分式方程的增根与无解详解

合集下载

分式方程的增根和无解

分式方程的增根和无解

分式方程的增根和无解
增根和无解是分式方程中常见的两种情况。

增根是指分式方程化为整式方程后,产生的使分式方程的分母为$0$的根。

分式方程的增根问题是分式方程去分母的过程中,方程两边同乘了一个能使最简公分母为零的整式,致使未知数的取值范围扩大。

无解是指分式方程本身就是一个矛盾等式,不论未知数取何值都不能使方程两边的值相等。

分式方程无解包括两种情况:一种情况是分式方程变形后,整式方程本身无解;另一种情况是整式方程有解,但这个解使原方程的分母为$0$,即为分式方程的增根,所以原分式方程无解。

总的来说,分式方程的增根和无解是两个不同的概念,增根是分式方程的一种特殊情况,而无解则是分式方程的一种极端情况。

分式方程的增根与无解详解(最新整理)

分式方程的增根与无解详解(最新整理)

x-2 (x-3)=m
整理得:
x=6-m
∵原方程有解,故 6-m 不是增根。
∴6-m≠3 即 m≠3
∵x>0
∴m<6
由此可得答案为 m 的取值范围是 m<6 且 m≠3。 一、分式方程有增根,求参数值
2
x2 4xa 例 7 a 为何值时,关于 x 的方程 x 3 =0 有增根?
解:原方程两边同乘以(x-3)去分母整理,得 x2-4x+a=0(※) 因为分式方程有增根,增根为 x=3,把 x=3 代入(※)得,9-12+a=0 a=3
整理得(a-1)x=-10

1
若原方程无解,则有两种情形: (1)当 a-1=0(即 a=1)时,方程②为 0x=-10,此方程无解,所以原方程无解。 (2)如果方程②的解恰好是原分式方程的增根,那么原分式方程无解.原方程若有增根,增根为 x=2 或-2,把 x=2 或-2 代入方程②中,求出 a=-4 或 6. 综上所述,a=1 或 a=一4或 a=6 时,原分式方程无解. 例 5:(2005 扬州中考题)
入(※)得 m=-2
3 所以 m=- 2 或-2 时,原分式方程有增根
k
2
点评:分式方程有增根,不一定分式方程无解(无实根),如方程 x 1 +1= ( x 1)( x 2) 有增根,可求得 k=-
2
8
3 ,但分式方程这时有一实根 x= 3 。
二、分式方程是无实数解,求参数值
x2 m 例 9 若关于 x 的方程 x 5 = x 5 +2 无实数,求 m 的值。
整理得:
m(x+1)=7-x2
当 x= -1 时,此时 m 无解;
当 x=1 时,解得 m=3。

