四年级奥数排列组合
小学奥数之排列组合问题
题目:将5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为 _______. 答案:60
掌握基础概念和公式
理解排列组合的原理和计算方法
理解排列组合的概念和公式
练习题:有5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为多少? 答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。练习题:用数字0,1,2,3,4可以组成多少个无重复数字且大于2000的三位数? 答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。
小学奥数全国推荐四年级奥数通用学案附带练习题解析答案52排列组合应用(二)
年级四年级学科奥数版本通用版课程标题排列组合应用(二)排列组合是数学中风格独特的一部分内容,它在生产生活中具有广泛的实际应用。
例如:某城市电话号码由六位数字组成,每位可从0~9中任取一个,问该城市最多可有多少种不同的电话号码?又如,从20名运动员中挑选6人组成一个代表队参加国际比赛,但运动员甲和乙两人中至少有一人必须参加代表队,问共有多少种选法?回答上述问题若不采用排列组合的方法,结论是难以想象的。
(前一个问题,该城市最多可有1000000种不同的电话号码;后一个问题,有20196种不同选法)在求解排列与组合的应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复或遗漏;(4)列出式子计算和作答。
例1用0~9这十个数字可组成多少个无重复数字的四位数?分析与解:此题属于有条件限制的排列问题,首先弄清楚限制条件表现为:①某位置上不能排某元素;②某元素只能排在某位置上。
本题属于某位置上不能排某元素,可分两步完成:第一步选取元素占据特殊位置,第二步选取元素占据其余位置。
分析无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,也就是说千位上只能排1~9这九个数字中的一个,而且其他位置上的数字都不相同。
分两步完成:第一步:从1~9这九个数字中任选一个占据千位,有9种方法;第二步:从余下的9个数字(包括数字0)中任选3个占据百位、十位、个位,百位有9种、十位有8种、个位有7种方法。
由乘法原理,共有满足条件的四位数9×9×8×7=4536(个)。
例2①从数字1、2、5、7中任选2个,计算它们的和,试问可以得到多少个不同的和?②从数字1、2、5、7中任选2个,计算它们的差,试问可以得到多少个不同的差? 分析与解:①因为加法满足交换律,所以第一问从数字1、2、5、7中任选2个数作和,与所选数字的顺序无关,属于组合问题,因此,结果为C 24=6(个)。
四年级奥数-排列组合
排列组合排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是A 、1440种B 、3600种C 、4820种D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为A 、480种B 、240种C 、120种D 、96种答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =ð共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A ð中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种. 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
小学四年级奥数知识点 第五讲 排列组合
例1 由数字0、1、2、3可以组成多少个没有重复数字的偶数?
分析 注意到由四个数字0、1、2、3可组成的偶数有一位数、二位数、三位数、四位数这四类,所以要一类一类地考虑,再由加法原理解决.
第一类:一位偶数只有0、2,共2个;
第二类:两位偶数,它包含个位为0、2的两类.若个位取0,则十位可有C13种取法;若个位取2,则十位有C12种取法.故两位偶数共有(C13+C12)种不同的取法;
或解为:
P28+P27+P24
=8×7+7×6+4×3
=56+42+12
=110(场).
例3 在一个半圆周上共有12个点,如右图,以这些点为顶点,可以画出多少个
Байду номын сангаас①三角形?
②四边形?
分析 ①我们知道,不在同一直线上的三个点确定一个三角形,由图可见,半圆弧上的每三个点均不共线(由于A、B既可看成半圆上的点,又可看成线段上的点,为不重复计算,可把它们归在线段上),所以,所有的三角形应有三类:第一类,三角形的三个顶点全在半圆弧上取(不含A、B两点);第二类,三角形的两个顶点取在半圆弧上(不包含A、B),另一个顶点在线段上取(含A、B);第三类,三角形的一个顶点在半圆弧上取,另外两点在线段上取.
C412-C45-C35·C17=495-5-70=420
个不同的四边形.
例4 如下图,问
①下左图中,有多少个长方形(包括正方形)?
②下右图中,有多少个长方体(包括正方体)?
分析 ①由于长方形是由两组分别平行的线段构成的,因此只要看上左图中水平方向的所有平行线中,可以选出几组两条平行线,竖直方向上的所有平行线中,可以选出几组两条平行线?
注意到三角形的个数只与三个顶点的取法有关,而与选取三点的顺序无关,所以,这是组合问题.
