Hypothesis Testing, One Population Mean or ProportionPPT
hypothesis testing 好理解
hypothesis testing 好理解:
假设检验(hypothesis testing)是统计学中常用的方法,用于评估关于总体参数的假设。
通常情况下,我们会提出两种相互对立的假设:零假设(null hypothesis)和备择假设(alternative hypothesis)。
通过收集样本数据并进行统计推断,我们可以判断是否有足够的证据来拒绝零假设。
在假设检验中,我们首先设定一个显著水平(significance level),通常用α表示,它代表了我们愿意接受犯第一类错误(拒绝了其实是正确的零假设)的风险大小。
然后,我们使用样本数据计算出一个统计量,并基于此统计量对比设定的显著水平,来判断是否拒绝零假设。
假设检验可以帮助我们从样本数据中得出关于总体的重要结论,例如判断药物是否有效、广告营销策略是否有效等。
通过对比样本数据与假设进行检验,我们可以做出科学合理的推断,并支持决策和结论的形成。
第十七章 假设检验(hypothesis testing)
A B 40 73 69 182
非参数检验(nonparametric test )
概念:在总体分布不明确或明显偏离正态情况下,
对总体进行差异性推断的一种统计方法,其检验的
是分布,而非参数。
应用范围:
配对资料的秩和检验 两样本成组比较秩和检验 多样本比较的秩和检验 等级分组资料的秩和检验
定结果是否不同?
表2 两种方法对乳酸饮料中脂肪含量的测定结果(%)
编号
哥特里-罗紫法
脂肪酸水解法
1
0.840
2
0.591
3
0.674
4
0.632
5
0.687
6
0.978
7
0.750
8
0.730
9
1.200
10
0.870
0.580 0.509 0.500 0.316 0.337 0.517 0.454 0.512 0.997 0.506
两样本成组比较的秩和检验
例3 为了研究血铁蛋白与肺炎的关系,随机抽取了肺炎患 者和正常人若干名,测得血铁蛋白(μg/L),数据如下表, 请问两种人血铁蛋白总体分布是否相同?
cards; 68 100 83 101 69 120 100 180 110 100 180 240 55 120 200 170 210 300 120 105 ; proc univariate;
var x; run;
例2 用两种方法测定肺炎患者的尿铁蛋白,测量结果如下 表所示,试问,这两种方法测的结果是否有差别?
一、样本均数与总体均数差异的t检验 x
1.数学模型 t 2. SAS过程(编程) S X
用means过程,检验μd = μ- μ0 =0,其检 验相当于总体均数μ=μ0 。
假设检定Hypothesistesting
的機率為何。(0.0475) • 2.定α為0.05,請問此拒絕域的臨界值為何。(55.065) • 3.若所抽出樣本平均值為59分鐘,請問此症改善是否有效。
(can’t reject H0)
9
• Example:
– H1,與虛無假設對立之假設。
• 顯著性(significance):
– 有足夠的證據推翻虛無假設時,稱此檢定具顯著性。
2
•Example:
•根據2000年研究報告顯示,小學生每日上網平均時數不到30分 鐘,因電腦普及網路發展迅速,主管機關認為其平均值已改變, 大於30分鐘。問本題中的虛無假設及對立假設為何。
5
檢定力
• 1-β:power (power of a test)。
– 檢力 or 檢定力。正確的拒絕虛無假設的機率。 – 1-β= P(拒絕H0│H1為真)
6
• 檢定
– 1.檢定事件發生的p值:p<α/2 or p<α reject H0
– 2.檢定信賴區間:是否包含μ0。 – 3.檢定臨界值:Z值。
7
• 歸納結論
– 事件發生的機率(P)是否小於顯著水準(α) – 是否有足夠的證據拒絕虛無假設(reject H0)。 – 當無法拒絕H0時,可能是沒有足夠的證據,而非H0是
必然正確的。
8
• Example
– 大台北地區民眾每日上班所花費的車程時間很長,經 過政府改善後,希望能降至1小時以下,假設上班通車 時間符合常態分配,已知標準差為18分鐘,今我們隨 機抽出36個樣本,則:
– 某廠商宣稱其所開發的魚線平均強度為8公斤,標準差 為0.5公斤。茲從其中隨機抽出50條魚線,測其平均強 度為7.8公斤,(α=0.01;Z0.01=-2.33;Z0.005=-2.575)
Hypothesis Testing
Is the opposite of the null hypothesis
e.g. The grade point average of juniors is less than 3.0 (H1: < 3.0)
Never contains the „=„ sign The Alternative Hypothesis may or may not be accepted
Step Two: Select a Level of Significance.
