九年级上册数学第二十一章一元二次方程小结与复习
九年级数学人教版(上册)第21章小结与复习
当m=2,x2-2x=2,解得x=1± 3,
所以,原方程的解为x1=3,x2=-1, x3=1+ 3 ,x4=1- 3 .
侵权必究
考点3 一元二次方程的根的判别式的应用
例4 已知关于x的一元二次方程x2-3m=4x有两个不相等
的实数根,则m的取值范围是( A )
A. m 4 B. m<2
3
C. m ≥0
第二十一章 一元二次方程 小结与复习
侵权必究
目录页
要点梳理
考点精讲
课堂小结
当堂练习
侵权必究
要点梳理
✓ 教学目标 ✓ 教学重点
侵权必究
要点梳理 一、一元二次方程的基本概念 1.定义:
只含有一个未知数的整式方程,并且都可以化为 ax2+bx+c=0(a,b,c为常数,a≠0)的形式,这样的 方程叫做一元二次方程. 2.一般形式:
解析 本题为销售中的利润问题,其基本本数量关系用表析分如 下:设公司每天的销售价为x元.
侵权必究
单件利润 销售量(件) 每星期利润(元)
正常销售
4
32
128
涨价销售
x-20
32-2(x-24)
150
其等量关系是:总利润=单件利润×销售量.
解:(1)32-(x-24) ×2=80-2x; (2)由题意可得(x-20)(80-2x)=150.
侵权必究
解:设销售单价为x元.则月销售量为[500-10(x-50)]kg. 由题意可得 (x-40)[500-10(x-50)]=8000, 解得 x1=60, x2=80, 又 40[500-10(x-50)]≤10000. x≥75. ∴x=60<75(舍去) 答:销售单价应为80元.
第二十一章 一元二次方程单元小结
第21章一元二次方程小结与复习
教学目标:
知识与技能:
灵活运用直接开平方法、配方法、公式法、因式分解法解一元二次方程,运用一元二次方程解决简单的实际问题.
过程与方法:
经历运用知识、技能解决问题的过程,发展学生的独立思考能力和创新精神.
情感态度与价值观:
培养学生对数学的好奇心与求知欲,养成质疑和独立思考的学习习惯.
教学重难点:
重点:运用知识、技能解决问题
难点:解题分析能力的提高.
教学过程
一、知识回顾
1.方程中只含有_______未知数,并且未知数的最高次数是_______,这样的______的方程叫做一元二次方程,通常可写成如下的一般形式:_______()其中二次项系数是______,一次项系数是______,常数项是________.
2.解一元二次方程的一般解法有
(1)_________;(2)________;(3)_________;(4)求根公
式法,求根公式是______________.
3.一元二次方程的根的判别式是____________,当_______时,它有两个不相等的实数根;当_________时,它有两个相等的实数根;当_______时,它没有实数根.
二、习题演练
点拨:选择解方程的方法时,应先考虑直接开平方法和因式分解法;再考虑用配方法,最后考虑用公式法.
三、随堂巩固
课本P25复习题21第1、3、5、11题
四、小结作业
1.问题:谈一谈本节课自己的收获和感受?
2.作业:课本P25复习题21第2、4题。
九年级数学: 第二十一章小结与复习
第二十一章小结与复习【学习目标】1.记住一元二次方程的概念.2.能根据不同的一元二次方程的特点,选择恰当的方法求解,使解题过程简单合理. 3.能用判别式b 2-4ac 判断一元二次方程根的情况.4.记住:如果ax 2+bx +c =0(a ≠0)的两个根是x 1,x 2,那么x 1+x 2=-b a ,x 1x 2=ca .并对这一性质进行运用.5.能根据数量之间的关系,列出一元二次方程解决应用题. 【学习重点】一元二次方程的解法.一元二次方程的应用题. 【学习难点】列一元二次方程解决实际问题.教学建议:建议本课时分两个课时,第一课时情景导入、自学自研并交流展示知识模块一、二,第二课时复习知识结构并交流展示知识模块三、四、五.情景导入 生成问题知识结构我能建:一元二次方程⎩⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧1.概念:只含有一个未知数;并且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程的一般形式是ax 2+bx +c =0(a ≠0)W.2.解法⎩⎪⎨⎪⎧(1)直接开平方法,适用于能化为(x +m )2=n (n ≥0)的一元二次方程;(2)配方法;(3)公式法,其中求根公式是x =2a (4)因式分解法,即把方程变形为ab =0的形式,(a ,b 为 两个因式),则a =0或b =0W.3.根的判别式⎩⎪⎨⎪⎧(1)当b 2-4ac>0时,方程有两个不相等的实数根;(2)当b 2-4ac =0时,方程有两个相等的实数根;(3)当b 2-4ac<0时,方程没有实数根.4.根与系数的关系:若一元二次方程ax 2+bx +c =0(a ≠0)的解是x 1、x 2,则x 1+x 2=-b a ,x 1·x 2=ca W.5.一元二次方程的应用.自学互研 生成能力知识模块一 一元二次方程的有关概念 【自主探究】典例1:下列方程中哪些是一元二次方程?试说明理由. (1)1x 2-2x +1=0;(2)x 2=4;(3)x 2-4=(x +2)2. 解:(1)不是.不符合条件:整式方程; (2)是.符合一元二次方程的概念;(3)不是.方程整理后,不符合条件:未知数的最高次数是2. 【合作探究】典例2:已知关于x 的方程(m +3)(m -3)x 2+(m +3)x +2=0. (1)当m 为何值时,此方程是一元一次方程?解:由题意得(m +3)(m -3)=0且m +3≠0,所以m -3=0,即m =3. (2)当m 为何值时,此方程是一元二次方程? 解:由题意得(m +3)(m -3)≠0,即m ≠±3.典例3:已知a 是方程x 2-2016x +1=0的一个根,试求a 2-2015a +2016a 2+1的值.解:∵a 是方程x 2-2016x +1=0的一个根, ∴a 2-2016a +1=0, ∴a 2+1=2016a.∴a 2-2015a +2016a 2+1=a 2-2016a +a +20162016a=-1+a +1a =a 2-a +1a =2016a -aa=2015知识模块二 一元二次方程的解法 【合作探究】典例4:用适当的方法解下列一元二次方程: (1)(x +2)2-16=0;解:(x +2)2=16,x +2=±4,x 1=2,x 2=-6. (2)(x -3)2+x 2=9 解:(x -3)2+x 2-9=0 (x -3)2+(x +3)(x -3)=0 (x -3)=0 x 1=3,x 2=0 (3)3x 2+4x -7=0.解:a =3,b =4,c =-7, b 2-4ac =16-4×3×(-7)=100. x =-b±b 2-4ac 2a =-4±1002×3=-4±106.x 1=1,x 2=-73知识模块三 一元二次方程的根的判别式 【自主探究】典例5:k 为何值时,关于x 的一元二次方程x 2-4x +k -5=0:(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根.解:Δ=(-4)2-4·(k -5)=16-4k +20=36-4k. (1)∵方程有两个不相等的实数根, ∴Δ>0,即36-4k>0.解得k<9. (2)∵方程有两个相等的实数根, ∴Δ=0,即36-4k =0.解得k =9. (3)∵方程没有实数根, ∴Δ<0,即36-4k<0.解得k>9.知识模块四 一元二次方程的根与系数的关系 【自主探究】典例6:不解方程,求方程两根的和与两根的积. (1)x 2+4x +1=0;解:x 1+x 2=-4,x 1·x 2=1 (2)3x 2+10=2x 2+8x. 解:x 1+x 2=8,x 1·x 2=10 【合作探究】典例7:已知x =-1是方程x 2+mx -5=0的一个根,求m 的值及方程的另一根x 2. 解:解法1:将x =-1代入原方程,得 (-1)2+m·(-1)-5=0,解得m =-4. 