小学奥数排列组合教案
小学奥数-排列组合教案一、教学目标1. 让学生理解排列组合的概念,掌握排列组合的基本算法。
2. 培养学生的逻辑思维能力,提高学生解决实际问题的能力。
3. 激发学生的学习兴趣,培养学生的耐心和细心。
二、教学内容1. 排列的概念和排列数公式2. 组合的概念和组合数公式3. 排列组合的综合应用三、教学重点与难点1. 教学重点:排列组合的概念,排列数和组合数的计算方法。
2. 教学难点:排列组合的综合应用,解决实际问题。
四、教学方法1. 采用直观演示法,让学生通过实际操作理解排列组合的概念。
2. 采用案例教学法,分析典型例题,引导学生运用排列组合知识解决实际问题。
3. 采用讨论法,鼓励学生提问、交流、探讨,提高学生的逻辑思维能力。
五、教学安排1. 课时:每课时约40分钟2. 教学步骤:引入新课讲解概念举例讲解练习巩固课堂小结3. 课后作业:布置相关练习题,巩固所学知识。
教案一、引入新课1. 老师:同学们,你们平时喜欢做游戏吗?今天我们就来玩一个有趣的游戏,请大家观察这些数字(出示数字卡片),看看你能发现什么规律?2. 学生观察数字卡片,发现规律。
二、讲解概念1. 老师:同学们观察得很仔细,这些数字卡片其实就是我们今天要学习的内容——排列组合。
什么是排列呢?2. 学生回答:排列是指从n个不同元素中取出m(m≤n)个元素的所有可能的排列的个数。
3. 老师:很好,那什么是组合呢?4. 学生回答:组合是指从n个不同元素中取出m(m≤n)个元素的所有可能的组合的个数。
5. 老师:同学们掌握得很好,我们来学习排列数和组合数的计算方法。
三、举例讲解1. 老师:我们以n=5,m=3为例,来计算排列数和组合数。
2. 学生计算排列数:5×4×3=60,计算组合数:C(5,3)=10。
3. 老师:同学们计算得很好,这些排列和组合在实际生活中有哪些应用呢?四、排列组合在实际生活中的应用1. 老师:比如说,我们有一排5个位置,要从中选出3个位置来安排3个同学,就有60种排列方式,10种组合方式。
四年级奥数讲义:排列组合的综合应用
四年级奥数讲义:排列组合的综合应用排列组合是数学中风格独特的一部分内容.它具有广泛的实际应用.例如:某城市电话号码是由六位数字组成,每位可从0~9中任取一个,问该城市最多可有多少种不同的电话号码?又如从20名运动员中挑选6人组成一个代表队参加国际比赛.但运动员甲和乙两人中至少有一人必须参加代表队,问共有多少种选法?回答上述问题若不采用排列组合的方法,结论是难以想像的.(前一个问题,该城市最多可有1000000个不同电话号码.后一个问题,代表队有20196种不同选法.)当然排列组合的综合应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.有时利用图示法,可使问题简化便于正确理解与把握.例1 从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?分析首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理.当从国画、油画各选一幅有多少种选法时,利用的乘法原理.由此可知这是一道利用两个原理的综合题.关键是正确把握原理.解:符合要求的选法可分三类:不妨设第一类为:国画、油画各一幅,可以想像成,第一步先在5张国画中选1张,第二步再在3张油画中选1张.由乘法原理有5×3=15种选法.第二类为国画、水彩画各一幅,由乘法原理有5×2=10种选法.第三类油画、水彩各一幅,由乘法原理有3×2=6种选法.这三类是各自独立发生互不相干进行的.因此,依加法原理,选取两幅不同类型的画布置教室的选法有15+10+6=31种.注运用两个基本原理时要注意:①抓住两个基本原理的区别,千万不能混.不同类的方法(其中每一个方法都能各自独立地把事情从头到尾做完)数之间做加法,可求得完成事情的不同方法总数.不同步的方法(全程分成几个阶段(步),其中每一个方法都只能完成这件事的一个阶段)数之间做乘法,可求得完成整个事情的不同方法总数.②在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则.请看一些例:从若干件产品中抽出几件产品来检验,如果把抽出的产品中至多有2件次品的抽法仅仅分为两类:第一类抽出的产品中有2件次品,第二类抽出的产品中有1件次品,那么这样的分类显然漏掉了抽出的产品中无次品的情况.又如:把能被2、被3、或被6整除的数分为三类:第一类为能被2整除的数,第二类为能被3整除的数,第三类为能被6整除的数.这三类数互有重复部分.③在运用乘法原理时,要注意当每个步骤都做完时,这件事也必须完成,而且前面一个步骤中的每一种方法,对于下个步骤不同的方法来说是一样的.例2 一学生把一个一元硬币连续掷三次,试列出各种可能的排列.分析要不重不漏地写出所有排列,利用树形图是一种直观方法.为了方便,树形图常画成倒挂形式.解:由此可知,排列共有如下八种:正正正、正正反、正反正、正反反、反正正、反正反、反反正、反反反.例3 用0~9这十个数字可组成多少个无重复数字的四位数.分析此题属于有条件限制的排列问题,首先弄清楚限制条件表现为:①某位置上不能排某元素.②某元素只能排在某位置上.分析无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,或说千位上只能排1~9这九个数字中的一个.而且其他位置上数码都不相同,下面分别介绍三种解法.解法1:分析某位置上不能排某元素.分步完成:第一步选元素占据特殊位置,第二步选元素占据其余位置.解:分两步完成:第一步:从1~9这九个数中任选一个占据千位,有9种方法.第二步:从余下的9个数(包括数字0)中任选3个占据百位、十位、个位,百位有9种.十位有8种,个位有7种方法.由乘法原理,共有满足条件的四位数9×9×8×7=4536个.