2018届(苏科版)中考数学一轮复习教案:4.8 (总61课时) 圆一
2018届(苏科版)中考数学一轮复习教案:9.1规律探索型问题专题复习
9.1规律探索型问题专题复习教案教学目标:1.知识技能:了解规律探究题的基本题型,掌握规律探究题的基本解题思路,提高学生分析问题,综合运用所学知识解决实际问题的能力,特别是归纳概括的能力。
2.过程与方法:经历规律探索的过程,培养学生的观察思考,归纳概括的能力。
3.情感态度与价值观:通过学生的探究过程,获得成功的体验,增强学习的信心,培养科学探究精神。
教学重点:掌握规律探究题的基本解题思路,提高学生分析问题解决实际问题的能力教学难点:要求通过观察分析推理,探究其中蕴含的规律,进而归纳或猜想出一般性的结论. 教学流程:一、回顾旧知1. (安徽中考)按一定规律排列的一列数:21,22,23,25,28,213,…,若x ,y ,z 表示这列数中的连续三个数,猜想x ,y ,z 满足的关系式是________.2.(2013•淮安)观察一列单项式:1x ,3x 2,5x 2,7x ,9x 2,11x 2,…,则第2013个单项式是 .3.用大小相等的小正方形按一定规律拼成下列图形,则第n 个图形中小正方形的个数是( )A .(2n +1)个B .(n 2-1)个C .(n 2+2n)个D .(5n -2)个 4.(内江中考)一组正方形按如图所示的方式放置,其中顶点B 1在y 轴上,顶点C 1,E 1,E 2,C 2,E 3,E 4,C 3……在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3……,则正方形A 2 016B 2 016C 2 016D 2 016的边长是( D )A .⎝ ⎛⎭⎪⎫122 015 B .⎝ ⎛⎭⎪⎫122 016 C .⎝ ⎛⎭⎪⎫33 2 016 D .⎝ ⎛⎭⎪⎫33 2 015学生课前独立完成,课上交流展示 二、例题学习类型1 数字规律例1 2017·淮安 将从1开始的连续自然数按以下规律排列:图Z1-1则2017在第________行.例题分层分析(1)观察发现,前5行中最大的数分别为________,________,________,________,________;(2)可知第n行中最大的数是_______,n=44时,最大数为_______;n=45时,_____.因此2017在第_______行解题方法点析解决数字规律问题的突破口在于寻找隐含在图形或式子中的规律,数的规律主要有倍数关系、等差关系、等比关系等.类型2 数式规律例 2 我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图Z1-2,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应(a+b)3展开式中的系数等.(1)根据上面的规律,写出(a+b)5的展开式;(2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.图Z1-2例题分层分析(1)你能写出(a+b)1,(a+b)2,(a+b)3,(a+b)4的展开式吗?(2)25-5×24+10×23-10×22+5×2-1和(a+b)1,(a+b)2,(a+b)3,(a+b)4,(a+b)5中哪个的展开式比较类似?此时a等于什么?b等于什么?解题方法点析数式规律要关注中学阶段所学的一些重要公式,此类问题主要考查学生的观察、分析、逻辑推理能力,读懂题意并根据所给的式子寻找规律是快速解题的关键.类型3 图形规律例3 [2017·衢州] 如图Z1-3,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO沿x轴正方向作无滑动的翻滚,经一次翻滚后得△A1B1O,则翻滚3次后点B的对应点的坐标是__________,翻滚2017次后AB中点M经过的路径长为__________.图Z1-3例题分层分析(1)首先求出B点坐标________,(2)根据图形变换规律,每三次翻滚一周,翻滚前后对应点横坐标加________,纵坐标________,故B点变换后对应点坐标为________;(3)追踪M点的变化在每个周期中,点M分别沿着三个圆心角为120°的扇形运动,如图Z1-4,三个扇形半径分别为3、1、1,又2017÷3=672……1,故其运动路径长为________.图Z1-4例4[ 2017·酒泉] 下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为________,第2017个图形的周长为________.图Z1-5例题分层分析(1)根据图形变化规律可知:图形个数是奇数个梯形时,构成的图形是________形;当图形的个数是偶数个时,正好构成____________;(2)第2个图形为平行四边形,它水平边长是________,斜边长是________,所以周长是8.(3)第2017个图形构成的图形是________,这个梯形的上底是________,下底是________,腰长是________,故周长是________.三、当堂反馈1.[2017·自贡] 填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为( )图Z1-6A.180 B.182C.184 D.1862.[2017·重庆A]下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为( )图Z1-7A.73 B.81C.91 D.1093.[2017·温州] 我们把1,1,2,3,5,8,13,21…这组数称为斐波那契数列.为了进一步研究,依次以这列数为半径做90°圆弧P1P2,P2P3,P3P4,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4…得到螺旋折线(如图Z1-8),已知点P1(0,1),P2(-1,0),P3(0,-1),则该折线上点P9的坐标为( )图Z1-8A.(-6,24) B.(-6,25)C.(-5,24) D.(-5,25)4.[2017·宁波] 用同样大小的黑色棋子按如图Z1-9所示的规律摆放:图Z1-9则第⑦个图案有________个黑色棋子.5.[2017·郴州] 已知a1=-32,a2=55,a3=-710,a4=917,a5=-1126,…,则a8=________.6.[2017·潍坊] 如图Z1-10,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;……按照此规律,第n个图中正方形和等边三角形的个数之和为________个.图Z1-107.[2017·菏泽] 如图Z1-11,AB⊥y轴,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=-33x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=-33x上,依次进行下去,若点B的坐标是(0,1),则O12的纵坐标为________.图Z 1-118.[2017·衡阳] 正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2按如图Z 1-12的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 2018的纵坐标是________.图Z 1-129.[2017·天门] 如图Z 1-13,在平面直角坐标系中,△ABC 的顶点坐标为A (-1,1),B (0,-2),C (1,0).点P (0,2)绕点A 旋转180°得到点P 1,点P 1绕点B 旋转180°得到点P 2,点P 2绕点C 旋转180°得到点P 3,点P 3绕点A 旋转180°得到点P 4,……则点P 2017的坐标为________.图Z 1-1310.[2017·内江] 观察下列等式:第一个等式:a 1=21+3×2+2×22=12+1-122+1; 第二个等式:a 2=221+3×22+2×(22)2=122+1-123+1; 第三个等式:a 3=231+3×23+2×(23)2=123+1-124+1;第四个等式:a 4=241+3×24+2×(24)2=124+1-125+1. 按上述规律,回答下列问题:(1)请写出第六个等式:a 6=________=________;(2)用含n 的代数式表示第n 个等式:a n =________=________;(3)a 1+a 2+a 3+a 4+a 5+a 6=________(得出最简结果);(4)计算:a 1+a 2+…+a n .四、归纳总结规律问题的解决思路:1.通过观察数、式或图形搜集数据2.运用数据分析发现事实进行猜想;3.通过数据的结构分析进行严格的证明;4.基于直觉和图形的几何结构创造性地理解事实;5.通过数形结合,最后给出问题的答案。
2018初中数学中考总复习教案(最新整理)