Researcher Accepts Rejects Ho Ho
Null Hypothesis Ho is true
Correct decision Type II Error (b)
Type I error (a) Correct decision
or
Computed z > Critical z
Step Four: Formulate the decision rule (using p-value).
p-Value: The probability, assuming that the null hypothesis is
true, of the obtaining the sample results
Step Five: Make a decision
One-Tailed Tests of Significance
The alternate hypothesis, H1, states a direction (μ > μ0 or μ < μ0 )
Sampling Distribution
of the Statistic z, a Right-Tailed Test (Alternative hypothesis: H1: μ > μ0 ), 0.05 Level of Significance
ExamplesofSomeSimpleHypothesisTests:一些简单的假设检验的例子
Hypothesis Tests – Some ExamplesExample 1: Directional hypothesis test for a population mean.The U. S. Food and Drug Administration recommends that individuals consume 1000 mg of calcium daily. The International Dairy Foods Association (IDFA) sponsors and advertisingcampaign aimed at male teenagers to try to increase calcium consumption. After the campaign, the IDFA obtained a random sample of 50 male teenagers and found that the mean amount of calcium consumed was =x 1081 mg, with a standard deviation of s = 426 mg. Conduct a test to determine whether the campaign was effective. Use the α = 0.05 level of significance.We want to prove that the mean, μ, calcium consumption for male teenagers is greater than the FDA recommendation of 1000 mg per day. Hence,Step 1: H 0: μ ≤ 1000 mg. versus H a : μ > 1000 mg.Note that the alternative hypothesis states what we are trying to prove; the null hypothesis states the opposite. Step 2: n = 50, α = 0.05Note that in the real world, we would decide on a value for α based on our examination of the possible consequences of the two possible types of mistakes we could make – a Type I error or a Type II error.In this situation, a Type I error would be that we concluded that the campaign did convince male teenagers to increase their calcium consumption, when in fact it did not. Possibleconsequences might be that the IDFA would continue to fund the ad campaign, not realizing that it did not work.A Type II error would be to fail to conclude that male teenagers were consuming enough calcium, when in fact they are. The IDFA might then stop its ad campaign, even though it would be effective in convincing male teenagers to consume enough calcium. Step 3: Since we are testing a hypothesis about a population mean, the test statistic is⎪⎪⎭⎫ ⎝⎛-=501000S mg X T , which under H 0 has a t distribution with d.f. = 49. Step 4: The alternative hypothesis says “greater than.” Therefore the rejection region is a right -hand tail of the t-distribution. The area of this right-hand tail is 0.05, our chosen significance level. The rejection region looks like:Step 5: Now, we select the random sample from the population, collect the data, and do the calculations. We find that =x 1081 mg, s = 426 mg, t = 1.3445, and p-value = 0.0925. The p-value is greater than our chosen significance level. Step 6: We fail to reject H 0 at the 0.05 level of significance. We do not have sufficient evidence to conclude that the mean daily calcium consumption by male teenagers is greater than the FDA recommended amount of 1000 mg.Example 2: Hypothesis test about a population proportion.In 1995, 40% of adults aged 18 years or older reported that they had “a great deal” ofconfidence in the public schools. On June 1, 2005, the Gallup Organization released results of a poll in which 372 of 1004 adults aged 18 years or older stated that the y had “a great deal” ofconfidence in the public schools. Does the evidence suggest that the proportion of adults aged 18 years or older having “a great deal” of confidence in the public schools has decreased between 1995 and 2005? Use α = 0.05.Since we are testing hypotheses about a population proportion, we are collecting the data using a binomial experiment. There are 1004 trials in the experiment. The trials are independent of each other due to random sampling. The trials are identical to each other because each trial consists of randomly selecting an adult and asking whether he/she has “a great deal” of confidence in the public schools. There are two possible outcomes for each trial: either the person says, “Yes” or the person says, “No.” Due to random sampling, the probability of success is the same for each trial, namely the fraction of the population who would say, “Yes .”Step 1: H 0: p ≥ 0.40 versus H a : p < 0.40 Step 2: n = 1004, α = 0.05 Step 3: The test statistic is ()()100460.040.040.0ˆ-=p Z , which under H 0 has an approximate standard normal distribution.Step 4: The rejection region is:Step 5: Now, we select the random sample from the population, collect the data, and do thecalculations. We find that 3705.01004372ˆ==p , z = -1.9069, and p-value = 0.0283. The p-value is less than our chosen significance level.Step 6: We reject H 0 at the 0.05 level of significance. We have sufficient evidence to conclude that the fraction of adults 18 years or older who have “a great deal” of confidence in the public schools decreased between 1995 and 2005.。
假设检验基础:单一样本检验
5. 选择检验:
Z检验或 p值检验
6. 确定临界值 Critical Values
7. 收集数据
8. 计算检验统计量
9. 作出统计决策
10.