当m =-4时,方程为x 2-4x -5=0,解得x 1=-1,x 2=5. ∴m =-4,方程另一根x 2=5. 解法2:由根与系数的关系可得:⎩⎪⎨⎪⎧x 2+(-1)=-m ,x 2·(-1)=-5.解得⎩⎪⎨⎪⎧m =-4,x 2=5. 知识模块五 一元二次方程的应用 【自主探究】典例8:要组织一场篮球联赛,每两队之间都赛2场,计划安排90场比赛,应邀请多少个球队参加比赛? 解:设应邀请x 个篮球队参加比赛,根据题意,得 x (x -1)2×2=90. 则x 2-x -90=0.解得x =10或x =-9(舍去). 答:应邀请10个篮球队参加比赛.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 一元二次方程的有关概念 知识模块二 一元二次方程的解法 知识模块三 一元二次方程的根的判别式 知识模块四 一元二次方程的根与系数的关系 知识模块五 一元二次方程的应用当堂检测 达成目标【当堂检测】1.方程5(x 2-2x +1)=-32x +2的一般形式是5x 2,一次项是-数项是3.2.关于x 的方程(m -4)xm 2-14-x =5是一元二次方程,则m =-4. 3.解下列一元二次方程: (1)4(x -5)2-36=0; 解:4(x -5)2=36. (x -5)2=9. x +5=±3. x 1=-2,x 2=-8.(2)3x 2+3x -2=0; 解:a =3,b =3,c =-2. b 2-4ac =9-4×3×(-2)=33.x =-3±332×3=-3±336.x 1=-3+336,x 2=-3-336.(3)x 2+10x +9=0; 解:x 2+10x +25=-9+25. (x +5)2=16. x +5=±4.x 1=-1,x 2=-9. (4)x(x -3)+x -3=0. 解:(x -3)(x +1)=0. x 1=3,x 2=-1.4.已知关于x 的方程x 2-2(m +1)x +m 2-3=0. (1)当m 取何值时,方程有两个不相等的实数根?(2)设x 1、x 2是方程的两根,且(x 1+x 2)2-(x 1+x 2)-12=0,求m 的值. 解:(1)∵方程有两个不相等的实数根, ∴Δ>0,即4(m +1)2-4(m 2-3)>0.解得m>-2. (2)方法一:∵(x 1+x 2)2-(x 1+x 2)-12=0 ∴x 1+x 2=4或x 1+x 2=-3.∵x 1+x 2=2(m +1),∴2(m +1)=4或2(m +1)=-3. ∴m 1=1,m 2=-52.方法二:4(m +1)2-2(m +1)-12=0,化简得:2m 2+3m -5=0. 解得:x 1=1,x 2=-52.【课后检测】见学生用书课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
九年级数学上册第二十一章一元二次方程重点知识归纳(带答案)
九年级数学上册第二十一章一元二次方程重点知识归纳单选题1、某商场在销售一种糖果时发现,如果以20元/kg的单价销售,则每天可售出100kg,如果销售单价每增加0.5元,则第天销售量会减少2kg.该商场为使每天的销售额达到1800元,销售单价应为多少?设销售单价应为x元/kg,依题意可列方程为()A.(20+x)(100−2x)=1800B.(20+x)(100−2x)=18000.5×2)=1800D.x[100−2(x−20)]=1800C.x(100−x−200.5答案:C分析:根据销售额=售价乘以销售量列方程,求解即可;×2)kg,依题意得:解:设销售单价应为x元/kg,则销售量为(100−x−200.5依题意得:x(100−x−20×2)=18000.5故选:C小提示:此题主要考查了一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程2、有一块矩形铁皮,长50cm,宽30cm,在它的四个角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,要制作的无盖方盒的底面积为800cm2.设切去的正方形的边长为x cm,可列方程为()A.4x2=800B.50×30−4x2=800C.(50−x)(30−x)=800D.(50−2x)(30−2x)=800答案:D分析:根据题意求得底面的长为(50−2x),宽为(30−2x),即可求解.设切去的正方形的边长为x cm,则底面的长为(50−2x),宽为(30−2x),则(50−2x)(30−2x)=800故选:D小提示:本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.3、如图,把长40cm,宽30cm的矩形纸板剪掉2个小正方形和2个小矩形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为x cm(纸板的厚度忽略不计),若折成长方体盒子的表面积是950cm2,则x的值是()A.3B.4C.4.8D.5答案:D分析:观察图形可知阴影部分小长方形的长为(x+40−2x2)cm,再根据去除阴影部分的面积为950cm2,列一元二次方程求解即可.解:由图可得出,40×30−2x2−2x⋅(x+40−2x2)=950整理,得,x2+20x−125=0解得,x1=5,x2=−25(不合题意,舍去).故选:D.小提示:本题考查的知识点是一元二次方程的应用,根据图形找出阴影部分小长方形的长是解此题的关键.4、已知一元二次方程x2-4x-2=0的两根分别为x1,x2,则1x1+1x2的值为()A.2B.-1C.−12D.-2答案:D分析:根据一元二次方程的根与系数的关系先求出x1+x2,x1·x2的值,再代入所求的式子中计算即可.解:根据根与系数的关系得,x1+x2=4,x1·x2=-2∴1x1+1x2=x1+x2x1•x2=4−2=-2.故选D .小提示:本题主要考查了一元二次方程的根与系数的关系,熟记公式是解题的关键.5、用配方法解方程x2-2x=2时,配方后正确的是()A.(x+1)2=3B.(x+1)2=6C.(x−1)2=3D.(x−1)2=6答案:C分析:方程左右两边都加上1,左边化为完全平方式,右边合并即可得到结果.解:x2-2x=2,x2-2x+1=2+1,即(x-1)2=3.故选:C.小提示:本题考查了解一元二次方程-配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.6、已知直角三角形的两条边长分别是方程x2﹣9x+20=0的两个根,则此三角形的第三边是()A.4或5B.3C.√41D.3或√41答案:D分析:先利用因式分解法解得x1=4,x2=5,然后分类讨论:当两直角边分别为4和5或斜边为5,再利用勾股定理计算出第三边.解:解方程x2−9x+20=0得x1=4,x2=5,当两直角边分别为4和5,则第三边的长=√42+52=√41,当斜边为5,第三边的长=√52−42=3,所以此三角形的第三边长为3或√41.故选:D .小提示:本题考查了因式分解法解一元二次方程,勾股定理,解题的关键是利用分类讨论的思想进行求解. 7、一元二次方程x 2−25=0的解为( )A .x 1=x 2=5B .x 1=5,x 2=−5C .x 1=x 2=−5D .x 1=x 2=25 答案:B分析:先移项,再通过直接开平方法进行解方程即可. 解:x 2−25=0, 移项得:x 2=25,开平方得:x 1=5,x 2=﹣5, 故选B .小提示:本题主要考查用开平方法解一元二次方程,解题关键在于熟练掌握开平方方法. 8、关于x 的方程x (x ﹣5)=3(x ﹣5)的根是( ) A .x =5B .x =﹣5C .x 1=﹣5;x 2=3D .x 1=5;x 2=3 答案:D分析:利用因式分解法求解可得. 解:∵x (x ﹣5)﹣3(x ﹣5)=0,∴(x ﹣5)(x ﹣3)=0,则x ﹣5=0或x ﹣3=0, 解得x =5或x =3, 故选:D .