()()()77262126623866b b a b b a a a ⎡⎤++++++++-=⎣⎦()321ab a b ++=773aba b +=-<a b 3ab =6,3a b ab +=⎧⎨=⎩5,6.a b ab +=⎧⎨=⎩63a b ab +=⎧⎨=⎩6ab =0x =01a =1x =20240120243a a a +++= 1x =-012320241a a a a a -+-++= 2024220240122024(12)x a a x a x a x +=++++ 202322023123202420242(12)232024x a a x a x a x ⨯⨯+=++++ 1x =-12320242320244048a a a a -++-=- ()4f x x π⎛⎫=+ ⎪⎝⎭()3244g x x x πππ⎛⎫⎛⎫=--=-⎪ ⎪⎝⎭⎝⎭()0f x =4x k ππ=-+k ∈Z ()0g x =34x k ππ=+k ∈Z ()f x 24k ππ+k ∈Z ()g x 324k ππ-+k ∈Z 2πω()f x ()g x 2π()y f x =4x k ππ=+k ∈Z ()y g x =54x k ππ=+k ∈Z设直线的方程为(斜率显然存在),,,联立消去整理可得,由韦达定理得,,A.,,故A 错误;B.抛物线在点处的切线为,当时,,即,直线的方程为,整理得,直线恒过定点,故B 正确;C.由选项B 可得点在以线段为直径的圆上,点除外,故点的轨迹方程是,故C 正确;D.,则,,,则,设,,当单调递增,所以,故D 错误.故选BC.三、填空题:本题共3小题,每小题5分,共15分.AB 2y tx =+211,4x A x ⎛⎫ ⎪⎝⎭222,4x B x ⎛⎫ ⎪⎝⎭22,4,y tx x y =+⎧⎨=⎩x 2480x tx --=124x x t +=128x x =-221212444x x y y =⋅=1212844OA OB x x y y ⋅=+=-+=- C A 21124x x x y ⎛⎫=+ ⎪⎝⎭2y =-11121244282222x x x x x t x x =-=-=+=-()2,2N t -MN ()122y x t t +=--xy t=-MN ()0,0M OP O M ()22(1)10y x y -+=≠2MN AB ===22ABMN ===m =m ≥12ABm MN m ⎛⎫=- ⎪⎝⎭()1f m m m =-m ≥()2110f m m=+>'m ≥()f m min ()f m f==12.1【解析】设,,因为,所以.因为,,所以,所以,所以,,所以.【解析】在中,因为,所以.又,可知为锐角且.由正弦定理,,于是.将及的值代入可得,平方得,故.14.e 【解析】依题意得,,即,,,即,,,,,又,,同构函数:,则,又,,,,又,,单调递增,,.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解析】(1)A 方案到期时银行贷款本息为(万元).……(3分)()1i ,z a b a b =+∈R ()2i ,z c d cd =+∈R 21111z z +=1222111z z z z z z +=111z z =221z z =121z z +=()()i i i 1a b c d a c b d -+-=+-+=1a c +=0b d +=()()12i 1z z a c b d +=+++=ABC ∆a b >A B >()31cos 32A B -=A B -()sin A B -=sin 5sin 4A aB b ==()()()5sin sin sin sin cos cos sin 4B A A B B A B B A B B ⎡⎤==-+=-+-⎣⎦()cos A B -()sin A B -3sin B B =2229sin 7cos 77sin B B B ==-sin B =1211e e 0xx x --=1211e e xx x -=10x >()()322e ln 1e 0x x ---=()()322e ln 1e x x --=2e x >()()()131122e e e e ln 1x x x x x ∴-==--()()()11122e e ln 1e x x x x +∴-=--()()()21ln 11112e e ln 1e e x x x x -++⎡⎤∴-=--⎣⎦2ln 1x > 2ln 10x ->∴()()1e e ,0x F x x x +=->()()312ln 1e F x F x =-=()()111e e e e e 1e x x x x F x x x +++=-+'=-+0x > 0e e 1x ∴>=e 10x ∴->1e 0x x +>()0F x ∴'>()F x 12ln 1x x ∴=-()()()31222222e ln 1e e e eeex x x x ---∴===()1010110%26⨯+≈(2)A 方案10年共获利:(万元),……(5分)到期时银行贷款本息为(万元),所以A 方案净收益为:(万元),……(7分)B 方案10年共获利:(万元),……(9分)到期时银行贷款本息为(万元),……(11分)所以B 方案净收益为:(万元),……(12分)由比较知A 方案比B 方案更优.……(13分)16.【解析】(1)连接,有平面,所以.在中,.同理,在中,有.又因为,所以,,所以,,故,即.又因为,,平面,所以平面.平面,所以平面平面.……(5分)过作垂直于点,因为平面平面,平面平面,且平面,有平面.……(7分)(2)依题意,.故为,的交点,且.所以过作直线的平行线,则,,,两两垂直,以为原点建立如图所示空间直角坐标系,()1091.2511125%(125%)33.31.251-+++++=≈- 1010(110%)25.9⨯+≈33.325.97-≈()()101010.31 1.3190.310123.52⨯-⨯++++⨯=⨯+= ()()10109 1.11.11(110%)(110%)110%17.51.11-++++++=≈- 23.517.56-≈PQ PQ ⊥ABCD PQ CD ⊥ACD ∆2222cos 54cos AC AD CD AD CD ADC ADC =+-⋅⋅∠=-∠ABC ∆222cos AC ABC =-∠180ABC ADC ∠+∠= 1cos 2ADC ∠=()0,180ADC ∠∈ 60ADC ∠=AC =222AC CD AD +=AC CD ⊥PQ AC Q = PQ AC ⊂PAC CD ⊥PAC CD ⊂PCD PCD ⊥PAC A AH PC H PCD ⊥PAC PCD PAC PC =AH ⊂PAC AH ⊥PCD AQ DQ ==Q AC BD 2AQ ADCQ BC==23AQ AC ==PQ ==C PQ l l AC CD C则:,,,,所以,,,.设平面的法向量为,则取.同理,平面的法向量,,……(14分)故所求锐二面角余弦值为.……(15分)17.【解析】(1)由,设,则,当时,设,,,,和在上单调递增,,,当时,,,则,函数在上单调递增,,即当时,.