建筑结构第二章材料的力学性能
材料力学性能
材料力学性能材料力学性能是指材料在外力作用下所表现出的力学特性,包括强度、韧性、硬度、塑性等。
这些性能参数对于材料的选择、设计和应用具有重要的指导意义。
在工程实践中,我们需要对材料的力学性能进行全面的了解和评估,以确保材料能够满足工程要求并具有良好的可靠性和安全性。
首先,强度是材料力学性能的重要指标之一。
材料的强度表现了其抵抗外部载荷的能力,通常用抗拉强度、抗压强度、抗弯强度等参数来描述。
强度高的材料在承受外部载荷时不易发生变形和破坏,因此在工程结构和设备中得到广泛应用。
此外,韧性是衡量材料抗破坏能力的重要指标,它反映了材料在受到冲击或挤压时的变形和吸能能力。
韧性高的材料能够在受到冲击载荷时发生一定程度的塑性变形而不破坏,因此在制造高应力、高载荷的零部件和结构中具有重要意义。
此外,材料的硬度也是其力学性能的重要指标之一。
硬度反映了材料抵抗划痕和穿刺的能力,通常通过洛氏硬度、巴氏硬度、维氏硬度等参数来描述。
硬度高的材料具有较高的耐磨性和耐划痕性,适用于制造刀具、轴承、齿轮等零部件。
此外,材料的塑性也是其力学性能的重要指标之一。
塑性反映了材料在受到外部载荷作用下发生变形的能力,通常通过延伸率、收缩率、冷弯性等参数来描述。
塑性好的材料能够在受到外部载荷时发生较大的变形而不破坏,适用于制造成形性零部件和结构。
总之,材料力学性能是材料工程中的重要内容,对于材料的选择、设计和应用具有重要的指导意义。
在工程实践中,我们需要全面了解和评估材料的强度、韧性、硬度、塑性等性能参数,以确保材料能够满足工程要求并具有良好的可靠性和安全性。
希望本文能够对材料力学性能的研究和应用提供一定的参考和帮助。
建筑结构材料的物理力学性能
6
中高强钢丝和钢绞线
中强钢丝的强度为800~1200MPa,高强钢丝、钢绞线的为 1470 ~1860MPa;钢丝的直径3~9mm,外形有光面、刻痕和螺旋肋三 种。另有二股、三股和七股钢绞线,外接圆直径9.5~15.2 mm。 中高强钢丝和钢绞线均用于预应力混凝土结构。
多功能性 可以制得不同物理力学性质的混凝土,基本上能满足所有不同工
程的要求。
可加工性 可以按照工程结构的要求,浇筑成不同形状和尺寸的整体结构或
预制构件。
和钢筋的兼容性 钢筋等有牢固的粘结力,与钢材有基本相同的线膨胀系数,能制
作钢筋混凝土结构和构件。
低能耗性 能源消耗较烧结砖及金属材料低,能耗大约是钢材的1/90。
有在春秋战国时期就已兴修水利如今仍然起灌溉作用的秦代李冰父子修建的都江堰水利工程所55在1400年前由料石修建的现存河北赵县的安济桥这是世界上最早的单孔敞肩式石拱桥桥长5082m宽约9m为拱上开洞既可节约石材且可减轻洪水期的水压力它无论在材料使用结构受力艺术造型和经济上都达到了相当高的成就该桥已被美国土木工程学会选入世界第12个土木工程里程碑
3.1 建筑钢材
钢材在建筑工程中与其它结构材料相比所具有的特性: 1.轻质高强 2.韧性好、抗冲击能力强、抗拉强度高 3.可焊接、铆接、易于装配 4.外表轻巧、华美、具有光泽 5.易腐 6.耐火性差
1
1、建筑结构常用的钢材类别
(1)结构钢材种类:
碳素钢
按含碳量不同可分为:
低碳钢(含碳量少于0.25%) 中碳钢(含碳量在0.25%~0.6%) 高碳钢(含碳量在0.6%~1.4%)
二建建筑的建筑材料性能
二建建筑的建筑材料性能建筑材料是指用于建造和修复各类建筑物的材料。
在二级建造师考试中,建筑材料的性能是一个重要的考点。
本文将从物理性能、力学性能和耐久性能三个方面介绍二建建筑常用材料的性能特点,帮助考生更好地理解和记忆相关知识。
一、物理性能物理性能是指建筑材料在外界环境下的各种物理特性。
常见的物理性能有密度、热传导性、声传导性、吸水性等。
1. 密度:密度是指单位体积内的质量,通常用千克/立方米表示。
在建筑中,不同材料的密度会对结构和施工产生影响。
例如,密度大的材料可以提供更好的隔音效果,而密度小的材料则更轻便。
2. 热传导性:热传导性是指材料传导热量的能力。
建筑材料的热传导性能对于保温和隔热非常关键。
一般而言,导热系数越小的材料,保温性能越好。
3. 声传导性:声传导性是指材料对声波的传导能力。
在建筑领域,隔音是一个重要的考虑因素。
各种建筑材料的声传导性能各异,如隔音板、隔音玻璃等可以有效隔离噪音。
4. 吸水性:受潮、吸湿是一些建筑材料的固有特性。
吸水性能对建筑物的耐久性和变形非常重要。
合理使用吸水性能较弱的建筑材料,可以减少由于湿度变化引起的开裂、变形等问题。
二、力学性能力学性能是指建筑材料在受力状态下的各种性质。
主要包括强度、刚度、韧性、抗压强度、抗拉强度等。
1. 强度:强度是指材料抵抗破坏的能力。
对于建筑材料来说,强度是一个至关重要的指标。
在结构设计中,需要根据不同材料的强度来合理选择建筑材料,以确保结构的稳定可靠。
2. 刚度:刚度是指材料对应力的反应能力。
刚度越大,表示材料越难变形。
刚度较大的材料适合用于承重结构,如钢材和混凝土。
3. 韧性:韧性是指材料在受力过程中能够吸收和耗散大量的能量而不发生断裂。
在建筑中,一些受冲击力作用较大的部位需要具备韧性较好的材料,以增加结构的抗震性能。
4. 抗压强度和抗拉强度:抗压和抗拉强度是材料承受压力和拉力的能力。