表述决策
已知的Z检验
Z-Test Statistic ( Known)
1. 将样本统计量(如, X )转换为标准正态分布Z
变量
Z
单一总体均值 (已知) One population mean 单侧和双侧检验 One & Two-Tailed Tests
什么是假设?
What’s a Hypothesis?
假设是对总体参数的 一种推断
我相信这个班级的平均 GPA为 3.5!
总体参数如:均值、 比率和方差
进行分析前必须先 识别参数
20
= 50
样本均值
H0
显著性水平 Level of Significance
1. 定义如果零假设成立样本统计量不可能 的取值区间
称为样本分布的拒绝域 Rejection region of sampling distribution
2. 用 表示
典型值为 0.01, 0.05, 0.10
P(Z -1.50 或 Z 1.50) = 0.1336
1/2 p=
.0668
1/2 p=
.0668
.4332
-1.50 0 1.50 Z
.5000
-.4332
.0668
乘2
从Z表中查到: 1.50
样本统计量的Z值
p 值解答
(p = .1336) ( = .05) 不拒绝零假设
1/2 p = .0668
0 1.50 Z
HypothesisTesting假设检验讲义中英文版
2
1
2
X
Risk
Risk
10
❖ 可信区间 确定了总体参
数中样本统计可能的数 值范围. 它们可以是单 边也可是双边。
▪ 样本均值、样本标准偏差、样本 方异和其它样本统计被称为特征 值评估者。因为它们是用以代表 总体参数的单一数值。
2
1
2Leabharlann XRiskRisk
11
❖ Point Estimates of parameters and Confidence Interval Interpretation are both means for making inferences about sample data.
▪ Sample Means, Sample Standard
deviation, Sample Variances and other sample statistics are known
as Point Estimators because
they are single values used to represent population parameters
❖ Hypothesis tests are designed to help us make an inference about the true population value at the desired level of confidence.
Hypothesis Tests help determine if an apparent
为何要选取样本?
总体: 统计总体 用以定义所有可知或不可知参数(m, s) 的数据或信息
可能出现取样 错误吗?
应取多少样本?
