初中数学浙教版九年级上册3.1 圆(2) 同步训练C卷
浙教版九年级数学同步训练(15) 第三章圆的基本性质3.1圆(1)(解析版)
浙教版九年级数学同步训练(15)第三章圆的基本性质3.1圆(1)(解析版)3.1 圆(1)与圆有关的概念1.下列说法中,正确的是(D )A.弦是直径B.弧是半圆C.半圆是圆中最长的弧D.直径是圆中最长的弦2.已知⊙O 的半径为5cm,点A 到圆心O 的距离OA=3cm,则点A 与⊙O 的位置关系为( C )A.点A 在圆上B.点A 在圆外C.点A 在圆内D.无法确定3.过圆上一点可以作出的圆的最长弦有(A )A.1 条B.2 条C.3 条D.无数条4.在公园的O 处附近有E,F,G,H 四棵树,位置如图所示(图中小正方形的边长均相等).现计划修建一座以O 为圆心,OA 为半径的圆形水池,要求池中不留树木,则E,F,G,H 四棵树中需要被移除的为( A )A.E,F,GB.F,G,HC.G,H,ED.H,E,F5.若⊙O 的直径为2,OP=2,则点P 与⊙O 的位置关系是:点P 在⊙O外.6.如图所示,在矩形ABCD 中,AB=4,AD=3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A,B,C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是 3<r<5 .8.如图所示,在△ABC 中,∠C=90°,AC=3,BC=4,以点C 为圆心作⊙C,半径为r.(1)当r 取什么值时,点A,B 在⊙C 外?(2)当r 取什么值时,点A 在⊙C 内,点B 在⊙C 外?【解析】(1)若点A,B 在⊙C 外,则AC>r.∵AC=3,∴0<r<3.(2)若点A 在⊙C 内,点B 在⊙C 外,则AC<r<BC. ∵AC=3,BC=4,∴3<r<4.9.如图所示,在△ABC 中,AB=AC=6cm,∠BAC=120°,M,N 分别是AB,AC 的中点,AD⊥BC,垂足为点D.以点D 为圆心,3cm 为半径画圆,判断A,B,C,M,N 各点和⊙D 的位置关系.【解析】∵在△ABC 中,AB=AC=6cm,∠BAC=120°,AD⊥BC,∴∠B=∠C=30°.∴AD=12AB=3cm,BD=CD=3 3∵M,N 分别是AB,AC 的中点,∴D M=DN=12AB=3cm.∴点A,M,N 在⊙D 上,点B,C 在⊙D 外.10.已知⊙O 是以坐标原点O 为圆心,5 为半径的圆,点M 的坐标为(-3,4),则点M 与⊙O 的位置关系为(A )A.点M 在⊙O 上B.点M 在⊙O 内C.点M 在⊙O 外D.点M 在⊙O 右上方11.半径为5 的圆的一条弦长不可能是(D )第 5 页A.3B.5C.10D.1212.点P 到一个圆的最小距离为3cm,最大距离为8cm,则该圆的半径是2.5cm 或5.5cm .【解析】当点P 在圆内时,圆上最近点的距离为3cm,最远点的距离为8cm,则直径是11cm,因而半径是5.5cm.当点P 在圆外时,圆上最近点的距离为3cm,最远点的距离为8cm,则直径是5cm,因而半径是2.5cm.故答案为:2.5cm 或5.5cm.13.如图所示,数轴上半径为1 的⊙O 从原点O 开始以每秒1 个单位的速度向右运动,同时,距原点右边7个单位有一点P 以每秒2 个单位的速度向左运动,经过s 后,点P 在⊙O2 或83上.【解析】设x(s)后点P 在⊙O 上.∵原点O 开始以每秒1 个单位的速度向右运动,同时,点P 以每秒2个单位的速度向左运动,∴当第一次点P 在圆上时,(2+1)x=7-1=6,解得x=2.. 当第二次点P 在圆上时,(2+1)x=7+1=8,解得x=83.故答案为:2 或8314.如图所示,AB,CD 为⊙O 中两条直径,点E,F 在直径CD 上,且CE=DF.求证:AF=BE.【解析】∵AB,CD 为⊙O 中两条直径,∴OA=OB,OC=OD. ∵CE=DF,∴OE=OF. 在△AOF和△B OE 中,∴△AOF≌△BOE.∴AF=BE.15.已知⊙O 的半径为2,点OP=m,且m 使关于x 的二次方程2x2-x+m-1=0 有实根,试确定点P 的位置.【解析】∵关于x 的二次方程2x2-22x+m-1=0 有实根,∴(2- 4 ⨯ 2 (m- 1)≥0,解得m≤2=r.∵⊙半径为2,∴点P 在⊙O 上或⊙O 内.16.如图所示,BD=OD,∠AOC=114°,求∠AOD 的度数.【解析】设∠B=x,∵BD=OD,∴∠DOB=∠B=x.∴∠ADO=∠D OB+∠B=2x.∵OA=OD,∴∠OAD=∠ADO=2x.∵∠AOC=∠OAD+∠B=114°,∴2x+x=114°,解得x=38°.∴∠AOD=180°-∠OAD-∠ADO=180°-4x=180°-4×38°= 28°.。
浙教版初中数学九年级上册《3.1 圆》同步练习卷
浙教新版九年级上学期《3.1 圆》同步练习卷一.选择题(共15小题)1.自行车车轮要做成圆形,实际上是根据圆的以下哪个特征()A.圆是轴对称图形B.圆是中心对称图形C.圆上各点到圆心的距离相等D.直径是圆中最长的弦2.下列说法错误的是()A.长度相等的两条弧是等弧B.直径是圆中最长的弦C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧3.下列说法中正确的是()A.弦是直径B.弧是半圆C.半圆是圆中最长的弧D.直径是圆中最长的弦4.以下说法正确的个数有()①半圆是弧.②三角形的角平分线是射线.③在一个三角形中至少有一个角不大于60°.④过圆内一点可以画无数条弦.⑤所有角的度数都相等的多边形叫做正多边形.A.1个B.2个C.3个D.4个5.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42°B.28°C.21°D.20°6.如图,四边形P AOB是扇形OMN的内接矩形,顶点P在上,且不与M、N重合,当P点在上移动时,矩形P AOB的形状,大小随之变化,则AB 的长度()A.不变B.变小C.变大D.不能确定7.如图,半圆O是一个量角器,△AOB为一纸片,AB交半圆于点D,OB交半圆于点C,若点C、D、A在量角器上对应读数分别为45°,70°,160°,则∠B的度数为()A.20°B.30°C.45°D.60°8.如图,在平面直角坐标系中,A(0,3)、B(3,0),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为()A.1B.﹣1C.D.2﹣19.已知⊙O的直径是10cm,A为线段OB的中点,当OB=8cm时,点A与⊙O 的位置关系()A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.不能确定10.在⊙O中,弦AB的长为8,圆心O到AB的距离为3,若OP=4,则点P与⊙O的位置关系是()A.P在⊙O内B.P在⊙O上C.P在⊙O外D.P与A或B重合11.已知点P是线段OA的中点,P在半径为r的⊙O外,点A与点O的距离为10,则r的取值范围是()A.r<5B.r<10C.r>5D.r>1012.在平面直角坐标系中,圆心为坐标原点,⊙O的半径为5,则点P(﹣3,4)与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定13.如图,在平面直角坐标系中,⊙A的半径为1,圆心A在函数y=x的图象上运动,下列各点不可能落入⊙A的内部的是()A.(1,2)B.(2,3.2)C.(3,3﹣)D.(4,4+)14.平面内有一点P到圆上最远的距离是6,最近的距离是2,则圆的半径是()A.2B.4C.2 或4D.815.如图,已知点平面直角坐标系内三点A(3,0)、B(5,0)、C(0,4),⊙P 经过点A、B、C,则点P的坐标为()A.(6,8)B.(4,5)C.(4,)D.(4,)二.填空题(共9小题)16.点A、B在⊙O上,若∠AOB=40°,则∠OAB=.17.战国时的《墨经》就有“圆,一中同长也”的记载.它的意思是圆上各点到圆心的距离都等于.18.如图,C是以点O为圆心,AB为直径的半圆上一点,且CO⊥AB,在OC 两侧分别作矩形OGHI和正方形ODEF,且点I,F在OC上,点H,E在半圆上,可证:IG=FD.小云发现连接图中已知点得到两条线段,便可证明IG =FD.请回答:小云所作的两条线段分别是和;证明IG=FD的依据是矩形的对角线相等,和等量代换.19.已知一点到圆上的最短距离是2,最长距离是4,则圆的半径为.20.如图,已知正方形ABCD中,AB=2,以点A为圆心画圆,半径为r.当点D在⊙A内且点C在⊙A外时,r的取值范围是.21.如图,在平面直角坐标系中,A(4,0)、B(0,﹣3),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为.22.在△ABC中,∠C=90°,AB=5,BC=4,以A为圆心,3为半径作圆,则点C与圆A的位置关系为:点C在圆A.23.已知直线l:y=x﹣4,点A(1,0),点B(0,2),设点P为直线l上一动点,当点P的坐标为时,过P、A、B不能作出一个圆.24.如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为.三.解答题(共7小题)25.如图,AB是半圆O的直径,D是半圆上的一点,∠DOB=75°,DC交BA 的延长线于E,交半圆于C,且CE=AO,求∠E的度数.26.如图,在平面直角坐标系中,A(0,4)、B(4,4)、C(6,2).(1)点M的坐标为;(2)判断点D(4,﹣3)与⊙M的位置关系.27.问题:我们知道,过任意的一个三角形的三个顶点能做一个圆,这个圆叫做三角形的外接圆,那么任意的一个四边形有外接圆吗?探索:如图给出了一些四边形,填写出你认为有外接圆的图形序号;发现:相对的内角之间满足什么关系时,四边形一定有外接圆?写出你的发现:;说理:如果四边形没有外接圆,那么相对的两个内角之间有上面的关系吗?请结合图④说明理由.28.如图,已知锐角△ABC内接于⊙O,连接AO并延长交BC于点D.(1)求证:∠ACB+∠BAD=90°;(2)过点D作DE⊥AB于E,若∠ADC=2∠ACB,AC=4,求DE的长.29.