在构建承重结构时,需要考虑材料的抗压和抗拉强度,以保证结构的稳定性。
材料的力学性能
材料的力学性能
材料的力学性能是指材料在外力作用下所表现出的性能,主要包括强度、韧性、硬度、塑性等指标。
这些性能对于材料的选择、设计和应用具有重要意义。
下面将分别对材料的强度、韧性、硬度和塑性进行介绍。
首先,强度是材料抵抗破坏的能力,通常用抗拉强度、抗压强度、抗弯强度等
指标来表示。
强度高的材料具有较好的抗破坏能力,适用于承受大外力的场合。
例如,建筑结构中常使用高强度钢材,以保证结构的安全稳定。
其次,韧性是材料抵抗断裂的能力,也可以理解为材料的延展性。
韧性高的材
料在受到外力作用时能够延展变形而不断裂,具有较好的抗震抗冲击能力。
例如,汽车碰撞安全设计中常使用高韧性的材料,以保护乘车人员的安全。
再次,硬度是材料抵抗划伤和压痕的能力,通常用洛氏硬度、巴氏硬度等指标
来表示。
硬度高的材料具有较好的耐磨损性能,适用于制造耐磨损零部件。
例如,机械设备中常使用高硬度的合金材料来制造齿轮、轴承等零部件。
最后,塑性是材料在受力作用下发生塑性变形的能力,通常用延伸率、收缩率
等指标来表示。
具有良好塑性的材料能够在加工过程中较容易地进行成型和加工,适用于复杂零部件的制造。
例如,塑料制品的生产常使用具有良好塑性的材料,以满足复杂形状的加工需求。
综上所述,材料的力学性能是材料工程领域中的重要指标,对于材料的选择、
设计和应用具有重要意义。
强度、韧性、硬度和塑性是衡量材料力学性能的重要指标,不同的应用场合需要选择具有不同力学性能的材料,以满足工程需求。
因此,深入了解和掌握材料的力学性能,对于材料工程师和设计师来说是非常重要的。
材料力学性能
材料力学性能材料力学性能是指材料在外力作用下所表现出的力学特性,包括材料的强度、韧性、硬度、塑性等。
这些性能直接影响着材料在工程领域的应用,因此对材料力学性能的研究和评价显得尤为重要。
首先,强度是材料力学性能中的重要指标之一。
材料的强度是指材料抵抗外力破坏的能力,通常用抗拉强度、抗压强度、抗弯强度等来表示。
不同材料的强度差异很大,例如金属材料的强度通常较高,而塑料和橡胶等材料的强度相对较低。
材料的强度直接影响着材料在工程中的承载能力和使用寿命。
其次,韧性是衡量材料抵抗断裂的能力。
韧性高的材料在受到外力作用时能够延展变形而不易断裂,这对于一些需要承受冲击或振动载荷的工程结构来说尤为重要。
例如,航空航天领域对材料的韧性要求较高,以确保飞行器在受到外部冲击时能够保持结构完整。
此外,硬度是材料力学性能中的重要参数之一。
材料的硬度是指材料抵抗划痕和压痕的能力,通常用洛氏硬度、巴氏硬度等来表示。
硬度高的材料通常具有较好的耐磨性和耐腐蚀性,适用于一些对材料表面要求较高的工程领域,例如汽车制造、船舶建造等。
最后,塑性是材料力学性能中的重要特性之一。
材料的塑性是指材料在受到外力作用时能够发生塑性变形而不断裂,这对于一些需要进行成形加工的工程材料来说尤为重要。
例如,金属材料的塑性使其能够通过锻造、轧制等工艺进行成形,从而制备出各种复杂的零部件。
综上所述,材料力学性能是材料工程领域中的重要研究内容,不同的材料力学性能对材料的应用具有重要的影响。
因此,对材料力学性能的研究和评价具有重要的意义,可以为工程领域的材料选择和设计提供重要的参考依据。
结构材料的力学性能及选用
n26 1(0fcu 5)0当 ,n2时, n2取
c fc
c
fc 110c
n
o
0
0 0 .0 0 0 .5 2 fc u 5 1 0 50
c u
u 0 .00 fc 3 u 5 3 0 1 5 0
侧向受约束时混凝土的变形特点
c fcc
fc 非约束混凝土
Ec Esec
o
c0 2c0 sp cc
立方体抗压强度标准值fcuk
标准试块:150×150 ×150mm
非标准试块:100×100 ×100 ,换算系数:0.95 200×200 ×200 ,换算系数:1.05
§立方体抗压强度标准值是确定混凝土强度等级的标准。
我国规范的混凝土强度等级有:C15,C20,C25,C30,
C35,C40,C45,C50,C55,C60,C65,C70,C75,
结构材料的力学性能及选用
(优选)结构材料的力学性能 及选用
屈服强度: σB ,是钢筋关键性的强度指标。
对于有明显屈服点的钢材,由于钢材的屈服将产生明 显的、不可恢复的塑性变形,从而导致构件可能在钢材尚 未进入强化阶段就产生过大的变形和裂缝,因此在正常使 用情况下,构件中的钢材应力应小于其屈服强度。
特征值:
概率 密度
强度 标准值
强度 平均值
强度标准值 = 强度平均值 - 2×均方差
材料强度
2、塑性指标
伸长率:反映钢材塑性性能的指标。
5 ,10
l
l0 l0
伸长率越大,则钢材的塑性越好。
冷弯性能:反映钢材在常温下的塑性 加工性能的指标。
用弯心直径和弯曲角度来表示。
二、钢材的冷加工和热处理
建筑结构-砌体
2.非烧结硅酸盐砖(包括蒸压灰砂砖和蒸压粉煤灰砖 )
原料:石灰和砂 尺寸:同烧结普通砖 适用范围:不得用于长期受热200℃以上、受急冷急热和有
酸性介质侵蚀的建筑部位,MU15和MU15以上的 蒸压灰砂砖可用于基础及其他建筑部位,蒸压 粉煤灰砖用于基础或用于受冻融和干湿交替作 用的建筑部位必须使用一等砖 强度等级: MU25、MU20、MU15、MU10