2018年中考总复习数学教案目录第一章实数与代数式1.1 有理数 (4)1.2 实数 (6)1.3 整式 (8)1.4 因式分解 (10)1.5 分式 (12)1.6 二次根式 (14)●单元综合评价 (16)第二章方程与不等式2.1 一次方程(组) (20)2.2 分式方程 (23)2.3 一元二次方程 (25)2.4 一元一次不等式(组) (28)2.5 方程与不等式的应用 (30)●单元综合评价 (33)第三章函数3.1 平面直角坐标系与函数 (37)3.2 一次函数 (39)3.3 反比例函数 ………………………………………………………………………………3.4 二次函数 …………………………………………………………………………………3.5 函数的综合应用 …………………………………………………………………………●单元综合评价………………………………………………………………………………第四章图形的认识4.1 简单空间图形的认识 ……………………………………………………………………4.2 线段、角、相交线与平行线 ……………………………………………………………4.3 三角形及全等三角形 ……………………………………………………………………4.4 等腰三角形与直角三角形 ………………………………………………………………4.5 平行四边形 ………………………………………………………………………………4.6 矩形、菱形、正方形 ……………………………………………………………………4.7 梯形 ………………………………………………………………………………………●单元综合评价………………………………………………………………………………第五章圆5.1 圆的有关性质 ……………………………………………………………………………5.2 与圆有关的位置关系 ……………………………………………………………………5.3 圆中的有关计算 …………………………………………………………………………5.4 几何作图 …………………………………………………………………………………●单元综合评价………………………………………………………………………………第六章图形的变换6.1 图形的轴对称 ……………………………………………………………………………6.2 图形的平移与旋转 ………………………………………………………………………6.3 图形的相似 ………………………………………………………………………………6.4 图形与坐标 ………………………………………………………………………………6.5 锐角三角函数 ……………………………………………………………………………6.6 锐角三角函数的应用 ……………………………………………………………………●单元综合评价………………………………………………………………………………第七章统计与概率7.1 数据的收集、整理与描述 ………………………………………………………………7.2 数据的分析 ………………………………………………………………………………7.3 概率 ………………………………………………………………………………………●单元综合评价………………………………………………………………………………第八章拓展性专题8.1 数感与符号感 ……………………………………………………………………………8.2 空间观念 …………………………………………………………………………………8.3 统计观念 …………………………………………………………………………………8.4 应用性问题 ………………………………………………………………………………8.5 推理与说理 ………………………………………………………………………………8.6 分类讨论问题 ……………………………………………………………………………8.7 方案设计问题 ……………………………………………………………………………8.8 探索性问题 ………………………………………………………………………………8.9 阅读理解问题 ……………………………………………………………………………1.1 有理数第 课 第 个教案 执行时间: 年 月 日【教学目标】1.理解有理数的有关概念,能用数轴上的点表示有理数,会求倒数、相反数、绝对值.2.掌握有理数的加、减、乘、除、乘方及简单的混合运算,会比较两个有理数的大小.3.理解近似数和有效数字的概念,会将一个数表示成科学记数法的形式.4.能运用有理数的运算解决简单的实际问题,会探索有规律性的计算问题.【重点难点】重点:有理数的加、减、乘、除、乘方运算及简单的混合运算.难点:对含有较大数字的信息作出合理的解释和推断.【考点例解】例1 (1)-5的绝对值是( ) A. -5 B. 5 C. D. 1515- (2)2007年3月5日,温总理在《政府工作报告》中,讲述了六大民生新亮点,其中之一就是全部免除了西部地区和部分中部地区农村义务教育阶段约52000000名学生的学杂费. 这个数据保留两个有效数字用科学记数法表示为( )A. B. C. D. 75210⨯75.210⨯85.210⨯85210⨯ (3)2008年2月4日,我国遭受特大雪灾,部分城市的平均气温情况如下表(记温度零上为正,单位:℃),则其中当天平均气温最低的城市是( )城市杭州福州北京哈尔滨广州平均气温-40-9.5-17.58A. 广州B. 福州C. 北京D. 哈尔滨分析:本题主要是考查学生对有理数相关概念的理解. 第(1)小题考查绝对值的意义;第(2)小题考查科学记数法;第(3)小题考查有理数的大小比较.解答:(1)B ; (2)B ; (3)D.例2 计算:.32211(1)3()3+-÷⨯-分析:本题主要是考查有理数的乘方运算及有理数混合运算的顺序.解答:原式.11801(1)9198181=+-÷⨯=-=例3 观察表①,寻找规律,表②、表③、表④分别是从表①中截取的一部分,其中、、a b 的值分别是( )cA. 20,29,30B. 18,30,26C. 18,20,26D. 18,30,28分析:本题主要考查有理数运算的简单应用. 表①中第一行中的数均为连续的自然数,而下面各行依次是第一行的2倍、3倍、4倍、…;表①中第一列中的数均为连续的自然数,依次从左往右各列的最大公约数分别是2、3、4、….解答:D.【考题选粹】1.(2007·宜宾)数学家发明了一个魔术盒,当任意实数对(,)进入其中时,会得到a b 一个新的实数:.如把(3,-2)放入其中,会得到. 现将实21a b ++23(2)18+-+=数对(-2,3)放入其中得到实数,再将实数对(,1)放入其中得到的数m m 是 .2.(2007·玉溪)小颖中午回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;②洗菜3分钟;③准备面条及佐料2分钟;④用锅把水烧开7分钟;⑤用烧开的水煮面条和菜3分钟. 以上各道工序,除④外,一次只能进行一道工序,则小颖要将面条煮好,最少用 分钟.【自我检测】见《数学中考复习一课一练》.202425b 1215a 18c 321234 (2)468 (3)6912 (4)81216………………表①表②表③表④1.2 实数第 课 第 个教案 执行时间: 年 月 日【教学目标】1.了解算术平方根、平方根、立方根的概念,会求非负数的算术平方根和实数的立方根.2.了解无理数与实数的概念,知道实数与数轴上的点的一一对应关系,能用有理数估计一个无理数的大致范围.3.会用算术平方根的性质进行实数的简单四则运算,会用计算器进行近似计算.【重点难点】重点:用算术平方根的性质进行实数的简单四则运算.难点:实数的分类及无理数的值的近似估计.【考点例解】例1 (1)下列实数:,,,,3.14159,中,227sin 60 3π02(-无理数有( )A. 1个B. 2个C. 3个D. 4个(2)下列语句:①无理数的相反数是无理数;②一个数的绝对值一定是非负数;③有理数比无理数小;④无限小数不一定是无理数. 其中正确的是( )A.①②③B.②③④C.①②④D.②④分析:本题主要是考查学生对无理数与实数概念的理解.解答:(1)C ; (2)C.例2 计算:.021111sin 3020082-⎫⎛⎫--+⎪ ⎪⎭⎝⎭A 分析:本题主要是考查零指数幂、负指数幂及算术平方根的化简与运算.解答:原式.)11141122=--+⨯-=--+-=-例3 我国《劳动法》对劳动者的加班工资作出了明确规定:春节长假期间,前3天是法定休假日,用人单位应按照不低于劳动者本人日工资或小时工资的300%支付加班工资;后4天是休息日,用人单位应首先安排劳动者补休,不能安排补休的,按照不低于劳动者本人日工资或小时工资的200%支付加班工资. 小王由于工作需要,今年春节的初一、初二、初三共加班三天(春节长假从十二月卅日开始). 如果小王的月平均工资为2800元,那么小王加班三天的加班工资应不低于 元.分析:本题主要考查学生灵活应用实数运算的相关知识解决实际问题的能力.要注意的是今年的法定假期共有11天,因此日工资标准的计算方法是:.280021.75÷解答:(元).()280021.752300%1200%1030÷⨯⨯+⨯≈【考题选粹】1.(2007·内江)若,均为整数,且当时,代数式的值为0,则ab 1x =-2x ax b ++b a 的算术平方根为 .2.(2007.()312tan 45+--+ 3.(2007·重庆)将正整数按如右图所示的规律排列下去. 若用有序实数对(,)表示第排、n m n 从左到右第个数,如(4,3)表示实数9,则m (7,2)表示的实数是 .【自我检测】见《数学中考复习一课一练》.1 ………………… 第一排2 3 ……………… 第二排4 5 6 …………… 第三排7 8 9 10 ……… 第四排……………………………………1.3 整式第 课 第 个教案 执行时间: 年 月 日【教学目标】1.了解整式的有关概念,理解去括号法则,能熟练进行整式的加减运算.2.掌握正整数指数幂的运算性质,能在运算中灵活运用各种性质.3.会进行简单的整式乘法运算和简单的多项式除法运算,了解两个乘法公式及其几何背景,能运用乘法公式进行简便.4.会通过对问题的分析列出代数式,能熟练进行整式的化简与求值.【重点难点】重点:列代数式表示数量关系,整式的化简与求值.难点:乘法公式的灵活运用.