福建省安溪县第十四中学届九年级数学下学期第一次月考试题(精选资料)
初三下第一次月考测试题(全册)
初三下数学第一次月考测试题(全册)一、选择题(共8小题,每小题3分,满分24分)1.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是( )A .两个外离的圆B .两个外切的圆C .两个相交的圆D .两个内切的圆 2.下列判断正确的是( )A .“打开电视机,正在播NBA 篮球赛”是必然事件B .“掷一枚硬币正面朝上的概率是21”表示每抛掷硬币2次就必有1次反面朝上 C .一组数据2,3,4,5,5,6的众数和中位数都是5D .甲组数据的方差S 甲2=0.24,乙组数据的方差S 乙2=0.03,则乙组数据比甲组数据稳定 3.已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC =90°时,它是矩形 D .当AC =BD 时,它是正方形 4.已知x =1是方程x 2+bx -2=0的一个根,则方程的另一个根是( ) A .1 B .2 C .-2 D .-1 5.已知在Rt △AB C 中,∠C =90°,sin A =12,AC =23,那么BC 的值为( )A .2B .4C .43D .66.一个圆形人工湖如图所示,弦AB 是湖上的一座桥,已知AB 长 100cm,测得圆周角∠ACB =45°,则这个人工湖的直径AD 为( ) A .250 B .2100 C .2150 D .2200 7.如图,⊙M 与x 轴相切于原点,平行于y 轴的直线交圆于P 、 Q 两点,P 在Q 点的下方,若P 点的坐标是(2,1),则圆心 M 的坐标是( ) A .(0,3) B .(0,2) C .(0,25) D .(0,23) 8.二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +b 2-4ac 与反比例函数a b cy x++=在同一坐标系内的图象大致为( )二、填空题(本大题共8小题,每小题3分 共24分)9.若关于x 的方程x 2-mx +3=0有实数根,则m 的值可以为___________.(任意给出一(第8题)(第7题)(第1题)(第6题)AOBD C个符合条件的值即可)10.已知圆锥的母线长力30,侧面展开后所得扇形的圆心角为120°,则该圆锥的底面半径为 . 11.如图,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M 、N ,如果MN =3,那么BC =_________.12.已知x 、y 是非负实数,2x +5y -4=0,则5xy 的最大值为 . 13.如图,已知函数y =-3x与y = a x 2+bx (a >0,b >0)的图象交于点P ,点P 的纵坐标为1,则关于x 的方程ax 2+bx +3x=0的解为 .14.如图,AB 是伸缩式的遮阳棚,CD 是窗户,要想在夏至的正午时刻阳光刚好不能射入窗户,则AB 的长度是__ __米.(假设夏至正午时的阳光与地平面的夹角是60°) 15.如图,在平面直角坐标系中有一正方形AOBC ,反比例函数ky x=经过正方形AOBC 对角线的交点,半径为(422-)的圆内切于△ABC ,则k 的值为________. 16.抛物线y=ax 2+bx+c 上部分点的横坐标x ,纵坐标y 的对应值如下表: x … -2 -1 0 1 2 … y … 0 4 6 6 4 …从上表可知,下列说法中正确的是 .(填写序号)①抛物线与x 轴的一个交点为(3,0);②函数y=ax 2+bx +c 的最大值为6; ③抛物线的对称轴是x =21; ④在对称轴左侧,y 随x 增大而增大. 三、(本大题共3小题,每小题6分,共18分) 17.解方程:x 2+4x -1=018.已知a 是锐角,且sin(a +15°)=32,计算8-4cosα-(π-3.14)0+t a nα +113-⎛⎫ ⎪⎝⎭ 的值.(第11题) (第13题) (第14题) (第15题)19.作出你喜欢的一个圆内接正多边形(尺规作图,不写作法,保留作图痕迹.).设圆的半径为r,请直接写出该正多边形的边长(用含r代数式表示).边长:.四、(本大题共2小题,每小题8分,共16分)20.小明同学看到路边上有人设摊玩“有奖掷币”游戏,规则是:交2元钱可以玩一次掷硬币游戏,每次同时掷两枚硬币,如果出现两枚硬币正面朝上,奖金5元;如果是其它情况,则没有奖金(每枚硬币落地只有正面朝上和反面朝上两种情况).小明拿不定主意究竟是玩还是不玩,请同学们帮帮忙!(1)请利用树状图(或列表格)方法求出中奖的概率;(2)如果有100人,每人玩一次这种游戏,大约有人中奖,奖金共约是元,设摊者约获利元.21.图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形,当点O到BC(或DE)的距离大于或等于⊙O的半径时(⊙O是桶口所在圆,半径为OA),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A-B-C-D-E-F,C-D是CD,其余是线段),O是AF的中点,桶口直径AF=34cm,AB=FE=5cm,∠ABC =∠FED =149°.请通过计算判断这个水桶提手是否合格.(,tan73.6°≈3.40,sin75.4°≈0.97.)五、(本大题共2小题,每小题9分,共18分)22.张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y (元/吨)与采购量x (吨)之间函数关系的图象如图中的折线段ABC 所示(不包含端点A ,但包含端点C ).(1)求y 与x 之间的函数关系式;(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w 最大?最大利润是多少?yx4 0008 000 20 40ABC 图丙AB CDE FO 34B C AO图甲FE DCA O图乙DE23.如图1所示,在等腰三角形ABC 中,AB =AC ,O 为AB 上一动点,以O 为圆心、OB长为半径的圆交BC 于D ,DE ⊥AC 交AC 于E . (1)求证:DE 是O ⊙的切线; (2)若AB =AC =5,sinA =35,设OB =x ,试探究点O 在运动过程中,⊙O 与AC 的位置关系.六、(本大题共2小题,每小题10分,共20分) 24.已知抛物线y =12x 2-mx +2m -72. (1)试说明:无论m 为何实数,该抛物线与x 轴总有两个不同的交点;(2)如图,当抛物线的对称轴为直线x =3时,抛物线的顶点为点C .直线y =x -1与抛物线交于A 、B 两点,并与它的对称轴交于点D .①抛物线上是否存在点P 使得四边形ACPD 是正方形,若存在,求出P 点的坐标;若不存在,说明理由.②平移直线CD ,交直线AB 于点M ,交抛物线于点N ,通过怎样的平移能使得以C 、D 、M 、N 为顶点的四边形是平行四边形.备用图图1E OBCA 备用图25.问题背景△ABC 中,AB =AC =2,点D 为射线..CB 上的动点,以AD 为一边作∠ADE ,使点E 在射线..AC 上.设∠BAC =α°,CD =x ,CE =y . 问题探究如图甲所示,当α=90,∠ADE =45°时,解答问题(1)—(3). (1)找出与∠BAD 相等的角,并给出证明. (2)求y 关于x 的函数关系式.(3)当x 为何值时,△DCE 与△ABD 全等? 类比联想(4)如图乙所示,当∠ADE 为何值时存在一个恰当的x 值,使得△DCE 与△ABD 全等?请直接写出∠ADE 的度数(用含α的代数式表示)及α的取值范围.BCA 备用图BCA D E图甲BCADE 图乙参考答案:一、选择题(共8小题,每小题3分,满分24分)1.D ;2.D ;3.D ;4.C ;5.A ;6.B ;7.C ;8.D 二、填空题(本大题共8小题,每小题3分 共24分)9.答案不唯一,只要m 满足m 2≥12即可,如4等;10.10;11.6;12.2;13.–3;1415.4;16.①③④ 三、(本大题共3小题,每小题6分,共18分)17.12x =-22x =-18.解:∵sin60°α+15°=60°,∴α=45°,∴原式=-1+1+3=3.19.答案不唯一. 若画出圆内接正三角形,则边长.若画出圆内接正方形,则边长. 若画出圆内接正六边形,则边长=.r 四、(本大题共2小题,每小题8分,共16分) 20.解:(1)树状图(或表格) 略,14. (2)25, 125, 75. 21.解:解法一:连接OB ,过点O 作OG ⊥BC 于点G .在Rt △ABO 中,AB =5,AO =17,∴ tan ∠ABO =173.45AO AB ==, ∴∠ABO =73.6°, ∴∠GBO =∠ABC -∠ABO =149°-73.6°=75.4°.又 ∵17.72OB =,∴在Rt △OBG 中,sin 17.720.9717.1917OG OB OBG =⨯∠=⨯≈>. ∴水桶提手合格. 解法二:连接OB ,过点O 作OG ⊥BC 于点G .在Rt △ABO 中,AB =5,AO =17, ∴ tan ∠ABO =173.45AO AB ==, ∴∠ABO =73.6°. 要使OG ≥OA ,只需∠OBC ≥∠ABO ,∵∠OBC =∠ABC -∠ABO =149°-73.6°=75.4°>73.6°, ∴水桶提手合格.五、(本大题共2小题,每小题9分,共18分) 22.解:⑴当0<x≤20时,y =8000, 当20<x≤40时,设y =kx +b , 根据图象可得,⎩⎨⎧b k b k +=+=404000208000,解得,20012000k b =-⎧⎨=⎩ ∴y 与x 之间的函数关系式:()()⎩⎨⎧≤≤4020120002002008000x x y x y <+=﹣<= ⑵根据题意得,w =x (y -2800). 当0<x≤20时,w 最大=104000. 当20<x≤40时,w =x (-200 x +12000-2800)=-200(x -23)2+105800. 所以当x =23吨时,w 最大=105800(元)答:张经理的采购量为23吨时,老王在这次买卖中所获的利润w 最大,最大利润是105800元23.解:(1)证明:连接OD ∵AB=AC ,∴∠B=∠C . ∵OB=OD ,∴∠B=∠ODB . ∴∠C=∠ODB ,∴OD ∥A C . 又∵DE ⊥AC ,∴OD ⊥D E . ∴DE 是O ⊙的切线.(2)假设当⊙O 与AC 相切于点F 时,连接OF ,则OF ⊥AC .∵在Rt △AOF 中,sinA =35,∴35OF OA =,即35x OA =,OA=53x . ∵AB=5,OB=OF=x , ∴OA+OB=5,∴53x +x =5,解得x =158. ∴当x =158时,⊙O 与AC 相切;当0<x <158时,⊙O 与AC 相离;当158<x ≤5时,⊙O 与AC 相交.六、(本大题共2小题,每小题10分,共20分)图丙AB C DE FO 34 G 备用图F ECO24.解:(1)抛物线y=12x 2-mx+2m -72的△=217()4(2)22m m --⨯⨯-=(m -2)2+3. ∵无论m 为何实数,(m -2)2≥0, ∴(m -2)2+3>0,∴△>0∴无论m 为何实数,该抛物线与x 轴总有两个不同的交点. (2)①抛物线上存在点P 使得四边形ACPD 是正方形. ∵抛物线y=12x 2-mx+2m -72的对称轴为直线x=3,∴m=3. ∴抛物线的解析式为:215322y x x =-+,顶点C(3,-2) 设抛物线与x 轴交于A 、E 两点,∴A(1,0) E(5,0) 设对称轴x=3与x 轴交于点Q ,则Q(3,0) ∴AQ=EQ=2 ∵对称轴x=3与直线y=x -1交点于点D ∴D(3,2),∴DQ=2∵C(3,-2),∴CQ=2, ∴AQ=EQ= DQ= CQ=2 ∵AE ⊥CD ,∴四边形ACED 为正方形∴当点P 与点E 重合时,四边形ACPD 是正方形故抛物线上存在点P ,使得四边形ACPD 是正方形,P 的坐标为(5,0) ②∵以C 、D 、M 、N 为顶点的四边形是平行四边形,∴MN=CD=4, 设M(x ,x -1),则N(x ,x+3)或N(x ,x -5). ∵N 点在抛物线上,∴2153322x x x +=-+或2155322x x x -=-+ 解得:4x =±x=5或x=3.因当x=3时,M 、N 分别与D 、C 两点重合,故当CD 通过平移,使M(43+47,或M(4347或M(5,4) N(5,8)时,能使得以C 、D 、M 、N 为顶点的四边形是平行四边形.∴把直线CD 向右移动(1个单位或向左平移1)个单位,或向右平移2个单位后,以C 、D 、M 、N 为顶点的四边形是平行四边形.25.解:(1)(1)∠BAD =∠EDC ;证明如下:情况一:当D 在线段CB 上运动时,如图乙所示, ∵AB =AC =2,∠BAC=90°∴∠B =∠C =45°,∵∠BAD +∠B +∠ADB =180°,∴∠BAD +∠ADB =180°-∠B =135°. 又∵∠EDC +∠ADE +∠ADB =180°,∠ADE =45°, ∴∠EDC +∠ADB =180°-∠ADE =135°,即∠BAD +∠A DB =∠EDC +∠ADB ,∴∠BAD =∠EDC ;情况二:当D 在CB ∵AB =AC =2,∠BAC=90°∴∠A BC =∠A CB =45°,∴∠BAD+∠ADB=45°.又∵∠ADE=45°,∴∠ADB +∠EDC=45°. ∴∠BAD=∠EDC .(评分参考:只要正确答出其中一种情况,本小题即给满分.)(2)情况一:∵CD =x ,CE =y , x . ∵∠BAD =∠EDC ,又∵∠B =∠C =45°,∴△ABD ∽△DCE .∴BD ABCE CD =,即x y =y =12(x )x =-122x ,情况二:∵CD =x ,CE =y ,BC=2,∴ BD=x - ∵∠ABC=∠ACB=45°,∴∠ABD=∠DCE=135°.又∵∠BAD=∠EDC ,∴△ABD ∽△DCE .∴BD AB CE CD =2x= ,∴y =12(x -x =122x . (3)∵∠BAD =∠EDC ,∠B =∠C ,∴当BD =CE (或AB =DC )时,△ABD ≌△DCE . 即当x =2时,△ABD ≌△DCE . (4)当∠ADE =1802α-度且α≠60°时,存在一个恰当的x 值,使得△DCE 与△ABD 全等.。
九年级下学期第一次月考数学试卷(附参考答案与解析)