答:可组成4536个无重复数字的四位数.解法2:分析对于某元素只能占据某位置的排列可分步完成:第一步让特殊元素先占位,第二步让其余元素占位.在所给元素中0是有位置限制的特殊元素,在组成的四位数中,有一类根本无0元素,另一类含有0元素,而此时0元素只能占据百、十、个三个位置之一.解:组成的四位数分为两类:第一类:不含0的四位数有9×8×7×6=3024个.第二类:含0的四位数的组成分为两步:第一步让0占一个位有3种占法,(让0占位只能在百、十、个位上,所以有3种)第二步让其余9个数占位有9×8×7种占法.所以含0的四位数有3×9×8×7=1512个.∴由加法原理,共有满足条件的四位数3024+1512=4536个.解法3:从无条件限制的排列总数中减去不合要求的排列数(称为排除法).此题中不合要求的排列即为0占据千位的排列.解:从0~9十个数中任取4个数的排列总数为10×9×8×7,其中0在千位的排列数有9×8×7个(0确定在千位,百、十、个只能从9个数中取不同的3个)∴共有满足条件的四位数10×9×8×7-9×8×7=9×8×7×(10-1)=4536个.注用解法3时要特别注意不合要求的排列有哪几种?要做到不重不漏.例4 从右图中11个交点中任取3个点,可画出多少个三角形?分析首先,构成三角形与三个点的顺序无关因此是组合问题,另外考虑特殊点的情况:如三点在一条直线上,则此三点不能构成三角形,四点在一条直线上,则其中任意三点也不能构成三角形.此题采用排除法较方便.解:组合总数为C311,其中三点共线不能构成的三角形有7C33,四点共线不能构成的三角形有2C34,∴C311-(7C33+2C34)=165-(7+8)=150个.例5 7个相同的球,放入4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?(请注意,球无区别,盒是有区别的,且不允许空盒)分析首先研究把7分成4个自然数之和的形式,容易得到以下三种情况:①7=1+1+1+4②7=1+2+2+2③7=1+1+2+3其次,将三种情况视为三类计算不同的放法.第一类:有一个盒子里放了4个球,而其余盒子里各放1个球,由于4个球可任意放入不同的四个盒子之一,有4种放法,而其他盒子只放一个球,而球是相同的,任意调换都是相同的放法,所以第一类只有4种放法.第二类:有一个盒子里放1个球,有4种放法,其余盒子里都放2个球,与第一类相同,任意调换都是相同的放法,所以第二类也只有4种放法.第三类:有两个盒子里各放一个球,另外两个盒子里分别放2个及3个球,这时分两步来考虑:第一步,从4个盒子中任取两个各放一个球,这种取法有C24种.第二步,把余下的两个盒子里分别放入2个球及3个球,这种放法有P22种.由乘法原理有C24×P22=12种放法.∴由加法原理,可得符合题目要求的不同放法有4+4+12=20(种)答:共有20种不同的放法.注本题也可以看成每盒中先放了一个球垫底,使盒不空,剩下3个球,放入4个有区别盒的放置方式数.例 6 用红、橙、黄、绿、蓝、青、紫七种颜色中的一种,或两种,或三种,或四种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?分析首先介绍正四面体(模型).正四面体四个面的相关位置,当底面确定后,(从上面俯视)三个侧面的顺序有顺时针和逆时针两种(当三个侧面的颜色只有一种或两种时,顺时针和逆时针的颜色分布是相同的).先看简单情况,如取定四种颜色涂于四个面上,有两种方法;如取定一种颜色涂于四个面上,只有一种方法.但取定三种颜色如红、橙、黄三色,涂于四个面上有六种方法,如下图①②③(图中用数字1,2,3分别表示红、橙、黄三色)如果取定两种颜色如红、橙二色,涂于四个面上有三种方法.如下图④⑤⑥但是从七种颜色里,每次取出四种颜色,有C47种取法,每次取出三种颜色有C37种取法,每次取出两种颜色有C27种取法,每次取出一种颜色有C17种取法.因此着色法共有2 C47+6 C37+3 C27+ C17=350种.习题六1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.如右图:在摆成棋盘眼形的20个点中,选不在同一直线上的三点作出以它们为顶点的三角形,问总共能作多少个三角形?6.有十张币值分别为1分、2分、5分、1角、2角、5角、1元、2元、5元、10元的人民币,能组成多少种不同的币值?并请研究是否可组成最小币值1分与最大币值(总和)之间的所有可能的币值.。
四年级奥数排列组合题及答案
四年级奥数排列组合题及答案四年级奥数排列组合题及答案1.排列、组合等问题从6幅国画,4幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?解答:6×4=24种6×2=12种4×2=8种24+12+8=44种【小结】首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理。
当从国画、油画各选一幅有多少种选法时,利用的乘法原理。
由此可知这是一道利用两个原理的综合题。
关键是正确把握原理。
符合要求的选法可分三类:设第一类为:国画、油画各一幅,可以想像成,第一步先在6张国画中选1张,第二步再在4张油画中选1张。
由乘法原理有6×4=24种选法。
第二类为:国画、水彩画各一幅,由乘法原理有6×2=12种选法。
第三类为:油画、水彩画各一幅,由乘法原理有4×2=8种选法。
这三类是各自独立发生互不相干进行的。
因此,依加法原理,选取两幅不同类型的画布置教室的选法有24+12+8=44种。
2.排列组合从1到100的所有自然数中,不含有数字4的.自然数有多少个?解答:从1到100的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数只有100.所以一共有8+8×9+1=81个不含4的自然数.。