()1,0,0D P ⎛ ⎝()A 12B ⎛⎫- ⎪ ⎪⎝⎭()1,0,0CD = CP ⎛= ⎝ 0,AP ⎛= ⎝ 1,2BP ⎛= ⎝ PCD (),,m x y z =)0,0,m CD x m CP y ⎧⋅==⎪⎨⋅=+=⎪⎩()0,m =- PAB )1n =-1cos ,3m n m n m n ⋅==13()e cos sin xf x x x =+'+()e cos sin xh x x x =++()e sin cos xh x x x =+'-0x ≥()e 1x p x x =--()sin q x x x =-()e 10x p x ='-≥ ()1cos 0q x x ='-≥()p x ∴()q x [)0,+∞()()00p x p ∴≥=()()00q x q ≥=∴0x ≥e 1x x ≥+sin x x ≥()()()e sin cos 1sin cos sin 1cos 0xh x x x x x x x x x =-+≥+-+=-++≥'∴()e cos sin x h x x x =++[)0,+∞()()02h x h ∴≥=0x ≥()2f x '≥(2)由已知得.①当时,,在上单调递增,又,,由零点存在定理可知,在上仅有一个零点.……(10分)②当时,设,则,在上单调递减,,,,在上单调递减,又,,由零点存在定理可知在上仅有一个零点,综上所述,有且仅有2个零点.……(15分)18.【解析】(1)设,为椭圆的焦半距,,,当时,最大,此时或,不妨设,当时,得,所以,又因为,所以,.从,而椭圆的标准方程为.……(3分)(2)由题意,直线的斜率显然存在.设,.……(4分),同理,..……(6分)联立,……(8分)()e sin cos 21xg x x x x =+---0x ≥()()e cos sin 220x g x x x f x =+='+--'≥ ()g x ∴[)0,+∞()010g =-< ()e 20g πππ=->∴()g x [)0,+∞0x <()2sin cos (0)e x x xm x x --=<()()2sin 10exx m x -=≤'()m x ∴(),0-∞()()01m x m ∴>=e cos sin 20x x x ∴++-<()e cos sin 20x g x x x ∴=++-<'()g x ∴(),0-∞()010g =-< ()e 20g πππ--=+>∴()g x (),0-∞()g x ()00,P x y c C 12122F PF p S c y ∆=⋅⋅00y b <≤ 0y b =12F PF S ∆()0,P b ()0,P b -()0,P b 23πθ=213OPF OPF π∠=∠=c =12F PF S bc ∆==1b =c =2a =∴C 2214x y +=l ()11: 2.,l y kx M x y =+()22,N x y 1112OBM S OB x x ∆∴=⋅=2OBN S x ∆=12OBM OBN S xS x ∆∆∴=()22222,141612044y kx k x kx x y =+⎧⇒+++=⎨+=⎩,.……(9分)又,,,同号..,,.令,则,解得,.……(12分)(3),.且四边形为平行四边形.由(2)知,,.而在椭圆上,.化简得.……(14分)线段,……(15分)到直线的距离……(16分).……(17分)()()222Δ(16)4121416430k k k∴=-⨯⨯+=->234k ∴>1221614k x x k -+=+ 12212014x x k=>+1x ∴2x ()()2222122121212216641421231414k x x x x k k x x x x k k -⎛⎫ ⎪++⎝⎭∴===++++234k > ()2226464164,1331434k k k ⎛⎫∴=∈ ⎪⎛⎫+⎝⎭+ ⎪⎝⎭211216423x x x x ∴<++<()120x x λλ=≠116423λλ<++<()1,11,33λ⎛⎫∈ ⎪⎝⎭()1,11,33OBM OBN S S ∆∆⎛⎫∴∈ ⎪⎝⎭ OQ OM ON =+()1212,Q x x y y ∴++OMQN 1221614k x x k -+=+()121224414y y k x x k ∴+=++=+22164,1414k Q k k -⎛⎫∴ ⎪++⎝⎭Q C 2222164441414k k k -⎛⎫⎛⎫∴+⨯= ⎪ ⎪++⎝⎭⎝⎭2154k =∴MN ====O MN d ==OMQN S MN d ∴=⋅==四边形19.【解析】(1),,2,3,…,所以,,2,3,…,记,则.作差得:,所以,.故.……(6分)(2)(ⅰ)所有可能的取值为:,.且对应的概率,.所以,又,所以.……(12分)(ⅱ),;,;,,,故.……(17分)()11566k P X k -⎛⎫==⨯ ⎪⎝⎭1k =()56k k k P X k ⋅==1k =()21111512666nn k kP k n =⎛⎫=⨯+⨯++⨯ ⎪⎝⎭∑ 211112666n n S n =⨯+⨯++⨯ 2311111126666n n S n +=⨯+⨯++⨯ 1211111511111111661666666556616n n n n n n n S n n ++⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-⨯=-⨯=-+ ⎪⎪⎝⎭⎝⎭- 611155566n n n S ⎡⎤⎛⎫⎛⎫=⋅-+⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦()16615556n nn k kP k S n =⎛⎫⎛⎫==-+ ⎪⎪⎝⎭⎝⎭∑116616()()lim ()lim 5565nn n n k k E X kP k kP k n ∞→∞→∞==⎡⎤⎛⎫⎛⎫⎛⎫===-+=⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∑∑{}E ηξ∣{}i E x ηξ=∣1,2,,i n = {}{}()()()1ii i p E E x p x p x ηξηξξ=====∣∣1,2,,i n = {}()()()()()111111111[{}],,nnm n m i i j i j i j i j i i j i j i E E E x p x y p x y p x y p x y p x ηξηξ=====⎛⎫==⋅=⋅= ⎪ ⎪⎝⎭∑∑∑∑∑∣∣()()()()21111111,,,n m m n mn mj i j j i j j i j j j i j j i j i j y p x y y p x y y p x y y p y E η=======⎛⎫⋅=⋅==⋅= ⎪⎝⎭∑∑∑∑∑∑∑{}E E E ηξη⎡⎤=⎣⎦∣{}01E E ηξη==+∣156p ={}12E E ηξη==+∣2536p ={}22E η==3136p ={}()()5513542122636363636E E E E E E ηηηηηξ⎡⎤==++++⨯=+⎣⎦∣42E η=。