九年级下学期第一次月考数学试卷(附参考答案与解析)班级:___________姓名:___________考号:___________一.选择题(共6小题,每小题3分,共18分)1.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形2.下列哪个是一元二次方程x2﹣6x+8=0的解()A.﹣2或﹣4B.2C.2或4D.无解3.一个正方体切去拐角后得到形状如图的几何体,其俯视图是()A.B.C.D.4.如图,已知AB、CD分别表示两幢相距30米的大楼,小明在大楼底部点B处观察,当仰角增大到30度时,恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像,那么大楼AB 的高度为()A.B.20米C.30D.60米5.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④6.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5二.填空题(共6小题,每小题3分,共18分)7.如图是4×4的正方形网格,点C在∠BAD的一边AD上,且A、B、C为格点,sin∠BAD的值是.8.如图,在⊙O中,AB是⊙O的弦,AB=10,OC⊥AB,垂足为点D,则AD=.9.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A (3,0),则由图象可知,不等式ax2+bx+c<0的解集是.10.如图,一次函数y=mx与反比例函数y=的图象交于A、B两点,过点A作AM⊥x轴,垂=3,则k的值是.足为M,连接BM,若S△ABM11.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是.12.正方形ABCD与正方形OEFG中,点D和点F的坐标分别为(﹣3,2)和(1,﹣1),则这两个正方形的位似中心的坐标为.三.解答题13.如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段;(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.14.计算:(π﹣3.14)0×(﹣1)2010+(﹣)﹣2﹣|﹣2|+2cos30°15.有四张背面图案相同的卡片A、B、C、D,其正面分别画有四个不同的几何图形(如图).小敏将这四张卡片背面朝上洗匀摸出一张,放回洗匀再摸出一张.(1)用树状图(或列表法)表示两次摸出卡片所有可能的结果;(卡片可用A、B、C、D表示)(2)求摸出的两张卡片图形都是中心对称图形的概率.16.如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).(1)求反比例函数的解析式和点B的坐标;(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?17.某校组织学生排球垫球训练,训练前后,对每个学生进行考核.现随机抽取部分学生,统计了训练前后两次考核成绩,并按“A,B,C”三个等次绘制了如图不完整的统计图.试根据统计图信息,解答下列问题:(1)抽取的学生中,训练后“A”等次的人数是多少?并补全统计图.(2)若学校有600名学生,请估计该校训练后成绩为“A”等次的人数.18.某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A离地面距离1m.(1)该车大灯照亮地面的宽度BC约是多少(不考虑其它因素)?(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km/h的速度驾驶该车,从60km/h到摩托车停止的刹车距离是m,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:,,,)19.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?20.如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.21.我县绿色和特色农产品在国际市场上颇具竞争力.外贸商胡经理按市场价格10元/千克在我县收购了6000千克蘑菇存放入冷库中.请根据胡经理提供的预测信息(如图)帮胡经理解决以下问题:(1)若胡经理想将这批蘑菇存放x天后一次性出售,则x天后这批蘑菇的销售单价为元,这批蘑菇的销售量是千克;(2)胡经理将这批蘑菇存放多少天后,一次性出售所得的销售总金额为100000元;(销售总金额=销售单价×销售量).(3)将这批蘑菇存放多少天后一次性出售可获得最大利润?最大利润是多少?22.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.23.如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.(1)求抛物线的解析式.(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC 边以2cm/s的速度向终点C移动.①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.参考答案与解析一.选择题(共6小题,每小题3分,共18分)1.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形【考点】命题与定理.【分析】利用特殊四边形的判定定理对个选项逐一判断后即可得到正确的选项.【解答】解:A、一组邻边相等的平行四边形是菱形,故选项错误;B、正确;C、对角线垂直的平行四边形是菱形,故选项错误;D、两组对边平行的四边形才是平行四边形,故选项错误.故选:B.2.下列哪个是一元二次方程x2﹣6x+8=0的解()A.﹣2或﹣4B.2C.2或4D.无解【考点】一元二次方程的解.【分析】利用因式分解法求出方程的解,即可作出判断.【解答】解:方程分解得:(x﹣2)(x﹣4)=0可得x﹣2=0或x﹣4=0解得:x=2或x=4故选C3.一个正方体切去拐角后得到形状如图的几何体,其俯视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据俯视图是从上面看到的图形判定则可.【解答】解:从上面看,是正方形右下角有阴影,故选C.4.如图,已知AB、CD分别表示两幢相距30米的大楼,小明在大楼底部点B处观察,当仰角增大到30度时,恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像,那么大楼AB 的高度为()A.B.20米C.30D.60米【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据仰角为30°,BD=30米,在Rt△BDE中,可求得ED的长度,根据题意恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像,可得AB=2ED.【解答】解:在Rt△BDE中∵∠EBD=30°,BD=30米∴=tan30°解得:ED=10(米)∵当仰角增大到30度时,恰好能通过大楼CD的玻璃幕墙看到大楼AB的顶部点A的像∴AB=2DE=20(米).故选:B.5.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=﹣1时,x=2时二次函数的值的情况进行推理,进而对所得结论进行判断.【解答】解:由二次函数的图象开口向上可得a>0,根据二次函数的图象与y轴交于正半轴知:c>0,由对称轴直线x=2,可得出b与a异号,即b<0,则abc<0,故①正确;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c,由函数图象可以看出当x=﹣1时,二次函数的值为正,即a﹣b+c>0,则b<a+c,故②选项正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,由函数图象可以看出当x=2时,二次函数的值为负,即4a+2b+c<0,故③选项错误;由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,故④D选项正确;故选:B.6.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5【考点】垂径定理;勾股定理.【分析】由垂线段最短可知当OM⊥AB时最短,当OM是半径时最长.根据垂径定理求最短长度.【解答】解:由垂线段最短可知当OM⊥AB时最短,即OM===3;当OM是半径时最长,OM=5.所以OM长的取值范围是3≤OM≤5.故选A.二.填空题(共6小题,每小题3分,共18分)7.如图是4×4的正方形网格,点C在∠BAD的一边AD上,且A、B、C为格点,sin∠BAD的值是.【考点】锐角三角函数的定义;勾股定理;勾股定理的逆定理.【分析】连接BC,根据勾股定理,可求得AB,BC,AC,再根据勾股定理的逆定理,可得△ABC 为直角三角形,即可求得sin∠BAD的值.【解答】解:连接BC根据勾股定理,可求得AB=,BC=,AC=根据勾股定理的逆定理,可得∠ABC=90°∴sin∠BAD===.故答案为:.8.如图,在⊙O中,AB是⊙O的弦,AB=10,OC⊥AB,垂足为点D,则AD=5.【考点】垂径定理;勾股定理.【分析】根据垂径定理得出AD=BD,即可求出答案.【解答】解:∵OC⊥AB,垂足为点D,OC过0∴AD=BD∵AB=10∴AD=5故答案为:5.9.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A (3,0),则由图象可知,不等式ax2+bx+c<0的解集是﹣1<x<3.【考点】二次函数与不等式(组).【分析】利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出ax2+bx+c<0的解集.【解答】解:由图象得:对称轴是x=1,其中一个点的坐标为(3,0)∴图象与x轴的另一个交点坐标为(﹣1,0)利用图象可知:ax2+bx+c<0的解集即是y<0的解集∴﹣1<x<3故填:﹣1<x<310.如图,一次函数y=mx与反比例函数y=的图象交于A、B两点,过点A作AM⊥x轴,垂=3,则k的值是3.足为M,连接BM,若S△ABM【考点】反比例函数系数k的几何意义;反比例函数图象的对称性.【分析】由反比例函数图象的对称性和反比例函数系数k的几何意义可得:△ABM的面积为=2S△AOM=|k|.△AOM面积的2倍,S△ABM=2S△AOM=3,S△AOM=|k|=,则k=3.【解答】解:由题意得:S△ABM故答案为:3.11.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是.【考点】列表法与树状图法.【分析】列举出所有情况,看两张图案一样的情况数占总情况数的多少即可.【解答】解:设粽子用A表示,龙舟用B表示.共有12种情况,两张图案一样的有4种所以所求的概率为.故答案为.12.正方形ABCD与正方形OEFG中,点D和点F的坐标分别为(﹣3,2)和(1,﹣1),则这两个正方形的位似中心的坐标为(﹣1,0)或(5,﹣2).【考点】位似变换;坐标与图形性质.【分析】由图形可得两个位似图形的位似中心必在x轴上,连接AF、DG,其交点即为位似中心,进而再由位似比即可求解位似中心的坐标.【解答】解:当位似中心在两正方形之间连接AF、DG,交于H,如图所示,则点H为其位似中心,且H在x轴上∵点D的纵坐标为2,点F的纵坐标为1∴其位似比为2:1∴CH=2HO,即OH=OC又C(﹣3,0),∴OC=3∴OH=1所以其位似中心的坐标为(﹣1,0);当位似中心在正方形OEFG的右侧时,如图所示,连接DE并延长,连接CF并延长两延长线交于M,过M作MN⊥x轴∵点D的纵坐标为2,点F的纵坐标为1∴其位似比为2:1∴EF=DC,即EF为△MDC的中位线∴ME=DE,又∠DEC=∠MEN,∠DCE=∠MNE=90°∴△DCE≌△MNE∴CE=EN=OC+OE=3+1=4,即ON=5,MN=DC=2则M坐标为(5,﹣2)综上,位似中心为:(﹣1,0)或(5,﹣2).故答案为:(﹣1,0)或(5,﹣2).三.解答题13.如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段;(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.【考点】中心投影.【分析】根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源.所以分别把AB和DE的顶端和影子的顶端连接并延长可交于一点,即点光源的位置,再由点光源出发连接MN顶部N的直线与地面相交即可找到MN影子的顶端.线段GM是大树的高.若小明的眼睛近似地看成是点D,则看不到大树,GM处于视点的盲区.【解答】解:(1)点P是灯泡的位置;(2)线段MG是大树的高.(3)视点D看不到大树,GM处于视点的盲区.14.计算:(π﹣3.14)0×(﹣1)2010+(﹣)﹣2﹣|﹣2|+2cos30°【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【分析】本题涉及零指数幂、负指数幂、绝对值的化简、特殊角的锐角三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1×1+9﹣2+=8+2.15.有四张背面图案相同的卡片A、B、C、D,其正面分别画有四个不同的几何图形(如图).小敏将这四张卡片背面朝上洗匀摸出一张,放回洗匀再摸出一张.(1)用树状图(或列表法)表示两次摸出卡片所有可能的结果;(卡片可用A、B、C、D表示)(2)求摸出的两张卡片图形都是中心对称图形的概率.【考点】列表法与树状图法;中心对称图形.【分析】(1)列举出所有情况即可;(2)中心对称图形是绕某点旋转180°后能够和原来的图形完全重合,那么B,D是中心对称图形,看所求的情况占总情况的多少即可.【解答】解:(1)树状图:或列表法A B C DA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D);(2)由图可知:只有卡片B、D才是中心对称图形.所有可能的结果有16种,其中满足摸出的两张卡片图形都是中心对称图形(记为事件A)有4种,即:(B,B)(B,D)(D,B)(D,D).∴P(A)=.16.如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).