八年级上册数学(浙教版)《特殊三角形》期末试题分类——填空题
2020年浙教版八上数学期末复习卷《特殊三角形》(含答案)
为
.
13.已知一个等腰三角形两内角的度数之比为 1:4,则这个等腰三角形顶角的度数为 . 14.等腰三角形的一边长是 6,另一边长是 3,则周长为 .
15.小明同学要做一个直角三角形小铁架,他现有 4 根长度分别为 4cm、6cm、8cm、10cm 的铁 棒,可用于制作成直角三角形铁架的三条铁棒分别是____________;
A.40°
B.50°
C.60°
D.70°
4.如图,在△ABC 中 AB 的垂直平分线交 AB 于点 D,交线段 BC 于点 E.BC=6,AC=5,则△ACE 的周长是( )
A.14
B.13
C.12
D.11
5.如图,已知 AB=AC,∠A=36°,AC 的垂直平分线 MN 交 AB 于 D,AC 于 M.以下结论:
18.如图,∠MAN 是一钢架,且∠MAN=15°,为使钢架更加坚固,需在其内部加一些钢管 CD、 DE、EF…添加的钢管长度都与 AC 相等,则最多能添加这样的钢管______根.
三、解答题 19.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点 C 偏离欲到达点 B200m,结果他
在水中实际游了 520m,该河流的宽度为多少?
24.如图,已知△ACB 和△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,D 为 AB 边上一点. (1)求证:△ACE≌△BCD; (2)求证:2CD2=AD2+DB2.
参考答案 1.C 2.C 3.D 4.D 5.答案为:B 6.D 7.B 8.C. 9.D 10. 解:如图所示:当 BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7 时,都能
答:该河流的宽度为 480m.
第2章 特殊三角形 浙教版八年级上册数学测试卷(含答案)
浙教版八年级上册数学第二章特殊三角形一、选择题1.下列关于体育运动的图标是轴对称图形的为( )A.B.C.D.2.已知△ABC中,a、b、c分别是∠A,∠B,∠C的对边,下列条件不能判断△ABC是直角三角形的是( )A.∠A=∠C-∠B B.a2=b2-c2C.a:b:c=2:3:4D.a=34,b=54,c=13.等腰三角形的顶角是50°,则这个三角形的底角的大小是( )A.50°B.65°或50°C.65°D.80°4.在锐角△ABC中,AB=15,AC=13,高AD=12,则BC的长度为( )A.16B.15C.14D.135.下列命题的逆命题是真命题的是( )A.直角都相等B.全等三角形的对应角相等C.在Rt△ABC中,30°角所对的边是斜边的一半D.在△ABC中,a、b、c为三角形三边的长,若a2=(b+c)(b―c),则△ABC是直角三角形6.如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于( )A.5B.4C.3D.27.如图,在△ABC中,∠C=90°,AC=4cm,BC=3cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CD的长为( )A .1cmB .43cmC .53cmD .2cm8.《九章算术》中记录了这样一则“折竹抵地”问题:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)如果我们假设折断后的竹子高度为x 尺,根据题意,可列方程为( )A .x 2+42=102B .(10―x)2+42=102C .(10―x)2+42=x 2D .x 2+42=(10―x)29.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于 12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的中垂线上;④S △DAC :S △ABC =1:3.A .1B .2C .3D .410.如图,在△ABC 中,AB =2,∠B =60°,∠A =45°,点D 为BC 上一点,点P 、Q 分别是点D 关于AB 、AC 的对称点,则PQ 的最小值是( )A.6B.8C.4D.2二、填空题11.在三角形ABC中,∠C=90°,AB=7,BC=5,则AC的长为 .12.命题“两直线平行,同位角相等.”的逆命题是 .13.小明同学将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件是 .14.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC= °.15.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M,P是直线MN上一动点,点H 为BC中点.若BC=5,△ABC的面积是30,则PB+PH的最小值为 .16.如图,等边△ABC中,BF是AC边上中线,点D为BF上一动点,连接AD,在AD的右侧作等边△ADE,连接EF,当△AEF周长最小时,则∠CFE的大小是 .三、解答题17.如图,AB⊥BC于点B,AD⊥DC于点D,BC=DC.求证:∠1=∠2.18.如图,在△ABC中,AD⊥BC于D,AC=5,BC=9,AD=4,求AB的长.19.如图,△ABC中,CA=CB,D是AB的中点,∠B=42°,求∠ACD的度数.20.如图所示,若MP和NQ 分别垂直平分AB和AC.(1)若△APQ的周长为12,求BC的长;(2)∠BAC=105°,求∠PAQ 的度数.21.如图,在△ABC中,AB=AC=5,BC=6,点D在AC边上,BD=AB.(1)求△ABC的面积;(2)求AD的长.22.(1)如图1,点D、E分别是等边△ABC边AC、AB上的点,连接BD、CE,若AE=CD,求证:BD=CE (2)如图2,在(1)问的条件下,点H在BA的延长线上,连接CH交BD延长线于点F,.若BF=BC,求证:EH=EC.23.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动,设点P的运动时间为t,连接AP.(1)当t=3秒时,求AP的长度;(2)当△ABP为等腰三角形时,求t的值;(3)过点D作DE⊥AP于点E,连接PD,在点P的运动过程中,当PD平分∠APC时,直接写出t的值.答案解析部分1.【答案】A2.【答案】C3.【答案】C4.【答案】C5.【答案】C6.【答案】B7.【答案】B8.【答案】D9.【答案】D10.【答案】A11.【答案】2612.【答案】同位角相等,两直线平行13.【答案】∠A=60°(答案不唯一)14.【答案】3015.【答案】1216.【答案】90°17.【答案】证明:∵AB⊥BC,AD⊥DC∴∠B=∠D=90°又∵在Rt△ABC和Rt△ADC中AC=AC BC=DC,∴Rt△ABC≌Rt△ADC(HL).∴∠1=∠2.18.【答案】21319.【答案】48°20.【答案】(1)12;(2)30°.21.【答案】(1)解:过点A作AM⊥BC于点M,如图所示:∵AB =AC ,AM ⊥BC ,∴M 是BC 的中点,∵AB =5,BC =6,∴BM =CM =3,∴AM =AB 2―BM 2=52―32=4,∴△ABC 的面积=12BC•AM =12×6×4=12;(2)解:过点B 作BN ⊥AC 于点N ,如图所示:∵BD =AB ,∴AN =DN =12AD ,∵△ABC 的面积=12AC•BN =12×5•BN =12;∴BN =245,AN =AB 2―BN 2=75∴AD =2AN =145.22.【答案】(1)证明:∵△ABC 是等边三角形,∴AB=BC=AC ,∠A=∠ABC=∠BCA.∴在△AEC 和△CDB 中AE =CD ∠EAC =∠DCB AC =CB∴△AEC ≌△CDB (SAS )∴BD=CE.(2)证明:如图:由(1)△AEC≌△CDB,∴∠ACE=∠CBD.∴60°-∠ACE=60°-∠CBD,即∠ABD=∠ECB.∵BC=CF,∴∠BCF=∠BFC,又∵∠BCF=∠ECB+∠ECH,∠BFC=∠ABD+∠H,∴∠ECH=∠H,∴EH=EC.23.【答案】(1)241(2)当△ABP为等腰三角形时,t的值为45、16、5;(3)当t的值为5或11时,PD平分∠APC.。
【期末复习提升卷】浙教版2022-2023学年八上数学第2章 特殊三角形 测试卷1(解析版)