小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用勾股定理得到结论:P1P2=;他还证明了线段P1P2的中点P(x,y)的坐标公式是:x=,y=;启发应用请利用上面的信息,解答下面的问题:如图,在平面直角坐标系中,已知A(8,0),B(0,6),C(1,7),⊙M经过原点O及点A、B.(1)求⊙M的半径及圆心M的坐标;(2)判断点C与⊙M的位置关系,并说明理由.30.如图,已知AB是⊙O的直径,C是⊙O上的一点,CD⊥AB于D,AD<BD,若CD=2cm,AB=5cm,求AD、AC的长.31.如图所示,AB为⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠AEC=20°.求∠AOC的度数.浙教新版九年级上学期《3.1 圆》2018年同步练习卷参考答案与试题解析一.选择题(共15小题)1.自行车车轮要做成圆形,实际上是根据圆的以下哪个特征()A.圆是轴对称图形B.圆是中心对称图形C.圆上各点到圆心的距离相等D.直径是圆中最长的弦【分析】利用车轮中心与地面的距离保持不变,坐车的人感到非常平稳进行判断.【解答】解:因为圆上各点到圆心的距离相等,所以车轮中心与地面的距离保持不变,坐车的人感到非常平稳,所以自行车车轮要做成圆形.故选:C.【点评】本题考查了圆的认识:熟练掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).2.下列说法错误的是()A.长度相等的两条弧是等弧B.直径是圆中最长的弦C.面积相等的两个圆是等圆D.半径相等的两个半圆是等弧【分析】利用等弧的定义、等圆的定义及弦的定义分别判断后即可确定正确的选项.【解答】解:A、长度相等的弧的度数不一定相等,故错误;B、直径是圆中最长的弦,正确;C、面积相等的两个圆是等圆,正确;D、半径相等的两个半圆是等弧,正确,故选:A.【点评】本题考查了圆的认识的知识,了解圆的有关定义是解答本题的关键,难度不大.3.下列说法中正确的是()A.弦是直径B.弧是半圆C.半圆是圆中最长的弧D.直径是圆中最长的弦【分析】根据弦、直径、弧、半圆的概念一一判断即可.【解答】解:A、错误.弦不一定是直径.B、错误.弧是圆上两点间的部分.C、错误.优弧大于半圆.D、正确.直径是圆中最长的弦.故选:D.【点评】本题考查圆的基本知识,解题的关键是记住弦、弧、半圆、直径等一个概念,属于基础题,中考常考题型.4.以下说法正确的个数有()①半圆是弧.②三角形的角平分线是射线.③在一个三角形中至少有一个角不大于60°.④过圆内一点可以画无数条弦.⑤所有角的度数都相等的多边形叫做正多边形.A.1个B.2个C.3个D.4个【分析】根据各小题的说法可以判断是否正确,从而可以解答本题.【解答】解:圆的任意一条直径的端点把圆分成两条弧,每一条弧都叫做半圆,故①正确;根据三角形角平分线的定义可知,三角形的角平分线是一条线段,故②错误;在一个三角形中至少有一个角不大于60°,故③正确;过圆内一点可以画无数条弦,故④正确;矩形的四个角都相等,都等于90°,而矩形不是正四边形,故⑤错误;故选:C.【点评】本题考查圆的认识,解题的关键是明确题意,正确的命题说出根据,错误的命题说出错误的原因或者举出反例.5.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42°B.28°C.21°D.20°【分析】利用OB=DE,OB=OD得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E =3∠E,然后利用∠E=∠AOC进行计算即可.【解答】解:连结OD,如图,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,而OC=OD,∴∠C=∠1,∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×84°=28°.故选:B.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.6.如图,四边形P AOB是扇形OMN的内接矩形,顶点P在上,且不与M、N重合,当P点在上移动时,矩形P AOB的形状,大小随之变化,则AB 的长度()A.不变B.变小C.变大D.不能确定【分析】四边形P AOB是扇形OMN的内接矩形,根据矩形的性质AB=OP=半径,所以AB长度不变.【解答】解:∵四边形P AOB是扇形OMN的内接矩形,∴AB=OP=半径,当P点在上移动时,半径一定,所以AB长度不变,故选:A.【点评】本题考查了圆的认识,矩形的性质,用到的知识点为:90°的圆周角所对的弦是直径,垂直于非直径的弦的直径平分弦,三角形的中位线等于第三边的一半.7.如图,半圆O是一个量角器,△AOB为一纸片,AB交半圆于点D,OB交半圆于点C,若点C、D、A在量角器上对应读数分别为45°,70°,160°,则∠B的度数为()A.20°B.30°C.45°D.60°【分析】连结OD,如图,根据题意得∠DOC=25°,∠AOD=90°,由于OD =OA,则∠ADO=45°,然后利用三角形外角性质得∠ADO=∠B+∠DOB,所以∠B=45°﹣25°=20°.【解答】解:连结OD,如图,则∠DOC=70°﹣45°=25°,∠AOD=160°﹣70°=90°,∵OD=OA,∴∠ADO=45°,∵∠ADO=∠B+∠DOB,∴∠B=45°﹣25°=20°.故选:A.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).8.如图,在平面直角坐标系中,A(0,3)、B(3,0),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为()A.1B.﹣1C.D.2﹣1【分析】确定点C的运动路径是:以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,先求⊙D的半径为1,说明D是AB的中点,根据直角三角形斜边中线是斜边一半可得OD=,所以OC的最小值是﹣1.【解答】解:当点P运动到AB的延长线上时,即如图中点P1,C1是AP1的中点,当点P在线段AB上时,C2是中点,取C1C2的中点为D,点C的运动路径是以D为圆心,以DC1为半径的圆(CA:P A=1:2,则点C轨迹和点P轨迹相似,所以点C的轨迹就是圆),当O、C、D共线时,OC的长最小,设线段AB交⊙B于Q,Rt△AOB中,OA=3,OB=3,∴AB=3,∵⊙B的半径为2,∴BP1=2,AP1=3+2,∵C1是AP1的中点,∴AC1=+1,AQ=3﹣2,∵C2是AQ的中点,∴AC2=C2Q=﹣1,C1C2=+1﹣(﹣1)=2,即⊙D的半径为1,∵AD=﹣1+1==AB,∴OD=AB=,∴OC=﹣1,故选:B.【点评】本题考查了图形与坐标的性质、勾股定理、直角三角形斜边上的中线等于斜边的一半的性质、圆的性质、两点之间线段最短,确定出OC最小时点C 的位置是解题关键,也是本题的难点.9.已知⊙O的直径是10cm,A为线段OB的中点,当OB=8cm时,点A与⊙O 的位置关系()A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.不能确定【分析】根据线段中点的性质,可得OA=4,根据当d>r时,点在圆外;当d =r时,点在圆上;当d<r时,点在圆内.【解答】解:A为线段OB的中点,当OB=8cm时,得OA=OB=4,∵r=5,∴d<r,∴点A与⊙O的位置关系是点A在圆O内,故选:A.【点评】本题考查点与圆的位置关系,解题的关键是记住:当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.10.在⊙O中,弦AB的长为8,圆心O到AB的距离为3,若OP=4,则点P 与⊙O的位置关系是()A.P在⊙O内B.P在⊙O上C.P在⊙O外D.P与A或B重合【分析】连结OA,如图,先根据垂径定理得到AC=AB=4,然后在Rt△OAC 中,根据勾股定理计算出OA即可判断.【解答】解:连结OA,如图,∵OC⊥AB,∴AC=BC=AB=4,在Rt△OAC中,∵OC=3,AC=4,∴OA==5,∴⊙O的半径为5cm,∵OP=4<OA,∴点P在⊙O内.故选:A.【点评】此题考查了点与圆的位置关系,垂径定理、勾股定理;熟练掌握垂径定理,由勾股定理求出OA是解决问题的关键.11.已知点P是线段OA的中点,P在半径为r的⊙O外,点A与点O的距离为10,则r的取值范围是()A.r<5B.r<10C.r>5D.r>10【分析】先根据中点的定义得到OP=4,再根据点与圆的位置关系的判定方法求解.【解答】解:∵点P是线段OA的中点,点A与点O的距离为10,∴OP=5,∵P在半径为r的⊙O外,∴r<5.故选:A.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.12.在平面直角坐标系中,圆心为坐标原点,⊙O的半径为5,则点P(﹣3,4)与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定【分析】先根据勾股定理求出OP的长,再与⊙O的半径为5相比较即可.【解答】解:∵圆心P的坐标为(﹣3,4),∴OP==5.∵⊙O的半径为5,∴点P在⊙O上.故选:B.【点评】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.13.如图,在平面直角坐标系中,⊙A的半径为1,圆心A在函数y=x的图象上运动,下列各点不可能落入⊙A的内部的是()A.(1,2)B.(2,3.2)C.(3,3﹣)D.(4,4+)【分析】通过构造等腰直角三角形分别求出四个选项中点到直线y=x的距离,找出该距离大于等于1的即可得出结论.【解答】解:A、点(1,2)到直线y=x的距离为(2﹣1)=<1,∴点(1,2)可能在⊙A的内部;B、点(2,3.2)到直线y=x的距离为(3.2﹣2)=<1,∴点(2,3.2)可能在⊙A的内部;C、点(3,3﹣)到直线y=x的距离为[3﹣(3﹣)]=<1,∴点(3,3﹣)可能在⊙A的内部;D、点(4,4+)到直线y=x的距离为(4+﹣4)=1,∴点(4,4+)不可能在⊙A的内部.故选:D.【点评】本题考查了点与圆的位置关系以及一元一次函数图象上点的坐标特征,分别求出各选项中点到直线y=x的距离是解题的关键.14.平面内有一点P到圆上最远的距离是6,最近的距离是2,则圆的半径是()A.2B.4C.2 或4D.8【分析】分两种情况:点在圆外,直径等于两个距离的差;点在圆内,直径等于两个距离的和.