(1)求反比例函数的解析式和点B的坐标;(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?【考点】反比例函数与一次函数的交点问题.【分析】(1)设反比例函数解析式为y=,把点A的坐标代入解析式,利用待定系数法求反比例函数解析式即可,把点B的坐标代入反比例函数解析式进行计算求出a的值,从而得到点B的坐标;(2)写出一次函数图象在反比例函数图象上方的x的取值范围即可.【解答】解:(1)设反比例函数的解析式为y=(k≠0)∵反比例函数图象经过点A(﹣4,﹣2)∴﹣2=∴k=8∴反比例函数的解析式为y=∵B(a,4)在y=的图象上∴4=∴a=2∴点B的坐标为B(2,4);(2)根据图象得,当x>2或﹣4<x<0时,一次函数的值大于反比例函数的值.17.某校组织学生排球垫球训练,训练前后,对每个学生进行考核.现随机抽取部分学生,统计了训练前后两次考核成绩,并按“A,B,C”三个等次绘制了如图不完整的统计图.试根据统计图信息,解答下列问题:(1)抽取的学生中,训练后“A”等次的人数是多少?并补全统计图.(2)若学校有600名学生,请估计该校训练后成绩为“A”等次的人数.【考点】条形统计图.【分析】(1)将训练前各等级人数相加得总人数,将总人数减去训练后B、C两个等级人数可得训练后A等级人数;(2)将训练后A等级人数占总人数比例乘以总人数可得.【解答】解:(1)∵抽取的人数为21+7+2=30∴训练后“A”等次的人数为30﹣2﹣8=20.补全统计图如图:(2)600×=400(人).答:估计该校九年级训练后成绩为“A”等次的人数是400.18.某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A离地面距离1m.(1)该车大灯照亮地面的宽度BC约是多少(不考虑其它因素)?(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km/h的速度驾驶该车,从60km/h到摩托车停止的刹车距离是m,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.(参考数据:,,,)【考点】解直角三角形的应用﹣坡度坡角问题.【分析】(1)本题可通过构造直角三角形来解答,过A作AD⊥MN于D,就有了∠ABN、∠ACN 的度数,又已知了AE的长,可在直角三角形ABE、ACE中分别求出BE、CE的长,BC就能求出了.(2)本题可先计算出最小安全距离是多少,然后于大灯的照明范围进行比较,然后得出是否合格的结论.【解答】解:(1)过A作AD⊥MN于点D在Rt△ACD中,tan∠ACD==,CD=5.6(m)在Rt△ABD中,tan∠ABD==,BD=7(m)∴BC=7﹣5.6=1.4(m).答:该车大灯照亮地面的宽度BC是1.4m;(2)该车大灯的设计不能满足最小安全距离的要求.理由如下:∵以60 km/h的速度驾驶∴速度还可以化为:m/s最小安全距离为:×0.2+=8(m)大灯能照到的最远距离是BD=7m∴该车大灯的设计不能满足最小安全距离的要求.19.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?【考点】相似三角形的判定与性质;待定系数法求一次函数解析式;解直角三角形.【分析】(1)设直线AB的解析式为y=kx+b,解得k,b即可;(2)由AO=6,BO=8得AB=10,①当∠APQ=∠AOB时,△APQ∽△AOB利用其对应边成比例解t.②当∠AQP=∠AOB时,△AQP∽△AOB利用其对应边成比例解得t.(3)过点Q作QE垂直AO于点E.在Rt△AEQ中,QE=AQ•sin∠BAO=(10﹣2t)•=8﹣t,再利用三角形面积解得t即可.【解答】解:(1)设直线AB的解析式为y=kx+b由题意,得解得所以,直线AB的解析式为y=﹣x+6;(2)由AO=6,BO=8得AB=10所以AP=t,AQ=10﹣2t①当∠APQ=∠AOB时,△APQ∽△AOB.所以=解得t=(秒)②当∠AQP=∠AOB时,△AQP∽△AOB.所以=解得t=(秒);∴当t为秒或秒时,△APQ与△AOB相似;(3)过点Q作QE垂直AO于点E.在Rt△AOB中,sin∠BAO==在Rt△AEQ中,QE=AQ•sin∠BAO=(10﹣2t)•=8﹣tS△APQ=AP•QE=t•(8﹣t)=﹣t2+4t=解得t=2(秒)或t=3(秒).∴当t为2秒或3秒时,△APQ的面积为个平方单位20.如图,AB是⊙O的直径,BC⊥AB于点B,连接OC交⊙O于点E,弦AD∥OC.(1)求证:;(2)求证:CD是⊙O的切线.【考点】切线的判定;圆心角、弧、弦的关系;圆周角定理.【分析】(1)连接OD,由平行可得∠DAO=∠COB,∠ADO=∠DOC;再由OA=OD,可得出,∠DAO=∠ADO,则∠COB=∠COD,从而证出=;(2)由(1)得,△COD≌△COB,则∠CDO=∠B.又BC⊥AB,则∠CDO=∠B=90°,从而得出CD是⊙O的切线.【解答】证明:(1)连接OD.∵AD∥OC∴∠DAO=∠COB,∠ADO=∠DOC又∵OA=OD∴∠DAO=∠ADO∴∠COB=∠COD∴=;(2)由(1)知∠DOE=∠BOE在△COD和△COB中CO=CO∠DOC=∠BOCOD=OB∴△COD≌△COB∴∠CDO=∠B.又∵BC⊥AB∴∠CDO=∠B=90°,即OD⊥CD.即CD是⊙O的切线.21.我县绿色和特色农产品在国际市场上颇具竞争力.外贸商胡经理按市场价格10元/千克在我县收购了6000千克蘑菇存放入冷库中.请根据胡经理提供的预测信息(如图)帮胡经理解决以下问题:(1)若胡经理想将这批蘑菇存放x天后一次性出售,则x天后这批蘑菇的销售单价为(10+0.1x)元,这批蘑菇的销售量是千克;(2)胡经理将这批蘑菇存放多少天后,一次性出售所得的销售总金额为100000元;(销售总金额=销售单价×销售量).(3)将这批蘑菇存放多少天后一次性出售可获得最大利润?最大利润是多少?【考点】二次函数的应用.【分析】(1)根据等量关系蘑菇的市场价格每天每千克上涨0.1元则可求出则x天后这批蘑菇的销售单价,再根据平均每天有10千克的蘑菇损坏则可求出这批蘑菇的销售量;(2)按照等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出方程求解即可;(3)根据等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出函数关系式并求最大值.【解答】解:(1)因为蘑菇的市场价格每天每千克上涨0.1元,所以x天后这批蘑菇的销售单价为(10+0.1x)元;因为均每天有10千克的蘑菇损坏,所以x天后这批蘑菇的销售量是千克;故答案为:(10+0.1x),.(2)由题意得:(10+0.1x)=100000整理得:x2﹣500x+40000=0解方程得:x1=100,x2=400(不合题意,舍去)所以胡经理将这批蘑菇存放100天后,一次性出售所得的销售总金额为100000元;((3)设利润为w,由题意得w=(10+0.1x)﹣240x﹣6000×10=﹣x2+260x=﹣(x﹣130)2+16900∵a=﹣1<0∴抛物线开口方向向下∴x=110时,w最大=16500∴存放110天后出售这批香菇可获得最大利润16500元.22.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是相等;结论2:DM、MN的位置关系是垂直;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【考点】正方形的性质;全等三角形的判定与性质;三角形中位线定理;旋转的性质.【分析】(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE ≌△ADF,得到AE=AF,证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,位置关系式垂直;(3)连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,再有(1)的结论以及角角之间的数量关系得到∠DMN=∠DGE=90°.【解答】(1)证明:∵四边形ABCD是正方形∴AB=AD=BC=CD,∠B=∠ADF=90°∵△CEF是等腰直角三角形,∠C=90°∴CE=CF∴BC﹣CE=CD﹣CF即BE=DF∴△ABE≌△ADF∴AE=AF∴△AEF是等腰三角形;(2)解:相等,垂直;证明:∵在Rt△ADF中DM是斜边AF的中线∴AF=2DM∵MN是△AEF的中位线∴AE=2MN∵AE=AF∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD∵∠FMN=∠FAE,∠DAF=∠BAE∴∠ADM=∠DAF=∠BAE∴∠DMN=∠BAD=90°∴DM⊥MN;(3)(2)中的两个结论还成立证明:连接AE,交MD于点G∵点M为AF的中点,点N为EF的中点∴MN∥AE,MN=AE由(1)同理可证AB=AD=BC=CD,∠B=∠ADF,CE=CF又∵BC+CE=CD+CF,即BE=DF∴△ABE≌△ADF∴AE=AF在Rt△ADF中∵点M为AF的中点∴DM=AF∴DM=MN∵△ABE≌△ADF∴∠1=∠2∵AB∥DF∴∠1=∠3同理可证:∠2=∠4∴∠3=∠4∵DM=AM∴∠MAD=∠5∴∠DGE=∠5+∠4=∠MAD+∠3=90°∵MN∥AE∴∠DMN=∠DGE=90°∴DM⊥MN.23.如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.(1)求抛物线的解析式.(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC 边以2cm/s的速度向终点C移动.①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点A代入解析式求出c和a,最后根据抛物线的对称轴求出b,即可求出最后结果.(2)①本题需根据题意列出S与t的关系式,再整理即可求出结果.②本题需分三种情况:以PB为对角线,当点R在BQ的左边,且在PB下方时;以PQ为对角线,当点R在BQ的左边,且在PB上方时;以BQ为对角线,当点R在BQ的右边,且在PB 上方时,然后分别代入抛物线的解析式中,即可求出结果.【解答】解:(1)∵抛物线的解析式为y=ax2+bx+c由题意知点A(0,﹣12)∴c=﹣12又∵18a+c=0∵AB∥OC,且AB=6cm∴抛物线的对称轴是∴b=﹣4所以抛物线的解析式为;(2)①,(0<t<6)②当t=3时,S取最大值为9(cm2)这时点P的坐标(3,﹣12)点Q坐标(6,﹣6)若以P、B、Q、R为顶点的四边形是平行四边形,有如下三种情况:(Ⅰ)以PB为对角线,当点R在BQ的左边,且在PB下方时,点R的坐标(3,﹣18),将(3,﹣18)代入抛物线的解析式中,满足解析式,所以存在,点R的坐标就是(3,﹣18)(Ⅰ)以PQ为对角线,当点R在BQ的左边,且在PB上方时,点R的坐标(3,﹣6),将(3,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.(Ⅰ)以BQ为对角线,当点R在BQ的右边,且在PB上方时,点R的坐标(9,﹣6),将(9,﹣6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件.综上所述,点R坐标为(3,﹣18).。
福建初三初中数学月考试卷带答案解析
福建初三初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.下列各数中,最小的数是().A.B.0C.-1D.-32.下列运算正确的是().A.B.C.D.3.不等式5+2x<1的解集在数轴上表示正确的是().4.如果反比例函数的图像经过点(-3,-4),那么函数的图像应在().A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限5.计算-22+(-2)2-(-)-1的正确结果是()A.2B.-2C.6D.106.下列运算正确的是:()A.÷B.-C.D.--7.如图,要围一个面积为20的矩形,若矩形的两邻边分别为、,则与的函数图象大致是().8.某校组织若干师生到恩施大峡谷进行社会实践活动.若学校租用45座的客车辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是:A.200-60B.140-15C.200-15D.140-609.小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:时刻12:0013:0014:30碑上的数是一个两位数,数字之和为6十位与个位数字与12:00时所看到的正好颠倒了比12:00时看到的两位数中间多了个0则12:00时看到的两位数是:A、24B、 42C、51D、1510.在同一坐标系中一次函数和二次函数的图象可能为()二、填空题1.-的倒数是________.2.化简:=______.3.分解因式:=________.4.抛物线向右平移2个单位,再向下平移1个单位后的解析式为.5.函数,当x=3时,y=_______.6.某品牌的商品按标价打九折出售仍可获得20%的利润,若该商品标价为28元,则进价为元。
7.要使式子有意义,则a的取值范围为_____________________.8.若关于的一元二次方程有两个不相等的实数根,则的取值范围是。
九年级下学期第一次月考考试数学试卷+参考答案