数学_2014年湖南省某校高考数学四模试卷(文科)(含答案)

数学_2014年湖南省某校高考数学四模试卷(文科)(含答案)

2014年湖南省某校高考数学四模试卷(文科)一、选择题:本大题共9小题,每小题5分,满分45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合A ={x|−π≤x ≤π},集合B ={x|2sinx −1=0, x ∈A},则集合B =( )A {π6}B {π6, 5π6}C {π3, 2π3}D {−5π6, −π6, π6, 5π6} 2. 下列命题中的假命题是( )A ∃x ∈R ,lgx =0B ∃x ∈R ,tanx =1C ∀x ∈R ,x 3>0D ∀x ∈R ,2x >03. 已知直线a ⊂α,则“l ⊥a”是“l ⊥α”的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件4. 平面向量a →与b →夹角为2π3,a →=(3,0),|b →|=2,则|a →+2b →|=( ) A 7 B √37 C √13 D 35. 曲线y =sinx e x 在x =0处的切线的斜率是( ) A 1 B 12 C 0 D −16. 设a >0,b >0,若1是a 与b 的等比中项,则1a +1b 的最小值为( )A 8B 4C 1D 27. 某空间几何体的三视图如图所示,则该几何体的表面积是( )A 5+2√5B 6+2√5C 7+2√5D 8+2√58. 定义域为R 的奇函数f(x),当x ∈(−∞, 0)时,f(x)+xf′(x)<0恒成立,若a =3f(3),b =−f(−1),c =−2f(−2),则a ,b ,c 的大小关系是( )A a >c >bB c >b >aC c >a >bD a >b >c9. 等差数列{a n }的前n 项和为S n ,已知(a 1006−1)3+2013(a 1006−1)=1,(a 1008−1)3+2013(a 1008−1)=−1,则( )A S 2013=2013,a 1008>a 1006B S 2013=2013,a 1008<a 1006C S 2013=−2013,a 1008>a 1006D S 2013=−2013,a 1008<a 1006二、填空题:(本大题共6个小题,每小题5分,共30分.请把答案填在答题卡相应位置)10. 已知平面向量a →=(1,2),b →=(−2,m),且a → // b →,则m =________.11. 若tan(π−α)=2,则sin2α=________.12. 已知数列{a n }的前n 项和为S n =(−1)n ⋅n ,则a 8=________.13. 函数f(x)=2x −cosx 的零点个数是________.14. 已知x,y满足条件{x≥0 y≥0x+y≥2,则x2+y2的最小值为________.15. 记数列a1,a2,…,a n为A,其中a i∈{0, 1},i=1,2,3,…,n.定义变换f,f将A 中的1变为1,0;0变为0,1.设A1=f(A),A k+1=f(A k),k∈N∗;例如A:0,1,则A1=f(A):0,1,1,0.(1)若n=3,则A2中的项数为________;(2)设A为1,0,1,记A k中相邻两项都是0的数对个数为b k,则b k关于k的表达式为________.三、解答题:本大题共6小题,满分75分.解答须写出文字说明、证明过程和演算步骤.16. 已知函数f(x)=2cos2x+2√3sinxcosx.(1)求函数f(x)的单调递增区间;(2)求函数f(x)在[−π6, π3]上的值域.17. 设△ABC的内角A,B,C所对的边分别为a,b,c,若m→=(2, cos2C−1),n→=(sin2A+B2, 1)且m→⊥n→.(1)求角C的大小;(2)若c=√3,△ABC的面积S=√32,求a+b的值.18. 已知在四棱锥P−ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AB=2,PA=AD=1,E,F分别是AB、PD的中点.(1)求证:AF⊥平面PDC;(2)求三棱锥B−PEC的体积;(3)求证:AF // 平面PEC.19. 为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似的表示为:y=12x2−200x+80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?20. 已知数列{a n}满足a1+a22+...+a nn=2n−1(n∈N∗).(1)求数列{a n}的通项公式;(2)设b n=2n2−na n,数列{b n}的前n项和为S n.若对一切n∈N∗,都有S n<M成立(M为正整数),求M的最小值.21. 已知函数f(x)=e x−ax,其中e为自然对数的底数,a为常数.(1)若对函数f(x)存在极小值,且极小值为0,求a的值;(2)若对任意x∈[0,π2],不等式f(x)≥e x(1−sinx)恒成立,求a的取值范围.2014年湖南省某校高考数学四模试卷(文科)答案1. B2. C3. B4. C5. A6. D7. D8. A9. B10. −411. −4512. 1513. 114. 215. (1)12;(2)b k=2k−1.16. 解:(1)f(x)=2cos2x+2√3sinxcosx.=1+cos2x+√3sin2x=2sin(2x+π6)+1,∵ −π2+2kπ≤2x+π6≤π2+2kπ,∴ −π3+kπ≤x≤π6+kπ,∴ 函数f(x的单调递增区间为[−π3+kπ,π6+kπ],k∈Z,(2)∵ x∈[−π6, π3 ],∴ −π6≤2x+π6≤5π6,∴ 当2x+π6=−π6时f(x)的最小值为0;当2x +π6=π2时f(x)的最大值为3;∴ f(x)在区间[−π6,π3上的值域为[0, 3]. 17. 解:(1)△ABC 中,∵ m →⊥n →,∴ 2sin 2A+B 2+cos2C −1=0⇒cos2C +cosC =0, ∴ 2cos 2C +cosC −1=0,∴ cosC =12,即C =π3.(2)根据c =√3,△ABC 的面积S =√32=12ab ⋅sinC ,可得ab =2. 由余弦定理c 2=a 2+b 2−2ab ⋅cosC ,即 c 2=(a +b)2−3ab ,即3=(a +b)2−6, 求得(a +b)2−9,可得a +b =3.18. (1)证明:∵ PA ⊥平面ABCD ,∴ PA ⊥CD ,由底面ABCD 是矩形,∴ CD ⊥DA ,又PA ∩AD =A ,∴ CD ⊥平面PAD ,∴ CD ⊥AF .∵ PA =AD =1,F 是PD 的中点,∴ AF ⊥PD ,又PD ∩DC =D ,∴ AF ⊥平面PDC .(2)解:S △BEC =12EB ×BC =12×1×1=12, ∵ PA ⊥平面ABCD ,V B−PEC =V P−BEC =13S △BEC ×PA =13×12×1=16.(3)取PC 得中点M ,连接MF 、ME .∵ MF = // 12DC ,DC = // AB ,E 是AB 的中点,∴ FM = // AE , ∴ 四边形AEMF 是平行四边形,∴ AF // EM .又AF ⊄平面PEC ,EM ⊂平面PEC ,∴ AF // 平面PEC .19. 解:(1)由题意可知,二氧化碳的每吨平均处理成本为:yx =12x +80000x−200≥2√12x ⋅80000x −200=200, 当且仅当12x =80000x ,即x =400时,该单位每月处理量为400吨,才能使每吨的平均处理成本最低,最低成本为200元.(2)设该单位每月获利为S ,则S =100x −y=100x−(12x2−200x+80000)=−12x2+300x−80000=−12(x−300)2−35000因为400≤x≤600,所以当x=400时,S有最大值−40000.故该单位不获利,需要国家每月至少补贴40000元,才能不亏损.20. 解:(1)∵ a1+a22+⋯+a nn=2n−1,∴ a1+a22+⋯+a n−1n−1=2n−1−1(n≥2),两式相减,得a n=n⋅2n−1(n≥2),…又a1=21−1=1,故数列{a n}的通项公式a n=n⋅2n−1.…(2)∵ b n=2n2−na n =2n−12n−1,…∴ S n=120+32+522+⋯+2n−12n−1,①1 2S n=12+322+523+⋯+2n−12n,②∴ 12S n=1+22+222+⋯+22n−1−2n−12n=1+1×(1−12n−1)1−12−2n−12n=3−2n+32n.∴ S n=6−2n+32n−1…,∵ S n=6−2n+32n−1<6,∴ M≥6,即M的最小值为6.…21. 解:(1)∵ f(x)=e x−ax,∴ f′(x)=e x−a,当a≤0时,f′(x)>0,函数在R上是增函数,从而函数不存在极值,不合题意;当a>0时,由f′(x)>0,可得x>lna,由f′(x)<0,可得x<lna,∴ x=lna为函数的极小值点,由已知,f(lna)=0,即lna=1,∴ a=e;(2)不等式f(x)≥e x(1−sinx),即e x sinx−ax≥0,设g(x)=e x sinx−ax,则g′(x)=e x(sinx+cosx)−a,g″(x)=2e x cosx,x∈[0,π2]时,g″(x)≥0,则g′(x)在x∈[0,π2]时为增函数,∴ g′(x)=g′(0)=1−a.①1−a≥0,即a≤1时,g′(x)>0,g(x)在x∈[0,π2]时为增函数,∴ g(x)min=g(0)=0,此时g(x)≥0恒成立;②1−a<0,即a>1时,存在x0∈(0, π2),使得g′(x0)<0,从而x∈(0, x0)时,g′(x)< 0,∴ g(x)在[0, x0]上是减函数,∴ x∈(0, x0)时,g(x)<g(0)=0,不符合题意.综上,a的取值范围是(−∞, 1].。

湖南省四校2014届高三上学期第三次联考数学(文)试题 含解析

湖南省四校2014届高三上学期第三次联考数学(文)试题 含解析

湖南省四校2014届高三上学期第三次联考 文科数学第Ⅰ卷(共45分)一、选择题:本大题共9个小题,每小题5分,共45分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{2,1,0,1,2}U =--,集合{1,1,2}A =-,{1,1}B =-,则)(B CA U为( )A .{1,2}B .{1}C 。

{2}D .{1,1}-2.“x=3”是“x 2=9”的( )(A)充分而不必要的条件 (B)必要而不充分的条件(C )充要条件 (D )既不充分也不必要的条件 【答案】A 【解析】试题分析:当3=x 时有92=x ,当92=x 时3±=x ,故3=x 是92=x 的充分不必要条件,选A 。

考点:充要条件3.下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是( )A .21y x=-+B .lg ||y x =C .1y x= D .xy e -=【答案】A 【解析】4.在各项都为正数的等比数列}{na 中,首项为3,前3项和为21,则3a等于( )A .15B .12C .9D .65。

已知函数()()()40,40.x x x f x x x x +<⎧⎪=⎨-≥⎪⎩,, 则函数()f x 的零点个数为( )A .1B .2C .3D .4 【答案】C 【解析】试题分析:当0<x ,由0)4(=+x x 得4-=x ;当0≥x ,由0)4(=-x x 解得4,0==x x ,故共有3个零点,选C .考点:1.分段函数;2.函数的零点6.已知函数y=f (x )的图象如图所示,则函数y=f (|x|)的图象为( )A .B .C .D .【答案】B 【解析】试题分析:根据函数图像的对称变换可知,函数y=f (|x|)的图象是保留y 轴右侧的图像,然后把右侧图像沿y 轴翻折后得到,故选B.考点:函数图像的变换7.在ABC ∆中, ︒=∠120A ,1AB AC ⋅=-,则||BC 的最小值是()A 、2B 、2C 、6D 、68.奇函数)(x f 在区间]1,1[-上是增函数,且1)1(-=-f ,当]1,1[-∈x 时,函数12)(2+-≤at t x f 对一切]1,1[-∈a 恒成立,则实数t 的取值范围是( )22.≤≤-t A22.≥-≤t t B 或 20.≥≤t t C 或022.=≥-≤t t t D 或或考点:1.函数的单调性; 2。