【解答】解:∵点P到⊙O的最近距离为2,最远距离为6,则:当点在圆外时,则⊙O的直径为6﹣2=4,半径是2;当点在圆内时,则⊙O的直径是6+2=8,半径为4,故选:C.【点评】本题考查了点与圆的位置关系,注意此题的两种情况.从过该点和圆心的直线中,即可找到该点到圆的最小距离和最大距离.15.如图,已知点平面直角坐标系内三点A(3,0)、B(5,0)、C(0,4),⊙P 经过点A、B、C,则点P的坐标为()A.(6,8)B.(4,5)C.(4,)D.(4,)【分析】根据题意可知点P的横坐标为4,设点P的坐标为(4,y),根据P A=PC列出关于y的方程,解方程得到答案.【解答】解:∵⊙P经过点A、B、C,∴点P在线段AB的垂直平分线上,∴点P的横坐标为4,设点P的坐标为(4,y),作PE⊥OB于E,PF⊥OC与F,由题意得,=,解得,y=,故选:C.【点评】本题考查的是确定圆的条件,解题的关键是理解经过不在同一直线上的三点作圆,圆心是过任意两点的线段的垂直平分线的交点.二.填空题(共9小题)16.点A、B在⊙O上,若∠AOB=40°,则∠OAB=70°.【分析】由∠AOB=40°,OA=OB知∠OAB=∠OBA=,代入计算可得.【解答】解:如图,∵∠AOB=40°,OA=OB,∴∠OAB=∠OBA==70°,故答案为:70°.【点评】本题主要考查圆的基本性质,解题的关键是掌握圆的所有半径都相等及等腰三角形的性质.17.战国时的《墨经》就有“圆,一中同长也”的记载.它的意思是圆上各点到圆心的距离都等于半径.【分析】根据半径的含义:连接圆心和圆上任意一点的线段叫做半径;在同圆或等圆中,所有的半径都相等;由此判断即可.【解答】解:战国时期的《墨经》一书中记载:“圜(圆),一中同长也”.表示圆心到圆上各点的距离都相等,即半径都相等;故答案为:半径.【点评】此题考查了半径的含义,注意基础知识的积累.18.如图,C是以点O为圆心,AB为直径的半圆上一点,且CO⊥AB,在OC 两侧分别作矩形OGHI和正方形ODEF,且点I,F在OC上,点H,E在半圆上,可证:IG=FD.小云发现连接图中已知点得到两条线段,便可证明IG =FD.请回答:小云所作的两条线段分别是OH和OE;证明IG=FD的依据是矩形的对角线相等,同圆的半径相等和等量代换.【分析】连接OH、OE,由矩形OGHI和正方形ODEF的性质得出IG=OH,OE=FD,由OH=OE,即可得出结论.【解答】解:连接OH、OE,如图所示:∵在矩形OGHI和正方形ODEF中,IG=OH,OE=FD,∵OH=OE,∴IG=FD;故答案为:OH、OE,同圆的半径相等.【点评】本题考查了矩形的性质、正方形的性质、同圆的半径相等的性质;熟练掌握矩形和正方形的性质是解决问题的关键.19.已知一点到圆上的最短距离是2,最长距离是4,则圆的半径为1.【分析】根据已知条件能求出圆的直径,即可求出半径.【解答】解:∵圆外一点和圆周的最短距离为2,最长距离为4,∴圆的直径为4﹣2=2,∴该圆的半径是1.故答案为:1.【点评】本题考查了点和圆的位置关系的应用,能根据已知条件求出圆的直径是解此题的关键.20.如图,已知正方形ABCD中,AB=2,以点A为圆心画圆,半径为r.当点D在⊙A内且点C在⊙A外时,r的取值范围是2.【分析】先利用勾股数得到AC=2,然后根据点与圆的位置关系,要使点D 在⊙A内,则r>2;要使点C在⊙A外,则r<2,然后写出它们的公共部分即可.【解答】解:∵正方形ABCD中,AB=2,∴AC=2,∴以A为圆心作圆,并且要使点D在⊙A内,而点C在⊙A外,⊙A的半径r 的取值范围为:2<r<2.故答案为:2<r<2..【点评】本题考查了点与圆的位置关系:点与圆的位置关系有3种,设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.21.如图,在平面直角坐标系中,A(4,0)、B(0,﹣3),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为 1.5.【分析】先确定点C的运动路径是:以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,先求⊙D的半径为1,说明D是AB的中点,根据直角三角形斜边中线是斜边一半可得OD=2.5,所以OC的最小值是1.5.【解答】解:当点P运动到AB的延长线上时,即如图中点P1,C1是AP1的中点,当点P在线段AB上时,C2是中点,取C1C2的中点为D,点C的运动路径是以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC 的长最小,设线段AB交⊙B于Q,Rt△AOB中,OA=4,OB=3,∴AB=5,∵⊙B的半径为2,∴BP1=2,AP1=5+2=7,∵C1是AP1的中点,∴AC1=3.5,AQ=5﹣2=3,∵C2是AQ的中点,∴AC2=C2Q=1.5,C1C2=3.5﹣1.5=2,即⊙D的半径为1,∵AD=1.5+1=2.5=AB,∴OD=AB=2.5,∴OC=2.5﹣1=1.5,故答案为:1.5.【点评】本题考查了图形与坐标的性质、勾股定理、直角三角形斜边上的中线等于斜边的一半的性质、圆的性质、两点之间线段最短,确定出OC最小时点C 的位置是解题关键,也是本题的难点.22.在△ABC中,∠C=90°,AB=5,BC=4,以A为圆心,3为半径作圆,则点C与圆A的位置关系为:点C在圆A上.【分析】根据勾股定理求出AC的值,根据点与圆的位关系特点,判断即可.【解答】解:由勾股定理得:AC==3,∵AC=3,∴点C与⊙A的位置关系是点C在⊙A上,故答案为上.【点评】本题考查了点与圆的位置关系定理和勾股定理等知识点的应用,点与圆(圆的半径是r,点到圆心的距离是d)的位置关系有3种:d=r时,点在圆上;d<r点在圆内;d>r点在圆外.23.已知直线l:y=x﹣4,点A(1,0),点B(0,2),设点P为直线l上一动点,当点P的坐标为(2,﹣2)时,过P、A、B不能作出一个圆.【分析】由而在同一直线上的三个点不能画一个圆可知,当P,A,B三点共线时,过P,A,B三点不能作出一个圆.为此,先利用待定系数法求出直线AB 的解析式,再与y=x﹣4联立,两直线的交点坐标即为所求.【解答】解:设直线AB的解析式为y=kx+b,∵A(1,0),点B(0,2),∴,解得,∴y=﹣2x+2.解方程组,得,∴当P的坐标为(2,﹣2)时,过P,A,B三点不能作出一个圆.故答案为(2,﹣2)【点评】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.同时考查了利用待定系数法求直线的解析式及两直线交点坐标的求法.24.如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为5.【分析】根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.【解答】解:如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为:5.【点评】本题主要考查圆的确定,熟练掌握圆上各点到圆心的距离相等得出其外接圆是解题的关键.三.解答题(共7小题)25.如图,AB是半圆O的直径,D是半圆上的一点,∠DOB=75°,DC交BA 的延长线于E,交半圆于C,且CE=AO,求∠E的度数.【分析】连结OC,如图,由CE=AO,OA=OC得到OC=EC,则根据等腰三角形的性质得∠E=∠1,再利用三角形外角性质得∠2=∠E+∠1=2∠E,加上∠D=∠2=2∠E,所以∠BOD=∠E+∠D,即∠E+2∠E=75°,然后解方程即可.【解答】解:连结OC,如图,∵CE=AO,而OA=OC,∴OC=EC,∴∠E=∠1,∴∠2=∠E+∠1=2∠E,∵OC=OD,∴∠D=∠2=2∠E,∵∠BOD=∠E+∠D,∴∠E+2∠E=75°,∴∠E=25°.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.26.如图,在平面直角坐标系中,A(0,4)、B(4,4)、C(6,2).(1)点M的坐标为(2,0);(2)判断点D(4,﹣3)与⊙M的位置关系.【分析】(1)根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.(2)求出⊙M的半径,MD的长即可判断;【解答】解:(1)根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,0)故答案为:2,0.(2)圆的半径AM==2,线段MD==<2,所以点D在⊙M内.【点评】本题主要考查确定圆的条件和坐标与图形性质的知识点,点与圆的位置关系等知识,能够根据垂径定理的推论得到圆心的位置是解决问题的关键.27.问题:我们知道,过任意的一个三角形的三个顶点能做一个圆,这个圆叫做三角形的外接圆,那么任意的一个四边形有外接圆吗?探索:如图给出了一些四边形,填写出你认为有外接圆的图形序号②;发现:相对的内角之间满足什么关系时,四边形一定有外接圆?写出你的发现:对角互补的四边形一定有外接圆;说理:如果四边形没有外接圆,那么相对的两个内角之间有上面的关系吗?请结合图④说明理由.【分析】利用矩形的性质可判断矩形的四个顶点在同一个圆上;利用对角互补可判断四边形一定有外接圆;如果四边形没有外接圆,那么相对的两个内角之间没有有上面的关系,利用对角互补的四边形一定有外接圆进行说明.【解答】解:探索:矩形有外接圆;故答案为②;发现:对角互补的四边形一定有外接圆;故答案为对角互补的四边形一定有外接圆;说理:如果四边形没有外接圆,那么相对的两个内角之间没有有上面的关系.图④左:连接BE,∵∠A+∠E=180°,∠BCD>∠E,∴∠A+∠BCD>180°;图④右:连接DE,∵∠A+∠BED=180°,∠BED>∠C,∴∠A+∠C<180°.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆内接四边形的性质.28.如图,已知锐角△ABC内接于⊙O,连接AO并延长交BC于点D.(1)求证:∠ACB+∠BAD=90°;(2)过点D作DE⊥AB于E,若∠ADC=2∠ACB,AC=4,求DE的长.【分析】(1)如图1中,延长AD交⊙O于点F,连接BF.