九年级下学期第一次月考考试数学试卷一、填空题(本大题共12小题,每小题2分,共24分)1.的相反数是.2.计算:(﹣2)×=.3.若式子在实数范围内有意义,则x的取值范围是.4.化简:(x+1)2﹣2x=.5.若x3=8,则x=.6.如图,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=80°,则∠B=°.7.有一组数据:2,3,5,5,x,它们的平均数是10,则这组数据的众数是.8.写一个你喜欢的实数m的值,使关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根.9.已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a﹣b﹣2的值等于.10.如图,AB是半圆O的直径,点P在AB的延长线上,PC切半圆O于点C,连接AC.若∠CPA=20°,则∠A=°.11.如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且AC=6,连结BC,点D为BC的中点.已知点E在直线AC上,△CDE与△ACB相似,则线段AE的长为.12.在△ABC中,AB=AC=5,BC=6,BD平分∠ABC.将△ABD沿BD折叠,点A落在A′处,则△DA′C的面积是.二、选择题(本题共5小题,每小题3分)13.下列运算正确的是()A.x﹣2x=x B.(xy2)0=xy2C.D.14.二次函数y=x2﹣4x+5的最小值是()A.﹣1 B.1 C.3 D.515.用半径为6的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A.3 B.C.2 D.16.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>417.如图,A、B、C是反比例函数y=(x<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条B.3条C.2条D.1条三、解答题(本题共11小题,共81分,解答时应写出必要的文字说明、证明过程或演算步骤)18.(1)计算:()﹣1+cos45°﹣(2)化简:(﹣)÷.19.(1)解方程:(2)解不等式组:.20.如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.(1)求证:∠1=∠2;(2)连结BE、DE,判断四边形BCDE的形状,并说明理由.21.一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)22.某市对一大型超市销售的甲、乙、丙3种大米进行质量检测.共抽查大米200袋,质量评定分为A、B两个等级(A级优于B级),相应数据的统计图如下:根据所给信息,解决下列问题:(1)a=,b=;(2)已知该超市现有乙种大米750袋,根据检测结果,请你估计该超市乙种大米中有多少袋B级大米?(3)对于该超市的甲种和丙种大米,你会选择购买哪一种?运用统计知识简述理由.23.如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C 的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)24.星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气,注完气之后,一位工作人员以每车20米3的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y(米3)与时间x(小时)的函数关系如图所示.(1)8:00~8:30,燃气公司向储气罐注入了米3的天然气;(2)当x≥8.5时,求储气罐中的储气量y(米3)与时间x(小时)的函数关系式;(3)正在排队等候的20辆车加完气后,储气罐内还有天然气米3,这第20辆车在当天9:00之前能加完气吗?请说明理由.25.如图,⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:EA是⊙O的切线;(2)已知点B是EF的中点,求证:以A、B、C为顶点的三角形与△AEF相似;(3)已知AF=4,CF=2.在(2)条件下,求AE的长.26.“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存…y x x(1)m=,解释m的实际意义:;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.27.通过对苏科版八(下)教材一道习题的探索研究,我们知道:一次函数y=x﹣1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到类似的,函数的图象是由反比例函数的图象向左平移2个单位长度得到.灵活运用这一知识解决问题.如图,已知反比例函数的图象C与正比例函数y=ax(a≠0)的图象l相交于点A(2,2)和点B.(1)写出点B的坐标,并求a的值;(2)将函数的图象和直线AB同时向右平移n(n>0)个单位长度,得到的图象分别记为C′和l′,已知图象C′经过点M(2,4).①求n的值;②分别写出平移后的两个图象C′和l′对应的函数关系式;③直接写出不等式的解集.28.我们知道平行四边形那有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论【发现与证明】在▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连接B′D.结论1:B′D∥AC;结论2:△AB′C与▱ABCD重叠部分的图形是等腰三角形.…请利用图1证明结论1或结论2.【应用与探究】在▱ABCD中,∠B=30°,将△ABC沿AC翻折至△AB′C,连接B′D.(1)如图1,若AB=,∠AB′D=75°,则∠ACB=,BC=;(2)如图2,AB=2,BC=1,AB′与CD相交于点E,求△AEC的面积;(3)已知AB=2,当BC的长为多少时,△AB′D是直角三角形?九年级(下)第一次月考数学试卷参考答案与试题解析一、填空题(本大题共12小题,每小题2分,共24分)1.的相反数是﹣.【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:+(﹣)=0,故的相反数是﹣,故答案为﹣.2.计算:(﹣2)×=﹣1.【考点】有理数的乘法.【分析】根据有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,即可得出答案.【解答】解:(﹣2)×=﹣1;故答案为:﹣1.3.若式子在实数范围内有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.4.化简:(x+1)2﹣2x=x2+1.【考点】整式的混合运算.【分析】原式第一项利用完全平方公式展开,去括号合并即可得到结果.【解答】解:原式=x2+2x+1﹣2x=x2+1.故答案为:x2+15.若x3=8,则x=2.【考点】立方根.【分析】根据立方根的定义求解即可.【解答】解:∵2的立方等于8,∴8的立方根等于2.故答案:2.6.如图,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=80°,则∠B=50°.【考点】平行线的性质.【分析】由∠BAC=80°,可得出∠EAC的度数,由AD平分∠EAC,可得出∠EAD的度数,再由AD∥BC,可得出∠B的度数.【解答】解:∵∠BAC=80°,∴∠EAC=100°,∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC=50°,∵AD∥BC,∴∠B=∠EAD=50°.故答案为:50.7.有一组数据:2,3,5,5,x,它们的平均数是10,则这组数据的众数是5.【考点】众数;算术平均数.【分析】根据平均数为10求出x的值,再由众数的定义可得出答案.【解答】解:由题意得,(2+3+5+5+x)=10,解得:x=35,这组数据中5出现的次数最多,则这组数据的众数为5.故答案为:5.8.写一个你喜欢的实数m的值0,使关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根.【考点】根的判别式.【分析】由一元二次方程有两个不相等的实数根,得到根的判别式大于0,列出关于m的不等式,求出不等式的解集得到m的范围,即可求出m的值.【解答】解:根据题意得:△=1﹣4m>0,解得:m<,则m可以为0,答案不唯一.故答案为:09.已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a﹣b﹣2的值等于﹣5.【考点】一次函数图象上点的坐标特征.【分析】把点P的坐标代入一次函数解析式可以求得a、b间的数量关系,所以易求代数式4a﹣b﹣2的值.【解答】解:∵点P(a,b)在一次函数y=4x+3的图象上,∴b=4a+3,∴4a﹣b﹣2=4a﹣(4a+3)﹣2=﹣5,即代数式4a﹣b﹣2的值等于﹣5.故答案是:﹣5.10.如图,AB是半圆O的直径,点P在AB的延长线上,PC切半圆O于点C,连接AC.若∠CPA=20°,则∠A=35°.【考点】切线的性质;圆周角定理.【分析】连接OC,由PC为圆O的切线,利用切线的性质得到OC与CP垂直,在直角三角形OPC中,利用两锐角互余根据∠CPA的度数求出∠COP的度数,再由OA=OC,利用等边对等角得到∠A=∠OCA,利用外角的性质即可求出∠A的度数.【解答】解:连接OC,∵PC切半圆O于点C,∴PC⊥OC,即∠PCO=90°,∵∠CPA=20°,∴∠POC=70°,∵OA=OC,∴∠A=∠OCA=35°.故答案为:3511.如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且AC=6,连结BC,点D为BC的中点.已知点E在直线AC上,△CDE与△ACB相似,则线段AE的长为3或或9或.【考点】相似三角形的判定与性质;勾股定理;圆周角定理.【分析】根据E点在直线AC上,得出对应点不同求出的EC长度不同,分别得出即可.【解答】解:∵AB 是半圆O 的直径,∴∠ACB=90°,∵AB=10,AC=6,∴BC==8,∵点D 为BC 的中点,∴CD=4,当DE ∥AB 时,△CED ∽△CAB ,∴=,∴=,解得:EC=3,∴AE=6﹣EC=3,当=,且∠ACB=∠DCE ′时,△CE ′D ∽△CBA ,则=,解得:CE ′=,∴AE ′=6﹣=;当=,且∠ACB=∠DCE 1时,△CE 1D ∽△CBA ,则=,解得:CE 1=,∴AE 1=6+=;当=,且∠ACB=∠DCE ″时,△CE ″D ∽△CBA ,则=,解得:CE ″=3,∴AE ″=6+3=9;综上所述:点E 在直线AC 上,△CDE 与△ACB 相似,则线段AE 的长为3或或9或.故答案为:3或或9或.12.在△ABC中,AB=AC=5,BC=6,BD平分∠ABC.将△ABD沿BD折叠,点A落在A′处,则△DA′C的面积是.【考点】翻折变换(折叠问题).【分析】如图,作辅助线;首先运用勾股定理求出AE的长度,进而求出△ABC的面积;求出△DBA′、△CDA′的面积之比;证明△ABD、△A′BD的面积相等,即可解决问题.【解答】解:如图,过点A作AE⊥BC于点E;∵AB=AC,∴BE=CE=3;由勾股定理得:AB2=AE2+BE2,而AB=5,∴AE=4,S△ABC=×6×4=12;由题意得:S△ABD=S,A′B=AB=5,∴CA′=6﹣5=1,∴==,∴若设S=x,则S△ABD=S=5x,故x+5x+5x=12,∴x=,故答案为.二、选择题(本题共5小题,每小题3分)13.下列运算正确的是()A.x﹣2x=x B.(xy2)0=xy2C.D.【考点】二次根式的乘除法;合并同类项;零指数幂.【分析】根据零指数幂,合并同类项,二次根式的乘法,二次根式的性质求出每个式子的值,再判断即可.【解答】解:A、x﹣2x=﹣x,故本选项错误;B、(xy2)0在xy2≠0的情况下等于1,不等于xy2,故本选项错误;C、(﹣)2=2,故本选项错误;D、×=,故本选项正确;故选:D.14.二次函数y=x2﹣4x+5的最小值是()A.﹣1 B.1 C.3 D.5【考点】二次函数的最值.【分析】先利用配方法将二次函数的一般式y=x2﹣4x+5变形为顶点式,再根据二次函数的性质即可求出其最小值.【解答】解:配方得:y=x2﹣4x+5=x2﹣4x+22+1=(x﹣2)2+1,当x=2时,二次函数y=x2﹣4x+5取得最小值为1.故选B.15.用半径为6的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A.3 B.C.2 D.【考点】圆锥的计算.【分析】用到的等量关系为:圆锥的弧长=底面周长.【解答】解:设底面半径为R,则底面周长=2Rπ,半圆的弧长=×2π×6=2πR,∴R=3.故选A.16.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>4【考点】解一元一次不等式;一元一次方程的解.【分析】把m看作常数,根据一元一次方程的解法求出x的表达式,再根据方程的解是负数列不等式并求解即可.【解答】解:由2x+4=m﹣x得,x=,∵方程有负数解,∴<0,解得m<4.故选C.17.如图,A、B、C是反比例函数y=(x<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条B.3条C.2条D.1条【考点】反比例函数的性质.【分析】如解答图所示,满足条件的直线有两种可能:一种是与直线BC平行,符合条件的有两条,如图中的直线a、b;还有一种是过线段BC的中点,符合条件的有两条,如图中的直线c、d.【解答】解:如解答图所示,满足条件的直线有4条,故选A.三、解答题(本题共11小题,共81分,解答时应写出必要的文字说明、证明过程或演算步骤)18.(1)计算:()﹣1+cos45°﹣(2)化简:(﹣)÷.【考点】实数的运算;分式的混合运算;负整数指数幂;特殊角的三角函数值.【分析】(1)原式第一项利用负整数指数幂法则计算,第二项利用特殊角的三角函数值计算,最后一项利用立方根定义计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=2+×﹣3=2+1﹣3=0;(2)原式=•=.19.(1)解方程:(2)解不等式组:.【考点】解分式方程;解一元一次不等式组.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可确定出解集.【解答】解:(1)去分母得:2x﹣1+x+2=0,解得:x=﹣,经检验,x=﹣是分式方程的解;(2),由①得:x≥1,由②得:x>3,则不等式组的解集为x>3.20.如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.(1)求证:∠1=∠2;(2)连结BE、DE,判断四边形BCDE的形状,并说明理由.【考点】菱形的判定;线段垂直平分线的性质.【分析】(1)证明△ADC≌△ABC后利用全等三角形的对应角相等证得结论;(2)首先判定四边形BCDE是平行四边形,然后利用对角线垂直的平行四边形是菱形判定菱形即可.【解答】(1)证明:∵在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠1=∠2;(2)四边形BCDE是菱形;证明:∵∠1=∠2,CD=BC,∴AC垂直平分BD,∵OE=OC,∴四边形DEBC是平行四边形,∵AC⊥BD,∴四边形DEBC是菱形.21.