(完整版)分式方程无解增根专题

(完整版)分式方程无解增根专题

分式方程专题一:知识梳理如果一个分式方程的根能使此方程的公分母为零,那么这个根就是原方程的增根。

产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。

在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根。

二:例题精讲例题1:若方程﹣=1有增根,则它的增根是,m=.【解答】解:由分式方程有增根,得到(x+1)(x﹣1)=0,解得:x=±1,分式方程去分母得:6﹣m(x+1)=x2﹣1,把x=1代入整式方程得:6﹣2m=0,即m=3;把x=﹣1代入整式方程得:6=0,无解,综上,分式方程的增根是1,m=3.故答案为:1;3.反馈:(1)若关于x的分式方程=1有增根,则增根为;此时a=.(2)关于x的方程+=2有增根,则m=.(3)若关于x的分式方程=﹣有增根,则k的值为.例题2:若关于x的方程的解为正数,则m的取值范围是.【解答】解:方程两边都乘以x﹣2,得:﹣2+x+m=2(x﹣2),解得:x=m+2,∵方程的解为正数,∴m+2>0,且m+2≠2,解得:m>﹣2,且m≠0,故答案为:m>﹣2且m≠0.反馈:(1)已知关于x的方程=3的解是正数,则m的取值范围是.(2)关于x的方程的解是负数,则a的取值范围是.例题3:若关于x的分式方程=a无解,则a的值为.【解答】解:两边同乘以x+1,得x﹣a=ax+a移项及合并同类项,得x(a﹣1)=﹣2a,系数化为1,得x=,∵关于x的分式方程=a无解,∴x+1=0或a﹣1=0,即x=﹣1或a=1,∴﹣1=,得a=﹣1,故答案为:±1.反馈:(1)关于x的方程无解,则k的值为.(2)若关于x的分式方程无解,则m的值为.(3)若关于x的分式方程无解,则m=.三:典型错题1.在中,x的取值范围为.2.要使方式的值是非负数,则x的取值范围是.3.已知,则分式的值为.4.将分式(a、b均为正数)中的字母a、b都扩大到原来的2倍,则分式值为原来的倍.5.若=+,则A=,B=.6.若解分式方程产生增根,则m=.7.若关于x的方程是非负数,则m的取值范围是.8.关于x的分式方程有解,则字母a的取值范围是9.已知,则的值为.10.已知a2+b2=9ab,且b>a>0,则的值为.参考答案:例题1:反馈:(1)若关于x的分式方程=1有增根,则增根为;此时a=.【解答】解:去分母得:2x﹣a=x+1,由分式方程有增根,得到x+1=0,即x=﹣1,把x=﹣1代入得:﹣2﹣a=0,解得:a=﹣2,故答案为:﹣1;﹣2(2)关于x的方程+=2有增根,则m=.【解答】解:去分母得:5x﹣3﹣mx=2x﹣8,由分式方程有增根,得到x﹣4=0,即x=4,把x=4代入整式方程得:20﹣3﹣4m=0,快捷得:m=,故答案为:(3)若关于x的分式方程=﹣有增根,则k的值为.【解答】解:去分母得:5x﹣5=x+2k﹣6x,由分式方程有增根,得到x(x﹣1)=0,解得:x=0或x=1,把x=0代入整式方程得:k=﹣;把x=1代入整式方程得:k=,则k的值为或﹣.故答案为:或﹣例题2:反馈:(1)已知关于x的方程=3的解是正数,则m的取值范围是.【解答】解:解关于x的方程=3得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.(2)关于x的方程的解是负数,则a的取值范围是.【解答】解:把方程移项通分得,∴方程的解为x=a﹣6,∵方程的解是负数,∴x=a﹣6<0,∴a<6,当x=﹣2时,2×(﹣2)+a=0,∴a=4,∴a的取值范围是:a<6且a≠4.故答案为:a<6且a≠4.例题3:反馈:(1)关于x的方程无解,则k的值为.【解答】解:去分母得:2x+4+kx=3x﹣6,当k=1时,方程化简得:4=﹣6,无解,符合题意;由分式方程无解,得到x2﹣4=0,即x=2或x=﹣2,把x=2代入整式方程得:4+4+2k=0,即k=﹣4;把x=﹣2代入整式方程得:﹣4+4﹣2k=﹣12,即k=6,故答案为:﹣4或6或1(2)若关于x的分式方程无解,则m的值为.【解答】解:两边都乘以(x﹣2),得x﹣1=m+3(x﹣2).m=﹣2x+5.分式方程的增根是x=2,将x=2代入,得m=﹣2×2=5=1,故答案为:1.(3)若关于x的分式方程无解,则m=.【解答】解:方程两边都乘以(x+1)(x﹣1),得:m﹣(x﹣1)=0,即m=x﹣1,∵关于x的分式方程无解,∴x=1或x=﹣1,当x=1时,m=0,当x=﹣1时,m=﹣2,故答案为:0或﹣2.典型错题:1.在中,x的取值范围为0<x≤1.2.要使方式的值是非负数,则x的取值范围是x≥1或x<﹣2.3.已知,则分式的值为.4.将分式(a、b均为正数)中的字母a、b都扩大到原来的2倍,则分式值为原来的倍.5.若=+,则A=﹣12,B=17.6.若解分式方程产生增根,则m=﹣2或1..7.若关于x的方程是非负数,则m的取值范围是m≥﹣2且m≠﹣1 .8.关于x的分式方程有解,则字母a的取值范围是a≠5,a≠0.9.已知,求的值.【解答】解:将两边同时乘以x,得x2+1=3x,===.10.已知a2+b2=9ab,且b>a>0,求的值.【解答】解:∵a2+b2=9ab,∴a2+b2+2ab=11ab,a2+b2﹣2ab=7ab,即(a+b)2=11ab,(a﹣b)2=7ab,∵b>a>0,即b﹣a>0,∴a+b=,b﹣a=,则原式=﹣=﹣=﹣.。

增根与无解

增根与无解
解:因为原分式方程有增根,所以这个增根必定使最简公分母等于0,
即x-2=0所以x=2
原分式方程去分母,得2-(x+m)=2(x-2)
将x=2代入,得2-(2+m)=2×(2-2)解得m=0
【例2】如果方程 - =0无解,试确定k的值.
分析:若原分式方程无解,则有两种情况:一种是由分式方程变形得到的整式方程无解,另一种是化成的整式方程的解是分式方程的增根.
增根与无解
我们知道,将分式方程变为整式方程时,方程两边同乘一个含有未知数的整式(最简公分母),有时可能产生满足整式方程,但不适合原分式方程的根,这种根叫做分式方程的增根.
例1若关于x的分式方程 + =2有增根,则m的值是______.
分析:增根满足原分式方程化为的整式方程,故只要使最简公分母等于零,就可时乘以(x-1)(2x+3)得2x+3-k(x-1)=0
2x+3-kx+k=0,即(k-2)x=k+3
(1)若这个整式方程无解,则k-2=0,而k+3≠0,即k=2
(2)若分式方程有增根,则(x-1)(2x+3)=0,所以x-1=0或2x+3=0,所以增根只能是1或- .
当x=1是整式方程的解时,(k-2)×1=k+3,此方程无解.
无解有两种情况,一是由分式方程变形得到的整式方程无解,二是化成的整式方程的解是分式方程的增根.
练习:
1.若关于x的方程 = +2有增根,则m的值是______.
2.若关于x的方程 = +1无解,则a的值是______.
答案:1.1 2.2或1
当x=- 是整式方程的解时,(k-2)×(- )=k+3,解得k=0.