湖南省长沙市长郡中学2014届高三上学期第四次月考试卷数学(文)试题及答案

湖南省长沙市长郡中学2014届高三上学期第四次月考试卷数学(文)试题及答案

本试题卷包括选择题、填空题和解答题三部分,共8页。

时量120分钟。

满分150分。

一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5),集合{}{}3,4,1,2,3A B ==,则等于A .{}3B .{}1,2C .{}1,3D .{}1,2,3 2.在极坐标系中,曲线4cos ρθ=围成的图形面积为A .πB .4C .4πD .16 3.已知a R ∈,则“a>2”是“22a a <”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.某程序的框图如图所示,执行该程序,若输入的x 。

值为5,则输出的y 值为A .-2B .-1C .2D .125.点(,)P x y 满足10,10,,x y x y x a +-≥⎧⎪-+≥⎨⎪≤⎩,若目标函数2z x y =-的最大值为1,则实数a 的值是 A .-3 B .3 C .-1 D .16.若单位向量a ,b 满足a b a b -=+,则a 与a-b 的夹角大小为A .4π B .3π C .34π D .23π7.某四面体三视图如图所示,则该四面体的四个面中,直角三角形的面积和是A .2B .4C .2+D .4+8.抛物线24y x =的焦点为F ,点P(x ,y)为该抛物线上的动点,O 为坐标原点,则PF PO的最小值是A .2 B .2 C .2D 9.定义在(0,)+∞上的函数()f x 满足(2)2()f x f x =,且当(]1,2x ∈时,()2f x x =-,若12,x x 是方程()(01)f x a a =<≤的两个实数根,则12x x -不可能是A. 30B. 56 C .80 D .112选择题答题卡二、填空题:本大题共6小题,每小题5分,共30分,把答案填在答题卡中对应题号后的横线上. 10.若复数2a ii+的实部与虚部相等,则实数a=__________. 11.等差数列{}n a 中,34259,18a a a a +==,则16a a =_________.12.设P 在[0,5]上随机地取值,则关于x 的方程210x px ++=有实数根的概率为_________.13.如图所示,M ,N 是函数2sin()(0)y x ωϕω=+>图 象与x 轴的交点,点P 在M ,N 之间的图象上运 动,当△MPN 面积最大时0PM PN ⋅=,则ω= _________14.设点A ,B 是圆224x y +=上的两点,点(1,0)C ,如果90ACB ∠=,则线段AB 长度的最大值为_________.15.对于各数互不相等的正整数数组123(,,,)n i i i i ⋅⋅⋅(n 是不小于3的正整数),若对任意的p ,q ∈{}1,2,3,,n ⋅⋅⋅,当p<q 时有p q i i >,则称,p q i i 是该数组的一个“逆序”.一个数组中所有“逆序”的个数称为该数组的“逆序数”,如数组(2,3,1)的逆序数等于2.则数组(4,2,3,1)的逆序数等于__________;若数组123(,,,)n i i i i ⋅⋅⋅的逆序数为n ,则数组11(,,,)n n i i i -⋅⋅⋅的逆序数为_________. 三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 1 6.(本小题满分12分) 在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c,已知a=2c ,且2A C π-=.(1)求cos C 的值;(2)当b=l 时,求△ABC 的面积S 的值. 1 7.(本小题满分12分)某市政府为了了解居民的生活用电情 况,以使全市在用电高峰月份的居民 生活不受影响,决定制定一个合理的 月均用电标准.为了确定一个较为合 理的标准,必须先了解全市居民日常用电量的分布情况.现采用抽样调查的方式,获得了n 位居民在2012年的月均用电量(单位:度)数据,其样本统计结果如下图表:(1)分别求出n ,a 的值;(2)若月用电紧张指数y 与月均用电量x (单位:度)满足如下关系式:10.3100y x =+,将频率视为概率,求用电紧张指数不小于70%的概率.18.(本小题满分12分)如图,在矩形ABCD 中,AB=2BC ,点M 在边CD 上,点F 在边AB 上,且DF AM ⊥,垂足为E ,若将△ADM 沿AM 折起,使点D 位于'D 位置,连接','D B D C 得四棱锥'D ABCM -. (1)求证:平面'D EF ⊥平面AMCB; (2)若'3D EF π∠=,直线'D F 与平面ABCM 所成角的大小为3π,求直线AD'与平面ABCM 所成角的正弦值.19.(本小题满分13分)已知数列{}n a 中,14,0n a a =>,前n 项和为n S,若n a =+(,2)n N n *∈≥.(l)求数列{}n a 的通项公式;(2)若数列11n n a a +⎧⎫⎨⎬⎩⎭前n 项和为n T ,求证132020n T ≤≤. 20.(本小题满分13分)已知圆222:((0)M x y r r -+=>.若椭圆2222:1(0)x y C a b a b+=>>的右顶点为圆M 的同心,离心率为2. (1)求椭圆C 的方程;(2)若存在直线:l y kx =,使得直线l 与椭圆C 分别交于A ,B 两点,与圆M 分别交于G ,H 两点,点G 在线段AB 上,且AG BH =,求圆M 半径r 的取值范围. 21.(本小题满分13分)已知函数2()(2)ln 22f x x a x a x a =-++++,其中a ≤2. (1)求函数()f x 的单调区间;f x在(0,2]上有且只有一个零点,求实数a的取值范围.(2)若函数()。

湖南省长沙市重点中学2014届高三第三次月考数学文(附答案)

湖南省长沙市重点中学2014届高三第三次月考数学文(附答案)