一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)【考点】列表法与树状图法.【分析】先画树形图:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;即可知道棋子走到哪一点的可能性最大,根据概率的概念也可求出棋子走到该点的概率.【解答】解:画树形图:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;所以棋子走E点的可能性最大,棋子走到E点的概率==.22.某市对一大型超市销售的甲、乙、丙3种大米进行质量检测.共抽查大米200袋,质量评定分为A、B两个等级(A级优于B级),相应数据的统计图如下:根据所给信息,解决下列问题:(1)a=55,b=5;(2)已知该超市现有乙种大米750袋,根据检测结果,请你估计该超市乙种大米中有多少袋B级大米?(3)对于该超市的甲种和丙种大米,你会选择购买哪一种?运用统计知识简述理由.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据甲的圆心角度数是108°,求出所占的百分比,再根据总袋数求出甲种大米的袋数,即可求出a、b的值;(2)根据题意得先求出该超市乙种大米中B级大米所占的百分比,再乘以乙种大米的总袋数即可;(3)分别求出超市的甲种大米A等级大米所占的百分比和丙种大米A等级大米所占的百分比,即可得出答案.【解答】解:(1)∵甲的圆心角度数是108°,所占的百分比是×100=30%,∴甲种大米的袋数是:200×30%=60(袋),∴a=60﹣5=55(袋),∴b=200﹣60﹣65﹣10﹣60=5(袋);故答案为:55,5;(2)根据题意得:750×=100(袋),答:该超市乙种大米中有100袋B级大米;(3)∵超市的甲种大米A等级大米所占的百分比是×100%=91.7%,丙种大米A等级大米所占的百分比是×100%=92.3%,∴应选择购买丙种大米.23.如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C 的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【分析】过B分别作AE、DE的垂线,设垂足为F、G.分别在Rt△ABF和Rt△ADE中,通过解直角三角形求出BF、AF、DE的长,进而可求出EF即BG的长;在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长;根据CD=CG+GE﹣DE即可求出宣传牌的高度.【解答】解:过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.Rt△ABF中,i=tan∠BAF==,∴∠BAF=30°,∴BF=AB=5,AF=5.∴BG=AF+AE=5+15.Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7m.答:宣传牌CD高约2.7米.24.星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气,注完气之后,一位工作人员以每车20米3的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y(米3)与时间x(小时)的函数关系如图所示.(1)8:00~8:30,燃气公司向储气罐注入了8000米3的天然气;(2)当x≥8.5时,求储气罐中的储气量y(米3)与时间x(小时)的函数关系式;(3)正在排队等候的20辆车加完气后,储气罐内还有天然气9600米3,这第20辆车在当天9:00之前能加完气吗?请说明理由.【考点】一次函数的应用.【分析】(1)根据函数图象可知,8点时储气罐中有2000米3的天然气,8:30时储气罐中有10000米3的天然气,即可得出燃气公司向储气罐注入了8000米3的天然气;(2)根据图象上点的坐标得出函数解析式即可;(3)根据每车20米3的加气量,则可求出20辆车加完气后的储气量,进而得出所用时间.【解答】解:(1)根据图象可得出:燃气公司向储气罐注入了10000﹣2000=8000(米3)的天然气;故答案为:8000;(2)当x≥8.5时由图象可设y与x的函数关系式为y=kx+b,由已知得:,解得,故当x≥8.5时,储气罐中的储气量y(米3)与时间x(小时)的函数关系式为:y=﹣1000x+18500,(3)根据每车20米3的加气量,则20辆车加完气后,储气罐内还有天然气:10000﹣20×20=9600(米3),故答案为:9600,根据题意得出:9600=﹣1000x+18500,x=8.9<9,答:这第20辆车在当天9:00之前能加完气.25.如图,⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:EA是⊙O的切线;(2)已知点B是EF的中点,求证:以A、B、C为顶点的三角形与△AEF相似;(3)已知AF=4,CF=2.在(2)条件下,求AE的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连接CD,由AC是⊙O的直径,可得出∠ADC=90°,由角的关系可得出∠EAC=90°,即得出EA是⊙O的切线,(2)连接BC,由AC是⊙O的直径,可得出∠ABC=90°,由在RT△EAF中,B是EF的中点,可得出∠BAC=∠AFE,即可得出△EAF∽△CBA,(3))由△EAF∽△CBA,可得出=,由比例式可求出AB,由勾股定理得出AE的长.【解答】(1)证明:如图1,连接CD,∵AC是⊙O的直径,∴∠ADC=90°,∴∠ADB+∠EDC=90°,∵∠BAC=∠EDC,∠EAB=∠ADB,∴∠EAC=∠EAB+∠BAC=90°,∴EA是⊙O的切线.(2)证明:如图2,连接BC,∵AC是⊙O的直径,∴∠ABC=90°,∴∠CBA=∠ABC=90°∵B是EF的中点,∴在RT△EAF中,AB=BF,∴∠BAC=∠AFE,∴△EAF∽△CBA.(3)解:∵△EAF∽△CBA,∴=,∵AF=4,CF=2.∴AC=6,EF=2AB,∴=,解得AB=2.∴EF=4,∴AE===4,26.“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存…y x x(1)m=60,解释m的实际意义:该停车场当日6:00时的自行车数;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.【考点】二次函数的应用.【分析】(1)根据题意m+45﹣5=100,说明6点之前的存量为60;(2)先求出n的值,然后利用待定系数法确定二次函数的解析式;(3)设9:00~10:O0这个时段的借车数为x辆,则还车数为(3x﹣4)辆,把x=3代入y=﹣4x2+44x+60得到8:00~9:00的存量为156;把x=4代入y=﹣4x2+44x+60得到9:00~10:00的存量为172,所以156﹣x+(3x﹣4)=172,然后解方程即可.【解答】解:(1)m+45﹣5=100,解得m=60,即6点之前的存量为60.m表示该停车场当日6:00时的自行车数;(2)n=100+43﹣11=132,设二次函数的解析式为y=ax2+bx+c,把(1,100),(2,132)、(0,60)代入得,解得,所以二次函数的解析式为y=﹣4x2+44x+60(x为1﹣12的整数);(3)设9:00~10:O0这个时段的借车数为x辆,则还车数为(3x﹣4)辆,把x=3代入y=﹣4x2+44x+60得y=﹣4×32+44×3+60=156,把x=4代入y=﹣4x2+44x+60得y=﹣4×42+44×4+60=172,即此时段的存量为172,所以156﹣x+(3x﹣4)=172,解得x=10,答:此时段借出自行车10辆.27.通过对苏科版八(下)教材一道习题的探索研究,我们知道:一次函数y=x﹣1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到类似的,函数的图象是由反比例函数的图象向左平移2个单位长度得到.灵活运用这一知识解决问题.如图,已知反比例函数的图象C与正比例函数y=ax(a≠0)的图象l相交于点A(2,2)和点B.(1)写出点B的坐标,并求a的值;(2)将函数的图象和直线AB同时向右平移n(n>0)个单位长度,得到的图象分别记为C′和l′,已知图象C′经过点M(2,4).①求n的值;②分别写出平移后的两个图象C′和l′对应的函数关系式;③直接写出不等式的解集.【考点】反比例函数综合题.【分析】(1)直接把A点坐标代入y=ax即可求出a的值;利用反比例函数的图象与正比例函数的图象的交点关于原点对称确定B点坐标;(2)①根据题意得到函数的图象向右平移n(n>0)个单位长度,得到的图象C′的解析式为y=,然后把M点坐标代入即可得到n的值;②根据题意易得图象C′的解析式为y=;图象l′的解析式为y=x﹣1;③不等式可理解为比较y=和y=x﹣1的函数值,由于y=和y=x﹣1为函数的图象和直线AB同时向右平移1个单位长度,得到的图象;而反比例函数的图象与正比例函数y=ax(a≠0)的图象的交点为A(2,2)和B(﹣2,﹣2),所以平移后交点分别为(3,2)和B(﹣1,﹣2),则当﹣1≤x<1或x≥3时,函数y=的图象都在y=x﹣1的函数图象下方.【解答】解:(1)把A(2,2)代入y=ax得2a=2,解得a=1;∵反比例函数的图象与正比例函数y=x的图象的交点关于原点对称,∴B点坐标为(﹣2,﹣2);(2)①函数的图象向右平移n(n>0)个单位长度,得到的图象C′的解析式为y=,把M(2,4)代入得4=,解得n=1;②图象C′的解析式为y=;图象l′的解析式为y=x﹣1;③不等式的解集是:﹣1≤x<1或x≥3.28.我们知道平行四边形那有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论【发现与证明】在▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连接B′D.结论1:B′D∥AC;结论2:△AB′C与▱ABCD重叠部分的图形是等腰三角形.…请利用图1证明结论1或结论2.【应用与探究】在▱ABCD中,∠B=30°,将△ABC沿AC翻折至△AB′C,连接B′D.(1)如图1,若AB=,∠AB′D=75°,则∠ACB=45°,BC=;(2)如图2,AB=2,BC=1,AB′与CD相交于点E,求△AEC的面积;(3)已知AB=2,当BC的长为多少时,△AB′D是直角三角形?【考点】几何变换综合题.【分析】【发现与证明】通过三角形全等即可求得∠ACB′=∠CAD,即可得到结论2;进而根据等腰三角形的性质证得∠ADB′=∠DAC,根据平行线的判定即可证得结论1;【应用与探究】(1)根据对折的性质求得∠AB′C=30°,从而求得∠CB′D=45°,由于B′D∥AC,得出∠ACB′=∠CB′D=45°,进而即可求得∠ACB=45°;作AG⊥BC于G,根据解直角三角形即可求得BC;(2)作CG⊥AB′于G,通过解直角三角形求得CG=,B′G=,进而求得AG=2﹣=,设AE=CE=x,则EG=﹣x,根据勾股定理即可求得x值,即AE的值,然后根据三角形的面积公式即可求得△AEC的面积;(3)先证得四边形ACB′D是等腰梯形,根据等腰梯形的性质得出∠AB′C=∠CDA=30°,∠B′AD=∠DCB′=90°,设∠ADB′=∠CB′D=y,则∠AB′D=y﹣30°,根据∠AB′D+∠ADB′=90°,得出y﹣30°+y=90°,解得y=60°,进而求得∠AB′D=30°,通过解直角三角形即可求得BC.【解答】解:【发现与证明】在▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连接B′D.如图1,∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,∠B=∠ADC,∵将△ABC沿AC翻折至△AB′C,∴AB′=AB,B′C=BC,∠AB′C=∠B,∴AB′=CD,B′C=AD,∠AB′C=∠ADC,在△AB′C和△CAD中,,∴△AB′C≌△CAD(SAS),∴∠ACB′=∠CAD,设AD、B′C相交于E,∴AE=CE,∴△ACE是等腰三角形,即△AB′C与▱ABCD重叠部分的图形是等腰三角形;∵B′C=AD,AE=CE,∴B′E=DE,∴∠CB′D=∠ADB′,∵∠AEC=∠B′ED,∠ACB′=∠CAD,∴∠ADB′=∠DAC,∴B′D∥AC;【应用与探究】(1)如图1,∵在▱ABCD中,∠B=30°,将△ABC沿AC翻折至△AB′C,∴∠AB′C=30°,∵∠AB′D=75°,∴∠CB′D=45°,∵B′D∥AC,∴∠ACB′=∠CB′D=45°,∵∠ACB=∠ACB′,∴∠ACB=45°;作AG⊥BC于G,∴AG=CG,∵∠B=30°,∴AG=AB==,∴CG=,BG==,∴BC=BG+CG=,故答案为:45°,;(2)如图2,作CG⊥AB′于G,∵∠B=30°,∴∠AB′C=30°,∴CG=B′C=BC=,B′G=B′C=BC=,∵AB′=AB=2,设AE=CE=x,则EG=﹣x,∵CG2+EG2=CE2,∴()2+(﹣x)2=x2,解得x=,∴AE=,∴△AEC的面积=AE•CG=××=;(3)如图2,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACB′D是等腰梯形,∵∠B=30°,∴∠AB′C=∠CDA=30°,∵△AB′D是直角三角形,当∠B′AD=90°,AB>BC时,设∠ADB′=∠CB′D=y,∴∠AB′D=y﹣30°,∵∠AB′D+∠ADB′=90°,∴y﹣30°+y=90°,解得y=60°,∴∠AB′D=y﹣30°=30°,∵AB′=AB=2,∴AD=×=2,∴BC=2,当∠ADB′=90°,AB>BC时,如图3,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACB′D是等腰梯形,∵∠ADB′=90°,∴四边形ACB′D是矩形,∴∠ACB′=90°,∴∠ACB=90°,∵∠B=30°,AB=2,当∠B′AD=90°AB<BC时,如图4,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∠B′AD=90°,∴∠B′GC=90°,∵∠B=30°,AB=2,∴∠AB′C=30°,∴GC=B′C=BC,∴G是BC的中点,在RT△ABG中,BG=AB=×2=3,∴BC=6;当∠AB′D=90°时,如图5,∵AD=BC,BC=B′C,∴AD=B′C,∵AC∥B′D,∴四边形ACDB′是等腰梯形,∵∠AB′D=90°,∴四边形ACDB′是矩形,∴∠BAC=90°,∵∠B=30°,AB=2,∴BC=AB÷=2×=4;∴已知当BC的长为2或3或4或6时,△AB′D是直角三角形.。
