2019-2020学年高一数学 1.1.2弧度制教案 新人教A版.doc

合集下载

【新教材】新人教A版必修一 弧度制 教案

【新教材】新人教A版必修一 弧度制 教案

2019—2020学年新人教A 版必修一 弧度制 教案一、教学目标:1、知识与技能(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集R 之间建立的一一对应关系。

(6) 使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.2、过程与方法 创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式。

以具体的实例学习角度制与弧度制的互化,能正确使用计算器.3、情态与价值通过本节的学习,使同学们掌握另一种度量角的单位制—-—弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系。

角的概念推广以后,在弧度制下,角的集合与实数集R 之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备。

二、教学重、难点重点: 理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用。

难点: 理解弧度制定义,弧度制的运用。

三、学法与教学用具在我们所掌握的知识中,知道角的度量是用角度制,但是为了以后的学习,我们引入了弧度制的概念,我们一定要准确理解弧度制的定义,在理解定义的基础上熟练掌握角度制与弧度制的互化.教学用具:计算器、投影机、三角板四、教学设想【创设情境】 有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1。

6公里)显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制。

2019-2020学年高中数学 1.1.2弧度制教案教案 新人教A版必修4.doc

2019-2020学年高中数学 1.1.2弧度制教案教案 新人教A版必修4.doc

一、引入 回忆: 度量角的大小第一种单位制—角度制的定义 二、提出课题:弧度制—另一种度量角的单位制 ,它的单位是rad 读作弧度(1)弧度制定义:长度等于半径长的弧所对的圆心角称为1弧度的角。

如图:AOB=1rad AOC=2rad周角=2rad1. 正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0 2. 角的弧度数的绝对值 rl=α(l 为弧长,r 为半径) 3. 用角度制和弧度制来度量零角,单位不同,但数量相同(都是0)用角度制和弧度制来度量任一非零角,单位不同,量数也不同。

or C 2rad1rad r l=2r o A A B(2)角度制与弧度制的换算 抓住:360=2rad ∴180= rad∴ 1=rad rad 01745.0180≈π'185730.571801=≈⎪⎭⎫ ⎝⎛=πrad例1 把'3067化成弧度解:⎪⎭⎫ ⎝⎛=2167'3067 ∴ rad rad ππ832167180'3067=⨯=例2 把rad π53化成度解: 1081805353=⨯=rad π 注意几点:1.度数与弧度数的换算也可借助“计算器”《中学数学用表》进行; 2.今后在具体运算时,“弧度”二字和单位符号“rad ”可以省略 如:3表示3rad sin 表示rad 角的正弦 3.一些特殊角的度数与弧度数的对应值应该记住(见课本P8) 4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。

任意角的集合 实数集三.例题分析 课本例3 正角 零角 负角正实数 零 负实数。

高一数学人教A版必修4第一章1.1.2 弧度制 教学设计

高一数学人教A版必修4第一章1.1.2 弧度制 教学设计

长来定义角度,而产生新的角度单位呢?那么我们就先通过简单的计算来看看能不能发现什么规律?【学生活动】分组讨论,探索研究探究1:角度为30,60的圆心角,当半径1,2,3,4r =时,分别计算对应的弧长l ,计算后你们能发现什么规律?有没有什么比值或者量是不变的?30θ=, 1r =时,3011801806n r l πππ⨯⨯===,6π=r l 2r =时,3021801803n r l πππ⨯⨯===,6π=r l3r =时,3031801802n r l πππ⨯⨯===,6π=r l4r =时,30421801803n r l πππ⨯⨯===,6π=r l 60θ=,1r =时,6011801803n r l πππ⨯⨯===,3π=r l2r =时,60221801803n r l πππ⨯⨯===,3π=r l 3r =时,603180180n r l πππ⨯⨯===,3π=r l4r =时,60441801803n r l πππ⨯⨯===,3π=r l 发现结论:圆心角不变则比值不变,这个比值与弧长和半径的大小无关,只和角度大小有关。

(抽取两个小组分享他们的发现)因此比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是度量角的另外一种单位制——弧度制(客观性,有理可循)。

环节三:归纳概括(新概念和新公式),初步巩固及总结(一收)【教师活动】弧度制的定义:长度等于半径长的圆弧所对的圆心角叫做1弧度的角,用符号1 rad 表示,读作1弧度。