分式方程的增根与无解详解

分式方程的增根与无解详解

分 式 方 程 的 增 根 与 无 解 讲 解例1解方程—24x 3•①x 2 x 4 x 2解:方程两边都乘以(x+2) (x-2 ),得2 (x+2) -4x=3 (x-2 ).②解这个方程,得x=2.经检验:当x=2时,原方程无意义,所以x=2是原方程的增根.所以原方程无解.例2解方程x 13 x2 .x 22 x解:去分母后化为x — 1 = 3— x + 2 (2+ x ).整理得0x = 8.因为此方程无解,所以原分式方程无解.例3 (2007湖北荆门)若方程 王卫二―丄无解,则m= ------------ .x 22 x解:原方程可化为x 3二—m.x 2 x 2方程两边都乘以x — 2,得x — 3=— m解这个方程,得x=3— m因为原方程无解,所以这个解应是原方程的增根.即 x=2,所以2=3— m 解得m=1.故当m=1时,原方程无解.ax例4当a为何值时,关于x的方程齐厂齐①会产生增根?解:方程两边都乘以(x+2) (x-2 ),得 2 (x + 2)+ ax= 3 (x —2)整理得(a—1) x = —10若原分式方程有增根,则x= 2或-2是方程②的根.把x = 2或一2代入方程②中,解得,a = —4或6.若将此题“会产生增根”改为“无解”,即:2 ax 3当a为何值时,关于x的方程厂2 厂门①无解?此时还要考虑转化后的整式方程(a—1)x二—10本身无解的情况,解法如下:解:方程两边都乘以(x+2) (x-2 ),得 2 (x + 2)+ ax= 3 (x —2)整理得(a—1) x = —10若原方程无解,则有两种情形:(1)当a—1 = 0 (即a= 1)时,方程②为0x =一10,此方程无解,所以原方程无解。

(2)如果方程②的解恰好是原分式方程的增根,那么原分式方程无解•原方程若有增根,增根为x = 2或一2,把x = 2或一2代入方程②中,求出a= —4或6.综上所述,a= 1或a = —4或a=6时,原分式方程无解.例5: (2005扬州中考题)6A 、0B 、1C 、-1D 、1 或-1分析:使方程的最简公分母(x+1)(x-1)=0 则x=-1或x=1,但不能忽略增根除满足最简公 分母为零,还必须是所化整式方程的根。

分式方程有增根或无解

分式方程有增根或无解
方法总结:1.化为整式方程. 2.把整式方程分两种情 况讨论,整式方程无解和整式方程的解为增根.
例4 若分式方程 2x a 1的解是正数,求
x2
a 的取值范围.
解:解方程得
且x≠2
由题意得不等式组:
解得:

思考1.若此方程解为非正数呢?答案是多少? 2.若此方程无解a的值是多少?
方法总结:1.化整式方程求根,但是 不能是增根.2.根据题意列不等式组.
例1 解方程:
xx11x2N41o1 Image (1) 增根是使最简公分母值为零的未知数
的值. (2) 增根是整式方程的根但不是原分式方 程的.所. 以解分式方程一定要验根.
例2 解关于x的方程 2 ax 3
x2 x24 x2
产生增根,则常数a= 。
解:化整式方程得
由题意知增根
x=2或-2是 整式方程的根. 把x=2代入得2a-2 =
复习回顾
1.解分式方程的思路是:
分式 方程
去分母 转化整式Biblioteka 方程2.解分式方程的一般步骤
(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程.
(2)解这个整式方程. (3)把整式方程的根代入最简公分母,看结果是不是为零,使最 简公分母为零的根是原方程的增根,必须舍去. (4)写出原方程的根.
“一化二解三检验四结论”


A.-1
B. 1 C. ±1 D.-2
• 5、若分式方程
m x 1 x 1
• 有增根,则m的值为 -1 。
• 6、分式方程
1 m

x 2 x 1
• 有增根,则增根为( C )

A、2
B、-1

分式方程的无解与增根(用)

分式方程的无解与增根(用)
Fra bibliotek(×)
2、无例 解的分如式方: 程就一x定-有3增根。 0;
( ×)
X=-3
3、分式方程(若x有增3)根(,x-增1根) 代入最简公
分母中,例其值如一定:为20。=0 0X=2
(√)
x 4、使分式方程的分母等于0的未知数的值
一定是分式方程的增根。
(×)
1 4x2
2
k x2
例3:已知关于x的方程 有增根,求实数K的值。
分式方程
去分母
整式方程
解整式方程
一化 二解
目标
a是分式 方程的解
最简公分母不为0
X=a
检验 最简公分母为0
三检验
a不是分式 方程的解
a就是分式 方程的增根
例1 解方程:
2 4x 3
x2 x 4 x2 解:方程两边都乘以(x+2)(x-2),得
2
2(x+2)-4x=3(x-2).
解这个方程,得x=2.
检验:当x=2时,(x+2)(x-2)=0,
所以x=2是增根,原方程无解.
所以原分式方程无解.
例2 解方程:
x -1=3-x +2 x+2 x+2
解:方程两边都乘以(x+2),得x-1=3-x+2(x+2)
整理得 0x=8.
因为此方程无解, 所以原分式方程无解.
分式方程的增根与无解
分式方程的增根:在分式方程化为整式方程 的过程中,若整式方程的解使最简公分母为0, 那么这个根叫做原分式方程的增根。
01
分式方程的增根是在分式方 程化为整式方程的过程中, 整式方程的解使最简公分母 为0的未知数的值。

分式方程的增根与无解

分式方程的增根与无解

甲:如此说来,从方程 ①变形为方程②,这种变形并不能保证两个方程的解相同,那 么,如何知道从整式方程 ②解出的未知数的值是或不是原方程 ①的解呢?乙:很简单,两个字:检验。

可以把方程 ②解出的未知数的值一一代入去分母时方程乙:增根是解分式方程时,把分式方程转化为整式方程这一变形中,由于去分母扩大两边所乘的那个公分母,看是否使公分母等于 0,如果公分母为0,则说明这个值是增甲:啊?!为什么会无解呢?乙:无解时,方程本身就是个矛盾等式,不论未知数取何值,都不能使方程两边的值相等,如上题中,不论x 取何值,都不能使方程①两边的值相等,因此原方程无解,乙:不是!有增根的分式方程不一定无解,无解的分式方程也不一定有增根,你看:乙:求解过程完全正确,没有任何的差错。