小提示:本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.9、用配方法解一元二次方程3x 2+6x −1=0时,将它化为(x +a )2=b 的形式,则a +b 的值为( ) A .103B .73C .2D .43 答案:B分析:将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,继而得出答案.解:∵3x2+6x−1=0,∴3x2+6x=1,x2+2x=13,则x2+2x+1=13+1,即(x+1)2=43,∴a=1,b=43,∴a+b=73.故选:B.小提示:本题考查了解一元二次方程,能够正确配方是解此题的关键.10、下列一元二次方程中,有两个不相等实数根的是()A.x2−x+14=0B.x2+2x+4=0C.x2-x+2=0D.x2-2x=0答案:D分析:逐一分析四个选项中方程的根的判别式的符号,由此即可得出结论.A.此方程判别式Δ=(−1)2−4×1×14=0,方程有两个相等的实数根,不符合题意;B.此方程判别式Δ=22−4×1×4=−12<0,方程没有实数根,不符合题意;C.此方程判别式Δ=(−1)2−4×1×2=−7<0,方程没有实数根,不符合题意;D .此方程判别式Δ=(−2)2−4×1×0=4>0,方程有两个不相等的实数根,符合题意;所以答案是: D.小提示:此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.填空题11、“降次”是解一元二次方程的基本思想,用这种思想解高次方程x3-x=0,它的解是_____________.答案:x1=0,x2=−1,x3=1分析:先把方程的左边分解因式,再化为三个一次方程进行降次,再解一次方程即可.解:∵x3−x=0,∴x(x+1)(x−1)=0,则x=0或x+1=0或x−1=0,解得:x 1=0,x 2=−1,x 3=1. 所以答案是:x 1=0,x 2=−1,x 3=1.小提示:本题考查的是利用因式分解的方法把高次方程转化为一次方程,掌握“因式分解的方法与应用”是解本题的关键.12、在解一元二次方程x 2+px +q =0时,小明看错了系数p ,解得方程的根为1和﹣3;小红看错了系数q ,解得方程的根为4和﹣2,则p =________,q =________. 答案: ﹣2 ﹣3分析:由小明看错了系数p 知常数项q 无误,根据所得两根之积可得q 的值;由小红看错了系数q 知一次项系数p 无误,根据所得两根之和可得p 和q 的值. 解:∵小明看错了系数p ,解得方程的根为1和−3, ∴q =1×(﹣3)=﹣3,∵小红看错了系数q ,解得方程的根为4和−2, ∴−p =4−2=2, ∴p =−2,所以答案是:﹣2;﹣3.小提示:本题主要考查根与系数的关系,x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=﹣ba,x 1•x 2=ca ,解题关键熟记根与系数的关系.13、从前有一人拿着竹竿进城,横拿竖拿都进不去,横着比城门宽43m ,竖着比城门高23m ,一个聪明人告诉他沿着城门的两对角斜着拿杆,这个人试了试,不多不少刚好进去了.你知道竹竿有多长吗?设竹竿的长为x m ,请列出符合条件的方程______(要求化为一般式). 答案:x 2−4x +209=0分析:用竹竿表示出门框的边长,根据门框的边长的平方和等于竹竿的长的平方列方程即可. 解:设竹竿的长为x 米.由题意得: (x −23)2+(x −43)2=x 2 , 化简得:x 2−4x +209=0所以答案是:x2−4x+20=09小提示:本题考查一元二次方程的应用,得到门框的边长和竹竿长的等量关系是解决本题的关键.14、方程3x2−8x+1=0的一次项系数是______.答案:-8分析:根据一元二次方程的一般形式解答.解:方程3x2−8x+1=0的一次项是−8x,其系数是−8.故答案是:−8.小提示:本题考查一元二次方程的一般式,解题的关键是掌握一次项系数的定义.15、已知一元二次方程x2−14x+48=0的两个根是菱形的两条对角线长,则这个菱形的周长______.答案:20分析:求出一元二次方程的两个根,根据菱形的对角线互相垂直平分,利用勾股定理可得答案.解:x2−14x+48=(x−6)(x−8)=0,则x1=6,x2=8,即菱形的两条对角线长分别为6和8,则菱形的边长为√32+42=5,故菱形的周长为5×4=20,故答案为20小提示:本题考查解一元二次方程,菱形的性质,周长的求法,正确掌握一元二次方程的解法、菱形的性质,是解题的关键.解答题16、解方程:(1)(x+8)2=36;(2)x(5x+4)-(4+5x)=0;(3)x2+3=3(x+1);(4)2x2-x-6=0.答案:(1)x1=-2,x2=-14(2)x1=1,x2=-45(3)x1=0,x2=3(4)x1=2,x2=-32分析:(1)利用直接开平方法求解;(2)利用因式分解法进行计算即可;(3)整理后,利用因式分解法求解即可;(4)利用公式法求解.(1)解:(x+8)2=36,∴x+8=±6,解得:x1=-2,x2=-14;(2)解:x(5x+4)-(4+5x)=0(x-1)(5x+4)=0,∴x-1=0,5x+4=0,;解得:x1=1,x2=-45(3)解:x2+3=3(x+1)∴x2-3x=0,即x(x-3)=0,∴x=0,x-3=0,解得:x1=0,x2=3;(4)解:2x2-x-6=0,∵a=2,b=-1,c=-6,∴Δ=b2-4ac=(-1)2-4×2×(-6)=49,∴x=1±√492×2=1±74,解得:x1=2,x2=-32.小提示:本题考查了解一元二次方程——因式分解法和公式法,熟练掌握解一元二次方程的方法是解题的关键.17、阅读下面内容,并答题:我们知道,计算n边形的对角线条数公式为12n(n-3).如果一个n边形共有20条对角线,那么可以得到方程12n(n-3)=20.解得n=8或n=-5(舍去),∴这个n边形是八边形.根据以上内容,问:(1)若一个多边形共有9条对角线,求这个多边形的边数;(2)小明说:“我求得一个n边形共有10条对角线”,你认为小明同学的说法正确吗?为什么?答案:(1)6(2)错误,理由见解析分析:(1)利用题中给出的对角线条数公式即可求解;(2)利用题中给出的对角线条数公式列出一元二次方程,求解方程的根,根据方程是否有正整数解来判断即可.(1)设这个多边形的边数是n,则12n(n-3)=9,解得n=6或n=-3(舍去).∴这个多边形的边数是6;(2)小明同学的说法是不正确的,理由如下:由题可得12n(n-3)=10,解得n=3±√892,∴符合方程的正整数n不存在,∴n边形不可能有10条对角线,故小明的说法不正确.小提示:本题主要考查了一元二次方程的应用,通过方程是否有正整数解来判断是否存在有10条对角线的多边形是解答本题的关键.18、已知x1,x2是一元二次方程x2−2x+k+2=0的两个实数根.(1)求k的取值范围;(2)是否存在实数k,使得等式1x1+1x2=k−2成立?如果存在,请求出k的值,如果不存在,请说明理由.答案:(1)k≤−1;(2)k=−√6分析:(1)根据方程的系数结合Δ≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(2)根据根与系数的关系可得出x1+x2=2,x1x2=k+2,结合1x1+1x2=k−2,即可得出关于k的方程,解之即可得出k值,再结合(1)即可得出结论.解:(1)∵一元二次方程有两个实数根,∴Δ=(−2)2−4(k+2)⩾0解得k≤−1;(2)由一元二次方程根与系数关系,x1+x2=2,x1x2=k+2∵1x1+1x2=k−2,∴x1+x2x1x2=2k+2=k−2即(k+2)(k−2)=2,解得k=±√6.又由(1)知:k≤−1,∴k=−√6.小提示:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合1x1+1x2=k−2,找出关于k的方程.。
人教版九年级数学上册第21章《一元二次方程》知识点小结与复习
当 a 0 时,它不是一元二次方程.
方程2ax2 -2bx+a=4x2, (1)在什么条件下此方程为一元二次方程? (2)在什么条件下此方程为一元一次方程?