这种以弧度为单位来度量角的制度叫做弧度制。

如图, 角在形成过程中,射线上的任意一点在旋转过程中,走过的弧长以及圆弧所在圆的半径虽然不同,但是走过的角度是相同的(几何画板展示)【学生活动】即时回答:弧长分别为r,2r,半圆,一个圆所对的圆心角的弧度数,可以发现圆心角弧度数等于弧长和半径的比值,得出结论rl=α 【教师活动】几何画板展示问题,并顺便说明正角的弧度数为正,负角弧度数为负,零角的弧度数为0.【教师活动】提问:弧度制与角度制相比,不同之处在哪里? (教师引导学生进行小结) 【学生活动】在教师的引导下,整理得:1.定义方式不同:弧度制是以“弧度”为单位的度量角的单位制,角度制是以“度”教师提供的素材,通过小组探究讨论,让学生有充足的时间空间自主完成知识建构让学生体会数学中下定义本质上是抓住事物的本质,而事物的本质则是变化过程中的不变性.通过具体图象,以形助数,直观定义新概念。

2019-2020学年新人教A版必修一 弧度制 学案

2019-2020学年新人教A版必修一     弧度制   学案

2019-2020学年新人教A 版必修一 弧度制 学案一、弧度制的概念1.角度制:规定周角的1360为1度的角,用度作为单位来度量角的单位制叫做角度制.2.弧度制:把长度等于半径长的弧所对的圆心角叫做1弧度的角,记作1 rad ,用弧度作为角的单位来度量角的单位制称为弧度制.思考1:“1弧度的角”的大小和所在圆的半径大小有关系吗? [提示] “1弧度的角”是一个定值,与所在圆的半径大小无关. 二、角度制与弧度制的换算 1.角度制与弧度制的换算正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0. 思考2:角度制与弧度制之间如何进行换算?[提示] 利用1°=π180弧度和1弧度=⎝ ⎛⎭⎪⎫180π°进行弧度与角度的换算. 三、扇形的弧长公式及面积公式1.弧度制下的弧长公式:如图,l 是圆心角α所对的弧长,r 是半径,则圆心角α的弧度数的绝对值是|α|=lr,弧长l =|α|r .特别地,当r =1时,弧长l =|α|.2.扇形面积公式:在弧度制中,若|α|≤2π,则半径为r ,圆心角为α的扇形的面积为S =|α|2π·πr 2=12lr .1.思考辨析(1)大圆中1弧度角比小圆中1弧度角大.( ) (2)圆心角为1弧度的扇形的弧长都相等.( ) (3)长度等于半径的弦所对的圆心角是1弧度.( ) [答案] (1)× (2)× (3)× 2.将下列弧度与角度互换 (1)-2π9=________;(2)2=________; (3)72°=________; (4)-300°=________. (1)-40° (2)⎝⎛⎭⎪⎫360π° (3)2π5 rad (4)-5π3 rad[(1)-2π9 rad =-29×180°=-40°.(2)2 rad =2×⎝ ⎛⎭⎪⎫180π°=⎝ ⎛⎭⎪⎫360π°.(3)72°=72×π180 rad =2π5rad.(4)-300°=-300×π180 rad =-5π3rad.]3.半径为1,圆心角为2π3的扇形的弧长为________,面积为________.2π3 π3 [∵α=2π3,r =1,∴弧长l =α·r =2π3, 面积=12lr =12×2π3×1=π3.]角度制与弧度制的互化【例1】 把下列弧度化成角度或角度化成弧度: (1)-450°;(2)π10;(3)-4π3;(4)112°30′.思路点拨:利用“180°=π”实现角度与弧度的互化.[解] (1)-450°=-450×π180 rad =-5π2 rad ;(2)π10 rad =π10×⎝ ⎛⎭⎪⎫180π°=18°; (3)-4π3 rad =-4π3×⎝ ⎛⎭⎪⎫180π°=-240°;(4)112°30′=112.5°=112.5×π180 rad =5π8rad.角度制与弧度制换算的要点:提醒:度化弧度时,应先将分、秒化成度,再把度化成弧度.1.将下列角度与弧度进行互化.(1)20°;(2)-15°;(3)7π12;(4)-11π5.[解] (1)20°=20π180 rad =π9 rad.(2)-15°=-15π180 rad =-π12 rad.(3)7π12 rad =712×180°=105°.(4)-11π5 rad =-115×180°=-396°.用弧度制表示角的集合【例2】 用弧度制表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分内的角的集合(不包括边界,如图所示).思路点拨:先写出边界角的集合,再借助图形写出区域角的集合. [解] 用弧度制先写出边界角,再按逆时针顺序写出区域角,(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪-π6+2k π<θ<512π+2k π,k ∈Z . (2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪-3π4+2k π<θ<3π4+2k π,k ∈Z. (3)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪π6+k π<θ<π2+k π,k ∈Z.表示角的集合,单位制要统一,不能既含有角度又含有弧度,如在“α+2k π(k ∈Z )”中,α必须是用弧度制表示的角,在“α+k ·360°(k ∈Z )”中,α必须是用角度制表示的角.提醒:用不等式表示区域角的范围时,要注意角的集合形式是否能够合并,这一点容易出错.2.