假说检定HypothesisTesting
數量方法:就是統計學為何稱為數量方法?統計局是幹什麼的?知識的來源是什麼?何謂科學方法?特例與通則。
數據的過去與未來。
重要的是有效的方法。
例:血液中各種成份讀數與臟器功能之間的相關。
統計學最初的功用在計算國力、經濟、國防、民生等數字,這些數字或依時間、季節、而變化,或依地域而變化,形成分配。
推而廣之,任一項知識,通常無法由單一數字完整代表,而需要一堆數字,因此,這些數字的分配遂成為我們知識的來源,因此,分配也就成為統計學的中心,統計學全本,都在對付分配這個東西。
分配通常很複雜,因此很費工。
統計學課程大致分成三大部分,其與分配之關係為如下所述:(一)敘述統計:以有效方法取得能扼要描述分配的方法,並將常用分配型態,加以分類、整理。
機率論及隨機變數之引進使得分配之觀念更清晰。
(二)推論統計:對未知的分配,或其參數進行推論或猜測。
(三)應用統計方法:經由特定模式之套用,形成特殊的分配,針對這些類分配引進推論方法。
第一講:數據蒐集、分析與表示方法何謂數據data?包含要件:variable, element, observation(label)Variable之分類:(P.9)Nominal Qualitative , categorical , classification Ordinal rankingInterval Quantitative , numerical , countingRatio measuring數據之分類(univariate, bivariate, multivariate)就性質分:Internal Primary:External Secondary:就蒐集方法分:Observational 例. p.455, Example 11.2Experimental 例p.468, Exercise 11.5就範圍分:CensusSample survey例:Case NameVariableAge GenderSystolicBloodPressureDiastolicBloodPressureTricepsSkinfoldThicknessNumberof Sit-UpsFitnessRank1 Anders 32 M 120 80 1.50 100 12 Colm 28 F 118 75 1.96 35 33 Greene 46 M 138 90 1.79 454 Case4 Keene 23 F 121 75 2.30 29 55 Osman 36 M 141 95 3.05 18 66 Waldorn 22 M 123 75 1.91 75 2Index of body fat Observation處理單變數數據。
经典六西格玛(6 sigma)培训内部资料A_04_Introduction To Hypothesis Testing.(7)
Alternative hypothesis is also know as Research Hypothesis 备选假设也叫研究假设
Î For example: 例子
H0 – Population mean oxide thickness IS equal to 200 angstroms. H0 – 氧化物平均厚度等于200 angstroms Ha - Population mean oxide thickness is NOT equal to 200 angstroms Ha – 氧化物平均厚度不等于200 angstroms
Ho: μ = 40mm (The process mean
equals the target) (过程均值同目标相等)
® Must contain the condition
of equality 必须包含等号.
Introduction To Hypothesis Testing 14
Null and Alternative Hypotheses 零假设和备选假设
D. Compute the P-value.
计算P值
E. Compare the P-value to the level of significance, α . 比较P值和显著水平,α
假设检验(Hypothesis Testing)
假设检验(HypothesisTesting)假设检验是用来判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。
其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。
生物现象的个体差异是客观存在,以致抽样误差不可避免,所以我们不能仅凭个别样本的值来下结论。
当遇到两个或几个样本均数(或率)、样本均数(率)与已知总体均数(率)有大有小时,应当考虑到造成这种差别的原因有两种可能:一是这两个或几个样本均数(或率)来自同一总体,其差别仅仅由于抽样误差即偶然性所造成;二是这两个或几个样本均数(或率)来自不同的总体,即其差别不仅由抽样误差造成,而主要是由实验因素不同所引起的。
假设检验的目的就在于排除抽样误差的影响,区分差别在统计上是否成立,并了解事件发生的概率。
在质量管理工作中经常遇到两者进行比较的情况,如采购原材料的验证,我们抽样所得到的数据在目标值两边波动,有时波动很大,这时你如何进行判定这些原料是否达到了我们规定的要求呢?再例如,你先后做了两批实验,得到两组数据,你想知道在这两试实验中合格率有无显著变化,那怎么做呢?这时你可以使用假设检验这种统计方法,来比较你的数据,它可以告诉你两者是否相等,同时也可以告诉你,在你做出这样的结论时,你所承担的风险。
假设检验的思想是,先假设两者相等,即:μ=μ0,然后用统计的方法来计算验证你的假设是否正确。
假设检验的基本思想1.小概率原理如果对总体的某种假设是真实的,那么不利于或不能支持这一假设的事件A(小概率事件)在一次试验中几乎不可能发生的;要是在一次试验中A竟然发生了,就有理由怀疑该假设的真实性,拒绝这一假设。