【考点例解】例1 (1)已知整式与是同类项,那么,的值分别是( )3121y x a -b a b y x +--23a b A. 2,-1 B. 2,1 C. -2,-1 D. -2,1(2)下列运算中正确的是( )A. B. C. D.853x x x =+()923x x=734x x x =⋅()9322+=+x x (3)如果,,那么代数式的值是 .5m x =25n x =52m n x -分析:本题主要是考查同类项的概念和整式的加法、乘法和正整数指数幂的运算. 解答:(1)A ; (2)C ; (3)5.例2 (1)王老板以每枝元的单价买进玫瑰花100枝. 现以每枝比进价多两成的价格卖a 出70枝后,再以每枝比进价低元的价格将余下的30枝玫瑰花全部卖出,则b 王老板的全部玫瑰花共卖了 元(用含,的代数式表示).a b (2)如图3-1所示,用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:①第4个图案中有白色纸片 张;②第个图案中有白色纸片 张.n 分析:本题主要考查列代数式表示数量关系,第(1)题的关键是弄清前70枝玫瑰花的单价和后30枝的单价分别是多少;第(2)题的关键是要发现图案中的规律:第一个图形有4张白色纸片,以后每个图形都比前一个图形多3张白色纸片.解答:(1).()()b a b a a 3011430%20170-=-++ (2)①13; ②.31n +例3 先化简,再求值:,其中.()()()()232325121x x x x x +-----13x =-分析:本题主要考查乘法公式的灵活应用及整式的化简求值.解答这一类题目时,一般应先将整式化简,然后再将字母的值代入计算.解答:原式.222945544195x x x x x x =--+-+-=- 当时,原式.13x =-19583⎛⎫=⨯--=- ⎪⎝⎭【考题选粹】1.(2006·济宁)能被下列数整除的是( )()()2006200588-+- A. 3 B. 5 C. 7 D. 92.(2007·淄博)根据以下10个乘积,回答问题:;;;;1129⨯1228⨯1327⨯1426⨯;;;;;.1525⨯1624⨯1723⨯1822⨯1921⨯2020⨯ (1)试将以上各乘积分别写成一个“□2-○2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)试由(1)、(2)猜测一个一般性的结论(不要求证明).【自我检测】见《数学中考复习一课一练》.1.4 因式分解第 课 第 个教案 执行时间: 年 月 日【教学目标】1.理解因式分解的概念,了解因式分解与整式乘法之间的关系.2.掌握因式分解的一般思考顺序,会运用提公因式法和公式法进行因式分解,会利用因式分解解决一些简单的实际问题.【重点难点】重点:运用提公因式法和公式法进行因式分解.难点:利用因式分解解决一些简单的实际问题.【考点例解】例1 (1)在一次数学课堂练习中,小聪做了以下4道因式分解题,你认为小聪做得不够完整的一道题是( )A. B.()321x x x x -=-()2222x xy y x y -+=- C. D..()22x y xy xy x y -=-()()22x y x y x y -=+- (2)因式分解的结果是( )()219x -- A. B.()()81x x ++()()24x x +- C. D..()()24x x -+()()108x x -+分析:本题主要是考查因式分解的概念和因式分解一般思考顺序,强调因式分解一定要分解到结果中的每个因式都不能再分解为止.解答:(1)A ; (2)B.例2 利用因式分解说明:能被120整除.712255-分析:要说明能被120整除,关键是通过因式分解得到含有因数120,可712255-712255-将化为同底数形式,然后利用提公因式法分解因数.712255-解答:∵ ,()71214121221211255555515245120-=-=-=⨯=⨯∴ 能被120整除.712255-例3 在日常生活中经常需要密码,如到银行取款、上网等. 有种用“因式分解”法产生的密码方便记忆,原理是:如对于多项式,因式分解的结果是,()()()22x y x y x y -++若取,,则各因式的值分别是:,,,9x =9y =0x y -=18x y +=22162x y +=于是就可以把“018162”作为一个六位数的密码. 同理,对于多项式,若取324a ab -,,则产生的密码是: (写出一个即可).10a =10b =分析:本题是因式分解的知识在实际生活中的简单应用. 解答时只需要先对多项式进行因式分解,再求各因式的值就可以了.解答:,当,时,各因式的值()()()32224422a ab a a b a a b a b -=-=-+10a =10b =分别是:,,,所以密码可以为101030(也可以为10a =210a b -=230a b +=103010或301010).【考题选粹】1.(2006·南通)已知,,,其中.2A a =+25B a a =-+2519C a a =+-2a > (1)求证:,并指出与的大小关系;0B A ->A B (2)指出与的大小关系,并说明理由.A C 2.(2007·临安)已知、、是的三边,且满足,判断a b c ABC ∆422422a b c b a c +=+的形状. 阅读下面的解题过程:ABC ∆ 解:由 得 , ①422422a b c b a c +=+442222a b a c b c -=-即 , ②()()()2222222a ba b c a b +-=-∴ , ③222a b c +=∴ 是直角三角形. ④ABC ∆试问:以上解题过程是否正确? . 若不正确,请指出错在哪一步?(填代号) ;错误原因是 ;本题的正确结论应该是 .【自我检测】见《数学中考复习一课一练》.1.5 分式第 课 第 个教案 执行时间: 年 月 日【教学目标】1.了解分式概念,会求分式有意义、无意义和分式值为0时,分式中所含字母的条件.2.掌握分式的基本性质和分式的变号法则,能熟练地进行分式的通分和约分.3.掌握分式的加、减、乘、除四则运算,能灵活地运用分式的四则运算法则进行分式的化简和求值.【重点难点】重点:分式的基本性质和分式的化简.难点:分式的化简和通过分式的运算解决简单的实际问题.【考点例解】例1 (1)在函数中,自变量的取值范围是( )23x y x =-x A. B. C. 且 D.且.0x ≠32x ≠32x >0x ≠0x ≠32x ≠ (2的值为零,则的值为 .x (3)下列分式的变形中,正确的是( )A. B. C. D.1111a a b b +-=+-x y x y x y x y ---=-++()222x y x y x y x y --=-+22x y x y x y x y--=++分析:本题主要考查分式的概念与分式的基本性质. 在分式中,要使分式有意义,分式的分母要不为零;要使分式值为0,则要求分子的值为0且分式有意义.解答:(1)B ; (2); (3)C.x =例2 先化简:,再选择一个恰当的的值代入求值.21111x x x ⎛⎫+÷ ⎪--⎝⎭x 分析:本题主要考查分式的化简和分式有意义的条件. 在分式化简中,经常可以把分式的除法改为乘法,再利用“分解约分”法进行化简. 在本题中的不能取0和±1.x 解答:原式,当时,原式=3.()()1111x x x x x x-+=⋅=+-2x =例3 (1)已知一个正分数,如果分子、分母同时增加1,分数的值是增大()0n m n m>>减小?请证明你的结论;(2)若正分数中分子和分母同时增加2,()0n m n m>>3,…,(整数>0),情况如何?(3)请你用上面的结论解释下面的问题:建筑k k 学规定,民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板的比应不小于10%,并且这个比值越大,住宅的采光条件越好. 问同时增加相等的窗户面积和地板面积,住宅的采光条件是变好还是变坏?请说明理由.分析:本题考查了分式的大小比较,并要求利用有关知识解决实际问题. 解题的关键是理解题意,得到正确的结论.解答:(1)正分数中,若分子、分母同时增加1,分数的值增大,证明如下:()0n m n m>> ∵ , ∴ ,0m n >>0m n ->()10m m +>∴ , 即 .()1011n n m n m m m m +--=>++11n n m m +>+ (2)正分数中分子和分母同时增加2,3,…,(整数>0)时,()0n m n m >>k k 分式的值也增大. (3)住宅的采光条件变好,理由略.【考题选粹】1.(2007·东营)小明在考试时看到一道这样的题目:“先化简,再求值.”小明代入某个数后求得值为3. 你能确定小明2211111a a a a ⎛⎫⎛⎫-÷- ⎪ ⎪--+⎝⎭⎝⎭代入的是哪一个数吗?你认为他代入的这个数合适吗?为什么?2.(2007·嘉兴)解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题. 例如,原问题是“若矩形的两边长分别为3和4,求矩形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若矩形的周长为14,且一边长为3,求另一边的长”;也可以是“若矩形的周长为14,求矩形面积的最大值”等等.(1)设,,求与的值;322x x A x x =--+24x B x-=A B (2)提出(1)的一个“逆向”问题,并解答这个问题.【自我检测】见《数学中考复习一课一练》.1.6 二次根式第 课 第 个教案 执行时间: 年 月 日【教学目标】1.了解二次根式的概念,掌握二次根式有意义的条件.2.了解二次根式的加、减、乘、除运算法则,会对简单的二次根式进行化简,会用二次根式的运算法则进行实数的简单四则运算.【重点难点】重点:二次根式的化简和用二次根式的运算法则进行实数的简单四则运算.难点:二次根式的化简.