如图,用弧度表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分内的角的集合(不包括边界).① ②[解] (1)如题图①,以OA 为终边的角为π6+2k π(k ∈Z );以OB 为终边的角为-2π3+2k π(k ∈Z ),所以阴影部分内的角的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪-2π3+2k π<α<π6+2k π,k ∈Z . (2)如题图②,以OA 为终边的角为π3+2k π(k ∈Z );以OB 为终边的角为2π3+2k π(k ∈Z ).不妨设右边阴影部分所表示的集合为M 1,左边阴影部分所表示的集合为M 2,则M 1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π<α<π3+2k π,k ∈Z ,M 2=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2π3+2k π<α<π+2k π,k ∈Z .所以阴影部分内的角的集合为M 1∪M 2=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π<α<π3+2k π或2π3+2k π<α<π+2k π,k ∈Z .扇形的弧长及面积问题[探究问题]1.公式l =|α|r 中,“α”可以为角度制角吗? 提示:公式l =|α|r 中,“α”必须为弧度制角.2.在扇形的弧长l ,半径r ,圆心角α,面积S 中,已知其中几个量可求其余量?举例说明.提示:已知任意两个量可求其余两个量,如已知α,r ,可利用l =|α|r ,求l ,进而求S =12lr ;又如已知S ,α,可利用S =12|α|r 2,求r ,进而求l =|α|r .【例3】 一个扇形的周长为20,则扇形的半径和圆心角各取什么值时,才能使扇形面积最大?思路点拨:设出扇形的圆心角、半径、弧长→用半径表示圆心角→求扇形面积→转化为二次函数求最值[解] 设扇形的圆心角为α,半径为r ,弧长为l ,则l =αr , 依题意l +2r =20,即αr +2r =20,∴α=20-2r r.由l =20-2r >0及r >0得0<r <10, ∴S 扇形=12αr 2=12·20-2r r ·r 2=(10-r )r=-(r -5)2+25(0<r <10).∴当r =5时,扇形面积最大为S =25. 此时l =10,α=2,故当扇形半径r =5,圆心角为2 rad 时, 扇形面积最大.灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题.提醒:(1)在弧度制中的弧长公式及扇形面积公式中的圆心角可正可负. (2)看清角的度量制,选用相应的公式. (3)扇形的周长等于弧长加两个半径长.教师独具1.本节课的重点是弧度与角度的换算、扇形的弧长公式和面积公式,难点是对弧度制概念的理解.2.本节要牢记弧度制与角度制的转化公式(1)π=180°;(2)1°=π180 rad (3)1 rad =⎝ ⎛⎭⎪⎫180π°. 3.本节课要重点掌握以下规律方法 (1)弧度制的概念辨析; (2)角度与弧度的换算;(3)扇形的弧长公式和面积公式的应用. 4.本节课的易错点表示终边相同角的集合时,角度与弧度不能混用.1.将下列各角的弧度(角度)化为角度(弧度): (1)2π15=________;(2)-6π5=________;(3)920°=________;(4)-72°=________. (1)24° (2)-216° (3)469π rad (4)-2π5 rad [(1)2π15 rad =215×180°=24°.(2)-6π5 rad =-65×180°=-216°.(3)920°=920×π180 rad =469π rad.(4)-72°=-72×π180 rad =-2π5rad.]2.若扇形的周长为4 cm ,面积为1 cm 2,则扇形的圆心角的弧度数是________. 2 [设扇形所在圆的半径为r cm ,扇形弧长为l cm.由题意得⎩⎪⎨⎪⎧l +2r =4,12lr =1,解得⎩⎪⎨⎪⎧l =2,r =1.所以α=lr=2.因此扇形的圆心角的弧度数是2.]3.用弧度制表示终边落在x 轴上方的角的集合为______.{}α| 2k π<α<2k π+π,k ∈Z[若角α的终边落在x 轴的上方,则2k π<α<2k π+π,k ∈Z .]4.设α1=-570°,α2=750°,β1=3π5,β2=-π3.(1)将α1,α2用弧度制表示出来,并指出它们各自的终边所在的象限;(2)将β1,β2用角度制表示出来,并在[-720°,0°)范围内找出与它们终边相同的所有角.[解] (1)∵180°=π rad ,∴α1=-570°=-570×π180=-19π6=-2×2π+5π6,α2=750°=750×π180=25π6=2×2π+π6.∴α1的终边在第二象限,α2的终边在第一象限. (2)β1=3π5=3π5×⎝ ⎛⎭⎪⎫180π°=108°,设θ=108°+k ·360°(k ∈Z ), 则由-720°≤θ<0°,即-720°≤108°+k ·360°<0°, 得k =-2,或k =-1.故在[-720°,0°)范围内,与β1终边相同的角是-612°和-252°. β2=-π3=-60°,设γ=-60°+k ·360°(k ∈Z ),则由-720°≤-60°+k ·360°<0°,得k =-1,或k =0. 故在[-720°,0°)范围内,与β2终边相同的角是-420°.。