首先证明∠ABF=90°,再证明∠AFB=∠C即可解决问题.(2)如图2中,过点O作OH⊥AC于H,连接BO.想办法证明△BDE≌△AOH 即可解决问题.【解答】(1)证明:延长AD交⊙O于点F,连接BF.∵AF为⊙O的直径,∴∠ABF=90°,∴∠AFB+∠BAD=90°,∵∠AFB=∠ACB,∴∠ACB+∠BAD=90°.(2)证明:如图2中,过点O作OH⊥AC于H,连接BO.∵∠AOB=2∠ACB,∠ADC=2∠ACB,∴∠AOB=∠ADC,∴∠BOD=∠BDO,∴BD=BO,∴BD=OA,∵∠BED=∠AHO,∠ABD=∠AOH,∴△BDE≌△AOH,(AAS),∴DE=AH,∵OH⊥AC,∴AH=CH=AC,∴AC=2DE=4,∴DE=2.【点评】本题考查垂径定理、直径的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.29.小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用勾股定理得到结论:P1P2=;他还证明了线段P1P2的中点P(x,y)的坐标公式是:x=,y=;启发应用请利用上面的信息,解答下面的问题:如图,在平面直角坐标系中,已知A(8,0),B(0,6),C(1,7),⊙M经过原点O及点A、B.(1)求⊙M的半径及圆心M的坐标;(2)判断点C与⊙M的位置关系,并说明理由.【分析】(1)先确定出AB=10,进而求出圆M的半径,最后用线段的中点坐标公式即可得出结论;(2)求出CM=5和圆M的半径比较大小,即可得出结论.【解答】解:(1)∵∠AOB=90°,∴AB是⊙M的直径,∵A(8,0),B(0,6),∴AB==10,∴⊙M的半径为5,由线段中点坐标公式x=,y=,得x=4,y=3,∴M(4,3),(2)点C在⊙M上,理由:∵C(1,7),M(4,3),∴CM==5,∴点C在⊙M上.【点评】本题主要考查了点与圆的位置关系,解题的关键是对两点间的距离公式的理解和掌握,灵活运用线段中点坐标公式和两点间距离公式.30.如图,已知AB是⊙O的直径,C是⊙O上的一点,CD⊥AB于D,AD<BD,若CD=2cm,AB=5cm,求AD、AC的长.【分析】由直径AB=5cm,可得半径OC=OA=AB=cm,分别利用勾股定理计算AD、AC的长.【解答】解:连接OC,∵AB=5cm,∴OC=OA=AB=cm,Rt△CDO中,由勾股定理得:DO==cm,∴AD=﹣=1cm,由勾股定理得:AC==,则AD的长为1cm,AC的长为cm.【点评】本题考查了同圆的半径相等、勾股定理,在圆中常利用勾股定理计算边的长,本题熟练掌握勾股定理是关键.31.如图所示,AB为⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠AEC=20°.求∠AOC的度数.【分析】连接OD,如图,由AB=2DE,AB=2OD得到OD=DE,根据等腰三角形的性质得∠DOE=∠E=20°,再利用三角形外角性质得到∠CDO=40°,加上∠C=∠ODC=40°,然后再利用三角形外角性质即可计算出∠AOC.【解答】解:连接OD,如图,∵AB=2DE,而AB=2OD,∴OD=DE,∴∠DOE=∠E=20°,∴∠CDO=∠DOE+∠E=40°,而OC=OD,∴∠C=∠ODC=40°,∴∠AOC=∠C+∠E=60°.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.。
浙教版九年级上第三章圆同步练习3.1圆(2)
3.1圆(2)第2课时确定圆的条件基础题知识点1确定圆的条件1.小丽不慎把家里的圆形玻璃打碎了,其中四块如图所示,为配到与原来大小一样的圆形玻璃,小丽带到商店去的一块玻璃碎片应该是()A.第(1)块B.第(2)块C.第(3)块D.第(4)块2.下列说法不正确的是()A.过一点可作无数个圆,那是因为圆心不确定,半径也不确定B.过两个点可以画无数个圆,圆心在这两点连线的中垂线上C.过不在同一直线上的三个点只能画一个圆D.经过三个点一定可以作圆3.如图所示,在5×5的正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M4.已知线段AB=6 cm.(1)画半径为4 cm的圆,使它经过A,B两点,这样的圆能画个;(2)画半径为3 cm的圆,使它经过A,B两点,这样的圆能画个;(3)画半径为2 cm的圆,使它经过A,B两点,这样的圆能画个.5.如图,作一个圆,使它经过A、B两点,并且圆心在已知直线l上.知识点2三角形的外接圆、圆的内接三角形6.三角形的外心是三角形的三条()A.角平分线的交点B.中线的交点C.高的交点D.中垂线的交点7.下列选项中说法正确的是()A.三角形的外接圆就是与三角形的三边都相交的圆B.三角形的外接圆就是过三角形的三个顶点的圆C.一个三角形有无数个外接圆D.三角形的外接圆圆心一定在该三角形内部8.三角形的外心在它的内部;三角形的外心在它的外部;三角形的外心在它的边上.(填“钝角”“直角”或“锐角”)9.如图,点A ,B ,C 表示三个小区,现在要建一个供水站,使它到这三个小区的距离相等.问这个供水站应建在何处?(要求:尺规作图,保留作图痕迹,不写作法)知识点3 三角形外接圆的有关计算10.如图,已知平面直角坐标系内三点A (3,0)、B (5,0)、C (0,4),⊙P 经过点A 、B 、C ,则点P 的坐标为( )A .(6,8)B .(4,5)C .(4,318)D .(4,338) 11.(宁夏中考)如图,将△ABC 放在每个小正方形的边长为1的网格中,点A 、B 、C 均落在格点上,用一个圆面去覆盖△ABC ,能够完全覆盖这个三角形的最小圆面的半径是 .12.如图,在等腰△ABC 中,AB =AC =10,BC =12,求△ABC 外接圆的半径.中档题13.下列说法中,正确的是( )A .三点确定一个圆B .三角形有且只有一个外接圆C .四边形都有一个外接圆D .圆有且只有一个内接三角形14.如图,已知圆上两点A 、B ,用直尺和圆规求作以AB 为一边的圆内接等腰三角形,这样的三角形能作( )A .2个B .3个C .4个D .5个15.平面上有不在同一直线上的4个点,过其中3个点可作 个圆.16.如图,点D 是△ABC 的边BC 的中点,过AD 延长线上的点E 作AD 的垂线EF ,E 为垂足,EF 与AB 的延长线相交于点F ,点O 在AD 上,AO =CO ,BC ∥EF .求证:(1)AB =AC ;(2)A ,B ,C 三点在以O 点为圆心的圆上.B17.某公园有一个边长为4 m的正三角形花坛,三角形的顶点A,B,C上各有一棵古树.现决定把原来的花坛扩建成一个圆形或平行四边形花坛,要求三棵古树不能移动,且三棵古树位于圆周上或平行四边形的顶点上(设计过程中画图工具不限).(1)按圆形设计,利用图1画出你所设计的圆形花坛示意图;(2)按平行四边形设计,利用图2画出你所设计的平行四边形花坛示意图;(3)若使新建的花坛面积较大,选择以上哪一种方案合适?请说明理由.综合题18.如图1,△ABC中,BA=BC,点D是平面内不与点A,B,C重合的任意一点,∠ABC=∠DBE,BD =BE.(1)求证:△ABD≌△CBE;(2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BDCE的形状,并证明你的结论.。
浙教版九年级上册数学同步检测试卷七:3.2圆的基本知识3.1~3.2(含答案)
浙教版初中九年级同步检测卷 测卷七:圆的基本知识(3.1~3.2)一、选择题(每小题3分,共30分) 1.下列说法正确的是…… ( )A .弦是直径B .弧是半圆C .直径是弦D .半径是弦 2.下列确定圆的方法正确的是…… ( )A.平面上三个点能确定一个圆B.已知圆心和半径能确定一个圆的位置和大小C.四边形的四个顶点能确定一个圆D.平行四边形的四个顶点能确定一个圆 3. 已知⊙O 的半径是4,OP =3,则点P 与⊙O 的位置关系是( ) A .点P 在圆内 B .点P 在圆上 C .点P 在圆外 D .不能确定 4. 将叶片图案旋转l80°后,得到的图形是()5.直角三角形的外心在……( )A .三角形内部B .三角形外部C .三角形的直角顶点D .斜边的中点6.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,若∠CAE =65°,∠E =70°,且AD ⊥BC ,则∠BAC 的度数为……( ) A .60°B .75°C .85°D .90°B'C BB7.如图,△ABC是直角三角形,BC 是斜边现将△ABP 绕点A 逆时针旋转后,能与△ACP′重合,已知AP =3,则PP′的长度为……………………………………………………( )A .B .C . D.8. 如图,△ABC 由△A ′B ′C ′绕O 点旋转180°后得到,则下列结论不成立的是( ) A .点A 与点A ′是对应点 B .BO =B ′O C .∠ACB =∠C ′A ′B ′ D .AB ∥A ′B ′ 9.如图,Rt ABC ∆中,∠C =90°,AC =3,BC =4,以点C 为圆心,r 为半径画圆,要使圆与线段AB 有两个公共点,则r 的值不可能是……( ) A .135 B .145 C .3 D .16510.如图,在方格纸上△DEF 是由△ABC 绕定点P 顺时针旋转得到的.如果用(2,1)表示方格纸上A 点的位置,(1,2)表示B 点的位置,那么点P 的位置为……( ) A. (5,2) B. (2,5) C. (2,1) D.(1,2)二、填空题(每小题3分,共18分)11.等边三角形绕其外接圆圆心至少旋转 °后才能与本身重合.12.直角三角形的两条直角边长分别是6cm 和8cm,则其外接圆的直径为 cm. 13.⊙O 的面积为16π,若OP =5,则点P 与⊙O 的位置关系是 .14.如图,在等边△ABC 中,AB =6,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE ,那么线段DE 的长度为 .A BCD B ’ 1C ’D ’ 第9题图第10题图CABAB15.如图,将矩形ABCD 绕点A 顺时针旋转到矩形A ’B ’C ’D ’的位置,旋转角为α (0︒<α<90︒).若∠1=110︒,则∠α= °.16.