4、砌体的抗压强度设计值 f 及其调整系数γa (1)砌体截面面积A<0.3m2时,γa =0.7+A; (2)采用水泥砂浆砌筑时,γa =0.9; (3)0号砂浆,f ≠0,冬季施工、砂浆未凝固
四、 砌体的抗拉、抗弯和抗剪性能
1.砂浆和块体的粘结强度(见图) 法向粘结强度S:与轴向拉力垂直的灰缝(垂直灰缝)中砂浆
第三章 砌体结构的计算方法和计算指标 (自学)
一、计算方法
砌体结构与混凝土结构相同,也采用以概率论为基础的极限状态法
二、计算指标
A. 砌体的抗压强度标准值:具有95%保证率的抗压强度值,查规范
B. 砌体的抗压强度设计值:
f fk
f
龄期为28d砌体毛截面强度的设计值 ,根据块体和砂浆强度等
5 .要求:强度、和易性、保水性。
C.砌体材料的选择
1、原则:因地制宜,就地取材,充分利用工业废料,并 考虑建筑物耐久性要求、工作环境、受荷性质 与大小、施工技术水平等。
2、对于五层及五层以上房屋的墙,以及受振动或层高大 于6m的墙、柱所用材料的最低强度等级:砖为MU10, 砌块MU7.5,石材MU30,砂浆M5。
砂浆品种 水泥砂浆 混合砂浆 非水泥砂浆
塑性掺合料 无 有 有
和易保水性 差 好 好
工程材料的力学性能
工程材料的力学性能
目录
contents
引言 弹性性能 塑性性能 强度性能 韧性性能 工程材料的实际应用
01
引言
力学性能是指材料在受到外力作用时表现出来的性质,包括强度、硬度、塑性、韧性等。
定义
工程材料的力学性能是决定其承载能力和耐久性的关键因素,对于工程安全和经济效益具有重要意义。
重要性
定义与重要性
提高材料的疲劳强度可以通过优化材料成分、改变加工工艺、强化表面处理等方法实现。
06
工程材料的实际应用
机械制造
钢铁材料是机械制造行业的基础材料,用于制造各种机械设备、交通工具和零部件,其耐磨、耐压、耐腐蚀的特性保证了设备的稳定性和可靠性。
建筑结构
钢铁材料广泛应用于桥梁、高层建筑、工业厂房等建筑结构中,以其高强度、高韧性、可塑性强的特点满足各种建筑需求。
韧性性能
冲击韧性是指材料在受到冲击载荷时抵抗破坏的能力。
材料的冲击韧性与其内部结构、温度、杂质等因素有关。
冲击韧性通常用冲击功、冲击强度等参数来衡量。
冲击韧性对于材料的抗冲击性能和安全使用具有重要的意义。
冲击韧性
断裂韧性是指材料抵抗裂纹扩展的能力,是评价材料抵抗脆性断裂的重要指标。
材料的断裂韧性与其内部结构、温度、加载速率等因素有关。
详细描述
剪切模量是指在剪切应力作用下,材料抵抗剪切变形的能力。它是材料剪切刚度的度量。剪切模量越大,材料抵抗剪切变形的能力越强。
应用场景
在工程设计中,剪切模量是重要的设计参数,用于计算结构件的剪切强度和稳定性,以及预测材料在受力条件下的变形行为。
03
塑性性能
总结词
屈服强度是工程材料在受到外力作用时,开始发生屈服现象的应力极限。
建筑结构分析
建筑结构分析建筑结构是指建筑物所依靠的支撑系统,它直接决定了建筑物的稳定性和安全性。
建筑结构分析是通过对建筑结构的力学性质和力学行为进行研究,以评估和优化建筑物的结构性能。
本文将从几个主要方面对建筑结构分析进行探讨。
一、材料力学性能分析在建筑结构设计中,材料的力学性能是至关重要的。
不同的材料具有不同的特性,包括抗拉强度、压缩强度、弹性模量等。
通过对材料的力学性能进行分析,可以确定材料是否适合用于建筑结构,并且合理选择材料以满足建筑物的需求。
二、受力分析建筑结构分析的核心是对受力情况的研究。
通过分析建筑物所承受的外力和内力,我们可以了解建筑物在不同工况下的受力情况,并评估结构的稳定性和安全性。
常见的外力包括风力、地震力和荷载等,而内力包括轴力、弯矩和剪力等。
三、结构模型的建立为了对建筑结构进行分析,需要建立相应的结构模型。
结构模型是对真实建筑结构的抽象表示,可以采用不同的方法进行建立,包括平面杆系模型、三维有限元模型等。
通过建立合适的结构模型,可以更好地进行受力分析和结构性能评估。
四、静力分析静力分析是对建筑结构中各种力的平衡和静力效应的分析。
通过静力分析,可以了解结构在静力平衡条件下的应力和变形情况,从而确定结构的稳定性和荷载承载能力。
常见的静力分析方法包括静平衡法、弹性分析法和刚性平衡法等。
五、动力分析动力分析是对建筑结构在地震、风力等动力荷载下的响应进行研究。
地震力是建筑结构设计中必须考虑的重要因素之一,合理的动力分析可以提高建筑物的抗震性能。
常见的动力分析方法包括模态分析、响应谱分析和时程分析等。
六、破坏性分析破坏性分析是对建筑结构在超过其承载能力时的破坏形态和破坏机理进行研究。
通过破坏性分析,可以预测建筑结构的破坏形式,从而采取适当的措施来提高结构的安全性。
常见的破坏性分析方法包括强度极限分析和变形极限分析等。
七、结构优化分析结构优化分析是对建筑结构进行改进和优化的研究。
通过结构优化分析,可以提高结构的受力性能、减小结构的材料消耗并降低工程成本。
材料的力学性能与结构试验的关系
1.5 材料的⼒学性能与结构试验的关系 1.5.1 概述 ⼀个结构或构件的受⼒和变形特点,除受荷载等外界因素影响外,还要取决于组成这个结构或构件的材料内部抵抗外⼒的性能。
充分了解材料的⼒学性能,对于在结构试验前或试验过程中正确估计结构的承载能⼒和实际⼯作状况,以及在试验后整理试验数据,处理试验结果等⼯作都具有⾮常重要的意义。