【期末复习提升卷】浙教版2022-2023学年八上数学第2章特殊三角形测试卷1(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.若以下列数组为边长,能构成直角三角形的是()A.4,5,6B.√2,√3,√5C.0.2,0.3 ,0.5D.13,14,15【答案】B【解析】A、42+52≠62,不能构成直角三角形;B、(√2)2+(√3)2=(√5)2,能构成直角三角形;C、0.22+0.32≠0.52,不能构成直角三角形;D、(15)2+(14)2≠(13)2,不能构成直角三角形.故答案为:B.2.下列命题中,逆命题错误的是()A.两直线平行,同旁内角互补B.对顶角相等C.直角三角形的两个锐角互余D.直角三角形两条直角边的平方和等于斜边的平方【答案】B【解析】A、逆命题是:同旁内角互补,两直线平行,符合题意,故本选项不符合题意;B、逆命题是相等的角是对顶角,为假命题,故本选项符合题意;C、逆命题是:若一个三角形两锐角互余,则为直角三角形,符合题意,故本选项不符合题意;D、逆命题是:若一个三角形两条直角边的平方和等于斜边的平方则为直角三角形,符合题意,故本选项不符合题意.故答案为:B.3.如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根B.8根C.9根D.10根【答案】B【解析】∵添加的钢管长度都与BD相等,∠ABC=10°,∴∠DBE=∠DEB=10°,∴∠EDF=∠DBE+∠DEB=20°,∵DE=EF,∴∠EDF=∠EFD=20°,∴∠FEG=∠ABC+∠EFD=30°,…由此思路可知:第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,第四个是40°,第五个是50°,第六个是60°,第七个是70°,第八个是80°,第九个是90°(与三角形内角和为180°相矛盾)就不存在了,所以一共有8个,∴添加这样的钢管的根数最多是8根.故答案为:B.4.如图,在△ABC中,∠ACB=90°,点D在AC边上且AD=BD,M是BD的中点,若AC=8,BC=4,则CM等于()A.52B.3C.4D.5【答案】A【解析】∵∠ACB=90°,M 是BD 的中点,∴CM =12BD ,设CM =x ,则BD =AD =2x , ∵AC =8,∴CD =AC −AD =8−2x ,在Rt △BCD 中,根据勾股定理得, BC 2+CD 2=BD 2,即42+(8−2x)2=(2x)2,解得:x =52故答案为:A. 5.如图,在等边三角形ABC 中,BC=2,D 是AB 的中点,过点D 作DF ⊥AC 于点F ,过点F 作EF ⊥BC 于点E ,则BE 的长为( )A .1B .32C .54D .43【答案】C【解析】∵D 是AB 的中点,∴AD =12AB =1, ∵等边三角形ABC 中∠A=∠C=60°, 且DF ⊥AC ,∴∠ADF=180°-90°-60°=30°,在Rt △ADF 中,AF =12AD =12,∴FC =AC −AF =2−12=32,同理,在Rt △FEC 中,EC =12FC =12×32=34,∴BE =BC −EC =2−34=54.故答案为:C .6.以直角三角形的三边为边做正方形,三个正方形的面积如图,正方形A 的面积为( )A .6B .36C .64D .8 【答案】A【解析】∵两个正方形的面积分别为8和14,且它们分别是直角三角形的一直角边和斜边的平方, ∴正方形A 的面积=14-8=6. 故答案为:A .7.如图, △ABC 中, ∠BAC =90° , AB =3 , AC =4 ,点 D 是 BC 的中点,将 △ABC 沿 AD 翻折得到 △AED ,连 CE ,则线段 CE 的长等于( )A .75B .54C .53D .2【答案】A【解析】如图,连接 BE 交 AD 于 O ,作 AH ⊥BC 于 H .在Rt△ABC中,∵AC=4,AB=3,∴BC=√AC2+AB2=5,∴CD=DB,∴AD=DC= DB=52.又∵12BC⋅AH=12AB⋅AC,∴AH=125.又∵AE=AB,DE=DB=DC,∴AD垂直平分线BE,△BCE是直角三角形.∵12AD⋅BO=12BD⋅AH,∴OB=125,∴BE=2OB=245.在Rt△BCE中,EC=√BC2−BE2=75.故答案为:A.8.如图,在平面直角坐标系中,A(a,0),B(0,a),等腰直角三角形ODC的斜边经过点B,OE⊥AC,交AC于E,若OE=2,则△BOD与△AOE的面积之差为()A.2B.3C.4D.5【答案】A【解析】∵A(a,0),B(0,a),∴OA=OB.∵△ODC是等腰直角三角形,∴OD=OC,∠D=∠DCO=45°.∵∠DOC=∠BOA=90°,∴∠DOB=∠COA.在△DOB和△COA中,∵OD=OC,∠DOB=∠COA,OB=OA,∴△DOB≌△COA(SAS),∴∠D=∠OCA=45°,S△DOB﹣S△AOE=S△EOC.∵OE⊥AC,∴∠OEC=90°,∴△CEO是等腰直角三角形,∴OE=EC=2,∴S△DOB﹣S△AOE=S△EOC=12×2×2=2.故答案为:A.9.如图,在ΔABD中,AD=AB,∠DAB=90°,在ΔACE中,AC=AE,∠EAC=90°,CD,BE相交于点F,有下列四个结论:①∠BDC=∠BEC;②FA平分∠DFE;③DC⊥BE;④DC=BE.其中,正确的结论有()A.①②③④B.①③④C.②③D.②③④【答案】D【解析】∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AE=AC,∠BDA=∠ECA=45 °,又∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC,即:∠DAC=∠BAE,在△ABE和△ADC中,{AB=AD∠BAE=∠DACAE=AC,∴△ABE≌△ADC(SAS),∴BE=DC,故④正确;∠ADF=∠ABF,∴∠BDC=45 °−∠ADF,∠BEC=45 °−∠AEF,而∠ADF=∠ABF ≠∠AEF,∴∠BDC ≠∠BEC,故①错误;∵∠ADF+∠FDB+∠DBA=90°,∴∠FDB+∠DBA+∠ABF=90°,∴∠DFB=90°,∴CD⊥BE,故③正确;作AP⊥CD于P,AQ⊥BE于Q,∵△ABE≌△ADC,∴S△ABE=S△ADC,∵BE=DC,∴AP= AQ,∵AP⊥CD,AQ⊥BE,∴FA平分∠DFE,故②正确;综上,②③④正确;故答案为:D.10.如图,△ABC与△CDE都是等边三角形,连接AD,BE,CD=4,BC=2,若将△CDE绕点C顺时针旋转,当点A、C、E在同一条直线上时,线段BE的长为()A.2√3B.2√7C.√3或√7D.2√3或2√7【答案】D【解析】①当E在CA延长线上时,过A作AM⊥BE于M,如下图:∵△ABC与△CDE都是等边三角形,CD=4,BC=2,∴AE=CE−AC=4−2=2,∠BAC=60°,∴AE=AB,∴∠AEB=∠ABE=30°,EM=BM,在Rt△ABM中,AM=12AB=1,BM=√3AM=√3,∴BE=2BM=2√3;②当E在AC的延长线上时,过B作BN⊥AC于N,如下图:在Rt△BCN中,CN=12BC=1,由勾股定理得:BN=√3CN=√3,∴NE=CE+CN=4+1=5,在Rt△BNE中,BE=√BN2+NE2=√(√3)2+52=2√7.综上所述,线段BE的长为2√3或2√7.故答案为:D.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是尺.【答案】3.75【解析】设这个湖的水深是x尺,则荷花的长为(x+0.5)尺,根据题意,得x2+22=(x+0.5)2,解得:x=3.75,∴这个湖的水深是3.75尺.故答案为:3.75.12.如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为点D、E,AD与BE交于点F,BF=AC,∠ABE=20°,则∠CAD的度数是.【答案】25°【解析】∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=90°,∠BEC=∠ADC=90°,∴∠DAC+∠C=90°,∠DBF+∠C=90°,∴∠DBF=∠DAC,在△DBF和△DAC中,{∠BDF=∠ADC ∠DBF=∠DACBF=AC,∴△DBF≅△DAC(AAS),∴AD=BD,∵∠ADB=90°,∴∠ABD=∠DAB=45°,∵∠ABE=20°,∴∠CAD=∠DBF=∠ABD-∠ABE=45°-20°=25°.故答案为:25°.13.如图,在△ABC中,AB=20,AC=15,BC=7,则点A到BC的距离是.【答案】12【解析】过A作AD⊥BC交BC的延长线于D,∴∠D=90°,∴AB2−BD2=AD2=AC2−CD2,∵AB=20,AC=15,BC=7,∴202−(7+CD)2=152−CD2,∴CD=9,∴AD=√152−92=12,∴点A到BC的距离是12;故答案为:12.14.如图,在平面直角坐标系中,长方形AOBC的边OB、OA分别在x轴、y轴上,点D在边BC 上,将该长方形沿AD折叠,点C恰好落在边OB上的E处.若点A(0,8),点B(10,0),则点D 的坐标是.【答案】(10,3)【解析】∵A(0,8),点B(10,0),∴OA=BC=8,OB=AC=10,设BD=a,则CD=8﹣a,由题意可得,CD=DE=8﹣a,由对折知,AE=AC=10,∴OE=√AE2−AO2=√102−82=6,∴BE=OB﹣OE=10﹣6=4,∵∠DBE=90°,∴a2+42=(8﹣a)2,解得a=3,∴点D的坐标为(10,3),故答案为:(10,3).15.如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,AB和FE交于点M,点D,E为BC边上的两点,且∠DAE=45°,连接EF,BF,则下列结论:①△AFB≌△ADC;②BE2+DC2=DE2;③AB﹣AD=ED﹣BE;④只有当∠AME=90°时,BF=BE,其中正确的有.【答案】①②④【解析】∵∠BAC=∠DAF=90°,∴∠CAD+∠BAD=∠F AB+∠BAD=90°,∴∠F AB=∠DAC,又∵AB=AC,AF=AD,∴△AFB≌△ADC(SAS),∠C=∠ABC=45°,故①说法符合题意∴AF=AD,BF=CD,∠C=∠ABF=45°,∴∠FBE=90°∵∠EAD=45°,∠F AD=90°,∴∠F AE=∠DAE=45°又∵AE=AE,∴△AFE≌△ADE(SAS),∴DE=FE,2BE2=EF2,∵BF+2BE2=DE2,故②说法符合题意;∴CD+如图所示,过点A作AH⊥BC于H,设AH=BH=x,则AB=√2x,当BE=CD时,即BE=BF,∴ED=EF=√2BE,∵AB=AC,∠B=∠C,∴△ABE≌△ACD,∴AD=AE,∴EH=DH=12ED∵BH=BE+EH=x,∴BE+√22BE=x ,∴BE=(2−√2)x,∴EH=(√2−1)x∴AD=AE=√AH2+EH2=√4−2√2x,∴AB−AD=√2x−√4−2√2x,ED−BE=(2√2−2)x−(2−√2)x=(3√2−4)x∴此时AB−AD≠ED−BE,故③不符合题意;当∠AME=90°时,∴∠BMF=∠BME=90°,又∵∠FBM=∠MBE=45°,∴BF=BE,故④符合题意,故答案为:①②④.16.