解: 原方程转化为(2a-4)x2 -2bx+a=0 当a≠2时是一元二次方程; 当a=2,b≠0时是一元一次方程;
m=
。
3、当m
时,关于x的方程3x2-
2(3m+1)x+3m2-1=0有两个不相等的实数
根。
4、关于x的一元二次方程mx2+(2m-1)x-
2=0的根的判别式的值等于4,则m=
。
一元二次方程的根与系数的关系: (韦达定理)
如果方程ax2+bx+c=0(a≠0)的两个根是X1 , X2 ,
那么X1+x2= -
2(a-2)x+a2-5=0有实数根,且两 根之积等于两根之和的2倍,求a的值。
【例4】已知x1,x2是关于x的方程 x2+px+q=0的两根,x1+1,x2+1是关 于x的方程x2+qx+p=0的两根,求常 数p、q的值。
拓展练习:
1、当a,c异号时,一元二次方程ax2+bx+c=0的根的
情况是
一元二次方程的解法:(公式法)
例:(3) 2x2 3x 4 0
解: a 2,b 3,c 4
b2 4ac 32 4 24
9 32 41
3 41
x 22
3 41 3 41 x1 4 , x2 4
注:当一元二次方程二次项系数不为1且
难以用因式分解时常用公式法比较简便。
b2 4ac 0,
九年级上册数学第二十一章 一元二次方程 知识归纳
第二十一章一元二次方程21.1 一元二次方程在一个等式中,只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。
一元二次方程有四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为 ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.(4)将方程化为一般形式:ax2+bx+c=0时,应满足(a≠0)21.2解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:1、直接开平方法:用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=± m.直接开平方法就是平方的逆运算.通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
1.转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)2.系数化1:将二次项系数化为13.移项:将常数项移到等号右侧4.配方:等号左右两边同时加上一次项系数一半的平方5.变形:将等号左边的代数式写成完全平方形式6.开方:左右同时开平方7.求解:整理即可得到原方程的根3、公式法公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
这种解一元二次方程的方法叫做因式分解法。
21.3 实际问题与一元二次方程列一元二次方程解应用题是列一元一次方程解应用题的继续和发展从列方程解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决.如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等.。
九年级数学上册 第21章 一元二次方程本章小结
(2)甲、乙从开始运动到第一次相遇时,它们运动了
多少时间?
(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?
2021/12/11
第十页,共十八页。
【自主解答】(1)当t=4时,
l= ×1 42+ ×3 4=14(cm).答:甲运动4s后的路程是14cm.
2
2
(2)设它们运动了ms后第一次相遇,根据(gēnjù)题意,得:
小明设计了点做圆周运动的一个雏型(chú xínɡ).如图所示,甲、乙两点分
别从直径的两端点A,B以顺时针、逆时针的方向同时沿圆周运1 动.甲运3 动的 路程l(cm)与时间t(s)满足关系:l= t2+ t(t≥0),乙以4cm/s2的速度2 匀速
运动,半圆的长度为21cm. (1)甲运动4s后的路程是多少(duōshǎo)?
21
本章(běn zhānɡ)小结
12/11/2021
第一页,共十八页。
定义(dìngyì)
一般(yībān)形式
一 元 解法(jiě fǎ)
二
次
方
程
根与系数
的关系
应用
2021/12/11
ax2+bx+c=0(a≠0)
因式分解法
配方法
公式法
x1+x2=-b/a x1·x2=c/a
增长率问题
前提
根的判别式 △≥0
际情况.
6.答——完整地写出答案(dá àn),注意单位.
2021/12/11
第十二页,共十八页。
练习 1.(2013(·l天iàn水xí)中考)从一块正方形的木板(mù bǎn)上锯掉2m宽的长方形木条,
剩下的面积是48m2,则原来这块木板的面积是( ) A.100 m2 B.64 m2 C.121 m2 D.144 m2
人教版数学九年级上册第21章 一元二次方程知识点汇总
第二十一章 一元二次方程一、一元二次方程的概念1、只含有一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程.2、一般形式:20(0)ax bx c a ++=≠3、一元二次方程的根:使一元二次方程左右两边相等的值,叫做一元二次方程的根(解). 【注意】1、定义的隐含条件:①是整式方程;②只含有一个未知数; ③未知数的最高次数是2.2、任何一个关于x 的一元二次方程,经过整理,都能化成一般形式。
其中,2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.3、任何一个关于x 的一元二次方程经过整理都可以化为一般式20ax bx c ++=()0a ≠.对于关于x 的方程20ax bx c ++=,当0a ≠时,方程是一元二次方程;当0a =且0b ≠时,方程是一元一次方程.二、一元二次方程的解法 1.一元二次方程的解法:直接开平方法、配方法、公式法和因式分解法 2.一元二次方程解法的灵活运用直接开方法,配方法,公式法,因式分解法.在具体解题时,应当根据题目的特点选择适当的解法.(1)因式分解法:适用于右边为0(或可化为0),而左边易分解为两个一次因式积的方程,缺常数项或含有字母系数的方程用因式分解法较为简便,它是一种最常用的方法. 【注意】应用因式分解法解一元二次方程时,方程的右边必须是零.(2)公式法:适用于任何形式的一元二次方程,但必须先将方程化为一般形式,并计算24b ac -的值.求根公式:x =2(40)b ac -≥(3)直接开平方法:用于缺少一次项以及形如2ax b =或()()20x a b b +=≥或()2ax b +=()2cx d +的方程,能利用平方根的意义得到方程的解.(4)配方法:配方法是解一元二次方程的基本方法,而公式是由配方法演绎得到的.把一元二次方程的一般形式20ax bx c ++=(a 、b 、c 为常数,0a ≠)转化为它的简单形式2Ax B =,这种转化方法就是配方,具体方法为: 2ax bx c ++22222244424b b b b ac b a x x c a x a a a a a ⎛⎫⎛⎫-⎛⎫=+++-=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.所以方程20ax bx c ++=(a 、b 、c 为常数,0a ≠)就转化为22424b ac b a x a a -⎛⎫++ ⎪⎝⎭的形式,即222424b b ac x a a -⎛⎫+= ⎪⎝⎭,之后再用直接开平方法就可得到方程的解.三、根的判别式1、一元二次方程根的判别式:24b ac ∆=-2、根的判别式用来判别根的个数情况:(1)0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根1,2x =(2)0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-. (3)0∆<⇔方程20(0)ax bx c a ++=≠没有实数根. 3、一元二次方程根的判别式的应用 (1)不解方程,判别方程根的情况;(2)根据方程根的情况,确定方程中字母系数的值或取值范围; (3)讨论因式分解问题及方程组的解的情况.四、根与系数的关系——韦达定理1、设一元二次方程20ax bx c ++=的两个根为12x x ,,则两个根满足:1212b cx x x x a a+=-⋅=,2、韦达定理的重要推论推论1:如果方程20x px q ++=的两个根是12x x ,,那么1212x x p x x q +=-⋅=,. 