在结构试验中按照结构或构件材料性质的不同,必须测定相应的⼀些最基本的数据,如混凝⼟的抗压强度、钢材的屈服强度和抗拉极限强度、砖⽯砌体的抗压强度等。
在科学研究性的试验中为了了解材料的荷载变形、应⼒应变关系,需要测定材料的弹性模量,有时根据试验研究的要求,尚须测定混凝⼟材料的抗拉强度以及各种材料的应⼒应变曲线等有关数据。
在测量材料各种⼒学性能时,应该按照国家标准或部颁标准所规定的标准试验⽅法进⾏,对于试件的形状、尺⼨、加⼯⼯艺及试验加载、测量⽅法等都要符合规定的统⼀标准。
在建筑结构抗震研究中,根据地震荷载作⽤的特点,在结构上施加周期性反复荷载,结构将进⼊⾮线性阶段⼯作,因此相应的材料试验也须要在周期性反复荷载下进⾏,这时钢材将会出现包⾟格效应,对于混凝⼟材料就需要进⾏应⼒应变曲线全过程的测定,特别要测定曲线的下降段部分。
1.5.2 材料⼒学性能的试验⽅法对强度指标的影响 材料的⼒学性能指标是由钢材、钢筋和混凝⼟等各种材料分别制成的标准试样或试块进⾏试验结果的平均值。
由于材质的不均匀性等原因,测定的结果必然会有较⼤的波动,尤其当试验⽅法不妥时,波动值将会更⼤。
长期以来⼈们通过⽣产实践和科学实验发现试验⽅法对材料强度指标有着⼀定的影响,特别是试件的形状、尺⼨和试验加载速度对试验结果的影响尤为显著,对于同⼀种材料,仅仅由于试验⽅法与试验条件的不同,就会得出不同的强度指标。
下⾯我们就混凝⼟材料来作进⼀步的说明。
1.5.2.1 试件尺⼨与形状的影响 在国际上各国混凝⼟材料强度测定⽤的试件有⽴⽅体和圆柱体两种。
第二章 钢筋和混凝土的力学性能
(2.3)
锚固钢筋的外形系数及受拉最小锚固长度( mm) 月牙肋钢筋 0.14 25d
注:1、光面钢筋末端应做 180°标准弯钩,但在焊接骨架、焊接网及轴心 受压构件中的光面钢筋可不做弯钩; 2、当月牙肋钢筋的直径大于 25mm 时,钢筋外形系数应再乘以修正系 数 1.1; 3、环氧树脂涂层钢筋的外形系数尚应乘以修正系数 1.25。
弹性系数约为0.5
s
ft
e tu
ft ft 2 ft et0 0.5Ec Ec Ec
e tu 500 ~ 270 e
et0
e
2.混凝土在长期荷载作用下的变形-收缩和徐变
混凝土的收缩和徐变 Shrinkage and Creep
混凝土在空气中硬化时体积会缩小,这种现象称为混凝土的收缩, 收缩是混凝土在不受外力情况下体积变化产生的变形。
小尺寸构件收缩大,大尺寸构件收缩小; 高强混凝土收缩大。
影响收缩的因素多且复杂,要精确计算尚有一定的困难。在实际工程中,
要采取一定措施减小收缩应力的不利影响。
混凝土的徐变
e eel ’ eel’
’
瞬时恢复
弹性后效
ecr eel
徐变应变
ecr’
eel esh 徐变会使结构(构件)的(挠度)变形增大,引起预应力损失,在长期 收缩应变 t0 t 高应力作用下,甚至会导致破坏。
瞬时应变
残余应变
随荷载作用时间的延续,变形不断增长,前4个月徐变增长较快,6个月 可达最终徐变的(70~80)%,以后增长逐渐缓慢,2~3年后趋于稳定。
混凝土徐变的影响因素
徐变与混凝土持续应力大小有密切关系,应力越大徐变
也越大;
混凝土加载龄期越长,徐变越小;
建筑材料力学性能测试的注意事项
建筑材料力学性能测试的注意事项在建筑工程中,对于材料的力学性能进行测试是至关重要的。
通过测试,我们可以准确评估材料的强度、刚度、耐久性等性能指标,以确保建筑结构的安全可靠。
然而,进行力学性能测试需要注意一些事项,以确保测试结果的准确性和可靠性。
以下是进行建筑材料力学性能测试时需要注意的事项。
1. 选择合适的测试方法:在进行力学性能测试之前,首先需要确定适合该材料的测试方法。
不同的材料可能需要使用不同的测试设备和方法。
例如,对于混凝土材料,可以使用压缩试验或弯曲试验,而对于钢材料,则可以使用拉伸试验或冲击试验。
选择合适的测试方法可以提高测试结果的准确性。
2. 确定测试样品的制备方法:测试样品的制备方法直接影响到测试结果的准确性。
样品的尺寸、形状和制备过程都需要严格控制。
样品的尺寸应符合相关标准或规范要求,同时要避免产生缺陷或瑕疵。
在制备过程中,要注意材料的溶解、热胀冷缩、应力集中等可能影响测试结果的因素。
3. 正确安装测试设备:在进行力学性能测试时,测试设备的正确安装是非常重要的。
测试设备应严格按照操作手册或使用说明进行安装。
安装过程中要保证设备的稳定性和垂直度,以避免测试过程中出现不必要的误差。
同时,要定期检查和校准测试设备,以确保其正常工作和准确度。
4. 控制测试条件:测试条件的控制对于测试结果的准确性有重要的影响。
例如,测试温度、湿度、载荷速度等因素都需要在合适的范围内进行控制。
温度和湿度变化可以引起材料的尺寸变化和性能改变,而载荷速度的变化也会影响材料的应力-应变行为。
因此,要尽可能控制测试条件,以确保测试结果的可靠性和可比性。
5. 重复测试和统计分析:为了提高测试结果的可靠性,建议进行重复测试并进行统计分析。
通过重复测试,可以验证测试结果的一致性和稳定性。
统计分析可以帮助我们了解测试结果的分布情况和可信度。
同时,还可以利用统计方法对测试数据进行处理和分析,以得出更准确的结论。
6. 完整记录测试过程和结果:在进行力学性能测试时,要完整记录测试过程和结果。