已知⊙O 的半径为2,点P 到圆心的距离OP =m ,且关于x的方程2210x m -+-=有实数根,则点P 与⊙O 的位置关系是 . 三、解答题(共52分)17.(本题4分)画出⊿ABC 绕点O 旋转180°后所得的图形.18.(本题6分) 如图,A ,B 是⊙O 上两点(AB 不是直径),在⊙O 上找一点P ,使⊿ABP 是等腰三角形.利用尺规作图,找出所有点P .19.(本题6分)根据下列条件,说明过A ,B ,C 三点能否作圆能否作圆,并简要说明理由. (1)AB =2, BC =2, CA =3;(2)AB , BC , CA (3)(0,0)A , (1,2)B , (2,1)C .20.(本题6分) 如图,在△ABC 中,∠BAC =50°,将△ABC 绕点A 按逆时针方向旋转后得△AB 1C 1.当B 1B ∥AC 时,求∠BAC 1的大小.B21.(本题6分)如图,小明家房前有一个空地,空地上有三棵桃树A ,B ,C .小明想造一个圆形的花坛,并使三棵树均在花坛的边上.(1)用尺规作图作出花坛的轮廓线;(2)若AB =8m,AC =6m,且∠BAC =90°,求该花坛的面积.22.(本题6分) 如图,△ABC 是直角三角形,延长AB 到点E ,使BE =BC ,在BC 上取一点F ,使BF =AB ,连接EF ,△ABC 旋转后能与△FBE 重合,请回答: (1)旋转中心是点 ,旋转的最小角度是 度; (2)AC 与EF 的位置关系如何,并说明理由.23.(本题10分) 如图,在直角坐标系中,A (0,4),B (﹣3,0). (1)①画出线段AB 关于y 轴对称线段AC ;②将线段CA 绕点C 顺时针旋转一个角,得到对应线段CD ,使得AD ∥x 轴,请画出线段CD ; (2)判断四边形ABCD 的形状: .(3)若直线y =kx 平分(1)中四边形ABCD 的面积,求实数k 的值.附加题24.(本题10分)附加题已知,点O是等边△ABC内的任一点,连接OA,OB,OC.(1)如图1,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①∠DAO的大小是 °;②用等式表示线段OA,OB,OC之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.参考答案:一、选择题二、填空题11.120︒12. 1013.314.15.20︒16.圆上或圆内三、解答题17.略18略19.(1)能;(2)不能;(3)能20.∵B1B∥AC,∴∠ABB1=∠BAC=50°.∵由旋转的性质可知:∠B1AC1=∠BAC=50°,AB=AB1.∴∠ABB 1=∠AB 1B =50°.∴∠BAB 1=80°∴∠BAC 1=∠BAB 1﹣∠C 1AB 1=80°50°=30°.21.(1)略;(2)25π 22. (1)B ,90;(2)AC ⊥EF 理由如下:延长EF 交AC 于点D 由旋转可知∠C =∠E ∵∠ABC =90°∴∠C +∠A =90°∴∠E +∠A =90°∴∠ADE =90°∴AC ⊥EF . 23.24. (1)①90°.②线段OA ,OB ,OC 之间的数量关系是222OA OB OC +=. ∵△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴△ADC ≌△BOC ,∠OCD =60°. ∴CD = OC ,∠ADC =∠BOC =120°, AD = OB .∴△OCD 是等边三角形. ∴OC =OD =CD ,∠COD =∠CDO =60°. ∵∠AOB =150°,∠BOC =120°, ∴∠AOC =90°.∴∠AOD =30°,∠ADO =60°. ∴∠DAO =90°,可得结论(2)①如图2,当α=β=120°时,OA +OB +OC 有最小值. 作图如图2的实线部分.如图2,将△AOC 绕点C 按顺时针方向旋转60°得△A ’O ’C ,连接OO ’. 当四点B ,O ,O ’,A ’共线时.OA +OB +OC = O’A’+OB +OO’ =BA ’ 值最小.。
初中数学浙教版九年级上册3.1 圆(2) 同步训练新版
初中数学浙教版九年级上册3.1 圆(2)同步训练新版姓名:________ 班级:________ 成绩:________一、确定圆的条件 (共8题;共27分)1. (2分) (2019九上·宜兴期中) 下列说法正确的是()A . 等弧所对的圆心角相等B . 优弧一定大于劣弧C . 经过三点可以作一个圆D . 相等的圆心角所对的弧相等2. (2分)下列说法正确的是()A . 过一点A的圆的圆心可以是平面上任意点B . 过两点A、B的圆的圆心在一条直线上C . 过三点A、B、C的圆的圆心有且只有一点D . 过四点A、B、C、D的圆不存在3. (2分)已知:A,B,C,D,E五个点中无任何三点共线,无任何四点共圆,那么过其中的三点作圆,最多能作出()A . 5个圆B . 8个圆C . 10个圆D . 12个圆4. (2分) (2018八上·东台期中) 如图,△ABC中,AB=AC,∠BAC的平分线与AB 的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合.若∠OEC=136°,则∠BAC的大小为().A . 44°B . 58°C . 64°D . 68°5. (2分) (2018九上·浙江期中) 下列命题中,正确的是()①平面内三个点确定一个圆;②平分弦的直径平分弦所对的弧;③半圆所对的圆周角是直角;④圆的内接菱形是正方形;⑤相等的弧所对的圆周角相等.A . ①②③B . ②④⑤C . ①②⑤D . ③④6. (2分) (2017八上·点军期中) 到△A BC的三个顶点距离相等的点是△ABC的()A . 三边中线的交点B . 三条角平分线的交点C . 三边上高的交点D . 三边中垂线的交点7. (5分)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,求线段OM的最小值.8. (10分)(2019·瑞安模拟) 如图,在▱ABCD中,E,F分别为边AB,CD的中点,BD是对角线.(1)求证:△ADE≌△CBF;(2)若∠ADB=90°,AB=6,求四边形BEDF的周长.二、三角形的外接圆与外心 (共8题;共24分)9. (1分)三角形三边垂直平分线的交点到三角形________的距离相等.10. (1分) (2019九下·东莞月考) 如图Rt△ABC中,∠ACB=90°,⊙O是△ABC的外接圆,E为⊙O上一点,连结CE,过C作CD⊥CE,交BE于点D,已知,AB= ,DE=5,则tan∠ACE=________.11. (1分)已知△ABC的三边长分别是6,8,10,则△ABC外接圆的直径是1 .12. (2分)(2019·南浔模拟) 小明在学了尺规作图后,通过“三弧法”作了一个△ACD,其作法步骤是:①作线段AB,分别以A,B为圆心,AB长为半径画弧,两弧的交点为C;②以B为圆心,AB长为半径画弧交AB的延长线于点D;③连结AC,BC,CD.下列说法不正确的是()A . ∠A=60°B . △ACD是直角三角形(第,爱画)C . BC= CDD . 点B是△ACD的外心13. (2分) (2019九上·台州开学考) 实数x,y满足(x2+y2)(x2+y2+1)=2,则x2+y2的值为()A . 1B . 2C . -2或1D . 2或-114. (2分)(2017·深圳模拟) 如图,三角形ABC内接于圆O,AH BC于点H,若AC=8,AH=6,圆O的半径OC=5,则AB的值为().A . 5B .C . 7D .15. (5分)已知:⊙O为Rt△ABC的外接圆,点D在边AC上,AD=AO;(1)如图1,若弦BE∥OD,求证:OD=BE;(2)如图2,点F在边BC上,BF=BO,若OD=2, OF=3,求⊙O的直径.16. (10分)(2018·潜江模拟) 如图,AB为⊙O的直径,C为⊙O上一点,AD和过C 点的切线互相垂直,垂足为D.(1)求证:AC平分∠DAB;(2)过点O作线段AC的垂线OE,垂足为E(要求:尺规作图,保留作图痕迹,不写作法);(3)若CD=4,AC=4 ,求垂线段OE的长.三、中考演练 (共4题;共10分)17. (1分)△ABC中,∠ACB=120°,AC=BC=3,点D为平面内一点,满足∠ADB=60°,若CD的长度为整数,则所有满足题意的CD的长度的可能值为________.18. (1分)(2019·北京模拟) 已知:正方形 ABCD.求作:正方形 ABCD 的外接圆.作法:如图,⑴分别连接 AC,BD,交于点 O;⑵以点 O 为圆心,OA 长为半径作⊙O,⊙O 即为所求作的圆.请回答:该作图的依据是________.19. (2分)(2016·台湾) 如图,四边形ABCD中,AB=AD,BC=DC,∠A=90°,∠ABC=105°.若AB=5 ,则△ABD外心与△BCD外心的距离为何?()A . 5B . 5C .D .20. (6分) (2018九上·灌云月考) 如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,在图中标出该圆弧所在圆的圆心D.(2)请在(1)的基础上,完成下列填空:①写出点的坐标:D();②⊙D的半径=(结果保留根号);③利用网格试在图中找出格点E,使得直线EC与⊙D相切(写出所有可能的结果).参考答案一、确定圆的条件 (共8题;共27分)1、答案:略2、答案:略3、答案:略4、答案:略5、答案:略6、答案:略7、答案:略8、答案:略二、三角形的外接圆与外心 (共8题;共24分)9、答案:略10、答案:略11、答案:略12、答案:略13、答案:略14、答案:略15、答案:略16、答案:略三、中考演练 (共4题;共10分)17、答案:略18、答案:略19、答案:略20、答案:略。
浙教版九年级数学同步训练(16) 第三章圆的基本性质3.1圆(2)(解析版)