推论2:以两个数12x x ,为根的一元二次方程(二次项系数为1)是21212()0x x x x x x -++= 3、利用根与系数的关系,可知一元二次方程20(0)ax bx c a ++=≠有如下重要的结论:(1)若两根互为相反数,则0ba -=,得0b =;(2)若两根互为倒数,则1c a =,得a c =;若两根互为负倒数,则1ca =-,得a c =-; (3)若有一个根是零,则0ca=,得0c =; (4)若两根都为零,则0b a -=,0ca =,得0b =,0c =;(5)若有一根为1,则0a b c ++=;若有一根为1-,则0a b c -+=.4、几个常见转化;;或;;;⎪⎩⎪⎨⎧<-+-=--≥-+=-=-+-=+-+=+-+=--+=+)x x (x x 4)x x ()x x ()x x (x x 4)x x ()x x (x x 2)x 1x (x1x 2)x 1x (x 1x x x 4)x x ()x x (x x 2)x x (x x )1(212122122121212212212122222221221221212212221(2)222121212()2x x x x x x +=+-;(3)12121211x x x x x x ++=;(4)22121212()()4x x x x x x -=+-;(5)12||x x -=(6)2212121212()x x x x x x x x +=+;(7)22111212121222212()4x x x x x x x x x x x x x x ++-+==.五、用一元二次方程解决实际问题 1、面积最大化问题 2、利润最大化问题 3、增长率问题 4、传播问题 5、动点问题解题方法技巧1、一元二次方程的整数根问题:对于一元二次方程20ax bx c ++=(0)a ≠的实根情况,可以用判别式24b ac ∆=-来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质. 方程有整数根的条件:如果一元二次方程20ax bx c ++=(0)a ≠有整数根,那么必然同时满足以下条件: (1) 24b ac ∆=-为完全平方数;(2)2b ak -+或2b ak --,其中k 为整数.以上两个条件必须同时满足,缺一不可.另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中a 、b 、c 均为有理数)2、公共根问题二次方程的公共根问题的一般解法:设公共根,代入原方程(两个或以上),然后通过恒等变形求出参数的值和公共根.3、把一元二次方程根的判别式和根与系数的关系结合起来,判别讨论一元二次方程根的符号常常需要解不等式组.对于方程20(0)ax bx c a ++=≠,则: (1)有两正根的条件是:121200(0)0(0)cx x a bx x a⎧⎪∆⎪⎪>⋅>⎨⎪⎪->+>⎪⎩≥(2)有两负根的条件是:121200(0)0(0)cx x a bx x a⎧⎪∆⎪⎪>⋅>⎨⎪⎪-<+<⎪⎩≥(3)有一个正跟一个负根:121200(0)0(0)c x x a b x x a ⎧⎪∆>⎪⎪<⋅<⎨⎪⎪->+>⎪⎩正根的绝对值较大 121200(0)0(0)cx x a b x x a⎧⎪∆>⎪⎪<⋅<⎨⎪⎪-<+<⎪⎩负根的绝对值较大(4)有一零根一正根的条件是:121200(0)0(0)cx x a bx x a⎧⎪∆>⎪⎪=⋅=⎨⎪⎪->+>⎪⎩(5)有一零根一负根的条件是:121200(0)0(0)cx x a bx x a ⎧⎪∆>⎪⎪=⋅=⎨⎪⎪-<+<⎪⎩(6)有两个零根的条件是:121200(0)0(0)cx x a bx x a⎧⎪∆=⎪⎪=⋅=⎨⎪⎪-=+=⎪⎩。
九年级数学上册第二十一章一元二次方程基础知识点归纳总结(带答案)
九年级数学上册第二十一章一元二次方程基础知识点归纳总结单选题1、方程3x2+10=2x2+6根的情况是()A.有两个不相等的实数根B.有两个相等的实数根名C.没有实数根D.无法判断答案:C分析:根据一元二次方程根的判别式判断即可.原方程变形为,3x2+10−2x2−6=0,即x2+4=0,则a=1,b=0,c=4,∴Δ=b2−4ac=0−4=−4即Δ<0;故原方程没有实数根.故选C.小提示:本题考查一元二次方程根的判别式,解决本题的关键是找准方程的各系数.2、若关于x的一元二次方程ax2+2x−1=0有两个不相等的实数根,则a的取值范围是()A.a≠0B.a>−1且a≠0C.a≥−1且a≠0D.a>−1答案:B分析:根据一元二次方程的定义和根的判别式得出a≠0,Δ=22-4a×(-1)=4+4a>0,再求出即可.解:∵关于x的一元二次方程ax2+2x-1=0有两个不相等的实数根,∴a≠0,Δ=22-4a×(-1)=4+4a>0,解得:a>-1且a≠0,故选:B.小提示:本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0),当b2-4ac>0时,方程有两个不相等的实数根;当b2-4ac=0时,方程有两个相等的实数根;当b2-4ac<0时,方程没有实数根.3、若关于x的一元二次方程ax2+bx+5=0(a≠0)有一根为2022,则方程a(x+1)2+b(x+1)=−5必有根为()A.2022B.2020C.2019D.2021答案:D分析:设t=x+1,即a(x+1)2+b(x+1)=−5可改写为at2+bt+5=0,由题意关于x的一元二次方程ax2+bx+5=0(a≠0)有一根为x=2022,即at2+bt+5=0有一个根为t=2022,所以x+1=2022,x=2021.由a(x+1)2+b(x+1)=−5得到a(x+1)2+b(x+1)+5=0,对于一元二次方程a(x+1)2+b(x+1)=−5,设t=x+1,所以at2+bt+5=0,而关于x的一元二次方程ax2+bx+5=0(a≠0)有一根为x=2022,所以at2+bt+5=0有一个根为t=2022,则x+1=2022,解得x=2021,所以一元二次方程a(x+1)2+b(x+1)=−5有一根为x=2021.故选:D.小提示:本题考查一元二次方程的解.掌握换元法解题是解答本题的关键.4、用配方法解一元二次方程x210x+11=0,此方程可化为()A.(x-5)2=14B.(x+5)2=14C.(x-5)2=36D.(x+5)2=36答案:A分析:移项后两边都加上一次项系数一半的平方,写成完全平方式即可.x210x+11=0,x2-10x=-11,x2-10x+25=-11+25,即(x-4)2=14,故选:A.小提示:本题考查了运用配方法解一元二次方程,熟练掌握配方法是解题的关键.5、南宋数学家杨辉所著《田亩比类乘除算法》中记载:“直田积八百六十四步,只云阔与长共六十步,问阔及长各几步.”意思是:一块矩形田地的面积是864平方步,它的宽和长共60步,问它的宽和长各多少步?设它的宽为x步,则可列方程为()A.x⋅(60+x)=864B.x⋅(60−2x)=864C.x⋅(30−x)=864D.x⋅(60−x)=864答案:D分析:设它的宽为x步,则长为(60-x)步,根据面积列出方程即可得出结果.解:设它的宽为x步,则长为(60-x)步,∴x(60-x)=864,故选:D.小提示:题目主要考查一元二次方程的应用,理解题意是解题关键.6、已知x=a是一元二次方程x2−2x−3=0的解,则代数式2a2−4a的值为()A.3B.6C.﹣3D.﹣6答案:B分析:把x=a代入一元二次方程x2−2x−3=0,得a2-2a-3=0,再变形,得a2-2a=3,然后方程两边同乘以2,即可求解.解:把x=a代入一元二次方程x2−2x−3=0,得a2-2a-3=0,∴a2-2a=3,∴2a2-4a=6,故选:B.小提示:本题考查一元二次方程的解,代数式求值,熟练掌握方程的解是使方程左右两边相等的未知数值是解题的关键.7、已知关于x 的一元二次方程x 2+mx +3=0有两个实数根x 1=1,x 2=n ,则代数式(m +n )2022的值为( ) A .1B .0C .32022D .72022答案:A分析:直接利用根与系数的关系得出两根之和,进而得出答案.解:∵关于x 的一元二次方程x 2+mx +3=0有两个实数根x 1=1,x 2=n ,∴1+n =-m ,解得:m +n =-1,故(m +n )2022=1.故选:A .小提示:此题主要考查了根与系数的关系,正确得出m +n 的值是解题关键.8、设方程x 2−3x +2=0的两根分别是x 1,x 2,则x 1+x 2的值为( )A .3B .−32C .32D .−2答案:A分析:本题可利用韦达定理,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可. 由x 2−3x +2=0可知,其二次项系数a =1,一次项系数b =−3,由韦达定理:x 1+x 2 =−b a =−(−3)1=3,故选:A .小提示:本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也可以通过韦达定理提升解题效率.9、有一块矩形铁皮,长50cm ,宽30cm ,在它的四个角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,要制作的无盖方盒的底面积为800cm 2.设切去的正方形的边长为x cm ,可列方程为( )A.4x2=800B.50×30−4x2=800C.(50−x)(30−x)=800D.(50−2x)(30−2x)=800答案:D分析:根据题意求得底面的长为(50−2x),宽为(30−2x),即可求解.