建筑结构钢筋和混凝土材料的力学性能
《混凝土规范》规定,混凝土按立方体抗压强度标准 值的大小共划分为14个强度等级,即C15、C20、C25、C30、 C35、C40、C45、C50、C55、C60、C65、C70、C75、C80。 符号C表示混凝土,C后面的数值表示立方体抗压强度标准 值,单位是N/mm 2。
Ec tan α0
2.混凝土的弹形模量
2.1.4钢筋的选用
(1)纵向受力普通钢筋宜采用HRB400、HRB500、 HRBF400、HRBF500钢筋;也可采用HPB300、 HRB335、HRBF335和RRB400钢筋;
(2)梁、柱纵向受力普通钢筋应采用HRB400、 HRB500、HRBF400、HRBF500钢筋;
(3)箍筋宜采用HRB400、HRBF400、HPB300、 HRB500、HRBF500筋
条件屈服强度,也就是该种钢筋的强度标准值,用 σ0.2表示。
对于消除应力钢丝、中强度预 应力钢丝、钢绞线和预应力螺纹钢 筋,《混凝土规范》取条件屈服强 度为0.85σb。
2.钢筋的总伸长率
伸长率是反映钢筋塑性性能的基本指标。 延性破坏、脆性破坏。
3.冷弯性能
反映钢筋塑性性能的基本指标除了总伸长率外,还 有冷弯性能。
尺寸效应: 200mm×200mm×200mm的立方体试块——1.05 100mm×100mm×100mm的立方体试块——0.95
2.轴心抗压强度 我国《普通混凝土力学性能试验方法》规定以 150mm×150mm×300mm的棱柱体作为混凝土轴心抗压强 度试验的标准试件,用标准方法测得的抗压强度为混凝 土轴心抗压强度标准值,用符号fck表示。
第2、3章受力和材力
y
δ
低碳钢拉伸时的应力-应变曲线
15
高碳钢的应力-应变曲线中 没有明显的屈服台阶,工程中 取0.85σb作为条件屈服强度。 σb是国家标准规定的极限抗拉 强度。
(2)抗压强度
高碳钢拉伸时的应力-应变曲线
低碳钢压缩时的应力-应变曲线
16
2、变形性能 (1)弹性模量Es 钢的 ES=2.06×105N/㎜2 (2)剪切模量G (3)钢材的塑性性能:
8
桁架的形式
9
重庆嘉陵江大桥 几种桁架实例
国家奥林匹克体育馆—主桁架
10
2.2.2结构构件的受力状态 有受弯构件、受压构件、受拉构件、受扭 构件以及复合受力构件等。
.
受压柱
(a)雨蓬梁 (b)折线梁 (c)框架边梁 (d)吊车梁 受扭构件
11
本章重点
1、作用的分类 2、什么是荷载的标准值 3、从哪里可查到荷载的标准值 4、荷载的标准值的符号
1)伸长率—δ
它是钢材塑性性能的主要指标。 2)冷弯性能—弯转角度α 越大,塑性性能越好。 3)焊接性 4)冲击韧性—是判断钢材承受 动力荷载作用时是否出现脆性破 坏的主要指标。
冲击试验
17
本章重点
钢材以什么作为其抗拉强度
钢材的塑性性能指标包含哪些
18
3
(3)雪荷载和屋面均布活荷载 1)雪荷载
Sk=μrSO
2)屋面均布活荷载 P34表2.1.4 (4)风荷载 风荷载有压力和吸力 风荷载的大小主要与建筑物的体型和高度有关
4
5
风载
7
2.2 建筑结构构件及其受力状态 2.2.1 建筑结构基本构件 承重构件、非承重构件 建筑结构基本构件有: 板、梁、柱、墙、桁架
材料的力学性能和弹性模量
材料的力学性能和弹性模量材料的力学性能和弹性模量是材料科学中非常重要的参数,它们与材料的力学行为和性能密切相关。
本文将对材料的力学性能和弹性模量进行详细介绍和分析。
一、力学性能1. 强度:材料的强度是指材料在受力情况下能够承受的最大应力。
强度高的材料具有较高的抗拉、抗压等能力,常用来制造承重结构或需要抗外力作用的零部件。
2. 韧性:材料的韧性是指材料在受力情况下能够吸收能量的能力。
韧性高的材料能够在受到冲击或弯曲时发生塑性变形而不易断裂,常用于制造需要抗冲击或吸能的零部件。
3. 延展性:材料的延展性是指材料在受力情况下能够发生塑性变形的能力,即能够被拉长或压扁。
延展性高的材料具有较好的可加工性和适应性,常用于制造需要复杂形状或变形的零部件。
4. 脆性:材料的脆性是指材料在受力情况下发生断裂的倾向。
脆性高的材料容易发生断裂,常用于制造需要刚性和脆性的结构或零部件。
二、弹性模量弹性模量是材料在弹性阶段的应力和应变之间的比例关系。
常用的弹性模量包括杨氏模量、剪切模量和泊松比。
1. 杨氏模量:杨氏模量是指材料在拉伸或压缩过程中单位面积的应力与应变之间的比值。
杨氏模量越大,材料的刚度越高,即抵抗外力变形的能力越强。
2. 剪切模量:剪切模量是指材料在剪切过程中单位面积的剪应力与剪应变之间的比值。
剪切模量描述了材料在剪切应力作用下的变形特性。
3. 泊松比:泊松比是指材料在受力方向上的拉伸或压缩与垂直方向上的应力变形之间的比值。
泊松比描述了材料在受力作用下的变形特性,对材料的破坏和失效具有重要的影响。
三、材料选择和应用材料的力学性能和弹性模量是根据具体应用需求进行选择的。
不同的材料在力学性能和弹性模量上具有各自的优势和适用范围。
1. 金属材料:金属材料具有优异的强度和韧性,常用于制造机械零件、建筑结构和汽车零件等需要抗拉、抗压和抗冲击能力的领域。
2. 高分子材料:高分子材料具有良好的延展性和可加工性,常用于制造塑料制品、橡胶制品和纤维材料等需要复杂形状和变形能力的领域。