【考点例解】例1 (1)若代数式在实数范围内有意义,则的取值范围是( )2-x x A. B. C. D..2>x 2≥x 2<x 2≤x (2)若为实数,则下列各式中一定有意义的是( )x A. B. C. D. x -212+x 21x22-x 分析:本题主要考查二次根式的概念,即在二次根式中,被开方数必须是非负数.解答:(1)B ; (2)B.例2 (1)计算:.⎪⎪⎭⎫ ⎝⎛-+483137512 (2)比较大小: .73-152-分析:本题主要考查二次根式性质的灵活应用和二次根式的混合运算. 第(1)题中,可先利用二次根式的性质进行化简,然后利用实数的运算法则进行计算;第(2)题要先逆用性质:,再进行两个数的大小比较.()02≥=a a a解答:(1)原式.()1232323433532=⨯=-+= (2)∵ ,,且,6373-=-60152-=-6063>∴ .15273-<-例3 已知的三边,,满足,则ABC ∆a b c 224210212--+=--++b a c b a 为( ).ABC ∆ A. 等腰三角形 B. 正三角形 C. 直角三角形 D. 等腰直角三角形分析:本题考查了二次根式的非负性,即:在二次根式中,且.a 0≥a 0≥a 解答:将原式变形,得 .()()0211424251022=--+⎥⎦⎤⎢⎣⎡+---++-cb b a a 即 .()()02114522=--+--+-c b a ∴ ,,.05=-a 014=--b 021=--c ∴ . ∴ 为等边三角形,故选B.5===c b a ABC ∆【考题选粹】1.(2006·南充)已知,那么化简的正确结果是( )0<a a a 22- A. B. C. D.a -a a 3-a32.(2007·烟台)观察下列各式:,,,…,请将你发现的规律用含自然312311=+413412=+514513=+数的等式表示出来: .()1≥n n 【自我检测】见《数学中考复习一课一练》.第一单元综合测试(数与式)第 课 第 个教案 执行时间: 年 月 日一、选择题(本题有10小题,每小题4分,共40分)1. 如果水库的水位高于标准水位3m 时,记作+3m ,那么低于标准水位2m 时,应记作( )A. -2mB. -1mC. +1mD. +2m2. 2007年我国某省国税系统完成税收收入为3.45065×1011元,也就是收入了( )A. 345.065亿元B. 3450.65亿元C. 34506.5亿元D. 345065亿元3. 若整式是一个完全平方式,那么的值是( )()16322+-+x m x m A. -5 B. 7 C. -1 D. 7或 -14. 估计的大小应在( )88 A. 9.1~9.2之间 B. 9.2~9.3之间 C. 9.3~9.4之间 D. 9.4~9.55. 如图1,点,在数轴上对应的实数分别是,,那么,两点间的距离是A B m n A B ( )A. B.m n +m n-C. D.n m -n m--6. 下列运算中,错误的是( ) A. B. C. D.()0a ac c b bc =≠1a b a b --=-+0.55100.20.323a b a b a b a b ++=--x y y x x yy x--=++7. 某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律,5小时后细胞存活的个数是( )A. 31个B. 33个C.35个D.37个8. 如果代数式的值为9,则代数式的值为( )2346x x -+2463x x -+ A. 7 B. 9 C. 12 D. 189. 如图2,图中阴影部分的面积是( )A. B. C. D.5xy 9xy 8.5xy 7.5xy10.已知,是两个连续自然数(<),且,设m n m n q mn =的值是( )p =p A.奇数 B.偶数 C.奇数或偶数 D.有理数或无理数二、填空题(本题有6小题,每小题5分,共30分)11.写出一个小于2的无理数: .12.列代数式表示:“数的2倍与10的和的二分之一”应为 .a 13.已知,且,则当时,代数式的值为 .7x y +=12xy =x y <11x y-14.一个矩形的面积是米2,它的一条边为米,那么它的另一边为 ()29x -()3x +米.15.数学家发现一个魔术盒,当任意实数对进入时,会得到一个新的实数:.(),a b 21a b ++例如把(3,-2)放入其中后,就会得到32+(-2)+1=8. 现将实数对(-2,3)放入其中得到实数,再将实数对放入其中后,得到的实数是 .m (),1m 16.如果2007个整数,,…,满足下列条件:,,1a 2a 2007a 10a =212a a =-+,…,,则 .322a a =-+200720062a a =-+1232007a a a a ++++= 三、解答题(本题有7小题,共80分)17.(10.()012sin 452 3.14π-+-+- 18.(10分)先化简代数式:,然后选择一个使原式有意义的,22221244a b a b a b a ab b--÷-+++a 值代入求值.b19.(10分)观察下面一列数,探求其中的规律:,,,,,, , , ,…1-1213-1415-16(1)请在上面的横线上填出第7,8,9个数;(2)第2008个数是什么?第个数是什么?如果这一列数无限地排列下去,那么与哪n 个数越来越接近?20.(10分)分解因式:(1) (2)44x y -2484xy xy x -+21.(12分)2007年4月18日是全国铁路第六次大提速的第一天. 这一天,小明爸爸因要出差,于是他到火车站查询列车的开行时间,下表是他从火车站带回家的最新时刻表:2007年4月18日起××次列车时刻表始发站发车时间终点站到站时间A 站上午8:20B 站次日12:20小明爸爸找出了以前同一车次的时刻表如下:2006年3月20日××次列车时刻表始发站发车时间终点站到站时间A 站下午14:30B 站第三日8:30比较了两张时刻表后,小明爸爸提出了下面两个问题,请你帮小明解答:(1)现在该次列车的运行时间比以前缩短了多少小时?(2)如果该次列车提速后的平均时速为200千米/小时,那么该次列车原来的平均时速为多少?(结果精确到个位)22.(14分)下面的图(1)是由边长为的正方形剪去一个边长为的小正方形后余下的图形.a b 把图(1)剪开后,再拼成一个四边形,可以用来验证公式:.22()()a b a b a b -=+-(1)请你通过对图(1)的剪拼,画出三种不同拼法的示意图.要求:①拼成的图形是四边形;②在图(1)上画出剪裁线(用虚线表示);③在拼出的图形上标出已知的边长.(2)选择其中的一种拼法写出验证上述公式的过程.23.(14分)设,,…,(≥ 0的自然22131a =-22253a =-()()222121n a n n =+--n 数).(1)探究:是8的倍数吗?请说明理由,并用文字语言表述你所获得的结论;n a (2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”. 试找出,1a 2a a a bb 图(1),…,,…,这一列数中从小到大排列的前4个完全平方数,并求:当满足n a n 什么条件时,为完全平方数?n a 2.1 一次方程(组)第 课 第 个教案 执行时间: 年 月 日【教学目标】1.理解方程、方程组,以及方程和方程组的解的概念.2.掌握解一元一次方程和二元一次方程组的一般步骤与方法,体会“消元”的数学思想,会求二元一次方程的正整数解.3.能根据实际问题中的数量关系,列出一元一次方程或二元一次方程组来解决简单的实际问题,并能检验解的合理性.【重点难点】重点:解一元一次方程和二元一次方程组的一般步骤与方法.难点:根据实际问题中的数量关系,列出一元一次方程或二元一次方程组.【考点例解】例1 (1)若关于的一元一次方程的解是,则的值是x 12332=---k x k x 1-=x k ( )A. B. 1 C. D. 0.721713- (2)若二元一次方程组的解为,则的值为( )⎩⎨⎧=-=+433by x ay x ⎩⎨⎧==12y x b a -A. 1B. 3C. -1D. -3分析:本题主要考查方程和方程组的概念,以及一元一次方程和二元一次方程组的解法.解答:(1)B ; (2)C.例2 已知方程组的解是,则方程组⎩⎨⎧=+=-9.30531332b a b a ⎩⎨⎧==2.13.8b a ()()()()⎩⎨⎧=-++=--+9.301523131322y x y x 的解是 .分析:本题主要考查一元一次方程或二元一次方程组的解法和整体代换的思想. 在解答时,既可以直接求方程组的解,也可以利用整体思想,分别把和“看作”和2+x 1-y a ,通过解一元一次方程来解决.b 解答:.⎩⎨⎧==2.23.6y x 例3 陈老师为学校购买运动会的奖品后,回学校向总务处王老师交帐时说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还剩余418元.…”王老师算了一下说:“你肯定搞错了”.(1)王老师为什么说陈老师搞错了呢?请你用方程的知识给予解释.(2)陈老师连忙拿出购物发票进行核对,发现自己的确是弄错了,因为他还买了一个笔记本. 但笔记本的单价已经模糊不清了,只能辨认出应该是小于10元的整数. 问:笔记本的单价可能是多少元?分析:本题考查了列一元一次方程解应用题. 列方程(组)解应用题的一般步骤是:审题、设元、列方程、解方程、检验和作答. 在检验时,不仅要检验所求得的结果是否是所列方程的解,而且还要检验方程的解是否符合实际问题.解答:(1)设单价为8元的书买了本,则单价为12元的书买了本.由题意得x ()x -105 .