四年级奥数-排列组合(1)
排列组合排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种 B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为 A 、480种 B 、240种 C 、120种 D 、96种 答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种. 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
小学奥数排列组合教案
小学奥数-排列组合教案一、教学目标1. 让学生理解排列组合的概念,掌握排列组合的基本算法。
2. 培养学生分析问题、解决问题的能力,提高学生的逻辑思维能力。
3. 培养学生积极探索、合作交流的学习习惯,增强学生的自信心。
二、教学内容1. 排列的概念和排列数公式2. 组合的概念和组合数公式3. 排列组合的应用三、教学重点与难点1. 教学重点:排列组合的概念,排列数和组合数公式的运用。
2. 教学难点:排列组合问题的理解和解决。
四、教学方法1. 采用问题驱动法,引导学生主动探究、合作交流。
2. 运用实例分析,让学生直观理解排列组合的概念。
3. 练习法:通过适量练习,巩固所学知识。
五、教学准备1. 教学课件或黑板2. 练习题3. 学生分组合作学习所需材料教案内容:一、排列的概念和排列数公式1. 排列的定义:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做一个排列。
2. 排列数公式:An = n! / (n-m)!,其中n!表示n的阶乘。
二、组合的概念和组合数公式1. 组合的定义:从n个不同元素中取出m(m≤n)个元素,但与排列不同的是,组合不考虑元素的顺序。
2. 组合数公式:Cn = n! / [m!(n-m)!],其中n!表示n的阶乘。
三、排列组合的应用1. 题目示例:有红、蓝、绿三色的珠子,从中选出2个珠子,要求红珠子必须选中,求选法的总数。
2. 解题思路:这是一个排列问题,因为红珠子必须选中,只需要从蓝、绿两种颜色中再选一个珠子,按照排列的定义和公式,计算出排列数。
3. 解题步骤:a. 确定n=3(三种颜色),m=2(选两个珠子)。
b. 计算排列数:A3 = 3! / (3-2)! = 3×2 = 6。
c. 得出选法的总数为6种。
四、课堂练习a. A4 = ?b. A5 = ?a. C3 = ?b. C4 = ?五、总结与反思1. 本节课学习了排列和组合的概念及公式。
2. 通过对实例的分析,理解了排列组合的应用。
小学奥数排列和组合试题及答案
小学奥数排列和组合试题及答案第一篇:小学奥数排列和组合试题及答案小学四年级奥数排列组合练习1.由数字0、1、2、3、4可以组成多少个①三位数?②没有重复数字的三位数?③没有重复数字的三位偶数?④小于1000的自然数?2.从15名同学中选5人参加数学竞赛,求分别满足下列条件的选法各有多少种?①某两人必须入选;②某两人中至少有一人入选;③某三人中恰入选一人;④某三人不能同时都入选.3.如右图,两条相交直线上共有9个点,问:一共可以组成多少个不同的三角形?-------------------4.如下图,计算①下左图中有多少个梯形?②下右图中有多少个长方体?5.七个同学照相,分别求出在下列条件下有多少种站法?①七个人排成一排;②七个人排成一排,某两人必须有一人站在中间;③七个人排成一排,某两人必须站在两头;④七个人排成一排,某两人不能站在两头;⑤七个人排成两排,前排三人,后排四人,某两人不在同一排.-------------------答案:1.①100;②48;③30;④124.2.①C313=286;②C515-C513=1716;③C13·C412=1485;④C515-C212=2937.3.C15·C23+C26·C13=60;或C39-C36-C34=60.4.①C26×C26=225;②C25×C26×C25=1500.5.①P77=5040;②2P66=1440;③2P55=240;④5×4×P55=2400;⑤2×3×4×P55=2880.-------------------第二篇:小学奥数经典专题点拨:排列与组合排列与组合【有条件排列组合】例1 用0、1、2、3、4、5、6、7、8、9这十个数字能够组成______个没有重复数字的三位数。
(哈尔滨市第七届小学数学竞赛试题)讲析:用这十个数字排列成一个不重复数字的三位数时,百位上不能为0,故共有9种不同的取法。
四年级奥数-排列组合
排列组合排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是A 、1440种B 、3600种C 、4820种D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为A 、480种B 、240种C 、120种D 、96种答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =ð共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A ð中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种. 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
四年级奥数实例找规律巧填数之数字组合技巧作文范本
四年级奥数实例找规律巧填数之数字组合技巧作文范本数字组合是数学中常见的问题类型之一,通过寻找规律与巧妙的填数方式,我们可以解决许多数字组合的难题。