建筑结构的力学性能
建筑结构的力学性能建筑结构的力学性能是指建筑结构在受到外力作用时的力学响应和性能表现。
它是评估建筑结构安全性、可靠性和耐久性的重要指标,对于建筑物的设计、施工和使用具有重要意义。
本文将从材料强度、结构稳定性和振动控制三个方面探讨建筑结构的力学性能。
一、材料强度对建筑结构的影响材料强度是建筑结构力学性能的基础。
建筑结构所用的材料包括钢筋混凝土、钢材、木材等,在受力过程中要具备足够的强度来承受负荷。
钢筋混凝土结构的强度取决于混凝土的抗压强度和钢筋的抗拉强度。
合理选择和配置材料,确保其满足强度的要求,是保障建筑结构安全的关键。
此外,材料的劣化和老化也会降低其强度,需要及时检测和维修,以保持结构的可靠性。
二、结构稳定性与建筑结构安全结构稳定性是指建筑结构在受到外力作用时能保持稳定的能力。
当建筑结构受到风荷载、地震作用等外力时,如果结构的稳定性不足,就会导致结构的倒塌。
因此,在设计建筑结构时,要充分考虑结构的稳定性,采取相应的措施来增强其稳定性。
例如,在高层建筑中,采用剪力墙、楼板横向约束等手段来提高结构的整体稳定性,确保建筑结构在极端工况下的安全可靠性。
三、振动控制提高建筑结构的舒适性和安全性建筑结构会在受到外力激励时发生振动,特别是在地震或风荷载作用下。
如果结构的振动频率与外力激励的频率接近或共振,就会引起结构的破坏或损失。
因此,振动控制是提高建筑结构舒适性和安全性的重要考虑因素。
常见的振动控制措施包括加装阻尼器、调整结构刚度、改善结构的动力性能等。
通过合理设计和施工,可以降低结构的振动响应,保证建筑物在使用过程中的舒适性和稳定性。
综上所述,建筑结构的力学性能对于建筑物的安全、可靠和耐久具有重要意义。
通过合理选择和配置材料、提升结构稳定性以及采取振动控制措施,可以有效提高建筑结构的力学性能,确保建筑物的正常使用和长久运行。
注:本文均为原创文章,转载请注明出处。
材料力学性能
材料力学性能材料力学性能是指材料在受力作用下所表现出来的性能,包括强度、刚度、韧性等指标。
材料力学性能的好坏直接影响到材料在工程应用中的可靠性和安全性。
本文将介绍材料力学性能的相关概念和测试方法,并分析其对材料应用的影响。
一、强度强度是指材料抵抗外力破坏的能力。
常见的强度指标包括抗拉强度、抗压强度、抗弯强度等。
抗拉强度是指材料在拉伸力作用下,抗拉破坏的能力。
抗压强度是指材料在受压力作用下,抗压破坏的能力。
抗弯强度是指材料在受弯力作用下,抗弯曲破坏的能力。
强度的测试方法主要包括拉伸试验、压缩试验、弯曲试验等。
材料的强度往往与其成分、结构和加工工艺有关。
例如,金属材料中添加合适的合金元素,可以提高其强度;陶瓷材料中控制晶粒尺寸和界面结合情况,可以提高其抗压强度;纤维增强复合材料中,纤维的分布和取向对抗弯强度有重要影响。
在工程设计中,需要根据具体应用情况选择合适的材料强度指标,并保证其符合设计要求,以确保结构的稳定性和安全性。
二、刚度刚度是指材料抵抗形变的能力,也可以理解为材料对外力作用下的变形程度。
常见的刚度指标包括弹性模量、切变模量等。
弹性模量是指材料在弹性变形范围内,单位应力下的应变,反映了材料的抗弹性变形能力。
刚度的测试方法主要包括拉伸试验、扭转试验等。
材料的刚度与其物理性质和结构密切相关。
高弹性模量的材料具有较高的刚度,其在受力下变形较小;而低弹性模量的材料具有较低的刚度,其在受力下变形较大。
在工程设计中,需要根据结构的刚度要求选择合适的材料,以确保结构的稳定性和正常运行。
三、韧性韧性是指材料抵抗断裂的能力,反映了材料在受力下的变形能力和吸能能力。
常见的韧性指标包括断裂韧性、冲击韧性等。
断裂韧性是指材料在断裂前所能吸收的能量。
冲击韧性是指材料在受冲击载荷下,能够抵抗破坏的能力。
韧性的测试方法主要包括冲击试验、拉伸试验等。
材料的韧性与其断裂机制和微观结构有关。
例如,金属材料中的晶界和位错可以有效地阻止裂纹扩展,提高韧性;聚合物材料中的交联结构和链段运动可以吸收能量,提高韧性。
第二章建筑装饰材料的基本性质
100%
②体积吸水率 是指材料体积内被水充实的 体积。即材料吸水达饱和时,所吸收水分的体积 占干燥材料自然体积的百分率,可按下式计算:
W体
V水 V0
100%=
m湿 m干 V0
1
水
100%
质量吸水率与体积吸水率有如下的关系:
W体
W质 0
1
水
W质 0
(2) 吸湿性 材料在潮湿空气中吸收水分的性质称为吸湿
材料在绝对密实状态下的体积是指不包括孔 隙在内的体积。除了钢材、玻璃等少数材料外, 绝大多数材料内部都存在一些孔隙。因此,在测 定有孔隙的材料密度时,应把材料磨成细粉,来 测定其在绝对密实状态下的体积。材料磨得越细, 测得的密度值越精确。
2、 表观密度
表观密度是指材料在自然状态下,单位体积 所具有的质量,其计算式为(见辅):
三、材料的热工性质
1、 导热性 材料传导热量的能力,称为导热性。材料导
热能力的大小可以用导热系数(λ)表示。 导热系数在数值上等于厚度为2m的材料,当
其相对两侧表面的温度差为2K时,经单位面积 (2m2)单位时间(2s)所通过的热量。
可用下式表示:
Q
At(T2 T1)
材料的导热系数除与其本身的性质、结构、 密度有关外,还与材料的含水率及环境温度等有 关。