设切去的正方形的边长为x cm,则底面的长为(50−2x),宽为(30−2x),则(50−2x)(30−2x)=800故选:D小提示:本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.10、关于x的方程x2−3kx−2=0实数根的情况,下列判断正确的是()A.有两个相等实数根B.有两个不相等实数根C.没有实数根D.有一个实数根答案:B分析:根据根的判别式直接判断即可得出答案.解:对于关于x的方程x2−3kx−2=0,∵Δ=(−3k)2−4×1×(−2)=9k2+8>0,∴此方程有两个不相等的实数根.故选B.小提示:此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.填空题11、某海洋养殖场每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖场第一年的可变成本为2.6万元,第三年的养殖成本为7.146万元,设可变成本平均每年增长的百分率为x,则可列方程为_____.答案:2.6(1+x)2=7.146−4分析:根据题意可求出第三年的可变成本为(7.146-4)万元,再用x表示出第三年的可变成本,即可列出等式,即得出答案.设可变成本平均每年增长的百分率为x,则可列方程为:2.6(1+x)2=7.146−4.所以答案是:2.6(1+x)2=7.146−4.小提示:本题考查由实际问题抽象出一元二次方程.理解题意,找出等量关系,列出等式是解题关键.12、设x1,x2是关于x的方程x2−6x+k=0的两个根,且x1=2x2,则k=______.答案:8分析:根据根与系数的关系得出x1+x2=6、x1⋅x2=k,再根据x1=2x2求得x2=2,代入k的表达式,求解即可.解:x1,x2是关于x的方程x2−6x+k=0的两个根,∴x1+x2=6,x1⋅x2=k,∵x1=2x2,∴2x2+x2=3x2=6,即x2=2,则k=x1⋅x2=2(x2)2=2×4=8,所以答案是:8.小提示:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.13、如图1,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD 向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图2所示,则AD边的长为________.答案:5分析:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为5,得到AB与BC的积为20;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为9,得到AB与BC的和为9,构造关于AB的一元二方程可求解.解:由图象与题意知可知,当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为5,∴12AB⋅12BC=5,即AB⋅BC=20.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为9,∴AB+BC=9.则BC=9−AB,代入AB·BC=20,得AB2−9AB+20=0,解得AB=4或AB=5,∵AB<AD,即AB<BC,∴AB=4,BC=5,∴AD=BC=5.所以答案是:5.小提示:本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.14、一元二次方程(x−2)(x+7)=0的根是_________.答案:x1=2,x2=−7分析:由两式相乘等于0,则这两个式子均有可能为0即可求解.解:由题意可知:x −2=0或x +7=0,∴x 1=2或x 2=−7,所以答案是:x 1=2或x 2=−7.小提示:本题考查一元二次方程的解法,属于基础题,计算细心即可.15、对于实数m ,n ,先定义一种断运算“⊗”如下:m ⊗n ={m 2+m +n ,当m ≥n 时n 2+m +n ,当m <n 时,若x ⊗(−2)=10,则实数x 的值为___.答案:3分析:根据定义,分x ≥-2和x <-2两种情况进行解方程,得出x 的值.解:当x ≥-2时,x 2+x -2=10,解得:x 1=3,x 2=-4(不合题意,舍去);当x <-2时,(-2)2+x -2=10,解得:x =8(不合题意,舍去);∴x =3.所以答案是:3.小提示:本题考查了解一元二次方程,体现了分类讨论的数学思想,分x ≥-2和x <-2两种情况进行解方程是解题的关键.解答题16、已知长方形硬纸板ABCD 的长BC 为40cm ,宽CD 为30cm ,按如图所示剪掉2个小正方形和2个小长方形(即图中阴影部分),剩余部分恰好能折成一个有盖的长方体盒子,设剪掉的小正方形边长为x cm (纸板的厚度忽略不计)(1)EF= cm,GH= cm;(用含x的代数式表示)(2)若折成的长方体盒子底面M的面积为300cm2,求剪掉的小正方形的边长.答案:(1)(30-2x);(20-x)(2)5cm分析:(1)根据所给出的图形可直接得出EF与GH即可;(2)根据(1)得到EF与GH,结合M的面积列出方程(30-2x)(20-x)=300,求出x的值即可.(1)解:由图示可得:EF=(30-2x)cm,GH=(40÷2-x)cm=(20-x)cm.故答案为(30-2x),(20-x).(2)解:设剪掉的小正方形边长为x cm,x<30由题意可得(30-2x)(20-x)=300解得:x=5或x=30(舍去).答:剪掉的小正方形的边长5cm.小提示:本题主要考查了列代数式、一元二次方程的应用等知识点,根据图示列出一元二次方程是解答本题的关键.17、解方程:(1)x2﹣4x+2=0:(2)(x﹣1)2﹣x+1=0.答案:(1)x1=2+√2,x2=2−√2(2)x1=1,x2=2分析:(1)方程利用配方法求出解即可;(2)方程利分解因式法求出解即可.(1)x2﹣4x+2=0方程整理得:x2-4x=-2,配方得:x2-4x+4=2,即(x-2)2=2,开方得:x-2=±√2解得,x1=2+√2,x2=2−√2;(2)(x﹣1)2﹣x+1=0(x﹣1)2﹣(x-1)=0(x−1)(x−2)=0x−1=0,x−2=0∴x1=1,x2=2小提示:此题考查了解一元二次方程-公式法,以及配方法,熟练掌握各自的解法是解本题的关键.18、解方程:(1)(x−1)2−9=0.(2)x2−2x−5=0.答案:(1)x1=4,x2=−2;(2)x1=1+√6,x2=1−√6.分析:(1)两边开方,即可得出两个一元一次方程,求出方程的解即可;(2)先配方,再开方,即可得出两个一元一次方程,求出方程的解即可.(1)解:(x−1)2−9=0,∴x−1=±3,解得:x1=4,x2=−2;(2)解:x2−2x−5=0,x2−2x=5,x2−2x+1=5+1,(x−1)2=6,∴x−1=±√6,∴x1=1+√6,x2=1−√6.小提示:本题考查了直接开平方法和配方法解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.。
人教版九年级上册数学第21章 一元二次方程知识点复习总结
一元二次方程知识点复习总结1. 一元二次方程的一般形式: a ≠0时,ax 2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a 、 b 、 c ; 其中a 、 b,、c 可能是具体数,也可能是含待定字母或特定式子的代数式. 2. 一元二次方程的解法: 一元二次方程的四种解法要求灵活运用, 其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3. 一元二次方程根的判别式: 当ax 2+bx+c=0 (a ≠0)时,Δ=b 2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:Δ>0 <=> 有两个不等的实根; Δ=0 <=> 有两个相等的实根; Δ<0 <=> 无实根; Δ≥0 <=> 有两个实根(等或不等). 4. 一元二次方程的根系关系: 当ax 2+bx+c=0 (a ≠0) 时,如Δ≥0,有下列公式: .acx x abx x )2(a 2ac 4b b x )1(212122,1=-=+-±-=,; ※ 5.当ax 2+bx+c=0 (a ≠0) 时,有以下等价命题: (以下等价关系要求会用公式 ac x x a b x x 2121=-=+,;Δ=b 2-4ac 分析,不要求背记) (1)两根互为相反数 ⇔ ab-= 0且Δ≥0 ⇔ b = 0且Δ≥0; (2)两根互为倒数 ⇔ ac=1且Δ≥0 ⇔ a = c 且Δ≥0; (3)只有一个零根 ⇔ ac = 0且a b-≠0 ⇔ c = 0且b ≠0;(4)有两个零根 ⇔ac = 0且a b-= 0 ⇔ c = 0且b=0;(5)至少有一个零根 ⇔ ac=0 ⇔ c=0; (6)两根异号 ⇔ac<0 ⇔ a 、c 异号; (7)两根异号,正根绝对值大于负根绝对值⇔ ac <0且a b->0⇔ a 、c 异号且a 、b 异号;(8)两根异号,负根绝对值大于正根绝对值⇔ ac <0且a b-<0⇔ a 、c 异号且a 、b 同号;(9)有两个正根 ⇔ac >0,a b->0且Δ≥0 ⇔ a 、c 同号, a 、b 异号且Δ≥0;(10)有两个负根 ⇔ac >0,a b-<0且Δ≥0 ⇔ a 、c 同号, a 、b 同号且Δ≥0.6.