在四年级的奥数中,数字组合的问题经常出现,对于学生来说,学习数字组合的技巧非常重要。
本文将为大家提供一些数字组合的实例及解法,以帮助大家更好地掌握相关的技巧。
1. 实例一:填空法题目:用1、2、3、4这4个数字填空,使得各位数字之和等于4的正整数有几个?解法:我们可以通过穷举法来解决这个问题。
首先,我们找出所有各位数字之和等于4的正整数,然后计算其个数即可。
根据题意,各位数字之和为4的正整数有:112、121、211、13、31、22、4,共计7个。
2. 实例二:规律法题目:请找出下面数列中的规律,并填空:1、2、4、7、11、16、___、___解法:观察给出的数列,我们可以发现每一个数与它前一个数之间的差值逐次增加1。
例如,2-1=1,4-2=2,7-4=3,11-7=4。
可以得出这个数列的规律为:每一项都比前一项大1,即差值逐次增加1。
根据这个规律,我们可以计算出下两个空格的数字为21和27。
3. 实例三:排列组合法题目:有5个不同的字母A、B、C、D、E,从中选出3个字母组成不同的三位数,全部写出并计算它们的和。
解法:根据题目的要求,我们需要从5个不同的字母中选出3个字母进行组合。
首先,我们列举出所有可能的三位数:ABC、ABD、ABE、ACD、ACE、ADE、BCD、BCE、BDE、CDE。
然后,我们计算出每一个三位数的和,并将它们逐一相加。
最终,得出的和为2355。
4. 实例四:分析法题目:将数字1、2、3、4、5、6六个数字进行排列,使得任意两个相邻的数字之和都是一个完全平方数。
共有多少种不同的排列方式?解法:这是一个比较复杂的问题,我们可以通过分析来解决。
首先,我们需要找到所有完全平方数:1、4、9、16、25、36。
然后,我们观察这些完全平方数之间的差值:3、5、7、9、11。
排列组合四年级公式
排列组合四年级公式排列组合是数学中一个重要的概念,也是四年级数学学习的一部分。
通过排列组合,我们可以计算出一组元素的不同排列和组合的方式,从而解决各种问题。
在本文中,我将为你详细介绍排列组合的四年级公式。
排列组合问题通常涉及到从给定的元素集合中选取若干个元素,然后按照一定的顺序排列或者不排列的方式组合。
在四年级,我们主要学习到了两个公式,即排列公式和组合公式。
首先,让我们来了解一下排列公式。
排列公式主要用于计算从给定的元素集合中选取若干个元素,并按照一定的顺序排列的方式。
排列公式的一般形式为:P(n, r) = n! / (n - r)!其中,n表示元素的总个数,r表示选取的元素个数,"!"表示阶乘运算。
接下来,我们通过一个例子来理解排列公式的应用。
假设有5个不同的字母,要从中选取3个字母,按照一定的顺序排列,求排列的总数。
根据排列公式,我们可以得到:P(5, 3) = 5! / (5 - 3)! = 5! / 2! = 5 × 4 × 3 = 60因此,从5个字母中选取3个字母并按照一定的顺序排列的方式总共有60种。
接下来,让我们来了解一下组合公式。
组合公式主要用于计算从给定的元素集合中选取若干个元素,并不考虑元素的顺序的方式。
组合公式的一般形式为:C(n, r) = n! / (r! × (n - r)!)其中,n表示元素的总个数,r表示选取的元素个数,"!"表示阶乘运算。
同样,我们通过一个例子来理解组合公式的应用。
假设有5个不同的字母,要从中选取3个字母,不考虑字母的顺序,求组合的总数。
根据组合公式,我们可以得到:C(5, 3) = 5! / (3! × (5 - 3)!) = 5! / (3! × 2!) = 5 × 4 / 2 = 10因此,从5个字母中选取3个字母并不考虑字母的顺序的方式总共有10种。
奥数排列组合解题技巧
奥数排列组合解题技巧第一篇嗨呀,亲爱的小伙伴们!今天咱们来聊聊奥数里超有趣的排列组合解题技巧。
你知道吗?搞清楚排列和组合的概念是第一步哟!排列呢,就是讲究顺序,就像排队一样,谁在前谁在后很重要。
组合呢,就不管顺序啦,只要把东西凑一块儿就行。
做这类题的时候,要学会分类讨论。
比如说,碰到那种情况特别多的,咱就一种一种慢慢捋清楚。
千万别着急,一着急就容易乱套啦。
还有哦,乘法原理和加法原理可得用好了。
如果一件事要分几步完成,那就用乘法;要是有几种不同的情况,那就用加法。
举个例子吧,从 5 个不同的球里选 3 个排成一排,这就是排列,得用5×4×3 来算。
要是从 5 个球里选 3 个组成一组,不管顺序,那就是组合,要用5×4×3÷(3×2×1)算。
有时候画图能帮咱们大忙呢,把各种情况画出来,一目了然,思路也就清晰啦。
多做几道题练练手,慢慢地,你就会发现排列组合其实也没那么难嘛!加油哟,小伙伴们!第二篇嘿,朋友们!咱们又见面啦,今天接着聊奥数排列组合的解题技巧。
我跟你们说呀,捆绑法和插空法可好用啦!比如说,有几个人要排在一起,那就把他们当成一个整体先绑起来,算完再拆开。
要是有几个人不能挨着,那就先把其他人排好,然后往中间的空里插他们。
还有那个隔板法,遇到把相同的东西分给不同的人的时候,就能派上用场。
想象一下用板子把东西隔开,是不是挺好玩的?有时候题目里的条件很复杂,这时候就得学会转化,把陌生的问题变成咱们熟悉的。
比如说,计算从 10 个人里选 5 个人的组合数,如果直接算有点头疼,那咱们可以先算从 10 个人里选 5 个人的排列数,再除以 5 个人的全排列数,是不是一下子就简单多啦?另外,一定要仔细读题,看清题目到底是让咱算排列还是组合,千万别搞错啦,不然可就前功尽弃喽。
多琢磨琢磨这些技巧,多思考,多练习,相信你们在排列组合的世界里一定会游刃有余的!加油加油!。
四年级奥数排列组合练习试题
====Word行业资料分享--可编辑版本--双击可删====
四年级奥数排列组合练习试题
1.由数字0、1、2、3、4可以组成多少个①没有重复数字的三位数?