软、熔化,可将水泥混凝土脱水粉化及爆裂脱落,可将可燃材料 烧成灰烬,可使建筑物开裂破坏、坠落坍塌、装修报废等,同时 燃烧产生的高温作用对人也有巨大的危害。
②发烟作用 材料燃烧时,尤其是有机材料燃烧时,会产 生大量的浓烟。浓烟会使人迷失方向,且造成心理恐惧,妨碍及 时逃逸和救援。
③毒害作用 部分建筑装饰材料,尤其是有机材料,燃烧 时会产生剧毒气体,这种气体可在几秒至几十秒内,使人窒息而 死亡。
工程材料力学性能
工程材料力学性能工程材料力学性能是指材料在外部力作用下的表现和性质。
材料的力学性能直接影响着工程结构的安全性、稳定性和使用寿命。
因此,对工程材料力学性能的研究和了解至关重要。
首先,工程材料的力学性能包括抗拉强度、抗压强度、弹性模量、屈服强度等指标。
抗拉强度是指材料在拉伸状态下所能承受的最大拉力,抗压强度则是指材料在受到压缩力时所能承受的最大压力。
而弹性模量则是衡量材料在受力时的变形程度,屈服强度则是材料开始产生塑性变形的临界点。
这些指标直接反映了材料在外部力作用下的表现,是评价材料力学性能的重要依据。
其次,工程材料的力学性能还包括疲劳性能、冲击性能、塑性性能等。
疲劳性能是指材料在长期交变载荷下所表现出的抗疲劳能力,冲击性能则是材料在受到瞬间冲击载荷时的抗冲击能力。
而塑性性能则是衡量材料在受力时的塑性变形能力。
这些指标在工程实践中同样具有重要的意义,特别是在复杂的工程环境下,材料的疲劳性能和冲击性能往往是决定工程结构安全性的关键。
此外,工程材料的力学性能还受到温度、湿度、环境腐蚀等因素的影响。
在不同的环境条件下,材料的力学性能可能会发生变化,因此在工程设计和使用中需要考虑这些因素对材料性能的影响。
同时,对于一些特殊工程要求,如航空航天、核工程等,对材料力学性能的要求更加严格,需要材料具有更高的耐高温、耐腐蚀等特殊性能。
综上所述,工程材料力学性能是工程实践中不可忽视的重要内容。
通过对材料力学性能的研究和了解,可以更好地选择合适的材料,设计合理的工程结构,确保工程的安全可靠性。
因此,对于工程材料力学性能的研究和评价,需要全面、准确地了解材料的各项力学性能指标,以及其在不同环境条件下的表现,为工程实践提供可靠的材料支撑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.1钢筋的品种和级别
混凝土结构中的钢筋
HPB300
钢筋混凝土结构中的钢筋 低碳钢 普通钢筋 热轧钢筋
普通低合金钢
HRB335 HRBF335 HRB400 HRBF400
预应力筋
钢绞线
消除应力钢丝
RRB400
预应力螺纹钢筋
HRB500 HRBF500
2.1.1钢筋的品种和级别
热轧钢筋的符号说明
月牙纹钢筋
2.1.1钢筋的品种和级别
预应力钢筋外形
普通钢筋一般为软刚;预应力筋一般为硬钢。从受力性能分:软钢;硬钢
2.1.2 钢筋的强度和变形性能
钢筋的应力-应变曲线(有明显流幅的钢筋,软钢)
钢筋的两个强度指标: 屈服强度和极限强度 屈服强度作为钢筋设计强度取值依据
fu
屈服上限 屈服下限 强化阶段 屈服平台
f yk = 435
主要成分:铁 其他成分:碳、锰、硅、磷、硫等 碳素钢:低碳钢 (含碳量<0.25%);中碳钢(0.25%~0.6%) 高碳钢(0.6%~1.4%)。含碳量高,强度高,延性差 锰、硅:可提高钢材强度,保持一定的塑性
2.1.1钢筋的品种和级别
热轧钢筋的外形 光圆钢筋
螺纹钢筋
人字纹钢筋
简单受力状态下混凝土的强度 轴心抗拉强度
轴心抗拉强度 ft
• 混凝土的抗拉强度远低于抗压强度
•
•
对于普通混凝土,抗拉强度约 1/17-1/8 的抗压强度
对于高强混凝土,抗拉强度约 1/24-1/20 的抗压强度
轴心抗拉强度的试验方法
• 直接受拉试验
•
•
劈裂试验
弯折试验
2.2.1混凝土的强度
★简单受力状态下混凝土的强度
立方体抗压强度(uniaxial compressive cube strength) 轴心抗压强度(uniaxial compressive strength) 轴心抗拉强度(uniaxial tensile strength)
★复杂受力状态下混凝土的强度
双轴受力强度 三轴受力强度 剪压及剪拉强度
fcu,k是混凝土各种强度指标的基本代表值
2.2.1混凝土的强度
简单受力状态下混凝土的强度 轴心抗压强度
轴心(棱柱体)抗压强度 fc
• •
•
采用棱柱体试件,能够反映混凝土的实际工作状态。 我国取150×150×300mm为标准试件,按与立方体试 验相同的规定所得的平均应力值,为 fc 。 棱柱体高度取值的原因:
颈缩阶段
fy
弹性极限
比例极限
0 弹性模量
O
2.1.2 钢筋的强度和变形性能
钢筋的应力-应变曲线(无明显流幅的钢筋,硬钢)
极限强度
σ
σb
条件屈服强度σ0.2
b
c a
比例极限 σa
0.2 0.85 b
a 0.75 b
条件屈服强度: 取残余应变为0.2% 所对应的应力
O
★软钢与硬钢的区别 软钢:有明显的屈服平台、屈服强度,极限强度 硬钢:只有极限强度,人为规定 “条件屈服强度” ★设计取值依据 屈服强度(软钢)、条件屈服强度(硬钢) ★钢筋的屈强比 = 屈服强度/极限强度≤0.8 ★钢筋的延性(ductility) 钢筋在强度无显著降低情况下抵抗变形的能力(屈服后 的变形能力).软刚延性好,硬钢延性较差。 ★弹性模量:弹性极限以下应力-应变曲线的斜率