甲:那为什么会出现这种情况呢?甲:增根是什么?了未知数的取值范围而产生的未知数的值.比如 根,否则就是原方程的解。

例1、解方程: 。

① 甲:那么,这个题中x = 0就是增根了,可原方程的解又是什么呢?为了去分母,方程两边乘以 gQ ,得収= J ②乙:原方程无解。

乙 可是当 so 时,原方程两边的值相等吗?又如对于方程,不论x 取何值也不能使它成立,因此,这个方程也无解。

甲:这我可没注意,检验一下不就知道了。

哟!当宫-D 时,原方程有的项的分母为0,甲:是不是有增根的分式方程就是无解的,而无解的分式方程就一定有增根呢? 乙:因为原来方程 ①中未知数x 的取值范围是且筈#2|,而去分母化为整式方程② 去分母后化为,解得蛊・3或疋=-1|,此时,I 翌=-1|是增根,但原方程并不后,未知数x 的取值范围扩大为全体实数。

这样,从方程②解出的未知数的值就有可 能不是方程①的解。

是无解,而是有一个解 解,但原方程也没有增根。

,而方程天,去分母后化为0 x =,原方程虽然无分式方程的增根与无解甲:原方程的解是X-CI 。

没有意义,是不是方程变形过程中搞错啦?因为原方程的最简公分母是(金-1液十2)|,所以方程的增根可能是x = l|^x = -2|乙:你说的没错,增根与无解都是分式方程的常客”它们虽然还没有达到形影不离的程度,但两者还是常常相伴而行的,在有些分式方程问题中,讨论无解的情形时应解之,得x 4 m.因为原方程无解,所以x 4 m为方程的增根.又由于原方程的增根为x 3.所以考虑增根,例如:---- =m例4、已知关于x的方程K-了无解,求m的值。

分式方程的增根与无解

分式方程的增根与无解

解 得 m≠一 9且 m≠ 1 7

j 菌” 杆 的实验鼠在通过复杂迷宫赚
强 ; 蕞
度是罄通实验鼠的 誊
蔫I。
霹冁程会 { 彀大髓 暮些裤 经鳃匏 生长豁
根. 求 的值 .
解 : 分 母 , 2 3 4 一 . 去 得 = (一 )
为只要 的值是 原分 式方 程 的增根 .原分 式方 程就 无解 . 实上 , 原 分 式方 程 化 成 的整 式 方 程 无解 . 事 若
所 以原分 式方 程无 解.
点评 : 分式 方 程 中未知 数 戈的取 值范 围是 ≠ 原 1 且 ≠一 .而 在去 分母 化 为整式 方 程后 .未 知数 1
的取值 范 围扩 大为 全体 实 数.而求 得 的整 式方 程 的
解是 = . 1 正好 在 “ 大 ” 扩 的部 分 . 好使 最 简公 分母 恰

(÷ 。 2- - 一 。 X 3 ;(X ・ f -
2 已知关 于 的分 式方 程 .


若 关 于 的 方 程

3x -
+: 1 0无
x -3
x -3
:1 一 有增 根 . 求
解. 求m 的值 . 解 : 程 两 边 同时 乘 以 一 , 3 2 一 r + ) 方 3 得 —x ( x 3 + e
增 根 与 无 解 是 分式 方 程 中 的 两个 重 要 概 念 . 两
者既有 区别 。 又有 密切 的联 系 , 我们 应 该清 楚地 认识
它们 .
解 分 式 方 程首 先 要化 分 式方 程 为整 式 方 程 , 需
要用分 式方 程 中各分 式 的最简 公分 母 去乘 方程 的两

分式方程的增根与无解

分式方程的增根与无解

的值 就 是 增 根 . 分式方 程转化 为整式方程 的变形过 程 中 , 好使最 简公 分母 为零 时 , 本 题 转 化 的 整 式 方 程 的解 J  ̄ x = 2 , 恰 好 使 公 方 程 的两 边 都 乘 了 一 个 可 能 使 分 母 为 零 所 以x = 2 是原方 程的增根 , 原 方 的整 式 , 从 而 扩 大 了 未 知 数 的 取 值 范 围而 分 母 为 零 ,
【 点评 】 本 题 考 查 了分 式 方 程 的解 .方 数 的 值 即 为 增 根 , 最 后 将 增 根 代 入 转 化 得 程 的 解 即 为 能 使 方 程 左 右 两 边 相 等 的 未 到 的整 式 方 程 中 , 求 出原 方 程 中所 含 字 母
知 数 的值 .因为 同学 们 目前 所 学 的是 能 化 的 值 . 为一元 一 次方程 的分式方 程 , 而 一元一 次 方程 只有一 个根 , 所 以如 果 这 个 根 是 原 方 程 的增 根 ,那 么 原 方 程 无 解 . 1.

x 2 -4
增根 .
解: 多 } - 碍: 一 ( + 2 ) 2 + 1 6 = 4 一 ,
去括 号 得 : 一 2 一 一 4 + 1 6 = 4 ,

例3 ( 2 0 1 3 ・ 山 东威 海 ) 若 关 于 的 方 程

+ 2 .
【 解析 】 去分 母 后 化 为 一 1 = 3 + 2 ( 2 ) .
整 理 得 = 8 .
去 分 母 后 的整 式 方 程 有 解 , 但这个解 却使
原 方 程 的分 母 为 0 ,它 是 原 方 程 的增 根 , 从
而原方程无解 .
因为此方 程无 解 , 所 以原 分式方 程无 解 .