②没有重复数字的三位偶数?③小于1000的自然数?
2、七个同学照相,分别求出在下列条件下有多少种站法?
①七个人排成一排;
②七个人排成一排,某人必须站在中间;
③七个人排成一排,某两人必须站在两头;
④七个人排成一排,某人不能站在两头;
3、有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?
4、8名同学争夺3项冠军,获得冠军的可能性有几种?
6、用0、1、2、3、4、5、6、
7、
8、9这十个数字能够组成多少个没有重复数字的三位数。
7、一条铁路线上有14各位不同的站点,要准备多少种不同的车票?
8、甲、乙、丙、丁四个同学排成一排,从左到右数,如果甲不排在第一个位置上,那么共有多少种不同的排法?
源-于-网-络-收-集。
排列组合四年级公式
在四年级,我们可能不会接触到非常复杂的排列组合公式,但我们可以学习一些基础的概念和简单的计算方法。
排列(Permutation)和组合(Combination)是数学中用来计算不同选择方式的两种重要方法。
排列:从n个不同的元素中取出m个元素(m≤n),按照一定的顺序排成一列,叫做从n 个元素中取出m个元素的一个排列。
排列数通常用符号P(n, m)来表示。
公式:P(n, m) = n × (n-1) × ... × (n-m+1)但是,对于四年级的学生来说,这个公式可能有些复杂。
我们可以简化一下,只考虑一些简单的情况。
例如,从3个不同的元素中取出2个元素进行排列,我们可以这样计算:P(3, 2) = 3 × 2 = 6这意味着从3个元素中取出2个元素进行排列,总共有6种不同的方式。
组合:从n个不同的元素中取出m个元素(m≤n),不考虑顺序,叫做从n个元素中取出m个元素的一个组合。
组合数通常用符号C(n, m)来表示。
公式:C(n, m) = n! / [m!(n-m)!]其中"!"代表阶乘,例如5! = 5 × 4 × 3 × 2 × 1。
但是,这个公式对于四年级的学生来说可能太难了。
我们可以考虑一些更简单的情况,并用其他方法来计算。
例如,从3个不同的元素中取出2个元素进行组合,我们可以这样计算:首先,我们考虑排列的情况,有6种方式。
但是,在组合中,我们不考虑顺序。
所以,对于每一种组合,我们都计算了两次(例如,选出元素1和元素2,与选出元素2和元素1,在组合中是同一种情况)。
因此,我们需要将排列数除以2。
C(3, 2) = P(3, 2) / 2 = 6 / 2 = 3这意味着从3个元素中取出2个元素进行组合,总共有3种不同的方式。
以上,我们介绍了排列和组合的基本概念,以及一些简单的计算方法。
希望这能帮助四年级的学生更好地理解排列和组合。
苏教版四年级下册同步奥数培优 第二讲 认识多位数(排列组合一)
苏教版四年级下册同步奥数培优第二讲认识多位数(排列组合一)【知识概述】:生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法,那么考虑完成这件事所有可能的做法,就要用加法原理的知识去解决。
同样的,日常生活中常常会遇到这样一些间题:就是做一件事情时,要分几步才能完成,而在完成每一步时,又有儿种不同的方法,要知道完成这件事一共有多少种方法,就要用到乘法原理的知识去解决。
把两种方法灵活地运用,考虑顺序关系,称为排列问题,只考虑选出来,不需要按一定的排列顺序去思考,称为组合,今天我们就来研究相关知识。
例1:从1到99的所有自然数中,不含有数字4的自然数有多少个?练习一:1.1~100的自然数中,一共有多少个数字0?2.从1到99的所有自然数中,含有数字5的自然数有多少个?3.从1到99的所有自然数中,不含有数字2的自然数有多少个?例2:由数字0,1,2,3组成三位数,问:可组成多少个没有重复数字的三位数。
练习二:1.用0,3,4,6可组成多少个没有重复数字的三位数?2.用1,3,5,2可组成多少个没有重复数字的三位数?3.用1,2,3,4可组成多少个没有重复数字的三位数并且是双数?例3:用1,2,3,4,5可组成多少个没有重复数字的三位数?练习三:1.用数字3,4,5,6,7可组成多少个没有重复数字的三位数?2.用数字2,3,4,7,6可组成多少个个位上数字是6的没有重复数字的三位数?3.从黄、红、绿、蓝、紫、橙色这6种不同颜色的小信号旗中,每次取3种不同颜色作为一种信号,共有多少种不同的信号?例4:从1,3,4,6,8,9这六个数中,任意选取两个数作乘积,可以得到多少种不同的结果?练习四:1.从1,2,4,5,6,7这六个数中,任意选取两个数作乘积,可以得到多少种不同的结果?2.数字和是6的两位数总共有多少个?3.在两位整数中,十位数字小于个位数字的共有多少个?练习卷一、填空题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学四年级奥数题:排列组合1.从19,20,21,…,93,94这76个数中,选取两个不同的数,使其和为偶数的选法有多少种?2.安排7位老师在5月1日至5月7日值班,每人值班一天,其中甲、乙两人不安排在5月1日和5月2日,不同的安排方法数共有______。