高一数学人教A版必修四教案:1.1.2 弧度制 Word版含答案

高一数学人教A版必修四教案:1.1.2 弧度制 Word版含答案

1.1.2弧度制一、教学目标:1、知识与技能(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集R 之间建立的一一对应关系.(6) 使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.2、过程与方法创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式.以具体的实例学习角度制与弧度制的互化,能正确使用计算器.3、情态与价值通过本节的学习,使同学们掌握另一种度量角的单位制---弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.角的概念推广以后,在弧度制下,角的集合与实数集R 之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备.二、教学重、难点重点: 理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用. 难点: 理解弧度制定义,弧度制的运用.三、学法与教学用具在我们所掌握的知识中,知道角的度量是用角度制,但是为了以后的学习,我们引入了弧度制的概念,我们一定要准确理解弧度制的定义,在理解定义的基础上熟练掌握角度制与弧度制的互化.教学用具:计算器、投影机、三角板四、教学设想【创设情境】有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1.6公里)显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里.在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制---弧度制.【探究新知】1.角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制与角度制之间如何换算?请看课本67P P ~,自行解决上述问题.2.弧度制的定义[展示投影]长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,yxAαOB或1弧度,或1(单位可以省略不写).3.探究:如图,半径为r 的圆的圆心与原点重合,角α的终边与x 轴的正半轴重合,交圆于点A ,终边与圆交于点B .请完成表格.-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.4.思考:如果一个半径为r 的圆的圆心角α所对的弧长是,那么a 的弧度数是多少?角α的弧度数的绝对值是:rl=α,其中,l 是圆心角所对的弧长,r 是半径. 5.根据探究中180rad π︒=填空:1___rad ︒=,1___rad =度显然,我们可以由此角度与弧度的换算了. 6.例题讲解例1.按照下列要求,把'6730︒化成弧度:(1) 精确值;(2) 精确到0.001的近似值.例2.将3.14rad 换算成角度(用度数表示,精确到0.001).注意:角度制与弧度制的换算主要抓住180rad π︒=,另外注意计算器计算非特殊角的方法.7. 填写特殊角的度数与弧度数的对应表:角的概念推广以后,在弧度制下,角的集合与实数集之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.8.例题讲评例3.利用弧度制证明下列关于扇形的公式:(1)l R α=; (2)212S R α=; (3)12S lR =. 其中R 是半径,是弧长,(02)ααπ<<为圆心角,S 是扇形的面积. 例4.利用计算器比较sin1.5和sin85︒的大小.注意:弧度制定义的理解与应用,以及角度与弧度的区别.9.练习 教材10P .9.学习小结(1)你知道角弧度制是怎样规定的吗?(2)弧度制与角度制有何不同,你能熟练做到它们相互间的转化吗?五、评价设计1.作业:习题1.1 A 组第7,8,9题. 2.要熟练掌握弧度制与角度制间的换算,以及异同.能够使用计算器求某角的各三角函数值.。