如图所示,∠AOB=50°,∠BOC=30°,OM=11,ON=6.点P、Q分别是OA、OB上动点,则MQ+PQ+NP的最小值是.【答案】√223【解析】如图,作点N关于OA的对称点N′,则NP=N′P,作点M关于OB的对称点M′,则MQ=M′Q,∴MQ+PQ+NP=M′Q+PQ+N′P≥M′N′,∴当N′,P,Q,M′在同一条直线上时取最小值,连接ON′,OM′,过点N′作N′E⊥OM′交OM′的反向延长线于点E,∵∠AOB=50°,∠OC=30°,则∠N′OA=∠AOC=∠AOB−∠BOC=20°,∠BOM′=∠BOA=50°∴∠N′OM′=2∠N′OA+∠COB+∠BOM′=40°+30°+50°=120°,∴∠EON′=60°∵N′E⊥OM′∴∠EN′O=30°∵ON′=ON=6,OM=OM′=11∴EO=12N′O=3在Rt△EON′中,EN′=√ON′2−OE2=√62−32=3√3在Rt△EM′N′中,EM′=EO+OM′=3+11=14,∴M′N′=√EN′2+EM′2=√(3√3)2+142=√223故答案为:√223.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D是边AB上一点,DE与AC相交,AB=17.(1)求证:△BCD≌△ACE.(2)若BD=5,求DE的长.【答案】(1)证明:∵△ACB与△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB-∠ACD=∠ECD-∠ACD,即∠ACE=∠BCD,∴△BCD≌△ACE;(2)解:∵AC=BC,∠ACB=90°,∴∠B=∠CAB=45°,∵△BCD≌△ACE,∴∠CAE=∠B=45°,AE=BD=5,∴∠EAD=90°,∵AB=17,BD=5,∴AD=12,∴DE=√AE2+AD2=√122+52=13.18.如图,在等腰△ABC中,点D在AB边上,点E是AC延长线上的点,DE交底边BC于点G,AE=3AD=3BD=3,(1)求CE的长度;(2)求证:AG是△ADE的中线.【答案】(1)解:∵AE=3AD=3BD=3,∴AE=3,AD=1,BD=1,∴AB=AD+BD=1+1=2,∴△ABC为等腰三角形,BC为底边,∴AC=AB=2,∴CE=AE-AC=3-2=1;(2)证明:过点E作EF∥AB交BC延长线于点F,∴∠F=∠ABC,∵△ABC为等腰三角形,∠ACB=∠FCE,∴∠ABC=∠ACB,∴∠FCE=∠F,∴CE=FE=1=BD,在△BDG 和△FEG 中{∠B =∠F∠DGB =∠EGF BD =FE,∴△BDG ≌△FEG (AAS ), ∴DG=EG ,∴AG 为△ADE 的中线.19.如图,在Rt △ABC 中,∠C =90°,AC =BC ,在Rt △ABD 中,∠D =90°,AD 与BC 交于点E ,且∠DBE =∠DAB .求证:(1)∠CAE =∠DBC ;(2)AC 2+CE 2=4BD 2. 【答案】(1)证明:如下图所示,标出∠1,∠2,∠3.∵∠ACB =90°,∠ADB =90°,∴∠1+∠3=90°,∠2+∠DBC =90°. ∵∠1和∠2是对顶角, ∴∠1=∠2.∴∠3=∠DBC ,即∠CAE =∠DBC .(2)证明:在(1)中图延长BD 交AC 延长线于点F . 由(1)可知∠3=∠DBC ,即∠3=∠DBE . ∵∠DBE =∠DAB , ∴∠3=∠DAB . ∵∠ADB =90°, ∴∠ADF =90°. ∴∠ADF =∠ADB . 在△ADF 和△ADB 中,∵{∠3=∠DAB ,AD =AD ,∠ADF =∠ADB ,∴△ADF ≌△ADB(ASA). ∴FD =BD . ∴BF =2BD .∵∠ACB =90°,即∠ACE =90°, ∴∠BCF =90°. ∴∠ACE =∠BCF .由(1)可知∠3=∠DBC ,即∠3=∠CBF . 在△ACE 和△BCF 中,∵{∠3=∠CBF ,AC =BC ,∠ACE =∠BCF ,∴△ACE ≌△BCF(ASA).∴AE =BF .∴AE =2BD∵在Rt △ACE 中,AC 2+CE 2=AE 2,∴AC 2+CE 2=(2BD)2=4BD 2.20.如图,△ABC 是等边三角形,延长BC 到点E ,使CE=12BC ,若D 是AC 的中点,连接ED 并延长交AB 于点F .(1)若AF=3,求AD 的长;(2)求证:DE=2DF .【答案】(1)解:∵△ABC 为等边三角形,∴AC=BC ,∠A=∠ACB=60°,∵D 为AC 中点,∴CD=AD=12AC , ∵CE=12BC , ∴CD=CE ,∴∠E=∠CDE ,∵∠ACB=∠E+∠CDE ,∴∠E=∠CDE=30°,∴∠ADF=∠CDE=30°,∵∠A=60°,∴∠AFD=180°-∠A-∠ADF=90°,∵AF=3,∴AD=2AF=6,(2)解:连接BD ,∵△ABC 为等边三角形,D 为AC 中点,∴BD 平分∠ABC ,∠ABC=60°,∴∠DBC=∠ABD=12∠ABC=30°, ∵∠BFD=90°,∴BD=2DF ,∵∠DBC=∠E=30°,∴BD=DE ,∴DE=2DF ,21.如图,AB =AD ,AC =AE ,BC =DE ,点E 在BC 上.(1)求证:∠EAC=∠BAD;(2)若∠EAC=42°,求∠DEB的度数.【答案】(1)证明:∵AB=AD,AC=AE,BC=DE,∴△ABC≌△ADE.∴∠BAC=∠DAE.∴∠BAC-∠BAE=∠DAE-∠BAE.即∠EAC=∠BAD;(2)解:∵AC=AE,∠EAC=42°,∴∠AEC=∠C=12×(180°-∠EAC)=12×(180°-42°)=69°.∵△ABC≌△ADE,∴∠AED=∠C=69°,∴∠DEB=180°-∠AED-∠C=180°-69°-69°=42°.22.如图,在△ABC中,AB=AC.(1)若P为BC上的中点,求证:AB2−AP2=PB·PC;(2)若P为线段BC上的任意一点,(1)中的结论是否成立,并证明;(3)若P为BC延长线上一点,说明AB、AP、PB、PC之间的数量关系.【答案】(1)证明:连接AP,∵AB=AC,P是BC中点,∴AP⊥BC,BP=CP,在Rt△ABP中,AB2−AP2=BP2=PB·PC;(2)解:成立.如图,连接AP,作AD⊥BC,交BC于D,∵AB=AC,AD⊥BC,∴BD=CD,在Rt△ABD中,AB2=AD2+BD2,同理,AP2=AD2+DP2,∴AB2−AP2=AD2+BD2−(AD2+DP2)=BD2−DP2又∵BP=BD+DP,CP=CD-DP=BD-DP,∴BP•CP=(BD+DP)(BD-DP)=BD2−DP2,∴AB2−AP2=PB·PC;(3)解:AP2−AB2=PB·PC.如图,P是BC延长线任一点,连接AP,并作AD⊥BC,交BC 于D,∵AB =AC ,AD ⊥BC ,∴BD =CD ,在Rt △ABD 中,AB 2=AD 2+BD 2,在Rt △ADP 中,AP 2=AD 2+DP 2,∴AP 2−AB 2=(AD 2+DP 2)−(AD 2+DB 2)=PD 2−BD 2 又∵BP =BD +DP ,CP =DP -CD =DP -BD ,∴BP•CP =(BD +DP )(DP -BD )=DP 2−BD 2,∴AP 2−AB 2=BP ·CP . 23.已知:如图,△ABC 、△CDE 都是等边三角形,AD 、BE 相交于点O ,点M 、N 分别是线段AD 、BE 的中点.(1)求证:AD =BE ;(2)求∠DOE 的度数;(3)求证:△MNC 是等边三角形.【答案】(1)证明:∵△ABC 、△CDE 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠BCD =∠DCE +∠BCD ,∴∠ACD =∠BCE ,在△ACD 和△BCE 中{AC =BC ∠ACD =∠BCE CD =CE ,∴△ACD ≌△BCE(SAS),∴AD =BE .(2)解:∵△ACD ≌△BCE ,∴∠ADC =∠BEC ,∵等边三角形DCE ,∴∠CED =∠CDE =60°,∴∠ADE +∠BED =∠ADC +∠CDE +∠BED ,=∠ADC +60°+∠BED ,=∠CED +60°,=60°+60°,=120°,∴∠DOE =180°−(∠ADE +∠BED)=60°,答:∠DOE 的度数是60°.(3)证明:∵△ACD ≌△BCE ,∴∠CAD =∠CBE ,AD =BE ,AC =BC又∵点M 、N 分别是线段AD 、BE 的中点,∴AM =12AD ,BN =12BE , ∴AM =BN ,在△ACM 和△BCN 中{AC =BC ∠CAM =∠CBN AM =BN,∴△ACM≌△BCN(SAS),∴CM=CN,∠ACM=∠BCN,又∠ACB=60°,∴∠ACM+∠MCB=60°,∴∠BCN+∠MCB=60°,∴∠MCN=60°,∴△MNC是等边三角形.24.如果平面内一点到三角形的三个顶点的距离中,最长距离的平方等于另两个距离的平方和,则称这个点为该三角形的勾股点.如图1,平面内有一点P到△ABC的三个顶点的距离分别为PA、PB、PC,若PC>PA,PC>PB,且PC2=PA2+PB2,则点P就是△ABC的勾股点.(1)如图2,在3×2的方格纸中,每个小正方形的边长均为1,△ABC的顶点在格点(小正方形的顶点)上,格点P是△ABC的勾股点吗?请说明理由;(2)如图3,△ABC为等边三角形,过点A作AB的垂线,点E在该垂线上,以CE为边在其右侧作等边△CDE,连结AD.①求证:点A是△CDE的勾股点;②若AC=√3,AE=1,直接写出等边△CDE的边长.【答案】(1)解:格点P是△ABC的勾股点,理由:∵PA2=22+12=5,PB2=22=4,PC2=12=1,∴PA2=PB2+PC2,∴格点P是△ABC的勾股点;(2)解:①证明:∵△ABC和△CDE是等边三角形,∴AB=AC=BC,CD=CE=DE,∠B=∠ACB=∠DCE=60°,∴AB∥CE,∵AB⊥AE,∴∠BAE=90°,∴∠AEC=90°,∴AC2=AE2+CE2,∵∠BAC=60°,∠BAE=90°,∴∠CAE=30°,∴CE=12AC,∴AE=√AC2−CE2=√AC2−14AC2=√32AC过A作AH⊥BC于H,∴CH=BH=12BC=12AC,∠AHC=90°,∴DH=CD+CH=12AC+12AC=AC,∴AH2=AC2﹣CH2=AC2﹣14AC2=34AC2,∴AH=√32AC,∴AH=AE,∴AD2=AH2+HD2=AE2+AC2,∴点A是△CDE的勾股点;②√2.【解析】(2)②解:∵△ABC和△CDE是等边三角形,∴∠B=∠ACB=∠DCE=60°,∴AB∥CE,∵AB⊥AE,∴∠BAE=90°,∴∠AEC=90°,∴AC2=AE2+CE2,∵AC=√3,AE=1,∴CE=√AC2−AE2=√2,∴等边△CDE的边长为√2.。