2014届高三上学期第三次月考试卷数学文(时量:120分钟 满分:150分)一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案填在答题卡对应位置.1.下列函数中,在其定义域内既是奇函数又是减函数的是A .e x y =B .3y x =-C .sin2y x =D .x y ln -=2.下列命题中,假命题为( ) A .∀x ∈R,012>++x xB .存在四边相等的四边形不.是正方形 C .若x ,y ∈R ,且x +y >2,则x ,y 至少有一个大于1 D .a +b =0的充要条件是ab=-13.执行下面的框图,若输出结果为3,则可输入的实数x 值的个数为A .1B .2C .3D .44.如图, 积中最大的是A .1B C .2D .5.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为31812343y x x =-+-,则使该生产厂家获得最大年利润的年产量为A.9万件B.11万件C.12万件D.13万件 6.下面关于复数21z i=-+的四个结论,正确的是 ①2=z ②i z 22= ③i z +1的共轭复数为④1-的虚部为z A .①② B .②③C .②④D .③④7.若直线1:+=kx y l 被圆032:22=--+x y x C 截得的弦最短,则直线l 的方程是 A.0=xB.1=yC.01=-+y xD.01=+-y x8.已知非负实数b a ,满足1≤+b a ,则关于x 的一元二次方程022=++b ax x 有实根的概 率是 A.31B.21C.61 D.32 9.已知ABC ∆是边长为2的正三角形,B 为线段EF 的中点,且3=EF ,则AF AC AE AB ⋅+⋅的取值范围是A.[]3,0B. []6,3C. []9,6D. []9,3 答案:BDCBA CDAD二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡中对应题号后的横线上.10.为了研究性别不同的高中学生是否爱好某项运动,运用22⨯列联表进行独立性检验,经 计算8.72=K ,则所得到的统计学结论是:有______的把握认为“爱好该项运动与性别 有关”. 附:11.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的参数方程为1x y t ⎧=⎪⎨=+⎪⎩t 为参数),曲线2C 的极坐标方程为34sin 2=⎪⎭⎫ ⎝⎛-πθρ,则1C 与2C交点在直角坐标系中的坐标为___________.12.在ABC ∆中,若2,60,a B b =∠=︒=,则BC 边上的高等于 .13.已知双曲线22214x y m m -=+的右焦点到其渐进线的距离为22,则此双曲线的离心率为 __________.14.设集合(){}(){}≠+-≤=-≥=B A a x y y x B x y y x A ,|,,1|,¢. (Ⅰ)实数a 的取值范围是 ; (Ⅱ)当3=a 时,若()x y A B ∈,,则y x +2的最大值是 .15已知集合{}n a a a A ,,,21 =,其中)(),2,1(A l n n i R a i >≤≤∈表示和)1(n j i a a j i ≤<≤+中所有不同值的个数.(Ⅰ)若集合{}16,8,4,2=A ,则________)(=A l ; (Ⅱ)当108=n 时,)(A l 的最小值为____________.答案:10.99﹪11.()5,213.5 14.(Ⅰ)[)+∞,1(Ⅱ)5 15.(Ⅰ)6(Ⅱ)213.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16. (本小题满分12分) 已知函数()0,016sin )(>>+⎪⎭⎫⎝⎛-=ωπωA x A x f 的最大值为3,其图像相邻两条对称轴之间的距离为2π. (Ⅰ)求函数)(x f 的解析式; (Ⅱ)设5112,2,0=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∈απαf ,求αcos 的值.解:(1)∵函数f(x)的最大值为3,∴A +1=3,即A =2,∵函数图像的相邻两条对称轴之间的距离为π2,∴最小正周期T =π,∴ω=2,故函数f(x)的解析式为y =2sin(2x -π6)+1. 6分(2)∵f ⎝⎛⎭⎫α2=2sin ⎝⎛⎭⎫α-π6+1=511,即sin ⎝⎛⎭⎫α-π6=53, ∵0<α<π2,∴-π6<α-π6<π3,∴1033466cos cos ,546cos -=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-==⎪⎭⎫⎝⎛-ππααπα所以. 12分17. (本小题满分12分)中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒 后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q (简称血酒含量,单 位是毫克/100毫升),当8020≤≤Q 时,为“酒后驾车”;当80>Q 时,为“醉酒驾车”. 某市公安局交通管理部门于2013年11月的某天晚上8点至11点在该市区解放路某处设点 进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽 血检测后所得结果画出的频率分布直方图(其中140≥Q 的人数计入140120<≤Q 人数之 内).(Ⅰ)求此次拦查中“醉酒驾车”的人数;(Ⅱ)从违法驾车的60人中按“酒后驾车”和“醉酒驾车”利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取2人,求2人中其中1人为“酒后驾车”另1人为“醉酒驾车”的概率.解:(Ⅰ) (0.0032+0.0043+0.0050)×20=0.25,0.25×60=15,所以此次拦查中“醉酒驾车”的人数为15人. 6分(Ⅱ)由分层抽样方法可知抽取的8人中“酒后驾车”的有6人,记为)6,,2,1( =i A i , “醉酒驾车”的有2人,记为)2,1(=j B j . 9分 所以从8人中任取2人共有()() 3121,A A A A 等281234567=++++++种,2人中其 中1人为“酒后驾车”另1人为“醉酒驾车”共有()()() 122111,,,B A B A B A 等1226=⨯种, 因此所求的概率为732826=⨯=P 12分18.(本小题满分12分)已知在直三棱柱ABC -A 1B 1C 1中,AB =4,AC =BC =3,D 为AB 的中点. (Ⅰ)求异面直线CC 1和AB 的距离;(Ⅱ)若AB 1⊥A 1C ,求二面角A 1-CD -B 1的平面角的余弦值.解:(1)因AC =BC ,D 为AB 的中点,故CD ⊥AB .又直三棱柱中,CC 1⊥面ABC ,故CC 1⊥CD ,所以异面直线CC 1和AB 的距离为CD =BC 2-BD 2= 5. 5分(2)由CD ⊥AB ,CD ⊥BB 1,故CD ⊥面A 1ABB 1,从而CD ⊥DA 1,CD ⊥DB 1,故∠A 1DB 1为所求的二面角A 1-CD -B 1的平面角. 8分又CD ⊥1AB ,AB 1⊥A 1C ,所以AB 1⊥平面D A AB DC A 111, 从而,从而∠A 1AB 1,∠A 1DA 都与∠B 1AB 互余,因此∠A 1AB 1=∠A 1DA ,所以Rt △A 1AD ∽Rt △B 1A 1A ,因此AA 1AD =A 1B 1AA 1,得AA 21=AD ·A 1B 1=8.从而A 1D =AA 21+AD 2=23,B 1D =A 1D =23, 所以在△A 1DB 1中,由余弦定理得cos ∠A 1DB 1=A 1D 2+DB 21-A 1B 212·A 1D ·DB 1=13. 12分19.(本小题满分13分)设n S 为数列{}n a 的前n 项和,且有,4,3,2,3,211==+=-n n S S a S n n(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n a 是单调递增数列,求a 的取值范围.解(Ⅰ)当2≥n 时,由已知213n n S S n -+= … ① 于是213(1)n n S S n ++=+ …② 由②-①得163n n a a n ++=+ …… ③ 于是2169n n a a n +++=+ …… ④ 由④-③得26n n a a +-= …… ⑤上式表明:数列2{}k a 和21{}k a +分别是以2a ,3a 为首项,6为公差的等差数列. 4分 又由①有2112S S +=,所以2122a a =-,由③有3215a a +=,4321a a +=,所以332a a =+,4182a a =-. 所以226(1)k a a k =+-()()*∈-+-=Nk k a 16212,,1a a =2136(1)k a a k +=+-()()*∈-++=N k k a 1623. 8分(Ⅱ)数列{}n a 是单调递增数列12a a ⇔<且22122k k k a a a ++<<对任意的k ∈N *成立.12a a ⇔<且2346(1)6(1)6(1)a k a k a k +-<+-<+- 1234a a a a ⇔<<<9151223218244a a a a a ⇔<-<+<-⇔<<. 所以a 的取值范围是.41549<<a 13分20.(本小题满分13分) 已知R a ∈,函数()a x x x f -=)(.(Ⅰ)求函数)(x f 的单调区间;(Ⅱ)求函数)(x f 在区间[]2,1上的最小值. 解(Ⅰ)函数的定义域为),0[+∞.xa x x xa x x f 232)(-=+-='①当0≤a 时,)0(0)(≠>'x x f ,所以.),0[)(上为增函数在+∞x f②当0>a 时,当0)(,3;0)(,30>'><'<≤x f ax x f a x 时当时. 故上为增函数在上为减函数在),3[,)3,0[)(+∞aa x f . 6分(Ⅱ)(1)当0≤a 时,由(Ⅰ)知 a f f x f -==1)1(,,]2,1[)(min 所以上为增函数在;(2) 当0>a 时, ①当6≥a 时,32a≤, 由(Ⅰ)知 ()a f f x f -==22)2(,,]2,1[)(min 所以上为减函数在;②当63<<a 时,231<<a, 由(Ⅰ)知,,]2,3(,)3,1[)(所以上为增函数在上为减函数在a a x f 32)3(min aa a f f -==③当30≤<a 时,13≤a, 由(Ⅰ)知 a f f x f -==1)1(,,]2,1[)(min 所以上为增函数在; 综上所述,()⎪⎪⎩⎪⎪⎨⎧≥-<<-≤-=时当时当时当6,2263,323,1mina a a a a a a f 13分21.(本小题满分13分)已知曲线1C 上任意一点M 到直线4:=x l 的距离是它到点()0,1F 距离的2倍;曲线2C 是以原点为顶点,F 为焦点的抛物线. (Ⅰ)求1C ,2C 的方程;(Ⅱ)过F 作两条互相垂直的直线21,l l ,其中1l 与1C 相交于点B A ,,2l 与2C 相交于点D C ,,求四边形ACBD 面积的取值范围.解(Ⅰ)设),(y x M ,则由题意有()41222-=+-x y x ,化简得:13422=+y x . 故1C 的方程为13422=+y x ,易知2C 的方程为x y 42=. 4分 (Ⅱ)由题意可设2l 的方程为1+=ky x ,代入x y 42=得0442=--ky y , 设()()2211,,,y x D y x C ,则k y y 421=+,所以)1(44)(1122121+=++=+++=+=k y y k x x DF CF CD . 7分因为21l l ⊥,故可设1l 的方程为)1(--=x k y ,代入13422=+y x 得()01248342222=-+-+k x k x k ,设()()4433,,,y x B y x A ,则3482243+=+k k x x , 所以()()()()34112214421421224343++=+-=-+-=+=k k x x x x BF AF AB . 10分 故四边形ACBD 的面积为()⎪⎭⎫⎝⎛++=⎪⎭⎫ ⎝⎛+-+-=-=++=⋅=212321411423142434124212222s s t t t t k k CD AB S (314,112≥-=≥+=t s k t 其中)设[)单调递增,在,故则∞+>-=-='≥+=3)(0111)(),3(1)(222s f ss s s f s s s s f ,因此 82313232123=⎪⎭⎫⎝⎛++≥⎪⎭⎫ ⎝⎛++=s s S ,当且仅当3=s 即0=k 等号成立. 故四边形ACBD 面积的取值范围为[)+∞,8. 13分。