高一数学(1.1.2弧度制)教案新人教A版必修4

高一数学(1.1.2弧度制)教案新人教A版必修4

弧度制的关键 , 为更好地理解角度弧度的关系奠定基础 . 讨论后教师提问学生 , 并对回答好的
学生及时表扬 , 对回答不准确的学生提示引导考虑问题的关键
. 教师板书弧度制的定义 : 规定
长度等于半径长的圆弧所对的圆心角叫做
1 弧度的角 . 以弧度为单位来度量角的制度叫做弧
度制 ; 在弧度制下 ,1 弧度记作 1 rad. 如图 1 中 , 的长等于半径 r,AB 所对的圆心角∠ AOB
生找出区别和联系 . 教师给予补充和提示 , 对表现好的学生进行表扬 , 对回答不准确的学生提
示和鼓励 . 引入弧度之后 , 应与角度进行对比 , 使学生明确 : 第一 , 弧度制是以“弧度”为单位
来度量角的单位制 , 角度制是以“度”为单位来度量角的单位制 ; 第二 ,1 弧度是等于半径长
的弧所对的圆心角 是以“度”为单位
角度制、弧度制都是度量角的制度 , 二者虽单位不同 , 但却是互相联系、辩证统一的 . 进一步
加强对辩证统一思想的理解 , 渗透数学中普遍存在、相互联系、相互转化的观点
.
三维目标
1. 通过类比长度、重量的不同度量制 , 使学生体会一个量可以用不同的单位制来度量
,
从而引出弧度制 .
2. 通过探究使学生认识到角度制和弧度制都是度量角的制度
位进行度量 , 并且一度的角等于周角的
1 , 记作 1°.
360
通过类比引出弧度制 , 给出 1 弧度的定义 , 然后通过探究得到弧度数的绝对值公式
, 并得
出角度和弧度的换算方法 . 在此基础上 , 通过具体的例子 , 巩固所学概念和公式 , 进一步认识
引入弧度制的必要性 . 这样可以尽量自然地引入弧度制 , 并让学生在探究过程中 , 更好地形成

高中数学1.1.2弧度制教案新人教A版必修4 (1)

高中数学1.1.2弧度制教案新人教A版必修4 (1)

1.2弧度制一、关于教学内容的思考教学任务:帮助学生明确弧度制的概念,弧度与角度的换算,弧长公式及扇形公式. 教学目的:引导学生认识弧度制,并确立1弧度的含义。

教学意义:培养学生用转化的思想对同一事物进行不同方式描述。

二、教学过程1.1弧度的角定义:我们规定,把长度等于半径长的弧所对的圆心角叫做1弧度的角。

这种用弧度作为单位来度量角的单位制叫做弧度制。

2.弧长公式:一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0。

如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是rl =||α。

3.弧度与角度的换算:π2360=︒弧度1801()5718'1180rad rad ππ⎧=︒≈︒⎪⇒⎨⎪︒=⎩例 若)(4Z k k ∈+=ππα,则在第几象限?一、三 例 填写特殊角的换算对应表:度0° 30° 45° 60° 90° 弧度0 6π 4π 3π 2π 120° 135° 150°180° 270° 360° 23π 34π 56π π 32π 2π4.弧度制下的弧长公式及扇形公式:R l ||α=,22121R lR S α==。

例 已知半径为10的圆中,弦AB 的长为10。

(1) 求弦AB 所对的圆心角α的大小;3π (2) 求α所在的扇形弧长l 及弧所在的弓形面积。

π310,)233(50-π 例 已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?2,10==αr三、教材节后练习(可以在课堂上随着教学内容穿插进行)四、教学备用例子1.若α是第三象限角,则απ+所在的象限是( A )A.第一象限 B.第二象限 C.第三象限 D.第四象限2.若βα,满足22πβαπ<<<-,则βα-的取值范围是 )0,(π- .3.若三角形的三个内角之比为3:2:1,则此三角形的最小内角的弧度数为 6π .4.如图所示,已知单位圆上一点)0,1(A 按逆时针方向做匀速圆周运动,s 1时间转过的弧度数是(0)θθπ<≤,经过s 2到达第三象限,经过s 14又转到最初位置,则θ的弧度数是 75,74ππ .五、课后作业 同步练习1. 半径为2的圆中,弧长为4的弧所对圆心角大小是多少? 22.已知扇形周长为10,为4,求扇形的圆心角。