浙教版八年级上册数学第2章 特殊三角形含答案
浙教版八年级上册数学第2章特殊三角形含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,AB=AC,∠B=30°,则∠C的大小为()A.15°B.25°C.30°D.60°2、如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC扩充为等腰三角形ABD,且扩充部分是以4为直角边的直角三角形,则CD的长为()A. , 2或3B.3或C.2或D.2或33、某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cmB.12cmC.15cmD.12cm或15cm4、下列说法正确的是()①经过三个点一定可以作圆;②若等腰三角形的两边长分别为3和7,则第三边长是3或7;③一个正六边形的内角和是其外角和的2倍;④随意翻到一本书的某页,页码是偶数是随机事件;⑤关于x的一元二次方程x2-(k+3)x+k=0有两个不相等的实数根.A.①②③B.①④⑤C.②③④D.③④⑤5、如图,与是一对全等的等边三角形,且,下列四个结论:①;②;③;④四边形是轴对称图形.其中正确的是()A.①②③B.①②④C.①③④D.②③④6、等腰三角形腰长10cm,底边16cm,则面积()A.96cm 2B.48cm 2C.24cm 2D.32cm 27、如图,在Rt△ABC中,∠C=90°,点B在CD上,且BD=BA=2AC,则tan∠DAC的值为()A.2+B.2C.3+D.38、在中,,,则BC边上的高为()A.12B.10C.9D.89、如图,坐标平面内一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A.2B.3C.4D.510、下列命题中,不正确的是()A.对角线相等且垂直的四边形是正方形B.有一个角是直角的菱形是正方形C.顺次连接菱形各边中点所得的四边形是矩形D.有一个角是的等腰三角形是等边三角形11、等腰三角形的一边长为6,另一边长为4,则其周长为()A. B. C. 或 D.以上都不是12、若一个等腰三角形的两边长分别为 4,5,则这个等腰三角形的周长为()A.13B.14C.13 或 14D.8或 1013、如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB,垂足为点E,则DE等于()A. B. C. D.14、如图,已知点D为等腰直角△ABC内一点,∠ACB=90°,AD=BD,∠BAD=30°,E为AD延长线上的一点,且CE=CA,若点M在DE上,且DC=DM.则下列结论中:①∠ADB=120°;②△ADC≌△BDC;③线段DC所在的直线垂直平分线AB;④ME=BD;正确的有()A.1个B.2个C.3个D.4个15、在平面直角坐标系中,点A,B的坐标分别为(-6,0),(0,8). 以点A为圆心,以AB长为半径画弧交x轴于点C,则点C的坐标为().A.(6,0)B.(4,0)C.(6,0)或(-16,0)D.(4,0)或(-16,0)二、填空题(共10题,共计30分)16、如图,射线OP过Rt△ABC的边AC、AB的中点M、N,AC=4cm,BC=4cm,OM=3cm.射线OP上有一动点Q从点O出发,沿射线OP以每秒1cm的速度向右移动,以Q为圆心,QM为半径的圆,经过t秒与BC、AB中的一边所在的直线相切,请写出t的所有可能值________(单位:秒)17、已知,如图,在△ABC中,AB=BC,∠B=70°,则∠A=________°.18、如图,在平面直角坐标系中,有一个等腰直角三角形,,直角边在轴上,且将绕原点O顺时针旋转得到等腰直角三角形,且,再将绕原点O顺时针旋转得到等腰直角三角形,且……依此规律,得到等腰直角三角形,则点的坐标为________.19、如图,有一个与地面成30°角的斜坡,现要在斜坡上竖一电线杆,当电线杆与地面垂直时,它与斜坡所成的角α=________20、如图.在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是________.21、观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41,…请你写出有以上规律的第⑤组勾股数:________22、如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线交AB于E,交BC 于F.BC=6,则BF=________.23、如图,正方形网格中的△ABC,若小方格边长都为1,则△ABC是:________三角形.24、若一个直角三角形的一条直角边长是7cm,另一条直角边长比斜边长短1cm,则该直角三角形的斜边长为 ________.25、如图,在四边形ABCD中,对角线AC垂直平分BD,∠BAD=120°,AB=4,点E是AB的中点,点F是AC上一动点,则EF+BF的最小值是________.三、解答题(共5题,共计25分)26、如图,在Rt△ABC中,∠C=90°,BC=8,tanB= ,点D在BC上,且BD=AD,求AC的长和cos∠ADC的值.27、已知:如图,在△ABC中,∠1=∠2,DE∥AC,求证:△ADE是等腰三角形.28、有一块直角三角形的绿地,量得两直角边BC、AC分别为6m,8m,现在要将绿地扩充成等腰三角形,且扩充部分是以AC边为直角边的直角三角形,求扩充后等腰三角形绿地的面积.(图2,图3备用)29、如图,△ABC中,AB=AC,∠BAC=120°,D为BC的中点,DE⊥AC于E,AE=2,求CE的长.30、如图,将长方形ABCD边AD沿折痕AE折叠,使点D落在BC上的点F处,已知AB=6,△ABF的面积是24,求DE的长.参考答案一、单选题(共15题,共计45分)1、C2、A3、C4、D5、D7、A8、A9、C10、A11、C12、C13、C14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、。
数学八年级上《特殊三角形》复习测试题(答案)
特殊三角形一、填空题1.等腰三角形一边长为2cm,另一边长为5cm,它的周长是_____cm.2.在△ABC中,到AB、AC距离相等的点在_______上.3.在Rt△ABC中,∠C=Rt∠,∠A=3∠B+10°,则∠B=_______.4.△ABC为等腰直角三角形,D、E、F分别为AB、BC、AC边上的中点,则图1中共有_____个等腰直角三角形.(1) (2) (3)5.现用火柴棒摆一个直角三角形,两直角边分别用了7根、24根长度相同的火柴棒,则斜边需要用______根.6.△ABC中,∠ACB=90°,CD⊥AB,垂足是D,E是AB的中点,如果AB=10,BC=5,•则CE=_______,∠A=_____,∠B=______,∠DCE=______,DE=_______.7.如图2所示,在Rt△ABC中,CD是斜边上的中线,CE是高.已知AB=10cm,DE=2.5cm,则∠BDC=________度,S△BCD=_______cm2.8.如图3所示,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,则∠DBC=_______.9.E、F分别是Rt△ABC的斜边AB上的两点,AF=AC,BE=BC,则∠ECF=______.10.在△ABC中,∠B=2∠C,AD⊥AC,交BC于D,若AB=a,则CD=________.二、选择:11.已知∠A=37°,∠B=53°,则△ABC为()(A)锐角三角形(B)钝角三角形(C)直角三角形(D)以上都有可能12.下列图形中,不是轴对称图形的是()(A)线段(B)角(C)等腰三角形(D)直角三角形13.已知一个三角形的周长为15cm,且其中两边长都等于第三边的2倍,则这个三角形的最短边为()(A)1cm (B)2cm (C)3cm (D)4cm14.具有下列条件的2个三角形,可以证明它们全等的是( )(A )2个角分别相等,且有一边相等;(B )3个角对应相等;(C )2边分别相等,且第三边上的中线也相等;(D )一边相等,且这边上的高也相等15.在△ABC 中,∠A :∠B :∠C=1:2:3,CD ⊥AB 于D ,AB=a ,则DB 等于( )(A )2a (B )3a (C )4a (D )以上结果都不对 16.如图4所示,△ABC 中,AB=AC ,过AC 上一点作DE ⊥AC ,EF ⊥BC ,若∠BDE=140°,则∠DEF=( )(A )55° (B )60° (C )65° (D )70°(4) (5) (6)17.一个三角形中,一条边是另一条边的2倍,并且有一角是30°,•则这个三角形是( )(A )直角三角形 (B )钝角三角形(C )可能是锐角三角形 (D )以上说法都不对18.