福建初三初中数学月考试卷带答案解析
福建初三初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.-3的倒数是( ) A .-3B .C .3D .2.关于x 的一元二次方程x 2-4x+k=0有两个相等的实数根,则k 的值是( ) A .2 B .-2 C .4D .-43.计算(-2a)2-3a 2的结果是( )A .-a 2B .a 2C .-5a2D .5a24.如图是一张矩形纸片ABCD ,,若将纸片沿折叠,使落在上,点的对应点为点,若,则的长是( )A .B .C .D .10cm5.如图,正比例函数y 1=k 1x 和反比例函数的图象交于A (﹣1,2)、B (1,﹣2)两点,若y 1<y 2,则x 的取值范围是( )A .x <﹣1或x >1B .x <﹣1或0<x <1C .﹣1<x <0或0<x <1D .﹣1<x <0或x >16.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32o ,那么∠2的度数是( )A .32oB .68oC .58oD .60o7.对于反比例函数y =,下列说法正确的是()A.图象经过点(1,-1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大8.在Rt△ABC中,∠C=90°,AC=3,AB=4,那么的值是()A.B.C.D.二、填空题1.重庆地铁一号线起于朝天门,止于虎溪大学城,全长约36080米.将36080用科学记数法表示为.2.若,且,则3.一个等腰三角形静的两边长分别为5或6,则这个等腰三角形的周长是4.抛物线的顶点坐标是_____________。
5.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为 .6.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO,若∠A=30°,则劣弧的长为 _________cm.三、计算题1.计算:-(3.14-)0+(1-cos30°)×()-22.解方程:.四、解答题1.已知:如图,□ABCD中,∠ABC的平分线交AD于E,∠CDA的平分线交BC于F.(1)、求证:△ABE≌△CDF;(2)连接EF、BD,求证:EF与BD互相平分.2.端午节吃粽子时中华民族的传统习惯.五月初五早晨,小丽的妈妈用不透明装着一些粽子(粽子除内部馅料不同外,其他一切相同),其中香肠馅粽子两个,还有一些绿豆馅粽子,现小丽从中任意拿出一个是香肠馅粽子的概率为.(1)求袋子中绿豆馅粽子的个数;(2)小丽第一次任意拿出一个粽子(不放回),第二次再拿出一个粽子,请你用树形图或列表法,求小丽两次拿到的都是绿豆馅粽子的概率.3.如图与中,与交于点E,且,.(1)求证:≌;(2)当°,求的度数.4.如图所示,A、B两城市相距100km. 现计划在这两座城市间修筑一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上. 已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内. 请问:计划修筑的这条高速公路会不会穿越保护区. 为什么?(参考数据:,)5.某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?(3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?6.如图,抛物线与x轴交于A,B两点,与y轴交于C点,点A的坐标为(2,0),点C的坐标为(0,3),它的对称轴是直线x=-.(1)求抛物线的解析式;(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.7.函数图象有一个公共点,我们就称两个函数图象“共一点”,有两个公共点,则称它们“共两点”(1)若函数y=-x+b图像和y=-x2+2x图像“共一点”P,求P点坐标;(2)若函数y=-x+1图像和y=ax2+2x图像“共两点”,则a的取值范围是:;(3)若函数y=与y=ax2+bx图像在第一象限“共两点”A、B(A在B左侧),且A、B两点之间水平距离为2,两点之间垂直距离是A到y轴距离的倒数,设函数y=ax2+bx图像的顶点为C.求顶点C的坐标福建初三初中数学月考试卷答案及解析一、选择题1.-3的倒数是( ) A .-3B .C .3D .【答案】B【解析】当两数的乘积为1时,则两数互为倒数. 【考点】倒数的定义2.关于x 的一元二次方程x 2-4x+k=0有两个相等的实数根,则k 的值是( ) A .2 B .-2 C .4D .-4【答案】C【解析】对于一元二次方程a +bx+c=0,当Δ=-4ac=0时,方程有两个相等的实数根.几16-4k=0,解得:k=4.【考点】一元二次方程根的判别式3.计算(-2a)2-3a 2的结果是( )A .-a 2B .a 2C .-5a2D .5a2【答案】B【解析】首先根据积的乘方法则求出前面的单项式,然后根据合并同类型的法则得出答案. 【考点】单项式的计算4.如图是一张矩形纸片ABCD ,,若将纸片沿折叠,使落在上,点的对应点为点,若,则的长是( )A .B .C .D .10cm【答案】A【解析】根据AD=10cm ,BE=6cm 可得:CE=BC-BE=4cm ,根据折叠图形的性质可得:EF=CE=4cm ,则DC=EF=4cm.【考点】折叠图形的性质5.如图,正比例函数y 1=k 1x 和反比例函数的图象交于A (﹣1,2)、B (1,﹣2)两点,若y 1<y 2,则x 的取值范围是( )A.x<﹣1或x>1B.x<﹣1或0<x<1C.﹣1<x<0或0<x<1D.﹣1<x<0或x>1【答案】D【解析】根据图像可得:当反比例函数值大于一次函数值时,-1x0或x 1.【考点】函数的大小比较6.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32o,那么∠2的度数是( )A.32o B.68o C.58o D.60o【答案】C【解析】根据平行线的性质可得:1+2=90°,则2=90°-32°=58°【考点】平行线的性质7.对于反比例函数y =,下列说法正确的是()A.图象经过点(1,-1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大【答案】C【解析】图像经过点(1,1),图像位于一、三象限;图像是中心对称图形;在每一个象限内,y随着x的增大而减小.【考点】反比例函数图像的性质8.在Rt△ABC中,∠C=90°,AC=3,AB=4,那么的值是()A.B.C.D.【答案】B【解析】根据三角函数可得:cosA=.【考点】三角函数的计算二、填空题1.重庆地铁一号线起于朝天门,止于虎溪大学城,全长约36080米.将36080用科学记数法表示为.【答案】3.608×【解析】科学计数法是指:a×,且,n为原数的整数位数减一.【考点】科学计数法2.若,且,则【答案】3【解析】根据题意可得:=(m+n)(m-n)=6,根据m-n=2可得:m+n=3.【考点】平方差公式的应用3.一个等腰三角形静的两边长分别为5或6,则这个等腰三角形的周长是【答案】16或17【解析】当5为底时,三角形的周长为:5+6+6=17;当6为底时,三角形的周长为6+5+5=16.【考点】(1)、等腰三角形的性质;(2)、分类讨论思想4.抛物线的顶点坐标是_____________。
福建省安溪县第十四中学九年级数学下学期第一次月考试
福建省安溪县第十四中学2016届九年级数学下学期第一次月考试题一、选择题:(本大题共有7小题,每小题3分,共21分)1.在Rt△ABC中,∠C=90°,若sinA=,则cosB的值是( )A.B.C.D.2.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内 B.点P在圆上 C.点P在圆外 D.不能确定3.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A. B. C. D.4.某超市第二季度的营业额为200万元,第四季度的营业额为288万元.如果每季度营业额的平均增长率相同,那么每季度的平均增长率是()A. 10% B. 15% C. 20% D. 30%5.将函数y=2x2向左平移2个单位,再向下平移3个单位得到的新函数是()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3 C.y=2(x+2)2﹣3 D.y=2(x﹣2)2﹣36.如图,A,B,C三点在⊙O上,且∠BOC=100°,则∠A的度数为( )A.40° B.50°C.80° D.100°7.如图,在▱ABCD中,点E是边AD的中点,EC交对角线B D于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2二、填空题(本大题共10小题,每小题4分,共40分)8.计算= .9.在函数y=中,自变量x的取值范围是10.事件“某彩票的中奖机会是1%,买100张一定会中奖”是事件(填“必然”、“不可能”或“随机”)11.2015年我市有1.6万名初中毕业生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是.12.如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是.14、如图,在同心圆中,大圆的弦AB 切小圆于点C ,AB =8,则圆环的面积是 . 15.如图,在△ABC 中,D 为AC 边上一点,∠DBC=∠A ,BC=,AC=3,则CD 的长=第14题 第15题16.如图,点A 、B、C 、D 分别是⊙O 上四点,∠ABD=20°,BD 是直径,则∠ACB= .第16题17.如图,已知DE ∥BC ,21 DB AD ,则ECAE = ;如果△ADE 面积是5㎝2则四边形DBCE 的面积=三、解答题(本题共30分,每小题5分)18.(9分)计算:3tan30°+(2﹣)0﹣()﹣1+|﹣|.19.(9分)先化简再求代数式的值,其中x=2sin45°﹣1.第17题图20.(9分)如图,热气球的探测器显示,从热气球看一栋高楼的顶部B 的仰角为45°,看这栋高楼底部C 的俯角为60°,热气球与高楼的水平距离AD 为20m ,求这栋楼的高度.(结果保留根号)21(9分)如图,OA 和OB 是⊙O 的半径,并且OA ⊥OB ,P 是OA 上任一点(不与O 、A 重合),BP 的延长线交⊙O 于Q ,R 是OA 的延长线上一点,且RP =RQ .说明:RQ 为⊙O 的切线.22(10分)四张质地相同的卡片如图所示. 将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;O R B Q A P列表法或画树状图法说明理由,若认为不公平,请你修改规则,使游戏变得公平.23.(10分)抛物线y=x 2﹣4x+3.(1)用配方法将y=x 2﹣4x+3化成y=a (x ﹣h )2+k 的形式;(2)求出该抛物线的对称轴和顶点坐标;24.(10分)在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC 绕点B 顺时针旋转90°得到△A′BC′,请画出△A′BC′.(2)求BA 边旋转到BA″位置时所扫过图形的面积;游戏规则 随机抽取一张卡片,记下数字放回,洗匀后再236225.(10分)如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.26(13分)如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点. ∠APC =∠CPB =60°.(1)判断△ABC 的形状: ;(2)试探究线段PA ,PB ,PC 之间的数量关系,并证明你的结论;(3)当点P 位于⌒AB 的什么位置时,四边形APBC 的面积最大?求出最大面积.。
福建省九年级下学期数学第一次月考联考试卷