3.一个篮球队有五名队员A ,B ,C ,D ,E ,由于某种原因, E不能做中锋,而其余4个人可以分配到五个位置的任何一个上,问一共有多少种不同的站位方法?4.有两个女孩子站一排拍照,这时又来了三位男孩子一起拍,如果男孩子要站女孩子后面,一共多少种站法?5.四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案的总数是_________.6.有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示多少种不同的信号?7.用1 、2 、3 、 4、5 、6 、7 、 8可以组成多少个没有重复数字的四位数?8.如下图,从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3条路可走。
那么,从甲地到丙地共有多少种走法?9.国家举行足球赛,共15个队参加。
比赛时,先分成两个组,第一组8个队,第二组7个队。
各组都进行单循环赛(即每个队要同本组的其他各队比赛一场)。
然后再由各组的前两名共4个队进行单循环赛,决出冠亚军。
问:①共需比赛多少场?②如果实行主客场制(即A、B两个队比赛时,既要在A队所在的城市比赛一场,也要在B队所在的城市比赛一场),共需比赛多少场?10.从6幅国画,4幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?11.从1到100的所有自然数中,不含有数字4的自然数有多少个?12.A先生的衬衫都是由红、蓝、黄、绿、黑5种颜色中的任何两种组成的。
某一周,从星期一到星期日A先生按下列规则挑选每天穿的衬衫:1、每天都穿不同配色的衬衫;2、同一种颜色不连续出现在连着的2天中;3、有一个颜色出现在了4天中;4、星期一穿的是蓝黑组合;5、星期四的有绿色;6、星期五不出现黄色;7、红和黑组合不能出现。
请问:星期六穿的衬衫是哪两种颜色的组合。
13.一台晚会上有6个演唱节目和4个舞蹈节目。
问:(1)如果4个舞蹈节目要排在一起,有多少种不同的排列顺序?(2)如果要求每两个舞蹈节目之间至少安排一个演唱节目,一共有多少种不同的安排顺序?14.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.(1)若从这些书中任取一本,有多少种不同的取法(2)若从这些书中,取数学书,语文书,英语书各一本,有多少种不同的取法(3)若从这些书中取不同的科目的书两本,有多少种不同的取法15.由数字0,1,2,3,4可以组成多少个三位整数(各位上的数字允许重复)16.判断下列几个问题是不是排列问题①从班级5名优秀团员中选出3人参加上午的团委会②1000本参考书中选出100本给100位同学每人一本③1000名来宾中选20名贵宾分别坐1~20号贵宾席17.由数字1,2,3,4,5,6,7组成无重复数字的七位数(1)求三个偶数必相邻的七位数的个数;(2)求三个偶数互不相邻的七位数的个数18.100件产品中有4件次品,现抽取3件检查,(1)恰好有一件次品的取法有___________种;(2)既有正品又有次品的取法有_______________种.19.6本不同的书,(1)分成三堆,一堆一本,一堆两本,一堆三本,有___________分法;(2)分给甲,乙,丙三人,一人一本,一人两本,一人三本,有_________ 分法;(3)分成三堆,每堆两本,有__________分法;(4)分给甲,乙,丙三人,每人两本,有_____________ 分法.20.用0,1,2,3,4,5六个数字组成无重复数字的五位数,其中(1)这样的五位数的个数是___________;(2)奇数有________个,偶数有__________个;(3)5的倍数有________个;(4)奇数位必须为奇数有________个.21.7人站在一排,(1)甲站在中间的不同排法有___________种;(2)甲,乙相邻的不同排法有_____________种;(3)甲,乙不相邻的不同排法有___________种;(4)甲,乙,丙两两不相邻的不同排法有__________种;(5)甲站在乙的左边的不同排法有_____________种;(6)甲不站在左端,乙不站在右端的不同排法有___________种.22.求:集合A={1,2,3,4}的子集的个数.23.求:用0,1,2,3组成无重复数字的三位偶数的个数.24.(1)四位同学参加跳远,跳高,跑步三项比赛,要求每人报名参加一项,问:有多少种不同的报名方法(2)四位同学争夺跳远,跳高,跑步三项比赛的冠军,问:有多少种不同的结果25.从北京到天津火车有10个车次,汽车有12个班次,飞机有2个航班,从天津到上海火车有10个车次,汽车有8个班次,飞机有8个航班,轮船有2个班次,(1)问:从北京到天津有多少种不同的到达方法(2)问:从北京经天津到上海有多少种不同的到达方法.附:部分练习题答案第5题答案第6题答案第7题答案第8题答案解答:4×2+3=11(种)【小结】分析题意,从甲地到丙地,先看是用加法原理还是乘法原理,判断好方法,然后简单计算就可以了。
从甲地到丙地共有两大类不同的走法,用加法原理。
第一类,由甲地途经乙地到丙地。
这时,要分两步走,第一步从甲地到乙地,有4种走法;第二步从乙地到丙地共2种走法,所以要用乘法原理,这时共有4×2种不同的走法。
第二类,由甲地直接到丙地,由条件知,有3种不同的走法。
由加法原理知,由甲地到丙地共有:4×2+3=11(种)不同的走法。
答:从甲地到丙地有11种不同的走法。