如图5所示,在△ABC 中,∠A :∠B :∠C=3:5:10,又△A ′B ′C•′≌△ABC ,•则∠BCA ′:∠BCB ′等于( )(A )1:2 (B )1:3 (C )2:3 (D )1:419.如图6所示,△ABC 中,∠BAC=90°,AD ⊥BC 于D ,若AB=3,BC=5,则DC 的长度是( •)(A )85 (B )45 (C )165 (D )22520.如图所示,已知△ABC 中,AB=6,AC=9,AD ⊥BC 于D ,M 为AD 上任一点,则MC 2-MB 2•等于( )(A )9 (B )35 (C )45 (D )无法计算三、解答题B A DC M21.作图题:某地附近有河流L 1,公路L 2和铁路L 3,分布如图所示,现要选一个工厂,使得到L 1,L 2,L 3的距离相等,请你运用数学知识帮助选择一个厂址.22.如图所示,△ABC 中,∠ABC=100°,AM=AN ,CN=CP ,求∠MNP 的度数.23.如果一个长为10m 的梯子,斜靠在墙上,•梯子的顶端距地面的垂直距离为8m .如果梯子的顶端下滑1m ,请猜测梯子底端滑动的距离是否会超过1m ,•并加以说明.24.如图所示,已知:AB=BC=AC ,CD=DE=EC ,求证:AD=BE .25.如图所示,已知:Rt △ABC 中,∠C=90°,AC=BC ,AD 是∠A 的平分线.求证:AC+CD=AB .26.如图所示:∠ABC 的平分线BF 及△ABC 中∠ACB•的相邻外角的平分线CF 相交于点F ,过F 作DF ∥BC ,交AB 于D ,交AC 于E ,则:①图中有几个等腰三角形?为什么?②BD ,CE ,DE 之间存在着什么关系?请证明.27.已知等边△ABC 和点P ,设点P 到△ABC3边的AB 、AC 、BC•的距离分别是h 1,h 2,h 3,△ABC 的高为h ,若点P 在一边BC 上(图1),此时h=0,可得结论h 1+h 2+h 3=h ,请你探索以下问题:当点P 在△ABC 内(图2)和点P 在△ABC 外(图3)这两种情况时,h 1、h 2、h 3及h•之间有怎样的关系,请写出你的猜想,并简要说明理由.(1) (2) (3)答案:1.12 2.∠A 的平分线 3.20° 4.5 5.256.5;30°;60°;30°,2.5 • •7.120;2548.18° 9.45° 10.2a 11.C 12.D 13.C 14.C 15.C 16.C 17.C •18.D 19.C 20.C21.提示:角平分线的交点 22.40°23.超过1m .略 25.略26.①2个等腰三角形;△BDF 和△CEF 略;②BD=DE+CE 略27.•图2:h1+h2+h3=h;图3:h1+h2+h3>h且h1+h2-h3=h.提示:利用面积.。
(全优)浙教版八年级上册数学第2章 特殊三角形含答案
浙教版八年级上册数学第2章特殊三角形含答案一、单选题(共15题,共计45分)1、如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7B.9C.10D.112、如图,在⊙O中C为的中点,BC= ,O到AB的距离为1,则半径的长()A.2B.3C.4D.53、如图所示,该图案是经过( )A.平移得到的B.旋转或轴对称得到的C.轴对称得到的D.旋转得到的4、如图,已知是的角平分线,是的垂直平分线,,,则的长为()A.6B.5C.4D.5、如图,不是轴对称图形的是( )A. B. C. D.6、如图,等腰△ABC中,AB=AC,P为其底角平分线的交点,将△BCP沿CP折叠,使B点恰好落在AC边上的点D处,若DA=DP,则∠A的度数为()A.20°B.30°C.32°D.36°7、已知等腰三角形中一个角等于100°,则这个等腰三角形的底角等于()A.100°B.40°C.50°D.100°或40°8、下列命题中①等腰三角形底边的中点到两腰的距离相等②如果两个三角形全等,则它们必是关于直线成轴对称的图形③如果两个三角形关于某直线成轴对称,那么它们是全等三角形④等腰三角形是关于底边中线成轴对称的图形⑤一条线段是关于经过该线段中点的直线成轴对称的图形符合题意命题的个数是()A. 个B. 个C. 个D. 个9、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是()A.20°B.25°C.30°D.大于30°10、在△ABC中,已知∠C=90°,BC=3,AC=4,则它的内切圆半径是 ( )A. B.1 C.2 D.11、在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11﹣C.11+ 或11﹣D.11+ 或1+12、下列图形是轴对称图形的是()A. B. C. D.13、下列学习用具中,假如不考虑刻度文字,不是轴对称图形的为()A. B. C. D.14、如图,在中,为的中点,有下列四个结论:①;② ;③ ;④ .其中正确的结论有()A.1个B.2个C.3个D.4个15、如图,在△ABC中,∠ACB=90°,∠B=30°,D在AB上,E在CB上,A,C关于DE的对称点分别是G,F,若F在AB上,DG⊥AB,DG=2,则DE的长是()A.3 ﹣3B.3 ﹣C.4D.2二、填空题(共10题,共计30分)16、如图,已知扇形OAB的半径为9,点C在OA上,将△OBC沿BC折叠,点O 恰好落在上的点D处,且=2∶3,若扇形 O4B恰好是一个圆锥的侧面展开图,则该圆锥的底面直径为________.17、如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,AC为一条对角线,若∠ABC=90°,则四边形ABCD的面积为________.18、如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为________.19、工人师傅在正中间立着一根圆形排水管的正方形地面(如图①)铺瓷砖,先裁出四块全等直角三角形ABC的瓷砖如图②,再在AB边上各切割一个弓形(阴影部分),然后围着排水管拼接而成(不重叠,无缝隙)如图③所示.已知∠BAC=90°,切割点分别为A1, A2, A3, A4, A5, A6, A7, A8,依次连接这8个点恰好组成正八边形,AB﹣AC=(4+2 )cm,则AA1=________cm;如果π取3,那么切去的每块弓形面积为________cm2.20、如图,是圆的弦,,垂足为点,将劣弧沿弦折叠交于的中点,若,则圆的半径为________.21、在中,,,,把绕着点C按照顺时针的方向旋转,将A、B的对应点分别记为点、,如果恰好经过点A,那么点A与点的距离为________22、“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是4和2,则飞镖投到小正方形(阴影)区域的概率是________.23、如图,两个大小不同的三角板放在同一平面内,直角顶点重合于C点,点D在上,,与交于点,连接,若,,则________.24、如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1200米处,则船B与船C之间的距离为________米.25、如图,点A是∠MON=45°内部一点,且OA=4cm,分别在边OM,ON上各取一点B,C,分别连接A,B,C三点组成三角形,则ΔABC最小周长为 ________ 。
浙教版八年级上册数学第2章 特殊三角形含答案
浙教版八年级上册数学第2章特殊三角形含答案一、单选题(共15题,共计45分)1、如图,△ABC中,AB=AC,点P为△ABC内一点,∠APB=∠BAC=120°.若AP+BP=4,则PC的最小值为()A.2B.C.D.32、将一根的筷子,置于底面直径为,高的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度,则的取值范围是()A. B. C. D.3、如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF,在此运动变化的过程中,有下列结论:①∠DEF是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生改变;④点C到线段EF的最大距离为.其中正确结论的个数是()A.1B.2C.3D.44、如图所示,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点,把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形5、如图,△ABC中,AB=AC,AD⊥BC,下列结论中错误的是()A.D是BC中点B.AD平分∠BACC.AB=2BDD.∠B=∠C6、下列图形中是轴对称图形的是()A. B. C.D.7、如图,△ABC为等边三角形,点D,E分别在AC,BC上,且AD=CE,AE与BD相交于点P,BF⊥AE于点F.若PF=3,则BP=( )A.6B.5C.4D.38、如图,一个含有角的直角三角板,在水平桌面上绕点按顺时针方向旋转到的位置,若的长为,那么的长为()A. B. C. D.9、等腰三角形有两条边长分别为5和10,则这个等腰三角形的周长为()A.15B.20C.25或20D.2510、等腰三角形一腰上的高与另一腰的夹角为,则顶角的度数为()A. B. 或 C. 或 D. 或11、下列图标中是轴对称图形的是( )A. B. C. D.12、一块直角三角形木板,它的一条直角边AC长为1cm,面积为1cm2,甲、乙两人分别按图①、②把它加工成一个正方形桌面,则①、②中正方形的面积较大的是()A.①B.②C.一样大D.无法判断13、如图,正方形网格中的每个小正方形边长都是1.