求根法因式分解二次三项式公式:注意:当Δ< 0时,二次三项式在实数范围内不能分解.ax 2+bx+c=a(x-x 1)(x-x 2) 或 ax 2+bx+c=⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛-+--a 2ac 4b b x a 2ac 4b b x a 22.7.求一元二次方程的公式:x 2-(x 1+x 2)x + x 1x 2 = 0. 注意:所求出方程的系数应化为整数.8.平均增长率问题--------应用题的类型题之一 (设增长率为x ): (1) 第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.(2)常利用以下相等关系列方程: 第一年+第二年+第三年=总和. 9.分式方程的解法:.0)1(≠),值(或原方程的每个分母验增根代入最简公分母公分母两边同乘最简去分母法.0.2≠分母,值验增根代入原方程每个换元凑元,设元,换元法)(10. 二元二次方程组的解法:.0)3(0)2(0)4(0)1(0)4(0)2(0)3(0)1(0)4)(3(0)2)(1()3(;02;1⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧===------分组为应注意:的方程)()(中含有能分解为方程组)分解降次法(程中含有一个二元一次方方程组法)代入消元(※11.几个常见转化:;;或;;;⎪⎩⎪⎨⎧<-+-=--≥-+=-=-+-=+-+=+-+=--+=+)x x (x x 4)x x ()x x ()x x (x x 4)x x ()x x (x x 2)x 1x (x1x 2)x 1x (x1x x x 4)x x ()x x (x x 2)x x (x x )1(212122122121212212212122222221221221212212221⎪⎩⎪⎨⎧=--=-=-⇒=-4x x .22x x 2x x .12x x )2(221212121)两边平方为(和分类为 ;⎪⎩⎪⎨⎧-==⇒==.,)2(34x x 34x x )1()916x x (34x x )3(2121222121因为增加次数两边平方一般不用和分类为或 ;.0x ,0x :.1x x B sin A cos ,1A cos A sin ,90B A B sin x ,A sin x )4(2122212221>>=+==+︒=∠+∠==注意隐含条件可推出由公式时且如.0x ,0x :.x ,x ),,(,x ,x )5(212121>>注意隐含条件的关系式推导出含有公式等式面积例如几何定理,相似形系可利用图形中的相等关时若为几何图形中线段长.k ,)6(”辅助未知元“引入些线段的比,并且可把它们转化为某比例式、等积式等条件角三角形、三角函数、如题目中给出特殊的直.,;,)7(知数的关系但总可求出任何两个未般求不出未知数的值少一个时,一方程个数比未知数个数一般可求出未知数的值数时方程个数等于未知数个。
人教版九年级数学上第21章一元二次方程复习与小结课件
广东省怀集县观塘初级中学
韩文丽
二、强化训练
1、一个小组若干人,新年互送贺卡,若全组 共送贺卡72张,则这个小组共 9 人。
2、一个两位数等于它的个位数的平方,且各 位数字比十位数字大3,则这个两位数为
25或36
3、若关于x的一元二次方程ax²-2x+6=0有两
个实数根,求a的取值范围。
解:依题意得a≠0,
即3x= 6 ∴
5
∴
3
-
2 5
m 5
x 2 5
即 m=-13
广东省怀集县观塘初级中学
韩文丽
知识点二 降次——解一元二次方程
1、配方法 配方是为了降次,把一个一元二次方程转化为 两个 一元二次方程来解。
步骤:
①方程化为一般情势; ②移项,使方程左边为二次项和一次项,右边 为常数项;
③化二次项系数为1;
x2
-
b a
0
即k+1=0
∴k=-1
(2) x1
x2
c a
1
即 k-2=1
∴K=3
(3)x1 x2 k 2 0
∴K=2
广东省怀集县观塘初级中学
韩文丽
我相信,只要大家勤 于思考,勇于探索,一定 会获得很多的发现,增长 更多的见识,谢谢大家, 再见!
广东省怀集县观塘初级中学
韩文丽
2、已知2和-1是关于x的方程2x²+mx+n=0 的两个根,则m的值为 -2 ,n的值为 -4
3、已知方程3x²+2x-3=0的两根为 x1, x2 ,
则 x1 x2
2 3
x1 x2 -1
=
22 9
。
广东省怀集县观塘初级中学
第21章 一元二次方程小结与复习 人教版数学九年级上册课件
转化为一般 式,判断 Δ
考点四 一元二次方程的根与系数的关系
例5 已知一元二次方程 x2 - 4x - 3 = 0 的两根为 m,n, 则 m2 - mn + n2 = 25 .
总结 重要公式变形:
练一练
2. 已知关于 x 的一元二次方程 x2 + 2mx + m2 + m = 0 有 两个实数根.
第二十一章 一元二次方程
小结与复习
人教版九年级(上)
单元结构图
设未知数,列方程 实际问题
一元二次方程
ax2 + bx + c = 0
配方法
解 方 程
公式法 因式分解法
降 次
实际问题 的答案
检验 方程 ax2 + bx + c = 0 的根
1. 一元二次方程的三个判断条件: ①方程两边都是整式; ②只含有一个未知数; ③未知数的最高次数是 2.
2. 根的判别式与根与系数的关系:
Δ > 0,方程有两个不等的实数根
根的判别式 Δ = b2 − 4ac
Δ = 0,方程有两个相等的实数 根 Δ < 0,方程无实数根
根
*根与系数的关系
3. 解一元二次方程几种方法:
直接开平方法
(mx + n)2 = p (p≥0,m≠0)
配方法 解
法
公式法
(mx + n)2 = p (p≥0)
即
(2) (2x − 1)2 = (3 − x)2.
解:直接开方法: 2x −1=±(3 - x), 即 2x −1 = 3 − x, 或 2x − 1 = −3 + x. ∴ x1 = ,x2 = −2.
初中数学九年级上册第二章 小结与复习
解得 x1=1.8 (舍去), x2=0.2=20%.
答:平均每次下调的百分率是20%.
例8 为了响应市委政府提出的建设绿色家园的号召,我 市某单位准备将院内一个长为30m,宽为20m的长方形空 地,建成一个矩形的花园,要求在花园中修两条纵向平 行和一条弯折的小道,剩余的地方种植花草,如图所示, 要是种植花草的面积为532m2,,那么小道的宽度应为多 少米?(所有小道的进出口的宽度相等,且每段小道为 平行四边形) 解:设小道进出口的宽为xcm (30-2x)(20-x)=532 x2-35x+34=0 x1=1 x2=34(舍去) 答:小道进出口的宽度应为1米.
针对训练
3.菱形ABCD的一条对角线长为6,边AB的长是方程 x2-7x+12=0的一个根,则菱形ABCD的周长为( A )
A. 16
B. 12
C. 16或12 D. 24
4.用公式法和配方法分别解方程:x2-4x-1=0
(要求写出必要解题步骤).
公式法:a 1,b -4,c -1.
A. x2+x=0
C.3x2-4x+1=0
B. 5x2-4x-1=0
D. 4x2-5x+2=0
6.(开放题)若关于x的一元二次方程x2-x+m=0有两个
不相等的实数根,则m的值可能是 0 (写出一个即
可).
考点五 一元二次方程的根与系数的关系 例5 已知一元二次方程x2-4x-3=0的两根为m,n,
(2)设元:就是设未知数,分直接设与间接设,应根据实际需要恰当选取设元法.
(3)列方程:就是建立已知量与未知量之间的等量关系.列方程这一环节最重 要,决定着能否顺利解决实际问题.
(4)解方程:正确求出方程的解并注意检验其合理性.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解得 x1=1.8 (舍去), x2=0.2=20%. 答:平均每次下调的百分率是20%.
例8 为了响应市委政府提出的建设绿色家园的号召,我 市某单位准备将院内一个长为30m,宽为20m的长方形空 地,建成一个矩形的花园,要求在花园中修两条纵向平 行和一条弯折的小道,剩余的地方种植花草,如图所示, 要是种植花草的面积为532m2,,那么小道的宽度应为多 少米?(所有小道的进出口的宽度相等,且每段小道为 平行四边形)
(注意:这里的横坚斜小路的的宽度都相等)
课堂小结
一元二次方 程的定义
概念:①整式方程; ②一元; ③二次. 一般形式:ax2+bx+c=0 (a≠0)
直接开平方法
一元二次方 程的解法
一元二次方程
配方法 公式法
x b b2 4ac (b2 4ac 0) 2a
因式分解法
根的判别式及 根与系数的关系
解得 x1=25, x2=35. 由题意x≤28, ∴x=25,即售价应当为25元.