浅谈分式方程的增根和无解

浅谈分式方程的增根和无解

2013-12课堂内外分式方程的增根和无解是分式方程中两个重要的概念,学生在学习分式方程的过程中,常常对这两个概念混淆不清,总认为分式方程的无解和增根是同一回事,然而事实并非如此。

分式方程有增根,是指解分式方程时,在把分式方程转化为整式方程的过程中,方程两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值。

分式方程无解是指无论x为何值,都不能使方程两边的值相等,它包含两种情况:(1)原分式方程去分母后的整式方程无解。

(2)原方程去分母后的整式方程有解,但是这个解却使得原分式方程的分母为零,它是原分式方程的增根,从而原方程无解。

一、初步认识无解和增根例1.解分式方程x-3x+2=4-xx+2+2①解:方程两边同乘x+2,得x-3=4-x+2(x+2)②整理得-7=4因为方程②无解,所以原分式方程①无解。

点评:此例说明了分式方程转化为整式方程后,整式方程无解,因此原分式方程无解。

例2.解分式方程5x+2x2+x=3x+1①解:方程两边同乘x(x+1),得5x+2=3x②解之得x=-1检验:当x=-1,x(x+1)=0,所以x=-1是原方程的增根,从而原分式方程无解。

点评:方程①中x的取值范围是x≠-1且x≠0,而在去分母化为整式方程②后,此时x的取值范围扩大为全体实数。

所以当求得x的值恰好使最简公分母为零时,x的值就是增根,故原分式方程无解。

归纳总结:1.增根是分式方程转化为整式方程的根,但不是原分式方程的根。

2.无解要分两种情况,一种是分式方程转化为整式方程后整式方程无解,另一种是整式方程有解但所求的解都是原分式方程的增根。

二、提升对无解和增根的理解例3.关于x的方程xx-3=2+k x-3无解,求k的值。

解:方程两边同乘x-3得:x=2(x-3)+k①x=6-k因为原分式方程无解,但是①有解,所以这个解6-k一定是原方程的增根。

即x=3当x=3时,6-k=3,所以k=3。

例谈分式方程的“增根”与“无解”问题

例谈分式方程的“增根”与“无解”问题

数学篇学思导引在解分式方程问题时,经常会碰到“增根”或“无解”的情形.许多同学对这两个概念混淆不清,认为分式方程无解或有增根是同样的概念.事实上,“增根”与“无解”是两个不同的数学概念.抓住概念本质是理解概念的关键.下面,笔者就分式方程的“增根”与“无解”问题进行了剖析,希望同学们能够理解两者的概念,掌握不同问题的解法.一、分式方程的“增根”问题分式方程的“增根”是在去分母的过程中,方程两边同乘了一个能使最简公分母为零的整式,致使未知数的取值范围扩大,从而产生了增根,所以在得出分式方程的解后往往需要进行检验,若经过验证发现是增根,则应舍去;若此“增根”是分式方程唯一的解,则说明该分式方程无解.一般而言,分式方程产生“增根”,应满足如下两个条件:一是去分母时,能使方程两边同时乘以的最简公分母等于零;二是能使分式方程转化后的整式方程成立.例1(1)解方程2x x +1-2x 2+x=x +1x ;(2)解方程3x -3-6x x 2-9=4x +3;(3)当m 为何值时,关于x 的方程4x -4+mx x 2-16=5x +4会产生增根?解:(1)方程两边同时乘以最简公分母x (x +1),可得2x 2-2=(x +1)2,整理可得x 2-2x -3=0,解得x 1=3,x 2=-1.经检验,当x 2=-1时,分母为0,原方程无意义,所以x 2=-1为增根,应舍去,所以原方程的解为x =3.(2)方程两边同时乘以最简公分母(x +3)⋅(x -3),可得3(x +3)-6x =4(x -3),整理可得x =3.经检验,当x =3时,原方程无意义,所以x =3为增根,应舍去,所以原方程无解.(3)原分式方程两边同时乘以最简公分母(x -4)(x +4),可得4(x +4)+mx =5(x -4),整理可得(1-m )x =36.因为原分式方程有增根,所以(x -4)(x +4)=0,例谈分式方程的“增根”与“无解”问题甘肃省张掖市山丹育才中学韩永年29数学篇学思导引所以x =4或x =-4是整式方程(1-m )x =36的根,所以361-m =4或361-m =-4,解得m =-8或m =10.评注:分式方程的“增根”必定使方程两边同时乘以的最简公分母等于0,但是并非同时乘以的最简公分母等于0的未知数的值,都是分式方程的增根,也不是所有的分式方程都会产生增根.二、分式方程的“无解”问题分式方程无解是指不管未知数取何值时,都无法使得分式方程两边的值相等.一般情况下,当分式方程出现无解时,同学们需要注意如下两种情况:一是把原来的分式方程转化为整式方程后,该整式方程无解,则原分式方程无解;二是把原来的分式方程转化为整式方程后,该整式方程有解,但此解是原方程的增根(能使最简公分母为0),所以原分式方程亦无解.例2(1)解方程x -3x +4=5-x4+x+2;(2)倘若关于x 的方程2x -1-kx +3x 2+x -2=5x +2无解,则实数k 的值为;(3)求证:不论实数t 取何值时,关于x 的方程x -4t x -1+4t 2+2t x 2-x=1x 无实数解.解:(1)方程两边同时乘以最简公分母x +4,可得x -3=5-x +2(x +4),整理得0=16,显然,该整式方程无解,所以原分式方程无解.(2)原分式方程两边同时乘以最简公分母(x -1)(x +2),可得2(x +2)-(kx +3)=5(x -1),整理可得:(k +3)x =6.因为原方程无解,所以需要讨论如下两种情况:①当k =-3时,所得的整式方程为0·x =6,显然方程是无解的,所以原分式方程无解.②当k ≠-3时,所得的整式方程有解,且x =6k +3为原分式方程的增根,所以有6k +3=1或6k +3=-2,解得k =3或k =-6.综上所述,当k =-3或k =3或k =-6时,原分式方程无解.(3)证明:方程两边同乘以最简公分母x (x -1),可得x (x -4t )+4t 2+2t =x -1,整理可得x 2-(4t +1)x +4t 2+2t +1=0.因为△=(4t +1)2-4(4t 2+2t +1)=-3<0,所以整理后的方程无实数解,所以不论实数t 取何值时,原分式方程无实数解.评注:当分式方程无解时,该分式方程可能有增根,也可能没有增根;当分式方程去分母后所得的整式方程无解时,分式方程一定无解;当分式方程去分母后所得的整式方程为一元二次方程,需要对分式方程的无解、有解以及增根等情况进行探讨,如果该一元二次方程没有实数解,则表明该分式方程无解.从这两道例题可以看出,分式方程有增根与无解是完全不同的两个概念.分式方程与去分母后得到的整式方程是不等价的,这就是分式方程要验根的重要原因.同学们在解题时要用心区别,仔细辨析,明确其差异,准确把握数学概念,从而提高解分式方程的准确性.30。