已知A、B是两格点,若=1.5,则满足条件的格点C有()△ABC为等腰三角形,且S△ABCA.1个B.2个C.3个D.4个14、若方程的两个实数根恰好是的两边的长,则的周长等于()A.12B.C.12或D. 或15、已知一个等腰三角形两内角的度数之比为,则这个等腰三角形顶角的度数为()A. B. C. 或 D.二、填空题(共10题,共计30分)16、若等腰三角形的两边的边长分别为3cm和7cm,则第三边的长是________cm.17、如图,△ 与△ 是以点为位似中心的位似图形,相似比为,,,若,则点的坐标为________.18、二次函数y=ax2+bx+c(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y 1>y2;③a=﹣c;④若△ABC是等腰三角形,则b=﹣.其中正确的有________(请将结论正确的序号全部填上)19、如图,已知等边内接于,,点为上一点,,于点,则的周长是________.20、如图,在直角梯形中,∥ ,,,,,点、分别在边、上,联结.如果△ 沿直线翻折,点与点恰好重合,那么的值是________.21、如图,是中点,,若,,则、、三点所在圆的半径为________.22、如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是________cm.23、如图,∠ABC,∠ACB的平分线相交于点F,过点F作DE∥BC,交AB于D,交AC于E,那么下列结论:①△BDF,△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长为AB+AC;④BD=CE.其中正确的是________.24、如图,是⊙O的一条弦,点是⊙O上一动点,且,点分别是的中点,直线与⊙O交于两点,若⊙O的半径为8,则的最大值为________.25、如图,△ABC中,、的平分线交于O点,过O点作EF∥BC交AB、AC于E、F. EF=6, BE=2,则CF=________.三、解答题(共5题,共计25分)26、如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.求AB的长.27、如图,在△ABC中,CD=CA,CE⊥AD于点E,BF⊥AD于点F.求证:∠ACE=∠DBF.28、已知:如图,∠C=∠D=90°,AD=BC.求证:∠ABC=∠BAD.29、如图A、B是上的两点,,C是弧的中点,求证四边形是菱形.30、如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是上的一个动点,连接AP,求AP的最小值.参考答案一、单选题(共15题,共计45分)1、B2、D3、B4、A5、C6、D7、A8、C9、D10、B11、D12、A13、B14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
浙教版八年级上册数学特殊三角形测试题
D B C A F E三 角 形一、选择题1、已知等腰三角形的两边长分别为4、9,则它的周长为( )(A )17 (B )22 (C )17或22 (D )132、 等边三角形的对称轴有 ( )A 1 条B 2条C 3条D 4条3、 以下列三个数为边长的三角形能组成直角三角形的是 ( )A 3, 3 ,6B 8, 12,13C 6 ,7 ,8D 8, 10 ,64、 已知ΔABC 的三边分别是3cm, 4cm, 5cm,则ΔABC 的面积是 ( )A 6c ㎡,B 7.5c ㎡C 10c ㎡D 12c ㎡5、 三角形内到三角形各边的距离都相等的点必在三角形的 ( )A 中线上B 角平分线上C 高线上D 不能确定6、 下列条件中,不能判定两个直角三角形全等的是 ( )A 两个锐角对应相等B 一条边和一个锐角对应相等C 两条直角边对应相等D 一条直角边和一条斜边对应相等7、等腰三角形的一个内角为40o ,则它的底角为( )(A )100o (B )40o (C )70o (D )70o 或40o8、下列能断定△ABC 为等腰三角形的是( )(A )∠A=30o 、∠B=60o (B )∠A=50o 、∠B=80o(C )AB=AC=2,BC=4 (D )AB=3、BC=7,周长为139、若一个三角形有两条边相等,且有一内角为60o ,那么这个三角形一定为( )(A )等边三角形 (B )等腰三角形(C )直角三角形 (D )钝角三角形10、如图∠B C A =90,C D ⊥A B ,则图中与∠A 互余的角有( )A .1个B 、2个C 、3个D 、4个二.填空题 1、一个等腰三角形底上的高、________和顶角的________互相重合。
2、在Rt △ABC 中,∠C=90度,∠B=25度,则∠A 的余角为______度.3、 等腰三角形的腰长为10,底边长为12,则其底边上的高为______.4、已知等边三角形的周长为24cm ,则等边三角形的面积为_______c ㎡5、Rt △ABC 的斜边AB 的长为10cm ,则AB 边上的中线长为________6、在Rt △ABC 中,∠C=90o ,∠A=30o ,BC=2cm ,则AB=_____cm 。
(汇总)浙教版八年级上册数学第2章 特殊三角形含答案
浙教版八年级上册数学第2章特殊三角形含答案一、单选题(共15题,共计45分)1、给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为( )A.1个B.2个C.3个D.4个2、下列三个长度的线段能组成直角三角形的是()A.3 2, 4 2, 5 2B.0.3,0.4,0.5C. ,,D.,,3、如图,下列图形中,轴对称图形的个数是()A.1B.2C.3D.44、如图,在R△ABC中,∠ACB=90°,AC=6,BC=8,E为AC上一点,且AE =,AD平分∠BAC交BC于D.若P是AD上的动点,则PC+PE的最小值等于()A. B. C.4 D.5、下列图形中,既是中心对称图形又是轴对称图形的是( )A. B. C. D.6、等腰三角形的底角为15,腰长a为,则此等腰三角形的底长为()A. B. C. D. a7、如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A.4B.8C.2D.48、一艘轮船位于灯塔中P的南偏东方向的M处它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里9、如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC的度数为()A.72°B.100°C.108°D.120°10、如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是()A.1 号袋B.2 号袋C.3 号袋D.4 号袋11、如图,抛物线与轴交于,两点,是以点为圆心,为半径的圆上的动点,是线段的中点,连结、则线段的最大值是()A. B.3 C. D.12、如图,在△ABC中,AC=4,BC=2,点D是边AB上一点,CD将△ABC分成△ACD和△BCD,若△ACD是以AC为底的等腰三角形,且△BCD与△BAC相似,则CD的长为()A. B.2 C.4 ﹣4 D.13、如图所示,CD是线段AB的对称轴,与线段AB交于D,则下列结论中正确的有()①AD=BD;②AC=BC;③∠A=∠B;④∠ACD=∠BCD;⑤∠ADC=∠BDC=90°.A.2个B.3个C.4个D.5个14、满足下列条件的△ABC中,不是直角三角形的是( )A.b²=c²-a²B.a:b:c=3:4:5C.∠C=∠A-∠BD.∠A:∠B:∠C=3:4:515、已知等腰三角形的一个底角为40°,则这个等腰三角形的顶角为()A.40°B.100°C.40°或100°D.50°或70°二、填空题(共10题,共计30分)16、半径为5的圆中有两条弦长分别为6,8的平行弦,这两条弦之间的距离是________.17、如图,已知圆柱底面周长是4dm,圆柱的高为3dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为________ dm.18、如图,正方形的四个顶点分别在扇形的半径,和上,且点是线段的中点,若的长为,则长为________.19、在中,平分交边于平分交边于若则边的长为________.20、为了丰富居民的业余生活,某社区要在如图所示AB所在的直线上建一图书室,本社区有两所学校,所在的位置在点C和点D处,CA⊥AB于点A,DB⊥AB 于点B,已知AB=25 km,CA=15 km,DB=10 km,则图书室E应该建在距点A________km处,才能使它到两所学校的距离相等。
(B卷)浙教版八年级上册数学第2章 特殊三角形含答案