浙教版九年级数学同步训练(16)第三章圆的基本性质3.1圆(2)(解析版)3.1圆(2)确定圆的条件1.三角形的外心是三角形中(D )A.三条高线的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点2.下列说法中,正确的是(B )A.三点确定一个圆B.三角形有且只有一个外接圆C.四边形都有一个外接圆D.圆有且只有一个内接三角形3.在Rt△ABC 中,∠C=90°,AC=3cm,BC=4cm,则它的外心与直角顶点的距离是( B )A.2cmB.2.5cmC.3cmD.4cm4.如图所示,点A,B,C 在同一条直线上,点D 在直线AB 外,过这四点中的任意3 个点,能画圆的个数是(C )A.1个B.2个C.3个D.4 个【解析】根据题意得出:点D,A,B;点D,A,C;点9.如图所示,网格中的小正方形的边长均为1,小正方形的顶点叫做格点,△ABC的三个顶点都在格点上.(1)在图上标出△ABC的外接圆的圆心O.(2)△ABC 的外接圆的面积是10π.【解析】(1)如答图所示.(2)∵223+110∴外接圆的面积是10π.10.给定下列条件可以确定一个圆的是( C )A.已知圆心B.已知半径C.已知直径D.三个点11.如图所示,在平面直角坐标系中,点A,B,C 的坐标分别为(1,4),(5,4),(1,-2),则△ABC外接圆的圆心坐标是( D )A.(2,3)B.(3,2)C.(1,3)D.(3,1)12.一个直角三角形的两边长分别为3,4,则此三角形的外接圆半径是 2 或5213.在Rt△ABC 中,AB=AC=2,∠BAC=90°,能完全覆盖住此三角形的最小圆的面积是2π.【解析】如答图所示,∵∠BAC=90°,∴能完全覆盖住△ABC 的最小圆是以BC 为直径的圆.由勾股定理,得2=2π.14.作图题:(1)在图1,图2 中分别作出点P,使得PA=PB=PC. (2)观察各图中的点P 与△ABC的位置关系,并总结规律: 当△ABC 为锐角三角形时,点P 在△ABC 的内部;当△ABC为直角三角形时,点P 在△ABC的斜边的中点;当△ABC 为钝角三角形时,点P 在△ABC 的外部;反之也成立,且在平面内到三角形各顶点距离相等的点只有一个.【解析】(1)如答图所示,分别作出三角形任意两边的垂直平分线,根据垂直平分线的性质,可得两直线的交点即是点P.(2)内部斜边的中点外部15.我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB的最小覆盖圆就是以线段AB 为直径的圆.(1)请分别作出下图中两个三角形的最小覆盖圆(尺规作图,保留作图痕迹,不写作法).(2)探究三角形的最小覆盖圆有何规律.请写出你所得到的结论(不要求证明).【解析】(1)如答图所示.(2)锐角三角形和直角三角形的最小覆盖圆是其外接圆;钝角三角形的最小覆盖圆是以其最长边为直径的圆.16.已知圆上两点A,B(如图所示),用直尺和圆规求作以AB 为一腰的圆内接等腰三角形,这样的三角形能作几个?若作以AB 为一边的圆内接等腰三角形,能作几个?【解析】如答图1 所示,以AB 为腰的等腰三角形能作2 个;除答图1 中作出的两个三角形外,还可作出以AB 为底的两个等腰三角形,如答图2 所示,故以AB 为一边的等腰三角形能作4 个.。
浙教版九年级上册数学同步检测卷七:3.2圆的基本知识3.1~3.2(含答案)
浙教版初中九年级同步检测卷 测卷七:圆的基本知识(3.1~3.2)一、选择题(每小题3分,共30分) 1.下列说法正确的是…… ( )A .弦是直径B .弧是半圆C .直径是弦D .半径是弦 2.下列确定圆的方法正确的是…… ( )A.平面上三个点能确定一个圆B.已知圆心和半径能确定一个圆的位置和大小C.四边形的四个顶点能确定一个圆D.平行四边形的四个顶点能确定一个圆 3. 已知⊙O 的半径是4,OP =3,则点P 与⊙O 的位置关系是( ) A .点P 在圆内 B .点P 在圆上 C .点P 在圆外 D .不能确定 4. 将叶片图案旋转l80°后,得到的图形是()5.直角三角形的外心在……( )A .三角形内部B .三角形外部C .三角形的直角顶点D .斜边的中点6.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,若∠CAE =65°,∠E =70°,且AD ⊥BC ,则∠BAC 的度数为……( ) A .60°B .75°C .85°D .90°B'C BB7.如图,△ABC 是直角三角形,BC 是斜边现将△ABP 绕点A 逆时针旋转后,能与△ACP′重合,已知AP =3,则PP′的长度为……………………………………………………( )A. B. C. D.8. 如图,△ABC 由△A ′B ′C ′绕O 点旋转180°后得到,则下列结论不成立的是( ) A .点A 与点A ′是对应点 B .BO =B ′O C .∠ACB =∠C ′A ′B ′ D .AB ∥A ′B ′ 9.如图,Rt ABC ∆中,∠C =90°,AC =3,BC =4,以点C 为圆心,r 为半径画圆,要使圆与线段AB 有两个公共点,则r 的值不可能是……( ) A .135 B .145 C .3 D .16510.如图,在方格纸上△DEF 是由△ABC 绕定点P 顺时针旋转得到的.如果用(2,1)表示方格纸上A 点的位置,(1,2)表示B 点的位置,那么点P 的位置为……( ) A. (5,2) B. (2,5) C. (2,1) D.(1,2)二、填空题(每小题3分,共18分)11.等边三角形绕其外接圆圆心至少旋转 °后才能与本身重合.12.直角三角形的两条直角边长分别是6cm 和8cm,则其外接圆的直径为 cm. 13.⊙O 的面积为16π,若OP =5,则点P 与⊙O 的位置关系是 .14.如图,在等边△ABC 中,AB =6,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE ,那么线段DE 的长度为 .A BCD B ’ 1C ’D ’ 第15题图第14题图 第9题图第10题图CABAB15.如图,将矩形ABCD 绕点A 顺时针旋转到矩形A ’B ’C ’D ’的位置,旋转角为α (0︒<α<90︒).若∠1=110︒,则∠α= °.16.已知⊙O 的半径为2,点P 到圆心的距离OP =m ,且关于x的方程2210x m -+-=有实数根,则点P 与⊙O 的位置关系是 . 三、解答题(共52分)17.(本题4分)画出⊿ABC 绕点O 旋转180°后所得的图形.18.(本题6分) 如图,A ,B 是⊙O 上两点(AB 不是直径),在⊙O 上找一点P ,使⊿ABP 是等腰三角形.利用尺规作图,找出所有点P .19.(本题6分)根据下列条件,说明过A ,B ,C 三点能否作圆能否作圆,并简要说明理由. (1)AB =2, BC =2, CA =3;(2)AB , BC , CA (3)(0,0)A , (1,2)B , (2,1)C .20.(本题6分) 如图,在△ABC 中,∠BAC =50°,将△ABC 绕点A 按逆时针方向旋转后得△AB 1C 1.当B 1B ∥AC 时,求∠BAC 1的大小.B21.(本题6分)如图,小明家房前有一个空地,空地上有三棵桃树A ,B ,C .小明想造一个圆形的花坛,并使三棵树均在花坛的边上.(1)用尺规作图作出花坛的轮廓线;(2)若AB =8m,AC =6m,且∠BAC =90°,求该花坛的面积.22.(本题6分) 如图,△ABC 是直角三角形,延长AB 到点E ,使BE =BC ,在BC 上取一点F ,使BF =AB ,连接EF ,△ABC 旋转后能与△FBE 重合,请回答: (1)旋转中心是点 ,旋转的最小角度是 度; (2)AC 与EF 的位置关系如何,并说明理由.23.(本题10分) 如图,在直角坐标系中,A (0,4),B (﹣3,0). (1)①画出线段AB 关于y 轴对称线段AC ;②将线段CA 绕点C 顺时针旋转一个角,得到对应线段CD ,使得AD ∥x 轴,请画出线段CD ; (2)判断四边形ABCD 的形状: .(3)若直线y =kx 平分(1)中四边形ABCD 的面积,求实数k 的值.附加题24.(本题10分)附加题已知,点O是等边△ABC内的任一点,连接OA,OB,OC.(1)如图1,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①∠DAO的大小是 °;②用等式表示线段OA,OB,OC之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.参考答案:一、选择题二、填空题11.120︒12. 1013.314.15.20︒16.圆上或圆内三、解答题17.略18略19.(1)能;(2)不能;(3)能20.∵B1B∥AC,∴∠ABB1=∠BAC=50°.∵由旋转的性质可知:∠B1AC1=∠BAC=50°,AB=AB1.∴∠ABB 1=∠AB 1B =50°.∴∠BAB 1=80°∴∠BAC 1=∠BAB 1﹣∠C 1AB 1=80°50°=30°.21.(1)略;(2)25π 22. (1)B ,90;(2)AC ⊥EF 理由如下:延长EF 交AC 于点D 由旋转可知∠C =∠E ∵∠ABC =90°∴∠C +∠A =90°∴∠E +∠A =90°∴∠ADE =90°∴AC ⊥EF . 23.24. (1)①90°.②线段OA ,OB ,OC 之间的数量关系是222OA OB OC +=. ∵△BOC 绕点C 按顺时针方向旋转60°得△ADC ,∴△ADC ≌△BOC ,∠OCD =60°. ∴CD = OC ,∠ADC =∠BOC =120°, AD = OB .∴△OCD 是等边三角形. ∴OC =OD =CD ,∠COD =∠CDO =60°. ∵∠AOB =150°,∠BOC =120°, ∴∠AOC =90°.∴∠AOD =30°,∠ADO =60°. ∴∠DAO =90°,可得结论(2)①如图2,当α=β=120°时,OA +OB +OC 有最小值. 作图如图2的实线部分.如图2,将△AOC 绕点C 按顺时针方向旋转60°得△A ’O ’C ,连接OO ’. 当四点B ,O ,O ’,A ’共线时.OA +OB +OC = O’A’+OB +OO’ =BA ’ 值最小.。
浙教版九年级数学上册同步练习(PDF)版):3.1 圆
11.\( \surd \);\( \times \);\( \surd \);\( \surd \);\( \surd \);\( \times \);\( \times \)
12. \( 5 \)
13. \({\sqrt{5}} \)
14. \( 0<x\leqslant 8 \)
15. \(\left(2,1\right)\)
(i)作 的外接圆;
(ii)以 为直径作圆.问:哪个方案中的圆面积最小?最小面积是多少?