2.假设的形式H0——原假设,H1——备择假设双尾检验:H0:μ = μ0,单尾检验:,H1:μ < μ0,H1:μ > μ0假设检验就是根据样本观察结果对原假设(H0)进行检验,接受H0,就否定H1;拒绝H0,就接受H1。
计量经济学常考的名词解释
计量经济学常考的名词解释在计量经济学领域中,有一些常考的名词,理解这些名词的概念对于学习和应用计量经济学非常重要。
本文将对部分常考名词进行解释,以帮助读者更好地掌握计量经济学的核心知识。
一、假设检验(Hypothesis Testing)假设检验是计量经济学中的一项重要工具,用于评估统计模型的有效性和统计推断的可靠性。
通过对现实问题进行抽样和数据分析,我们可以根据样本数据的特征推断总体的一些性质。
假设检验涉及两个假设:原假设(null hypothesis)和备择假设(alternative hypothesis)。
通过计算样本数据的特征,我们可以对原假设进行验证或拒绝。
二、回归分析(Regression Analysis)回归分析是计量经济学中最常用的方法之一,用于研究变量之间的关系。
在回归分析中,我们使用一个或多个自变量来解释一个或多个因变量的变化。
通过拟合一个数学模型,我们可以测量变量之间的关联程度,并进行预测和因果推断。
三、时间序列(Time Series)时间序列是按照时间顺序进行排序的数据序列。
在计量经济学中,时间序列数据常常用于分析和预测经济和金融变量的动态演变。
时间序列分析可以帮助我们理解和解释时间相关性、趋势、季节性和周期性等模式。
四、异方差性(Heteroskedasticity)异方差性是指随机误差项的方差在不同条件下不稳定或不均匀分布的情况。
在计量经济学中,异方差性可能导致回归分析结果的无效性和推断的误差。
通过应用稳健的标准误差估计方法,我们可以纠正异方差性并获得更准确的回归结果。
五、端点问题(Endpoint Problem)在计量经济学中,端点问题指的是当因变量或自变量的取值受限于某些边界条件时,回归分析可能产生的问题。
例如,当因变量的取值范围在0到1之间时,回归模型的预测结果可能超出这个范围,导致无法解释或使用。
解决端点问题的方法包括截尾回归(truncated regression)和双曲正切转换(hyperbolic tangent transformation)等。
Ch10假设检验(一个总体均值或比率)
• Alternative Hypotheses
– H1: Put here what is the challenge, the view of some characteristic of the population that, if it were true, would trigger some new action, some change in procedures that had previously defined “business as usual.”
© 2002 The Wadsworth Group
The Logic of Hypothesis Testing
• How will we decide?
– “In adjustment” means µ = 1.3250 minutes. – “Not in adjustment” means µ 1.3250 minutes.
• Which requires a change from business as usual? What triggers new action?
CHAPTER 10: Hypothesis Testing, One Population Mean or Proportion
to accompany
Introduction to Business Statistics
fourth edition, by Ronald M. Weiers
Presentation by Priscilla Chaffe-Stengel Donald N. Stengel
Nondirectional, Two-Tail Tests
H0: pop parameter = value H1: pop parameter value
Hypothesis_Testing(统计学假设检验)
2. Next, we obtain a random sample from the population. For example,
批注本地保存成功开通会员云端永久保存去开通
Statistics for Business (ENV)
Chapter 9
INTRODUCTION TO HYPOTHESIS TESTING
1
Hypothesis Testing
9.1
9.2 9.3
Null and Alternative Hypotheses and Errors in Testing z Tests about a Population with known s t Tests about a Population with unknown s
2
Hypothesis testing-1
Researchers usually collect data from a sample and then use the sample data to help answer questions about the population. Hypothesis testing is an inferential statistical process that uses limited information from the sample data as to reach a general conclusion about the population.