浙教版八年级上册数学第2章特殊三角形含答案一、单选题(共15题,共计45分)1、如图,∠C=∠D=90°,若添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等,则以下给出的条件适合的是( )A.AC=ADB.AB=ABC.∠ABC=∠ABDD.∠BAC=∠BAD2、以下四家银行的行标图中,是轴对称图形的有()A.1个B.2个C.3个D.4个3、下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5B.6、8、10C. 、2、D.5、12、134、已知△ABC的三边分别长为、、,且满足++=0,则△ABC是().A.以为斜边的直角三角形B.以为斜边的直角三角形C.以为斜边的直角三角形 D.不是直角三角形5、如图,在Rt△ABC中,∠B=90°,BC=3,AB=4,点D,E分别是AB,AC 的中点,CF平分Rt△ABC的一个外角∠ACM,交DE的延长线于点F,则DF的长为()A.4B.5C.5.5D.66、如图,Rt△ABC中,∠A=90°,∠B=30°,CD=CA,D在BC上,∠ADE=45°,E在AB上,则∠BED的度数是()A.60°B.75°C.80°D.85°7、设直角三角形的两条直角边长及斜边上的高分别为a,b及h,则下列关系正确的是( )A. B. C. D.8、如图:△ABC中,ACB=90°,AC=BC,AB=4,点E在BC上,且BE=2,点P 在ABC的平分线BD上运动,则PE+PC的长度最小值为()A.1B.C.D.9、如图,A、B、C、D、E是⊙O上的5等分点,连接A C、CE、E B、B D、DA,得到一个五角星图形和五边形MNFGH.有下列3个结论:① AO⊥BE,② ∠CGD=∠COD+∠CAD,③ BM=MN=NE.其中正确的结论是()A.① ②B.① ③C.② ③D.① ② ③10、如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,∠CAD=30°,CD=4,则线段BF的长度为()A.6B.7C.8D.911、若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A. B. C. D.12、如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论:①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE =S△COE,其中正确结论有()A.1个B.2个C.3个D.4个13、等腰三角形的一个角是100°,则它的底角是()A. B. C. D.14、用下列各组线段为边,能构成直角三角形的是()A.1cm,2cm,3cmB. cm,cm,cmC.1cm,2cm,cm D.2cm,3cm,4cm15、等腰三角形周长是29,其中一边是7,则等腰三角形的底边长是( )A.15B.15或7C.7D.11二、填空题(共10题,共计30分)16、如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是________cm.17、如图,Rt△ABC的斜边AB的中垂线MN与AC交于点M,∠A=15°,BM=2,则△AMB的面积为________.18、在△ABC中,AD为高线,若AB+BD=CD,AC=4 ,BD=3,则线段BC的长度为________.19、菱形ABCD中,对角线AC=8,BD=6,则菱形的边长为________.20、如图,长方体的长为15厘米,宽为10厘米,高为20厘米,点B到点C的距离是5厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学(浙教版)《特殊三角形》期末试题分类——填空题一.填空题1.(2019秋•上城区期末)已知等腰三角形的一个外角的度数为108°,则顶角的度数为.2.(2019秋•江干区期末)等腰△ABC中,D为线段BC上一点,AD⊥BC,若AB=10,AD =8,则CD=.3.(2019秋•富阳区期末)如图,CD是△ABC的角平分线,AE⊥CD于E,BC=6,AC=4,△ABC的面积是9,则△AEC的面积是.4.(2019秋•江北区期末)等腰三角形的一边长为2,周长为5,那么它的腰长为.5.(2019秋•德清县期末)如图,AC⊥BC,AD⊥BD,垂足分别是C,D,(若要用“HL”得到Rt△ABC≌Rt△BAD,则应添加的条件是.(写一种即可)6.(2019秋•越城区期末)如图,∠MAN是一个钢架结构,在角内部最多只能构造五根等长钢条,且满足AB=BC=CD=DE=EF=FG,则∠ABC的度数最大为度.7.(2019秋•苍南县期末)如图,在△ABC中,AB=AC,∠BAC=50°,D是边BC的中点,DE垂直AC于点E,则∠EDC=度.8.(2019秋•嘉兴期末)一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为cm.9.(2019秋•余姚市期末)如图,在△ABC中,AC=BC=13,AB=24,D是AB边上的一个动点,点E与点A关于直线CD对称,当△ADE为直角三角形时,则AD的长为.10.(2019秋•吴兴区期末)如图,直角△ABC中,∠A=90°,CD=DE=BE,当∠ACD =21°时,∠B=.11.(2019秋•瑞安市期末)已知Rt△ACB中,∠ACB=90°,AB﹣BC=2,AC=4,以三边分别向外作三个正方形,连接DE,FG,HI,得到六边形DEFGHI,则六边形DEFGHI 的面积为.12.(2019秋•鄞州区期末)如图,D为△ABC外一点,BD⊥AD,BD平分△ABC的一个外角,∠C=∠CAD,若AB=5,BC=3,则BD的长为.13.(2019秋•北仑区期末)若等腰三角形的两边长为10cm,6cm,则周长为.14.(2019秋•德清县期末)如果直角三角形的一个内角为40°,则这个直角三角形的另一个锐角为.15.(2019秋•椒江区期末)如图,在△ABC中,∠ACB=2∠A,过点C的直线能将△ABC 分成两个等腰三角形,则∠A的度数为.16.(2019秋•鄞州区期末)等腰三角形的一个外角度数为100°,则顶角度数为.17.(2019秋•越城区期末)在Rt△ABC中,∠C=90°,∠A=70°,则∠B=.18.(2019秋•南浔区期末)已知等腰三角形有一边长为5,一边长为2,则周长为.19.(2019秋•上虞区期末)如图,在△ABC中,AB=AC,AD=AE,∠BAD=54°,则∠EDC=度.20.(2019秋•上虞区期末)如图,以AB为斜边的Rt△ABC的每条边为边作三个正方形,分别是正方形ABMN,正方形BCPQ,正方形ACEF,且边EF恰好经过点N.若S3=S4=6,则S1+S5=.(注:图中所示面积S表示相应封闭区域的面积,如S3表示△ABC的面积)21.(2019秋•滨江区期末)在等腰△ABC中,AB为腰,AD为中线,AB=5,AD=3,则△ABD的周长为.22.(2019秋•平阳县期末)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为√85,此时正方形EFGH的面积为17.问:当格点弦图中的正方形ABCD的边长为√85时,正方形EFGH的面积的所有可能值是(不包括17).23.(2019秋•江干区期末)如图,在4×4方格中阴影正方形的边长是,这个长度介于两个相邻整数之间(小正方格的边长为1个长度单位).24.(2019秋•绍兴期末)等腰三角形ABC中顶角∠A=40°,底角∠B的度数是.25.(2019秋•西湖区期末)已知一个直角三角形的两直角边长分别是1和2,则斜边长为.26.(2019秋•平阳县期末)如图,△ABC中,D是BC上一点,AC=AD=BD,∠BAC=108°,则∠ADC的度数是.27.(2019秋•北仑区期末)白日登山望烽火,黄昏饮马傍交河.诗中隐含着一个有趣的数学问题:诗中将军在观望烽火之后从山脚上的A点出发,奔向小河旁边的P点饮马,饮马后再到B点宿营,若A、B到水平直线l(l表示小河)的距离分别是3,1,AB两点之间水平距离是3,则AP+PB最小值=.28.(2019秋•长兴县期末)在△ABC中,∠C=90°,AC=8cm,BC=6cm.动点P从点C 开始按C→A→B→C的路径绕△ABC的边运动一周,速度为每秒2cm,运动的时间为t 秒.则△BCP为等腰三角形时t的值是.29.(2019秋•慈溪市期末)定义:等腰三角形的顶角与一个底角的度数的比值称为这个等腰三角形的“特征值”,记作k,若等腰△ABC中,∠A=40°,则它的特征值k=.2019--2020学年浙江省八年级上册数学(浙教版)《特殊三角形》期末试题分类——填空题参考答案与试题解析一.填空题(共29小题)1.【答案】见试题解答内容【解答】解:∵一个外角为108°,∴三角形的一个内角为72°,当72°为顶角时,其他两角都为54°、54°,当72°为底角时,其他两角为72°、36°,所以等腰三角形的顶角为72°或36°.故答案为:72°或36°.2.【答案】见试题解答内容【解答】解:分三种情况:①当AB=AC=10时,如图1,∵AD⊥BC,∴∠ADC=90°,BD=DC,在Rt△ADC中,由勾股定理得:DC=√102−82=6,②当AB=BC=10时,如图2,∵AD⊥BC,∴∠ADB=∠ADC=90°,同理得:BD=6,∴DC=10﹣6=4,③当AC=BC时,如图3,同理得:BD=6,设CD=x,则AC=x+6,由勾股定理得:(x+6)2=x2+82,12x=28,x =73,综上所述,DC 的长为6或4或73; 故答案为:6或4或73.3.【答案】见试题解答内容【解答】解:延长AE 交BC 于F ,∵CD 是△ABC 的角平分线,∴∠ACE =∠FCE ,∵AE ⊥CD 于E ,∴∠AEC =∠CEF =90°,∵CE =CE ,∴△ACE ≌△FCE (ASA ),∴CF =AC =4,∵BC =6,∴BF =2,∵△ABC 的面积是9,∴S △ACF =9×23=6, ∴△AEC 的面积=12S △ACF =3,故答案为:3.4.【答案】见试题解答内容【解答】解:若等腰三角形的腰长为2,则底边长为:5﹣2﹣2=1,∵2+1>2,能组成三角形,此时它的腰长为2;若等腰三角形的底边长为2,则腰长为:5−22=1.5,∵1.5+1.5>2,能组成三角形,此时它的腰长为1.5.∴它的腰长为1.5或2.故答案为:1.5或2.5.【答案】见试题解答内容【解答】解:若添加AC =BD ,在Rt △ABC 和Rt △BAD 中,{AC =BD AB =BA, ∴Rt △ABC ≌Rt △BAD (HL );若添加BC =AD ,在Rt △ABC 和Rt △BAD 中,{BC =AD AB =BA, ∴Rt △ABC ≌Rt △BAD (HL ).故答案为:AC =BD 或BC =AD .6.