()4181500105128-=-+x x 解这个方程,得 .5.44=x 因为书的本数一定是正整数,所以(本)不合题意,因此陈老师错了.5.44=x (2)设笔记本的单价为元,则由题意得y .()y x x --=-+4181500105128解这个关于的方程,得 .y 1784-=x y ∵ , ∴ , 解得 .100<<y 1017840<-<x 41884178<<x 又∵ 为正整数, ∴可以取45、46.x x 当时,(元);45=x 21784541784=-⨯=-=x y 当时,(元).46=x 61784641784=-⨯=-=x y 答:笔记本的单价可能是2元或6元.例4 新星学校的一间阶梯教室内,第1排的座位数为,从第2排开始,每一排都比前一a 排增加个座位.b (1)请你在下表的空格内填写一个适当的代数式:第1排的座位数第2排的座位数第3排的座位数第4排的座位数…a ab +2a b+…(2)已知第4排有18个座位,第15排的座位数是第5排的座位数的2倍,则第21排有多少个座位?分析:本题考查了列二元一次方程组解应用题. 解答本题的关键是会从表中数据的变化中寻找出一定的规律,再利用规律求出和的值.a b 解答:(1).3a b + (2)根据题意,得 ,解得 .()3181424a b a b a b +=⎧⎪⎨+=+⎪⎩122a b =⎧⎨=⎩ ∴ .1220252+⨯= 答:第21排有52个座位.【考题选粹】1.(2007·济宁)甲、乙两人同时从山脚开始爬山,到达山顶后立即下山,在山脚和山顶之间不断往返运动,已知山坡长为360m ,甲、乙两人上山的速度比是6:4,并且甲、乙两人下山的速度都是各自上山速度的1.5倍,当甲第三次到达山顶时,则此时乙所在的位置是 .2.(2007·北京)某地区为了改善生态环境,增加农民收入,自2004年起就鼓励农民在荒山上广泛种植某种果树,并且出台了一项激励措施:即在开荒种树的过程中,每一年新增果树达到100棵的农户,当年都可得到生活补贴1200元,且每超出一棵,政府还给予每棵元的奖励. 另外,种植的果树,从下一年起,每年每棵平均将有元的果实收入. a b 下表是某农户在头两年通过开荒种树每年获得的总收入情况:年份新增果树的棵数年总收入2004年130棵1500元2005年150棵4300元 (注:年总收入=生活补贴费+政府奖励费+果实收入)【自我检测】见《数学中考复习一课一练》.2.2 分式方程第 课 第 个教案 执行时间: 年 月 日【教学目标】1.了解分式方程的概念,能将实际问题中的等量关系用分式方程表示出来.2.会解可化为一元一次方程(或一元二次方程)的分式方程,体验转化的数学思想;了解增根的概念,会进行分式方程的验根.3.能根据实际问题中的数量关系,列出分式方程来解决简单的实际问题,并能检验解的合理性.【重点难点】重点:解可化为一元一次方程(或一元二次方程)的分式方程的一般步骤与方法.难点:根据实际问题中的数量关系,列出分式方程,并检验解的合理性.【考点例解】例1 如果关于的分式方程无解,那么的值是( )x 1133a x x -=++a A. 1 B. -1 C. 3 D. -3.分析:本题主要考查分式方程的增根概念. 需要注意的是:分式方程的增根应该满足变形后的整式方程,但不满足原分式方程.解答:A.例2 解分式方程:.21124x x x -=--分析:本题主要考查分式方程的解法. 在解答时,应按照解分式方程的一般步骤进行,并注意验根.解答:去分母,得 ()()()2221x x x x +-+-= 去括号,得 22241x x x +-+= 移项,合并同类项,得 23x =- 方程两边同时除以2,得 32x =-经检验,是原方程的解.32x =-例3 某公司投资某个项目,现有甲、乙两个工程队有能力承包这个项目. 公司经调查发现:乙工程队单独完成工程所需的时间是甲工程队单独完成工程所需时间的2倍,;甲、乙两队合作完成工程需要20天,甲队每天的工作费用为1000元,乙队每天的工作费用为550元. 根据以上信息,从节约资金的角度考虑,该公司应选择哪个工程队来承包这个项目?公司应付出的费用为多少元?分析:本题考查了列分式方程解应用题. 解答本题的关键是根据题意求出甲、乙两队单独完成工程所需的时间,进而求出各自的总费用.解答:设甲队单独完成工程需要天,则乙队单独完成工程需要天. 根据题意,得x 2x 解得 112012x x ⎛⎫+= ⎪⎝⎭30x = 经检验,是原方程的解,且和都符合题意.30x =30x =260x = ∴ 应付甲工程队的费用为:(元),30100030000⨯=应付乙工程队的费用为:(元).30255033000⨯⨯=∵ , ∴ 该公司应选择甲工程队,需付出的总费用为30000元.3000033000< 答:该公司应选择甲工程队,需付出的总费用为30000元.。
中考复习教案圆
圆教学目标:1.立足教材,打好基础,查漏补缺,系统复习,熟练掌握本部分的基本知识、基本方法和基本技能.2.让学生自己总结交流所学内容,发展学生的语言表达能力和合作交流能力.3.通过学生自己归纳总结本部分内容,使他们在动手操作方面,探索研究方面,语言表达方面,分类讨论、归纳等方面都有所发展.教学重点与难点重点:将本部分的知识有机结合,强化训练学生综合运用数学知识的能力,.难点:把数学知识转化为自身素质. 增强用数学的意识.教学时间:6课时【课时分布】圆的部分在第一轮复习时大约需要6个课时,其中包括单元测试.下表为内容及课时安排.2、基础知识(1)掌握圆的有关性质和计算① 弧、弦、圆心角之间的关系:在同圆或等圆中,如果两条劣弧(优弧)、两条两个圆心角中有一组量对应相等,那么它们所对应的其余各组量也分别对应相等.② 垂径定理: 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.弦的垂直平分线经过圆心,并且平分弦所对的两条弧.平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.③ 在同一圆内,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半.④ 圆内接四边形的性质:圆的内接四边形对角互补,并且任何一个外角等于它的内对角.(2)点与圆的位置关系① 设点与圆心的距离为d ,圆的半径为r ,则点在圆外d r ⇔>; 点在圆上d r ⇔=; 点在圆内d r ⇔<.② 过不在同一直线上的三点有且只有一个圆. 一个三角形有且只有一个外接圆.③ 三角形的外心是三角形三边垂直平分线的交点.三角形的外心到三角形的三个顶点的距离相等.(3)直线与圆的位置关系① 设圆心到直线l 的距离为d ,圆的半径为r ,则直线与圆相离d r ⇔>;直线与圆相切d r ⇔=;直线与圆相交d r ⇔<.② 切线的性质:与圆只有一个公共点;圆心到切线的距离等于半径;圆的切线垂直于过切点的半径.③ 切线的识别:如果一条直线与圆只有一个公共点,那么这条直线是圆的切线.到圆心的距离等于半径的直线是圆的切线.经过半径的外端且垂直与这条半径的直线是圆的切线.④ 三角形的内心是三角形三条内角平分线的交点.三角形的内心到三角形三边的距离相等.⑤ 切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.⑥ 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.(4)圆与圆的位置关系① 圆与圆的位置关系有五种:外离、外切、相交、内切、内含.设两圆心的距离为d ,两圆的半径为12r r 、,则两圆外离12d r r ⇔>+两圆外切12d r r ⇔=+两圆相交1212r r d r r ⇔-<<+两圆内切12d r r ⇔=-两圆内含12d r r ⇔<- ② 两个圆构成轴对称图形,连心线(经过两圆圆心的直线)是对称轴.由对称性知:两圆相切,连心线经过切点. 两圆相交,连心线垂直平分公共弦.③ 两圆公切线的定义:和两个圆都相切的直线叫做两圆的公切线.两个圆在公切线同旁时,这样的公切线叫做外公切线.两个圆在公切线两旁时,这样的公切线叫做内公切线.④ 公切线上两个切点的距离叫做公切线的长.(5)与圆有关的计算① 弧长公式:180n r l π= 扇形面积公式:213602n r S lr π==扇形 (其中为n 圆心角的度数,r 为半径)② 圆柱的侧面展开图是矩形.圆柱体也可以看成是一个矩形以矩形的一边为轴旋转而形成的几何体.圆柱的侧面积=底面周长×高圆柱的全面积=侧面积+2×底面积③ 圆锥的侧面展开图是扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.圆锥体可以看成是由一个直角三角形以一条直角边为轴旋转而成的几何体.④ 圆锥的侧面积=12×底面周长×母线;圆锥的全面积=侧面积+底面积 3、能力要求例1 如图,AC 为⊙O 的直径,B 、D 、E 都是⊙O 上的点,求∠A +∠B +∠C 的度数.【分析】由AC 为直径,可以得出它所对的圆周角是直角,所以连结AE ,这样将∠CAD (∠A )、∠C 放在了△AEC 中,而∠B 与∠EAD 是同弧所对的圆周角相等,这样问题迎刃而解.【解】 连结AE∵AC 是⊙O 的直径 ∴∠AEC =90O∴∠CAD +∠EAD +∠C =90O∵ED ED =⌒⌒∴∠B =∠EAD ∴∠CAD +∠B +∠C =90O【说明】这里通过将∠B 转化为∠EAD ,从而使原本没有联系的∠A 、∠B 、∠C 都在 △AEC 中,又利用“直径对直角”得到它们的和是90O .解题中一方面注意到了隐含条件“同弧所对的圆周角相等”,另一方面也注意到了将“特殊的弦”(直径)转化为“特殊的角”(直角),很好地体现了“转化”的思想方法.例2 △ABC 中,AC =6,BC =8,∠C =90O ,以点C 为圆心,CA 为半径的圆与AB 交于点D ,求AD 的长.