结构方程简介
结构方程简介结构方程模式的原理与特性整体来说,SEM的基本原理若从其字面的涵义而言,涉及了结构化(structural)、假设方程式(hypothesized equation)与模型分析(modeling)等数项基本内涵,以下,即以假设考验、结构化检验与模型分析等三个概念来说明SEM的基本原理。
一、结构方程模式的基本原理(一)假设考验(hypothesis-testing)结构方程模式的第一个主要内涵,是统计学当中有关推论统计中的假设考验。
假设考验可以说是推论统计最主要的内容,也是行为科学研究核心的观念。
在SEM当中,研究者为了验证自己所提出理论观点的适切性,提出一套理论性的建构,此时,不论是针对整体模型的适切性考验,或是个别变项间关系的参数估计,都是以假设考验的方式来检验之。
在方法学上,所谓研究假设(hypothesis)是研究者对于所欲研究的对象之间关系的描述或暂时性的解答,有待研究者搜集实证资料来加以检验。
例如,在线性关系(linear relationship)当中,研究假设通常是在说明变项之间具有特定的关系。
例如「成就动机的高低会影响学业的表现」,这一个研究假设在假设考验当中,若改以统计的术语来表示,则为「成就动机与学业成绩之间具有相关」,或以来表示,代表成就动机与学业成绩两个概念之间的关系,研究者对于这两个概念之间具有特定关系的主张,称为对立假设(alternative hypothesis),以H1表示。
他之所以称为「对立」假设,是因为他与另一个假设的立场是相对的,该假设是「成就动机与学业成绩之间没有相关」,可以来表示,此一假设称为虚无假设(null hypothesis),以H0表示,因为他所陈述的是母群体之间不具有特别的关系,在假设考验上是为基本的参考点。
H0与H1这两个假设构成了假设考验的两个对立条件,他们之间具有完全互斥与对立的关系。
如果统计的数据证明其中一个为真,另一个假设自动为伪,如果证明其中一个为伪,另一个假设即自动为真。
hypothesis test
假设检验(hypothesis testing),又称统计假设检验,是用来判断样本与样本、样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。
显著性检验是假设检验中最常用的一种方法,也是一种最基本的统计推断形式,其基本原理是先对总体的特征做出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受做出推断。
常用的假设检验方法有Z检验、t检验、卡方检验、F检验等。
基本思想
假设检验的基本思想是“小概率事件”原理,其统计推断方法是带有某种概率性质的反证法。
小概率思想是指小概率事件在一次试验中基本上不会发生。
反证法思想是先提出检验假设,再用适当的统计方法,利用小概率原理,确定假设是否成立。
即为了检验一个假设H0是否正确,首先假定该假设H0正确,然后根据样本对假设H0做出接受或拒绝的决策。
如果样本观察值导致了“小概率事件”发生,就应拒绝假设H0,否则应接受假设H0 。
假设检验中所谓“小概率事件”,并非逻辑中的绝对矛盾,而是基于人们在实践中广泛采用的原则,即小概率事件在一次试验中是几乎不发生的,但概率小到什么程度才能算作“小概率事件”,显然,“小概率事件”的概率越小,否定原假设H0就越有说服力,常记这个概率值为α(0<α<1),称为检验的显著性水平。
对于不同的问题,检验的显著性水平α不一定相同,一般认为,事件发生的概率小于0.1、0.05或0.01等,即“小概率事件”。
HypothesisTesting假设检验讲义
Should the sample be random?
We make decisions about the population based on the sample
总体和样本
样品: 总体中具有共同特征 的子集。可以计算其形成的 统计表(X).
为何要选取样本?
总体: 统计总体 用以定义所有可知或不可知参数(m, 的数据或信息
A Statistical Hypothesis
An assertion or conjecture about one or more parameters of the population To determine whether it is true or false, we must examine the entire population. This is impossible!! Instead use a random sample to provide evidence that either supports or does not support the hypothesis. The conclusion is then based upon statistical significance. It is important to remember that this conclusion is an inference about the population determined from the sample data.
2. Once we have identified these factors and made adjustments for improvement, we need to validate actual improvements in our processes.
03 Hypothesis Testing
29
我们将假设检验作为证明差异的一种方法
若干样本是否一致 目标数 目标数值
一个样本 t
一致: 一致: 两个 t样本 或ANOVA 不一致: 或均等差异 差异测 不一致: 用F测试 或均等差异测 试
事情发生的概率: Chi Square Χ2
我们怎样区分随机变化的样本和真 实总体的差别呢?
5
什么是假设? 什么是假设 (hypothesis)
对总体参数的具体数 值所作的陈述
–总体参数包括总体均值 总体均值、 总体均值 比例、方差 方差等 比例 方差 –分析之前 之前必需陈述 之前
我认为这种新药的疗效 比原有的药物更有效! 比原有的药物更有效!