高中数学 1.1.2 弧度制教案 新人教A版必修1

高中数学 1.1.2 弧度制教案 新人教A版必修1

江苏省连云港灌云县第一中学高中数学 1.1.2 弧度制教案新人教A版必修1教学目标:1.理解1弧度的角及弧度的定义;2.掌握角度与弧度的换算公式并熟练进行角度与弧度的换算;3.理解并掌握弧度制下的弧长公式、扇形面积公式,并能灵活运用这两个公式解题.教学重点:理解弧度制的意义,正确进行弧度与角度的换算;熟练进行弧长和面积公式的应用.教学难点:弧度的概念及与角度的关系;角的集合与实数之间的一一对应关系.教学方法:问题链导学法.教学过程:一、问题情境探究:l、α、r三者之间关系.二、学生活动1.改变α、r ,观察l的变化2.改变l,r,观察α的变化3.分析原因三、建构数学1.弧度角的定义:长度等于半径的圆弧所对的圆心角叫做1弧度的角.2.记法:1rad.3.引入弧度制的概念4.通过问题构建弧长,半径,圆心角之间的关系:l = |α| r5.通过问题引导学生进行角度制与弧度制的互换.360°=2πrad 180°= πrad1801π=︒rad ≈0.01745rad 1rad=︒)180(π≈57.30°6.通过问题引导学生推导出弧度制下的扇形面积公式.四、数学应用1.例题.例1 把下列各角从度化为弧度.(1)135° (2)-75° (3)11°15′例2 把下列各角从弧度化为度.(1)53πrad (2)34πrad 例3 已知扇形的周长为8cm ,圆心角为2rad ,求该扇形的面积.2.练习.(1)填表说明:一些特殊角的弧度数,大家要熟记,免得每次遇到都要去进行换算.(2)用弧度制写出终边落在y 轴上和x 轴上的角集合.(3)周长为20的扇形,当圆心角为多少弧度时,其面积最大?五、要点归纳与方法小结本节课学习了以下内容:1. 弧度制的定义;2. 角度与弧度的换算公式;3. 特殊角的弧度数.4.。