简单受力状态下混凝土的强度
轴心抗拉强度
直接受拉试验
பைடு நூலகம்100
150
500
150
100
轴心抗拉强度与立方体抗压强度平均值之间的关系
直接受拉试验得到的关系式, 规范建议的关系式,
f 0.395 0.55
t f cu f cu
f 0.88 0.395 c 2 0.55
t
轴直接受拉试验的缺点:容易引起偏拉破坏
,对C80取 c1 =0.82,中间按线性规律变化取值; c 2 为混凝土考虑脆性的折减系数,对C40取 c 2 =1.00,对 C80取 c 2 =0.87,中间按线性规律变化取值;
0.88: 考虑结构中混凝土强度与试件混凝土强度之间的差异 而采取的修正系数。
2.2.1 混凝土的强度
主 混凝土与钢筋的粘结 要 内 容
混凝土的材料性能 章
钢筋的材料性能 本
本章提要
★材料性能(物理力学性能)
钢筋的强度、变形性能 混凝土的强度、变形性能 钢筋与混凝土之间的粘结-滑移性能
★重点
混凝土的强度、变形性能
★本章在本课程中的作用
后续各章的基础
钢筋的成分、级别和种类
钢筋的强度和变形性能(重点) 混凝土结构对钢筋性能的要求
gt (
L L0 b ) 100% L0 Es
L L0 b gt ( ) 100% L0 Es
b
L L0 b gt ( ) 100% L0 Es
0 残余变形 r 最大力下总伸长率(%)
弹性变形 e
2.1.2 钢筋的强度和变形性能
/ 0 0.00981 0.112 / 0 0.122 / 0
• • 摆脱端部摩擦力的影响 试件不致失稳
立方体抗压强度与轴心抗压强度之间的关系
f 0.88c1c 2 f
c
cu
混凝土考虑脆性的折减系数 棱柱体强度与立方体强度的比值
结构中混凝土与试件混凝土的强度差异修正系数
2.2.1混凝土的强度
棱柱体试件尺寸
试件强度不受端部摩擦力和 附加偏心距的影响。 中间处于均匀受压状态。
2.2.1混凝土的强度
对比试验结果
f 0.395 f
t
0.55
cu
f 0.88 0.395c2 f
t
0.55
cu
2.2.1混凝土的强度
简单受力状态下混凝土的强度
轴心抗拉强度
劈裂试验
对立方体试件 对圆柱体试件 2P ft a2 2P ft dl
P a P
2 3 r
通过液体静 压力对圆柱 体试件施压
不再为线性关系 , 可采用蔡绍怀
经验公式
r r f c1 f c 1 1.5 2 f c f c
1
2.2.1混凝土的强度
复杂受力状态下混凝土的强度
剪压或剪拉复合应力状态
试验结果
岗岛达雄的试验结果
2.1.3 钢筋的冷加工
冷拉
冷拉是在常温下用机械方法将有明显流幅的钢筋拉到超过 屈服强度即强化阶段中的某一应力值,然后卸载至零。
冷拉强化:冷拉控制应力必须超过屈服点,进入强化阶段。 屈服强度提高,屈服平台消失,极限强度未提高,延性降低
冷拉时效:钢筋经首次冷拉后,在自然条件下一段时间后进 行第二次张拉,屈服强度和极限强度均提高,且恢复屈服台 阶。
HPB300
hot rolled plain bar fyk=300 N/mm2 hot rolled ribbed bar fyk=335 N/mm2
HRB335
HRB400
hot rolled ribbed bar fyk=400 N/mm2
RRB400
R
remained heat treatment ribbed bar fyk=400 N/mm2
2.2.1混凝土的强度
简单受力状态下混凝土的强度
立方体抗压强度
混凝土受压破坏机理
• 骨料之间的微裂缝是 内因 • 纵向受压破坏是横向 拉裂造成的。
影响立方体抗压
强度的因素
• • • • • 材料组成 尺寸效应 加载速度 端部约束,环箍效应 混凝土的龄期
骨料之间的微裂缝
2.2.1混凝土的强度
只能提高抗拉强度,抗压屈服强度将降低。
2.1.3 钢筋的冷加工
2.1.3 钢筋的冷加工
冷拔 • 冷拔一般是将6的HPB235热轧钢筋强行拔过小于其直径
的硬质合金拔丝模具。
• 可同时提高抗拉和抗压强度。 • 冷加工目的是节约钢材和扩大钢筋的应用范围。 《混凝土规范》不提倡冷拉钢筋,已取消冷拉钢筋.
of concrete under biaxial stresses, ACI J. 66 (1969) 656-666.
研究方法
施加法向应力
σ2
方形板试件
施加法向应力 板处于平面应力状态
σ1
2.2.1混凝土的强度
复杂受力状态下混凝土的强度
双向受拉的破 坏强度接近于单轴 抗拉强度。
双轴应力状态
P/2 150
2
1
弯折试验
P/2
假定截面应力 为直线分布 ft Mu W
150 l/3 l/3 500~600 l/3
2.2.1混凝土的强度
圆柱体劈裂试验
2.2.1混凝土的强度
复杂受力状态下混凝土的强度
双轴应力状态
研究文献来源: H. Kupfer, H.K. Hilsdorf, H. Rusch, Behaviour
影响因素分析
材料组成:最主要因素,在材料组成一定时,还有下列因素 加载速度:加载速度快,微裂缝不能充分扩展,强度高 试验条件:试件上、下表面不涂油,横向变形受到约束,强 度高 试件尺寸:尺寸大,内部缺陷相对较多,端部摩擦力影响相 对较大,强度低 龄期:龄期长,试件强度高