湖南省长沙市长郡中学高三数学上学期第四次月考试卷

湖南省长沙市长郡中学高三数学上学期第四次月考试卷

湖南省长沙市长郡中学2014届高三数学上学期第四次月考试卷 理 新人教A 版长郡中学高三数学备课组组稿 (考试范围:高考全部内容)本试题卷包括选择题、填空题和解答题三部分,共8页,时量120分钟.满分150分,一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2|05,,|4M x x x N N x x =<<∈==,下列结论成立的是 A.N M ⊆ B.M N M =U C.M N N =U D.{}2M N =I 2.下列命题中,真命题是 A .00,0x x R e∃∈≤B. 3,3xx R x ∀∈>C .“0a b -=”的充分不必要条件是“1ab=” D .“22x a b >+”是“2x ab >”的必要不充分条件 3.已知非零向量a ,b 满足a+b 与a-b 的夹角是2π,那么下列结论中一定成立的是 A.a b = B.a=b C.a b ⊥ D.a ∥b 4.设以13434(),(),log 43xx a b c x -===,若x>l ,则a ,b ,c 的大小关系是A .a<b<c .B .c<a<bC .b<a<cD .b<c<a 5.某几何体的三视图如图所示,则它的体积是A. 3B. 5C. 7D. 96.双曲线的中心在坐标原点O ,A 、C 分别为双曲线虚轴的上、下顶点,B 是双曲线的左顶点,F 是双曲线的左焦点,直线AB 与FC 相交于D ,若双曲线离心率为2,则BDF ∠的余弦值为 A.77 B .277 C .714 D .57147.如图,已知圆22:(4)(4)4M x y -+-=,四 边形ABCD 为圆M 的内接正方形,E 、F分别为边AB ,AD 的中点,当正方形ABCD 绕圆心M 转动时,ME OF ⋅u u u r u u u r的取值范围是A .82,82⎡⎤-⎣⎦B .[]8,8-C .42,42⎡⎤-⎣⎦D .[]4,4-8.已知(0,)2x π∈,且函数212sin ()sin 2xf x x +=的最小值为b ,若函数()g x =21(),42864(0),4x x bx x πππ⎧-<<⎪⎪⎨⎪-+<≤⎪⎩,则不等式()1g x ≤的解集为A .2,22π⎡⎫⎪⎢⎪⎣⎭B .3,42π⎡⎫⎪⎢⎪⎣⎭C .2,66π⎡⎤⎢⎥⎣⎦D .3,66π⎡⎤⎢⎥⎣⎦选择题答题卡二、填空题:本大题共8个小题,考生做答7小题,每小题5分,共35分.把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第9、10、11三题中任选两题作答,如果全做,则按前2题给分) 9.在极坐标系中,圆C 的极坐标方程为:22cos 0ρρθ+=,点P 的极坐标为(2,)2π,过点P 作圆C 的切线,则两条切线夹角的正切值是________.10.已知a ,b ,c ∈R ,且228a b c ++=,则222(1)(2)(3)a b c -+++-的最小值是_______. 11.如图,AB 是半圆O 的直径,C 在半圆上,CD ⊥AB 于 点D ,且AD=3DB ,AE= EO ,设CED θ∠=,则tan2θ= ___________.(二)必做题(12至16题)12.在281()x x-的展开式中x 的系数是__________.(用数字作答) 13.执行如图所示的程序框图,则输出的结果为___________. 14.设区域{}(,)|02,02,,A a c a c a c R =<<<<∈,若任 取点(,)a c A ∈,则关于x 的方程220ax x c ++=有实 根的概率为____________.15.已知函数()3xf x x e =+-的定义域为R . (l)则函数()f x 的零点个数为___________; (2)对于给定的实数k ,已知函数()k f x = (),(),,()f x f x k k f x k≤⎧⎨>⎩,若对任意x ∈R ,恒有()()k f x f x =,则k 的最小值为__________.16.在数1和2之间插入n 个正数,使得这n+2个数构成递增等比数列,将这n+2个数的乘积记为n A ,令2log ,n n a A n N *=∈.(1)数列{}n a 的通项公式为n a =____________;(2)2446222tan tan tan tan tan tan n n n T a a a a a a +=⋅+⋅+⋅⋅⋅+⋅=___________. 三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知三角形的三内角A 、B 、C 的对边为a ,b ,c ,且△ABC 的面积为S=3cos 2ab C (1)若a=l ,b=2,求c 的值. (2)若1a =,且43A ππ≤≤,求b 的取值范围.18.(本小题满分12分)为了解某班学生关注NBA 是否与性别有关,对本班48人进行了问卷调查得到如下的列联表:已知在全班48人中随机抽取一人,抽到关注NBA 的学生的概率为23.(l)请将上面的列表补充完整(不用写计算过程),并判断是否有95%的把握认为关注NBA 与性别有关?说明你的理由.(2)现从女生中抽取2人进行进一步调查,设其中关注NBA 的人数为X ,求X 的分布列与数学期望. 下面的临界值表仅供参考:19.(本小题满分12分)如图,△BCD 是等边三角形,AB=AD ,90BAD ∠=o,将△BCD 沿BD 折叠到△'BC D 的位置,使得'AD C B ⊥.(l)求证:'AD AC ⊥;(2)若M 、N 分别为BD ,'C B 的中点,求二面角N-AM-B 的正弦值. 20.(本小题满分13分)如图所示,有一具开口向上的截面为抛物线 型模具,上口AB 宽2m ,纵深OC 为1.5 m. (l)当浇铸零件时,钢水面EF 距AB 0.5m , 求截面图中EF 的宽度;(2)现将此模具运往某地,考虑到运输中的各种因素,必须把它安置于一圆台型包装箱内,求使包装箱的体积最小时的圆台的上、下底面的半径.221212121(),,3V h r r rr r r π=++圆台为上、下底面的半径,h 为高,参考数据4433≈ 21.(本小题满分13分)在直角坐标系xOy 中,已知椭圆22122:1x y C a b +=的一个顶点坐标为(2,0)A ,且抛物线214y x =的焦点是椭圆1C 的另一个顶点. (l)求椭圆1C 的方程;(2)①若直线:l y kx m =+同时与椭圆1C 和曲线2224:3C x y +=相切,求直线l 的方程.②若直线:l y kx m =+与椭圆1C 交于M ,N ,且直线OM 的斜率是OM k 与直线ON 的斜率ON k 满足4(0)OM ON k k k k +=≠,求证:2m 为定值.22.(本小题满分13分)已知数列{}n a 的前n 项和n S 满足111,21()n n S S S n N *+=-+=-∈,数列{}n b 的通项公式为34()n b n n N *=-∈(1)求数列{}n a 的通项公式;(2)是否存在圆心在x 轴上的圆C 及互不相等的正整数n 、m 、k ,使得三(,),(,),(,)n n n m m m k k k A b a A b a A b a 落在圆C 上?请说明理由.。

湖南省湖南师大附中、长沙市一中等六校2014届高三下学期4月联考试题 数学文 Word版含答案[ 高考]

湖南省湖南师大附中、长沙市一中等六校2014届高三下学期4月联考试题 数学文 Word版含答案[ 高考]