【答案】见试题解答内容【解答】解:∵AB =BC =CD =DE =EF =FG ,∴∠A=∠ACB=α,∠CBD=∠A+∠ACB=2α,∴∠CDB=∠CBD=2α,∴∠ECD=3α=∠DEC,∴∠EDF=4α=∠EFD,∴∠FEQ=∠EQF=5α,∴75°≤5α<90°,∴15°≤α<18°,∴∠A最小为15°,∴∠ABC的度数最大为150°,故答案为:150.7.【答案】见试题解答内容【解答】解:∵AB=AC,∠BAC=50°,∴∠C=12(180°﹣50°)=65°,∵DE垂直AC,∴∠DEC=90°,∴∠CDE=90°﹣65°=25°,故答案为:25.8.【答案】见试题解答内容【解答】解:在Rt△OCA中,AC=8÷2=4cm,OA=5cm,则OC=√OA2−AC2=√52−42=3cm;①容器内水的高度为CD=5﹣3=2cm;②容器内水的高度为CD=5+3=8cm.则容器内水的高度为2或8cm.故答案为:2或8.9.【答案】见试题解答内容【解答】解:作CF⊥AB于F,∵在△ABC中,AC=BC=13,AB=24,∴AF=12,∴CF=√AC2−AF2=5,①如图1,当点D在AF上时,∵∠ADE=90°,∴∠ADC=∠EDC=(360°﹣90°)÷2=135°.∴∠CDF=45°.∴CF=DF.∴AD=AF﹣DF=AF﹣CF=12﹣5=7.②如图2,当点D在BF上时,∵∠ADE=90°,∴∠CDF=45°.∴CF=DF.∴AD=AF+DF=AF+CF=12+5=17.10.【答案】见试题解答内容【解答】解:设∠B=x°,∵BE=DE,∴∠B=∠BDE=x°,∴∠DEC=∠B+∠BDE=2x°,∵CD=DE,∴∠DEC=∠DCE=2x°,∵∠A=90°,∠ACD=21°,∴x+2x+21=90,x=23°,∴∠B=23°,故答案为:23°.11.【答案】见试题解答内容【解答】解:如图,作DJ⊥EA交EA的延长线于J,CH⊥AB于H.∵∠DAC=∠JAB=90°,∴∠DAJ=∠CAB,∵AD=AC,∠J=∠AHC=90,∴△ADJ≌△ACH(AAS),∴DJ=CH,∵S△ADE=12•AE•DJ,S△ABC=12•AB•CH,AE=AB,∴S△AED=S△ABC,同理可证S△ABC=S△BFG,∵AB﹣BC=2,AC=4,∴可以假设BC=x,则AB=x+2,∴(x+2)2=x2+42解得x=3,∴AC=4,BC=3,AB=5,∴六边形DEFGHI的面积=4×12×3×4+4×4+3×3+5×5=74,故答案为74.12.【答案】见试题解答内容【解答】解:如图,设CB与AD延长线交于E点.∵∠C=∠CAD,∴AE=CE.又∵BD平分∠ABE,BD⊥AD,∴AB=BE=5,∴CE=AE=BC+BE=3+5=8,∴AD=DE=12AE=4,∴在直角△ABD中,由勾股定理得到BD=2−AD2=√52−42=3.故答案为:3.13.【答案】见试题解答内容【解答】解:当6cm为底时,其它两边都为10cm,6cm、10cm、10cm可以构成三角形,周长为26cm;当6cm为腰时,其它两边为6cm和10cm,可以构成三角形,周长为22cm.故答案为:26cm 或22cm .14.【答案】见试题解答内容【解答】解:∵直角三角形的一个内角为40°,∴这个直角三角形的另一个锐角=90°﹣40°=50°,故答案为:50°15.【答案】见试题解答内容【解答】解:∵过点C 的直线能将△ABC 分成两个等腰三角形,①如图1,∵∠ACB =2∠A ,∴AD =DC =BD ,∴∠ACB =90°,∴∠A =45°;②如图2,AD =DC =BC ,∴∠A =∠ACD ,∠BDC =∠B ,∴∠BDC =2∠A ,∴∠A =36°,③AD =DC ,BD =BC ,∴∠BDC =∠BCD ,∠A =∠ACD ,∴∠BCD =∠BDC =2∠A ,∴∠BCD =2∠A ,∵∠ACB =2∠A ,故这种情况不存在.④如图3,AD =AC ,BD =CD ,∴∠ADC =∠ACD ,∠B =∠BCD ,设∠B =∠BCD =α,∴∠ADC =∠ACD =2α,∴∠ACB =3α,∴∠A =32α,∵∠A +∠B +∠ACB =180°,∴32α+α+3α=180°, ∴α=(36011)°,∴∠A=(54011)°,⑤如图4,AC=CD=DB,∴∠A=∠CDA,∠B=∠DCB,∵∠CDB=180°﹣∠CDA=180°﹣∠A,∴∠B=∠DCB=180°−∠CDB2=∠A2,∴∠ACB=∠ACD+∠DCB=180°−2∠A+12∠A=180°−32∠A,∵∠ACB=2∠A,∴180°−32∠A=2∠A,∴∠A=(360 7)°综上所述,∠A的度数为45°或36°或(54011)°或(3607)°.故答案为:45°或36°或(54011)°或(3607)°.16.【答案】见试题解答内容【解答】解:当100°的角是顶角的外角时,顶角的度数为180°﹣100°=80°;当100°的角是底角的外角时,底角的度数为180°﹣100°=80°,所以顶角的度数为180°﹣2×80°=20°;故顶角的度数为80°或20°.故答案为:80°或20°.17.【答案】见试题解答内容【解答】解:∵∠C=Rt∠,∠A=70°,∴∠B=90°﹣∠A=90°﹣70°=20°.故答案为:20°.18.【答案】见试题解答内容【解答】解:①若5为腰长,2为底边长,∵5,5,2能组成三角形,∴此时周长为:5+5+2=12;②若2为腰长,5为底边长,∵2+2=4<5,∴不能组成三角形,故舍去;∴周长为12.故答案为:12.19.【答案】见试题解答内容【解答】解:设∠EDC=x,∠B=∠C=y,∠AED=∠EDC+∠C=x+y,又因为AD=AE,所以∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又因为∠ADC=∠B+∠BAD,所以2x+y=y+54,解得x=27,所以∠EDC=27°.故答案为:27.20.【答案】见试题解答内容【解答】解:如图,连接MQ,作MG⊥EC于G,设PC交BM于T,MN交EC于W.∵∠ABM=∠CBQ=90°,∴∠ABC=∠MBQ,∵BA=BM,BC=BQ,∴△ABC≌△MBQ(SAS),∴∠ACB=∠BQM=90°,∵∠PQB=90°,∴M,P,Q共线,∵四边形CGMP是矩形,∴MG=PC=BC,∵∠BCT=∠MGQ=90°,∠BTC+∠CBT=90°,∠BQM+∠CBT=90°,∴∠MQG=∠BTC,∴△MGW≌△BCT(AAS),∴MW=BT,∵MN=BM,∴NW=MT,可证△NWE≌MTP,∴S1+S5=S3=6,故答案为6.21.【答案】见试题解答内容【解答】解:如图1,在等腰△ABC中,AB=AC,∵AD为中线,∴AD⊥BC,∴BD=√AB2−AD2=√52−42=3,∴△ABD的周长=12,如图2,在等腰△ABC中,AB=BC,∵AD为中线,∴BD=12BC=2.5,∴△ABD的周长=10.5,综上所述,△ABD的周长为12或10.5,故答案为:12或10.5.22.【答案】见试题解答内容【解答】解:当DG=9,CG=2时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49.当DG=√5,CG=4√5时,满足DG2+CG2=CD2,此时HG=3√5,可得正方形EFGH 的面积为45.当DG=6,CG=7时,此时HG=1,四边形EFGH的面积为1.(如图)综上所述,满足条件的正方形EFGH的面积的所有可能值是1或45或49.故答案为1或45或49.23.【答案】见试题解答内容【解答】解:阴影正方形的边长=√12+32=√10,√9<√10<√16,∴3<√10<4,∴√10介于两个相邻整数3和4之间,故答案为:√10;3和4.24.【答案】见试题解答内容【解答】解:∵等腰三角形ABC中顶角∠A=40°,∴底角∠B的度数=12(180°﹣40°)=70°,故答案为:70°.25.【答案】见试题解答内容【解答】解:∵直角三角形的两直角边长分别是1和2,∴斜边=√12+22=√5,故答案为√5.26.【答案】见试题解答内容【解答】解:∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C,设∠ADC=α,∴∠B=∠BAD=α2,∵∠BAC=108°,∴∠DAC=108°−α2,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+108°−α2=180°,解得:α=48°.故答案为:48°.27.【答案】见试题解答内容【解答】解:作A关于直线l的对称点A′,连接A′B交直线l于点P,此时AP+PB最小;则P A=P A′,∴AP+PB=P A′+P A=A′B,过点B作BC⊥AA′于点C,则OA′=OA=2,OC=1,BC=4,∴A′C=OA′+OC=2+1=3,∴A′B=√A′C2+BC2=5.∴AP+PB最小值=5.故答案为:5.28.【答案】见试题解答内容【解答】解:△BCP为等腰三角形时,当点P在边AC上时,CP=CB,∵CP=6cm,此时t=6÷2=3(秒);当点P在边AB上时.①如图1,CP=CB,作AB 边上的高CD ,∵12AC ×BC =12AB ×CD . ∴CD =AC⋅BC AB=4.8, 在Rt △CDP 中,根据勾股定理得,DP =2−CD 2=3.6,∴BP =2DP =7.2,∴AP =2.8,∴t =(AC +AP )÷2=(8+2.8)÷2=5.4(秒)②BC =BP ,∴BP =6cm ,CA +AP =8+10﹣6=12(cm ),∴t =12÷2=6(秒);③PB =PC ,∴点P 在BC 的垂直平分线与AB 的交点处,即在AB 的中点,此时CA +AP =8+5=13(cm ),t =13÷2=6.5(秒);综上可知,当t =3秒或5.4秒或6秒或6.5秒时,△BCP 为等腰三角形. 故答案为:3秒或5.4秒或6秒或6.5秒.29.【答案】见试题解答内容【解答】解:当∠A 为顶角时,则底角∠B =70°;此时,特征值k =4070=47;当∠A 为底角时,则顶角为100°;此时,特征值k =10040=52;故答案为:52或47.。