【分析】圆中有关弦的计算问题通常利用垂径定理构造直角三角形求解,所以作CH ⊥AB ,这只要求出AH 的长就能得出AD 的长.【解】 作CH ⊥AB ,垂足为H∵∠C =90O ,AC =6,BC =8 ∴AB =10∵∠C =90O , CH ⊥AB∴2AC AH AB = 又∵AC =6, AB =10 ∴ AH =3.6∵CH ⊥AB ∴AD =2AH ∴AD =7.2C A答:AD 的长为7.2.【说明】解决与弦有关的问题,往往需要构造垂径定理的基本图形——由半径、弦心距、弦的一半构成的直角三角形,它是解决此类问题的关键.定理的应用必须与所对应的基本图形相结合,教师在复习时要特别注重基本图形的掌握.例3 (1)如图,△ABC 内接于⊙O ,AB 为直径,∠CAE =∠B ,试说明AE 与⊙O 相切于点A .(2)在(1)中,若AB 为非直径的弦,∠CAE =∠B ,AE 还与⊙O 相切于点A 吗?请说明理由.(1) (2)【分析】第(1)小题中,因为AB 为直径,只要再说明∠BAE 为直角即可.第(2)小题中,AB 为非直径的弦,但可以转化为第(1)小题的情形.【解】 (1)∵AB 是⊙O 的直径 ∴∠C =90O∴∠BAC +∠B =90O又∵∠CAE =∠B ∴∠BAC +∠CAE =90O即∠BAE =90O ∴AE 与⊙O 相切于点A .(2)连结AO 并延长交⊙O 于D ,连结CD .∵AD 是⊙O 的直径 ∴∠ACD =90O∴∠D +∠CAD =90O又∵∠D =∠B ∴∠B +∠CAD =90O又∵∠CAE =∠B ∴∠CAE +∠CAD =90O即∠EAD =90O ∴AE 仍然与⊙O 相切于点A .【说明】本题主要考查切线的识别方法.这里可以引导学生依据第(1)小题的特殊情况,大胆提出猜想,渗透“由特殊到一般”的数学思想方法,这对于学生的探索能力培养非常重要.E B A D EAB例4 如图,已知⊙O 的直径AB 垂直于弦CD 于E ,连结AD 、BD 、OC 、OD ,且OD =5.(1)若,求CD 的长. (2)若 ∠ADO :∠EDO =4:1,求扇形OAC (阴影部分)的面积(结果保留).【分析】图形中有 “直径对直角”,这样就出现了“直角三角形及斜边上的高”的基本图形,求CD 的长就转化为求DE 的长.第(2)小题求扇形OAC 的面积其关键是求∠AOD 的度数,从而转化为求∠AOD 的大小.【解】(1) ∵AB 是⊙O 的直径,OD =5∴∠ADB =90°,AB =10又∵在Rt △ABD 中,3sin 5BD BAD AB ==∠ ∴∵∠ADB =90°,AB ⊥CD ∴ BD 2=BE ·AB CD = 2DE∵AB =10∴BE =185在Rt △EBD 中,由勾股定理得 ∴答:CD 的长为485. (2)∵AB 是⊙O 的直径,AB ⊥CD∴∴∠BAD =∠CDB ,∠AOC =∠AOD∵AO =DO ∴∠BAD =∠ADO∴∠CDB =∠ADO设∠ADO =4k ,则∠CDB =4k由∠ADO :∠EDO =4:1,则∠EDO =k∵∠ADO +∠EDO +∠EDB =90° ∴4490k k k ++=︒ 得k =10°∴∠AOD=180°-(∠OAD+∠ADO)=100°∴∠AOC=∠AOD=100°则答:扇形OAC的面积为125 18π【说明】本题涉及到了圆中的重要定理、直角三角形的边角关系、扇形面积公式等知识点的综合,考查了学生对基本图形、基本定理的掌握程度.求DE长的方法很多,可以用射影定理、勾股定理,也可以运用面积关系来求,但都离不开“直角三角形及斜边上的高”这个基本图形.解题中也运用了比例问题中的设k法,同时也渗透了“转化”的思想方法.例5 半径为2.5的⊙O中,直径AB的不同侧有定点C和动点P.已知BC:CA=4 : 3,点P在半圆AB上运动(不与A、B两点重合),过点C作CP的垂线,与PB的延长线交于点Q.(l)当点P与点C关于AB对称时,求CQ的长;(2)当点P运动到半圆AB的中点时,求CQ的长;(3) 当点P运动到什么位置时,CQ取到最大值?求此时CQ的长.【分析】当点P与点C关于AB对称时,CP被直径垂直平分,由垂径定理求出CP的长,再由Rt△ACB∽Rt△PCQ,可求得CQ的长.当点P在半圆AB上运动时,虽然P、Q点的位置在变,但△PCQ始终与△ACB相似,点P运动到半圆AB的中点时,∠PCB=45O,作BE⊥PC于点E,CP=PE+EC.由于CP与CQ的比值不变,所以CP取得最大值时CQ也最大.【解】(l)当点P与点C关于AB对称时,CP⊥AB,设垂足为D.∵AB为⊙O的直径,∴∠ACB=900.∴AB=5,AC:CA=4:3∴BC=4,AC=3S Rt△ACB=12AC·BC=12AB·CD∴1224,.55 CD PC==∵在Rt△ACB和Rt△PCQ中,∠ACB=∠PCQ=900, ∠CAB=∠CPQ,∴ Rt △ACB ∽Rt △PCQ∴ AC BC PC CQ = ∴ 43235BC PC CQ PC AC === (2)当点P 运动到弧AB 的中点时,过点B 作BE ⊥PC 于点E (如图).∵P 是弧AB 的中点,∴045,PCB CE BE BC ∠==== 又∠CPB =∠CAB∴∠CPB = tan ∠CAB =43∴ 3tan 4BE PEBE CPB ===∠ 从而2PC PE EC =+= 由(l )得,433CQ PC == (3)点P 在弧AB 上运动时,恒有43BC PC CQ PC AC == 故PC 最大时,CQ 取到最大值. 当PC 过圆心O ,即PC 取最大值5时,CQ 最大值为203 【说明】本题从点P 在半圆AB 上运动时的两个特殊位置的计算问题引申到求CQ 的最大值,一方面渗透了“由特殊到一般”的思想方法,另一方面运用“运动变化”观点解决问题时,寻求变化中的不变性(题中的Rt △ACB ∽Rt △PCQ )往往是解题的关键.P。
中考一轮复习教案:与圆有关的计算
与圆有关的计算辅导教案1.会计算圆的弧长和扇形的面积.2.会计算圆锥的侧面积和全面积.3.了解正多边形与圆的关系.课前热身1.用一个圆心角为120°,半径为18cm 的扇形作一个圆锥的侧面,则这个圆锥的底面半径应等于()A.9cmB.6cmC.4cmD.3cm 2.圆内接正方形半径为2,则面积为()A.2 B.4 C.8 D.16 3.如图,⊙O的半径为1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧BC的长是()A.15πB.25πC.35πD.45π4.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=23,则阴影部分的面积为( )A.2 πB.πC.23πD.3π5.一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6cm,则此圆锥的表面积为cm2.6.如图,AD是正五边形ABCDE的一条对角线,则∠BAD= .7.在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的半径为R,扇形的圆心角等于90°,则r与R之间的关系是r = .遗漏分析知识精讲【基础知识重温】1. 圆的周长为,1°的圆心角所对的弧长为,n°的圆心角所对的弧长为,弧长公式为.2.圆的面积为,1°的圆心角所在的扇形面积为,n°的圆心角所在的扇形面积为S= ×πr2 = = .r lπ.(其中为的半径,为的长);3. 圆锥的侧面积公式:S=rl圆锥的全面积:S全=S侧+S底=πrl+πr2.四、例题分析题型一弧长、扇形的面积例1.(2016·贵州安顺)如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则阴影部分面积是(结果保留π).例2.(2016·浙江台州)如图,△ABC的外接圆O的半径为2,∠C=40°,则AB 的长是.【趁热打铁】1.圆心角为120,弧长为12π的扇形半径为()A.6B.9C.18D.362.半径为4cm,圆心角为60°的扇形的面积为cm2.题型二圆锥的侧面积和全面积例.(2016·四川自贡)圆锥的底面半径为4cm,高为5cm,则它的表面积为()+cm2 A.12πcm2B.26πcm2C.41πcm2D.(44116)π【趁热打铁】1.如图,圆锥的侧面展开图使半径为3,圆心角为90°的扇形,则该圆锥的底面周长为()A.34πB.32πC.34D.322.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是()A. 15πB. 20πC.24πD.30π3.一圆锥体形状的水晶饰品,母线长是10cm,底面圆的直径是5cm,点A为圆锥底面圆周上一点,从A点开始绕圆锥侧面缠一圈彩带回到A点,则彩带最少用多少厘米(接口处重合部分忽略不计)()A.10πcm B.10cm C.5πcm D.5cm题型三阴影部分的面积例.(2016·四川广安)如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=43,则S阴影=()A.2π B.83π C.43π D.38π【趁热打铁】1如图,将半径为3的圆形纸片,按下列顺序折叠.若和都经过圆心O,则阴影部分的面积是(结果保留π)2.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.2332π-B.233π-C.32π-D.3π-题型四正多边形和圆例.(2016·四川广安).以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.38B.34C.24D.28【趁热打铁】1若正六边形的半径长为4,则它的边长等于()A.4 B.2 C.23D.43 2. 