分式方程的增根与无解

分式方程的增根与无解

如何正确理解分式方程的增根与无解在分式方程教学中,我们要知道分式方程的增根与无解的意义是有区别的,分式方程有增根,一定是化简后整式方程的解(或根),分式方程无解不一定是化简后整式方程的解(或根),因而分式方程不一定有增根。

分式方程的增根是指在把分式方程是指把分式方程转化为整式方程时,即在去分母的过程中,因为分母含有未知数的字母,无形中可能使分式两边同时乘以一个为0的数,这样就导致未知数字母的取值范围扩大,使得方程的解可能是整式方程的解,但不一定是原分式方程的解.如果整式方程的解使原分式方程的分母为0,那么为个解(或根)就是分式方程的增根.;如果整式方程的解使原分式方程的分母不为0,那么为个解(或根)就是分式方程的根.所以说,分式方程的增根一定是去分母化简后整式方程的根,且使原分式方程中的分母等于0.分式方程无解有两种情况:一种是增根使分式方程无解,与上面理由相同;另一种是化简后整式方程无解而导致分式方程无解.我们知道一元一次方程标准形式中0=+b ax ,当0≠a 时,一元一次方程有解(或根);当0=a ,0≠b 时,左边=b ,右边=0,有左边≠右边,从而一元一次方程无解,导致原分式方程无解。

综上所述,可简记为:“分式方程有增根⇒分母=0”;“分式方程无解⇒⎩⎨⎧⇒⇒00未知数的系数=整式方程无解分母=分式方程无解”. 例1、 若关于x 的方程xm x x -=--113产生增根,求常数m 的值. 解:去分母,方程两边同乘以)1(-x 得m x -=-3分式方程有增根∴ 01=-x 解得:1=x把1=x 代入m x -=-3 有m -=-31∴ 2=m小结:解分式方程有增根一般通过三个步骤,求出字母系数的值:一是先把分式方程化为整式方程;二是求出分母为0时x 的值;三是把x 的值代入整式方程,求出字母系数的值.练习:1、若关于x 的方程xx x x m x x 1122+=+-+有增根,求m 的值. (参考答案:21或-=m )2、若关于x 的方程x x a -=+-132有增根,求a 的值.)1(=a 参考答案:3、若分式方程:x kx =-+212-例2、若关于x 的方程011=--+x ax 无解,求a 的值. 解:去分母,方程两边同乘以)1(-x 得0)1(1=--+x ax整理得:02)1(=+-x a分式方程有无解∴ 01=-x 或 01=-a当01=-x 时,有1=x ∴021)1(=+⨯-a 得 1-=a 当01=-a 时,有1=a由上可知:1-=a 或 1小结:分式方程无解,要考虑两个方面:一是分式方程有增根导致无解;另一个是化简后的整式方程无解导致原分式方程无解.练习:1、若关于x 的方程234222+=-+-x x ax x 无解,求a 的值. (参考答案:a =-4或1或6)23=。

分式方程的无解与增根

分式方程的无解与增根
求m的值。
解得,m =1 2、把增根代入整式方程 求出字母的值。 ∴当m 1时,原方程有增根。 时,原方程无解。
∵原方程有增根 x 2,即2 3 - m ∵原方程无解
例4、当a为何值时,关于 x的方程 2 ax 3 + 2 = x - 2 x - 4 x+2
①有增根; ②无解。
解:方程两边都乘以(x+2)(x-2), 得2(x+2)+ax=3(x-2) 整理得(a-1)x=-10
那么增根可能是___________________ X=2或x=-2 . K=-8或k=-12 则k的值可能为______________
方法总结:1、化为整式方程。2、确定增根。 3、把增根代入整式方程求出字母的值。
x -3 m 有增根, 无解, 例3、若关于x的方程 x-2 2-x x -3 m 解:原方程可化为 =x -2 x-2 方程两边同乘以( x - 2),得 x - 3 = -m 1、化为整式方程。 ∴x = 3 - m
例如: 0; X=-3 ( x 3)(x - 1) 3、分式方程若有增根,增根代入最简公分母
(√ 2 例如: = 0 0X=2 4、使分式方程的分母等 x 0的未知数的值一定
是分式方程的增根。
(× )
分式方程的增根与无解
分式方程的增根:在分式方程化为整式方程 的过程中,若整式方程的解使最简公分母为0, 那么这个根叫做原分式方程的增根。
分式方程的增根与无解
南门学校
欧成敏
知识回顾:
解分式方程的一般步骤
分式方程
去分母
整式方程
解整式方程
一化
二解
目标
三检验 检验 a是分式 最简公分母不为0 最简公分母为0 a不是分式