2019-2020学年新人教A版必修一 弧度制 教案

2019-2020学年新人教A版必修一  弧度制  教案

【例1】 下列命题中,假命题是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1°的角是周角的1360,1 rad 的角是周角的12πC .1 rad 的角比1°的角要大D .用角度制和弧度制度量角,都与圆的半径有关[思路探究] 由题目可获取以下主要信息:各选项中均涉及到角度与弧度,解答本题可从角度和弧度的定义着手.D [根据角度和弧度的定义,可知无论是角度制还是弧度制,角的大小与圆的半径长短无关,而是与弧长与半径的比值有关,所以D 项是假命题,A 、B 、C 项均为真命题.]弧度制与角度制的区别与联系1.下列各说法中,错误的说法是( ) A .半圆所对的圆心角是π rad B .周角的大小等于2πC .1弧度的圆心角所对的弧长等于该圆的半径D .长度等于半径的弦所对的圆心角的大小是1弧度 [答案] D【例2】 设角α1=-570°,α2=750°,β1=35π,β2=-73π.(1)将α1,α2用弧度制表示出来,并指出它们各自所在的象限;(2)将β1,β2用角度制表示出来,并在-720°~0°之间找出与它们终边相同的所有角. [思路探究] 由题目可获取以下主要信息:(1)用角度制给出的两个角-570°,750°,用弧度制给出的两个角35π,-73π;(2)终边相同的角的表示.解答本题(1)可先将-570°,750°化为弧度角再将其写成2k π+α(k ∈Z,0≤α<2π)的形式,解答(2)可先将β1、β2用角度制表示,再将其写成β+k ·360°(k ∈Z )的形式.[解] (1)要确定角α所在的象限,只要把α表示为α=2k π+α0(k ∈Z,0≤α0<2π)的形式,由α0所在象限即可判定出α所在的象限.α1=-570°=-196π=-4π+56π,α2=750°=256π=4π+π6.∴α1在第二象限,α2在第一象限.(2)β1=3π5=108°,设θ=β1+k ·360°(k ∈Z ),由-720°≤θ<0°,得-720°≤108°+k ·360°<0°, ∴k =-2或k =-1,∴在-720°~0°间与β1有相同终边的角是-612°和-252°. 同理β2=-420°且在-720°~0°间与β2有相同终边的角是-60°.角度制与弧度制的转换中的注意点(1)在进行角度与弧度的换算时,抓住关系式π rad =180°是关键.由它可以得:度数×π180=弧度数,弧度数×⎝ ⎛⎭⎪⎫180π°=度数. (2)特殊角的弧度数与度数对应值今后常用,应该熟记.(3)在同一个式子中,角度与弧度不能混合用,必须保持单位统一,如α=2k π+30°,k ∈Z 是不正确的写法.(4)判断角α终边所在的象限时,若α[-2π,2π],应首先把α表示成α=2k π+β,β∈[-2π,2π]的形式,然后利用角β终边所在的象限来确定角α终边所在的象限.2.用弧度表示终边落在如图所示阴影部分内(不包括边界)的角θ的集合.[解] 因为30°=π6 rad,210°=7π6rad ,这两个角的终边所在的直线相同,因为终边在直线AB 上的角为α=k π+π6,k ∈Z ,而终边在y 轴上的角为β=k π+π2,k ∈Z ,从而终边落在阴影部分内的角的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪k π+π6<θ<k π+π2,k ∈Z .1.用公式|α|=lr求圆心角时,应注意什么问题?[提示] 应注意结果是圆心角的绝对值,具体应用时既要注意其大小,又要注意其正负. 2.在使用弧度制下的弧长公式及面积公式时,若已知的角是以“度”为单位,需注意什么问题?[提示] 若已知的角是以“度”为单位,则必须先把它化成弧度后再计算,否则结果出错.【例3】 (1)设扇形的周长为8 cm ,面积为4 cm 2,则扇形的圆心角的弧度数是( ) A .1 rad B .2 rad C .3 radD .4 rad(2)已知扇形的周长为20 cm ,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?[思路探究] (1)可由扇形周长和面积建立方程组,通过解方程组求得;(2)可通过建立扇形面积的目标函数来求解.(1)B [设扇形半径为r ,弧长为l ,由题意得 ⎩⎪⎨⎪⎧2r +l =8,12l ·r =4,解得⎩⎪⎨⎪⎧l =4,r =2,则圆心角α=l r=2 rad.](2)解:设扇形的半径为r ,弧长为l ,面积为S .则l =20-2r ,∴S =12lr =12(20-2r )·r =-r 2+10r =-(r -5)2+25(0<r <10).∴当半径r =5 cm 时,扇形的面积最大,为25 cm 2.此时α=l r =20-2×55=2 rad.∴当它的半径为5 cm ,圆心角为2 rad 时,扇形面积最大,最大值为25 cm 2.(变条件)用弧度制下解决扇形相关问题的步骤:(1)明确弧长公式和扇形的面积公式:l =|α|r ,S =12αr 2和S =12lr ;(这里α必须是弧度制下的角)(2)分析题目的已知量和待求量,灵活选择公式; (3)根据条件列方程(组)或建立目标函数求解.(教师用书独具)1.释疑弧长公式及扇形的面积公式(1)公式中共四个量分别为α,l ,r ,S ,由其中的两个量可以求出另外的两个量,即知二求二.(2)运用弧度制下的弧长公式及扇形的面积公式明显比角度制下的公式简单得多,但要注意它的前提是α为弧度制.(3)在运用公式时,还应熟练地掌握这两个公式的变形运用:①l =α·r ,α=l r ,r =l α;②S =12αr 2,α=2S r2.2.角度制与弧度制的比较1.把56°15′化为弧度是( ) A.5π8 B.5π4 C.5π6D.5π16D [56°15′=56.25°=2254×π180=5π16.]2.在半径为10的圆中,240°的圆心角所对弧长为( ) A.403π B.203π C.2003π D.4003π A [240°=240×π180 rad =43π rad ,∴弧长l =α·r =43π×10=403π,选A.]3.将-1 485°化成2k π+α(0≤α<2π,k ∈Z )的形式为________. -10π+74π [由-1 485°=-5×360°+315°,所以-1 485°可以表示为-10π+74π.]4.一个扇形的面积为1,周长为4,求该扇形圆心角的弧度数. [解] 设扇形的半径为r ,弧长为l ,圆心角为α, 则2r +l =4.①由扇形的面积公式S =12 lr ,得12lr =1. ②由①②得r =1,l =2,∴α=l r=2 rad. ∴扇形的圆心角为2 rad.。

高中数学 1.1.2弧制(2)教案 新人教A版

高中数学 1.1.2弧制(2)教案 新人教A版

教学目的:加深学生对弧度制的理解,逐步习惯在具体应用中运用弧度制解决具体的问题。

教学过程:一、复习:弧度制的定义,它与角度制互化的方法。

二、由公式:⇒=r l α α⋅=r l 比相应的公式180rnl π=简单 弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积例一 利用弧度制证明扇形面积公式lR S 21=其中l 是扇形弧长,R 是圆的半径。

证: 如图:圆心角为1rad 的扇形面积为:221R ππ弧长为l 的扇形圆心角为rad R l ∴lR R R l S 21212=⋅⋅=ππ比较这与扇形面积公式 3602R n S π=扇要简单 例二 直径为20cm 的圆中,求下列各圆心所对的弧长 ⑴34π ⑵165 解: cm r 10= ⑴: )(3401034cm r l ππα=⨯=⋅= ⑵:rad rad 1211)(165180165ππ=⨯=∴)(655101211cm l ππ=⨯=例三 如图,已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。