10
提出假设 (例题分析) 例题分析) 【例】某品牌洗涤剂在它的产品说明书中声称:平均净 含量不少于500克。从消费者的利益出发,有关研究人 员要通过抽检其中的一批产品来验证该产品制造商的说 明是否属实。试陈述用于检验的原假设与备择假设,并 说明你的理由。
500g
11
提出假设 (例题分析) 例题分析) 【例】一家研究机构估计,某城市中家庭拥有汽车的比 例超过30%。为验证这一估计是否正确,该研究机构随 机抽取了一个样本进行检验。试陈述用于检验的原假设 与备择假设,并说明你的理由。
HA: σ1≠σ2 _______________________ HA: s1<s2 _______________________ HA: S1>S2 ___________________
8
双侧检验与单侧检验 (假设的形式) 假设的形式)
假设
双侧检验
单侧检验 左侧检验 右侧检验
8a. TEST OF HYPOTHESIS(2)
x 5:
•
Critical
region
The last value observed passing into the critical region is called the Critical Value.
x 5:
Critical
value
Hypothesis Testing
•
CONCLUDING TESTINGS • At the end of a Hypothesis Testing, only one of the two cases is possible: • Reject H0 – in favor of H1 because of sufficient evidence in the data. • Fail to Reject H0 – because of insufficient evidence in the data.
Example: H0: = 0.5 H1: ≠ 0.5
Test of Hypothesis
•
RELATIONSHIP BETWEEN H0 AND Ha: The two hypotheses are usually logical complements of each other. They nullify each other’s ideas. They are mutually exclusive, which means that, at the end of a test, only one of them must be true.
Region of Acceptance
The region of acceptance is defined so that the chance of making a Type I error is equal to the significance level. The set of values outside the region of acceptance is called the region of rejection
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• How will we decide?
– “In adjustment” means µ = 1.3250 minutes. – “Not in adjustment” means µ 1.3250 minutes.
• Which requires a change from business as usual? What triggers new action?
© 2002 The Wadsworth Group
Null and Alternative Hypotheses
• Null Hypotheses
– H0: Put here what is typical of the population, a term that characterizes “business as usual” where nothing out of the ordinary occurs.
• Alternative Hypotheses
– H1: Put here what is the challenge, the view of some characteristic of the population that, if it were true, would trigger some new action, some change in procedures that had previously defined “business as usual.”
CHAPTER 10: Hypothesis Testing, One Population Mean or Proportion
to accompany
Introduction to Business Statistics
fourth edition, by Ronald M. Weiers
Presentation by Priscilla Chaffe-Stengel Donald N. Stengel
© 2002 The Wadsworth Group
Chapter 10 - Learning Objectives
• Describe the logic of and transform verbal statements into null and alternative hypotheses. • Describe what is meant by Type I and Type II errors. • Conduct a hypothesis test for a single population mean or proportion. • Determine and explain the p-value of a test statistic. • Explain the relationship between confidence intervals and hypothesis tests.
• Decision makers frequently use a 5% significance level.
– Use a = 0.05. – An a-error means that we will decide to adjust the machine when it does not need adjustment. – This means, in the case of the robot welder, if the machine is running properly, there is only a 0.05 probability of our making the mistake of concluding that the robot requires adjustment when it really does not.
– Not in adjustment - H1: µ 1.3250 minutes
© 2002 The Wadsworth Group
Types of Error
State of Reality
H0 True H0 False
Test Says
H0 True H0 False
No errLeabharlann rType I error: a
Type II error: b
No error
© 2002 The Wadsworth Group
Types of Error
• Type I Error:
– Saying you reject H0 when it really is true. – Rejecting a true H0.
© 2002 The Wadsworth Group
Building Hypotheses
• What decision is to be made?
– The robot welder is in adjustment. – The robot welder is not in adjustment.
• Type II Error:
– Saying you do not reject H0 when it really is false. – Failing to reject a false H0.
© 2002 The Wadsworth Group
Acceptable Error for the Example
© 2002 The Wadsworth Group
Beginning an Example
• When a robot welder is in adjustment, its mean time to perform its task is 1.3250 minutes. Past experience has found the standard deviation of the cycle time to be 0.0396 minutes. An incorrect mean operating time can disrupt the efficiency of other activities along the production line. For a recent random sample of 80 jobs, the mean cycle time for the welder was 1.3229 minutes. Does the machine appear to be in need of adjustment?