湖南省2014届高三六校联考数学(文)试题本试题卷包括选择题、填空题和解答题三部分,时量120分钟,满分150分一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知P={ -1,0},Q={y|y= sinθ,θ∈R),则P I Q=A.∅B.{0} C.{ -1,0} D.{-1,0)2.已知i为虚数单位,若x ii-=y+2i,x,y∈R,则复数x+yi=A.2+i B.-2-i C.l-2i D.1+2i 3.“log2a>l og2b”是“2a>2b”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知倾斜角为a的直线l与直线x-2y+2=0平行,则tan 2a的值为A.45B.34C.23D.435.若变量x,y满足120yx yx y≤⎧⎪+≥⎨⎪--≤⎩,实数z是2x和-4y的等差中项,则z的最大值等于A.1 B.2 C.3 D.46.已知x.y∈R+,a=(x,1),b=(1,y-1),若a⊥b,则11x y+的最小值为A.4 B.9 C.8 D.107.设函数f(x)=()xf xe是定义在R上的函数,其中f(x)的导函数为f′(x),满足f′(x)<f(x)对于x∈R恒成立,则A.f(2)>e2f(0),f(2 014>e2 014f(0)B.f(2)>e2f(0),,(2 014)<e2 014f(0)C.f(2)<e2 f(0),f(2 014)<e2 014f(0)D.f(2)<e2f(0),f(2 014>e2 014f(0)8.阅读如图所示的程序框图,运行相应的程序,则输出的结果是AB.2CD .09.已知双曲线221x y m n-=(m>0,n>0)的离心率为2,有一个焦点与抛物线y 2 =16x 的焦点重合,则mn 的值为 A .4 B .12 C .16 D .4810.设f (x )与g (x )是定义在同一区间[a ,b]上的两个函数,若函数y=f (x )-g (x )在x ∈ [a ,b]上有两个不同的零点,则称f (x )和g (x )在[a ,b]上是“关联函数”,区间[a ,b]称为 “关联区间”.若f (x )=x 2-3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,则m 的取值范围是 A .9,24⎛⎤-- ⎥⎝⎦B .[-1,0]C .(],2-∞-D .9,24⎡⎫--⎪⎢⎣⎭二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡中对应题号后的横线上.11.在直角坐标系中,参数方程为22(12x t t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数)的直线l ,被以原点为极点,x 轴的正半轴为极轴,极坐标方程为2cos ρθ=的曲线C 所截,则截得的弦长是 . 12.设函数f (x )=x 2-5x+4(l≤x≤8),若从区间[1,8]内随机选取一个实数x 0,则所选取的实数x 0满足f (x 0)≤0的概率为 .13.某四棱锥的三视图如图所示,该四棱锥的体积是 . 14.①函数y= sin 2x π⎛⎫-⎪⎝⎭在[0,π]上是减函数; ②点A (1,1)、B (2,7)在直线3x -y=0的两侧;③数列{a n }为递减的等差数列,a 1+a 5=0,设数列{a n }的前n 项和为S n ,则当n=4时,S n 取得最大值;④定义运算12121221a a b b a b a b =-,则函数f (x )=23113,x x x +的图象在点(1,13)处的切线方程是6x -3y -5=0. 其中正确命题的序号是 (把所有正确命题的序号都写上).15.对于实数x ,将满足“0≤y<l 且x -y 为整数”的实数y 称为实数x 的小数部分,用符号x表示。

湖南省师大附中、长沙市一中等六校2014届高三4月联考数学(理)试题-含答案

湖南省师大附中、长沙市一中等六校2014届高三4月联考数学(理)试题-含答案
B .锐角三角形
C .等边三角形
D .等腰直角三角形
6.设 {a n} 是等比数列,则 “a1<a2 <a4”是 “数列 {a n} 是递增数列 ”的
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
7.一个几何体的三视图如图所示,则该几何体的外接球的体积为
A.4 3
a 的取值范围;
(2)当 a=1 时,若 f ( x) >n 恒成立,求满足条件的正整数 n 的最大值;
3 2n
(3)求证:( 1+1 ×3)×( 1+3 ×5)×… ×[1+ ( 2n- l)( 2n+l ) ]>e 2 .
参考答案
uuur ⊥ OB ?若存在, 写出该圆的方程, 并求该切线在 y 轴上截距的取值范围及 | AB| 的取值范围; 若
不存在,说明理由.
22.(本小题满分 13 分)
x(1 a1nx)
已知函数 f(x) =
(x 1).
x1
(1)若 g( x ) =( x-l ) 2f ′( x )在( 1, +
)是增函数,求实数
息中按一定规则对信息加密,设定原信息为
A 0=a1a2… an, ai∈{0 , 1} ( i=1 , 2, 3… n),传输当
中原信息中的 1 都转换成 01,原信息中的 0 转换成 10,定义这种数字的转换为变换丁,在多次
的加密过程中,满足 A k=T( A k-1), k=1, 2, 3,….
( 1)若 A 2: 10010110,则 A 0 为 ____