解:设扇形的半径为r ,弧长为l ,则有⎩⎨⎧==⇒⎪⎩⎪⎨⎧==+22162l r rl l r ∴ 扇形的面积221rl S ==例四 计算4sin π5.1tan解:∵454=π∴ 2245sin 4sin== π'578595.855.130.571.5rad ==⨯=•∴ 12.14'5785tan 5.1tan ==例五 将下列各角化成0到π2的角加上)(2Z k k ∈π的形式o R S l⑴π319⑵ 315- 解:πππ63319+=ππ2436045315-=-=-例六 求图中公路弯道处弧AB 的长l (精确到1m )图中长度单位为:m 解: ∵ 360π=∴ )(471514.3453m R l ≈⨯≈⨯=⋅=πα。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高一数学 1.1.2弧度制教案 新人教A 版
【教学过程】 (一)复习引入.
复习初中学习过的知识:角的度量、圆心角的度数与弧的度数及弧长的关系 提出问题:
①初中的角是如何度量的?度量单位是什么?
② 1°的角是如何定义的?弧长公式是什么?
③ 角的范围是什么?如何分类的? (二)概念形成
初中学习中我们知道角的度量单位是度、分、秒,它们是60进制,角是否可以用其它单位度量,是否可以采用10进制?
1.自学课本第7、8页.通过自学回答以下问题: (1)角的弧度制是如何引入的?
(2)为什么要引入弧度制?好处是什么?
(3)弧度是如何定义的?
(4)角度制与弧度制的区别与联系?
2.学生动手画图来探究: (1)平角、周角的弧度数
(2)角的弧度制与角的大小有关,与角所在圆的半径的大小是否有关?
(3)角的弧度与角所在圆的半径、角所对的弧长有何关系?
3.角度制与弧度制如何换算?
3602π=rad 180π=rad
180
1π=︒rad 0.01745≈rad 1rad =︒)180(
π5718'≈ 归纳:把角从弧度化为度的方法是:
把角从度化为弧度的方法是:
例1、把下列各角从度化为弧度:
(1)0
252 (2)0
/
1115 (3) 0
30 (4)'3067︒
解:(1)
π57 (2)π0625.0 (3) π6
1
(4) π375.0 变式练习:把下列各角从度化为弧度:
(1)22 º30′ (2)—210º (3)1200º 解:(1) π81 (2)π6
7-
(3) π320
例2、把下列各角从弧度化为度: (1)3
5π (2) 3.5 (3) 2 (4)
4
π 解:(1)108 º (2)200.5 º (3)114.6 º (4)45 º 变式练习:把下列各角从弧度化为度: (1)
12π (2)—3
4π (3)103π 解:(1)15 º (2)-240 º (3)54 º
弧度数表示弧长与半径的比,是一个实数,这样在角集合与实数集之间就建立了一个一
一对应关系.
弧度下的弧长公式和扇形面积公式
弧长公式:
||l r α=⋅
因为||l r
α=(其中l 表示α所对的弧长),所以,弧长公式为.
||l r α=⋅
扇形面积公式:.
说明:以上公式中的α必须为弧度单位.
例3、知扇形的周长为8cm ,圆心角α为2rad ,,求该扇形的面积。

解:因为2R+2R=8,所以R=2,S=4 变式练习:
1、半径为120mm 的圆上,有一条弧的长是144mm ,求该弧所对的圆心角的弧度数。

答案:
5
6 2、半径变为原来的12
,而弧长不变,则该弧所对的圆心角是原来的 2 倍。

3、若2弧度的圆心角所对的弧长是4cm ,则这个圆心角所在的扇形面积是 4cm 2
. 4、以原点为圆心,半径为1的圆中,一条弦AB
AB 所对的圆心角α
的弧度数为 3


(三) 课堂小结: 1、弧度制的定义;
2(1) 1(2) 2
1(3) 2l R S R
S lR
αα==
=(2) ;R 21
(1)S 2α=
O
A
B
2、弧度制与角度制的转换与区别;
3、牢记弧度制下的弧长公式和扇形面积公式,并灵活运用;
(四)作业布置 习题1.1A 组第7,8,9题。

(五)课后检测
1.在ABC ∆中,若::3:5:7A B C ∠∠∠=,求A ,B ,C 弧度数。

答案:A=
5π B=3
π
C=157π
2.直径为20cm 的滑轮,每秒钟旋转45,则滑轮上一点经过5秒钟转过的弧长是多
少?
答案:
2
25π
3.选做题
如图,扇形OAB 的面积是2
4cm ,它的周长是8cm ,求扇形的中心角及弦AB 的长。

答案:1sin 4,2==AB α
〖板书设计〗。

相关文档
最新文档