分式方程的增根与无解的区别及联系

分式方程的增根与无解的区别及联系

分式方程的增根与无解的区别及联系分式方程的增根与无解是分式方程中常见的两个概念,同学们在学习分式方程后,常常会对这两个概念混淆不清,认为分式方程无解和分式方程有增根是同一回事,事实上并非如此.分式方程有增根,指的是解分式方程时,在把分式方程转化为整式方程的变形过程中,方程的两边都乘了一个可能使分母为零的整式,从而扩大了未知数的取值范围而产生的未知数的值;而分式方程无解则是指不论未知数取何值,都不能使方程两边的值相等.它包含两种情形:(一)原方程化去分母后的整式方程无解;(二)原方程化去分母后的整式方程有解,但这个解却使原方程的分母为0,它是原方程的增根,从而原方程无解.现举例说明如下:解:方程两边都乘以(x+2)(x-2),得2(x+2)-4x=3(x-2).②解这个方程,得x=2.经检验:当x=2时,原方程无意义,所以x=2是原方程的增根.所以原方程无解.【说明】显然,方程①中未知数x的取值范围是x≠2且x≠-2.而在去分母化为方程②后,此时未知数x的取值范围扩大为全体实数.所以当求得的x值恰好使最简公分母为零时,x 的值就是增根.本题中方程②的解是x=2,恰好使公分母为零,所以x=2是原方程的增根,原方程无解.解:去分母后化为x-1=3-x+2(2+x).整理得0x=8.因为此方程无解,所以原分式方程无解.【说明】此方程化为整式方程后,本身就无解,当然原分式方程肯定就无解了.由此可见,分式方程无解不一定就是产生增根.方程两边都乘以x-2,得x-3=-m.解这个方程,得x=3-m.因为原方程无解,所以这个解应是原方程的增根.即x=2,所以2=3-m,解得m=1.故当m=1时,原方程无解.【说明】因为同学们目前所学的是能化为一元一次方程的分式方程,而一元一次方程只有一个根,所以如果这个根是原方程的增根,那么原方程无解.但是同学们并不能因此认为有增根的分式方程一定无解,随着以后所学知识的加深,同学们便会明白其中的道理,此处不再举例.解:方程两边都乘以(x+2)(x-2),得2(x+2)+ax=3(x-2)整理得(a-1)x=-10 ②若原分式方程有增根,则x=2或-2是方程②的根.把x=2或-2代入方程②中,解得,a=-4或6.【说明】做此类题首先将分式方程转化为整式方程,然后找出使公分母为零的未知数的值即为增根,最后将增根代入转化得到的整式方程中,求出原方程中所含字母的值.此时还要考虑转化后的整式方程(a-1)x=-10本身无解的情况,解法如下:解:方程两边都乘以(x+2)(x-2),得2(x+2)+ax=3(x-2)整理得(a-1)x=-10 ②若原方程无解,则有两种情形:(1)当a-1=0(即a=1)时,方程②为0x=-10,此方程无解,所以原方程无解。

正确区分增根、无解、有解

正确区分增根、无解、有解

当 k=l时 ,得 :0·x=10,该 方 程 无 解 ,从 式方程 ,解 之就可得 到欲求 的待定 系数 的值.
而 原 方 程 也 无 解 .当 原 方 程 有 增 根 时 ,原 方
二 、不 会产 生增 根
程 也 无解 .若原 方 程 产 生增 根 ,则增 根 为 x=2
【例 2】" 3- k为何值 时,关于 的方程 — + 或 x=-2.
到 的整 式 方程 不但 有 解 ,而 且 它 的解 一 定 不 兰 不会产生增根?
是增 根. 【解 】同例 1,得 到 :(1-k)x=lO. 因为 方 程 有 解 ,且 这 个 解 不 是 增 根 ,所
3.当 k为 何 值 时 ,关 于 的方 程 = +1无解 ?
以 ,(1)k#l;(2)x#2,目口k#-4;(3) ≠一2,虽『] k#6.综 上所 述 :当 k#l且 k#-4且 k#6时 ,原 方程 有解 .
增 根 .
因 为 解 是 正 数 ,从 而 有 >0且 x#2.则
3.当 k=l或 k=2时 ,原 方程 无解 .
{1 -一k >#o5’解之得 : <l且k#-4.综上所述 : ,
4.当 k#-5且 k#-3时 ,原方 程 有解.
5.当 k<2且 尼≠要时 ,原 方 程 的解 是
当Jj}< 1且 k≠-4时 ,原 方程 的解 是 正数.
初掌习 .策略方法/
会 产 生 增 根 ?
2;当 k=6时 ,分 式 方 程 产 生增 根 x=-2,故 当
k=A-4且 k#6时 ,原方 程 不会 产 生增根.这里 需 【分 析 】分 式 方程 要 产 生 增 根 ,最 简 公 分
要 注意 的 是 :连接 词 用 “且 ”,不能 用 “或 ”,也 母 必 须 为 零 ,即 x=2或 x=-2.因此 可 通 过 x=2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理
分式方程的增根与无解讲解例1解方程2
344222+=---x x x x .① 解:方程两边都乘以(x+2)(x-2),得2(x+2)-4x=3(x-2).②
解这个方程,得x=2.
经检验:当x=2时,原方程无意义,所以x=2是原方程的增根.
所以原方程无解.
例2解方程22321++-=+-x
x x x . 解:去分母后化为x -1=3-x +2(2+x ).
整理得0x =8.
因为此方程无解,所以原分式方程无解.
例3(2007湖北荆门)若方程
32x x --=2m x -无解,则m=——————. 解:原方程可化为32x x --=-2
m x -. 方程两边都乘以x -2,得x -3=-m .
解这个方程,得x=3-m .
因为原方程无解,所以这个解应是原方程的增根.即x=2,
所以2=3-m ,解得m=1.
故当m=1时,原方程无解.
例4当a 为何值时,关于x 的方程223242
ax x x x +=--+①会产生增根? 解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2)
整理得(a -1)x =-10②
若原分式方程有增根,则x =2或-2是方程②的根.
把x =2或-2代入方程②中,解得,a =-4或6.
若将此题“会产生增根”改为“无解”,即:
当a 为何值时,关于x 的方程223242
ax x x x +=--+①无解? 此时还要考虑转化后的整式方程(a -1)x =-10本身无解的情况,解法如下:
解:方程两边都乘以(x+2)(x-2),得2(x +2)+ax =3(x -2)
整理得(a -1)x =-10②
若原方程无解,则有两种情形:
(1)当a -1=0(即a =1)时,方程②为0x =-10,此方程无解,所以原方程无解。