23. 已知:如图,在同心圆中,大圆的弦 交小圆于 , 两点.
Ⅰ 求证: ;
Ⅱ 试确定 与 两线段之间的大小关系,并证明你的结论.
答案
第一部分
1. C 2. C 3. C 4. B 5. C
6. A 7. B 8. B 9. D 10. A
7. 的半径 ,圆心到直线 的距离 ,在直线 上有一点 ,且 ,则点 ( )
A.在 外
B.在 上
C.在 内
D.可能在 内,也可能在 外
8. 如图, 是圆 的直径,它把圆 分成上下两个半圆,自上半圆上一点 作弦 , 的平分线交圆 于点 ,当 在上半圆(不包括 、 两点)上移动时,点 ( )
A.到 的距离保持不变B.位置不变
3. 若 的半径为 ,点 到圆心 的距离为 ,那么点 与 的位置关系是( )
A.点 在圆外B.点 在圆上C.点 在圆内D.不能确定
4. 给出下列说法:① 直径相等的两个圆是等圆;② 长度相等的两条弧是等弧;③ 圆中最长的弦是通过圆心的弦;④ 一条弦把圆分成两条弧,这两条弧不可能是等弧.正确的有( )
18. 如图,在 中, , ,以点 为圆心, 为半径的圆交 于点 ,交 于点 ,则 的度数为
初中数学浙教版九年级上册3.1 圆(2)同步练习
初中数学浙教版九年级上册3.1 圆(2)同步练习一、单选题(共10题;共20分)1.给定下列条件可以确定一个圆的是()A. 已知圆心B. 已知半径C. 已知直径D. 不在同一直线上三点2.下列说法正确的是()A. 过一点A的圆的圆心可以是平面上任意点B. 过两点A、B的圆的圆心在一条直线上C. 过三点A、B、C的圆的圆心有且只有一点D. 过四点A、B、C、D的圆不存在3.若三角形的外心在这个三角形的一边上,则这个三角形是().A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定4.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A. B. C. D.5.一圆形玻璃被打碎后,其中四块碎片如图所示,若选择其中一块碎片带到商店,配制与原来大小一样的圆形玻璃,不能选择的是()A. ①B. ②C. ③D. ④6.如图,在8×8正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A. 点EB. 点FC. 点GD. 点H7.三角形的外心具有的性质是()A. 到三边距离相等B. 到三个顶点距离相等C. 外心在三角形外D. 外心在三角形内8.如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口A,B,C,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A. △ABC的三边高线的交点处B. △ABC的三角平分线的交点处C. △ABC的三边中线的交点处D. △ABC的三边中垂线的交点处9.如图,将放在每个小正方形边长为1的网格中,点A,B,C均落在格点上,用一个圆面去覆盖,能够完全覆盖这个三角形的最小圆面半径是()A. B. C. 2 D.10.三角形两边的长分别是8 和6,第三边的长是方程x2﹣12x+20=0 的一个实数根,则三角形的外接圆半径是( )A. 4B. 5C. 6D. 8二、填空题(共6题;共8分)11.锐角三角形的外心在________,直角三角形的外心在________ ,钝角三角形的外心在________.12.如图所示,点A,B,C在同一直线上,点M在AC外,经过图中的三个点作圆,可以作________个.13.若A(1,2),B(3,﹣3),C(x,y)三点可以确定一个圆,则x、y需要满足的条件是 ________.14.将6×4的正方形网格如图所示放置在平面直角坐标系中,每个小正方形的边长为1,若点在第一象限内,且在正方形网格的格点上,若是钝角的外心,则的坐标为________.15.如图,△ABC的外接圆的圆心坐标为________.16.已知△ABC的三边a,b,c满足a+b2+|c-6|+28=4 +10b,则△ABC的外接圆半径=________.三、解答题(共4题;共35分)17.“不在同一直线上的三点确定一个圆”.请你判断平面直角坐标系内的三个点A(2,3),B(-3,-7),C(5,11)是否可以确定一个圆.18.如图,已知△ABC中,AC=6,∠ABC=45°.(1)用直尺和圆规作出△ABC的外接圆(保留作图痕迹,写出结论,不写画法);(2)求出△ABC的外接圆半径.19.如图,在正方形ABCD中,E是AD边的中点.(1)用直尺和圆规作⊙O,使⊙O 经过B、C、E三点;(要求:尺规作图,保留作图痕迹,不写作法);(2)若正方形的边长为4,求(1)中所作⊙O的面积.20.如图, 是的边的中点,过延长线上的点作的垂线, 为垂足, 与的延长线相交于点,点在上, , ∥.(1)证明:;(2)证明:点是的外接圆的圆心;答案解析部分一、单选题1.【答案】D【解析】【解答】解:A、不能确定.因为半径不确定,故不符合题意;B、不能确定.因为圆心的位置不确定,故不符合题意;C、不能确定,因为圆心的位置不确定,故不符合题意;D.不在同一直线上三点可以确定一个圆.故符合题意;故答案为:D.【分析】确定一个圆需要两个条件:圆心和半径,其中圆心确定位置,半径确定大小。
2018-2019学年数学浙教版九年级上册3.1 圆(2) 同步练习
2018-2019学年数学浙教版九年级上册3.1圆(2)同步练习一、选择题1.在同一平面内,过已知A,B,C三个点可以作的圆的个数为( )A、0B、1C、2D、0或1+2.可以作圆且只可以作一个圆的条件是( )A、已知圆心B、已知半径C、过三个已知点D、过不在同一条直线上的三个点+3.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A 的坐标为(﹣3,2),则该圆弧所在圆心坐标是(??)A、(0,0)B、(﹣2,1)C、(﹣2,﹣1)D、(0,﹣1)+4.过A,B,C三点能确定一个圆的条件是()①AB=2,BC=3,AC=5;②AB=3,BC=3,AC=2;③AB=3,BC=4,AC= 5.A、①②B、①②③C、②③D、①③+5.一圆形玻璃被打碎后,其中四块碎片如图所示,若选择其中一块碎片带到商店,配制与原来大小一样的圆形玻璃,不能选择的是()A、①B、②C、③D、④+6.如图,将放在每个小正方形边长为1的网格中,点A,B,C均落在格点上,用一个圆面去覆盖,能够完全覆盖这个三角形的最小圆面半径是()A、B、C、2 D、+7.在Rt△ABC中,两直角边AC=6cm,BC=8cm,则它的外接圆的面积为()A、100πcm2B、15πcm2C、25πcm2D、50πcm2+8.如图,点O为等边三角形ABC的外心,四边形OCDE为正方形,其中E点在△A BC的外部,下列三角形中,外心不是点O的是()A、△CBEB、△ACDC、△ABED、△ACE+9.下列命题:(1)经过三点一定可以作圆;(2)任一个三角形一定有一个外接圆,而且只有一个外接圆;(3)任意一个圆一定有一个内接三角形,而且只有一个内接三角形;(4)三角形的外心到三角形三个顶点的距离相等.上述结论中正确的有( )A、1个B、2个C、3个D、4个+二、填空题10.若A(1,2),B(3,﹣3),C(x,y)三点可以确定一个圆,则x、y需要满足的条件是.+11.我们把两个三角形的外心之间的距离叫做外心距.如图,在Rt△ABC和Rt△ACD中,∠ACB=∠ACD=90°,点D在边BC的延长线上,如果BC=DC=3,那么△ABC和△ACD的外心距是.+12.如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为.+13.已知△ABC的三边a,b,c,满足a+b2+|c﹣6|+28=4+10b,则△ABC的外接圆半径= .+14.如图,点O是△ABC的外心,∠A=50°,则∠OBC= °.+15.在矩形ABCD中,AB=4,BC=6,动点P为矩形边上的一点,点P沿着B﹣C的路径运动(含点B和点C),则△ADP的外接圆的圆心O的运动路径长是.+三、解答题16.考古学家发现了一块古代圆形陶器残片如图所示,为了修复这块陶器残片,需要找出圆心.(1)、请利用尺规作图确定这块残片的圆心O;(保留作图痕迹,不写作法)(2)、写出作图的主要依据:+17.如图,一只猫观察到一老鼠洞的三个洞口A、B、C,这三个洞口不在同一条直线上,请问这只猫应该在什么地方才能最省力同时顾及三个洞口?作出这个位置.+18.如图,在Rt△ABC中,∠C=90°,求作Rt△ABC的外接圆(不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑).+19.如图所示,△ABC中,AB=AC=10,BC=12,求△ABC外接圆的半径.+20.小明家的房前有一块矩形的空地,空地上有三棵树A,B,C,如图,小明想建一个圆形花坛,使三棵树都在花坛的边上.(1)、请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹);(2)、若在△ABC中,AB=8米,AC=6米,∠BAC=90°,试求小明家圆形花坛的面积.+21.如图是一块残缺的圆轮片,点A、C在圆弧上.(1)、用尺规作出的中点B,再作出△ABC的外接圆(不写作法,保留作图痕迹).(2)、若,,求外接圆的半径.+。
九年级数学上册 第三章第1-2节圆;圆的对称性同步练习 浙江版 试题
九年级数学上册第三章第1-2节圆;圆的对称性同步练习浙江版(答题时间:30分钟)
1. 以1cm为半径画圆,可画出多少个圆?
若以定点O为圆心画圆,可画出多少个圆?
2. 一个圆的三条直径可把该圆分成的劣弧有多少条?
3. 判断下列命题的真假
(1)两条弧的长度相等,它们就是等弧
(2)两条弧的度数相等,则它们是等弧
(3)度数相等的弧的长度相等
(4)等弧的度数相等
(5)线段是弦
(6)直径是圆的对称轴
(7)经过圆心的弦是直径
(8)三角形的三条边是三角形外接圆的三条弦
(9)经过三点可以作一个圆
(10)任意一个三角形有且只有一个外接圆
(11)任意一个圆有且只有一个内接三角形
4. 如图,在⊙O上画
⋂
PQ,使得
⋂
⋂
=AB
3
PQ,说说你这么画的理由.并判断①AB
3
PQ=;②
AOB
3
POQ∠
=
∠是否成立?