如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG 的边长为.牛刀小试1、小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.23cm B.43cm C.63cm D.83cm2、如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为()A .3B .6C .3πD .6π 3、在Rt △ABC 中,∠ACB=90°,AC=23,以点B 为圆心,BC 的长为半径作弧,交AB 于点D ,若点D 为AB 的中点,则阴影部分的面积是( )A .2233π-B .2433π-C .4233π-D .23π 4、如图,在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDE F 的边长为22时,则阴影部分的面积为( )A .42-πB .84-πC .82-πD .44-π5、如图,圆O 的半径为2,点A 、C 在圆O 上,线段BC 经过圆心O ,∠ABD=∠CDB=90°,AB=1,CD=,图中阴影部分面积为 .6、如图,CD 为⊙O 的弦,直径AB 为4,AB ⊥CD 于E ,∠A=30°,则的长为 (结果保留π).3CDAB OBC巩固练习1.如图,点A 在以BC 为直径的⊙O 内,且AB=AC ,以点A 为圆心,AC 长为半径作弧,得到扇形ABC ,剪下扇形ABC 围成一个圆锥(AB 和AC 重合),若∠BAC=120°,BC=2,则这个圆锥底面圆的半径是( )A .B .C .D . 2.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S 1,正八边形外侧八个扇形(阴影部分)面积之和为S 2,则=( )A .B .C .D .13.已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为( )A .2B .4C .6D .8 4.一个扇形的圆心角是120°,面积为3πcm 2,那么这个扇形的半径是( ) A .1cm B .3cm C .6cm D .9cm13232312S S 3435235.半径为6,圆心角为120°的扇形的面积是( )A .3πB .6πC .9πD .12π 6.如图,在等腰Rt △ABC 中,AC =BC =,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是( )A .B .πC .D .2 7.如图,在Rt △AOB 中,∠AOB=90°,OA=3,OB=2,将Rt △AOB 绕点O 顺时针旋转90°后得Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以O ,E 为圆心,OA 、E D 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分面积是( )A .πB .1.25πC .3+πD .8﹣π 8.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm ,则这块扇形铁皮的半径是( )A.40cmB.50cmC.60cmD.80cm 9.如图,用一个半径为5cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了( )22π222A .πcmB .2πcmC .3πcmD .5πcm 10.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D ,C .若∠ACB=30°,AB=,则阴影部分的面积是( )A .B .C .D . 课堂小结强化提升1. 如图,正六边形ABCDEF 内接于半径为4的圆,则B 、E 两点间的距离为 .2.如图,正六边形ABCDEF 内接于半径为3的圆O ,则劣弧AB 的长度为 .3326π326π-336π-3.如图,△ABC是等边三角形,AB=2,分别以A,B,C为圆心,以2为半径作弧,则图中阴影部分的面积是.4.小杨用一个半径为36cm、面积为324πcm2的扇形纸板制作一个圆锥形的玩具帽(接缝的重合部分忽略不计),则帽子的底面半径为cm.5.如图,AC是汽车挡风玻璃前的雨刷器,如果AO=45cm,CO=5cm,当AC 绕点O顺时针旋转90°时,则雨刷器AC扫过的面积为cm2(结果保留π).6.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是.7.如图,在半径AC为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则图中阴影部分的面积是.8.一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为cm.9.如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为.10.如图,扇形OAB中,∠AOB=60°,OA=6cm,则图中阴影部分的面积是.课后作业1.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC于点D,E,过点D作DF⊥AC,垂足为F,线段FD,AB的延长线相交于点G.(1)求证:DF是⊙O的切线;3(2)若CF=1,DF=,求图中阴影部分的面积.2.如图,在四边形ABCD 中,AD ∥BC ,AD=2,AB=,以点A 为圆心,AD 为半径的圆与BC 相切于点E ,交AB 于点F .(1)求∠ABE 的大小及的长度;(2)在BE 的延长线上取一点G ,使得上的一个动点P 到点G 的最短距离为,求BG 的长.22DEF DE 2223.如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,AB=8.(1)利用尺规,作∠CAB 的平分线,交⊙O 于点D ;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD ,OD ,若AC=CD ,求∠B 的度数;(3)在(2)的条件下,OD 交BC 于点E .求出由线段ED ,BE ,所围成区域的面积.(其中表示劣弧,结果保留π和根号)BD BD4.如图,在△ABC中,以AB为直径的⊙O分别于BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).。
(精品)2018中考数学第一轮复习教案
2018年中考数学第一轮复习第一章数与式第一讲实数【基础知识回顾】一、实数的分类:1、按实数的定义分类:实数有限小数或无限循环数2、按实数的正负分类:实数【名师提醒:1、正确理解实数的分类。
如:2是数,不是数,722是数,不是数。
2、0既不是数,也不是数,但它是自然数】二、实数的基本概念和性质1、数轴:规定了、、的直线叫做数轴,和数轴上的点是一一对应的,数轴的作用有、、等。
2、相反数:只有不同的两个数叫做互为相反数,a 的相反数是,0的相反数是,a 、b 互为相反数3、倒数:实数a 的倒数是,没有倒数,a 、b 互为倒数4、绝对值:在数轴上表示一个数的点离开的距离叫做这个数的绝对值。
a =因为绝对值表示的是距离,所以一个数的绝对值是数,我们学过的非负数有三个:、、。
【名师提醒:a+b 的相反数是,a-b 的相反数是,0是唯一一个没有倒数的数,相反数等于本身的数是,倒数等于本身的数是,绝对值等于本身的数是】三、科学记数法、近似数和有效数字。
1、科学记数法:把一个较大或较小的数写成的形式叫做科学记数法。
其中a 的取值范围是。
2、近似数和有效数字:一般的,将一个数四舍五入后的到的数称为这个数的近似数,这时,从数字起到近似数的最后一位止,中间所有的数字都叫这个数的有效数字。
正无理数无理数负分数零正整数整数有理数无限不循环小数正数正无理数零负有理数负数(a >0)(a <0)0 (a=0)【名师提醒:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a的取值范围一样,n 的取值不同,当表示较大数时,n的值是原整数数位减一,表示较小的数时,n是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。
2、近似数 3.05万是精确到位,而不是百分位】四、数的开方。
1、若x2=a(a 0),则x叫做a的,记做±a,其中正数a的平方根叫做a的算术平方根,记做,正数有个平方根,它们互为,0的平方根是,负数平方根。
中考数学第一轮复习教案9篇
中考数学第一轮复习教案9篇中考数学第一轮复习教案9篇数学教案对于老师是很重要的。
教案是老师在进行教学的重要参考材料,对教学进度和节奏的把控有重要的作用,可以提高教学效率。
下面小编给大家带来关于中考数学第一轮复习教案,希望会对大家的工作与学习有所帮助。
中考数学第一轮复习教案(篇1)本学期是初中学习的关键时期,教学任务非常艰巨。
因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。
九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。
下面特制定以下教学复习计划。
一、学情分析经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。
通过上个学期多次摸底测试及期末检测发现,本班的特点是两极分化现象极为严重。
虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。
其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。
二、指导思想坚持贯彻党的__大教育方针,继续深入开展新课程教学改革。
立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。
并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。
三、教学内容分析本学期,除了要完成规定的所学内容,就将开始进入初中数学总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。
在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。
在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。
2018年中考数学一轮复习教学案(完整版)
第一课时 实数的有关概念知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值 大纲要求:1. 使学生复习巩固有理数、实数的有关概念.2. 了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。
3. 会求一个数的相反数和绝对值,会比较实数的大小4. 画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。
考查重点:1. 有理数、无理数、实数、非负数概念; 2.相反数、倒数、数的绝对值概念;3.在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题。
实数的有关概念 (1)实数的组成{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数负无理数(2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。
数轴上任一点对应的数总大于这个点左边的点对应的数, (3)相反数实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反效是零). 从数轴上看,互为相反数的两个数所对应的点关于原点对称. (4)绝对值⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 (5)倒数实数a(a ≠0)的倒数是a1(乘积为1的两个数,叫做互为倒数);零没有倒数. 考查题型:以填空和选择题为主。
如 一、考查题型:1. -1的相反数的倒数是2. 已知|a+3|+b+1 =0,则实数(a+b )的相反数 3. 数-3.14与-Л的大小关系是4. 和数轴上的点成一一对应关系的是5. 和数轴上表示数-3的点A 距离等于2.5的B 所表示的数是 6. 在实数中Л,-25,0, 3 ,-3.14, 4 无理数有( )(A )1 个 (B )2个 (C )3个 (D )4个7.一个数的绝对值等于这个数的相反数,这样的数是( ) (A )非负数 (B )非正数 (C )负数 (D )正数 8.若x <-3,则|x +3|等于( )(A )x +3 (B )-x -3 (C )-x +3 (D )x -3 9.下列说法正确是( )(A ) 有理数都是实数 (B )实数都是有理数(B ) 带根号的数都是无理数 (D )无理数都是开方开不尽的数 10.实数在数轴上的对应点的位置如图,比较下列每组数的大小: (1) c-b 和d-a (2) bc 和ad 二、考点训练: 1.判断题:(1)如果a 为实数,那么-a 一定是负数;( ) (2)对于任何实数a 与b,|a -b|=|b -a|恒成立;( ) (3)两个无理数之和一定是无理数;( ) (4)两个无理数之积不一定是无理数;( ) (5)任何有理数都有倒数;( ) (6)最小的负数是-1;( ) (7)a 的相反数的绝对值是它本身;( ) (8)若|a|=2,|b|=3且ab>0,则a -b=-1;( ) 2.把下列各数分别填入相应的集合里-|-3|,21.3,-1.234,-227 ,0,sin60°º,-9 ,-3-18 , -Л2 ,8 ,( 2 - 3 )0,3-2,ctg45°,1.2121121112......中无理数集合{ } 负分数集合{ } 整数集合 { } 非负数集合{ } 3.已知1<x<2,则|x -3|+(1-x)2等于( )(A )-2x (B )2 (C )2x (D )-24.下列各数中,哪些互为相反数?哪些互为倒数?哪些互为负倒数?-3, 2 -1, 3, - 0.3, 3-1, 1 + 2 , 313互为相反数: 互为倒数: 互为负倒数:5.已知x、y是实数,且(X - 2 )2和|y+2|互为相反数,求x,y 的值6.a,b 互为相反数,c,d 互为倒数,m 的绝对值是2,求|a+b|2m 2+1 +4m-3cd= 。
最新苏科版2018-2019学年数学九年级上册《圆第1课时》教学设计-优质课教案
2.1圆(1)教学目标:(一)知识技能目标1.经历圆的有关概念的形成过程,理解圆的描述概念和集合概念.2.理解点与圆的位置关系以及如何确定点与圆的三种位置关系;了解“圆是到定点距离等于定长的点的集合”,并能应用它解决相关的问题.3.经历探索点与圆的位置关系的过程,会运用点到圆心的距离与圆的半径之间的数量关系判断点与圆的位置关系,逐步学会用运动的观点及数形结合的思想去解决问题. (二)过程与方法目标1.通过观察、操作、交流的过程,培养学生动手能力、探究问题的能力以及合作交流的能力.2.经历探究、归纳的过程,丰富数学活动经验,体会从特殊到一般的研究方法,以及数形结合和转化的数学思想.(三)情感态度目标经历圆的有关概念的形成过程,引导学生用数学的眼光和运动、集合的观点去认识世界、解决问题.激发学生爱生活的情感.通过小组交流活动,培养学生合作学习的意识和探索研究的精神.教学重点:确定点和圆的三种位置关系以及圆的集合概念的理解教学难点:点和圆的三种位置关系的理解和应用教学方法与教学手段:自主探索、合作交流、多媒体辅助教学.P O O教学过程:一、探索活动1、圆的描述定义:把一条线段OP (用你手边的圆珠笔代替)的一个端点O 固定,使线段OP 绕点O 在平面内旋转一周,另一个端点P 所形成的图形是______。
其中,定点O 叫______,线段OP 叫______。
以点O 为圆心的圆,记作______,读作______。
2、思考:确定一个圆的两个要素是_______和________;以定点A 为圆心作圆,能作______个圆;以定长r 为半径作圆,能作______个圆;以定点A 为圆心、定长r 为半径作圆,能且只能作_______个圆。
二、观察、思考与小结:1、请你在圆上任取3个点,分别量出这三个点到圆心的距离,你发现了什么? 小结:(1)圆上各点到圆心(定点)的距离都______定长______;反之,到圆心的距离等于半径的点都在______上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【教学目标】1.理解圆及弧、弦有关概念、性质;2.垂径定理及其应用;
【教学过程】
1.圆:平面内到 距离等于 的点的集合称为圆;把 称为圆心, 称为半径。
2.连接圆上任意 的 称为弦,经过 的弦称为直径;圆上 的部分称为弧。
3.圆的对称性:圆既是 图形也是 图形,对称轴是 ,有 条;对称中心是 。
4.圆的推论:在同一平面内,不在 直线上的 点确定一个圆。
5.垂径定理:垂直于弦的 平分弦,并且平分弦所对的 弧。
如图,有 。
6.垂径定理推论:平分弦(非直径)的直径 弦,
并且平分弦所对的两条弧。
如图,有 。
【展现提高】
1.下列说法正确的是 ( ) A.长度相等的弧是等弧; B.两个半圆是等弧; C.半径相等的弧是等弧; D.直径是圆中最长的弦;
2.一个点到圆上的最小距离是4cm ,最大距离是9cm ,则圆的半径是( )
A.2.5cm 或6.5cm
B.2.5cm
C.6.5cm
D.5cm 或13cm
3.以下说法正确的是:①圆既是轴对称图形,又是中心对称图形;②垂直于弦的直径平分这条弦;③相等圆心角所对的弧相等。
( )
A. ①②
B. ②③
C. ①③
D. ①②③ 4.如图所示,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,则下列结论正确的是( ) A.AB ⊥CD B.⋂
⋂
=CD AB C.PO=PD D.AP=BP 5.如图所示,在半径为5的⊙O 中,弦AB 的为8,那么它的弦心距是 ;
6.如图所示,一圆形管道破损需更换,现量得管内水面宽为60cm ,水面到管道顶部距离为10cm ,问该准备内径是多少的管道进行更换。
第4题图C
D O
B
A 第5题图C
O
B
A
10cm
60cm
第6题图O
_ B
_ A _ O _ C _ D P
班别:姓名:分数:
1.如图1所示,AB是⊙O的弦,圆心O到AB的距离OD=1,AB=4,则该圆的半径是;
2.如图2所示,在⊙O中,直径MN⊥AB,垂足是C,则下列结论错误的是()
A.AC=BC
B.
⋂
⋂
=BN
AN C.
⋂
⋂
=BM
AM D.OC=CN
3. 在半径为13cm的⊙O中,弦AB∥CD,AB=24cm,CD=10cm,求AB与CD的距离。
4.如图3,A、B为⊙O上两点,且∠AOB=120○,C是
⋂
AB的中点,求证四边形OACB是菱
形。
A
图2
C
M
N
O
B
图3
C
O
B
A
A
图1
D
O
B
_A
_O
B。