( 2)若 A 0 为 10,记 A K 中连续两项都是 l 的数对个数为 l K,k=l ,2,3,…,则 l K=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省长沙市重点中学 2014届高三上学期第四次月考试卷文科数学 第Ⅰ卷(共45分)一、选择题:本大题共9个小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知,,x y R i ∈为虚数单位,且1xi y i -=-+,则(1)x y i +-的值是 ( ).2A .2B i - .4C - .2D i2.已知集合1{|0,},A x x x R x=-=∈则满足{1,0,1}A B =-的集合B 个数是 ( ) .2A .3B .4C .8D3.1a =-是直线1:0l ax y +=与直线2:20l x ay ++=平行的( ).A 充分不必要条件 B.必要不充分条件 .C 充要条件 D.既不充分也不必要条件【答案】A 【解析】试题分析:直线1:0l ax y +=,易知其斜率为a -.直线2:20l x ay ++=,若0a ≠,则其斜率为1a-.当1a =-时,11a a -=-=,所以两直线平行.此外当1a =时,11a a-=-=-,两直线也平行.故1a =-可推出直线1:0l ax y +=与直线2:20l x ay ++=平行,但直线1:0l ax y +=与直线2:20l x ay ++=平行不一定能推出1a =-.所以1a =-是直线1:0l ax y +=与直线2:20l x ay ++=平行的充分不必要条件. 考点:充分条件与必要条件、直线平行的判定4.若非零向量,,a b c 满足a //b ,且0b c ⋅=,则a b c +⋅=()( ).4A .3B .2C .0D【答案】D 【解析】试题分析:非零向量a //b ,若所以存在实数λ使得a b λ=.又 0b c ⋅=,所以()(1)0a b c b c λ+⋅=+⋅=. 考点:共线向量基本定理、向量的数量积5.函数()sin(),()(0,||)2f x x x R πωϕωϕ=+∈><的部分图像如图所示,如果12,(,)63x x ππ∈-,且12()()f x f x =,则12()2x x f += ( )1.2A .2B .2C .1D6.已知下列四个命题,其中真命题的序号是 ( ) ① 若一条直线垂直于一个平面内无数条直线,则这条直线与这个平面垂直; ② 若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面; ③ 若一条直线平行一个平面,另一条直线垂直这个平面,则这两条直线垂直; ④ 若两条直线垂直,则过其中一条直线有唯一一个平面与另外一条直线垂直;.A ①② .B ②③ .C ②④ .D ③④7.函数 2()4x f x x e =- 零点的个数 ( ).A 不存在 .B 有一个 .C 有两个 .D 有三个8.设函数(2),2()1()1,22x k x x f x x -≥⎧⎪=⎨-<⎪⎩,()n a f n =,若数列{}n a 是单调递减数列,则实数k 的取值范围为( ).(,2)A -∞ 13.(,]8B -∞ 7.(,)4C -∞ 13.[28D ,) 【答案】C 【解析】试题分析:依题意,(2),2()1()1,22n n k n n a f n n -≥⎧⎪==⎨-<⎪⎩,所以111122a =-=-,22(2)a k =-.若数列{}n a 是单调递减数列,则20k -<,且12a a >.由2012(2)2k k -<⎧⎪⎨->-⎪⎩得27744k k k <⎧⎪⇒<⎨<⎪⎩,即则实数k 的取值范围为7(,)4-∞.考点:数列、单调性9.函数()y f x =是定义在R 上的增函数,函数(2014)y f x =-的图象关于点(2014,0)对称.若实数,x y 满足不等式22(6)(824)0f x x f y y -+-+<,则22x y +的取值范围是 ( ).A (0,16) .B (0,36) .C (16,36) .D (0,)+∞第Ⅱ卷(共105分)二、填空题(每题5分,满分30分,将答案填在答题纸上)10.在极坐标系中,曲线2sin 4cos ρθθ=的焦点的极坐标 . 【答案】(1,0)11.如图1所示的流程图,输出的结果为 .12.若正三棱柱的三视图如图2所示,该三棱柱的体积是 .13.已知抛物线24(0)y px p =>与椭圆22221(0)x y a b a b+=>>有相同的焦点F ,点A 是两曲线的交点,且AF x ⊥轴,则椭圆的离心率为.14.已知A ,O 是原点,点(,)P x y的坐标满足0200y x y -≤-+≥⎨⎪≥⎪⎩,则||OA 的最大值为 ;的取值范围为 .则点(,)P x y 在图中阴影区域内(含边界),易知图中点C 坐标为.令目标函数为z y =+,即y z =+.则由图知当直线y z =+过点C 时,z 可取最大值为最大值||OA (Ⅱ)cos OA OP OA AOP AOP OP⋅=∠=∠.易知图中3AOB π∠=,6BOC π∠=,所以6AOC π∠=,56AOD π∠=.所以5[,]66AOP ππ∠∈,即cos [AOP ∠∈,33AOP -≤∠≤.||OP 的取值范围为[3,3]-. 考点:线性规划、平面向量的数量积15.在等差数列{}n a 中,52=a ,216=a ,记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,(Ⅰ)数列{}n a 的通项n a = ; (Ⅱ)若1512m S S n n ≤-+对*n N ∈恒成立,则正整数m 的最小值为 .三、解答题 (本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.在ABC ∆中,角A,B,C 的对边分别为,,a b c cos 1B B -=,且1b =. (Ⅰ)若5A=12π,求边c ; (Ⅱ)若2a c =,求ABC ∆的面积.【答案】(Ⅰ)c =;(Ⅱ)因为2222cos ,2,3b ac ac B a c B π=+-==,所以22221442b c c c =+-⨯,解得b =. ……(10分) 由此得222a b c =+,故ABC ∆为直角三角形,2A c π==.其面积126s bc ==. ……(12分) 考点:1.两角和差公式;2.正弦定理;3.余弦定理.17.2013年4月14日,CCTV 财经频道报道了某地建筑市场存在违规使用未经淡化海砂的现象.为了研究使用淡化海砂与混凝土耐久性是否达标有关,某大学实验室随机抽取了60个样本,得到了相关数据如下表:(Ⅰ)根据表中数据,求出s,t的值,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为使用淡化海砂与混凝土耐久性是否达标有关?(Ⅱ)若用分层抽样的方法在使用淡化海砂的样本中抽取了6个,现从这6个样本中任取2个,则取出的2个样本混凝土耐久性都达标的概率是多少?参考数据:参考公式:22()()()()()n ad bcka b c d a c b d-=++++18.如图,四棱锥P ABCD -的底面ABCD 为矩形,且1PA AD ==,2AB =,120PAB ∠=, 90PBC ∠=,(Ⅰ)平面PAD 与平面PAB 是否垂直?并说明理由;(Ⅱ)求直线PC 与平面ABCD 所成角的正弦值.【答案】(Ⅰ)垂直;【解析】试题分析:(Ⅰ)由90PBC ∠=得BC PB ⊥,由底面ABCD 为矩形得BC AB ⊥,从而有BC ⊥平面PAB .而AD ∥BC ,所以AD ⊥平面PAB ,再由线面垂直的性质得平面PAD ⊥平面PAB ;(Ⅱ)过点P 作BA 延长线的垂线PH ,垂足为H ,连接CH .然后可以证明AD ⊥平面PAB ,从而PCH ∠为PC 与底面(Ⅱ)如图,过点P 作BA 延长线的垂线PH ,垂足为H ,连接CH .由(Ⅰ)可知AD ⊥平面PAB∵AD ⊂平面ABCD∴平面PAB ⊥平面ABCD∵PH ⊂平面PAB ,平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD =AB∴PH ⊥平面ABCD∴CH 为PC 在平面ABCD 内的射影.∴PCH ∠为PC 与底面ABCD 所成的角.……(9分) 00120,60PAB PAH ∠=∴∠=,1PA =,∴在直角三角形PAH 中,001sin 60cos602PH PA AH PA =⨯==⨯=19.某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不做广告宣传且每件获利a 元的前提下,可卖出b 件;若做广告宣传,广告费为n 千元比广告费为(1)n -千元时多卖出*()2n b n N ∈件. (Ⅰ)试写出销售量n S 与n 的函数关系式;(Ⅱ)当10,4000a b ==时,厂家应生产多少件这种产品,做几千元的广告,才能获利最大?20.已知圆锥曲线E的两个焦点坐标是12(F F,且离心率为e =(Ⅰ)求曲线E 的方程;(Ⅱ)设曲线E '表示曲线E 的y 轴左边部分,若直线1y kx =-与曲线E '相交于,A B 两点,求k 的取值范围; (Ⅲ)在条件(Ⅱ)下,如果63AB =,且曲线E '上存在点C ,使OA OB mOC +=,求m 的值.从而有:2212212210(2)802101201k k k k k x x k x x k ⎧-≠⎪∆=+>⎪⎪-⇒<-⎨+=<-⎪⎪-⋅=>⎪-⎩为所求. ……(8分)21.已知曲线C :32()3()y f x x px p R ==-∈. (Ⅰ)当13p =时,求曲线C 的斜率为1的切线方程; (Ⅱ)设斜率为m 的两条直线与曲线C 相切于,A B 两点,求证:AB 中点M 在曲线C 上;(Ⅲ)在(Ⅱ)的条件下,又已知直线AB 的方程为:1y x =--,求,p m 的值.【答案】(Ⅰ)51,27y x y x =-=+;(Ⅱ)详见解析;(Ⅲ)1,3p m ==. 【解析】试题分析:(Ⅰ)当13p =时,先求导,通过斜率为1得到切点.然后利用点斜式得到所求切线方程;(Ⅱ)先将,A B 两点的坐标设出,其中纵坐标用相应点的横坐标表示.再由导数的几何意义,得到,A B 两点横坐标满足122x x p +=.从而得到AB 中点3(,2)M p p -,又AB 中点M 在曲线C 上33223p p p p ⇔-=-⋅,显然成立.得证;(Ⅲ)由AB 中点在直线1y x =--,又在曲线C ,从而得1p =,再反代如直线与曲线联立得方程,得到,A B 两点的坐标,代入导函数中得到斜率,从而得到3m =. 试题解析:(Ⅰ)当13p =时,322()()32y f x x x y f x x x ''==-⇒==-, 设切点为00(,)x y ,由20000011()321,3f x x x x x '==-⇒==-,切点为14(1,0),(,)327-- 故51,27y x y x =-=+为所求. ……(4分)(Ⅲ)由(Ⅱ)知,AB 中点M 的横坐标为p ,且M 在AB 上,(,1)M p p ⇒--,又M 在曲线C 上,323213210(1)(221)0p p p p p p p p p ⇒--=-⋅⇒--=⇒-++=, 所以1p =.由323233101y x x x x x y x ⎧=-⇒-++=⎨=--⎩,3222()(22)10(1)(21)0x x x x x x x x ⇒----+=⇒---=由于12122,11x x x x +=∴==故2211363(16(13m x x =-=-=.综上,1,3p m ==为所求. ……(13分)考点:1.导数的几何意义;2.直线的方程;3.直线与曲线的位置关系.。

相关文档
最新文档