第9题答案第10题答案解答:6×4=24种6×2=12种4×2=8种24+12+8=44种【小结】首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理。
当从国画、油画各选一幅有多少种选法时,利用的乘法原理。
由此可知这是一道利用两个原理的综合题。
关键是正确把握原理。
符合要求的选法可分三类:设第一类为:国画、油画各一幅,可以想像成,第一步先在6张国画中选1张,第二步再在4张油画中选1张。
由乘法原理有6×4=24种选法。
第二类为:国画、水彩画各一幅,由乘法原理有6×2=12种选法。
第三类为:油画、水彩画各一幅,由乘法原理有4×2=8种选法。
这三类是各自独立发生互不相干进行的。
因此,依加法原理,选取两幅不同类型的画布置教室的选法有24+12+8=44种。
第11题答案解答:从1到100的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72 个数不含4.三位数只有100.所以一共有8+8×9+1=81 个不含4的自然数.第12题答案解答:根据3,有一种颜色出现在了4天,而同一种颜色不能出现在连着的2天中,那么这种颜色肯定是出现在周一、周三、周五、周日。
而星期一穿的是蓝黑组合,说明周三、周五、周日一定有蓝色或黑色。
而根据星期四有绿色,那么星期五就不能有绿色。
星期五又不能穿黄色,则周五只有红、蓝、黑三种选择,其中必须而且只能出现蓝色或黑色一种。
则有红蓝和红黑两种选择。
而又不能出现红黑的选择,所以周五穿的是红蓝。
由于周一是蓝黑,则周三是蓝绿或蓝黄。
由于周四有绿色,则周三只能是蓝黄。
则周日是蓝绿。
则周六是黄黑。
第13题答案第14题答案答案:N=m1+m2+m3=3+5+6=14.N=m1×m2×m3=90.N=3×5+3×6+5×6=63.第15题答案解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5种选法;第三步确定个位上的数字,仍有5种选法.根据乘法原理,得到可以组成的三位整数的个数是___ N=4×5×5=100.答:可以组成100个三位整数.第16题答案解:(1) =18240种;(2)既有正品又有次品分为:1件次品,2件正品;2件次品,1件正品两类,即:=18816手中.第19题答案解:(1)三堆书的本数各不相同:=60种(分组,没有顺序);(2)相当于(1)中三堆书再分给三个人:=360种;(3)三堆书的本数相同(平均分组的问题):=15种;(4)相当于(3)中三堆书再分给三个人:.第20题答案解: (1)首位特殊(首位不能为零):=600;(2)末位,首位特殊(从未位入手):=288;(3)可用(1)(2)的结论:600-288=312,也可分为末位是0,末位是2,4两类,末位是0:=120;末位是2,4: =192,共有120+192=312种;(4)1,3,5位特殊:=36种.第21题答案解:求满足条件的排列数需要从特殊条件的元素入手,先排好特殊元素,对于没有要求的元素进行全排列即可.(1)先排甲:(此时的中间指正中间);(2)先排甲,乙:=1440(相邻的问题采用"捆绑"的方法,把甲,乙二人排好后看作一人,再与其他五人,共六人全排列);(3)先排甲,乙:=3600(不相邻的问题采用插空的方法,没有要求的五个人排好后出现六个空,甲,乙二人站在其中的两个空中);(4)先排甲,乙,丙:=1440(道理同(3));(5)由于七个人站好以后,甲在乙的左边,与甲在乙的右边的情况是一样的,因此满足条件的不同排法为:=2520种;(6)由于甲站不站在右端对乙有影响,因此满足条件的站法被分为两类:甲站右端,甲不站右端,甲站右端:=720;甲不站右端:=3000,共有3720种不同的站法.也可:=3720(用七个人的全排列减去甲在左端,再减去乙在右端,再加上甲在左端且乙在右端).第22题答案解:首先要知道子集的定义,即:集合M中的每一个元素都在集合N中,则称集合M是集合N的子集.因此集合A的子集中的元素都是集合A的元素,需要考察集合A中的每一个元素是否在其子集中,而对于一个元素相对于集合来说只有在,不在两种情况,集合A中有四个元素,集合A的子集的个数为:2×2×2×2=16个.第23题答案解:由于满足条件的三位数的个位需要0,2,而个位是0,2对百位(首位)又有不同的影响(首位不能为零),因此把满足条件的三位数分为个位是0,个位是2两类:个位是0时有3×2=6个数;个位是2时有2×2=4个数,共有10个数.分类,分步计数原理同时应用时,一般采用先分类,后分步的原则.第24题答案解: (1)完成这件事:四位同学都有了一个项目,四位都报了名这件事才完.采用分步计数原理:3×3×3×3=81种不同的方法;(2)完成这件事:三项冠军都有了得主,而对于每一项冠军来说,每一位同学都有可能得到.采用分步计数原理:4×4×4=64种不同的方法.第25题答案解: (1)完成这件事:从北京到达了天津(可乘坐任何班次的火车,汽车,飞机)乘坐火车,汽车,飞机都能完成这件事,火车,汽车,飞机中的任何班次都能完成这件事,因此采用分类计数原理,共有三类办法,每一类分别有10,12,2种不同的办法,共有10+12+2=24种不同的办法.(2)完成这件事:从北京经天津到达上海(必须经天津)完成这件事分为两个步骤:第一步,从北京到天津,共有24种不同的办法;第二步从天津到上海,共有10+8+8+2=28(作法同(1))种不同的方法,完成这件事利用分步计数原理共有24×28=672种不同的方法.。