福建省九年级下学期数学第一次月考联考试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题4分,共40分.) (共10题;共40分)1. (4分) (2020九上·锦江月考) 若=(a≠0,b≠0),则=()A .B .C .D .2. (4分) (2021九上·浦北期末) 在下列事件中,是随机事件的是()A . 购买一张彩票,中奖B . 明天太阳从东方升起C . 通常加热到100℃时,水沸腾D . 任意画一个三角形,其内角和为360°3. (4分)在下列二次函数中,其图象对称轴为x=﹣2的是()A . y=(x+2)2B . y=2x2﹣2C . y=﹣2x2﹣2D . y=2(x﹣2)24. (4分)(2018·广东) 如图,由5个相同正方体组合而成的几何体,它的主视图是()A .B .C .D .5. (4分) (2020·香坊模拟) 抛物线与轴的公共点是,,直线经过点,直线与抛物线另一个交点的横坐标是4,它们的图象如图所示,有以下结论:①拋物线对称轴是;② ;③ 时,;④若,则.其中正确的个数为()A . 1B . 2C . 3D . 46. (4分) (2017九上·义乌月考) 两个相似三角形的对应边上的中线比为,则它们面积比的为()A . 2:1B . 1:2C . 1:D . :17. (4分) (2020八上·海曙期中) 下列说法中:①线段是轴对称图形,②已知两腰就能确定等腰三角形的形状和大小,③等腰三角形的角平分线就是底边的垂直平分线,正确的有()A . 0个B . 1个C . 2个D . 3个8. (4分) (2020八上·天桥期末) 如图,△ABC的面积为9cm2 , BP平分∠ABC ,AP⊥BP于P ,连接PC ,则△PBC的面积为()A . 3cm2B . 4.5cm2C . 5cm2D . 6cm29. (4分)如图为了测量某建筑物AB的高度,在平地上C处测得建筑物顶端A的仰角为30°,沿CB方向前进12 m到达D处,在D处测得建筑物顶端A的仰角为45°,则建筑物AB的高度等于()A . 6(+1)mB . 6 (-1) mC . 12 (+1) mD . 12(-1)m10. (4分) (2019九上·长春月考) 若b<0,则一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系内的图象可能是()A .B . .C .D .二、填空题(每小题5分,共30分) (共6题;共30分)11. (5分)(2019·永康模拟) 如图,在中,,,,点分别在两边上,将沿直线折叠,使点的对应点D恰好落在线段BC上,当是直角三角形时,则的值为________.12. (5分) (2019九上·莲湖期中) 一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小文在袋中放入3个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.7左右,则袋中红球约有________个.13. (5分)(2017·黄石) 如图,已知扇形OAB的圆心角为60°,扇形的面积为6π,则该扇形的弧长为________.14. (5分)(2017·平顶山模拟) 在平面直角坐标系中,将二次函数y=x2﹣2的图象先向左平移1个单位,再向上平移1个单位后,则平移后的顶点坐标为________.15. (5分) (2017九上·丹江口期中) 如图,CA,CB分别切⊙O于点A,B,D为圆上不与A,B重合的一点,已知∠ACB=58°,则∠ADB的度数为________.16. (5分) (2020八下·香坊期末) 如图,将矩形ABCD沿AE折叠,使点D落在BC边的点F处,过F作FG∥CD 交AE于点G ,连接DG .若AG=3 ,FG=5,则AE的长为________.三、解答题(本大题有8小题,共80分) (共8题;共80分)17. (8分) (2021七下·兴业期中) 计算:.18. (8分) (2021九上·山丹期末) 如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x,乙转盘中指针所指区域内的数字为y(当指针指在边界上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,求出点(x,y)落在第二象限内的概率;(2)求出点(x,y)落在函数y=-图象上的概率.19. (8分)如图,一条细绳系着一个小球在平面内摆动.已知细绳从悬挂点O到球心的长度为50厘米,小球在A、B两个位置时达到最高点,且最高点高度相同(不计空气阻力),在C点位置时达到最低点.达到左侧最高点时与最低点时细绳相应所成的角度为37°,细绳在右侧达到最高点时与一个水平放置的挡板DE所成的角度为30°.(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)(1)求小球达到最高点位置与最低点位置时的高度差.(2)求OD这段细绳的长度.20. (10分) (2019八下·江夏期末) 如图,在由边长为1个单位的长度的小正方形组成的网格图中,已知点O及△ABC的顶点均为网格线的交点(1)在给定网格中,以O为位似中心,将△ABC放大为原来的三倍,得到请△A′B′C′,请画出△A′B′C′;(2)B′C′的长度为________单位长度,△A′B′C′的面积为________平方单位。
福建省九年级下学期数学第一次月考试卷
福建省九年级下学期数学第一次月考试卷姓名:________班级:________成绩:________一、 单选题 (共 6 题;共 12 分)1. (2 分) (2016 九上·宜昌期中) 已知二次函数 y=ax2+bx+c 的 x、y 的部分对应值如下表:x﹣10123y51﹣1﹣11则该二次函数图象的对称轴为( )A . y轴B . 直线 x= C . 直线 x=2D . 直线 x= 2. (2 分) 在 Rt△ABC 中,∠C=90°,AB=5,AC=4,则 sinA 等于( ) A.B.C.D. 3. (2 分) (2019 九下·昆明模拟) 小明记录了昆明市 日期 最高气温年 月份某一周每天的最高气温,如表:那么这周每天的最高气温的众数和中位数分别是( )A. , B. , C. , D. , 4. (2 分) (2020 九下·重庆月考) 下列命题正确的是( )A.有意义的 取值范围是.B . 一组数据的方差越大,这组数据波动性越大.C.若,则的补角为.D . 布袋中有除颜色以外完全相同的 个黄球和 个白球,从布袋中随机摸出一个球是白球的概率为第 1 页 共 26 页5. (2 分) 如图,点 D 在△ABC 的边 AC 上,要判断△ADC 与△ABC 相似,添加一个条件,不正确的是( )A . ∠ABD=∠C B . ∠ADB=∠ABC C . CB2=CD•CA D . AB2=AD•AC 6. (2 分) 如图为抛物线 y=ax2+bx+c 的图象,A、B、C 为抛物线与坐标轴的交点,且 OA=OC=1,AB>AO,下 列几个结论: (1)abc<0;(2)b>2a;(3)a-b=-1;(4)4a-2b+1<0. 其中正确的个数是( )A . 5个 B . 4个 C . 3个 D . 2个二、 填空题 (共 10 题;共 12 分)7. (1 分) (2018·淮南模拟) 坡角为 α=60°,则坡度 i=________. 8. (1 分) (2020·江干模拟) 如图,AB 是半圆 O 的直径,点 C 是半圆 O 上一点,点 D 是弧 BC 的中点,∠BAC =50°.则∠ABD=________.9. (1 分) 仙桃市大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全市学校的设施和设备进行全面改造,2014 年市政府已投资 5 亿元人民币,若每年投资的增长率相同,预计 2016 年投资 7.2 亿元人民币,那么每年投资的增长率为________.第 2 页 共 26 页10. (1 分) (2018 九下·尚志开学考) 一个扇形的弧长是 4 ,半径是 6,则这个扇形的圆心角度数是 ________.11. (1 分) (2021·鄂州) “最美鄂州,从我做起”.“五四”青年节当天,马桥村青年志愿小组到胡林社区 参加美化社区活动.6 名志愿者参加劳动的时间(单位:小时)分别为:3,2,2,3,1,2,这组数据的中位数是________.12. (1 分) (2020·桂阳模拟) 从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的 平均成绩都是 86.5 分,方差分别是 S 甲 2=1.5,S 乙 2=2.6,S 丙 2=3.5,S 丁 2=3.68,你认为派________去参 赛更合适.13. (2 分) 投掷一枚普通的六面体骰子,有下列事件:①掷得的点数是 6;②掷得的点数是奇数;③掷得的点 数不大于 4 ;④掷得的点数不小于 2.这些事件发生的可能性由大到小排列结果按序号排列是________.14. (2 分) 如图,以扇形 OAB 的顶点 O 为原点,半径 OB 所在的直线为 x 轴,建立平面直角坐标系,点 B 的 坐标为(2,0),扇形的圆心角是 60°,若抛物线 y=x2+k 与扇形 OAB 的边界总有两个公共点,则实数取值范围是 ________15. (1 分) (2021 八下·海珠期中) 如图,四边形 ABCD 中,∠A=90°,AB=2 ,AD=2,点 M,N 分别 为线段 BC,AB 上的动点(含端点,但点 M 不与点 B 重合),点 E,F 分别为 DM,MN 的中点,则 EF 长度的最大值为 ________.16. (1 分) (2017·老河口模拟) 如图,在△ABC 中,AC=3cm,∠ACB=90°,∠ABC=60°,将△ABC 绕点 B 顺时针旋转至△A′BC′,点 C′在直线 AB 上,则边 AC 扫过区域(图中阴影部分)的面积为________ cm2 .三、 解答题 (共 10 题;共 100 分)17. (10 分) (2020 九上·茌平月考) 求下列各式的值第 3 页 共 26 页(1);(2).18. (10 分) (2018 九上·东台月考) 已知二次函数 y=x2+2x+m 的图象 C1 与 x 轴有且只有一个公共点. (1) 求 C1 的顶点坐标; (2) 将 C1 向下平移若干个单位后,得抛物线 C2 , 如果 C2 与 x 轴的一个交点为 A(—3,0),求 C2 的函数 关系式,并求 C2 与 x 轴的另一个交点坐标; 19. (10 分) (2020·邹平模拟) 在一个不透明的盒子里,装有四个分别标有数字 1,2,3,4 的小球,它们 的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为 x;放回盒子摇匀后,再由小华 随机取出一个小球,记下数字为 y . (1) 用列表法或画树状图表示出(x,y)的所有可能出现的结果;(2) 求小明、小华各取一次小球所确定的点(x,y)落在函数的图象上的概率.20. (10 分) (2020 八下·重庆月考) 今年猪肉价格受非洲猪瘟疫情影响,有较大幅度的上升,为了解某地区养殖户受非洲猪瘟疫情感染受灾情况,现从该地区建档的养殖户中随机抽取了部分养殖户进行了调查(把调查结果分为四个等级:A 级:非常严重;B 级:严重;C 级:一般;D 级:没有感染),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1) 本次抽样调查的养殖户的总户数是;把图 2 条形统计图补充完整.(2) 若该地区建档的养殖户有 1500 户,求非常严重与严重的养殖户一共有多少户?(3) 某调研单位想从 5 户建档养殖户(分别记为 a,b,c,d,e)中随机选取两户,进一步跟踪监测病毒传播情况,请用列表或画树状图的方法求出选中养殖户 e 的概率.21. (10 分) (2017 九上·平顶山期中) 如图,四边形 ABCD 中,AD∥BC,点 E 是边 AD 的中点,连接 BE 并延长交 CD 的延长线于点 F,交 AC 于点 G.第 4 页 共 26 页(1) 若 FD=2,,求线段 DC 的长;(2) 求证:EF·GB=BF·GE.22. (10 分) (2017·肥城模拟) 如图,△ABC 中,∠ABC=90°,F 是 AC 的中点,过 AC 上一点 D 作 DE//AB,交 BF 的延长线于点 E,AG⊥BE,垂足是 G,连接 BD、AE.(1) 求证:△ABC∽△BGA; (2) 若 AF=5,AB=8,求 FG 的长;(3) 当 AB=BC,∠DBC=30°时,求的值.23. (5 分) (2019·中山模拟) 如图,甲、乙两座建筑物的水平距离 为,从甲的顶部 处测得乙的顶部 处的俯角为,测得底部 处的俯角为,求甲、乙建筑物的高度 和 (结果取整数).参考数据:,.24. (10 分) (2020·合肥模拟) 已知二次函数 y=mx2+(1﹣2m)x+1﹣3m .(1) 当 m=2 时,求二次函数图象的顶点坐标;(2) 已知抛物线与 x 轴交于不同的点 A、B .①求 m 的取值范围;②若 3≤m≤4 时,求线段 AB 的最大值及此时二次函数的表达式.25. (15 分) (2020 九下·高州月考) 如图,在矩形中,,.如果点 由点 出发沿 方向向点 匀速运动,同时点 由点 出发沿 方向向点 匀速运动,它们的速度分第 5 页 共 26 页别为和 ..过点 作,分别交 、 于点 和 ,设运动时间为(1) 连结 、 ,若四边形为平行四边形,求 的值;(2) 连结 ,设的面积为,求 与 的函数关系式,并求 的最大值;(3) 若与相似,求出 的值.26. (10 分) 已知 O 为坐标原点,抛物线 y1=ax2+bx+c(a≠0)与 x 轴相交于点 A(x1 , 0),B(x2 , 0),与 y 轴交于点 C,且 O,C 两点间的距离为 3,x1•x2<0,|x1|+|x2|=4,点 A,C 在直线 y2=﹣3x+t 上.(1) 求点 C 的坐标(2) 当 y1 随着 x 的增大而增大时,求自变量 x 的取值范围;(3) 将抛物线 y1 向左平移 n(n>0)个单位,记平移后 y 随着 x 的增大而增大的部分为 P,直线 y2 向下平移 n 个单位,当平移后的直线与 P 有公共点时,求 2n2﹣5n 的最小值.第 6 页 共 26 页一、 单选题 (共 6 题;共 12 分)答案:1-1、 考点:参考答案解析: 答案:2-1、 考点:解析: 答案:3-1、 考点: 解析:答案:4-1、第 7 页 共 26 页考点: 解析:答案:5-1、 考点: 解析:答案:6-1、 考点:解析:第 8 页 共 26 页二、 填空题 (共 10 题;共 12 分)答案:7-1、 考点:解析: 答案:8-1、 考点:第 9 页 共 26 页解析: 答案:9-1、 考点: 解析:答案:10-1、 考点:第 10 页 共 26 页解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共10题;共100分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:答案:26-1、答案:26-3、考点:解析:。
九年级数学第二学期第一次月考试题