5. 如图,CD为⊙O的直径,以D为圆心,OD的长为半径画弧,交⊙O于点A,B.
判断:
⋂
⋂
⋂
=
=CA
CB
ADB是否正确?为什么?
A
【试题答案】
1. 无数个,无数个
2. 12条
3. 正确的是(4),(7),(8),(10)
4. AB 3PQ ≠,AOB 3POQ ∠=∠
5. 成立.提示:只要说明BOC AOC AOB ∠=∠=∠即可.。
浙教版数学九年级上册练习:3.1圆.docx
21O E D C B A O D C B A 3.1 圆 (巩固练习)姓名 班级第一部分1、在Rt △ABC 中,∠C =90°,CD ⊥AB ,AC =3,BC =4,若以C 为圆心,以3为半径作⊙C ,则点A 在⊙C ,点B 在⊙C ,点D 在⊙C .2、⊙O 的半径为13,圆心O 到直线l 的距离d =OD =5. 在直线l 上有三点P 、Q 、R ,且PD =12,QD =11,RD =13,则点P 在⊙O ,点Q 在⊙O ,点R 在⊙O .3、如图,CD 是⊙O 的直径,∠EOD =84°,AE 交⊙O 于B ,且AB =OC ,求∠A 的度数.4、已知,如图,大圆的弦AB 交小圆于C 、D . 求证:AD =BC . 第二部分1. 下列结论正确的是…………………………………………………………………( )A. 弦是直径B. 弧是半圆C. 半圆是弧D. 过圆心的线段是直径2. 圆上各点到圆心的距离都等于 .3.若经过圆上两点的最长线段长为6,则此圆的面积为 .4.已知⊙O 的面积为16π,若AO =5,则点A 在⊙O (填“内”、“上”或“外”).5. 写出图2中的一条优弧: .6. 写出图2中的所有弦: .7. 已知⊙O 的半径为7cm ,若OP =3cm ,则点P 在 ;若OP =7cm ,则点P 在 ;若OP =10cm ,则点P 在 .8. 已知AB 为⊙O 的直径,C 为⊙O 上一点,过C 作CD ⊥AB 于点D ,延长CD至E ,使DE =CD ,那么点E 的位置是在⊙O .9. 已知,如图,OA ,OB 为⊙O 的半径,C ,D 分别为OA ,OB 的中点.求证:∠A =∠B .10. 由于过度采伐森林和破坏植被,我国某些地区多次受到沙尘暴的侵袭.近A 市气象局测得沙尘暴中心在A 市正东方向400km 的B 处,正在向西北方向转移(如图所示),距沙尘暴中心300km 的范围内将受到影响.问A市是否会受到这次沙尘暴的影响?参考答案第一部分4、已知,如图,大圆的弦AB交小圆于C、D. 求证:AD=BC.【证明】连结OA、OB.∵OA=OB,∴∠A=∠B.又∵OC=OD,∴∠ODC=∠OCD.∴△AOD≌△BOC,∴AD=BC.第二部分1. 下列结论正确的是…………………………………………………………………()A. 弦是直径B. 弧是半圆C. 半圆是弧D. 过圆心的线段是直径答案:C2. 圆上各点到圆心的距离都等于 .答案:半径3.若经过圆上两点的最长线段长为6,则此圆的面积为 .答案:9π4.已知⊙O的面积为16π,若AO=5,则点A在⊙O(填“内”、“上”或“外”).答案:外5. 写出图2中的一条优弧: .答案:填ADC,ACD,BDC,BCD,CAD中的一条即可.6. 写出图2中的所有弦: .答案:AB,BC,BD,CD7. 已知⊙O的半径为7cm,若OP=3cm,则点P在;若OP=7cm,则点P在;若OP=10cm,则点P在 .答案:内上外8. 已知AB为⊙O的直径,C为⊙O上一点,过C作CD⊥AB于点D,延长CD至E,使DE=CD,那么点E的位置是在⊙O .答案:上9. 已知,如图,OA,OB为⊙O的半径,C,D分别为OA,OB的中点.求证:∠A=∠B.证明:∵OA=OB,C,D分别为OA,OB的中点,∴OD=OC,又∵∠O=∠O,∴△AOD≌△BOC,∴∠A=∠B.10. 由于过度采伐森林和破坏植被,我国某些地区多次受到沙尘暴的侵袭. 近A市气象局测得沙尘暴中心在A市正东方向400km 的B处,正在向西北方向转移(如图所示),距沙尘暴中心300km 的范围内将受到影响.问A市是否会受到这次沙尘暴的影响?解:作AC⊥BD于C.∵∠ABD=45°,AB=400km,∴AC=km<300km,即A会受到这次沙尘暴的影响.初中数学试卷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学浙教版九年级上册3.1 圆(2)同步训练C卷
姓名:________ 班级:________ 成绩:________
一、确定圆的条件 (共8题;共27分)
1. (2分) (2018九上·哈尔滨月考) 下列说法正确的个数是()
①平分弦的直径垂直于弦;②三点确定一个圆;③在同圆中,相等的弦所对的圆周角相等;④直径为圆中最长的弦.
A . 1个
B . 2个
C . 3个
D . 4个
2. (2分) (2019九上·宜兴期中) 下列说法正确的是()
A . 等弧所对的圆心角相等
B . 优弧一定大于劣弧
C . 经过三点可以作一个圆
D . 相等的圆心角所对的弧相等
3. (2分)可以作圆且只可以作一个圆的条件是()
A . 已知圆心
B . 已知半径
C . 过三个已知点
D . 过不在同一条直线上的三个点
4. (2分) (2018八上·东台期中) 如图,△ABC中,AB=AC,∠BAC的平分线与AB
的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合.若∠OEC=136°,则∠BAC的大小为().
A . 44°
B . 58°
C . 64°
D . 68°
5. (2分)下列命题不正确的是()
A . 三点确定一个圆
B . 三角形的外接圆有且只有一个
C . 经过一点有无数个圆
D . 经过两点有无数个圆
6. (2分) (2018九上·杭州期中) 下列说法正确的是()
A . 任意三点可以确定一个圆
B . 平分弦的直径垂直于弦,并且平分该弦所对的弧
C . 相等圆周角所对的弧也相等
D . 等弧所对的圆周角相等
7. (5分)“不在同一直线上的三点确定一个圆”.请你判断平面直角坐标系内的三个点A(2,3),B(﹣3,﹣7),C(5,11)是否可以确定一个圆.
8. (10分)如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.
(1)
求证:△BOE≌△DOF;
(2)
若BD=EF,连接DE、BF,判断四边形EBFD的形状,无需说明理由.
二、三角形的外接圆与外心 (共8题;共24分)
9. (1分)已知△ABC的三边长分别是6,8,10,则△AB C外接圆的直径是1 .
10. (1分) (2019九上·江都月考) 直角三角形的两直角边长分别为8和6,则此三角形的外接圆半径是________.
11. (1分) (2017九上·海淀月考) 已知直角三角形的两条直角边长分别为和,那么这个三角形的外接圆半径等于________.
12. (2分) (2018九上·兴化期中) 下列说法正确的是()
A . 三点确定一个圆
B . 和半径垂直的直线是圆的切线
C . 一个三角形只有一个外接圆
D . 三角形的内心到三角形三个顶点的距离相等
13. (2分) (2019八下·余姚月考) 已知一元二次方程的两个解恰好是等腰△ABC的底边长和腰长,则△ABC的周长为()
A . 14
B . 10
C . 11
D . 14或10
14. (2分) (2016九上·北京期中) 下列语句中错误的是()
A . 三点确定一个圆
B . 垂直于弦的直径平分弦且平分弦所对的两条弧
C . 三角形的外心是三角形三边垂直平分线的交点
D . 三角形的内心是三角形内角平分线的交点
15. (5分)如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=60°,∠ACB=50°,请解答下列问题:
(1)∠CAD的度数;
(2)设AD、BC相交于E,AB、CD的延长线相交于F,求∠AEC、∠AFC的度数;
(3)若AD=6,求图中阴影部分的面积.
16. (10分)(2017·道里模拟) 如图,在小正方形的边长均为l的方格纸中,有线段AB,BC.点A,B,C均在小正方形的顶点上.
(1)
在图1中画出四边形ABCD,四边形ABCD是轴对称图形,点D在小正方形的项点上:
(2)
在图2中画四边形ABCE,四边形ABCE不是轴对称图形,点E在小正方形的项点上,∠AEC=90°,EC>EA;直接写出四边形ABCE的面积为________.
三、中考演练 (共4题;共10分)
17. (1分) (2017九上·宜城期中) 若点O是等腰△ABC的外心,且∠BOC=60°,底边BC=6,则△ABC的面积为________.
18. (1分) (2019八上·武汉月考) △ABC中,AC=BC,∠C=90°,在△ABC外有一点P,且PA⊥PB,则∠APC的度数是________度.
19. (2分)(2017·临沂模拟) 如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=40°,点D是弧BAC上一点,连结CD.则∠D的度数是()
A . 50°
B . 45°
C . 40°
D . 35°
20. (6分) (2018九上·新乡月考) 在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).
(1)①若△ABC和△A1B1C1关于原点O成中心对称图形,画出△A1B1C1;
②将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;
(2)在x轴上存在一点P,满足点P到点B1与点C1距离之和最小,请直接写出P B1+P C1的最小值为________.
参考答案
一、确定圆的条件 (共8题;共27分)
1、答案:略
2、答案:略
3、答案:略
4、答案:略
5、答案:略
6、答案:略
7、答案:略
8、答案:略
二、三角形的外接圆与外心 (共8题;共24分)
9、答案:略
10、答案:略
11、答案:略
12、答案:略
13、答案:略
14、答案:略
15、答案:略
16、答案:略
三、中考演练 (共4题;共10分)
17、答案:略
18、答案:略
19、答案:略
20、答案:略。