【易错提示】销售量在正常销售的基础上进行减少.要注意验根.
平均变化率问题
例7 菜农小王种植的某种蔬菜,计划以每千克5元的价格 对外批发销售.由于部分菜农盲目扩大种植,造成该种蔬 菜滞销.小王为了加快销售,减少损失,对价格经过两次 下调后,以每千克3.2元的价格对外批发销售.求平均每 次下调的百分率是多少?
针对训练
3.菱形ABCD的一条对角线长为6,边AB的长是方程 x2-7x+12=0的一个根,则菱形ABCD的周长为( A )
A. 16 B. 12 C. 16或12 D. 24
4.用公式法和配方法分别解方程:x2-4x-1=0 (要求写出必要解题步骤).
公式法:a 1,b -4,c -1.
解:设小道进出口的宽为xcm (30-2x)(20-x)=532
x2-35x+34=0 x1=1 x2=34(舍去) 答:小道进出口的宽度应为1米.
方法总结 解决有关面积问题时,除了对所学图形面积公式熟悉外,还要
会将不规则图形分割或组合成规则图形,并找出各部分图形面积之 间的关系,再列方程求解.
平移转化
A. m 4 B. m<2
3
C. m ≥0
D. m<0
解析 根据方程根的情况可知,此方程的根的判别式 Δ >0,即 42-4×1×(-3m)=16+12m>0,解得m 4 ,故选A.
3
【易错提示】应用根的判别式之前务必将方程化为一般形式, 这样能帮助我们正确确定a,b,c的值.
针对训练
针对训练
1.方程5x2-x-3=x2-3+x的二次项系数是 4
项系数是 -2 ,常数项是 0
.
,一次
考点二 一元二次方程的根的应用 例2 若关于x的一元二次方程(m-1)x2+x+m2-1=0有一 个根为0,则m= -1 .
解析 根据一元二次方程根的定义可知将x=0代入原方程一定 会使方程左右两边相等,故只要把x=0代入就可以得到以m为 未知数的方程m2-1=0,解得m=±1的值.这里应填-1.这种题的 解题方法我们称之为“有根必代”.
解析 根据根与系数的关系可知,m+n=4,mn=-3. m2-mn+n2 =m2+n2-mn=(m+n)2-3mn=42-3 ×(-3)=25.故填25.
【重要变形】 ①x12 x22 (x1 x2 )2 2x1x2;
②(x1 x2 )2
(x1
x2 )2
4x1x2
③
1 x1
第二十一章 一元二次方程
小结与复习
要点梳理
一、一元二次方程的基本概念
1.定义: 只含有一个未知数的整式方程,并且都可以化为
ax2+bx+c=0(a,b,c为常数,a≠0)的形式,这样的 方程叫做一元二次方程. 2.一般形式:
ax2 + bx +c=0 (a,b,c为常数,a≠0)
3.项数和系数: ax2 + bx +c=0 (a,b,c为常数,a≠0)
解析 本题为销售中的利润问题,其基本本数量关系用表析分如
下:设公司每天的销售价为x元.
单件利润 销售量(件) 每星期利润(元)
正常销售
4
32
128
涨价销售
x-20
32-2(x-24)
150
其等量关系是:总利润=单件利润×销售量.
解:(1)32-(x-24) ×2=80-2x; (2)由题意可得(x-20)(80-2x)=150.
C. (x+1)2=6
D.(x-2)2=9
(2) (易错题)三角形两边长分别为3和6,第三边的长是方程
x2﹣13x+36=0的根,则该三角形的周长为(A ) A.13 B. 15 C.18 D.13或18
【解易析错(1提)配示方】法(1的)配关方键法是的配前上提一是次二项次系项数系一数半是的1平;方(;a-b)2与 ((a2+)b先)2 要求准出确方区程分x2﹣;1(3x2+)36求=0三的角两形根的,周再长根,据不三能角盲形目的地三将边三关边 长系相定加理起,来得,到而符应合养题成意检的验边三,边进长而能求否得成三三角角形形周的长好.习惯
【易错提示】求出m值有两个1和-1,由于原方程是一元二次方 程,所以1不符合,应引起注意.
针对训练
2. 一元二次方程x2+px-2=0的一个根为2,则p的值 为 -1 .
考点三 一元二次方程的解法
例3 (1)用配方法解方程x2-2x-5=0时,原方程应变为( A )
A. (x-1)2=6
B.(x+2)2=9
考点讲练
考点一 一元二次方程的定义
例1 若关于x的方程(m-1)x2+mx-1=0是一元二次方程, 则m的取值范围是( A ) A. m≠1 B. m=1 C. m≥1 D. m≠0
解析 本题考查了一元二次方程的定义,即方程中必须保证有二 次项(二次项系数不为0),因此它的系数m-1≠0,即m≠1,故选A.
配方法:移项,得x2 4x 1. 配方,得x2 4x 22 1 22.
x 22 5
由此可得x 2= 5,
x1 2 5, x2 2 5.
考点四 一元二次方程的根的判别式的应用
例4 已知关于x的一元二次方程x2-3m=4x有两个不相等
的实数根,则m的取值范围是( A )
1 x2
x1 x2 x1 x2
针对训练
7. 已知方程2x2+4x-3=0的两根分别为x1和x2,则x12+x22
的值等于( A )
A. 7
B. -2
3
C. 2
D.
3 2
考点六 一元二次方程的应用
市场销售问题
例6 某机械公司经销一种零件,已知这种零件的成 本为每件20元,调查发现当销售价为24元,平均每天 能售出32件,而当销售价每上涨2元,平均每天就少 售出4件. (1)若公司每天的销售价为x元,则每天的销售量为 多少? (2)如果物价部门规定这种零件的销售价不得高于 每件28元,该公司想要每天获得150元的销售利润, 销售价应当为多少元?
b2 - 4ac=-42 -4 1 -1 =20 0.
方程有两个不相等的实数根
x b b2 4ac -4 20 2 5.
2a
2 1
x1 2 5, x2 2 5.
4.用公式法和配方法分别解方程:x2-4x-1=0 (要求写出必要解题步骤).
一次项: ax2 一次项系数:a 二次项: bx 二次项系数:b 常数项:c
4.注意事项: (1)含有一个未知数; (2)未知数的最高次数为2; (3)二次项系数不为0; (4)整式方程.
二、解一元二次方程的方法 各种一元二次方程的解法及使用类型
一元二次方程的解法 直接开平方法 配方法 公式法 因式分解
5.下列所给方程中,没有实数根的是( D )
A. x2+x=0
B. 5x2-4x-1=0
C.3x2-4x+1=0
D. 4x2-5x+2=0
6.(开放题)若关于x的一元二次方程x2-x+m=0有两个
不相等的实数根,则m的值可能是 0 (写出一个即
可).
考点五 一元二次方程的根与系数的关系 例5 已知一元二次方程x2-4x-3=0的两根为m,n, 则m2-mn+n2= 25 .
适用的方程类型 (x+m)2=n(n ≥ 0)
x2 + px + q = 0 (p2 - 4q ≥0) ax2 + bx +c = 0(a≠0 , b2 - 4ac≥0)
(x + m) (x + n)=0
三、一元二次方程在生活中的应用 列方程解应用题的一般步骤:
审
设
列
解
检
答
(1)审题:通过审题弄清已知量与未知量之间的数量关系. (2)设元:就是设未知数,分直接设与间接设,应根据实际需要恰当选取设元法. (3)列方程:就是建立已知量与未知量之间的等量关系.列方程这一环节最重 要,决定着能否顺利解决实际问题. (4)解方程:正确求出方程的解并注意检验其合理性. (5)作答:即写出答语,遵循问什么答什么的原则写清答语.
根的判别式: Δ=b2-4ac
根与系数的关系 x1
x2
b a
x1
x2
c a
一元二次方 几何问题、数字问题 程 的 应 用 营销问题、平均变化率问题
课后作业
见章末练习