九年级数学第二学期第一次月考试题九年级数学第二学期第一次月考试题题号 一 二 三 四 五 六 七 八 总 分得 分一、一一对应,对号入座(每小题4分,共40分)1. 我国文化宝库中有专门多优秀遗产,剪纸艺术确实是其中之一,且在民间广泛流传,浮山县的民间剪纸乃国内之精华,享誉中外.下面的一组剪纸作品(如图1),属于中心对称图形的是( ).2. 2006年春节期间,为了促销商品,甲、乙两个超市都采取优待措施,甲超市推出八折后再打八折,乙超市则一次性六折优待,若同样价格的商品,下列结论正确的是( ).A .甲比乙优待B .乙比甲优待C .两超市优待条件一样D .无法比较 3. 下列说法正确的是( ).A .5的平方根是5B .若a a -=2,则a<OC .若a a =2,则a>OD .4284b a b a =4. 为了筹备班级的初中毕业联欢会,班长对全班学生爱吃哪种水果做了民意调查,那么决定最终买什么水果时,下面的调查数据中最值得关注的是 ( ). A .中位数 B .平均数 C .众数 D .方差5. 不等式组⎩⎨⎧>>31x x 的解集在数轴上可表示为( )6. 已知小正方形的边长为1,则图2中的三角形(阴影部分)与图3中△ABC 相似的是( ).班级--------------------姓名---------------------学号--------------------------------图1图2图3图67. 如图4,在一直角坐标系中,一次函数x k y x k y x k y x k y x k y 54321,,,,=====的图象分别为,,,,,54321l l l l l ,则下列关系中正确的是( ). A .3k <4k <5k <1k <2k B .5k <4k <3k <2k <1k C .5k <4k <3k <1k <2k D .3k <4k <5k <2k <1k8. 下列说法正确的是( ).A .若A(—1,a 2)与B(b ,1)关于y 轴对称,则a+b=2.B .若a>0,则二次根式22a 与a 2是同类二次根式.C .不管a 取什么值,方程ax 2-2x-a=0总有两实数根.D .若关于x 的一次函数y=(k-1)x-3的图象不通过第一象限,则k<1. 9. 一电动玩具的正面是由半径为r 的小圆盘和半径为2r 的大圆盘依图5方式连接而成的.小圆盘在大圆盘的圆周上外切滚动一周且不发生滑动(大圆盘不动),回到原先的位置.在图6中,虚线所示位置的三个圆内,所 画的头发、眼睛、嘴巴位置正确的是( ).10.如图7,在正方形铁皮上剪下一个圆形和扇形,使之恰好围成如图所示的一个圆锥模型.设圆的半径为r ,扇形半径为R ,则圆的半径与扇形半径的关系为( )A .R=2rB .R=49r C .R=3r D .R=4r 二、快乐填一填(每小题4分,共20分)11.若小明家元月份收入2300元,记作+2300元,则开支1200元,记作_________ . 12. 据查阅有关资料,我国因环境污染造成的庞大经济缺失,每年高达681 000 000元,那个数据用科学记数法表示为________________ .13.如图8,是一个依照四边形的不稳固性制作的边长均为18cm 的可活动菱形衣架.若墙上钉子之间的距离AB=BC=18 cm ,则∠1=_______ 度14.图9(1)表示某地区2005年12个月中每月的平均气温,图9(2)表示该地区某家庭这年12个月中每月的用电量.依照统计图,请你说出该家庭用电量与气图5图7图4温之间的关系(只要写出一条信息即可):________________________________ __________________________________________________________________.15.尚俊家2006年元月买了一辆大客车,每到下雨时,他就观看启动后的雨刷器(用来刷去汽车前方挡风玻璃上雨水的装置).如图10是他家汽车的一个雨刷器的示意图,雨刷杆AB 与雨刷CD 在B 处固定连接(不能转动),当杆AB 绕A 点转动90°时,雨刷CD 扫过的面积有多大呢?为了回答他自己提出的问题,作了如下测量:CD=79cm ,∠DBA=20°,端点C 、D 与点A 的距离分别是105 cm 、35cm .他通过认真摸索运算出了结果,你明白尚俊如何样运算的吗?也请你算一算雨刷CD 扫过的面积为__________ cm 2.三、用心想一想(分) (本题满分16分,共2小题,每小题8分)16.解方程:8320322=+-+x x x x17.(用数学眼光看世界:)海门市三星镇的叠石桥国际家纺城是全国最大的家纺专业市场,年销售额突破百亿元.某天,该家纺城的羽绒被和羊毛被这两种产品的销售价分别为415元/条、150元/条.现购买这两种产品共80条,付款不超过2万元,问最多可购买羽绒被多少条?图9图8图10四、(本题满分16分,共2小题,每小题8分)18.图11是一个10×10的正方形网格(小正方形边长为1),△ABC 是格点三角形(顶点为小正方形的顶点),请你完成下面的两个题目.(1)在图11中画出与△ABC 相似的格点△A 1B 1C 1和△A 2B 2C 2 ,且111C B A S ∆=8,222C B A S ∆=1(2)在图12中用与△ABC 、△A 1B 1C 1和△A 2B 2C 2全等的格点三角形(每一个三角形至 少用一次),拼一个轴对称图形和一个中心对称图形.19.如图13,四边形ABCD 是正方形,△ECF 是等腰直角三角形,其中CE=CF ,G 是CD 与EF 的交点. (1)求证:BF=DE ;(2)若BC=5,CF=3,∠BFC=90°,求GCDG的值.五、(本题满分20分,共2小题,每小题10分) 20.阅读下列材料,解答后面问题.图11图13图12在平面直角坐标系中,已知x 轴上两点A(x 1,0),B(x 2,0)的距离记作|AB|= |x 1-x 2|.如A(x 1,y 1),B(x 2,y 2)是平面上任意两点,我们能够通过构造直角三角形来求A ,B 间距离.如图14,过A,B 分别向x 轴 ,y 轴作垂线AM 1,AN 2和BM 2, BN 2,垂足分别是M 1(x 1,0),N 1(0,y 1,),M 2(x 2,0),N 2(0,y 2),直线AN 1与BM 2交于Q.在Rt △ABQ 中,|AB|2=|AQ|2+|QB|2.∵|AQ|=M 1M 2|=|x 1-x 2|,|QB|=|N 1N 2|y 2-y 1| ∴|AB|2=|x 2-x1|2+|y 2-y 1|2 由此得任意两点A(x 1,y 1),B(x 2,y 2) 间距离公式()()212212y y x x AB -+-=(1)直截了当运用平面内两点距离公式,求点A(1,-3)、B(-2,1)之间的距离; (2)若x 轴上有一点C(x 0,0),则代数式()()12912020++++-x x 最小值.21.现有一块直径为2m 的圆形铁片,若将它做成一个有盖的油桶,并尽可能的用好这块铁片,工人师傅在圆形铁片上截取两个圆(即两底)和一个矩形(侧面),如图15所示(1)若把BC 作油桶的高,则油桶的底面半径R 1等于多少? (2)当把AB 作油桶的高时,油桶的底面半径R 2与(1)中的 R 1相等吗?若相等,请说明理由;若不相等,要求出R 2.图14图15六、(本题满分12分)22.已知:如图16(1),直线MN和⊙O切于点C,AB是⊙O的直径,AD⊥MN于O,BE⊥MN于E,交⊙O于F.连结AC、BC.(1)求证:△ADC∽△CEB;(2)若AD=m,DE=n,BE=p,试判定n2与4mp的大小关系;(3)如图(2),将直线MN向上平移至与⊙O相交时,m、n、p之间有么关系?如图(3)将直线MN向下平移至与⊙O相离,m、n、p之间有什么关系?(直截了当写出结果,不需说明理由.)图16七、(本题满分12分)23.某私营玩具厂招工广告称:“本厂工人工作时刻:每天工作8小时,每月工作25天;待遇:熟练工人按计件付工资,多劳多得,计件工资许多于1000元,每月另加福利工资100元,按月结算……”.该厂只生产两种玩具:小狗和(1)依照表格中的信息,试求出做1个小汽车所需时刻和计件工资各是多少?(2)设晓凤某月生产小狗x个,小汽车y个,月工资(计件工资+福利工资=月工资)为W元.试求W与x的函数关系式.(不需写出自变量x的取值范畴)(3)有一天,厂方从销量方面考虑,对生产作了调整:每个工人每月生产小狗的个数许多于生产小汽车个数的2倍,假设晓凤的工作效率不变,且服从厂家安排,请运用数学知识说明厂家招工广告是否有欺诈行为.八、(本题满分14分)24.如图17,A、B两点的坐标分别为(—3,0)、(0,3),C点在x轴的正半轴上,且到原点的距离为1.点P、Q分别从A、B两点同时动身,以相同的速度分别向x轴、y轴的正方向作匀速直线运动,直线PQ交直线AB于D.(1)求通过A、B、C三点的抛物线及直线AB的解析式;(2)设AP的长为m,△PBQ的面积为S,求出S关于m函数关系式;(3)作PE⊥AB于E,当P、Q运动时,线段DE的长是否改变?若改变请说明理由,若改变,要求出DE的长;(4)有一个以AB为边,且由两个与△AOB全等的三角形拼结而成的 ABST,试求出T点的坐标(画出图形,直截了当写出结果,不需求解过程).图17。
福建省2023年届九年级下学期第一次月考数学试题
年初三年数学第一次月考试卷一、选择题:(每题3分,共21分)1、-21的倒数是( ) A 、2 B 、-2C 、21D 、-21 2、下列计算结果正确的是( )A 、2a -a=2B 、a(3b +1)=3ab +aC 、(-a)6÷(-a 2)=a 4D 、x 3·x 3=2x 33、如果x 1、x 2是方程x 2-3x +1=0的两个根,则x 1+x 2=( )A 、1B 、-1C 、3D 、-34、如果不等式(a-1)x>a-1的解集x<1,那么a 的取值范围是( )A 、a ≤1B 、a>1C 、a<0D 、a<15、当P(m+3,m+1)在直角坐标系的x 轴上,则点P 坐标为( )A 、(0,-2)B 、(2,0)C 、(-2,0)D 、(0,2)6、已知一次函数y=kx+b 的图象经过一、二、四象限,则函数y=xkb 的图象在( ) A 、第一、三象限 B 、第二、四象限 C 、第一、二象限 D 、第三、四象限7、当k 取任何实数,抛物线y=54(x-k)2+k 2的顶点所在曲线是( ) A 、y=x 2 B 、y=-x 2 C 、y=x 2(x>0) D 、y=-x 2(x>0)二、填空题:(每题4分,共40分)8、计算:-(-5)+|-5|=____________9、如果单项式23x 2y 2b 与-7x a y b 是同类项,则a=________,b=__________ 10、因式分解:2x 2y-6xy 2=__________ 11、已知⎩⎨⎧==12y x 是方程332=+ay x 的解,则a=____________ 12、满足不等式组⎩⎨⎧>-≥+710012m m 的整数m 的值有_________个。
13、函数y=12-+x x 的自变量x 的取值范围是____________。
14、当ab<0时,化简b a 2=____________15、已知函数y=xk 43-在每个象限内y 随x 的增大而减小,则k____________ 16、二次函数y=x 2-6x+21的最小值为_____________ 17、直角△ABC 的三条边a 、b 、c 均满足方程x 2-(2+1)x+m=0,则①m =____________;②△ABC 的面积为_______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省安溪县第十四中学2016届九年级数学下学期第一次月考试题
一、选择题:(本大题共有7小题,每小题3分,共21分)
1.在Rt△ABC中,∠C=90°,若sinA=,则cosB的值是( )
A.B.C.D.
2.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()
A.点P在圆内 B.点P在圆上 C.点P在圆外 D.不能确定
3.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()
A. B. C. D.
4.某超市第二季度的营业额为200万元,第四季度的营业额为288万元.如果每季度营业额的平均增长率相同,那么每季度的平均增长率是()
A. 10% B. 15% C. 20% D. 30%
5.将函数y=2x2向左平移2个单位,再向下平移3个单位得到的新函数是()
A.y=2(x+2)2+3 B.y=2(x﹣2)2+3 C.y=2(x+2)2﹣3 D.y=2(x﹣2)2﹣3
6.如图,A,B,C三点在⊙O上,且∠BOC=100°,则∠A的度数为( )
A.40° B.50°
C.80° D.100°
7.如图,在▱ABCD中,点E是边AD的中点,EC交对角线B D于点F,则EF:FC等于()
A.3:2 B.3:1 C.1:1 D.1:2
二、填空题(本大题共10小题,每小题4分,共40分)
8.计算= .
9.在函数y=中,自变量x的取值范围是
10.事件“某彩票的中奖机会是1%,买100张一定会中奖”是事件(填“必然”、“不可能”或“随机”)
11.2015年我市有1.6万名初中毕业生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是.
12.如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是.
14、如图,在同心圆中,大圆的弦AB 切小圆于点C ,AB =8,则圆环的面积是 .
15.如图,在△ABC 中,D 为AC 边上一点,∠DBC=∠A ,BC=,AC=3,则CD 的长=
第14题 第15题
16.如图,点A 、B 、C 、D 分别是⊙O 上四点,∠ABD=20°,BD 是直径,则∠ACB= .
第16题
17.如图,已知DE ∥BC ,21 DB AD ,则EC
AE = ;如果△ADE 面积是5㎝2则四边形DBCE 的面积=
三、解答题(本题共30分,每小题5分)
18.(9分)计算:3tan30°+(2﹣
)0﹣()﹣1+|﹣|.
19.(9分)先化简再求代数式
的值,其中x=2sin45°﹣1.
20.(9分)如图,热气球的探测器显示,从热气球看一栋高楼的顶部B 的仰角为45°,看这栋高楼底部C 的俯角为60°,热气球与高楼的水平距离AD 为20m ,求这栋楼的高度.(结果保留根号)
21(9分)如图,OA 和OB 是⊙O 的半径,并且OA ⊥OB ,P 是OA 上任一点(不与O 、A 重合),BP 的延长线交⊙O 于Q ,R 是OA 的延长线上一点,且RP =RQ .
说明:RQ 为⊙O 的切线.
22(10分)四张质地相同的卡片如图所示. 将卡片洗匀后,背面朝上放置在桌面上.
(1)求随机抽取一张卡片,恰好得到数字2的概率;
O R B Q A P
列表法或画树状图法说明理由,若认为不公平,请你修改规则,使游戏变得公平.
23.(10分)抛物线y=x 2﹣4x+3.
(1)用配方法将y=x 2﹣4x+3化成y=a (x ﹣h )2+k 的形式;
(2)求出该抛物线的对称轴和顶点坐标;
24.(10分)在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).
(1)将△ABC 绕点B 顺时针旋转90°得到△A′BC′,请画出△A′BC′.
(2)求BA 边旋转到BA″位置时所扫过图形的面积;
2362
25.(10分)如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;
(2)若AD=3,AB=7,求AC的长.
26(13分)如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点. ∠APC =∠CPB =60°.
(1)判断△ABC 的形状: ;
(2)试探究线段PA ,PB ,PC 之间的数量关系,并证明你的结论;
(3)当点P 位于⌒AB 的什么位置时,四边形APBC 的面积最大?求出最大面积.。