(2)如果方程②的解恰好是原分式方程的增根,那么原分式方程无解.原方程若有增根,增根为x =2或-2,把x =2或-2代入方程②中,求出a =-4或6.
综上所述,a =1或a =一4或a =6时,原分式方程无解.
例5:(2005扬州中考题) 若方程)1)(1(6-+x x -1
-x m =1有增根,则它的增根是()
A 、0
B 、1
C 、-1
D 、1或-1
分析:使方程的最简公分母(x+1)(x-1)=0则x=-1或x=1,但不能忽略增根除满足最简公分母为零,还必须是所化整式方程的根。

原方程易化成整式方程:
6-m(x+1)=x 2-1
整理得:
m(x+1)=7-x 2
当x=-1时,此时m 无解;
当x=1时,解得m=3。

由此可得答案为B 。

例6:关于x 的方程3-x x -2=3
-x m 有一个正数解,求m 的取值范围。

分析:把m 看成常数求解,由方程的解是正数,确定m 的取值范围,但不能忽略产生增根时m 的值。

原方程易化为整式方程:
x-2(x-3)=m
整理得:
x=6-m
∵原方程有解,故6-m 不是增根。

∴6-m ≠3即m ≠3
∵x >0
∴m <6
由此可得答案为m 的取值范围是m <6且m ≠3。

一、 分式方程有增根,求参数值
例7a 为何值时,关于x 的方程3
42-+-x a x x =0有增根? 解:原方程两边同乘以(x-3)去分母整理,得
x 2-4x+a=0(※)
因为分式方程有增根,增根为x=3,把x=3代入(※)得,9-12+a=0a=3
所以a=3时,3
42-+-x a x x =0有增根。

例8m 为何值时,关于x 的方程11-x +2-x m =23222+-+x x m 有增根。

解:原方程两边同乘以(x-1)(x-2)去分母整理,得
(1+m )x=3m+4(※)
因为分式方程有增根,据性质(2)知:增根为x=1或x=2。

把x=1代入(※),解得m=-23;把
x=2代入(※)得m=-2
所以m=-23或-2时,原分式方程有增根
点评:分式方程有增根,不一定分式方程无解(无实根),如方程1+x k +1=)2)(1(2-+x x 有增根,可
求得k=-32,但分式方程这时有一实根x=38。

二、 分式方程是无实数解,求参数值
例9若关于x 的方程52--x x =5-x m +2无实数,求m 的值。

解:去分母,得x-2=m+2x-10,x=-m+8
因为原方程无解,所以x=-m+8为原方程的增根。

又由于原方程的增根为x=5,所以-m+8=5
所以m=3
例10.若解分式方程2111x x m x x x x
+-++=+产生增根,则m 的值是() A.--12或
B.-12或
C.12或
D.1
2或- 分析:分式方程产生的增根,是使分母为零的未知数的值。

由题意得增根是:x x ==-01或,化
简原方程为:21122x m x -+=+()(),把x x ==-01或代入解得m =-12或,故选择D 。

例11.m 为何值时,关于x 的方程22432x m x x x
-+-=+2会产生增根? 解:方程两边都乘以x 24-,得2436
x m x x ++=-
整理,得()m x -=-110
说明:分式方程的增根,一定是使最简公分母为零的根
例12、解方程:121043323489242387161945
x x x x x x x x --+--=--+-- 分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。

解:由原方程得:31
4342
8932
8741
45--++-=--++-x x x x 即2
892
8628102
87x x x x ---=---
例13、若解分式方程2111
x x m x x x x +-++=+产生增根,则m 的值是()
A.--12或
B.-12或
C.12或
D.12或-
分析:分式方程产生的增根,是使分母为零的未知数的值。

由题意得增根是:x x ==-01或,化简原方程为:21122x m x -+=+()(),把x x ==-01或代入解得m =-12或,故选择D 。

练习题
1解方程23
44222+=---x x x x . 2解方程22321++-=+-x x
x x .
3(2007湖北荆门)若方程32x x --=2m
x -无解,则m=——————.
4当a 为何值时,关于x 的方程223
242ax
x x x +=--+会产生增根?
5当a 为何值时,关于x 的方程223
242ax
x x x +=--+无解?。

相关文档
最新文档